To appear in Proceedings of the Seventh International Conference on Parallel and
Distributed Computing Systems, Las Vegas, NV, October 1994.

Implementing Lock-Free Queues

John D. Valois
Department of Computer Science
Rensselaer Polytechnic Institute

Troy, NY 12180

Abstract

We study practical techniques for implementing the
FIFO queue abstract data type using lock-free data
structures, which synchronize the operations of con-
current processes without the use of mutual exclusion.
Two new algorithms based on linked lists and arrays
are presented. We also propose a new solution to the
ABA problem associated with the COMPARE& SwaP
instruction. The performance of our linked list algo-
rithm is compared several other lock-free queue im-
plementations, as well as more conventional locking
techniques.

1 Introduction

Concurrent access to a data structure shared among
several processes must be synchronized in order to
avoid conflicting updates. Conventionally this is done
using mutual exclusion; processes modify the data
structure only inside a critical section of code, within
which the process is guaranteed exclusive access to the
data structure. Typically, on a multiprocessor, critical
sections are guarded with a spin-lock. We will refer to
all methods using mutual exclusion as locking or lock-
based methods.

More recently, researchers have studied methods of
implementing concurrent data structures which make
no use of mutual exclusion. In an asynchronous envi-
ronment such lock-free data structures can have sev-
eral advantages. In particular, slow or stopped pro-
cesses do not prevent other processes from accessing
the data structure.

The FIFO queue is an important abstract data
type, lying at the heart of operating system implemen-
tation. Queues are also useful in implementing paral-
lel versions of many algorithms, such as quicksort and

branch-and-bound, and are generally useful as a means
of distributing work to a number of processes [14].
Many authors have proposed algorithms for lock-free
queues in the literature [6, 8, 11, 12, 16, 18, 19, 20].

In the remainder of this paper we examine prac-
tical implementations of lock-free FIFO queues. Sec-
tion 2 introduces some essential concepts related to
lock-free data structures. Sections 3 surveys previous
work and presents a new algorithm for lock-free queues
using a linked list data structure, and Section 4 dis-
cusses how to handle the ABA problem that can oc-
cur with these types of algorithms. Section 5 surveys
algorithms based on arrays, and presents our second
new algorithm. Section 6 reports some preliminary ex-
perimental results comparing our algorithms to other
techniques.

2 Background

Our goal is to design a concurrent queue that sup-
ports the normal ENQUEUE and DEQUEUE operations.
In a concurrent data structure, individual processes
execute single operations sequentially; however, oper-
ations by different processes may be in progress simul-
taneously. The differs from a parallel data structure,
in which processes cooperate to perform one or more
operations together simultaneously, and a sequential
data structure which can only be accessed by a single
process.

There are two useful properties that a lock-free data
structure may have. The non-blocking property guar-
antees that at least one process executing an operation
will complete within a finite number of steps, while the
wait-free property guarantees that every process will
complete its operation in a finite number of steps. A
non-blocking data structure has the property, men-

tioned in the introduction, that the data structure
is always accessible despite processes that may slow
down or halt during an operation. A wait-free data
structure further ensures that no process will starve.
Note that a lock-based data structure cannot have ei-
ther property, since a process inside the critical section
can delay all operations indefinitely.

Other authors have used the terms lock-free and
non-blocking as synonymous, but we find it useful to
distinguish between algorithms that do not require
mutual exclusion and those that actually provide the
non-blocking property. Several of the algorithms we
will discuss in this paper fall into the former category.

We use linearizability [7] as the correctness condi-
tion for our data structures. Linearizability implies
that each operation appears to take place instanta-
neously at some point in time, and that the relative
order of non-concurrent operations is preserved. In
other words, for operations that are not concurrent,
the data structure behaves exactly like its sequential
counterpart. Concurrent operations can take place in
any relative sequential order.

Universal constructions exist for constructing lock-
free data structures from sequential functional algo-
rithms [4, 15], or concurrent lock-based algorithms [17,
21]. In general, for a simple data structure like a
queue, these methods have far more overhead than
the algorithms we will be considering.

We will assume that the target architecture sup-
ports common atomic read-modify-write primitives,
such as FETcH&ADD (FAA) and COMPARE&SWAP
(CSW). FAA atomically reads the value in a mem-
ory location, adds another value to it, and writes the
result back into the memory location, returning the
original value. CSW takes three values: a memory
location, an old value, and new value. If the current
value of the memory location is equal to the old value,
then the new value is written to the memory loca-
tion. Thus, CSW atomically writes a new value into
a memory location only if we know its current con-
tents. CSW returns a condition code indicating if it
1s successful or not.

We use the following notation in our pseudo-code: if
p is a pointer, then p” represents the object pointed to,
and p".field refers to a field in the object. We assume
that memory allocation and reclamation are provided;
memory management is discussed further in Section 4.

3 Linked List Implementations

In this section we review several proposed algo-
rithms for lock-free queues that are based on a linked

list data structure, and we propose a new algorithm.
The data structure in all of these algorithms is com-
posed of records, each containing two fields: next, a
pointer to the next record in the list, and value, the
data value stored in the record. Two global pointers,
head and tail, point to records on the list; these point-
ers are used to quickly find the correct record when
dequeuing and enqueuing, respectively.

All of these algorithms, with the exception of the
algorithm of Massalin and Pu described in section 3.3,
can be implemented using the CSW atomic primitive.

3.1 Non-Linearizable Methods

The use of CSW to implement queues shared by
multiple processors is mentioned in [18], where its orig-
inal use is attributed to the early 1970s. A brief men-
tion of this method is also in [8].

The method works as follows: For a DEQUEUE op-
eration, CSW is used to advance the head pointer for-
ward one node in the linked list; the node originally
pointed at is now dequeued. For an ENQUEUE oper-
ation, CSW 1is used to make the tail pointer point at
the new node being enqueued; the new node is then
linked onto the end of the list.

The author omits a discussion of how to handle
empty queues; this is not a trivial task, since with an
empty queue, concurrent ENQUEUE and DEQUEUE op-
erations can conflict. These algorithms can also result
in non-linearizable behavior.

In particular, it is possible for a process performing
a DEQUEUE operation to think that the queue is empty
when 1t is not if an enqueuing process is slow in linking
the new node onto the end of the list. Furthermore,
if the process halts completely, the list structure is
broken and cannot be repaired, since the only halted
process has any knowledge of what link needs to be
made.

3.2 Blocking Methods

Mellor-Crummey [12] and Stone [19] present ver-
sions of the above basic algorithm which fix these
flaws. In order to ensure that the queue 1s linearizable,
however, these two algorithms detect when a slow en-
queuing process has not yet linked its node to the list,
and simply wait. Thus, while they do not employ any
mutual exclusion, neither of these two algorithms has
the non-blocking property.

3.3 Non-blocking Methods

Prakash et al. [16] present a queue that is both lin-
earizable and non-blocking. Their approach is to take

a snapshot of the current state of the queue; by us-
ing this information, a process is able to complete the
operation of any stalled process that may be blocking
it.

In order to accomplish this, during an ENQUEUE
operation, this algorithm first uses CSW to link the
new node onto the list, and then uses a second CSW
to update tail. (This second CSW is not retried if it
fails.) This keeps all of the information necessary for
another process to complete the ENQUEUE operation
(by updating tail) globally accessible.

A disadvantage of this algorithm is that because of
the need to take the snapshot of the queue, enqueuing
and dequeuing processes, which would not normally
interfere with each other, can experience contention.

Massalin and Pu have developed lock-free queue al-
gorithms as part of a lock-free multiprocessor operat-
ing system [11]. Their algorithms rely on a powerful
variant of COMPARE& SWAP that allows two arbitrary
words to be modified atomically, found on the Mo-
torola 65030 processor; we do not consider their algo-
rithms in this paper.

3.4 A New Lock-Free Queue

We now describe a new lock-free queue algorithm.
Pseudo-code for this algorithm appears in Figure 1.

ENQUEUE(%)

¢ — new record

q .value — x

q .next «— NULL

repeat
p «— tail
suce — COMPARE&SWAP(p .next, NULL, ¢)
if suce # TRUE

COMPARE&SWAP(tail, p, p”.next)
until suce = TRUE
COMPARE& SWAP(tail, p, q)

end

DEQUEUE()

repeat
p < head
if p".next = NULL
error queue empty
until COMPARE& SwaP(head, p, p”.next)
return p .next .value

end
Figure 1: ENQUEUE and DEQUEUE operations.

Like the algorithm of Prakash et al., for ENQUEUE

operations our algorithm first links the new node to
the end of the list, and then updates the tail pointer.
Our DEQUEUE operation is slightly different, however.
Rather than having head point to the node currently
at the front of the queue, 1t points at the last node
that was dequeued. (Thus, the node at the head of
the queue is the node immediately following the one
pointed at by head.)

This dummy node at the front of the list ensures
that both head and tail always point at a node on the
linked list, thus avoiding problems that occur when
the queue is empty or contains only a single item. This
technique also eliminates contention between enqueu-
ing and dequeuing processes even when there is only
a single item in the queue.

We no longer need the snapshot of Prakash et al.’s
algorithm, since the only intermediate state that the
queue can be in is if the tail pointer has not been up-
dated. A process performing an ENQUEUE operation
will discover this when its first CSW returns unsuc-
cessfully, and it can then attempt to update tail itself.

Figure 2 shows a queue implemented as described
in this section. Notice that a process is in the midst
of enqueuing item C, and that the tail pointer has not
yet been updated.

- g

Head Tai |

Figure 2: Queue in a linked list.

There a several strategies we can use when retry-
ing operations. In the code above, we employ a strict
policy regarding the positioning of the tail pointer; it
always points to the last node on the list or the one
immediately preceding it. This is accomplished by the
second CSW instruction, which attempts to update
the tail pointer if the process fails to enqueue its own
node.

An alternative policy is to treat the tail as only
a “hint” to the location of the last node on the list,
pointing to a node that 1s fairly close to but possi-
bly not exactly at the end of the list. Figure 3 gives
pseudo-code implementing this policy.

The following theorem shows that the maximum
distance from the end of the list that the tail pointer
can stray is limited by the number of concurrent EN-
QUEUE operations.

ENQUEUE(%)
¢ — new record
q .value — x
q .next «— NULL
p — tail
oldp — p
repeat
while p".next # NULL
p — p .next
until COMPARE&SWAP(p”.next, NULL, ¢)
CoMPARE&SwAP(tail, oldp, q)

end

Figure 3: ENQUEUE using alternative policy.

Theorem 1 If p concurrent processes are performing
queue operations, tail points to a node at most 2p — 1
node from the end of the list.

Proof: We need only consider processes performing
ENQUEUE operations. Consider the last operation that
succeeded in setting the tail pointer. At most p — 1
other operations could have completed ENQUEUE op-
erations, adding nodes to the end of the list, but failed
to update tail due to a conflict with the first process.
There are also at most p concurrent ENQUEUE opera-
tions that have inserted a node onto the list but not
vet attempted to change the tail pointer. [

Yet a third alternative exists. Experiments with
implementations of the above two policies indicated
that the second policy resulted in enqueuing processes
spending the majority of their time traversing the
linked list, and using the first policy resulted in undue
contention from the second CSW instruction. (Intu-
itively, the second CSW instruction was superfluous,
since most of the time when a process fails to link an
item onto the end of the list, the process that was
successful will have already updated tail.)

These observations lead to a third policy, in which
processes never update the tail pointer unless they
have just successfully linked a new item onto the
list. (This is simply the code in Figure 1 with the
if --- COMPARE&SWAP(---) deleted). Our experi-
ments have shown this policy to result in the fastest
code under conditions in which processes do not stall
or stop.

Unfortunately, this change has the side effect of de-
stroying the non-blocking property, since if a stopped
enqueuing process fails to update the tail pointer no
further enqueues can succeed. However, the non-
blocking property can be restored by implementing

a hybrid of the second and third policies; if the tail
pointer is not updated, after a few tries an enqueuing
process can simply search for the end of the list and
update tail itself.

4 The ABA Problem

In the algorithms discussed in the last section,
CSW is used in the following way: a pointer in the
data structure is read, some computation is done to
determine how to change the data structure, and then
CSW is used to write a new value to the pointer only
if it has not changed in the interim. A subtle prob-
lem can arise due to the fact that the CSW instruc-
tion does not really ensure that the pointer has not
changed, but only that it has a certain value. If the
pointer has changed, but by coincidence has the same
value that it did when we originally read it, then the
CSW instruction will succeed when 1t should fail.

To see how this problem can occur with our lock-
free queue algorithm, consider a process that is at-
tempting to dequeue an item. This process will read
the value of head, determine the address of the second
node on the linked list (by following the next of the
first node), and then use CSW to make head point at
the second node. If head has changed (due to other
processes completing DEQUEUE operations), then the
CSW instruction should fail. However, suppose that
the block of memory making up the first node on the
list 1s “recycled” and reused as a new node which is
enqueued (after our process has already read the head
pointer, but before it has tried the CSW). If this node
happens to work 1ts way up to the front of the list, then
when our process performs its CSW, it will succeed,
most likely corrupting the linked list structure.

This problem is known as the A BA problem [9]. The
conventional solution to this problem has been to make
use of a variant of CSW that operates on two adja-
cent words of memory at a time; one word is used to
hold the pointer, and the other word is used to hold
a tag that 1s incremented every time the pointer is
changed. In this way, even if the pointer changes and
then changes back to its original value, the tag will
have changed and the CSW operation will not suc-
ceed.

4.1 The Safe Read Protocol

The preceding solution, in addition to requiring a
stronger version of CSW, only makes it unlikely that
the ABA problem will occur. In this section we pro-
pose an alternative solution that does not require a

double word version of CSW and which guarantees
that the ABA problem will not occur.

We observe that when we are using CSW to ma-
nipulate pointers, the root cause of the ABA problem
can be attributed to nodes being recycled and reused
while some processes are still looking at them. Thus,
we view the ABA problem as one of memory manage-
ment. To solve it, we keep track of when it is safe
to recycle a node by assigning each node a reference
count, and not reusing a node until its reference count
has gone to zero.

It is necessary to ensure that a process, when follow-
ing a pointer in the data structure, atomically reads
the pointer and increments the reference count of the
pointed-at node. We call this operation a safe read.
Pseudo-code for this operation is given in Figure 4.
A corresponding RELEASE operation is used to decre-

SAFEREAD(gq)
loop:
p — ¢ .next
if p = NULL then
return p
FETCH&ADD(p refet, 1)
if p = ¢".next then
return p
else
RELEASE(p)
goto loop

end
Figure 4: SAFEREAD operation.

ment the reference count when a process is done with
the pointer. If the count becomes zero, the memory
block can be recycled.

The SAFEREAD and RELEASE operations are part
of presumed to be supported by the underlying mem-
ory management library, which would also provide the
usual ALLoc and FREE operations. Further details
on how to implement such a library providing lock-
free versions of these four operations can be found in
the author’s PhD thesis [22].

5 Array Implementations

It is common to implement sequential queues us-
ing a “circular array” data structure. This type of
data structure has the advantage of lower overhead
over linked list structures, since there is no need for
next pointers, and it is unnecessary to allocate and
deallocate memory on every operation.

Herlihy and Wing [7] present an array based queue
that is non-blocking and linearizable, but which re-
quires an array of infinite length. Wing and Gong [23]
propose a modification to this algorithm removing the
need for an infinite array; however, for both algorithms
the running time of the DEQUEUE operation degrades
as more KENQUEUE operations are done. An algorithm
proposed by Treiber [20] also suffers from poor perfor-
marnce.

Gottlieb et al. [3] present an algorithm that is effi-
cient, but which blocks under certain conditions. Al-
though the probability of blocking occurring can be
made smaller by increasing the size of the array used,
it 18 not a true non-blocking algorithm.

5.1 A New Algorithm

We present a new algorithm for a lock-free queue
based on an array. The algorithm is both non-blocking
and linearizable. Qur approach differs from previous
algorithmsin that it uses the CSW instruction, rather
than the FAA instruction. The algorithms in the pre-
vious section all use FAA to allocate a position in the
array when enqueuing.

The array is set up as a standard circular array. In
addition to the data values the user wishes to store
in the queue, there are three special values: HEAD,
TAIL, and EMPTY. Initially, every location in the
array is set to EMPTY, with the exception of two
adjacent locations which are set to HEAD and TAIL.
This represents the empty queue.

The algorithm works as follows. To enqueue the
value #, a process finds the (unique) location con-
taining the special TAIL value. The double-word!
COMPARE& SWAP operation is then used to change
the two adjacent locations from (TAIL, EM PTY) to
(x, TAIL). Note that if the location adjacent to the
one containing TAIL is not EMPTY, then the queue
is full and the operation aborts.

The DEQUEUE operation works in a similar manner,
by using the CSW operation to change two adjacent
locations from (HEAD, z) to (EMPTY, HEAD), re-
turning the value z (provided of course that x was not
TAIL, in which case the queue was empty).

In order to quickly find the locations in the array
containing the values HEAD and TAIL, we keep two
counts; the number of ENQUEUE and the number of
DEQUEUE operations, modulo the size of the array.
The counts are incremented (using FAA) whenever a
process completes an operation, and can be used to
determine the location of the HEAD or TAIL values

1The standard version of CSW could also be used, provided
the data values to be stored were half-words.

to within p, where p 1s the number of concurrent pro-
cesses. Note that keeping the indices of the ends of
the queue in variables using CSW would not work,
due to the ABA problem, and since we cannot pre-
vent indices from being reused, the safe read protocol
cannot be applied.

Figure 5 shows the same queue as in Figure 2, only
implemented as described in this section. Again, no-
tice that a process is in the midst of enqueuing item
C, and that the tail count variable has not yet been
incremented.

0 1 2 3 4 5
EMPTY | HEAD A ‘ B ‘ C TAIL |EMPTY
Head count =1
Tail count = 4

Figure 5: Queue in a circular array.

This technique can also be used to provide lock-
free stack and deque (double ended queue) abstract
data types. However, it does have a subtle problem:
on real machines, memory operations must be aligned.
Our algorithm requires an unaligned CSW for every
other operation, and thus would be infeasible on a real
machine.

6 Experimental Results

It is difficult to characterize the performance of
these types of concurrent algorithms, since their run-
ning time depends on the number of concurrent pro-
cesses. For the algorithms in this paper, a sequence
of operations will take time proportional to the prod-
uct of the number of operations and the number of
concurrent processes.

Theorem 2 A sequence of n queue operations will
take O(np) time.

Proof: The following proof can be generalized to any
of the algorithms in this paper. Note that in the case
that there is no contention from other processes, an
operation will complete in constant time. Contention
causes processes to do more work due to two things:
looking for the proper place in the data structure to
perform the operation (e.g., traversing nodes to find
the end of the linked list), and retrying failed CSW

operations.

Note that from Theorem 1, the time to find the end
of the linked list from the tail pointer is at most O(p).
For the array implementation, the enqueue and de-
queue operation counters will also be within O(p) of
their “correct” value, since at most p processes will
have performed an operation but not incremented the
counter.

New items may be added to the linked list (or the
array) while an operation is in progress. The work to
traverse over these items will total O(np), since each
operation can cause at most p — 1 concurrent opera-
tions to have to traverse its item.

Finally, by a similar argument, the total work to
retry failed CSW operations is O(np) as well. The
bound follows. O

This bound reflects the worst-case behavior. In
order to better compare the performance of the dif-
ferent lock-free algorithms discussed in this paper, as
well as equivalent lock-based algorithms, we have im-
plemented several of them using the Proteus parallel
architecture simulator [2]. All numerical results are
quoted in “cycles” as simulated by Proteus.

To asses the performance of these algorithms, we
measured two quantities: the sequential latency of
each operation (i.e., the time for an operation to
be performed with no contention from other pro-
cesses), and the latency of each operation under vary-
ing amounts of contention from concurrent operations.
Contention was modeled by assuming an infinite num-
ber of processors which performed queue operations
with interarrival times following an exponential distri-
bution.

In addition to the lock-free data structures de-
scribed in Section 3, we also implemented a concurrent
queue using mutual exclusion. We tested the follow-
ing locking mechanisms: simple test-and-set locks, test
and test-and-set locks, and the ticket locks and queue
locks of Mellor-Crummey and Scott [13].

In order to measure only the algorithm perfor-
mance, we did not implement the safe read protocol in
our tests; we avoid the ABA problem by not reusing
nodes on the linked list. In addition, to remove the
overhead of memory allocation from our results, we
use a pre-allocated buffer of nodes for the tests.

Some method of managing contention between pro-
cesses 18 necessary, typically by “backing off” after a
failed CSW or lock acquisition. This type of backoff
can be very sensitive to tuning parameters; however,
for these initial experiments, we used the same back-
off algorithm (a simple exponential backoff) for all al-
gorithms, with the exception of the ticket and queue

locks. Ticket locks use a proportional backoff proce-
dure, while queue locks do not require any backoft.

6.1 Latency Under Contention

Figure 6 graphs the average latency of the EN-
QUEUE operation. These results represent the mean
over 1000 operations, at varying levels of contention
(as measured by the average interarrival time of oper-
ations). Figure 7 shows the same results for the DE-
QUEUE operation.

Enqueue operation
400 T

"Valois" ~—
"Queue_lock" -+-
"TATAS" -B-
350 "Prakash" -x- |
"Stone" -&--
"TAS" -
300 | "Ticket_lock" -o-- |
3
250 | (N 4
” S
<
ES
G 200 N e - g
s x
x
< B e . SR
150 1
100 1
B D e e I I
50 - Bl
0 1 1 1 1 1 1 1 1 1
0 100 200 300 400 600 700 800 900 1000

500
Interarrival time

Figure 6: Average latency for ENQUEUE operation.

Dequeue operation
400 T

T T
"Valois" ~—
"Queue_lock" -

"TATAS"

350 -

"Prakash” b
“Stone" -&--

Sk bk

"TAS"
300 | ‘Ticket_lock" -

250 | i 4

2 *
g .
S
G 200 | o
o ;
< B e e o O T T et e e e o
150 |- 1
F IR V. — T
100 | i
50 1
o
0 100 200 300 400 600 700 80 900 1000

500
Interarrival time

Figure 7: Average latency for DEQUEUE operation.

Our preliminary results indicate that lock-free
queues are competitive with data structures using mu-
tual exclusion. The algorithm presented in this paper
is not only efficient, but is non-blocking and provides
linearizable behavior, making it promising for practi-
cal applications.

| Algorithm | ENQUEUE | DEQUEUE |
Stone 77 85
Valois 81 73
test & test-and-set 129 94
test-and-set 136 100
Prakash et al. 145 146
ticket lock 158 122
Queue lock 228 197

Table 1: Sequential latency of queue operations.

6.2 Sequential Latency

Table 1 contains the results of the sequential latency
tests.

The algorithm of Stone and the algorithm presented
in this paper are the two fastest. This can be at-
tributed to their simplicity; for the sequential case,
when there is no contention, the algorithms execute
only a few instructions.

7 Summary

We have presented two new data structures and al-
gorithms for implementing a concurrent queue which
is non-blocking and linearizable. We have also pro-
posed a new solution to the ABA problem. Initial
experiments comparing our first algorithm to other
alternatives, including data structures using mutual
exclusion, indicate that 1t 1s practical.

7.1 Future Research

Further experiments are needed to determine the
performance of these algorithms under varying condi-
tions. For example, the lock-free approach is attrac-
tive if processes can suffer slow-downs inside of their
critical section; experiments are needed to determine
under what conditions lock-free data structures out-
perform their lock-based counterparts.

In this paper we have focused on the queue ab-
stract data type; other data types could benefit from
lock-free methods as well. Other researchers have pre-
sented lock-free algorithms for a variety of problems,
including disjoint-sets [1], garbage collection [5], prior-
ity queues [10], and a multiprocessor operating system
kernel [11]. We are currently investigating implemen-
tations of other lock-free data structures such as linked
lists and binary search trees [22].

The universal constructions mentioned in Section 2
can provide lock-free data structures with the wait-
free property. While this i1s a desirable property, it
generally requires providing a higher level of coordi-
nation among the processes, and introduces a large
overhead. We believe a better approach is to ensure
fairness through scheduling and backoff policy. More
work 1s needed in determining how best to do this.

The array-based implementation presented in Sec-
tion b is not feasible on real machines due to alignment
problems. However, the algorithm is far more efficient
that other solutions using arrays. Is there an algo-
rithm that is both realistic and efficient 7

Lock-free data structures provide an alternative
method of synchronization which can have advantages
over spin-locking. Research is needed to determine
the extent of these advantages, and how they can be
exploited in applications.

References

[1] R. Anderson and H. Woll. Wait-free parallel algo-
rithms for the union-find problem. In Proceedings
of the 23rd ACM Symposium on Theory of Com-
putation, pages 370-380, 1991.

[2] E. Brewer, C. Dellarocas, A. Colbrook, and
W. Weihl. ProTEUS: A high-performance
parallel-architecture simulator. In Proceedings
of the 1992 ACM SIGMETRICS and PERFOR-
MANCE 92 Conference, June 1992.

[3] A. Gottlieb, B. Lubachevsky, and L. Rudolph.
Basic techniques for the efficient coordination of
very large numbers of cooperating sequential pro-
cessors. ACM Transactions on Programming Lan-

guages and Systems, 5(2):164-189, April 1983.

[4] M. Herlihy. A methodology for implementing
highly concurrent data structures. In Second
ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programmang, pages 197-206,
1990.

[5] M. Herlihy and J. Moss. Lock-free garbage collec-
tion for multiprocessors. In Proceedings of the 3rd
Annual ACM Symposium on Parallel Algorithms
and Architectures, pages 229-236, July 1991.

[6] M. Herlihy and J. Wing. Axioms for concurrent
objects. In 14th ACM Symposium on Principles
of Programmang Languages, pages 13-26, 1987.

[7] M. Herlihy and J. Wing. Linearizability: A cor-
rectness condition for concurrent objects. ACM
Transactions on Programming Languages and

Systems, 12(3):463-492, July 1990.

[8] K. Hwang and F. Briggs. Computer Architecture
and Parallel Processing, pages 559-562. McGraw-
Hill, 1985.

[9] IBM T.J. Watson Research Center. System/370
Principles of Operation, 1983.

[10] A. Israeli and L. Rappoport. Efficient wait-free
implementation of a concurrent priority queue. In
Proceedings of the 1993 Workshop on Distributed
Algorithms, pages 1-16, 1993.

[11] H. Massalin and C. Pu. A lock-free multiproces-
sor OS kernel. Technical Report CUCS-005-91,
Columbia University, New York, NY, 1991.

[12] J. Mellor-Crummey. Concurrent queues: Practi-
cal fetch-and-¢ algorithms. Technical Report 229,
University of Rochester, November 1987.

[13] J. Mellor-Crummey and M. Scott. Algorithms for
scalable synchronization on shared-memory mul-
tiprocessors. ACM Transactions On Computer
Systems, 9:21-65, February 1991.

[14] Peter Moller-Nielsen and Jorgen Staunstrup.
Problem-heap: A paradigm for multiprocessor al-
gorithms. Parallel Computing, 4:63-74, 1987.

[15] S. Plotkin. Sticky bits and universality of con-
sensus. In Proceedings §th ACM Symposium on
Principles of Distributed Computing, pages 159—
175, August 1989.

[16] S. Prakash, Y. Lee, and T. Johnson. A
non-blocking algorithm for shared queues using
compare-and-swap. In Proccedings 1991 Inter-
national Conference on Parallel Processing, vol-

ume 2, pages 68-75, 1991.

[17] S. Prakash, Y. Lee, and T. Johnson. Non-blocking
algorithms for concurrent data structures. Tech-
nical Report TR91-002, University of Florida,
1991.

[18] R. Sites. Operating systems and computer archi-
tecture. In H. Stone, editor, Introduction to Com-
puter Architecture, chapter 12, pages 594-604.
Science Research Associates; 2nd edition, 1980.

[19] J. Stone. A simple and correct shared-queue algo-
rithm using Compare-and-Swap. In Proceedings
of Supercomputing ‘90, pages 495-504, 1990.

[20] R. K. Treiber. Systems programming: Coping
with parallelism. Technical Report RJ 5118, IBM
Almaden Research Center, April 1986.

[21] J. Turek. Resilient Computation in the Presence
of Slowdowns. PhD thesis;, New York University,
1991.

[22] J. Valois. PhD thesis, Rensselaer Polytechnic In-
stitute, Troy, NY, in preparation.

[23] J. Wing and C. Gong. A library of concurrent
objects and their proofs of correctness. Technical
Report CMU-CS-90-151, Carnegie Mellon Uni-
versity, 1990.

