

Mastering	Bitcoin

THIRD	EDITION

Programming	the	Open	Blockchain

With	Early	Release	ebooks,	you	get	books	in	their	earliest	form—the	author’s
raw	and	unedited	content	as	they	write—so	you	can	take	advantage	of	these
technologies	long	before	the	official	release	of	these	titles.

Andreas	M.	Antonopoulos	and	David	A.	Harding

Mastering	Bitcoin

by	Andreas	M.	Antonopoulos	and	David	A.	Harding

Copyright	©	2023	David	Harding.	All	rights	reserved.

Printed	in	the	United	States	of	America.

Published	by	O’Reilly	Media,	Inc.,	1005	Gravenstein	Highway	North,

Sebastopol,	CA	95472.

O’Reilly	books	may	be	purchased	for	educational,	business,	or	sales	promotional

use.	Online	editions	are	also	available	for	most	titles	(http://oreilly.com).	For

more	information,	contact	our	corporate/institutional	sales	department:	800-998-

9938	or	corporate@oreilly.com.

Acquisitions	Editor:	Michelle	Smith

Development	Editor:	Angela	Rufino

Production	Editor:	Kristen	Brown

Copyeditor:

Proofreader:

Indexer:

Interior	Designer:	David	Futato

Cover	Designer:	Randy	Comer

http://oreilly.com

Illustrator:

December	2014:	First	Edition

June	2017:	Second	Edition

December	2023:	Third	Edition

Revision	History	for	the	Early	Release

2023-02-22:	First	Release

2023-03-24:	Second	Release

2023-05-18:	Third	Release

See	http://oreilly.com/catalog/errata.csp?isbn=9781098150099	for	release

details.

The	O’Reilly	logo	is	a	registered	trademark	of	O’Reilly	Media,	Inc.	Mastering

Bitcoin,	the	cover	image,	and	related	trade	dress	are	trademarks	of	O’Reilly

Media,	Inc.

While	the	publisher	and	the	authors	have	used	good	faith	efforts	to	ensure	that

the	information	and	instructions	contained	in	this	work	are	accurate,	the

publisher	and	the	authors	disclaim	all	responsibility	for	errors	or	omissions,

including	without	limitation	responsibility	for	damages	resulting	from	the	use	of

or	reliance	on	this	work.	Use	of	the	information	and	instructions	contained	in

this	work	is	at	your	own	risk.	If	any	code	samples	or	other	technology	this	work

contains	or	describes	is	subject	to	open	source	licenses	or	the	intellectual

http://oreilly.com/catalog/errata.csp?isbn=9781098150099

property	rights	of	others,	it	is	your	responsibility	to	ensure	that	your	use	thereof

complies	with	such	licenses	and/or	rights.

978-1-098-15009-9

[LSI]

Chapter	1.	Introduction

A	NOTE	FOR	EARLY	RELEASE	READERS

With	Early	Release	ebooks,	you	get	books	in	their	earliest	form—the	author’s

raw	and	unedited	content	as	they	write—so	you	can	take	advantage	of	these

technologies	long	before	the	official	release	of	these	titles.

This	will	be	the	1st	chapter	of	the	final	book.

If	you	have	comments	about	how	we	might	improve	the	content	and/or	examples

in	this	book,	or	if	you	notice	missing	material	within	this	chapter,	please	reach

out	to	the	editor	at	arufino@oreilly.com.

Bitcoin	is	a	collection	of	concepts	and	technologies	that	form	the	basis	of	a

digital	money	ecosystem.	Units	of	currency	called	bitcoin	are	used	to	store	and

transmit	value	among	participants	in	the	Bitcoin	network.	Bitcoin	users

communicate	with	each	other	using	the	Bitcoin	protocol	primarily	via	the

internet,	although	other	transport	networks	can	also	be	used.	The	Bitcoin

protocol	stack,	available	as	open	source	software,	can	be	run	on	a	wide	range	of

computing	devices,	including	laptops	and	smartphones,	making	the	technology

easily	accessible.

TIP

In	this	book,	the	unit	of	currency	is	called	“bitcoin”	with	a	small	b,	and	the	system	is	called	“Bitcoin”,	with

a	capital	B.

Users	can	transfer	bitcoin	over	the	network	to	do	just	about	anything	that	can	be

done	with	conventional	currencies,	including	buying	and	selling	goods,	sending

money	to	people	or	organizations,	or	extending	credit.	Bitcoin	can	be	purchased,

sold,	and	exchanged	for	other	currencies	at	specialized	currency	exchanges.

Bitcoin	is	arguably	the	perfect	form	of	money	for	the	internet	because	it	is	fast,

secure,	and	borderless.

Unlike	traditional	currencies,	the	bitcoin	currency	is	entirely	virtual.	There	are

no	physical	coins	or	even	individual	digital	coins.	The	coins	are	implied	in

transactions	that	transfer	value	from	spender	to	receiver.	Users	of	Bitcoin	control

keys	that	allow	them	to	prove	ownership	of	bitcoin	in	the	Bitcoin	network.	With

these	keys,	they	can	sign	transactions	to	unlock	the	value	and	spend	it	by

transferring	it	to	a	new	owner.	Keys	are	often	stored	in	a	digital	wallet	on	each

user’s	computer	or	smartphone.	Possession	of	the	key	that	can	sign	a	transaction

is	the	only	prerequisite	to	spending	bitcoin,	putting	the	control	entirely	in	the

hands	of	each	user.

Bitcoin	is	a	distributed,	peer-to-peer	system.	As	such,	there	is	no	central	server

or	point	of	control.	Units	of	bitcoin	are	created	through	a	process	called

“mining,”	which	involves	repeatedly	performing	a	competitive	computational

task	that	references	a	list	of	recent	Bitcoin	transactions.	Any	participant	in	the

Bitcoin	network	may	operate	as	a	miner,	using	their	computing	devices	to	help

secure	transactions.	Every	10	minutes,	on	average,	one	Bitcoin	miner	can	add

security	to	past	transactions	and	is	rewarded	with	both	brand	new	bitcoin	and	the

fees	paid	by	recent	transactions.	Essentially,	Bitcoin	mining	decentralizes	the

currency-issuance	and	clearing	functions	of	a	central	bank	and	replaces	the	need

for	any	central	bank.

The	Bitcoin	protocol	includes	built-in	algorithms	that	regulate	the	mining

function	across	the	network.	The	difficulty	of	the	computational	task	that	miners

must	perform	is	adjusted	dynamically	so	that,	on	average,	someone	succeeds

every	10	minutes	regardless	of	how	many	miners	(and	how	much	processing)	are

competing	at	any	moment.	The	protocol	also	halves	the	rate	at	which	new

bitcoins	are	created,	limiting	the	total	number	of	bitcoins	that	will	be	created	to	a

fixed	total	just	below	21	million	coins.	The	result	is	that	the	number	of	bitcoins

in	circulation	closely	follows	an	easily	predictable	curve	where	half	of	the

remaining	coins	are	added	to	circulation	every	four	years.	By	the	time	the	third

edition	of	this	book	has	been	published	for	ten	years,	99%	of	all	bitcoins	that

will	ever	exist	will	have	been	issued.	Due	to	bitcoin’s	diminishing	rate	of

issuance,	over	the	long	term,	the	Bitcoin	currency	is	deflationary.	Furthermore,

nobody	can	force	you	to	accept	any	bitcoins	that	were	created	beyond	the

expected	issuance	rate.

Behind	the	scenes,	Bitcoin	is	also	the	name	of	the	protocol,	a	peer-to-peer

network,	and	a	distributed	computing	innovation.	Bitcoin	builds	on	decades	of

research	in	cryptography	and	distributed	systems	and	includes	at	least	four	key

innovations	brought	together	in	a	unique	and	powerful	combination.	Bitcoin

consists	of:

A	decentralized	peer-to-peer	network	(the	Bitcoin	protocol)

A	public	transaction	ledger	(the	blockchain)

A	set	of	rules	for	independent	transaction	validation	and	currency	issuance

(consensus	rules)

A	mechanism	for	reaching	global	decentralized	consensus	on	the	valid

blockchain	(Proof-of-Work	algorithm)

As	a	developer,	I	see	Bitcoin	as	akin	to	the	internet	of	money,	a	network	for

propagating	value	and	securing	the	ownership	of	digital	assets	via	distributed

computation.	There’s	a	lot	more	to	Bitcoin	than	first	meets	the	eye.

In	this	chapter	we’ll	get	started	by	explaining	some	of	the	main	concepts	and

terms,	getting	the	necessary	software,	and	using	Bitcoin	for	simple	transactions.

In	the	following	chapters,	we’ll	start	unwrapping	the	layers	of	technology	that

make	Bitcoin	possible	and	examine	the	inner	workings	of	the	Bitcoin	network

and	protocol.

DIGITAL	CURRENCIES	BEFORE	BITCOIN

The	emergence	of	viable	digital	money	is	closely	linked	to	developments	in

cryptography.	This	is	not	surprising	when	one	considers	the	fundamental

challenges	involved	with	using	bits	to	represent	value	that	can	be	exchanged	for

goods	and	services.	Three	basic	questions	for	anyone	accepting	digital	money

are:

1.	 Can	I	trust	that	the	money	is	authentic	and	not	counterfeit?

2.	 Can	I	trust	that	the	digital	money	can	only	be	spent	once	(known	as	the

“double-spend”	problem)?

3.	 Can	I	be	sure	that	no	one	else	can	claim	this	money	belongs	to	them	and	not

me?

Issuers	of	paper	money	are	constantly	battling	the	counterfeiting	problem	by

using	increasingly	sophisticated	papers	and	printing	technology.	Physical	money

addresses	the	double-spend	issue	easily	because	the	same	paper	note	cannot	be

in	two	places	at	once.	Of	course,	conventional	money	is	also	often	stored	and

transmitted	digitally.	In	these	cases,	the	counterfeiting	and	double-spend	issues

are	handled	by	clearing	all	electronic	transactions	through	central	authorities	that

have	a	global	view	of	the	currency	in	circulation.	For	digital	money,	which

cannot	take	advantage	of	esoteric	inks	or	holographic	strips,	cryptography

provides	the	basis	for	trusting	the	legitimacy	of	a	user’s	claim	to	value.

Specifically,	cryptographic	digital	signatures	enable	a	user	to	sign	a	digital	asset

or	transaction	proving	the	ownership	of	that	asset.	With	the	appropriate

architecture,	digital	signatures	also	can	be	used	to	address	the	double-spend

issue.

When	cryptography	started	becoming	more	broadly	available	and	understood	in

the	late	1980s,	many	researchers	began	trying	to	use	cryptography	to	build

digital	currencies.	These	early	digital	currency	projects	issued	digital	money,

usually	backed	by	a	national	currency	or	precious	metal	such	as	gold.

Although	these	earlier	digital	currencies	worked,	they	were	centralized	and,	as	a

result,	were	easy	to	attack	by	governments	and	hackers.	Early	digital	currencies

used	a	central	clearinghouse	to	settle	all	transactions	at	regular	intervals,	just	like

a	traditional	banking	system.	Unfortunately,	in	most	cases	these	nascent	digital

currencies	were	targeted	by	worried	governments	and	eventually	litigated	out	of

existence.	Some	failed	in	spectacular	crashes	when	the	parent	company

liquidated	abruptly.	To	be	robust	against	intervention	by	antagonists,	whether

legitimate	governments	or	criminal	elements,	a	decentralized	digital	currency

was	needed	to	avoid	a	single	point	of	attack.	Bitcoin	is	such	a	system,

decentralized	by	design,	and	free	of	any	central	authority	or	point	of	control	that

can	be	attacked	or	corrupted.

History	of	Bitcoin

Bitcoin	was	first	described	in	2008	with	the	publication	of	a	paper	titled

“Bitcoin:	A	Peer-to-Peer	Electronic	Cash	System,” 	written	under	the	alias	of

Satoshi	Nakamoto	(see	XREF	HERE).	Nakamoto	combined	several	prior

inventions	such	as	digital	signatures	and	Hashcash	to	create	a	completely

decentralized	electronic	cash	system	that	does	not	rely	on	a	central	authority	for

currency	issuance	or	settlement	and	validation	of	transactions.	A	key	innovation

was	to	use	a	distributed	computation	system	(called	a	“Proof-of-Work”

algorithm)	to	conduct	a	global	“election”	every	10	minutes,	allowing	the

decentralized	network	to	arrive	at	consensus	about	the	state	of	transactions.	This

elegantly	solves	the	issue	of	double-spend	where	a	single	currency	unit	can	be

spent	twice.	Previously,	the	double-spend	problem	was	a	weakness	of	digital

currency	and	was	addressed	by	clearing	all	transactions	through	a	central

clearinghouse.

1

The	Bitcoin	network	started	in	2009,	based	on	a	reference	implementation

published	by	Nakamoto	and	since	revised	by	many	other	programmers.	The

implementation	of	the	Proof-of-Work	algorithm	(mining)	that	provides	security

and	resilience	for	Bitcoin	has	increased	in	power	exponentially,	and	now	exceeds

the	combined	number	of	computing	operations	of	the	world’s	top

supercomputers.

Satoshi	Nakamoto	withdrew	from	the	public	in	April	2011,	leaving	the

responsibility	of	developing	the	code	and	network	to	a	thriving	group	of

volunteers.	The	identity	of	the	person	or	people	behind	Bitcoin	is	still	unknown.

However,	neither	Satoshi	Nakamoto	nor	anyone	else	exerts	individual	control

over	the	Bitcoin	system,	which	operates	based	on	fully	transparent	mathematical

principles,	open	source	code,	and	consensus	among	participants.	The	invention

itself	is	groundbreaking	and	has	already	spawned	new	science	in	the	fields	of

distributed	computing,	economics,	and	econometrics.

A	SOLUTION	TO	A	DISTRIBUTED	COMPUTING	PROBLEM

Satoshi	Nakamoto’s	invention	is	also	a	practical	and	novel	solution	to	a	problem

in	distributed	computing,	known	as	the	“Byzantine	Generals’	Problem.”	Briefly,

the	problem	consists	of	trying	to	get	multiple	participants	without	a	leader	to

agree	on	a	course	of	action	by	exchanging	information	over	an	unreliable	and

potentially	compromised	network.	Satoshi	Nakamoto’s	solution,	which	uses	the

concept	of	Proof-of-Work	to	achieve	consensus	without	a	central	trusted

authority,	represents	a	breakthrough	in	distributed	computing.

Bitcoin	Uses,	Users,	and	Their	Stories

Bitcoin	is	an	innovation	in	the	ancient	technology	of	money.	At	its	core,	money

simply	facilitates	the	exchange	of	value	between	people.	Therefore,	in	order	to

fully	understand	Bitcoin	and	its	uses,	we’ll	examine	it	from	the	perspective	of

people	using	it.	Each	of	the	people	and	their	stories,	as	listed	here,	illustrates	one

or	more	specific	use	cases.	We’ll	be	seeing	them	throughout	the	book:

North	American	e-commerce	retails

Alice	lives	in	Northern	California’s	Bay	Area.	She	has	heard	about	Bitcoin

from	her	techie	friends	and	wants	to	start	using	it.	We	will	follow	her	story	as

she	learns	about	Bitcoin,	acquires	some,	and	then	spends	her	bitcoin	to	buy	a

laptop	from	Bob’s	online	store.	This	story	will	introduce	us	to	the	software,

the	exchanges,	and	basic	transactions	from	the	perspective	of	a	retail

consumer.

North	American	high-value	retail

Carol	is	an	art	gallery	owner	in	San	Francisco.	She	sells	expensive	paintings

for	bitcoin.	This	story	will	introduce	the	risks	of	a	“51%	attack”	for	retailers

of	high-value	items.

Offshore	contract	services

Bob,	the	cafe	owner	in	Palo	Alto,	is	building	a	new	website.	He	has

contracted	with	a	web	developer,	Gopesh,	who	lives	in	Bangalore,	India.

Gopesh	has	agreed	to	be	paid	in	bitcoin.	This	story	will	examine	the	use	of

Bitcoin	for	outsourcing,	contract	services,	and	international	wire	transfers.

Web	store

Gabriel	is	an	enterprising	young	teenager	in	Rio	de	Janeiro,	running	a	small

web	store	that	sells	Bitcoin-branded	t-shirts,	coffee	mugs,	and	stickers.

Gabriel	is	too	young	to	have	a	bank	account,	but	his	parents	are	encouraging

his	entrepreneurial	spirit.

Charitable	donations

Eugenia	is	the	director	of	a	children’s	charity	in	the	Philippines.	Recently	she

has	discovered	Bitcoin	and	wants	to	use	it	to	reach	a	whole	new	group	of

foreign	and	domestic	donors	to	fundraise	for	her	charity.	She’s	also

investigating	ways	to	use	Bitcoin	to	distribute	funds	quickly	to	areas	of	need.

This	story	will	show	the	use	of	Bitcoin	for	global	fundraising	across

currencies	and	borders	and	the	use	of	an	open	ledger	for	transparency	in

charitable	organizations.

Import/export

Mohammed	is	an	electronics	importer	in	Dubai.	He’s	trying	to	use	Bitcoin	to

buy	electronics	from	the	United	States	and	China	for	import	into	the	UAE	to

accelerate	the	process	of	payments	for	imports.	This	story	will	show	how

Bitcoin	can	be	used	for	large	business-to-business	international	payments	tied

to	physical	goods.

Mining	for	bitcoin

Jing	is	a	computer	engineering	student	in	Shanghai.	He	has	built	a	“mining”

rig	to	mine	for	bitcoin	using	his	engineering	skills	to	supplement	his	income.

This	story	will	examine	the	“industrial”	base	of	Bitcoin:	the	specialized

equipment	used	to	secure	the	Bitcoin	network	and	issue	new	currency.

Each	of	these	stories	is	based	on	the	real	people	and	real	industries	currently

using	Bitcoin	to	create	new	markets,	new	industries,	and	innovative	solutions	to

global	economic	issues.

Getting	Started

Bitcoin	is	a	protocol	that	can	be	accessed	using	an	application	that	speaks	the

protocol.	A	“Bitcoin	wallet”	is	the	most	common	user	interface	to	the	Bitcoin

system,	just	like	a	web	browser	is	the	most	common	user	interface	for	the	HTTP

protocol.	There	are	many	implementations	and	brands	of	Bitcoin	wallets,	just

like	there	are	many	brands	of	web	browsers	(e.g.,	Chrome,	Safari,	Firefox,	and

Internet	Explorer).	And	just	like	we	all	have	our	favorite	browsers	(Mozilla

Firefox,	Yay!)	and	our	villains	(Internet	Explorer,	Yuck!),	Bitcoin	wallets	vary	in

quality,	performance,	security,	privacy,	and	reliability.	There	is	also	a	reference

implementation	of	the	Bitcoin	protocol	that	includes	a	wallet,	known	as	“Bitcoin

Core,”	which	is	derived	from	the	original	implementation	written	by	Satoshi

Nakamoto.

Choosing	a	Bitcoin	Wallet

Bitcoin	wallets	are	one	of	the	most	actively	developed	applications	in	the	Bitcoin

ecosystem.	There	is	intense	competition,	and	while	a	new	wallet	is	probably

being	developed	right	now,	several	wallets	from	last	year	are	no	longer	actively

maintained.	Many	wallets	focus	on	specific	platforms	or	specific	uses	and	some

are	more	suitable	for	beginners	while	others	are	filled	with	features	for	advanced

users.	Choosing	a	wallet	is	highly	subjective	and	depends	on	the	use	and	user

expertise.	Therefore	it	would	be	pointless	to	recommend	a	specific	brand	or

wallet.	However,	we	can	categorize	Bitcoin	wallets	according	to	their	platform

and	function	and	provide	some	clarity	about	all	the	different	types	of	wallets	that

exist.	It	is	worth	trying	out	several	different	wallets	until	you	find	one	that	fits

your	needs.

Types	of	Bitcoin	wallets

Bitcoin	wallets	can	be	categorized	as	follows,	according	to	the	platform:

Desktop	wallet

A	desktop	wallet	was	the	first	type	of	Bitcoin	wallet	created	as	a	reference

implementation	and	many	users	run	desktop	wallets	for	the	features,

autonomy,	and	control	they	offer.	Running	on	general-use	operating	systems

such	as	Windows	and	Mac	OS	has	certain	security	disadvantages,	however,	as

these	platforms	are	often	insecure	and	poorly	configured.

Mobile	wallet

A	mobile	wallet	is	the	most	common	type	of	Bitcoin	wallet.	Running	on

smart-phone	operating	systems	such	as	Apple	iOS	and	Android,	these	wallets

are	often	a	great	choice	for	new	users.	Many	are	designed	for	simplicity	and

ease-of-use,	but	there	are	also	fully	featured	mobile	wallets	for	power	users.

To	avoid	downloading	and	storing	large	amounts	of	data,	most	mobile	wallets

retrieve	information	from	remote	servers,	reducing	your	privacy	by	disclosing

to	third	parties	information	about	your	Bitcoin	addresses	and	balances.

Web	wallet

Web	wallets	are	accessed	through	a	web	browser	and	store	the	user’s	wallet

on	a	server	owned	by	a	third	party.	This	is	similar	to	webmail	in	that	it	relies

entirely	on	a	third-party	server.	Some	of	these	services	operate	using	client-

side	code	running	in	the	user’s	browser,	which	keeps	control	of	the	Bitcoin

keys	in	the	hands	of	the	user,	although	the	user’s	dependence	on	the	server

still	compromises	their	privacy.	Most,	however,	take	control	of	the	Bitcoin

keys	from	users	in	exchange	for	ease-of-use.	It	is	inadvisable	to	store	large

amounts	of	bitcoin	on	third-party	systems.

Hardware	signing	devices

Hardware	signing	devices	are	devices	that	can	store	keys	and	sign

transactions	using	special-purpose	hardware	and	firmware.	They	usually

connect	to	a	desktop,	mobile,	or	web	wallet	via	USB	cable,	near-field-

communication	(NFC),	or	a	camera	with	QR	codes.	By	handling	all	Bitcoin-

related	operations	on	the	specialized	hardware,	these	wallets	are	less

vulnerable	to	many	types	of	attacks.	Hardware	signing	devices	are	sometimes

called	“hardware	wallets”,	but	they	need	to	be	paired	with	a	full-featured

wallet	to	send	and	receive	transactions,	and	the	security	and	privacy	offered

by	that	paired	wallet	plays	a	critical	role	in	how	much	security	and	privacy

the	user	obtains	when	using	the	hardware	signing	device.

Full-node	vs.	Lightweight

Another	way	to	categorize	bitcoin	wallets	is	by	their	degree	of	autonomy	and

how	they	interact	with	the	Bitcoin	network:

Full-node

A	full	node	is	a	program	that	validates	the	entire	history	of	Bitcoin

transactions	(every	transaction	by	every	user,	ever).	Optionally,	full	nodes	can

also	store	previously	validated	transactions	and	serve	data	to	other	Bitcoin

programs,	either	on	the	same	computer	or	over	the	internet.	A	full	node	uses

substantial	computer	resources—about	the	same	as	watching	an	hour-long

streaming	video	for	each	day	of	Bitcoin	transactions—but	the	full	node	offers

complete	autonomy	to	its	users.

Lightweight	client

A	lightweight	client,	also	known	as	a	simplified-payment-verification	(SPV)

client,	connects	to	a	full	node	or	other	remote	server	for	receiving	and

sending	Bitcoin	transaction	information,	but	stores	the	user	wallet	locally,

partially	validates	the	transactions	it	receives,	and	independently	creates

outgoing	transactions.

Third-party	API	client

A	third-party	API	client	is	one	that	interacts	with	Bitcoin	through	a	third-

party	system	of	application	programming	interfaces	(APIs),	rather	than	by

connecting	to	the	Bitcoin	network	directly.	The	wallet	may	be	stored	by	the

user	or	by	third-party	servers,	but	the	client	trusts	the	remote	server	to	provide

it	with	accurate	information	and	protect	its	privacy.

TIP

Bitcoin	is	a	Peer-to-Peer	(P2P)	network.	Full	nodes	are	the	peers:	each	peer	individually	validates	every

confirmed	transaction	and	can	provide	data	to	its	user	with	complete	authority.	Lightweight	wallets	and

other	software	are	clients:	each	client	depends	on	one	or	more	peers	to	provide	it	with	valid	data.	Bitcoin

clients	can	perform	secondary	validation	on	some	of	the	data	they	receive	and	make	connections	to	multiple

peers	to	reduce	their	depedence	on	the	integrity	of	a	single	peer,	but	the	security	of	a	client	ultimately	relies

on	the	integrity	of	its	peers.

Custodial	vs.	Non-Custodial

A	very	important	additional	consideration	is	who	controls	the	keys.	As	we	will

see	in	subsequent	chapters,	access	to	bitcoins	is	controlled	by	“private	keys”,

which	are	like	very	long	PIN	numbers.	If	you	are	the	only	one	to	have	custody

and	control	over	these	private	keys,	you	are	in	control	of	your	bitcoin.

Conversely,	if	you	do	not	have	custody,	then	your	bitcoin	is	managed	by	a	third-

party	custodian,	who	ultimately	controls	your	funds	on	your	behalf.	Wallets	fall

into	two	important	categories	based	on	custody:	non-custodial	wallets	where	you

control	the	keys	and	the	funds	and	custodial	wallets	where	some	third-party

controls	the	keys.	To	emphasize	this	point,	I	(Andreas)	coined	the	phrase:

Your	keys,	your	coins.	Not	your	keys,	not	your	coins.

Combining	these	categorizations,	many	Bitcoin	wallets	fall	into	a	few	groups,

with	the	three	most	common	being	desktop	full	node	(non-custodial),	mobile

lightweight	wallet	(non-custodial),	and	web	third-party	wallet	(custodial).	The

lines	between	different	categories	are	often	blurry,	as	many	wallets	run	on

multiple	platforms	and	can	interact	with	the	network	in	different	ways.

For	the	purposes	of	this	book,	we	will	be	demonstrating	the	use	of	a	variety	of

downloadable	Bitcoin	clients,	from	the	reference	implementation	(Bitcoin	Core)

to	mobile	and	web	wallets.	Some	of	the	examples	will	require	the	use	of	Bitcoin

Core,	which,	in	addition	to	being	a	full	node,	also	exposes	APIs	to	the	wallet,

network,	and	transaction	services.	If	you	are	planning	to	explore	the

programmatic	interfaces	into	the	Bitcoin	system,	you	will	need	to	run	Bitcoin

Core,	or	one	of	the	alternative	full	node	implementations.

Quick	Start

Alice,	who	we	introduced	in	“Bitcoin	Uses,	Users,	and	Their	Stories”,	is	not	a

technical	user	and	only	recently	heard	about	Bitcoin	from	her	friend	Joe.	While

at	a	party,	Joe	is	once	again	enthusiastically	explaining	Bitcoin	to	everyone

around	him	and	is	offering	a	demonstration.	Intrigued,	Alice	asks	how	she	can

get	started	with	Bitcoin.	Joe	says	that	a	mobile	wallet	is	best	for	new	users	and

he	recommends	a	few	of	his	favorite	wallets.	Alice	downloads	one	of	Joe’s

recommendations	and	installs	it	on	her	phone.

When	Alice	runs	her	wallet	application	for	the	first	time,	she	chooses	the	option

to	create	a	new	Bitcoin	wallet.	Because	the	wallet	she	has	chosen	is	a	non-

custodial	wallet,	Alice	(and	only	Alice)	will	be	in	control	of	her	keys.	Therefore,

she	bears	responsibility	for	backing	them	up,	since	losing	the	keys	means	she

loses	access	to	her	bitcoins.	To	facilitate	this,	her	wallet	produces	a	recovery

code	that	can	be	used	to	restore	her	wallet.

Recovery	Codes

Most	modern	non-custodial	Bitcoin	wallets	will	provide	a	recovery	code	for	their

user	to	back	up.	The	recovery	code	usually	consists	of	numbers,	letters,	or	words

selected	randomly	by	the	software,	and	is	used	as	the	basis	for	the	keys	that	are

generated	by	the	wallet.	See	Table	1-1	for	examples.

Table	1-1.	Sample	Recovery	Codes

Wallet Recovery	code

BlueWallet (1)	media	(2)	suspect	(3)	effort	(4)	dish	(5)	album	(6)

shaft	(7)	price	(8)	junk	(9)	pizza	(10)	situate	(11)	oyster

(12)	rib

Electrum nephew	dog	crane	clever	quantum	crazy	purse	traffic

repeat	fruit	old	clutch

Muun LAFV	TZUN	V27E	NU4D	WPF4	BRJ4	ELLP	BNFL

TIP

A	recovery	code	is	sometimes	called	a	“mnemonic”	or	“mnemonic	phrase”,	which	implies	you	should

memorize	the	phrase,	but	writing	the	phrase	down	on	paper	takes	less	work	and	tends	to	be	more	reliable

than	most	people’s	memories.	Another	alternative	name	is	“seed	phrase”	because	it	provides	the	input

(“seed”)	to	the	function	which	generates	all	of	a	wallet’s	keys.

If	something	happens	to	Alice’s	wallet,	she	can	download	a	new	copy	of	her

wallet	software	and	enter	this	recovery	code	to	rebuild	the	wallet	database	of	all

the	onchain	transactions	she’s	ever	sent	or	received.	However,	recovering	from

the	recovery	code	will	not	by	itself	restore	any	additional	data	Alice	entered	into

her	wallet,	such	as	the	names	she	associated	with	particular	addresses	or

transactions.	Although	losing	access	to	that	metadata	isn’t	as	important	as	losing

access	to	money,	it	can	still	be	important	in	its	own	way.	Imagine	you	need	to

review	an	old	bank	or	credit	card	statement	and	the	name	of	every	entity	you

paid	(or	who	paid	you)	has	been	blanked	out.	To	prevent	losing	metadata,	many

wallets	provide	an	additional	backup	feature	beyond	recovery	codes.

For	some	wallets,	that	additional	backup	feature	is	even	more	important	today

than	it	used	to	be.	Many	Bitcoin	payments	are	now	made	using	offchain

technology,	where	not	every	payment	is	stored	in	the	public	block	chain.	This

reduces	users	costs	and	improves	privacy,	among	other	benefits,	but	it	means

that	a	mechanism	like	recovery	codes	that	depends	on	onchain	data	can’t

guarantee	recovery	of	all	of	a	user’s	bitcoins.	For	applications	with	offchain

support,	it’s	important	to	make	frequent	backups	of	the	wallet	database.

Of	note,	when	receiving	funds	to	a	new	mobile	wallet	for	the	first	time,	many

wallets	will	often	re-verify	that	you	have	securely	backed-up	your	recovery

code.	This	can	range	from	a	simple	prompt	to	requiring	the	user	to	manually	re-

enter	the	code.

WARNING

Although	many	legitimate	wallets	will	prompt	you	to	re-enter	your	recovery	code,	there	are	also	many

malware	applications	that	mimic	the	design	of	a	wallet,	insist	you	enter	your	recovery	code,	and	then	relay

any	entered	code	to	the	malware	developer	so	they	can	steal	your	funds.	This	is	the	equivilent	of	phishing

websites	that	try	to	trick	you	into	giving	them	your	bank	passphrase.	For	most	wallet	applications,	the	only

times	they	will	ask	for	your	recovery	code	are	during	the	initial	set	up	(before	you	have	received	any

bitcoins)	and	during	recovery	(after	you	lost	access	to	your	original	wallet).	If	the	application	asks	for	your

recovery	code	any	other	time,	consult	with	an	expert	to	ensure	you	aren’t	being	phished.

Bitcoin	addresses

Alice	is	now	ready	to	start	using	her	new	bitcoin	wallet.	Her	wallet	application

randomly	generated	a	private	key	(described	in	more	detail	in	“Private	Keys”)

which	will	be	used	to	derive	Bitcoin	addresses	that	direct	to	her	wallet.	At	this

point,	her	Bitcoin	addresses	are	not	known	to	the	Bitcoin	network	or	“registered”

with	any	part	of	the	Bitcoin	system.	Her	Bitcoin	addresses	are	simply	random

numbers	that	correspond	to	her	private	key	that	she	can	use	to	control	access	to

the	funds.	The	addresses	are	generated	independently	by	her	wallet	without

reference	or	registration	with	any	service.

TIP

There	are	a	variety	of	Bitcoin	addresses	and	invoice	formats.	Addresses	and	invoices	can	be	shared	with

other	bitcoin	users	who	can	use	them	to	send	bitcoin	directly	to	your	wallet.	You	can	share	an	address	or

invoice	with	other	people	without	worrying	about	the	security	of	your	bitcoins.	Unlike	a	bank	account

number,	nobody	who	learns	one	of	your	Bitcoin	addresses	can	withdraw	money	from	your	wallet—you

must	initiate	all	spends.	However,	if	you	give	two	people	the	same	address,	they	will	be	able	to	see	how

much	bitcoin	the	other	person	sent	you.	If	you	post	your	address	publicly,	everyone	will	be	able	to	see	how

much	bitcoin	other	people	sent	you.	To	protect	your	privacy,	you	should	generate	a	new	invoice	with	a	new

address	each	time	you	request	a	payment.

Receiving	bitcoin

Alice	uses	the	Receive	button,	which	displays	a	QR	code	along	with	a	Bitcoin

address,	shown	in	Figure	1-1.

Figure	1-1.	Alice	uses	the	Receive	screen	on	her	mobile	Bitcoin	wallet,	and	displays	her	address	in	a	QR
code	format

The	QR	code	is	the	square	with	a	pattern	of	black	and	white	dots,	serving	as	a

form	of	barcode	that	contains	the	same	information	in	a	format	that	can	be

scanned	by	Joe’s	smartphone	camera.	Near	the	wallet’s	QR	code	is	the	Bitcoin

address	it	encodes,	and	Alice	may	choose	to	manually	send	her	address	to	Joe	by

copying	it	onto	her	clipboard	with	a	tap.

WARNING

Any	funds	sent	to	the	addresses	in	this	book	will	be	lost.	If	you	want	to	test	sending	bitcoins,	please

consider	donating	it	to	a	bitcoin-accepting	charity.

Getting	Your	First	Bitcoin

The	first	task	for	new	users	is	to	acquire	some	bitcoin.

Bitcoin	transactions	are	irreversible.	Most	electronic	payment	networks	such	as

credit	cards,	debit	cards,	PayPal,	and	bank	account	transfers	are	reversible.	For

someone	selling	bitcoin,	this	difference	introduces	a	very	high	risk	that	the	buyer

will	reverse	the	electronic	payment	after	they	have	received	bitcoin,	in	effect

defrauding	the	seller.	To	mitigate	this	risk,	companies	accepting	traditional

electronic	payments	in	return	for	bitcoin	usually	require	buyers	to	undergo

identity	verification	and	credit-worthiness	checks,	which	may	take	several	days

or	weeks.	As	a	new	user,	this	means	you	cannot	buy	bitcoin	instantly	with	a

credit	card.	With	a	bit	of	patience	and	creative	thinking,	however,	you	won’t

need	to.

Here	are	some	methods	for	getting	bitcoin	as	a	new	user:

Find	a	friend	who	has	bitcoin	and	buy	some	from	him	or	her	directly.	Many

Bitcoin	users	start	this	way.	This	method	is	the	least	complicated.	One	way	to

meet	people	with	bitcoin	is	to	attend	a	local	Bitcoin	meetup	listed	at

Meetup.com.

Use	a	classified	service	such	as	localbitcoins.com	to	find	a	seller	in	your	area

https://bitcoin.meetup.com
https://localbitcoins.com/

to	buy	bitcoin	for	cash	in	an	in-person	transaction.

Earn	bitcoin	by	selling	a	product	or	service	for	bitcoin.	If	you	are	a

programmer,	sell	your	programming	skills.	If	you’re	a	hairdresser,	cut	hair	for

bitcoin.

Use	a	bitcoin	ATM	in	your	city.	A	bitcoin	ATM	is	a	machine	that	accepts	cash

and	sends	bitcoin	to	your	smartphone	bitcoin	wallet.	Find	a	bitcoin	ATM

close	to	you	using	an	online	map	from	Coin	ATM	Radar.

Use	a	bitcoin	currency	exchange	linked	to	your	bank	account.	Many	countries

now	have	currency	exchanges	that	offer	a	market	for	buyers	and	sellers	to

swap	bitcoin	with	local	currency.	Exchange-rate	listing	services,	such	as

BitcoinAverage,	often	show	a	list	of	bitcoin	exchanges	for	each	currency.

TIP

One	of	the	advantages	of	Bitcoin	over	other	payment	systems	is	that,	when	used	correctly,	it	affords	users

much	more	privacy.	Acquiring,	holding,	and	spending	bitcoin	does	not	require	you	to	divulge	sensitive	and

personally	identifiable	information	to	third	parties.	However,	where	bitcoin	touches	traditional	systems,

such	as	currency	exchanges,	national	and	international	regulations	often	apply.	In	order	to	exchange	bitcoin

for	your	national	currency,	you	will	often	be	required	to	provide	proof	of	identity	and	banking	information.

Users	should	be	aware	that	once	a	Bitcoin	address	is	attached	to	an	identity,	other	associated	bitcoin

transactions	may	also	become	easy	to	identify	and	track—including	transactions	made	earlier.	This	is	one

reason	many	users	choose	to	maintain	dedicated	exchange	accounts	unlinked	to	their	wallets.

Alice	was	introduced	to	bitcoin	by	a	friend	so	she	has	an	easy	way	to	acquire	her

first	bitcoin.	Next,	we	will	look	at	how	she	buys	bitcoin	from	her	friend	Joe	and

how	Joe	sends	the	bitcoin	to	her	wallet.

http://coinatmradar.com
https://bitcoinaverage.com

Finding	the	Current	Price	of	Bitcoin

Before	Alice	can	buy	bitcoin	from	Joe,	they	have	to	agree	on	the	exchange	rate

between	bitcoin	and	US	dollars.	This	brings	up	a	common	question	for	those

new	to	bitcoin:	“Who	sets	the	bitcoin	price?”	The	short	answer	is	that	the	price	is

set	by	markets.

Bitcoin,	like	most	other	currencies,	has	a	floating	exchange	rate.	That	means	that

the	value	of	bitcoin	fluctuates	according	to	supply	and	demand	in	the	various

markets	where	it	is	traded.	For	example,	the	“price”	of	bitcoin	in	US	dollars	is

calculated	in	each	market	based	on	the	most	recent	trade	of	bitcoin	and	US

dollars.	As	such,	the	price	tends	to	fluctuate	minutely	several	times	per	second.

A	pricing	service	will	aggregate	the	prices	from	several	markets	and	calculate	a

volume-weighted	average	representing	the	broad	market	exchange	rate	of	a

currency	pair	(e.g.,	BTC/USD).

There	are	hundreds	of	applications	and	websites	that	can	provide	the	current

market	rate.	Here	are	some	of	the	most	popular:

Bitcoin	Average

A	site	that	provides	a	simple	view	of	the	volume-weighted-average	for	each

currency.

CoinCap

A	service	listing	the	market	capitalization	and	exchange	rates	of	hundreds	of

crypto-currencies,	including	bitcoin.

http://bitcoinaverage.com/
http://coincap.io/

Chicago	Mercantile	Exchange	Bitcoin	Reference	Rate

A	reference	rate	that	can	be	used	for	institutional	and	contractual	reference,

provided	as	part	of	investment	data	feeds	by	the	CME.

In	addition	to	these	various	sites	and	applications,	some	bitcoin	wallets	will

automatically	convert	amounts	between	bitcoin	and	other	currencies.

Sending	and	Receiving	Bitcoin

Alice	has	decided	to	buy	0.001	bitcoin.	After	she	and	Joe	check	the	exchange

rate,	she	gives	Joe	an	appropriate	amount	of	cash,	opens	her	mobile	wallet

application,	and	selects	Receive.	This	displays	a	QR	code	with	Alice’s	first

Bitcoin	address.

Joe	then	selects	Send	on	his	smartphone	wallet	and	opens	the	QR	code	scanner.

This	allows	Joe	to	scan	the	barcode	with	his	smartphone	camera	so	that	he

doesn’t	have	to	type	in	Alice’s	Bitcoin	address,	which	is	quite	long	and	difficult

to	type.

Joe	now	has	Alice’s	Bitcoin	address	set	as	the	recipient.	Joe	enters	the	amount	as

0.001	bitcoins	(BTC),	see	Figure	1-2.	Some	wallets	may	show	the	amount	in	a

different	denomination:	0.001	BTC	is	1	millibitcoin	(mBTC)	or	100,000	satoshis

(sats).

Some	wallets	may	also	suggest	Joe	enter	a	label	for	this	transaction;	if	so,	Joe

enters	“Alice”.	Weeks	or	months	from	now,	this	will	help	Joe	remember	why	he

sent	these	0.001	bitcoins.	Some	wallets	may	also	prompt	Joe	about	fees.

http://bit.ly/cmebrr

Depending	on	the	wallet	and	how	the	transaction	is	being	sent,	the	wallet	may

ask	Joe	to	either	enter	a	transaction	fee	rate	or	prompt	him	with	a	suggested

feerate.	The	higher	the	transaction	fee	rate,	the	faster	the	transaction	will	be

confirmed	(see	“Confirmations”).

Figure	1-2.	Bitcoin	wallet	send	screen

Joe	then	carefully	checks	to	make	sure	he	has	entered	the	correct	amount,

because	he	is	about	to	transmit	money	and	mistakes	will	soon	become

irreversible.	After	double-checking	the	address	and	amount,	he	presses	Send	to

transmit	the	transaction.	Joe’s	mobile	Bitcoin	wallet	constructs	a	transaction	that

assigns	0.001	BTC	to	the	address	provided	by	Alice,	sourcing	the	funds	from

Joe’s	wallet	and	signing	the	transaction	with	Joe’s	private	keys.	This	tells	the

Bitcoin	network	that	Joe	has	authorized	a	transfer	of	value	to	Alice’s	new

address.	As	the	transaction	is	transmitted	via	the	peer-to-peer	protocol,	it	quickly

propagates	across	the	Bitcoin	network.	After	just	a	few	seconds,	most	of	the

well-connected	nodes	in	the	network	receive	the	transaction	and	see	Alice’s

address	for	the	first	time.

Meanwhile,	Alice’s	wallet	is	constantly	“listening”	for	new	transactions	on	the

Bitcoin	network,	looking	for	any	that	match	the	addresses	it	contains.	A	few

seconds	after	Joe’s	wallet	transmits	the	transaction,	Alice’s	wallet	will	indicate

that	it	is	receiving	0.001	BTC.

CONFIRMATIONS

At	first,	Alice’s	address	will	show	the	transaction	from	Joe	as	“Unconfirmed.”

This	means	that	the	transaction	has	been	propagated	to	the	network	but	has	not

yet	been	recorded	in	the	bitcoin	transaction	ledger,	known	as	the	blockchain.	To

be	confirmed,	a	transaction	must	be	included	in	a	block	and	added	to	the

blockchain,	which	happens	every	10	minutes,	on	average.	In	traditional	financial

terms	this	is	known	as	clearing.	For	more	details	on	propagation,	validation,	and

clearing	(confirmation)	of	bitcoin	transactions,	see	XREF	HERE.

Alice	is	now	the	proud	owner	of	0.001	BTC	that	she	can	spend.	Over	the	next

few	days,	Alice	buys	more	bitcoin	using	an	ATM	and	an	exchange.	In	the	next

chapter	we	will	look	at	her	first	purchase	with	bitcoin,	and	examine	the

underlying	transaction	and	propagation	technologies	in	more	detail.

	“Bitcoin:	A	Peer-to-Peer	Electronic	Cash	System,”	Satoshi	Nakamoto

(https://bitcoin.org/bitcoin.pdf).

https://bitcoin.org/bitcoin.pdf

Chapter	2.	How	Bitcoin	Works

A	NOTE	FOR	EARLY	RELEASE	READERS

With	Early	Release	ebooks,	you	get	books	in	their	earliest	form—the	author’s

raw	and	unedited	content	as	they	write—so	you	can	take	advantage	of	these

technologies	long	before	the	official	release	of	these	titles.

This	will	be	the	2nd	chapter	of	the	final	book.

If	you	have	comments	about	how	we	might	improve	the	content	and/or	examples

in	this	book,	or	if	you	notice	missing	material	within	this	chapter,	please	reach

out	to	the	editor	at	arufino@oreilly.com.

The	Bitcoin	system,	unlike	traditional	banking	and	payment	systems,	does	not

require	trust	in	third	parties.	Instead	of	a	central	trusted	authority,	in	Bitcoin,

each	user	can	use	software	running	on	their	own	computer	to	verify	the	correct

operation	of	every	aspect	of	the	Bitcoin	system.	In	this	chapter,	we	will	examine

bitcoin	from	a	high	level	by	tracking	a	single	transaction	through	the	Bitcoin

system	and	watch	as	it	is	recorded	on	the	blockchain,	the	distributed	ledger	of	all

transactions.	Subsequent	chapters	will	delve	into	the	technology	behind

transactions,	the	network,	and	mining.

Bitcoin	Overview

In	the	overview	diagram	shown	in	Figure	2-1,	we	see	that	the	Bitcoin	system

consists	of	users	with	wallets	containing	keys,	transactions	that	are	propagated

across	the	network,	and	miners	who	produce	(through	competitive	computation)

the	consensus	blockchain,	which	is	the	authoritative	ledger	of	all	transactions.

Each	example	in	this	chapter	is	based	on	an	actual	transaction	made	on	the

Bitcoin	network,	simulating	the	interactions	between	the	users	(Joe,	Alice,	Bob,

and	Gopesh)	by	sending	funds	from	one	wallet	to	another.	While	tracking	a

transaction	through	the	Bitcoin	network	to	the	blockchain,	we	will	use	a

blockchain	explorer	site	to	visualize	each	step.	A	blockchain	explorer	is	a	web

application	that	operates	as	a	bitcoin	search	engine,	in	that	it	allows	you	to

search	for	addresses,	transactions,	and	blocks	and	see	the	relationships	and	flows

between	them.

Figure	2-1.	Bitcoin	overview

Popular	blockchain	explorers	include:

Blockstream	Explorer

https://blockstream.info/

Mempool.Space

BlockCypher	Explorer

Each	of	these	has	a	search	function	that	can	take	a	Bitcoin	address,	transaction

hash,	block	number,	or	block	hash	and	retrieve	corresponding	information	from

the	Bitcoin	network.	With	each	transaction	or	block	example,	we	will	provide	a

URL	so	you	can	look	it	up	yourself	and	study	it	in	detail.

BLOCK	EXPLORER	PRIVACY	WARNING

Searching	information	on	a	block	explorer	may	disclose	to	its	operator	that	you’re	interested	in	that

information,	allowing	them	to	associate	it	with	your	IP	address,	browser	fingerprint,	past	searches,	or	other

identifiable	information.	If	you	look	up	the	transactions	in	this	book,	the	operator	of	the	block	explorer

might	guess	that	you’re	learning	about	Bitcoin,	which	shouldn’t	be	a	problem.	But	if	you	look	up	your	own

transactions,	the	operator	may	be	able	to	guess	how	many	bitcoins	you’ve	received,	spent,	and	currently

own.

Buying	from	an	Online	Store

Alice,	introduced	in	the	previous	chapter,	is	a	new	user	who	has	just	acquired	her

first	bitcoins.	In	“Getting	Your	First	Bitcoin”,	Alice	met	with	her	friend	Joe	to

exchange	some	cash	for	bitcoins.	Since	then,	Alice	has	bought	additional

bitcoins.	Now	Alice	will	make	her	first	retail	transaction,	buying	access	to	a

premium	podcast	episode	from	Bob’s	online	store.

Bob’s	web	store	recently	started	accepting	bitcoin	payments	by	adding	a	bitcoin

option	to	its	website.	The	prices	at	Bob’s	store	are	listed	in	the	local	currency

https://mempool.space
https://live.blockcypher.com

(US	dollars),	but	at	checkout,	customers	have	the	option	of	paying	in	either

dollars	or	bitcoin.

Alice	finds	the	podcast	episode	she	wants	to	buy	and	proceeds	to	the	checkout

page.	At	checkout,	Alice	is	offered	the	option	to	pay	with	bitcoin,	in	addition	to

the	usual	options.	The	checkout	cart	displays	the	price	in	US	dollars	and	also	in

bitcoin	(BTC),	at	Bitcoin’s	prevailing	exchange	rate.

Bob’s	e-commerce	system	will	automatically	create	a	QR	code	containing	an

invoice	(Figure	2-2).

Unlike	a	QR	code	that	simply	contains	a	destination	Bitcoin	address,	this	invoice

is	a	QR-encoded	URI	that	contains	a	destination	address,	a	payment	amount,	and

a	description.	This	allows	a	bitcoin	wallet	application	to	prefill	the	information

used	to	send	the	payment	while	showing	a	human-readable	description	to	the

user.	You	can	scan	the	QR	code	with	a	bitcoin	wallet	application	to	see	what

Alice	would	see.

Figure	2-2.	Invoice	QR	code

TIP

Try	to	scan	this	with	your	wallet	to	see	the	address	and	amount	but	DO	NOT	SEND	MONEY.

bitcoin:bc1qk2g6u8p4qm2s2lh3gts5cpt2mrv5skcuu7u3e4?amount=0.01577764&

label=Bob%27s%20Store&

message=Purchase%20at%20Bob%27s%20Store

Components	of	the	URI

A	Bitcoin	address:	"bc1qk2g6u8p4qm2s2lh3gts5cpt2mrv5skcuu7u3e4"

The	payment	amount:	"0.01577764"

A	label	for	the	recipient	address:	"Bob's	Store"

A	description	for	the	payment:	"Purchase	at	Bob's	Store"

Alice	uses	her	smartphone	to	scan	the	barcode	on	display.	Her	smartphone

shows	a	payment	for	the	correct	amount	to	 Bob’s	Store 	and	she	selects

Send	to	authorize	the	payment.	Within	a	few	seconds	(about	the	same	amount	of

time	as	a	credit	card	authorization),	Bob	sees	the	transaction	on	the	register.

NOTE

The	Bitcoin	network	can	transact	in	fractional	values,	e.g.,	from	millibitcoin	(1/1000th	of	a	bitcoin)	down	to

1/100,000,000th	of	a	bitcoin,	which	is	known	as	a	satoshi.	This	book	uses	the	same	pluralization	rules	used

for	dollars	and	other	traditional	currencies	when	talking	about	amounts	greater	than	one	bitcoin	and	when

using	decimal	notation,	such	as	“10	bitcoins”	or	“0.001	bitcoins.”	The	same	rules	also	apply	to	other	bitcoin

bookkeeping	units,	such	as	millibitcoins	and	satoshis.

You	can	examine	Alice’s	transaction	to	Bob’s	Store	on	the	blockchain	using	a

block	explorer	site	(Example	2-1):

Example	2-1.	View	Alice’s	transaction	on	Blockstream	Explorer

https://blockstream.info/tx/674616f1fbc6cc748213648754724eebff0fc04506f2c81efb1349d1ebc8a2ef

In	the	following	sections,	we	will	examine	this	transaction	in	more	detail.	We’ll

see	how	Alice’s	wallet	constructed	it,	how	it	was	propagated	across	the	network,

how	it	was	verified,	and	finally,	how	Bob	can	spend	that	amount	in	subsequent

transactions.

Bitcoin	Transactions

In	simple	terms,	a	transaction	tells	the	network	that	the	owner	of	some	bitcoin

value	has	authorized	the	transfer	of	that	value	to	another	owner.	The	new	owner

can	now	spend	the	bitcoin	by	creating	another	transaction	that	authorizes	the

transfer	to	another	owner,	and	so	on,	in	a	chain	of	ownership.

Transaction	Inputs	and	Outputs

Transactions	are	like	lines	in	a	double-entry	bookkeeping	ledger.	Each

transaction	contains	one	or	more	“inputs,”	which	are	like	debits	against	a	bitcoin

account.	On	the	other	side	of	the	transaction,	there	are	one	or	more	“outputs,”

which	are	like	credits	added	to	a	bitcoin	account.	The	inputs	and	outputs	(debits

https://blockstream.info/tx/674616f1fbc6cc748213648754724eebff0fc04506f2c81efb1349d1ebc8a2ef

and	credits)	do	not	necessarily	add	up	to	the	same	amount.	Instead,	outputs	add

up	to	slightly	less	than	inputs	and	the	difference	represents	an	implied

transaction	fee,	which	is	a	small	payment	collected	by	the	miner	who	includes

the	transaction	in	the	ledger.	A	bitcoin	transaction	is	shown	as	a	bookkeeping

ledger	entry	in	Figure	2-3.

The	transaction	also	contains	proof	of	ownership	for	each	amount	of	bitcoin

(inputs)	whose	value	is	being	spent,	in	the	form	of	a	digital	signature	from	the

owner,	which	can	be	independently	validated	by	anyone.	In	bitcoin	terms,

“spending”	is	signing	a	transaction	that	transfers	value	from	a	previous

transaction	over	to	a	new	owner	identified	by	a	Bitcoin	address.

Figure	2-3.	Transaction	as	double-entry	bookkeeping

Transaction	Chains

Alice’s	payment	to	Bob’s	Store	uses	a	previous	transaction’s	output	as	its	input.

In	the	previous	chapter,	Alice	received	bitcoin	from	her	friend	Joe	in	return	for

cash.	We’ve	labeled	that	as	Transaction	1	(Tx1)	in	Figure	2-4.

Tx1	sent	0.001	bitcoins	(100,000	satoshis)	to	an	output	locked	by	Alice’s	key.

Her	new	transaction	to	Bob’s	Store	(Tx2)	references	the	previous	output	as	an

input.	In	the	illustration,	we	show	that	reference	using	an	arrow	and	by	labeling

the	input	as	“Tx1:0”.	In	an	actual	transaction,	the	reference	is	the	32-byte

transaction	identifier	(txid)	for	the	transaction	where	Alice	received	the	money

from	Joe.	The	“:0”	indicates	the	position	of	the	output	where	Alice	received	the

money;	in	this	case,	the	first	position	(position	0).

As	shown,	actual	Bitcoin	transactions	don’t	explicitly	include	the	value	of	their

input.	To	determine	the	value	of	an	input,	software	needs	to	use	the	input’s

reference	to	find	the	previous	transaction	output	being	spent.

Alice’s	Tx2	contains	two	new	outputs,	one	paying	75,000	satoshis	for	the

podcast	and	another	paying	20,000	satoshis	back	to	Alice	to	receive	change.

Figure	2-4.	A	chain	of	transactions,	where	the	output	of	one	transaction	is	the	input	of	the	next	transaction

TIP

Serialized	Bitcoin	transactions---the	data	format	that	software	uses	for	sending	transactions---encodes	the

value	to	transfer	using	an	integer	of	the	smallest	defined	onchain	unit	of	value.	When	Bitcoin	was	first

created,	this	unit	didn’t	have	a	name	and	some	developers	simply	called	it	the	base	unit.	Later	many	users

began	calling	this	unit	a	satoshi	(sat)	in	honor	of	Bitcoin’s	creator.	In	Figure	2-4	and	some	other	illustrations

in	this	book,	we	use	satoshi	values	because	that’s	what	the	protocol	itself	uses.

Making	Change

In	addition	to	one	or	more	outputs	that	pay	the	receiver	of	bitcoins,	many

transactions	will	also	include	an	output	that	pays	the	spender	of	the	bitcoins,

called	a	change	output.	This	is	because	transaction	inputs,	like	currency	notes,

cannot	be	divided.	If	you	purchase	a	$5	US	dollar	item	in	a	store	but	use	a	$20

dollar	bill	to	pay	for	the	item,	you	expect	to	receive	$15	dollars	in	change.	The

same	concept	applies	to	bitcoin	transaction	inputs.	If	you	purchased	an	item	that

costs	5	bitcoins	but	only	had	an	input	worth	20	bitcoins	to	use,	you	would	send

one	output	of	5	bitcoins	to	the	store	owner	and	one	output	of	15	bitcoins	back	to

yourself	as	change	(not	counting	your	transaction	fee).

At	the	level	of	the	Bitcoin	protocol,	there	is	no	difference	between	a	change

output	(and	the	address	it	pays,	called	a	change	address)	and	a	payment	output.

Importantly,	the	change	address	does	not	have	to	be	the	same	address	as	that	of

the	input	and	for	privacy	reasons	is	often	a	new	address	from	the	owner’s	wallet.

In	ideal	circumstances,	the	two	different	uses	of	outputs	both	use	never-before-

been	addresses	and	otherwise	look	identical,	preventing	any	third	party	from

determining	which	outputs	are	change	and	which	are	payments.	However,	for

illustration	purposes,	we’ve	added	shading	to	the	change	outputs	in	Figure	2-4.

Coin	selection

Different	wallets	use	different	strategies	when	choosing	which	inputs	to	use	to	a

payment,	called	coin	selection.

They	might	aggregate	many	small	inputs,	or	use	one	that	is	equal	to	or	larger

than	the	desired	payment.	Unless	the	wallet	can	aggregate	inputs	in	such	a	way

to	exactly	match	the	desired	payment	plus	transaction	fees,	the	wallet	will	need

to	generate	some	change.	This	is	very	similar	to	how	people	handle	cash.	If	you

always	use	the	largest	bill	in	your	pocket,	you	will	end	up	with	a	pocket	full	of

loose	change.	If	you	only	use	the	loose	change,	you’ll	always	have	only	big	bills.

People	subconsciously	find	a	balance	between	these	two	extremes,	and	bitcoin

wallet	developers	strive	to	program	this	balance.

Common	Transaction	Forms

A	very	common	form	of	transaction	is	a	simple	payment.	This	type	of

transaction	has	one	input	and	two	outputs	and	is	shown	in	Figure	2-5.

Figure	2-5.	Most	common	transaction

Another	common	form	of	transaction	is	a	consolidation	transaction	one	that

spends	several	inputs	into	a	single	output	(Figure	2-6).	This	represents	the	real-

world	equivalent	of	exchanging	a	pile	of	coins	and	currency	notes	for	a	single

larger	note.	Transactions	like	these	are	sometimes	generated	by	wallets	and

business	to	clean	up	lots	of	smaller	amounts.

Figure	2-6.	Transaction	aggregating	funds

Finally,	another	transaction	form	that	is	seen	often	on	the	bitcoin	ledger	is

payment	batching	that	pays	to	multiple	outputs	representing	multiple	recipients

(Figure	2-7).	This	type	of	transaction	is	sometimes	used	by	commercial	entities

to	distribute	funds,	such	as	when	processing	payroll	payments	to	multiple

employees.

Figure	2-7.	Transaction	distributing	funds

Constructing	a	Transaction

Alice’s	wallet	application	contains	all	the	logic	for	selecting	inputs	and

generating	outputs	to	build	a	transaction	to	Alice’s	specification.	Alice	only

needs	to	choose	a	destination,	amount,	and	transaction	fee,	and	the	rest	happens

in	the	wallet	application	without	her	seeing	the	details.	Importantly,	if	a	wallet

already	knows	what	inputs	it	controls,	it	can	construct	transactions	even	if	it	is

completely	offline.	Like	writing	a	check	at	home	and	later	sending	it	to	the	bank

in	an	envelope,	the	transaction	does	not	need	to	be	constructed	and	signed	while

connected	to	the	Bitcoin	network.

Getting	the	Right	Inputs

Alice’s	wallet	application	will	first	have	to	find	inputs	that	can	pay	the	amount

she	wants	to	send	to	Bob.	Most	wallets	keep	track	of	all	the	available	outputs

belonging	to	addresses	in	the	wallet.	Therefore,	Alice’s	wallet	would	contain	a

copy	of	the	transaction	output	from	Joe’s	transaction,	which	was	created	in

exchange	for	cash	(see	“Getting	Your	First	Bitcoin”).	A	bitcoin	wallet

application	that	runs	on	a	full	node	actually	contains	a	copy	of	every	confirmed

transaction’s	unspent	outputs,	called	Unspent	Transaction	Outputs	(UTXOs).

However,	because	full	nodes	use	more	resources,	most	user	wallets	run

“lightweight”	clients	that	track	only	the	user’s	own	UTXOs.

If	the	wallet	application	does	not	maintain	a	copy	of	all	UTXOs,	it	can	query	the

Bitcoin	network	to	retrieve	this	information	using	a	variety	of	APIs	available	by

different	providers	or	by	asking	a	full	node	using	an	application	programming

interface	(API)	call.	Example	2-2	shows	an	API	request,	constructed	as	an	HTTP

GET	command	to	a	specific	URL.	This	URL	will	return	all	the	unspent

transaction	outputs	for	an	address,	giving	any	application	the	information	it

needs	to	construct	transaction	inputs	for	spending.	We	use	the	simple	command-

line	HTTP	client	cURL	to	retrieve	the	response.	Note	that	looking	up

information	using	a	third-party	API	like	this	is	similar	to	using	a	block	explorer;

see	the	privacy	warning	in	“Block	explorer	privacy	warning”.

Example	2-2.	Look	up	all	the	unspent	outputs	for	Alice’s	Bitcoin	address

$	address=bc1pyfw56zu5vsq0ulu9kytasgw4xwnm3eysll6tfdz8d9gtht97k7tqxsz78n

$	curl	https://blockchain.info/unspent?active=$address

{

		"notice":	"",

		"unspent_outputs":	[

				{

						"tx_hash_big_endian":	"4ac541802679866935a19d4f40728bb89204d0cac90d85f3a51a19278fe33aeb"

						"tx_hash":	"eb3ae38f27191aa5f3850dc9cad00492b88b72404f9da135698679268041c54a"

						"tx_output_n":	1,

						"script":	"5120225d4d0b946400fe7f85b117d821d533a7b8e490fff4b4b4476950bbacbeb796"

						"value":	100000,

						"value_hex":	"0186a0",

						"confirmations":	111,

						"tx_index":	8276421070086947

				}

]

}

The	response	in	Example	2-2	shows	one	unspent	output	(one	that	has	not	been

redeemed	yet)	under	the	ownership	of	Alice’s	address.	The	response	includes	the

reference	to	the	transaction	in	which	this	UTXO	is	contained	(the	payment	from

Joe),	the	output	index	number,	its	value	in	satoshis,	and	the	script	derived	from

Alice’s	address.	With	this	information,	Alice’s	wallet	application	can	construct	a

transaction	to	transfer	that	value	to	new	owner	addresses.

TIP

View	the	transaction	from	Joe	to	Alice.

In	this	case,	this	single	UTXO	is	sufficient	to	pay	for	the	podcast.	Had	this	not

been	the	case,	Alice’s	wallet	application	might	have	to	combine	several	smaller

UTXOs,	like	picking	coins	from	a	purse	until	it	could	find	enough	to	pay	for	the

podcast.	In	both	cases,	there	might	be	a	need	to	get	some	change	back,	which	we

will	see	in	the	next	section,	as	the	wallet	application	creates	the	transaction

outputs	(payments).

Creating	the	Outputs

A	transaction	output	is	created	in	the	form	of	a	script	that	creates	an

encumbrance	on	the	value	and	can	only	be	redeemed	by	the	introduction	of	a

solution	to	the	script.	In	simpler	terms,	Alice’s	transaction	output	will	contain	a

script	that	says	something	like,	“This	output	is	payable	to	whoever	can	present	a

signature	from	the	key	corresponding	to	Bob’s	public	address.”	Because	only

Bob	has	the	wallet	with	the	keys	corresponding	to	that	address,	only	Bob’s

wallet	can	present	such	a	signature	to	redeem	this	output.	Alice	will	therefore

“encumber”	the	output	value	with	a	demand	for	a	signature	from	Bob.

This	transaction	will	also	include	a	second	output,	because	Alice’s	funds	contain

more	money	than	the	cost	of	the	podcast.	Alice’s	change	output	is	created	in	the

very	same	transaction	as	the	payment	to	Bob.	Essentially,	Alice’s	wallet	breaks

her	funds	into	two	outputs:	one	to	Bob	and	one	back	to	herself.	She	can	then

spend	the	change	output	in	a	subsequent	transaction.

https://blockstream.info/tx/4ac541802679866935a19d4f40728bb89204d0cac90d85f3a51a19278fe33aeb

Finally,	for	the	transaction	to	be	processed	by	the	network	in	a	timely	fashion,

Alice’s	wallet	application	will	add	a	small	fee.	This	is	not	explicit	in	the

transaction;	it	is	implied	by	the	difference	in	value	between	inputs	and	outputs.

This	transaction	fee	is	collected	by	the	miner	as	a	fee	for	validating	and

including	the	transaction	in	a	block	to	be	recorded	on	the	blockchain.

TIP

View	the	transaction	from	Alice	to	Bob’s	Store.

Adding	the	Transaction	to	the	Ledger

The	transaction	created	by	Alice’s	wallet	application	contains	everything

necessary	to	confirm	ownership	of	the	funds	and	assign	new	owners.	Now,	the

transaction	must	be	transmitted	to	the	Bitcoin	network	where	it	will	become	part

of	the	blockchain.	In	the	next	section	we	will	see	how	a	transaction	becomes	part

of	a	new	block	and	how	the	block	is	mined.	Finally,	we	will	see	how	the	new

block,	once	added	to	the	blockchain,	is	increasingly	trusted	by	the	network	as

more	blocks	are	added.

Transmitting	the	transaction

Because	the	transaction	contains	all	the	information	necessary	to	process,	it	does

not	matter	how	or	where	it	is	transmitted	to	the	Bitcoin	network.	The	Bitcoin

network	is	a	peer-to-peer	network,	with	each	Bitcoin	peer	participating	by

connecting	to	several	other	Bitcoin	peers.	The	purpose	of	the	Bitcoin	network	is

https://blockstream.info/tx/466200308696215bbc949d5141a49a4138ecdfdfaa2a8029c1f9bcecd1f96177

to	propagate	transactions	and	blocks	to	all	participants.

How	it	propagates

Peers	in	the	Bitcoin	peer-to-peer	network	are	programs	that	have	both	the

software	logic	and	the	data	necessary	for	them	to	fully	verify	the	correctness	of	a

new	transaction.	The	connections	between	peers	are	often	visualized	as	edges

(lines)	in	a	graph,	with	the	peers	themselves	being	the	nodes	(dots).	For	that

reason,	Bitcoin	peers	are	commonly	called	“full	verification	nodes”,	or	full

nodes	for	short.

Alice’s	wallet	application	can	send	the	new	transaction	to	any	Bitcoin	node	it	is

connected	to	over	any	type	of	connection:	wired,	WiFi,	mobile,	etc.	It	can	also

send	the	transaction	to	another	program	(such	as	a	block	explorer)	that	will	relay

it	to	a	node.	Her	bitcoin	wallet	does	not	have	to	be	connected	to	Bob’s	bitcoin

wallet	directly	and	she	does	not	have	to	use	the	internet	connection	offered	by

the	cafe,	though	both	those	options	are	possible,	too.	Any	Bitcoin	node	that

receives	a	valid	transaction	it	has	not	seen	before	will	immediately	forward	it	to

all	other	nodes	to	which	it	is	connected,	a	propagation	technique	known	as

gossiping.	Thus,	the	transaction	rapidly	propagates	out	across	the	peer-to-peer

network,	reaching	a	large	percentage	of	the	nodes	within	a	few	seconds.

Bob’s	view

If	Bob’s	bitcoin	wallet	application	is	directly	connected	to	Alice’s	wallet

application,	Bob’s	wallet	application	might	be	the	first	to	receive	the	transaction.

However,	even	if	Alice’s	wallet	sends	the	transaction	through	other	nodes,	it	will

reach	Bob’s	wallet	within	a	few	seconds.	Bob’s	wallet	will	immediately	identify

Alice’s	transaction	as	an	incoming	payment	because	it	contains	an	output

redeemable	by	Bob’s	keys.	Bob’s	wallet	application	can	also	independently

verify	that	the	transaction	is	well	formed.	If	Bob	is	using	his	own	full	node,	his

wallet	can	further	verify	Alice’s	transaction	only	spends	valid	UTXOs.

Bitcoin	Mining

Alice’s	transaction	is	now	propagated	on	the	Bitcoin	network.	It	does	not

become	part	of	the	blockchain	until	it	is	verified	and	included	in	a	block	by	a

process	called	mining.	See	XREF	HERE	for	a	detailed	explanation.

The	Bitcoin	system	of	counterfeit	protection	is	based	on	computation.

Transactions	are	bundled	into	blocks.	Blocks	have	a	very	small	header	that	must

be	formed	in	a	very	specific	way,	requiring	an	enormous	amount	of	computation

to	get	right—but	only	a	small	amount	of	computation	to	verify	as	correct.	The

mining	process	serves	two	purposes	in	bitcoin:

Miners	can	only	receive	honest	income	from	creating	blocks	that	follow	all	of

Bitcoin’s	consensus	rules.	Therefore,	miners	are	normally	incentivized	to

only	include	valid	transactions	in	their	blocks	and	the	blocks	they	build	upon.

This	allows	users	to	optionally	trust	that	any	transaction	in	a	block	is	a	valid

transaction.

Mining	currently	creates	new	bitcoin	in	each	block,	almost	like	a	central	bank

printing	new	money.	The	amount	of	bitcoin	created	per	block	is	limited	and

diminishes	with	time,	following	a	fixed	issuance	schedule.

Mining	achieves	a	fine	balance	between	cost	and	reward.	Mining	uses	electricity

to	solve	a	computational	problem.	A	successful	miner	will	collect	a	reward	in	the

form	of	new	bitcoin	and	transaction	fees.	However,	the	reward	will	only	be

collected	if	the	miner	has	correctly	validated	all	the	transactions,	to	the

satisfaction	of	the	rules	of	consensus.	This	delicate	balance	provides	security	for

bitcoin	without	a	central	authority.

Mining	is	designed	to	be	a	decentralized	lottery.	Each	miner	can	create	their	own

lottery	ticket	by	creating	a	block	template	that	includes	the	new	transactions	they

want	to	mine	plus	some	additional	data	fields.	The	miner	inputs	their	template

into	a	specially-designed	algorithm	that	scrambles	(or	“hashes”)	the	data,

producing	output	that	looks	nothing	like	the	input	data.	This	hash	function	will

always	produce	the	same	output	for	the	same	input—but	nobody	can	predict

what	the	output	will	look	like	for	a	new	input,	even	if	it	is	only	slighly	different

from	a	previous	input.	If	the	output	of	hash	function	matches	a	template

determined	by	the	Bitcoin	protocol,	the	miner	wins	the	lottery	and	Bitcoin	users

will	accept	the	block	template	with	its	transactions	as	a	valid	block.	If	the	output

doesn’t	match	the	template,	the	miner	makes	a	small	change	to	their	block

template	and	tries	again.	As	of	this	writing,	the	number	of	block	templates

miners	need	to	try	before	finding	a	winning	combination	is	about	168	billion

trillions.	That’s	also	how	many	times	the	hash	function	needs	to	be	run.

However,	once	a	winning	combination	has	been	found,	anyone	can	verify	the

block	is	valid	by	running	the	hash	function	just	once.	That	makes	a	valid	block

something	that	requires	an	incredible	amount	of	work	to	create	but	only	a	trivial

amount	of	work	to	verify.	The	simple	verification	process	is	able	to

probabalistically	prove	the	work	was	done,	so	the	data	necessary	to	generate	that

proof—in	this	case,	the	block—is	called	Proof-of-Work	(PoW).

In	“Bitcoin	Uses,	Users,	and	Their	Stories”,	we	introduced	Jing,	an	entrepreneur

in	Shanghai.	Jing	runs	a	mining	farm,	which	is	a	business	that	runs	thousands	of

specialized	mining	computers,	competing	for	the	block	reward.	Jing’s	mining

computers	compete	against	thousands	of	similar	systems	in	the	global	lottery	to

create	the	next	block.

Jing	started	mining	in	2010	using	a	very	fast	desktop	computer	to	find	a	suitable

Proof-of-Work	for	new	blocks.	As	more	miners	started	joining	the	Bitcoin

network,	the	Bitcoin	protocol	automatically	increased	the	difficulty	of	finding	a

new	block.	Soon,	Jing	and	other	miners	upgraded	to	more	specialized	hardware,

such	as	high-end	dedicated	graphical	processing	units	(GPUs)	used	in	gaming

desktops.	At	the	time	of	this	writing,	the	difficulty	is	so	high	that	it	is	profitable

only	to	mine	with	application-specific	integrated	circuits	(ASIC),	essentially

hundreds	of	mining	algorithms	printed	in	hardware,	running	in	parallel	on	a

single	silicon	chip.	Jing’s	company	also	participates	in	a	mining	pool,	which

much	like	a	lottery	pool	allows	several	participants	to	share	their	efforts	and

rewards.	Jing’s	company	now	runs	a	warehouse	containing	thousands	of	ASIC

miners	to	mine	for	bitcoin	24	hours	a	day.	The	company	pays	its	electricity	costs

by	selling	the	bitcoin	it	is	able	to	generate	from	mining,	creating	some	income

from	the	profits.

Mining	Transactions	in	Blocks

New	transactions	are	constantly	flowing	into	the	network	from	user	wallets	and

other	applications.	As	these	are	seen	by	the	Bitcoin	network	nodes,	they	get

added	to	a	temporary	pool	of	unverified	transactions	maintained	by	each	node.

As	miners	construct	a	new	block,	they	add	unverified	transactions	from	this	pool

to	the	new	block	and	then	attempt	to	prove	the	validity	of	that	new	block,	with

the	mining	algorithm	(Proof-of-Work).	The	process	of	mining	is	explained	in

detail	in	XREF	HERE.

Transactions	are	added	to	the	new	block,	prioritized	by	the	highest-fee

transactions	first	and	a	few	other	criteria.	Each	miner	starts	the	process	of	mining

a	new	block	of	transactions	as	soon	as	he	receives	the	previous	block	from	the

network,	knowing	he	has	lost	that	previous	round	of	competition.	He

immediately	creates	a	new	block,	fills	it	with	transactions	and	the	fingerprint	of

the	previous	block,	and	starts	calculating	the	Proof-of-Work	for	the	new	block.

Each	miner	includes	a	special	transaction	in	his	block,	one	that	pays	his	own

Bitcoin	address	the	block	reward	(currently	12.5	newly	created	bitcoin)	plus	the

sum	of	transaction	fees	from	all	the	transactions	included	in	the	block.	If	he	finds

a	solution	that	makes	that	block	valid,	he	“wins”	this	reward	because	his

successful	block	is	added	to	the	global	blockchain	and	the	reward	transaction	he

included	becomes	spendable.	Jing,	who	participates	in	a	mining	pool,	has	set	up

his	software	to	create	new	blocks	that	assign	the	reward	to	a	pool	address.	From

there,	a	share	of	the	reward	is	distributed	to	Jing	and	other	miners	in	proportion

to	the	amount	of	work	they	contributed	in	the	last	round.

Alice’s	transaction	was	picked	up	by	the	network	and	included	in	the	pool	of

unverified	transactions.	Once	validated	by	a	full	node,	it	was	included	in	a	block

template	generated	by	Jing’s	mining	pool.	All	the	miners	participating	in	that

mining	pool	immediately	start	trying	to	generate	a	Proof-of-Work	for	the	block

template.	Approximately	five	minutes	after	the	transaction	was	first	transmitted

by	Alice’s	wallet,	one	of	Jing’s	ASIC	miners	found	a	solution	for	the	block	and

announced	it	to	the	network.	After	other	miners	validated	the	winning	block,

they	started	a	new	lottery	to	generate	the	next	block.

Jing’s	winning	block	containing	Alice’s	transaction	became	part	of	the

blockchain.	The	block	containing	Alice’s	transaction	is	counted	as	one

“confirmation”	of	that	transaction.	After	the	block	containing	Alice’s	transaction

has	propagated	through	the	network,	creating	an	alternative	block	with	a

different	version	of	Alice’s	transaction	(such	as	a	transaction	that	doesn’t	pay

Bob)	would	require	performing	the	same	amount	of	work	as	it	will	take	all

Bitcoin	miners	to	create	an	entirely	new	block.	For	the	entire	network	to	accept

an	alternative	block,	an	additional	new	block	would	need	to	be	mined	on	top	of

the	alternative.

That	means	miners	have	a	choice.	They	can	work	with	Alice	on	an	alternative

version	of	the	transaction	where	she	pays	Bob,	perhaps	with	Alice	paying	miners

a	share	of	the	money	she	previously	paid	Bob.	This	dishonest	behavior	will

require	they	expend	the	effort	required	to	create	two	new	blocks.	Instead,	miners

who	behave	honestly	can	create	a	single	new	block	and	and	receive	all	of	the

fees	from	the	transactions	they	include	in	it,	plus	the	block	reward.	Normally,	the

high	cost	of	dishonestly	creating	two	blocks	for	a	small	additional	payment	is

much	less	profitable	than	honestly	creating	a	new	block,	making	it	unlikely	that

a	confirmed	transaction	will	be	deliberately	changed.	For	Bob,	this	means	that	he

can	begin	to	believe	that	the	payment	from	Alice	can	be	relied	upon.

TIP

You	can	see	the	block	that	includes	Alice’s	transaction.

Approximately	19	minutes	after	Jing’s	block,	a	new	block	is	mined	by	another

miner.	Because	this	new	block	is	built	on	top	of	the	block	that	contained	Alice’s

transaction	(giving	Alice’s	transaction	two	confirmations)	Alice’s	transaction	can

now	only	be	changed	if	two	alternative	blocks	are	mined—plus	a	new	block

built	on	top	of	them—for	a	total	of	three	blocks	that	would	need	to	be	mined	for

Alice	to	take	back	the	money	she	sent	Bob.	Each	block	mined	on	top	of	the	one

containing	Alice’s	transaction	counts	as	an	additional	confirmation.	As	the

blocks	pile	on	top	of	each	other,	it	becomes	harder	to	reverse	the	transaction,

thereby	giving	Bob	more	and	more	confidence	that	Alice’s	payment	is	secure.

In	Figure	2-8,	we	can	the	block	which	contains	Alice’s	transaction.	Below	it	are

hundreds	of	thousands	of	blocks,	linked	to	each	other	in	a	chain	of	blocks

(blockchain)	all	the	way	back	to	block	#0,	known	as	the	genesis	block.	Over

time,	as	the	“height”	of	new	blocks	increases,	so	does	the	computation	difficulty

for	the	chain	as	a	whole.	By	convention,	any	block	with	more	than	six

confirmations	is	considered	very	hard	to	change,	because	it	would	require	an

immense	amount	of	computation	to	recalculate	six	blocks	(plus	one	new	block).

We	will	examine	the	process	of	mining	and	the	way	it	builds	confidence	in	more

https://blockstream.info/block/000000000000000000027d39da52dd790d98f85895b02e764611cb7acf552e90

detail	in	XREF	HERE.

Figure	2-8.	Alice’s	transaction	included	in	a	block

Spending	the	Transaction

Now	that	Alice’s	transaction	has	been	embedded	in	the	blockchain	as	part	of	a

block,	it	is	part	of	the	distributed	ledger	of	Bitcoin	and	visible	to	all	Bitcoin

applications.	Each	bitcoin	full	node	can	independently	verify	the	transaction	as

valid	and	spendable.	Full	nodes	validate	every	transfer	of	the	funds	from	the

moment	the	bitcoin	were	first	generated	in	a	block	through	each	subsequent

transaction	until	they	reach	Bob’s	address.	Lightweight	clients	can	do	what	is

called	a	simplified	payment	verification	(see	XREF	HERE)	by	confirming	that

the	transaction	is	in	the	blockchain	and	has	several	blocks	mined	after	it,	thus

providing	assurance	that	the	miners	expended	significant	effort	committing	to	it.

Bob	can	now	spend	the	output	from	this	and	other	transactions.	For	example,

Bob	can	pay	a	contractor	or	supplier	by	transferring	value	from	Alice’s	podcast

payment	to	these	new	owners.	Bob’s	bitcoin	software	might	consolidate	many

small	payments	into	a	larger	payment,	perhaps	concentrating	all	the	day’s	bitcoin

revenue	into	a	single	transaction.	This	would	consolidate	the	various	payments

into	a	single	output	(and	a	single	address).	For	a	diagram	of	a	consolidation

transaction,	see	Figure	2-6.

As	Bob	spends	the	payments	received	from	Alice	and	other	customers,	he

extends	the	chain	of	transactions.	Let’s	assume	that	Bob	pays	his	web	designer

Gopesh	in	Bangalore	for	a	new	website	page.	Now	the	chain	of	transactions	will

look	like	Figure	2-9.

Figure	2-9.	Alice’s	transaction	as	part	of	a	transaction	chain	from	Joe	to	Gopesh

In	this	chapter,	we	saw	how	transactions	build	a	chain	that	moves	value	from

owner	to	owner.	We	also	tracked	Alice’s	transaction,	from	the	moment	it	was

created	in	her	wallet,	through	the	Bitcoin	network	and	to	the	miners	who

recorded	it	on	the	blockchain.	In	the	rest	of	this	book,	we	will	examine	the

specific	technologies	behind	wallets,	addresses,	signatures,	transactions,	the

network,	and	finally	mining.

Chapter	3.	Bitcoin	Core:	The	Reference
Implementation

A	NOTE	FOR	EARLY	RELEASE	READERS

With	Early	Release	ebooks,	you	get	books	in	their	earliest	form—the	author’s

raw	and	unedited	content	as	they	write—so	you	can	take	advantage	of	these

technologies	long	before	the	official	release	of	these	titles.

This	will	be	the	3rd	chapter	of	the	final	book.

If	you	have	comments	about	how	we	might	improve	the	content	and/or	examples

in	this	book,	or	if	you	notice	missing	material	within	this	chapter,	please	reach

out	to	the	editor	at	arufino@oreilly.com.

People	only	accept	money	in	exchange	for	their	valuable	goods	and	services	if

they	believe	that	they’ll	be	able	to	spend	that	money	later.	Money	that	is

counterfeit	or	unexpectedly	debased	may	not	be	spendable	later,	so	every	person

accepting	bitcoin	has	a	strong	incentive	to	verify	the	integrity	of	the	bitcoins

they	receive.	The	Bitcoin	system	was	designed	so	that	it’s	possible	for	software

running	entirely	on	your	local	computer	to	perfectly	prevent	counterfeiting,

debasement,	and	several	other	critical	problems.	Software	which	provides	that

function	is	called	a	full	verification	node	because	it	verifies	every	confirmed

Bitcoin	transaction	against	every	rule	in	the	system.	Full	verification	nodes,	full

nodes	for	short,	may	also	provide	tools	and	data	for	understanding	how	Bitcoin

works	and	what	is	currently	happening	in	the	network.

In	this	chapter,	we’ll	install	Bitcoin	Core,	the	implementation	which	most	full

node	operators	have	used	since	the	beginning	of	the	Bitcoin	network.	We’ll	then

inspect	blocks,	transactions,	and	other	data	from	your	node,	data	which	is

authoritative—not	because	some	powerful	entity	designated	it	as	such	but

because	your	node	independently	verified	it.	Throughout	the	rest	of	this	book,

we’ll	continue	using	Bitcoin	Core	to	create	and	examine	data	related	to	the

blockchain	and	network.

From	Bitcoin	to	Bitcoin	Core

Bitcoin	is	an	open	source	project	and	the	source	code	is	available	under	an	open

(MIT)	license,	free	to	download	and	use	for	any	purpose.	More	than	just	being

open	source,	Bitcoin	is	developed	by	an	open	community	of	volunteers.	At	first,

that	community	consisted	of	only	Satoshi	Nakamoto.	By	2023,	Bitcoin’s	source

code	had	more	than	1,000	contributors	with	about	a	dozen	developers	working

on	the	code	almost	full-time	and	several	dozen	more	on	a	part-time	basis.

Anyone	can	contribute	to	the	code—including	you!

When	Bitcoin	was	created	by	Satoshi	Nakamoto,	the	software	was	mostly

completed	before	the	whitepaper	reproduced	in	XREF	HERE	was	published.

Satoshi	wanted	to	make	sure	the	implementation	worked	before	publishing	a

paper	about	it.	That	first	implementation,	then	simply	known	as	“Bitcoin”,	has

been	heavily	modified	and	improved.	It	has	evolved	into	what	is	known	as

Bitcoin	Core,	to	differentiate	it	from	other	implementations.	Bitcoin	Core	is	the

reference	implementation	of	the	Bitcoin	system,	meaning	that	it	provides	a

reference	for	how	each	part	of	the	technology	should	be	implemented.	Bitcoin

Core	implements	all	aspects	of	Bitcoin,	including	wallets,	a	transaction	and

block	validation	engine,	and	all	modern	parts	of	Bitcoin	peer-to-peer

communication.

Figure	3-1	shows	the	architecture	of	Bitcoin	Core.

Figure	3-1.	Bitcoin	Core	architecture	(Source:	Eric	Lombrozo)

Bitcoin	Development	Environment

If	you’re	a	developer,	you	will	want	to	set	up	a	development	environment	with

all	the	tools,	libraries,	and	support	software	for	writing	Bitcoin	applications.	In

this	highly	technical	chapter,	we’ll	walk	through	that	process	step-by-step.	If	the

material	becomes	too	dense	(and	you’re	not	actually	setting	up	a	development

environment)	feel	free	to	skip	to	the	next	chapter,	which	is	less	technical.

Compiling	Bitcoin	Core	from	the	Source
Code

Bitcoin	Core’s	source	code	can	be	downloaded	as	an	archive	or	by	cloning	the

authoritative	source	repository	from	GitHub.	On	the	Bitcoin	Core	download

page,	select	the	most	recent	version	and	download	the	compressed	archive	of	the

source	code.	Alternatively,	use	the	git	command	line	to	create	a	local	copy	of	the

source	code	from	the	GitHub	bitcoin	page.

TIP

In	many	of	the	examples	in	this	chapter	we	will	be	using	the	operating	system’s	command-line	interface

(also	known	as	a	“shell”),	accessed	via	a	“terminal”	application.	The	shell	will	display	a	prompt;	you	type	a

command;	and	the	shell	responds	with	some	text	and	a	new	prompt	for	your	next	command.	The	prompt

may	look	different	on	your	system,	but	in	the	following	examples	it	is	denoted	by	a	 $ 	symbol.	In	the

examples,	when	you	see	text	after	a	 $ 	symbol,	don’t	type	the	 $ 	symbol	but	type	the	command

https://bitcoincore.org/bin/
https://github.com/bitcoin/bitcoin

immediately	following	it,	then	press	Enter	to	execute	the	command.	In	the	examples,	the	lines	below	each

command	are	the	operating	system’s	responses	to	that	command.	When	you	see	the	next	 $ 	prefix,	you’ll

know	it’s	a	new	command	and	you	should	repeat	the	process.

In	this	example,	we	are	using	the	 git 	command	to	create	a	local	copy

(“clone”)	of	the	source	code:

$	git	clone	https://github.com/bitcoin/bitcoin.git

Cloning	into	'bitcoin'...

remote:	Enumerating	objects:	245912,	done.

remote:	Counting	objects:	100%	(3/3),	done.

remote:	Compressing	objects:	100%	(2/2),	done.

remote:	Total	245912	(delta	1),	reused	2	(delta	1),	pack-reused	245909

Receiving	objects:	100%	(245912/245912),	217.74	MiB	|	13.05	MiB/s,	done.

Resolving	deltas:	100%	(175649/175649),	done.

TIP

Git	is	the	most	widely	used	distributed	version	control	system,	an	essential	part	of	any	software	developer’s

toolkit.	You	may	need	to	install	the	 git 	command,	or	a	graphical	user	interface	for	git,	on	your	operating

system	if	you	do	not	have	it	already.

When	the	git	cloning	operation	has	completed,	you	will	have	a	complete	local

copy	of	the	source	code	repository	in	the	directory	bitcoin.	Change	to	this

directory	using	the	 cd 	command:

$	cd	bitcoin

Selecting	a	Bitcoin	Core	Release

By	default,	the	local	copy	will	be	synchronized	with	the	most	recent	code,	which

might	be	an	unstable	or	beta	version	of	Bitcoin.	Before	compiling	the	code,

select	a	specific	version	by	checking	out	a	release	tag.	This	will	synchronize	the

local	copy	with	a	specific	snapshot	of	the	code	repository	identified	by	a

keyword	tag.	Tags	are	used	by	the	developers	to	mark	specific	releases	of	the

code	by	version	number.	First,	to	find	the	available	tags,	we	use	the	 git	tag

command:

$	git	tag

v0.1.5

v0.1.6test1

v0.10.0

...

v0.11.2

v0.11.2rc1

v0.12.0rc1

v0.12.0rc2

...

The	list	of	tags	shows	all	the	released	versions	of	bitcoin.	By	convention,	release

candidates,	which	are	intended	for	testing,	have	the	suffix	“rc.”	Stable	releases

that	can	be	run	on	production	systems	have	no	suffix.	From	the	preceding	list,

select	the	highest	version	release,	which	at	the	time	of	writing	was	v24.0.1.	To

synchronize	the	local	code	with	this	version,	use	the	 git	checkout

command:

$	git	checkout	v24.0.1

Note:	switching	to	'v24.0.1'.

You	are	in	'detached	HEAD'	state.	You	can	look	around,	make	experimental

changes	and	commit	them,	and	you	can	discard	any	commits	you	make	in	this

state	without	impacting	any	branches	by	switching	back	to	a	branch.

HEAD	is	now	at	b3f866a8d	Merge	bitcoin/bitcoin#26647:	24.0.1	final	changes

You	can	confirm	you	have	the	desired	version	“checked	out”	by	issuing	the

command	 git	status :

HEAD	detached	at	v24.0.1

nothing	to	commit,	working	tree	clean

Configuring	the	Bitcoin	Core	Build

The	source	code	includes	documentation,	which	can	be	found	in	a	number	of

files.	Review	the	main	documentation	located	in	README.md	in	the	bitcoin

directory.	In	this	chapter,	we	will	build	the	Bitcoin	Core	daemon	(server),	also

known	as	 bitcoind 	on	Linux	(a	Unix-like	system).	Review	the	instructions

for	compiling	the	 bitcoind 	command-line	client	on	your	platform	by

reading	 doc/build-unix.md .	Alternative	instructions	can	be	found	in	the

doc	directory;	for	example,	build-windows.md	for	Windows	instructions.	As	of

this	writing,	instructions	are	available	for	Android,	FreeBSD,	NetBSD,

OpenBSD,	MacOS	(OSX),	Unix,	and	Windows.

Carefully	review	the	build	prerequisites,	which	are	in	the	first	part	of	the	build

documentation.	These	are	libraries	that	must	be	present	on	your	system	before

you	can	begin	to	compile	bitcoin.	If	these	prerequisites	are	missing,	the	build

process	will	fail	with	an	error.	If	this	happens	because	you	missed	a	prerequisite,

you	can	install	it	and	then	resume	the	build	process	from	where	you	left	off.

Assuming	the	prerequisites	are	installed,	you	start	the	build	process	by

generating	a	set	of	build	scripts	using	the	autogen.sh	script.

$./autogen.sh

libtoolize:	putting	auxiliary	files	in	AC_CONFIG_AUX_DIR,	'build-aux'.

libtoolize:	copying	file	'build-aux/ltmain.sh'

libtoolize:	putting	macros	in	AC_CONFIG_MACRO_DIRS,	'build-aux/m4'.

	...

configure.ac:58:	installing	'build-aux/missing'

src/Makefile.am:	installing	'build-aux/depcomp'

parallel-tests:	installing	'build-aux/test-driver'

The	autogen.sh	script	creates	a	set	of	automatic	configuration	scripts	that	will

interrogate	your	system	to	discover	the	correct	settings	and	ensure	you	have	all

the	necessary	libraries	to	compile	the	code.	The	most	important	of	these	is	the

configure 	script	that	offers	a	number	of	different	options	to	customize	the

build	process.	Use	the	 --help 	flag	to	see	the	various	options:

$./configure	--help

`configure'	configures	Bitcoin	Core	24.0.1	to	adapt	to	many	kinds	of	systems.

Usage:	./configure	[OPTION]...	[VAR=VALUE]...

...

Optional	Features:

		--disable-option-checking		ignore	unrecognized	--enable/--with	options

		--disable-FEATURE							do	not	include	FEATURE	(same	as	--enable-FEATURE=no)

		--enable-FEATURE[=ARG]		include	FEATURE	[ARG=yes]

		--enable-silent-rules			less	verbose	build	output	(undo:	"make	V=1")

		--disable-silent-rules		verbose	build	output	(undo:	"make	V=0")

...

The	 configure 	script	allows	you	to	enable	or	disable	certain	features	of

bitcoind 	through	the	use	of	the	 --enable-FEATURE 	and	 --

disable-FEATURE 	flags,	where	 FEATURE 	is	replaced	by	the	feature	name,

as	listed	in	the	help	output.	In	this	chapter,	we	will	build	the	 bitcoind 	client

with	all	the	default	features.	We	won’t	be	using	the	configuration	flags,	but	you

should	review	them	to	understand	what	optional	features	are	part	of	the	client.	If

you	are	in	an	academic	setting,	computer	lab	restrictions	may	require	you	to

install	applications	in	your	home	directory	(e.g.,	using	 --prefix=$HOME).

Here	are	some	useful	options	that	override	the	default	behavior	of	the	configure

script:

--prefix=$HOME

This	overrides	the	default	installation	location	(which	is	/usr/local/)	for	the

resulting	executable.	Use	 $HOME 	to	put	everything	in	your	home	directory,

or	a	different	path.

--disable-wallet

This	is	used	to	disable	the	reference	wallet	implementation.

--with-incompatible-bdb

If	you	are	building	a	wallet,	allow	the	use	of	an	incompatible	version	of	the

Berkeley	DB	library.

--with-gui=no

Don’t	build	the	graphical	user	interface,	which	requires	the	Qt	library.	This

builds	server	and	command-line	bitcoin	only.

Next,	run	the	 configure 	script	to	automatically	discover	all	the	necessary

libraries	and	create	a	customized	build	script	for	your	system:

$./configure

checking	for	pkg-config...	/usr/bin/pkg-config

checking	pkg-config	is	at	least	version	0.9.0...	yes

checking	build	system	type...	x86_64-pc-linux-gnu

checking	host	system	type...	x86_64-pc-linux-gnu

checking	for	a	BSD-compatible	install...	/usr/bin/install	-c

...

[many	pages	of	configuration	tests	follow]

...

If	all	went	well,	the	 configure 	command	will	end	by	creating	the

customized	build	scripts	that	will	allow	us	to	compile	 bitcoind .	If	there	are

any	missing	libraries	or	errors,	the	 configure 	command	will	terminate	with

an	error	instead	of	creating	the	build	scripts.	If	an	error	occurs,	it	is	most	likely

because	of	a	missing	or	incompatible	library.	Review	the	build	documentation

again	and	make	sure	you	install	the	missing	prerequisites.	Then	run

configure 	again	and	see	if	that	fixes	the	error.

Building	the	Bitcoin	Core	Executables

Next,	you	will	compile	the	source	code,	a	process	that	can	take	up	to	an	hour	to

complete,	depending	on	the	speed	of	your	CPU	and	available	memory.	During

the	compilation	process	you	should	see	output	every	few	seconds	or	every	few

minutes,	or	an	error	if	something	goes	wrong.	If	an	error	occurs,	or	the

compilation	process	is	interrupted,	it	can	be	resumed	any	time	by	typing	 make

again.	Type	 make 	to	start	compiling	the	executable	application:

$	make

Making	all	in	src

		CXX						bitcoind-bitcoind.o

		CXX						libbitcoin_node_a-addrdb.o

		CXX						libbitcoin_node_a-addrman.o

		CXX						libbitcoin_node_a-banman.o

		CXX						libbitcoin_node_a-blockencodings.o

		CXX						libbitcoin_node_a-blockfilter.o

[...	many	more	compilation	messages	follow	...]

On	a	fast	system	with	more	than	one	CPU,	you	might	want	to	set	the	number	of

parallel	compile	jobs.	For	instance,	 make	-j	2 	will	use	two	cores	if	they	are

available.	If	all	goes	well,	Bitcoin	Core	is	now	compiled.	You	should	run	the	unit

test	suite	with	 make	check 	to	ensure	the	linked	libraries	are	not	broken	in

obvious	ways.	The	final	step	is	to	install	the	various	executables	on	your	system

using	the	 make	install 	command.	You	may	be	prompted	for	your	user

password,	because	this	step	requires	administrative	privileges:

$	make	check	&&	sudo	make	install

Password:

Making	install	in	src

	../build-aux/install-sh	-c	-d	'/usr/local/lib'

libtool:	install:	/usr/bin/install	-c	bitcoind	/usr/local/bin/bitcoind

libtool:	install:	/usr/bin/install	-c	bitcoin-cli	/usr/local/bin/bitcoin-cli

libtool:	install:	/usr/bin/install	-c	bitcoin-tx	/usr/local/bin/bitcoin-tx

...

The	default	installation	of	 bitcoind 	puts	it	in	/usr/local/bin.	You	can	confirm

that	Bitcoin	Core	is	correctly	installed	by	asking	the	system	for	the	path	of	the

executables,	as	follows:

$	which	bitcoind

/usr/local/bin/bitcoind

$	which	bitcoin-cli

/usr/local/bin/bitcoin-cli

Running	a	Bitcoin	Core	Node

Bitcoin’s	peer-to-peer	network	is	composed	of	network	“nodes,”	run	mostly	by

individuals	and	some	of	the	businesses	that	provide	Bitcoin	services.	Those

running	Bitcoin	nodes	have	a	direct	and	authoritative	view	of	the	Bitcoin

blockchain,	with	a	local	copy	of	all	the	spendable	bitcoins	independently

validated	by	their	own	system.	By	running	a	node,	you	don’t	have	to	rely	on	any

third	party	to	validate	a	transaction.	Additionally,	by	using	a	Bitcoin	node	to

fully	validate	the	transactions	you	receive	to	your	wallet,	you	contribute	to	the

Bitcoin	network	and	help	make	it	more	robust.

Running	a	node,	however,	requires	downloading	and	processing	over	500	GB	of

data	initially	and	about	400	MB	of	Bitcoin	transactions	per	day.	These	figures

are	for	2023	and	will	likely	increase	over	time.	If	you	shut	down	your	node	or

get	disconnected	from	the	internet	for	several	days,	your	node	will	need	to

download	the	data	that	it	missed.	For	example,	if	you	close	Bitcoin	Core	for	ten

days,	you	will	need	to	download	approximately	4	GB	the	next	time	you	start	it.

Depending	on	whether	you	choose	to	index	all	transactions	and	keep	a	full	copy

of	the	blockchain,	you	may	also	need	a	lot	of	disk	space---at	least	1	TB	if	you

plan	to	run	Bitcoin	Core	for	several	years.	By	default,	Bitcoin	nodes	also

transmit	transactions	and	blocks	to	other	nodes	(called	“peers”),	consuming

upload	internet	bandwidth.	If	your	internet	connection	is	limited,	has	a	low	data

cap,	or	is	metered	(charged	by	the	gigabit),	you	should	probably	not	run	a

Bitcoin	node	on	it,	or	run	it	in	a	way	that	constrains	its	bandwidth	(see

Example	3-2).	You	may	connect	your	node	instead	to	an	alternative	network,

such	as	a	free	satellite	data	provider	like	Blockstream	Satellite.

TIP

Bitcoin	Core	keeps	a	full	copy	of	the	blockchain	by	default,	with	nearly	every	transaction	that	has	ever	been

confirmed	on	the	Bitcoin	network	since	its	inception	in	2009.	This	dataset	is	hundreds	of	gigabytes	in	size

and	is	downloaded	incrementally	over	several	hours	or	days,	depending	on	the	speed	of	your	CPU	and

internet	connection.	Bitcoin	Core	will	not	be	able	to	process	transactions	or	update	account	balances	until

the	full	blockchain	dataset	is	downloaded.	Make	sure	you	have	enough	disk	space,	bandwidth,	and	time	to

complete	the	initial	synchronization.	You	can	configure	Bitcoin	Core	to	reduce	the	size	of	the	blockchain	by

discarding	old	blocks	(see	Example	3-2),	but	it	will	still	download	the	entire	dataset.

Despite	these	resource	requirements,	thousands	of	people	run	Bitcoin	nodes.

Some	are	running	on	systems	as	simple	as	a	Raspberry	Pi	(a	$35	USD	computer

the	size	of	a	pack	of	cards).

Why	would	you	want	to	run	a	node?	Here	are	some	of	the	most	common

reasons:

You	do	not	want	to	rely	on	any	third	party	to	validate	the	transactions	you

receive.

You	do	not	want	to	disclose	to	third	parties	which	transactions	belong	to	your

wallet.

You	are	developing	Bitcoin	software	and	need	to	rely	on	a	Bitcoin	node	for

programmable	(API)	access	to	the	network	and	blockchain.

https://blockstream.com/satellite/

You	are	building	applications	that	must	validate	transactions	according	to

Bitcoin’s	consensus	rules.	Typically,	Bitcoin	software	companies	run	several

nodes.

You	want	to	support	Bitcoin.	Running	a	node	that	you	use	to	validate	the

transactions	you	receive	to	your	wallet	makes	the	network	more	robust.

If	you’re	reading	this	book	and	interested	in	strong	security,	superior	privacy,	or

developing	Bitcoin	software,	you	should	be	running	your	own	node.

Configuring	the	Bitcoin	Core	Node

Bitcoin	Core	will	look	for	a	configuration	file	in	its	data	directory	on	every	start.

In	this	section	we	will	examine	the	various	configuration	options	and	set	up	a

configuration	file.	To	locate	the	configuration	file,	run	 bitcoind	-

printtoconsole 	in	your	terminal	and	look	for	the	first	couple	of	lines.

$	bitcoind	-printtoconsole

2023-01-28T03:21:42Z	Bitcoin	Core	version	v24.0.1

2023-01-28T03:21:42Z	Using	the	'x86_shani(1way,2way)'	SHA256	implementation

2023-01-28T03:21:42Z	Using	RdSeed	as	an	additional	entropy	source

2023-01-28T03:21:42Z	Using	RdRand	as	an	additional	entropy	source

2023-01-28T03:21:42Z	Default	data	directory	/home/harding/.bitcoin

2023-01-28T03:21:42Z	Using	data	directory	/home/harding/.bitcoin

2023-01-28T03:21:42Z	Config	file:	/home/harding/.bitcoin/bitcoin.conf

...

[a	lot	more	debug	output]

...

You	can	hit	Ctrl-C	to	shut	down	the	node	once	you	determine	the	location	of	the

config	file.	Usually	the	configuration	file	is	inside	the	.bitcoin	data	directory

under	your	user’s	home	directory.	Open	the	configuration	file	in	your	preferred

editor.

Bitcoin	Core	offers	more	than	100	configuration	options	that	modify	the

behavior	of	the	network	node,	the	storage	of	the	blockchain,	and	many	other

aspects	of	its	operation.	To	see	a	listing	of	these	options,	run	 bitcoind	--

help :

$	bitcoind	--help

Bitcoin	Core	version	v24.0.1

Usage:		bitcoind	[options]																					Start	Bitcoin	Core

Options:

		-?

							Print	this	help	message	and	exit

		-alertnotify=<cmd>

							Execute	command	when	an	alert	is	raised	(%s	in	cmd	is	replaced	by

							message)

...

[many	more	options]

Here	are	some	of	the	most	important	options	that	you	can	set	in	the	configuration

file,	or	as	command-line	parameters	to	 bitcoind :

alertnotify

Run	a	specified	command	or	script	to	send	emergency	alerts	to	the	owner	of

this	node.

conf

An	alternative	location	for	the	configuration	file.	This	only	makes	sense	as	a

command-line	parameter	to	 bitcoind ,	as	it	can’t	be	inside	the

configuration	file	it	refers	to.

datadir

Select	the	directory	and	filesystem	in	which	to	put	all	the	blockchain	data.	By

default	this	is	the	.bitcoin	subdirectory	of	your	home	directory.	Make	sure	this

filesystem	has	several	gigabytes	of	free	space.

prune

Reduce	the	disk	space	requirements	to	this	many	megabytes,	by	deleting	old

blocks.	Use	this	on	a	resource-constrained	node	that	can’t	fit	the	full

blockchain.

txindex

Maintain	an	index	of	all	transactions.	This	allows	you	to	programmatically

retrieve	any	transaction	by	its	ID	provided	that	the	block	containing	that

transaction	hasn’t	been	pruned.

dbcache

The	size	of	the	UTXO	cache.	The	default	is	450	MiB.	Increase	this	size	on

high-end	hardware	to	read	and	write	from	your	disk	less	often,	or	reduce	the

size	on	low-end	hardware	to	save	memory	at	the	expense	of	using	your	disk

more	frequently.

blocksonly

Minimize	your	bandwidth	usage	by	only	accepting	blocks	of	confirmed

transactions	from	your	peers	instead	of	relaying	unconfirmed	transactions.

maxmempool

Limit	the	transaction	memory	pool	to	this	many	megabytes.	Use	it	to	reduce

memory	use	on	memory-constrained	nodes.

TRANSACTION	DATABASE	INDEX	AND	TXINDEX	OPTION

By	default,	Bitcoin	Core	builds	a	database	containing	only	the	transactions

related	to	the	user’s	wallet.	If	you	want	to	be	able	to	access	any	transaction	with

commands	like	 getrawtransaction 	(see	“Exploring	and	Decoding

Transactions”),	you	need	to	configure	Bitcoin	Core	to	build	a	complete

transaction	index,	which	can	be	achieved	with	the	 txindex 	option.	Set

txindex=1 	in	the	Bitcoin	Core	configuration	file.	If	you	don’t	set	this	option

at	first	and	later	set	it	to	full	indexing,	you	need	to	wait	for	it	to	rebuild	the

index.

Example	3-1	shows	how	you	might	combine	the	preceding	options,	with	a	fully

indexed	node,	running	as	an	API	backend	for	a	bitcoin	application.

Example	3-1.	Sample	configuration	of	a	full-index	node

alertnotify=myemailscript.sh	"Alert:	%s"

datadir=/lotsofspace/bitcoin

txindex=1

Example	3-2	shows	a	resource-constrained	node	running	on	a	smaller	server.

Example	3-2.	Sample	configuration	of	a	resource-constrained	system

alertnotify=myemailscript.sh	"Alert:	%s"

blocksonly=1

prune=5000

dbcache=150

maxmempool=150

Once	you’ve	edited	the	configuration	file	and	set	the	options	that	best	represent

your	needs,	you	can	test	 bitcoind 	with	this	configuration.	Run	Bitcoin	Core

with	the	option	 printtoconsole 	to	run	in	the	foreground	with	output	to	the

console:

$	bitcoind	-printtoconsole

2023-01-28T03:43:39Z	Bitcoin	Core	version	v24.0.1

2023-01-28T03:43:39Z	Using	the	'x86_shani(1way,2way)'	SHA256	implementation

2023-01-28T03:43:39Z	Using	RdSeed	as	an	additional	entropy	source

2023-01-28T03:43:39Z	Using	RdRand	as	an	additional	entropy	source

2023-01-28T03:43:39Z	Default	data	directory	/home/harding/.bitcoin

2023-01-28T03:43:39Z	Using	data	directory	/lotsofspace/bitcoin

2023-01-28T03:43:39Z	Config	file:	/home/harding/.bitcoin/bitcoin.conf

2023-01-28T03:43:39Z	Config	file	arg:	[main]	blockfilterindex="1"

2023-01-28T03:43:39Z	Config	file	arg:	[main]	maxuploadtarget="1000"

2023-01-28T03:43:39Z	Config	file	arg:	[main]	txindex="1"

2023-01-28T03:43:39Z	Setting	file	arg:	wallet	=	["msig0"]

2023-01-28T03:43:39Z	Command-line	arg:	printtoconsole=""

2023-01-28T03:43:39Z	Using	at	most	125	automatic	connections	(1024	file	descriptors	available)

2023-01-28T03:43:39Z	Using	16	MiB	out	of	16	MiB	requested	for	signature	cache,	able	to	store	524288	elements

2023-01-28T03:43:39Z	Using	16	MiB	out	of	16	MiB	requested	for	script	execution	cache,	able	to	store	524288	elements

2023-01-28T03:43:39Z	Script	verification	uses	3	additional	threads

2023-01-28T03:43:39Z	scheduler	thread	start

2023-01-28T03:43:39Z	[http]	creating	work	queue	of	depth	16

2023-01-28T03:43:39Z	Using	random	cookie	authentication.

2023-01-28T03:43:39Z	Generated	RPC	authentication	cookie	/lotsofspace/bitcoin/.cookie

2023-01-28T03:43:39Z	[http]	starting	4	worker	threads

2023-01-28T03:43:39Z	Using	wallet	directory	/lotsofspace/bitcoin/wallets

2023-01-28T03:43:39Z	init	message:	Verifying	wallet(s)…

2023-01-28T03:43:39Z	Using	BerkeleyDB	version	Berkeley	DB	4.8.30:	(April		9,	2010)

2023-01-28T03:43:39Z	Using	/16	prefix	for	IP	bucketing

2023-01-28T03:43:39Z	init	message:	Loading	P2P	addresses…

2023-01-28T03:43:39Z	Loaded	63866	addresses	from	peers.dat		114ms

[...	more	startup	messages	...]

You	can	hit	Ctrl-C	to	interrupt	the	process	once	you	are	satisfied	that	it	is	loading

the	correct	settings	and	running	as	you	expect.

To	run	Bitcoin	Core	in	the	background	as	a	process,	start	it	with	the	 daemon

option,	as	 bitcoind	-daemon .

To	monitor	the	progress	and	runtime	status	of	your	Bitcoin	node,	start	it	in

daemon	mode	and	then	use	the	command	 bitcoin-cli

getblockchaininfo :

$	bitcoin-cli	getblockchaininfo

{

		"chain":	"main",

		"blocks":	0,

		"headers":	83999,

		"bestblockhash":	"000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f"

		"difficulty":	1,

		"time":	1673379796,

		"mediantime":	1231006505,

		"verificationprogress":	3.783041623201835e-09,

		"initialblockdownload":	true,

		"chainwork":	"000100010001"

		"size_on_disk":	89087,

		"pruned":	false,

		"warnings":	""

}

This	shows	a	node	with	a	blockchain	height	of	0	blocks	and	83999	headers.	The

node	first	fetches	the	block	headers	from	its	peers	in	order	to	find	the	blockchain

with	the	most	proof	of	work	and	afterward	continues	to	download	the	full

blocks,	validating	them	as	it	goes.

Once	you	are	happy	with	the	configuration	options	you	have	selected,	you

should	add	bitcoin	to	the	startup	scripts	in	your	operating	system,	so	that	it	runs

continuously	and	restarts	when	the	operating	system	restarts.	You	will	find	a

number	of	example	startup	scripts	for	various	operating	systems	in	bitcoin’s

source	directory	under	contrib/init	and	a	README.md	file	showing	which

system	uses	which	script.

Bitcoin	Core	Application	Programming
Interface	(API)

Bitcoin	Core	implements	a	JSON-RPC	interface	that	can	also	be	accessed	using

the	command-line	helper	 bitcoin-cli .	The	command	line	allows	us	to

experiment	interactively	with	the	capabilities	that	are	also	available

programmatically	via	the	API.	To	start,	invoke	the	 help 	command	to	see	a	list

of	the	available	Bitcoin	Core	RPC	commands:

$	bitcoin-cli	help

+==	Blockchain	==

getbestblockhash

getblock	"blockhash"	(verbosity)

getblockchaininfo

...

walletpassphrase	"passphrase"	timeout

walletpassphrasechange	"oldpassphrase"	"newpassphrase"

walletprocesspsbt	"psbt"	(sign	"sighashtype"	bip32derivs	finalize)

Each	of	these	commands	may	take	a	number	of	parameters.	To	get	additional

help,	a	detailed	description,	and	information	on	the	parameters,	add	the

command	name	after	 help .	For	example,	to	see	help	on	the

getblockhash 	RPC	command:

$	bitcoin-cli	help	getblockhash

getblockhash	height

Returns	hash	of	block	in	best-block-chain	at	height	provided.

Arguments:

1.	height				(numeric,	required)	The	height	index

Result:

"hex"				(string)	The	block	hash

Examples:

>	bitcoin-cli	getblockhash	1000

>	curl	--user	myusername	--data-binary	'{"jsonrpc":	"1.0",	"id":	"curltest",	"method":	"getblockhash",	"params":	[1000]}'	-H	'content-type:	text/plain;'	http://127.0.0.1:8332/

At	the	end	of	the	help	information	you	will	see	two	examples	of	the	RPC

command,	using	the	 bitcoin-cli 	helper	or	the	HTTP	client	 curl .	These

examples	demonstrate	how	you	might	call	the	command.	Copy	the	first	example

and	see	the	result:

$	bitcoin-cli	getblockhash	1000

00000000c937983704a73af28acdec37b049d214adbda81d7e2a3dd146f6ed09

The	result	is	a	block	hash,	which	is	described	in	more	detail	in	the	following

chapters.	But	for	now,	this	command	should	return	the	same	result	on	your

system,	demonstrating	that	your	Bitcoin	Core	node	is	running,	is	accepting

commands,	and	has	information	about	block	1000	to	return	to	you.

In	the	next	sections	we	will	demonstrate	some	very	useful	RPC	commands	and

their	expected	output.

Getting	Information	on	Bitcoin	Core’s	Status

Bitcoin	Core	provides	status	reports	on	diffent	modules	through	the	JSON-RPC

interface.	The	most	important	commands	include	 getblockchaininfo ,

getmempoolinfo ,	 getnetworkinfo 	and	 getwalletinfo .

Bitcoin’s	 getblockchaininfo 	RPC	command	was	introduced	earlier.	The

getnetworkinfo 	command	displays	basic	information	about	the	status	of

the	Bitcoin	network	node.	Use	 bitcoin-cli 	to	run	it:

$	bitcoin-cli	getnetworkinfo

{

		"version":	240001,

		"subversion":	"/Satoshi:24.0.1/",

		"protocolversion":	70016,

		"localservices":	"0000000000000409",

		"localservicesnames":	[

				"NETWORK",

				"WITNESS",

				"NETWORK_LIMITED"

],

		"localrelay":	true,

		"timeoffset":	-1,

		"networkactive":	true,

		"connections":	10,

		"connections_in":	0,

		"connections_out":	10,

		"networks":	[

				...

				detailed	information	about	all	networks	(ipv4,	ipv

				...

],

		"relayfee":	0.00001000,

		"incrementalfee":	0.00001000,

		"localaddresses":	[

],

		"warnings":	""

}

The	data	is	returned	in	JavaScript	Object	Notation	(JSON),	a	format	that	can

easily	be	“consumed”	by	all	programming	languages	but	is	also	quite	human-

readable.	Among	this	data	we	see	the	version	numbers	for	the	Bitcoin	Core

software	and	Bitcoin	protocol.	We	see	the	current	number	of	connections	and

various	information	about	the	Bitcoin	network	and	the	settings	related	to	this

node.

TIP

It	will	take	some	time,	perhaps	more	than	a	day,	for	 bitcoind 	to	catch	up	to	the	current	blockchain

height	as	it	downloads	blocks	from	other	Bitcoin	nodes.	You	can	check	its	progress	using

getblockchaininfo 	to	see	the	number	of	known	blocks.

Exploring	and	Decoding	Transactions

In	“Buying	from	an	Online	Store”,	Alice	made	a	purchase	from	Bob’s	store.	Her

transaction	was	recorded	on	the	blockchain.	Let’s	use	the	API	to	retrieve	and

examine	that	transaction	by	passing	the	txid	as	a	parameter:

$	bitcoin-cli	getrawtransaction	466200308696215bbc949d5141a49a41\

38ecdfdfaa2a8029c1f9bcecd1f96177

01000000000101eb3ae38f27191aa5f3850dc9cad00492b88b72404f9da13569

8679268041c54a0100000000ffffffff02204e0000000000002251203b41daba

4c9ace578369740f15e5ec880c28279ee7f51b07dca69c7061e07068f8240100

000000001600147752c165ea7be772b2c0acb7f4d6047ae6f4768e0141cf5efe

2d8ef13ed0af21d4f4cb82422d6252d70324f6f4576b727b7d918e521c00b51b

e739df2f899c49dc267c0ad280aca6dab0d2fa2b42a45182fc83e81713010000

0000

TIP

A	transaction	ID	(txid)	is	not	authoritative.	Absence	of	a	txid	in	the	blockchain	does	not	mean	the

transaction	was	not	processed.	This	is	known	as	“transaction	malleability,”	because	transactions	can	be

modified	prior	to	confirmation	in	a	block,	changing	their	txids.	After	a	transaction	is	included	in	a	block,	its

txid	cannot	change	unless	there	is	a	blockchain	reorganization	where	that	block	is	removed	from	the	best

blockchain.	Reorganizations	are	rare	after	a	transaction	has	several	confirmations.

The	command	 getrawtransaction 	returns	a	serialized	transaction	in

hexadecimal	notation.	To	decode	that,	we	use	the	 decoderawtransaction

command,	passing	the	hex	data	as	a	parameter.	You	can	copy	the	hex	returned	by

getrawtransaction 	and	paste	it	as	a	parameter	to

decoderawtransaction :

$	bitcoin-cli	decoderawtransaction	01000000000101eb3ae38f27191aa5f3850dc9cad0↵

0492b88b72404f9da135698679268041c54a0100000000ffffffff02204e00000000000022512↵

03b41daba4c9ace578369740f15e5ec880c28279ee7f51b07dca69c7061e07068f82401000000↵

00001600147752c165ea7be772b2c0acb7f4d6047ae6f4768e0141cf5efe2d8ef13ed0af21d4f↵

4cb82422d6252d70324f6f4576b727b7d918e521c00b51be739df2f899c49dc267c0ad280aca6↵

dab0d2fa2b42a45182fc83e817130100000000

{

		"txid":	"466200308696215bbc949d5141a49a4138ecdfdfaa2a8029c1f9bcecd1f96177"

		"hash":	"f7cdbc7cf8b910d35cc69962e791138624e4eae7901010a6da4c02e7d238cdac"

		"version":	1,

		"size":	194,

		"vsize":	143,

		"weight":	569,

		"locktime":	0,

		"vin":	[

				{

						"txid":	"4ac541802679866935a19d4f40728bb89204d0cac90d85f3a51a19...aeb"

						"vout":	1,

						"scriptSig":	{

								"asm":	"",

								"hex":	""

						},

						"txinwitness":	[

								"cf5efe2d8ef13ed0af21d4f4cb82422d6252d70324f6f4576b727b7d918e5...301"

],

						"sequence":	4294967295

				}

],

		"vout":	[

				{

						"value":	0.00020000,

						"n":	0,

						"scriptPubKey":	{

								"asm":	"1	3b41daba4c9ace578369740f15e5ec880c28279ee7f51b07dca...068"

								"desc":	"rawtr(3b41daba4c9ace578369740f15e5ec880c28279ee7f51b...6ev"

								"hex":	"51203b41daba4c9ace578369740f15e5ec880c28279ee7f51b07d...068"

								"address":	"bc1p8dqa4wjvnt890qmfws83te0v3qxzsfu7ul63kp7u56w8q...5qn"

								"type":	"witness_v1_taproot"

						}

				},

				{

						"value":	0.00075000,

						"n":	1,

						"scriptPubKey":	{

								"asm":	"0	7752c165ea7be772b2c0acb7f4d6047ae6f4768e"

								"desc":	"addr(bc1qwafvze0200nh9vkq4jmlf4sy0tn0ga5w0zpkpg)#qq404gts"

								"hex":	"00147752c165ea7be772b2c0acb7f4d6047ae6f4768e"

								"address":	"bc1qwafvze0200nh9vkq4jmlf4sy0tn0ga5w0zpkpg"

								"type":	"witness_v0_keyhash"

						}

				}

]

}

The	transaction	decode	shows	all	the	components	of	this	transaction,	including

the	transaction	inputs	and	outputs.	In	this	case	we	see	that	the	transaction	used

one	input	and	generated	two	outputs.	The	input	to	this	transaction	was	the	output

from	a	previously	confirmed	transaction	(shown	as	the	vin	 txid).	The	two

outputs	correspond	to	the	payment	to	Bob	and	the	change	back	to	Alice.

We	can	further	explore	the	blockchain	by	examining	the	previous	transaction

referenced	by	its	 txid 	in	this	transaction	using	the	same	commands	(e.g.,

getrawtransaction).	Jumping	from	transaction	to	transaction	we	can

follow	a	chain	of	transactions	back	as	the	coins	are	transmitted	from	one	owner

to	the	next.

Exploring	Blocks

Exploring	blocks	is	similar	to	exploring	transactions.	However,	blocks	can	be

referenced	either	by	the	block	height	or	by	the	block	hash.	First,	let’s	find	a

block	by	its	height.	We	use	the	 getblockhash 	command,	which	takes	the

block	height	as	the	parameter	and	returns	the	block	header	hash	for	that	block:

$	bitcoin-cli	getblockhash	123456

0000000000002917ed80650c6174aac8dfc46f5fe36480aaef682ff6cd83c3ca

Now	that	we	know	the	header	hash	for	our	chosen	block,	we	can	query	that

block.	We	use	the	 getblock 	command	with	the	block	hash	as	the	parameter:

$	bitcoin-cli	getblock	0000000000002917ed80650c6174aac8dfc46f5fe36480aaef682f↵

f6cd83c3ca

{

		"hash":	"0000000000002917ed80650c6174aac8dfc46f5fe36480aaef682ff6cd83c3ca"

		"confirmations":	651742,

		"height":	123456,

		"version":	1,

		"versionHex":	"00000001",

		"merkleroot":	"0e60651a9934e8f0decd1c5fde39309e48fca0cd1c84a21ddfde95033762d86c"

		"time":	1305200806,

		"mediantime":	1305197900,

		"nonce":	2436437219,

		"bits":	"1a6a93b3",

		"difficulty":	157416.4018436489,

		"chainwork":	"00541788211ac227bc"

		"nTx":	13,

		"previousblockhash":	"0000000000000b60bc96a44724fd72daf9b92cf8ad00510b5224c6253ac40095"

		"nextblockhash":	"000000000000129f5f02be247070bf7334d3753e4ddee502780c2acaecec6d66"

		"strippedsize":	4179,

		"size":	4179,

		"weight":	16716,

		"tx":	[

				"5b75086dafeede555fc8f9a810d8b10df57c46f9f176ccc3dd8d2fa20edd685b"

				"e3d0425ab346dd5b76f44c222a4bb5d16640a4247050ef82462ab17e229c83b4"

				"137d247eca8b99dee58e1e9232014183a5c5a9e338001a0109df32794cdcc92e"

				"5fd167f7b8c417e59106ef5acfe181b09d71b8353a61a55a2f01aa266af5412d"

				"60925f1948b71f429d514ead7ae7391e0edf965bf5a60331398dae24c6964774"

				"d4d5fc1529487527e9873256934dfb1e4cdcb39f4c0509577ca19bfad6c5d28f"

				"7b29d65e5018c56a33652085dbb13f2df39a1a9942bfe1f7e78e97919a6bdea2"

				"0b89e120efd0a4674c127a76ff5f7590ca304e6a064fbc51adffbd7ce3a3deef"

				"603f2044da9656084174cfb5812feaf510f862d3addcf70cacce3dc55dab446e"

				"9a4ed892b43a4df916a7a1213b78e83cd83f5695f635d535c94b2b65ffb144d3"

				"dda726e3dad9504dce5098dfab5064ecd4a7650bfe854bb2606da3152b60e427"

				"e46ea8b4d68719b65ead930f07f1f3804cb3701014f8e6d76c4bdbc390893b94"

				"864a102aeedf53dd9b2baab4eeb898c5083fde6141113e0606b664c41fe15e1f"

]

}

The	 confirmations 	entry	tells	us	the	depth	of	this	block—how	many

blocks	have	been	built	on	top	of	it,	indicating	the	difficulty	of	changing	any	of

the	transactions	in	this	block.	The	 height 	tells	us	how	many	blocks	preceeded

this	block.	We	see	the	block’s	version,	the	time	it	was	created	(according	to	its

miner),	the	median	time	of	the	11	blocks	that	preceed	this	block	(a	time

measurement	that’s	harder	for	miners	to	manipulate),	and	the	size	of	the	block	in

three	different	measurements	(its	legacy	stripped	size,	it’s	full	size,	and	its	size	in

weight	units).	We	also	see	some	fields	used	for	security	and	proof-of-work

(merkle	root,	nonce,	bits,	difficulty,	and	chainwork);	we’ll	examine	those	in

detail	in	XREF	HERE.

Using	Bitcoin	Core’s	Programmatic	Interface

The	 bitcoin-cli 	helper	is	very	useful	for	exploring	the	Bitcoin	Core	API

and	testing	functions.	But	the	whole	point	of	an	application	programming

interface	is	to	access	functions	programmatically.	In	this	section	we	will

demonstrate	accessing	Bitcoin	Core	from	another	program.

Bitcoin	Core’s	API	is	a	JSON-RPC	interface.	JSON	stands	for	JavaScript	Object

Notation	and	it	is	a	very	convenient	way	to	present	data	that	both	humans	and

programs	can	easily	read.	RPC	stands	for	Remote	Procedure	Call,	which	means

that	we	are	calling	procedures	(functions)	that	are	remote	(on	the	Bitcoin	Core

node)	via	a	network	protocol.	In	this	case,	the	network	protocol	is	HTTP.

When	we	used	the	 bitcoin-cli 	command	to	get	help	on	a	command,	it

showed	us	an	example	of	using	 curl ,	the	versatile	command-line	HTTP	client

to	construct	one	of	these	JSON-RPC	calls:

$	curl	--user	myusername	--data-binary	'{"jsonrpc":	"1.0",	"id":"curltest",	"method":	"getblockchaininfo",	"params":	[]	}'	-H	'content-type:	text/plain;'	http://127.0.0.1:8332/

This	command	shows	that	 curl 	submits	an	HTTP	request	to	the	local	host

(127.0.0.1),	connecting	to	the	default	Bitcoin	RPC	port	(8332),	and	submitting	a

jsonrpc 	request	for	the	 getblockchaininfo 	method	using

text/plain 	encoding.

You	might	notice	that	curl	will	ask	for	credentials	to	be	sent	along	with	the

request.	Bitcoin	Core	will	create	a	random	password	on	each	start	and	place	it	in

the	data	directory	under	the	name	 .cookie .	The	 bitcoin-cli 	helper	can

read	this	password	file	given	the	data	directory.	Similarly,	you	can	copy	the

password	and	pass	it	to	curl	(or	any	higher	level	Bitcoin	Core	RPC	wrappers).

Alternatively,	you	can	create	a	static	password	with	the	helper	script	provided	in

./share/rpcuser/rpcuser.py	in	Bitcoin	Core’s	source	directory.

If	you’re	implementing	a	JSON-RPC	call	in	your	own	program,	you	can	use	a

generic	HTTP	library	to	construct	the	call,	similar	to	what	is	shown	in	the

preceding	 curl 	example.

However,	there	are	libraries	in	most	popular	programming	languages	that	“wrap”

the	Bitcoin	Core	API	in	a	way	that	makes	this	a	lot	simpler.	We	will	use	the

python-bitcoinlib 	library	to	simplify	API	access.	Remember,	this

requires	you	to	have	a	running	Bitcoin	Core	instance,	which	will	be	used	to

make	JSON-RPC	calls.

The	Python	script	in	Example	3-3	makes	a	simple	 getblockchaininfo

call	and	prints	the	 block 	parameter	from	the	data	returned	by	Bitcoin	Core.

Example	3-3.	Running	getblockchaininfo	via	Bitcoin	Core’s	JSON-RPC	API

from	bitcoin.rpc	import	RawProxy

#	Create	a	connection	to	local	Bitcoin	Core	node

p	=	RawProxy()

#	Run	the	getblockchaininfo	command,	store	the	resulting	data	in	info

info	=	p.getblockchaininfo()

#	Retrieve	the	'blocks'	element	from	the	info

print(info['blocks'])

Running	it	gives	us	the	following	result:

$	python	rpc_example.py

773973

It	tells	us	how	many	blocks	our	local	Bitcoin	Core	node	has	in	its	blockchain.

Not	a	spectacular	result,	but	it	demonstrates	the	basic	use	of	the	library	as	a

simplified	interface	to	Bitcoin	Core’s	JSON-RPC	API.

Next,	let’s	use	the	 getrawtransaction 	and	 decodetransaction

calls	to	retrieve	the	details	of	Alice’s	payment	to	Bob.	In	Example	3-4,	we

retrieve	Alice’s	transaction	and	list	the	transaction’s	outputs.	For	each	output,	we

show	the	recipient	address	and	value.	As	a	reminder,	Alice’s	transaction	had	one

output	paying	Bob	and	one	output	for	change	back	to	Alice.

Example	3-4.	Retrieving	a	transaction	and	iterating	its	outputs

from	bitcoin.rpc	import	RawProxy

p	=	RawProxy()

#	Alice's	transaction	ID

txid	=	"466200308696215bbc949d5141a49a4138ecdfdfaa2a8029c1f9bcecd1f96177"

#	First,	retrieve	the	raw	transaction	in	hex

raw_tx	=	p.getrawtransaction(txid)

#	Decode	the	transaction	hex	into	a	JSON	object

decoded_tx	=	p.decoderawtransaction(raw_tx)

#	Retrieve	each	of	the	outputs	from	the	transaction

for	output	in	decoded_tx['vout']:

				print(output['scriptPubKey']['address'],	output[

Running	this	code,	we	get:

$	python	rpc_transaction.py

bc1p8dqa4wjvnt890qmfws83te0v3qxzsfu7ul63kp7u56w8qc0qwp5qv995qn	0.00020000

bc1qwafvze0200nh9vkq4jmlf4sy0tn0ga5w0zpkpg	0.00075000

Both	of	the	preceding	examples	are	rather	simple.	You	don’t	really	need	a

program	to	run	them;	you	could	just	as	easily	use	the	 bitcoin-cli 	helper.

The	next	example,	however,	requires	several	hundred	RPC	calls	and	more

clearly	demonstrates	the	use	of	a	programmatic	interface.

In	Example	3-5,	we	first	retrieve	block	277316,	then	retrieve	each	of	the	419

transactions	within	by	reference	to	each	transaction	ID.	Next,	we	iterate	through

each	of	the	transaction’s	outputs	and	add	up	the	value.

Example	3-5.	Retrieving	a	block	and	adding	all	the	transaction	outputs

from	bitcoin.rpc	import	RawProxy

p	=	RawProxy()

#	The	block	height	where	Alice's	transaction	was	recorded

blockheight	=	277316

#	Get	the	block	hash	of	block	with	height	277316

blockhash	=	p.getblockhash(blockheight)

#	Retrieve	the	block	by	its	hash

block	=	p.getblock(blockhash)

#	Element	tx	contains	the	list	of	all	transaction	IDs	in	the	block

transactions	=	block['tx']

block_value	=	0

#	Iterate	through	each	transaction	ID	in	the	block

for	txid	in	transactions:

				tx_value	=	0

				#	Retrieve	the	raw	transaction	by	ID

				raw_tx	=	p.getrawtransaction(txid)

				#	Decode	the	transaction

				decoded_tx	=	p.decoderawtransaction(raw_tx)

				#	Iterate	through	each	output	in	the	transaction

				for	output	in	decoded_tx['vout']:

								#	Add	up	the	value	of	each	output

								tx_value	=	tx_value	+	output['value']

				#	Add	the	value	of	this	transaction	to	the	total

				block_value	=	block_value	+	tx_value

print("Total	value	in	block:	",	block_value)

Running	this	code,	we	get:

$	python	rpc_block.py

Total	value	in	block:		10322.07722534

Our	example	code	calculates	that	the	total	value	transacted	in	this	block	is

10,322.07722534	BTC	(including	25	BTC	reward	and	0.0909	BTC	in	fees).

Compare	that	to	the	amount	reported	by	a	block	explorer	site	by	searching	for

the	block	hash	or	height.	Some	block	explorers	report	the	total	value	excluding

the	reward	and	excluding	the	fees.	See	if	you	can	spot	the	difference.

Alternative	Clients,	Libraries,	and	Toolkits

There	are	many	alternative	clients,	libraries,	toolkits,	and	even	full-node

implementations	in	the	bitcoin	ecosystem.	These	are	implemented	in	a	variety	of

programming	languages,	offering	programmers	native	interfaces	in	their

preferred	language.

The	following	sections	list	some	of	the	best	libraries,	clients,	and	toolkits,

organized	by	programming	languages.

C/C++

Bitcoin	Core

The	reference	implementation	of	bitcoin

libbitcoin

Cross-platform	C++	development	toolkit,	node,	and	consensus	library

bitcoin	explorer

Libbitcoin’s	command-line	tool

JavaScript

bcoin

A	modular	and	scalable	full-node	implementation	with	API

Bitcore

https://github.com/bitcoin/bitcoin
https://github.com/libbitcoin/libbitcoin
https://github.com/libbitcoin/libbitcoin-explorer
http://bcoin.io/
https://bitcore.io/

Full	node,	API,	and	library	by	Bitpay

BitcoinJS

A	pure	JavaScript	Bitcoin	library	for	node.js	and	browsers

Java

bitcoinj

A	Java	full-node	client	library

Python

python-bitcoinlib

A	Python	bitcoin	library,	consensus	library,	and	node	by	Peter	Todd

pycoin

A	Python	bitcoin	library	by	Richard	Kiss

Go

btcd

A	Go	language	full-node	Bitcoin	client

Rust

rust-bitcoin

Rust	bitcoin	library	for	serialization,	parsing,	and	API	calls

https://github.com/bitcoinjs/bitcoinjs-lib
https://bitcoinj.github.io
https://github.com/petertodd/python-bitcoinlib
https://github.com/richardkiss/pycoin
https://github.com/btcsuite/btcd
https://github.com/rust-bitcoin/rust-bitcoin

C#

NBitcoin

Comprehensive	bitcoin	library	for	the	.NET	framework

Many	more	libraries	exist	in	a	variety	of	other	programming	languages	and	more

are	created	all	the	time.

If	you	followed	the	instructions	in	this	chapter,	you	now	have	Bitcoin	Core

running	and	have	begun	exploring	the	network	and	blockchain	using	your	own

full	node.	From	now	on	you	can	independently	use	software	you	control,	on	a

computer	you	control,	to	verify	any	bitcoins	you	receive	follow	every	rule	in	the

Bitcoin	system	without	having	to	trust	any	outside	authority.	In	the	coming

chapters,	we’ll	learn	more	about	the	rules	of	the	system	and	how	your	node	and

your	wallet	use	them	to	secure	your	money,	protect	your	privacy,	and	make

spending	and	receiving	convenient.

https://github.com/MetacoSA/NBitcoin

Chapter	4.	Keys	and	Addresses

A	NOTE	FOR	EARLY	RELEASE	READERS

With	Early	Release	ebooks,	you	get	books	in	their	earliest	form—the	author’s

raw	and	unedited	content	as	they	write—so	you	can	take	advantage	of	these

technologies	long	before	the	official	release	of	these	titles.

This	will	be	the	4th	chapter	of	the	final	book.

If	you	have	comments	about	how	we	might	improve	the	content	and/or	examples

in	this	book,	or	if	you	notice	missing	material	within	this	chapter,	please	reach

out	to	the	editor	at	arufino@oreilly.com.

Alice	wants	to	pay	Bob,	but	the	the	thousands	of	Bitcoin	full	nodes	who	will

verify	her	transaction	don’t	know	who	Alice	or	Bob	are—and	we	want	to	keep	it

that	way	to	protect	their	privacy.	Alice	needs	to	communicate	that	Bob	should

receive	some	of	her	bitcoins	without	tying	any	aspect	of	that	transaction	to	Bob’s

real-world	identity	or	to	other	Bitcoin	payments	that	Bob	receives.	The	method

Alice	uses	must	ensure	that	only	Bob	can	further	spend	the	bitcoins	he	receives.

The	original	Bitcoin	paper	describes	a	very	simple	scheme	for	achieving	those

goals,	shown	in	Figure	4-1.	A	receiver	like	Bob	accepts	bitcoins	to	a	public	key

in	a	transaction	which	is	signed	by	the	spender	(like	Alice).	The	bitcoins	which

Alice	is	spending	had	been	previously	received	to	one	her	public	keys,	and	she

uses	the	corresponding	private	key	to	generate	her	signature.	Full	nodes	can

verify	that	Alice’s	signature	commits	to	the	output	of	a	hash	function	that	itself

commits	to	Bob’s	public	key	and	other	transaction	details.

Figure	4-1.	Transaction	chain	from	original	Bitcoin	paper

We’ll	examine	public	keys,	private	keys,	signatures,	and	hash	functions	in	this

chapter,	and	then	use	all	of	them	together	to	describe	the	addresses	used	by

modern	Bitcoin	software.

Public	Key	Cryptography

Public	key	cryptography	was	invented	in	the	1970s	and	is	a	mathematical

foundation	for	modern	computer	and	information	security.

Since	the	invention	of	public	key	cryptography,	several	suitable	mathematical

functions,	such	as	prime	number	exponentiation	and	elliptic	curve

multiplication,	have	been	discovered.	These	mathematical	functions	are	easy	to

calculate	in	one	direction	and	infeasible	to	calculate	in	the	opposite	direction

using	the	computers	and	algorithms	available	today.	Based	on	these

mathematical	functions,	cryptography	enables	the	creation	of	unforgeable	digital

signatures.	Bitcoin	uses	elliptic	curve	addition	and	multiplication	as	the	basis	for

its	cryptography.

In	Bitcoin,	we	can	use	public	key	cryptography	to	create	a	key	pair	that	controls

access	to	bitcoin.	The	key	pair	consists	of	a	private	key	and	a	public	key	derived

from	the	private	key.	The	public	key	is	used	to	receive	funds,	and	the	private	key

is	used	to	sign	transactions	to	spend	the	funds.

There	is	a	mathematical	relationship	between	the	public	and	the	private	key	that

allows	the	private	key	to	be	used	to	generate	signatures	on	messages.	These

signatures	can	be	validated	against	the	public	key	without	revealing	the	private

key.

TIP

In	some	wallet	implementations,	the	private	and	public	keys	are	stored	together	as	a	key	pair	for

convenience.	However,	the	public	key	can	be	calculated	from	the	private	key,	so	storing	only	the	private

key	is	also	possible.

A	Bitcoin	wallet	contains	a	collection	of	key	pairs,	each	consisting	of	a	private

key	and	a	public	key.	The	private	key	(k)	is	a	number,	usually	derived	from	a

number	picked	at	random.	From	the	private	key,	we	use	elliptic	curve

multiplication,	a	one-way	cryptographic	function,	to	generate	a	public	key	(K).

WHY	USE	ASYMMETRIC	CRYPTOGRAPHY	(PUBLIC/PRIVATE	KEYS)?

Why	is	asymmetric	cryptography	used	in	bitcoin?	It’s	not	used	to	“encrypt”

(make	secret)	the	transactions.	Rather,	the	useful	property	of	asymmetric

cryptography	is	the	ability	to	generate	digital	signatures.	A	private	key	can	be

applied	to	the	digital	fingerprint	of	a	transaction	to	produce	a	numerical

signature.	This	signature	can	only	be	produced	by	someone	with	knowledge	of

the	private	key.	However,	anyone	with	access	to	the	public	key	and	the

transaction	fingerprint	can	use	them	to	verify	the	signature.	This	useful	property

of	asymmetric	cryptography	makes	it	possible	for	anyone	to	verify	every

signature	on	every	transaction,	while	ensuring	that	only	the	owners	of	private

keys	can	produce	valid	signatures.

Private	Keys

A	private	key	is	simply	a	number,	picked	at	random.	Control	over	the	private	key

is	the	root	of	user	control	over	all	funds	associated	with	the	corresponding

Bitcoin	public	key.	The	private	key	is	used	to	create	signatures	that	are	used	to

spend	bitcoin	by	proving	control	of	funds	used	in	a	transaction.	The	private	key

must	remain	secret	at	all	times,	because	revealing	it	to	third	parties	is	equivalent

to	giving	them	control	over	the	bitcoin	secured	by	that	key.	The	private	key	must

also	be	backed	up	and	protected	from	accidental	loss,	because	if	it’s	lost	it

cannot	be	recovered	and	the	funds	secured	by	it	are	forever	lost,	too.

TIP

A	bitcoin	private	key	is	just	a	number.	You	can	pick	your	private	keys	randomly	using	just	a	coin,	pencil,

and	paper:	toss	a	coin	256	times	and	you	have	the	binary	digits	of	a	random	private	key	you	can	use	in	a

Bitcoin	wallet.	The	public	key	can	then	be	generated	from	the	private	key.	Be	careful,	though,	as	any

process	that’s	less	than	completely	random	can	significantly	reduce	the	security	of	your	private	key	and	the

bitcoins	it	controls.

The	first	and	most	important	step	in	generating	keys	is	to	find	a	secure	source	of

randomness	(which	computer	scientists	call	entropy).	Creating	a	Bitcoin	key	is

almost	the	same	as	“Pick	a	number	between	1	and	2 .”	The	exact	method	you

use	to	pick	that	number	does	not	matter	as	long	as	it	is	not	predictable	or

repeatable.	Bitcoin	software	uses	cryptographically-secure	random	number

generators	to	produce	256	bits	of	entropy.

More	precisely,	the	private	key	can	be	any	number	between	 0 	and	 n	-	1

inclusive,	where	n	is	a	constant	(n	=	1.1578	*	10 ,	slightly	less	than	2)

defined	as	the	order	of	the	elliptic	curve	used	in	bitcoin	(see	“Elliptic	Curve

Cryptography	Explained”).	To	create	such	a	key,	we	randomly	pick	a	256-bit

number	and	check	that	it	is	less	than	 n .	In	programming	terms,	this	is	usually

achieved	by	feeding	a	larger	string	of	random	bits,	collected	from	a

cryptographically	secure	source	of	randomness,	into	the	SHA256	hash

algorithm,	which	will	conveniently	produce	a	256-bit	value	that	can	be

interpreted	as	a	number.	If	the	result	is	less	than	 n ,	we	have	a	suitable	private

key.	Otherwise,	we	simply	try	again	with	another	random	number.

WARNING

256

77 256

Do	not	write	your	own	code	to	create	a	random	number	or	use	a	“simple”	random	number	generator	offered

by	your	programming	language.	Use	a	cryptographically	secure	pseudorandom	number	generator

(CSPRNG)	with	a	seed	from	a	source	of	sufficient	entropy.	Study	the	documentation	of	the	random	number

generator	library	you	choose	to	make	sure	it	is	cryptographically	secure.	Correct	implementation	of	the

CSPRNG	is	critical	to	the	security	of	the	keys.

The	following	is	a	randomly	generated	private	key	(k)	shown	in	hexadecimal

format	(256	bits	shown	as	64	hexadecimal	digits,	each	4	bits):

1E99423A4ED27608A15A2616A2B0E9E52CED330AC530EDCC32C8FFC6A526AEDD

TIP

The	size	of	bitcoin’s	private	key	space,	(2)	is	an	unfathomably	large	number.	It	is	approximately	10 	in

decimal.	For	comparison,	the	visible	universe	is	estimated	to	contain	10 	atoms.

Elliptic	Curve	Cryptography	Explained

Elliptic	curve	cryptography	is	a	type	of	asymmetric	or	public	key	cryptography

based	on	the	discrete	logarithm	problem	as	expressed	by	addition	and

multiplication	on	the	points	of	an	elliptic	curve.

Figure	4-2	is	an	example	of	an	elliptic	curve,	similar	to	that	used	by	bitcoin.

256 77

80

Figure	4-2.	An	elliptic	curve

Bitcoin	uses	a	specific	elliptic	curve	and	set	of	mathematical	constants,	as

defined	in	a	standard	called	 secp256k1 ,	established	by	the	National	Institute

of	Standards	and	Technology	(NIST).	The	 secp256k1 	curve	is	defined	by	the

following	function,	which	produces	an	elliptic	curve:

or

The	mod	p	(modulo	prime	number	p)	indicates	that	this	curve	is	over	a	finite

field	of	prime	order	p,	also	written	as	 ,	where	p	=	2 	–	2 	–	2 	–	2 	–	2 	–	2

–	2 	–	1,	a	very	large	prime	number.

Because	this	curve	is	defined	over	a	finite	field	of	prime	order	instead	of	over

the	real	numbers,	it	looks	like	a	pattern	of	dots	scattered	in	two	dimensions,

which	makes	it	difficult	to	visualize.	However,	the	math	is	identical	to	that	of	an

elliptic	curve	over	real	numbers.	As	an	example,	Figure	4-3	shows	the	same

elliptic	curve	over	a	much	smaller	finite	field	of	prime	order	17,	showing	a

pattern	of	dots	on	a	grid.	The	 secp256k1 	bitcoin	elliptic	curve	can	be	thought

of	as	a	much	more	complex	pattern	of	dots	on	a	unfathomably	large	grid.

256 32 9 8 7 6

4

Figure	4-3.	Elliptic	curve	cryptography:	visualizing	an	elliptic	curve	over	F(p),	with	p=17

So,	for	example,	the	following	is	a	point	P	with	coordinates	(x,y)	that	is	a	point

on	the	 secp256k1 	curve:

P	=	(55066263022277343669578718895168534326250603453777594175500187360389116729240,	32670510020758816978083085130507043184471273380659243275938904335757337482424)

Example	4-1	shows	how	you	can	check	this	yourself	using	Python:

Example	4-1.	Using	Python	to	confirm	that	this	point	is	on	the	elliptic	curve

Python	3.10.6	(main,	Nov	14	2022,	16:10:14)	[GCC	11.3.0]	on	linux

Type	"help",	"copyright",	"credits"	or	"license"	for	more	information.

>>>	p	=	115792089237316195423570985008687907853269984665640564039457584007908834671663

>>>	x	=	55066263022277343669578718895168534326250603453777594175500187360389116729240

>>>	y	=	32670510020758816978083085130507043184471273380659243275938904335757337482424

>>>	(x	**	3	+	7	-	y**2)	%	p

0

In	elliptic	curve	math,	there	is	a	point	called	the	“point	at	infinity,”	which

roughly	corresponds	to	the	role	of	zero	in	addition.	On	computers,	it’s	sometimes

represented	by	x	=	y	=	0	(which	doesn’t	satisfy	the	elliptic	curve	equation,	but

it’s	an	easy	separate	case	that	can	be	checked).

There	is	also	a	+	operator,	called	“addition,”	which	has	some	properties	similar

to	the	traditional	addition	of	real	numbers	that	gradeschool	children	learn.	Given

two	points	P 	and	P 	on	the	elliptic	curve,	there	is	a	third	point	P 	=	P 	+	P ,	also

on	the	elliptic	curve.

Geometrically,	this	third	point	P 	is	calculated	by	drawing	a	line	between	P 	and

P .	This	line	will	intersect	the	elliptic	curve	in	exactly	one	additional	place.	Call

this	point	P '	=	(x,	y).	Then	reflect	in	the	x-axis	to	get	P 	=	(x,	–y).

There	are	a	couple	of	special	cases	that	explain	the	need	for	the	“point	at

infinity.”

If	P 	and	P 	are	the	same	point,	the	line	“between”	P 	and	P 	should	extend	to	be

1 2 3 1 2

3 1

2

3 3

1 2 1 2

the	tangent	on	the	curve	at	this	point	P .	This	tangent	will	intersect	the	curve	in

exactly	one	new	point.	You	can	use	techniques	from	calculus	to	determine	the

slope	of	the	tangent	line.	These	techniques	curiously	work,	even	though	we	are

restricting	our	interest	to	points	on	the	curve	with	two	integer	coordinates!

In	some	cases	(i.e.,	if	P 	and	P 	have	the	same	x	values	but	different	y	values),

the	tangent	line	will	be	exactly	vertical,	in	which	case	P3	=	“point	at	infinity.”

If	P 	is	the	“point	at	infinity,”	then	P 	+	P 	=	P .	Similarly,	if	P 	is	the	point	at

infinity,	then	P 	+	P 	=	P .	This	shows	how	the	point	at	infinity	plays	the	role	of

zero.

It	turns	out	that	+	is	associative,	which	means	that	(A	+	B)	+	C	=	A	+	(B	+	C).

That	means	we	can	write	A	+	B	+	C	without	parentheses	and	without	ambiguity.

Now	that	we	have	defined	addition,	we	can	define	multiplication	in	the	standard

way	that	extends	addition.	For	a	point	P	on	the	elliptic	curve,	if	k	is	a	whole

number,	then	kP	=	P	+	P	+	P	+	…	+	P	(k	times).	Note	that	k	is	sometimes

confusingly	called	an	“exponent”	in	this	case.

Public	Keys

The	public	key	is	calculated	from	the	private	key	using	elliptic	curve

multiplication,	which	is	irreversible:	K	=	k	*	G,	where	k	is	the	private	key,	G	is	a

constant	point	called	the	generator	point,	and	K	is	the	resulting	public	key.	The

reverse	operation,	known	as	“finding	the	discrete	logarithm”—calculating	k	if

you	know	K—is	as	difficult	as	trying	all	possible	values	of	k,	i.e.,	a	brute-force

1

1 2

1 1 2 2 2

1 2 1

search.	Before	we	demonstrate	how	to	generate	a	public	key	from	a	private	key,

let’s	look	at	elliptic	curve	cryptography	in	a	bit	more	detail.

TIP

Elliptic	curve	multiplication	is	a	type	of	function	that	cryptographers	call	a	“trap	door”	function:	it	is	easy	to

do	in	one	direction	(multiplication)	and	impossible	to	do	in	the	reverse	direction	(division).	Someone	with	a

private	key	can	easily	create	the	public	key	and	then	share	it	with	the	world	knowing	that	no	one	can

reverse	the	function	and	calculate	the	private	key	from	the	public	key.	This	mathematical	trick	becomes	the

basis	for	unforgeable	and	secure	digital	signatures	that	prove	control	over	bitcoin	funds.

Starting	with	a	private	key	in	the	form	of	a	randomly	generated	number	k,	we

multiply	it	by	a	predetermined	point	on	the	curve	called	the	generator	point	G	to

produce	another	point	somewhere	else	on	the	curve,	which	is	the	corresponding

public	key	K.	The	generator	point	is	specified	as	part	of	the	 secp256k1

standard	and	is	always	the	same	for	all	keys	in	bitcoin:

where	k	is	the	private	key,	G	is	the	generator	point,	and	K	is	the	resulting	public

key,	a	point	on	the	curve.	Because	the	generator	point	is	always	the	same	for	all

bitcoin	users,	a	private	key	k	multiplied	with	G	will	always	result	in	the	same

public	key	K.	The	relationship	between	k	and	K	is	fixed,	but	can	only	be

calculated	in	one	direction,	from	k	to	K.	That’s	why	a	Bitcoin	public	key	can	be

shared	with	anyone	and	does	not	reveal	the	user’s	private	key	(k).

TIP

A	private	key	can	be	converted	into	a	public	key,	but	a	public	key	cannot	be	converted	back	into	a	private

key	because	the	math	only	works	one	way.

Implementing	the	elliptic	curve	multiplication,	we	take	the	private	key	k

generated	previously	and	multiply	it	with	the	generator	point	G	to	find	the	public

key	K:

K	=	1E99423A4ED27608A15A2616A2B0E9E52CED330AC530EDCC32C8FFC6A526AEDD	*	G

Public	key	K	is	defined	as	a	point	 K	=	(x,y) :

K	=	(x,	y)

where,

x	=	F028892BAD7ED57D2FB57BF33081D5CFCF6F9ED3D3D7F159C2E2FFF579DC341A

y	=	07CF33DA18BD734C600B96A72BBC4749D5141C90EC8AC328AE52DDFE2E505BDB

To	visualize	multiplication	of	a	point	with	an	integer,	we	will	use	the	simpler

elliptic	curve	over	real	numbers—remember,	the	math	is	the	same.	Our	goal	is	to

find	the	multiple	kG	of	the	generator	point	G,	which	is	the	same	as	adding	G	to

itself,	k	times	in	a	row.	In	elliptic	curves,	adding	a	point	to	itself	is	the	equivalent

of	drawing	a	tangent	line	on	the	point	and	finding	where	it	intersects	the	curve

again,	then	reflecting	that	point	on	the	x-axis.

Figure	4-4	shows	the	process	for	deriving	G,	2G,	4G,	as	a	geometric	operation

on	the	curve.

TIP

Many	Bitcoin	implementations	use	the	libsecp256k1	crytographic	library	to	do	the	elliptic	curve	math.

https://github.com/bitcoin-core/secp256k1

Figure	4-4.	Elliptic	curve	cryptography:	visualizing	the	multiplication	of	a	point	G	by	an	integer	k	on	an
elliptic	curve

ScriptPubKey	and	ScriptSig

Although	the	illustration	from	the	original	Bitcoin	paper,	Figure	4-1,	shows

public	keys	(pubkeys)	and	signatures	(sigs)	being	used	directly,	the	first	version

of	Bitcoin	instead	had	payments	sent	to	a	field	called	scriptPubKey	and	had

them	authorized	by	a	field	called	scriptSig.	These	fields	allow	additional

operations	to	be	performed	in	addition	to	(or	instead	of)	verifying	that	a

signature	corresponds	to	a	public	key.	For	example,	a	scriptPubKey	can	contain

two	public	keys	and	require	two	corresponding	signatures	be	placed	in	the

spending	scriptSig.

Later,	in	XREF	HERE,	we’ll	learn	about	scripts	in	detail.	For	now,	all	we	need

to	understand	is	that	bitcoins	are	received	to	a	scriptPubKey	which	acts	like	a

public	key,	and	bitcoin	spending	is	authorized	by	a	scriptSig	which	acts	like	a

signature.

IP	Addresses:	The	Original	Address	For
Bitcoin	(P2PK)

We’ve	established	that	Alice	can	pay	Bob	by	assigning	some	of	her	bitcoins	to

one	of	Bob’s	public	keys.	But	how	does	Alice	get	one	of	Bob’s	public	keys?	Bob

could	just	give	her	a	copy,	but	let’s	look	again	at	the	public	key	we	worked	with

in	“Public	Keys”.	Notice	that	it’s	quite	long.	Imagine	Bob	trying	to	read	that	to

Alice	over	the	phone.

x	=	F028892BAD7ED57D2FB57BF33081D5CFCF6F9ED3D3D7F159C2E2FFF579DC341A

y	=	07CF33DA18BD734C600B96A72BBC4749D5141C90EC8AC328AE52DDFE2E505BDB

Instead	of	direct	public	key	entry,	the	earliest	version	of	Bitcoin	software

allowed	a	spender	to	enter	the	receiver’s	IP	address.	This	feature	was	later

removed—there	are	many	problems	with	using	IP	addresses—but	a	quick

description	of	it	will	help	us	better	understand	why	certain	features	may	have

been	added	to	the	Bitcoin	protocol.

Figure	4-5.	Early	send	screen	for	Bitcoin	via	The	Internet	Archive

If	Alice	entered	Bob’s	IP	address	in	Bitcoin	0.1,	her	full	node	would	establish	a

connection	with	his	full	node	and	receive	a	new	public	key	from	Bob’s	wallet

that	his	node	had	never	previously	given	anyone.	This	being	a	new	public	key

http://web.archive.org/web/20090722011820/https://bitcoin.org/

was	important	to	ensure	that	different	transactions	paying	Bob	couldn’t	be

connected	together	by	someone	looking	at	the	blockchain	and	noticing	that	all	of

the	transactions	paid	the	same	public	key.

Using	the	public	key	her	node	received	from	Bob’s	node,	Alice’s	wallet	would

construct	a	transaction	output	paying	a	very	simple	scriptPubKey:

<Bob's	public	key>	OP_CHECKSIG

Bob	would	later	be	able	to	spend	that	output	with	a	scriptSig	consisting	entirely

of	his	signature:

<Bob's	signature>

To	figure	out	what	a	scriptPubKey	and	scriptSig	are	doing,	you	can	combine

them	together	(scriptSig	first)	and	then	note	that	each	piece	of	data	(shown	in

angle	brackets)	is	placed	at	the	top	of	a	list	of	items,	called	a	stack.	When	an

operation	code	(opcode)	is	encountered,	it	uses	items	from	the	stack,	starting

with	the	topmost	items.	Let’s	look	at	how	that	works	by	beginning	with	the

combined	script:

<Bob's	signature>	<Bob's	public	key>	OP_CHECKSIG

For	this	script,	Bob’s	signature	is	put	on	the	stack,	then	Bob’s	public	key	is

placed	on	top	of	it.	The	 OP_CHECKSIG 	operation	consumes	two	elements,

starting	with	the	public	key	and	followed	by	the	signature,	removing	them	from

the	stack.	It	verifies	the	signature	corresponds	to	the	public	key	and	also

commits	to	(signs)	the	various	fields	in	the	transaction.	If	the	signature	is	correct,

OP_CHECKSIG	replaces	itself	on	the	stack	with	the	value	1;	if	the	signature

was	not	correct,	it	replaces	itself	with	a	0.	If	there’s	a	non-zero	item	on	top	of	the

stack	at	the	end	of	evaluation,	the	script	passes.	If	all	scripts	in	a	transaction

pass,	and	all	of	the	other	details	about	the	transaction	are	valid,	then	full	nodes

will	consider	the	transaction	to	be	valid.

In	short,	the	script	above	uses	the	same	public	key	and	signature	described	in	the

original	paper	but	adds	in	the	complexity	of	two	script	fields	and	an	opcode.

That	seems	like	extra	work	here,	but	we’ll	begin	to	see	the	benefits	when	we

look	at	“Legacy	Addresses	for	P2PKH”.

This	type	of	output	is	known	today	as	Pay-to-Public-Key,	or	P2PK	for	short.	It

was	never	widely	used	for	payments,	and	no	widely-used	program	has	supported

IP	address	payments	for	almost	a	decade.

Legacy	Addresses	for	P2PKH

Entering	the	IP	address	of	the	person	you	want	to	pay	has	a	number	of

advantages,	but	it	also	has	a	number	of	downsides.	One	particular	downside	is

that	the	receiver	needs	their	wallet	to	be	online	at	their	IP	address,	and	it	needs	to

be	accessible	from	the	outside	world.	For	a	lot	of	people,	that	isn’t	an	option.

They	turn	their	computers	off	at	night,	their	laptops	go	to	sleep,	they’re	behind

firewalls,	or	they’re	using	Network	Address	Translation	(NAT).

This	brings	us	back	to	the	problem	of	receivers	like	Bob	having	to	give	spenders

like	Alice	a	long	public	key.	The	shortest	version	of	Bitcoin	public	keys	known

to	the	developers	of	early	Bitcoin	were	65	bytes,	the	equivalent	of	130	characters

when	written	in	hexadecimal.	However,	Bitcoin	already	contained	several	data

structures	much	larger	than	65	bytes	which	needed	to	be	securely	referenced	in

other	parts	of	Bitcoin	using	the	smallest	amount	of	data	that	was	secure.

Bitcoin	accomplishes	that	with	a	hash	function,	a	function	which	takes	a

potentially	large	amount	of	data,	scrambles	it	(hashes	it),	and	outputs	a	fixed

amount	of	data.	A	cryptographic	hash	function	will	always	produce	the	same

output	when	given	the	same	input,	and	a	secure	function	will	also	make	it

impractical	for	somebody	to	choose	a	different	input	that	produces	a	previously-

seen	output.	That	makes	the	output	a	commitment	to	the	input.	It’s	a	promise

that,	in	practice,	only	input	x	will	produce	output	X.

For	example,	imagine	I	want	to	ask	you	a	question	and	also	give	you	my	answer

in	a	form	that	you	can’t	read	immediately.	Let’s	say	the	question	is,	“in	what

year	did	Satoshi	Nakamoto	start	working	on	Bitcoin?”	I’ll	give	you	a

commitment	to	my	answer	in	the	form	of	output	from	the	SHA256	hash

function,	the	function	most	commonly	used	in	Bitcoin:

94d7a772612c8f2f2ec609d41f5bd3d04a5aa1dfe3582f04af517d396a302e4e

Later,	after	you	tell	me	your	guess	to	the	answer	of	the	question,	I	can	reveal	my

answer	and	prove	to	you	that	my	answer,	as	input	to	the	hash	function,	produces

exactly	the	same	output	I	gave	you	earlier:

$	echo	"2007.		He	said	about	a	year	and	a	half	before	Oct	2008"	|	sha256sum

94d7a772612c8f2f2ec609d41f5bd3d04a5aa1dfe3582f04af517d396a302e4e

Now	imagine	that	we	ask	Bob	the	question,	“what	is	your	public	key?”	Bob	can

use	a	hash	function	to	give	us	a	cryptographically	secure	commitment	to	his

public	key.	If	he	later	reveals	his	key,	and	we	verify	it	produces	the	same

commitment	he	previously	gave	us,	we	can	be	sure	it	was	the	exact	same	key

that	was	used	to	create	that	earlier	commitment.

The	SHA256	hash	function	is	considered	to	be	very	secure	and	produces	256

bits	(32	bytes)	of	output,	less	than	half	the	size	of	original	Bitcoin	public	keys.

However,	there	are	other	slightly	less	secure	hash	functions	that	produce	smaller

output,	such	as	the	RIPEMD160	hash	function	whose	output	is	160	bits	(20

bytes).	For	reasons	Satoshi	Nakamoto	never	stated,	the	original	version	of

Bitcoin	made	commitments	to	public	keys	by	first	hashing	the	key	with	SHA256

and	then	hashing	that	output	with	RIPEMD160;	this	produced	a	20-byte

commitment	to	the	public	key.

We	can	look	at	that	algorithmically.	Starting	with	the	public	key	K,	we	compute

the	SHA256	hash	and	then	compute	the	RIPEMD160	hash	of	the	result,

producing	a	160-bit	(20-byte)	number:

where	K	is	the	public	key	and	A	is	the	resulting	commitment.

Now	that	we	understand	how	to	make	a	commitment	to	a	public	key,	we	need	to

figure	out	how	to	use	it	in	a	transaction.	Consider	the	following	scriptPubKey:

OP_DUP	OP_HASH160	<Bob's	commitment>	OP_EQUAL	OP_CHECKSIG

And	also	the	following	scriptSig:

<Bob's	signature>	<Bob's	public	key>

Together,	they	form	the	following	script:

<sig>	<pubkey>	OP_DUP	OP_HASH160	<commitment>	OP_EQUALVERIFY	OP_CHECKSIG

As	we	did	in	“IP	Addresses:	The	Original	Address	For	Bitcoin	(P2PK)”,	we	start

putting	items	on	the	stack.	Bob’s	signature	goes	on	first;	his	public	key	is	then

placed	on	top	of	the	stack.	The	 OP_DUP 	operation	duplicates	the	top	item,	so

the	top	and	second-to-top	item	on	the	stack	are	now	both	Bob’s	public	key.	The

OP_HASH160 	operation	consumes	(removes)	the	top	public	key	and	replaces	it

with	the	result	of	hashing	it	with	 RIPEMD160(SHA256(K)) ,	so	now	the	top

of	the	stack	is	a	hash	of	Bob’s	public	key.	Next,	the	commitment	to	Bob’s	public

key	is	added	to	the	top	of	the	stack.	The	 OP_EQUALVERIFY 	operation

consumes	the	top	two	items	and	verifies	that	they	are	equal;	that	should	be	the

case	if	the	public	key	Bob	provided	in	the	scriptSig	is	the	same	public	key	used

to	create	the	commitment	in	the	scriptPubKey	that	Alice	paid.	If

OP_EQUALVERIFY 	fails,	the	whole	script	fails.	Finally,	we’re	left	with	a	stack

containing	just	Bob’s	signature	and	his	public	key;	the	 OP_CHECKSIG 	opcode

verifies	they	correspond	with	each	other	and	that	the	signature	commits	to	the

transaction.

Although	this	process	of	Paying	To	a	Public	Key	Hash	(P2PKH)	may	seem

convoluted,	it	allows	Alice’s	payment	to	Bob	to	contain	only	a	20	byte

commitment	to	his	public	key	instead	of	the	key	itself,	which	would’ve	been	65

bytes	in	the	original	version	of	Bitcoin.	That’s	a	lot	less	data	for	Bob	to	have	to

communicate	to	Alice.

However,	we	haven’t	yet	discussed	how	Bob	gets	those	20	bytes	from	his

Bitcoin	wallet	to	Alice’s	wallet.	There	are	commonly	used	encodings	for	byte

values,	such	as	hexadecimal,	but	any	mistake	made	in	copying	a	commitment

would	result	in	the	bitcoins	being	sent	to	an	unspendable	output,	causing	them	to

be	lost	forever.	In	“Base58Check	Encoding”,	we’ll	look	at	compact	encoding

and	reliable	checksums.

Base58Check	Encoding

In	order	to	represent	long	numbers	in	a	compact	way,	using	fewer	symbols,

many	computer	systems	use	mixed-alphanumeric	representations	with	a	base	(or

radix)	higher	than	10.	For	example,	whereas	the	traditional	decimal	system	uses

10	numerals,	0	through	9,	the	hexadecimal	system	uses	16,	with	the	letters	A

through	F	as	the	six	additional	symbols.	A	number	represented	in	hexadecimal

format	is	shorter	than	the	equivalent	decimal	representation.	Even	more

compact,	base64	representation	uses	26	lowercase	letters,	26	capital	letters,	10

numerals,	and	2	more	characters	such	as	“+”	and	“/”	to	transmit	binary	data	over

text-based	media	such	as	email.

Base58	is	a	similar	encoding	to	base64,	using	upper-	and	lowercase	letters	and

numbers,	but	omitting	some	characters	that	are	frequently	mistaken	for	one

another	and	can	appear	identical	when	displayed	in	certain	fonts.	Specifically,

base58	is	base64	without	the	0	(number	zero),	O	(capital	o),	l	(lower	L),	I

(capital	i),	and	the	symbols	“+”	and	“/”.	Or,	more	simply,	it	is	a	set	of	lowercase

and	capital	letters	and	numbers	without	the	four	(0,	O,	l,	I)	just	mentioned.

Example	4-2	shows	the	full	base58	alphabet.

Example	4-2.	Bitcoin’s	base58	alphabet

123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz

To	add	extra	security	against	typos	or	transcription	errors,	base58check	adds	an

error-checking	code	to	the	base58	alphabet.	The	checksum	is	an	additional	four

bytes	added	to	the	end	of	the	data	that	is	being	encoded.	The	checksum	is

derived	from	the	hash	of	the	encoded	data	and	can	therefore	be	used	to	detect

transcription	and	typing	errors.	When	presented	with	base58check	code,	the

decoding	software	will	calculate	the	checksum	of	the	data	and	compare	it	to	the

checksum	included	in	the	code.	If	the	two	do	not	match,	an	error	has	been

introduced	and	the	base58check	data	is	invalid.	This	prevents	a	mistyped	Bitcoin

address	from	being	accepted	by	the	wallet	software	as	a	valid	destination,	an

error	that	would	otherwise	result	in	loss	of	funds.

To	convert	data	(a	number)	into	a	base58check	format,	we	first	add	a	prefix	to

the	data,	called	the	“version	byte,”	which	serves	to	easily	identify	the	type	of

data	that	is	encoded.	For	example,	the	prefix	zero	(0x00	in	hex)	indicates	that	the

data	should	be	used	as	the	commitment	(hash)	in	a	legacy	P2PKH	scriptPubKey.

A	list	of	common	version	prefixes	is	shown	in	Table	4-1.

Next,	we	compute	the	“double-SHA”	checksum,	meaning	we	apply	the	SHA256

hash-algorithm	twice	on	the	previous	result	(prefix	and	data):

checksum	=	SHA256(SHA256(prefix+data))

From	the	resulting	32-byte	hash	(hash-of-a-hash),	we	take	only	the	first	four

bytes.	These	four	bytes	serve	as	the	error-checking	code,	or	checksum.	The

checksum	is	appended	to	the	end.

The	result	is	composed	of	three	items:	a	prefix,	the	data,	and	a	checksum.	This

result	is	encoded	using	the	base58	alphabet	described	previously.	Figure	4-6

illustrates	the	base58check	encoding	process.

Figure	4-6.	Base58Check	encoding:	a	base58,	versioned,	and	checksummed	format	for	unambiguously
encoding	bitcoin	data

In	Bitcoin,	other	data	besides	public	key	commitmens	are	presented	to	the	user

in	base58check	encoding	to	make	that	data	compact,	easy	to	read,	and	easy	to

detect	errors.	The	version	prefix	in	base58check	encoding	is	used	to	create	easily

distinguishable	formats,	which	when	encoded	in	base58	contain	specific

characters	at	the	beginning	of	the	base58check-encoded	payload.	These

characters	make	it	easy	for	humans	to	identify	the	type	of	data	that	is	encoded

and	how	to	use	it.	This	is	what	differentiates,	for	example,	a	base58check-

encoded	Bitcoin	address	that	starts	with	a	1	from	a	base58check-encoded	private

key	WIF	that	starts	with	a	5.	Some	example	version	prefixes	and	the	resulting

base58	characters	are	shown	in	Table	4-1.

Table	4-1.	Base58Check	version	prefix	and	encoded	result	examples

Type
Version	prefix

(hex)

Base58	result

prefix

Address	for	Pay-to-Public-Key-

Hash	(P2PKH)

0x00 1

Address	for	Pay-to-Script-Hash

(P2SH)

0x05 3

Testnet	Address	for	P2PKH 0x6F m	or	n

Testnet	Address	for	P2SH 0xC4 2

Private	Key	WIF 0x80 5,	K,	or	L

BIP-32	Extended	Public	Key 0x0488B21E xpub

Putting	together	public	keys,	hash-based	commitments,	and	base58check

encocding,	we	can	see	the	illustration	of	the	conversion	of	a	public	key	into	a

Bitcoin	address	in	Figure	4-7.

Figure	4-7.	Public	key	to	Bitcoin	address:	conversion	of	a	public	key	into	a	Bitcoin	address

Decode	from	Base58Check

The	Bitcoin	Explorer	commands	(see	XREF	HERE)	make	it	easy	to	write	shell

scripts	and	command-line	“pipes”	that	manipulate	bitcoin	keys,	addresses,	and

transactions.	You	can	use	Bitcoin	Explorer	to	decode	the	base58check	format	on

the	command	line.

We	use	the	 base58check-decode 	command	to	decode	the	uncompressed

key:

$	bx	base58check-decode	5J3mBbAH58CpQ3Y5RNJpUKPE62SQ5tfcvU2JpbnkeyhfsYB1Jcn

wrapper

{

				checksum	4286807748

				payload	1e99423a4ed27608a15a2616a2b0e9e52ced330ac530edcc32c8ffc6a526aedd

				version	128

}

The	result	contains	the	key	as	payload,	the	WIF	version	prefix	128,	and	a

checksum.

Notice	that	the	“payload”	of	the	compressed	key	is	appended	with	the	suffix

01 ,	signaling	that	the	derived	public	key	is	to	be	compressed:

$	bx	base58check-decode	KxFC1jmwwCoACiCAWZ3eXa96mBM6tb3TYzGmf6YwgdGWZgawvrtJ

wrapper

{

				checksum	2339607926

				payload	1e99423a4ed27608a15a2616a2b0e9e52ced330ac530edcc32c8ffc6a526aedd01

				version	128

}

Compressed	public	keys

When	Bitcoin	was	first	authored,	its	developers	only	knew	how	to	create	65-byte

public	keys.	However,	a	later	developer	became	aware	of	an	alternative	encoding

for	public	keys	that	used	only	33	bytes	and	which	was	backwards	compatible

with	all	Bitcoin	full	nodes	at	the	time,	so	there	was	no	need	to	change	the

Bitcoin	protocol.	Those	33-byte	public	keys	are	known	as	compressed	public

keys	and	the	original	65	byte	keys	are	known	as	uncompressed	public	keys.

Using	smaller	public	keys	results	in	smaller	transactions,	allowing	more

payments	to	be	made	in	the	same	block.

As	we	saw	in	the	section	“Public	Keys”,	a	public	key	is	a	point	(x,y)	on	an

elliptic	curve.	Because	the	curve	expresses	a	mathematical	function,	a	point	on

the	curve	represents	a	solution	to	the	equation	and,	therefore,	if	we	know	the	x

coordinate	we	can	calculate	the	y	coordinate	by	solving	the	equation	y 	mod	p	=

(x 	+	7)	mod	p.	That	allows	us	to	store	only	the	x	coordinate	of	the	public	key

point,	omitting	the	y	coordinate	and	reducing	the	size	of	the	key	and	the	space

2

3

required	to	store	it	by	256	bits.	An	almost	50%	reduction	in	size	in	every

transaction	adds	up	to	a	lot	of	data	saved	over	time!

Here’s	the	public	key	generated	by	the	private	key	we	created	in	“Public	Keys”.

x	=	F028892BAD7ED57D2FB57BF33081D5CFCF6F9ED3D3D7F159C2E2FFF579DC341A

y	=	07CF33DA18BD734C600B96A72BBC4749D5141C90EC8AC328AE52DDFE2E505BDB

Here’s	the	same	public	key	shown	as	a	520-bit	number	(130	hex	digits)	with	the

prefix	 04 	followed	by	 x 	and	then	 y 	coordinates,	as	 04	x	y :

K	=	04F028892BAD7ED57D2FB57BF33081D5CFCF6F9ED3D3D7F159C2E2FFF579DC341A↵

07CF33DA18BD734C600B96A72BBC4749D5141C90EC8AC328AE52DDFE2E505BDB

Whereas	uncompressed	public	keys	have	a	prefix	of	 04 ,	compressed	public

keys	start	with	either	a	 02 	or	a	 03 	prefix.	Let’s	look	at	why	there	are	two

possible	prefixes:	because	the	left	side	of	the	equation	is	y ,	the	solution	for	y	is	a

square	root,	which	can	have	a	positive	or	negative	value.	Visually,	this	means

that	the	resulting	y	coordinate	can	be	above	or	below	the	x-axis.	As	you	can	see

from	the	graph	of	the	elliptic	curve	in	Figure	4-2,	the	curve	is	symmetric,

meaning	it	is	reflected	like	a	mirror	by	the	x-axis.	So,	while	we	can	omit	the	y

coordinate	we	have	to	store	the	sign	of	y	(positive	or	negative);	or	in	other

words,	we	have	to	remember	if	it	was	above	or	below	the	x-axis	because	each	of

those	options	represents	a	different	point	and	a	different	public	key.	When

calculating	the	elliptic	curve	in	binary	arithmetic	on	the	finite	field	of	prime

2

order	p,	the	y	coordinate	is	either	even	or	odd,	which	corresponds	to	the

positive/negative	sign	as	explained	earlier.	Therefore,	to	distinguish	between	the

two	possible	values	of	y,	we	store	a	compressed	public	key	with	the	prefix	 02

if	the	y	is	even,	and	 03 	if	it	is	odd,	allowing	the	software	to	correctly	deduce

the	y	coordinate	from	the	x	coordinate	and	uncompress	the	public	key	to	the	full

coordinates	of	the	point.	Public	key	compression	is	illustrated	in	Figure	4-8.

Here’s	the	same	public	key	generated	in	“Public	Keys”,	shown	as	a	compressed

public	key	stored	in	264	bits	(66	hex	digits)	with	the	prefix	 03 	indicating	the	y

coordinate	is	odd:

K	=	03F028892BAD7ED57D2FB57BF33081D5CFCF6F9ED3D3D7F159C2E2FFF579DC341A

This	compressed	public	key	corresponds	to	the	same	private	key,	meaning	it	is

generated	from	the	same	private	key.	However,	it	looks	different	from	the

uncompressed	public	key.	More	importantly,	if	we	convert	this	compressed

public	key	to	a	commitment	using	the	HASH160	function

(RIPEMD160(SHA256(K)))	it	will	produce	a	different	commitment	than	the

uncompressed	public	key,	leading	to	a	different	address.	This	can	be	confusing,

because	it	means	that	a	single	private	key	can	produce	a	public	key	expressed	in

two	different	formats	(compressed	and	uncompressed)	that	produce	two	different

Bitcoin	addresses.	However,	the	private	key	is	identical	for	both	Bitcoin

addresses.

Figure	4-8.	Public	key	compression

Compressed	public	keys	are	now	the	default	in	almost	all	Bitcoin	software,	and

were	made	required	when	using	certain	new	features	added	in	later	protocol

upgrades.

However,	some	software	still	needs	to	support	uncompressed	public	keys,	such

as	a	wallet	application	importing	private	keys	from	an	older	wallet.	When	the

new	wallet	scans	the	block	chain	for	old	P2PKH	outputs	and	inputs,	it	needs	to

know	whether	to	scan	the	65-byte	keys	(and	commitments	to	those	keys)	or	33-

byte	keys	(and	their	commitments).	Failure	to	scan	for	the	correct	type	can	lead

to	the	user	not	being	able	to	spend	their	full	balance.	To	resolve	this	issue,	when

private	keys	are	exported	from	a	wallet,	the	Wallet	Import	Format	(WIF)	that	is

used	to	represent	them	is	implemented	slightly	differently	in	newer	Bitcoin

wallets,	to	indicate	that	these	private	keys	have	been	used	to	produce

compressed	public	keys.

Legacy	Pay-to-Script-Hash	(P2SH)

As	we’ve	seen	in	preceding	sections,	someone	receiving	Bitcoins	(like	Bob)	can

require	payments	to	him	contain	certain	constraints	in	their	scriptPubKeys.	Bob

will	need	to	fulfill	those	constraints	using	a	scriptSig	when	he	spends	those

bitcoins.	In	“IP	Addresses:	The	Original	Address	For	Bitcoin	(P2PK)”,	the

constraint	was	simply	that	the	scriptSig	needed	to	provide	an	appropriate

signature.	In	“Legacy	Addresses	for	P2PKH”,	an	appropriate	public	key	also

needed	to	be	provided.

In	order	for	a	spender	(like	Alice)	to	place	the	constraints	Bob	wants	in	the

scriptPubKey	she	uses	to	pay	him,	Bob	needs	to	communicate	those	constraints

to	her.	This	is	similar	to	the	problem	of	Bob	needing	to	communicate	his	public

key	to	her.	Like	that	problem,	where	public	keys	can	be	fairly	large,	the

constraints	Bob	uses	can	also	be	quite	large---potentially	thousands	of	bytes.

That’s	not	only	thousands	of	bytes	which	need	to	be	communicated	to	Alice,	but

thousands	of	bytes	for	which	she	needs	to	pay	transaction	fees	every	time	she

wants	to	spend	money	to	Bob.	However,	the	solution	of	using	hash	functions	to

create	small	commitments	to	large	amounts	of	data	also	applies	here.

The	BIP16	upgrade	to	the	Bitcoin	protocol	in	2013	allows	a	scriptPubKey	to

commit	to	a	redemption	script	(redeemScript).	When	Bob	spends	his	bitcoins,

his	scriptSig	need	to	provide	a	redeemScript	that	matches	the	commitment	and

also	any	data	necessary	to	satisfy	the	redeemScript	(such	as	signatures).	Let’s

start	by	imagining	Bob	wants	to	require	two	signatures	to	spend	his	bitcoins,	one

signature	from	his	desktop	wallet	and	one	from	a	hardware	signing	device.	He

puts	those	conditions	into	a	redeemScript:

<public	key	1>	OP_CHECKSIGVERIFY	<public	key	2>	OP_CHECKSIG

He	then	creates	a	commitment	to	the	redeemScript	using	the	same	HASH160

mechanism	used	for	P2PKH	commitments,

RIPEMD160(SHA256(script)) .	That	commitment	is	placed	into	the

scriptPubKey	using	a	special	template:

OP_HASH160	<commitment>	OP_EQUAL

WARNING

Payments	to	Script	Hashes	(P2SH)	must	use	the	specific	P2SH	template	with	no	extra	data	or	conditions	in

the	scriptPubKey.	If	the	scriptPubKey	is	not	exactly	 OP_HASH160	<20	bytes>	OP_EQUAL ,	the

redeemScript	will	not	be	used	and	any	bitcoins	may	either	be	unspendable	or	spendable	by	anyone

(meaning	anyone	can	take	them).

When	Bob	goes	to	spend	the	payment	he	received	to	the	commitment	for	his

script,	he	uses	a	scriptSig	that	includes	the	redeemScript,	with	it	serialized	as	a

single	data	element.	He	also	provides	the	signatures	he	needs	to	satisfy	the

redeemScript,	putting	them	in	the	order	that	they	will	be	consumed	by	the

opcodes:

<signature2>	<signature1>	<redeemScript>

When	Bitcoin	full	nodes	receive	Bob’s	spend,	they’ll	verify	that	the	serialized

redeemScript	will	hash	to	the	same	value	as	the	commitment.	Then	they’ll

replace	it	on	the	stack	with	its	deserialized	value:

<signature2>	<signature1>	<pubkey1>	OP_CHECKSIGVERIFY	<pubkey2>	OP_CHECKSIG

The	script	is	executed	and,	if	it	passes	and	all	of	the	other	transaction	details	are

correct,	the	transaction	is	valid.

Addresses	for	Pay-to-Script-Hash	(P2SH)	are	also	created	with	base58check.

The	version	prefix	is	set	to	5,	which	results	in	an	encoded	address	starting	with	a

3 .	An	example	of	a	P2SH	address	is

3F6i6kwkevjR7AsAd4te2YB2zZyASEm1HM ,	which	can	be	derived	using

the	Bitcoin	Explorer	commands	 script-encode ,	 sha256 ,

ripemd160 ,	and	 base58check-encode 	(see	XREF	HERE)	as	follows:

$	echo	\

'DUP	HASH160	[89abcdefabbaabbaabbaabbaabbaabbaabbaabba]	EQUALVERIFY	CHECKSIG'	>	script

$	bx	script-encode	<	script	|	bx	sha256	|	bx	ripemd160	\

|	bx	base58check-encode	--version	5

3F6i6kwkevjR7AsAd4te2YB2zZyASEm1HM

TIP

P2SH	is	not	necessarily	the	same	as	a	multisignature	transaction.	A	P2SH	address	most	often	represents	a

multisignature	script,	but	it	might	also	represent	a	script	encoding	other	types	of	transactions.

P2PKH	and	P2SH	are	the	only	two	script	templates	used	with	base58check

encoding.	They	are	now	known	as	legacy	addresses	and,	as	of	early	2023,	are

only	used	in	about	10%	of	transactions.	Legacy	addresses	were	supplanted	by

the	bech32	family	of	addresses.

https://transactionfee.info/charts/payments-spending-segwit/

P2SH	COLLISION	ATTACKS

All	addresses	based	on	hash	functions	are	theoretically	vulnerable	to	an	attacker

finding	two	different	inputs	(e.g.	redeemScripts)	that	produce	the	same	hash

function	output	(commitment).	For	addresses	created	entirely	by	a	single	party,

the	chance	of	an	attacker	generating	a	different	input	for	an	existing	commitment

is	proportional	to	the	strength	of	the	hash	algorithm.	For	a	secure	160-bit

algorithm	like	HASH160,	the	probability	is	1-in-2 .	This	is	a	second	pre-image

attack.

However,	this	changes	when	an	attacker	is	able	to	influence	the	original	input

value.	For	example,	an	attacker	participates	in	the	creation	of	a	multisignature

script	where	the	attacker	doesn’t	need	to	submit	his	public	key	until	after	he

learns	all	of	the	other	party’s	public	keys.	In	that	case,	the	strength	of	hash

algorithm	is	reduced	to	its	square	root.	For	HASH160,	the	probability	becomes

1-in-2 .	This	is	a	collision	attack.

To	put	those	numbers	in	context,	as	of	early	2023,	all	Bitcoin	miners	combined

execute	about	2 	hash	functions	every	hour.	They	run	a	different	hash	function

than	HASH160,	so	their	existing	hardware	can’t	create	collision	attacks	for	it,

but	the	existence	of	the	Bitcoin	network	proves	that	collision	attacks	against

160-bit	functions	like	HASH160	are	practical.	Bitcoin	miners	have	spent	the

equivalent	of	billions	of	US	dollars	on	special	hardware,	so	creating	a	collision

attack	wouldn’t	be	cheap,	but	there	are	organizations	which	expect	to	receive

billions	of	dollars	in	bitcoins	to	addresses	generated	by	processes	involving

multiple	parties,	which	could	make	the	attack	profitable.

160

80

80

There	are	well	established	cryptographic	protocols	for	preventing	collision

attacks	but	a	simple	solution	which	doesn’t	require	any	special	knowledge	on	the

part	of	wallet	developers	is	to	simply	use	a	stronger	hash	function.	Later

upgrades	to	Bitcoin	made	that	possible	and	newer	Bitcoin	addresses	provide	at

least	128	bits	of	collision	resistance.	To	perform	2 	hash	operations	would

require	all	current	Bitcoin	miners	about	50	billion	years	to	perform.

Although	we	do	not	believe	there	is	any	immediate	threat	to	anyone	creating

new	P2SH	addresses,	we	recommend	all	new	wallets	use	newer	types	of

addresses	to	eliminate	address	collision	attacks	as	a	concern.

Bech32	addresses

In	2017,	the	Bitcoin	protocol	was	upgraded	to	prevent	transaction	identifiers

(txids)	from	being	changed	without	the	consent	of	a	spending	user	(or	a	quorum

of	signers	when	multiple	signatures	are	required).	The	upgrade,	called

segregated	witness	(or	segwit	for	short),	also	provided	additional	capacity	for

transaction	data	in	blocks	and	several	other	benefits.	However,	users	wanting

direct	access	to	segwit’s	benefits	had	to	accept	payments	to	variations	on	the

legacy	P2PKH	and	P2SH	scripts.

As	mentioned	in	XREF	HERE,	one	of	the	advantages	of	the	P2SH	output	type

was	that	a	spender	(such	as	Alice)	didn’t	need	to	know	the	details	of	the	script

the	receiver	(such	as	Bob)	used.	The	segwit	upgrade	was	designed	to	be

compatible	with	this	mechanism,	allowing	users	to	immediately	begin	accessing

128

many	of	the	new	benefits	by	using	a	P2SH	address.	But	for	Bob	to	gain	access	to

all	of	the	benefits,	he	would	need	Alice’s	wallet	to	pay	him	using	a	different	type

of	script.	That	would	require	Alice’s	wallet	to	upgrade	to	supporting	the	new

scripts.

At	first,	Bitcoin	developers	proposed	BIP142,	which	would	continue	using

base58check	with	a	new	version	byte,	similar	to	the	P2SH	upgrade.	But	getting

all	wallets	to	upgrade	to	new	scripts	with	a	new	base58check	version	was

expected	to	require	almost	as	much	work	as	getting	them	to	upgrade	to	an

entirely	new	address	format,	so	several	Bitcoin	contributors	set	out	to	design	the

best	possible	address	format.	They	identified	several	problems	with

base58check:

Its	mixed	case	presentation	made	it	inconvenient	to	read	aloud	or	transcribe.

Try	reading	one	of	the	legacy	addresses	in	this	chapter	to	a	friend	who	you

have	transcribe	it.	Notice	how	you	have	to	prefix	every	letter	with	the	words

“uppercase”	and	“lowercase”.	Also	note	when	you	review	their	writing	that

the	uppercase	and	lowercase	versions	of	some	letters	can	look	similar	in

many	people’s	handwriting.

It	can	detect	errors,	but	it	can’t	help	users	correct	those	errors.	For	example,	if

you	accidentally	transpose	two	characters	when	manually	entering	an	address,

your	wallet	will	almost	certainly	warn	that	a	mistake	exists,	but	it	won’t	help

you	figure	out	where	the	error	is	located.	It	might	take	you	several	frustrating

minutes	to	eventually	discover	the	mistake.

A	mixed	case	alphabet	also	requires	extra	space	to	encode	in	QR	code

images,	which	are	commonly	used	to	share	addresses	and	invoices	between

wallets.	That	extra	space	means	QR	codes	need	to	be	larger	at	the	same

resolution	or	they	become	harder	to	scan	quickly.

It	requires	every	spender	wallet	upgrade	to	support	new	protocol	features	like

P2SH	and	segwit.	Although	the	upgrades	themselves	might	not	require	much

code,	experience	shows	that	many	wallet	authors	are	busy	with	other	work

and	can	sometimes	delay	upgrading	for	years.	This	adversely	affects	everyone

who	wants	to	use	the	new	features.

The	developers	working	on	an	address	format	for	segwit	found	solutions	for

each	of	these	problems	in	a	new	address	format	called	bech32	(pronounced	with

a	soft	“ch”,	as	in	“besh	thirty-two”).	The	“bech”	stands	for	BCH,	the	initials	of

the	three	individuals	who	discovered	the	cyclic	code	in	1959	and	1960	upon

which	bech32	is	based.	The	“32”	stands	for	the	number	of	characters	in	the

bech32	alphabet	(similar	to	the	58	in	base58check).

Bech32	uses	only	numbers	and	a	single	case	of	letters	(preferably	rendered	in

lowercase).	Despite	its	alphabet	being	almost	half	the	size	of	the	base58check

alphabet,	bech32	addresses	are	only	slightly	longer	than	the	longest

equivalent	P2PKH	legacy	addresses.

Bech32	can	both	detect	and	help	correct	errors.	In	an	address	of	an	expected

length,	it	is	mathematically	guaranteed	to	detect	any	error	affecting	four

characters	or	less;	that’s	more	reliable	than	base58check.	For	longer	errors,	it

will	fail	to	detect	them	less	than	one	time	in	a	billion,	which	is	roughly	the

same	reliability	as	base58check.	Even	better,	for	an	address	typed	with	just	a

few	errors,	it	can	tell	the	user	where	those	errors	occurred,	allowing	them	to

quickly	correct	minor	transcription	mistakes.	See	Example	4-3	for	an	example

of	an	address	entered	with	errors.

Example	4-3.	Bech32	typo	detection

Address:

bc1p9nh05ha8wrljf7ru236awn4t2x0d5ctkkywmv9sclnm4t0av2vgs4k3au7

Detected	errors	shown	in	bold.	Generated	using	the	bech32	address	decoder

demo.

Bech32	is	preferably	written	with	only	lowercase	characters,	but	those

lowercase	characters	can	be	replaced	with	uppercase	characters	before

encoding	an	address	in	a	QR	code.	This	allows	the	use	of	a	special	QR

encoding	mode	that	uses	less	space.	Notice	the	difference	in	size	and

complexity	of	the	two	QR	codes	for	the	same	address	in	Figure	4-9.

Figure	4-9.	The	same	bech32	address	QR	encoded	in	uppercase	and	lowercase

Bech32	takes	advantage	of	an	upgrade	mechanism	designed	as	part	of	segwit

https://bitcoin.sipa.be/bech32/demo/demo.html

to	make	it	possible	for	spender	wallets	to	be	able	to	pay	output	types	that

aren’t	in	use	yet.	The	goal	was	to	allow	developers	to	build	a	wallet	today	that

allows	spending	to	a	bech32	address	and	have	that	wallet	remain	able	to

spend	to	bech32	addresses	for	users	of	new	features	added	in	future	protocol

upgrades.	It	was	hoped	that	we	might	never	again	need	to	go	through	the

system-wide	upgrade	cycles	necessary	to	allow	people	to	fully	use	P2SH	and

segwit.

Problems	with	bech32	addresses

Bech32	addresses	would	have	been	a	success	in	every	area	except	for	one

problem.	The	mathematical	guarantees	about	their	ability	to	detect	errors	only

apply	if	the	length	of	the	address	you	enter	into	a	wallet	is	the	same	length	of	the

original	address.	If	you	add	or	remove	any	characters	during	transcription,	the

guarantee	doesn’t	apply	and	your	wallet	may	spend	funds	to	a	wrong	address.

However,	even	without	the	guarantee,	it	was	thought	that	it	would	be	very

unlikely	that	a	user	adding	or	removing	characters	would	produce	a	string	with	a

valid	checksum,	ensuring	users’	funds	were	safe.

Unfortunately,	the	choice	for	one	of	the	constants	in	the	bech32	algorithm	just

happened	to	make	it	very	easy	to	add	or	remove	the	letter	“q”	in	the	penultimate

position	of	an	address	that	ends	with	the	letter	“p”.	In	those	cases,	you	can	also

add	or	remove	the	letter	“q”	multiple	times.	This	will	be	caught	by	the	checksum

some	of	the	time,	but	it	will	be	missed	far	more	often	than	the	one-in-a-billion

expectations	for	bech32’s	substitution	errors.	For	an	example,	see	Example	4-4.

Example	4-4.	Extending	the	length	of	bech32	address	without	invalidating
its	checksum

Intended	bech32	address:

bc1pqqqsq9txsqp

Incorrect	addresses	with	a	valid	checksum:

bc1pqqqsq9txsqqqqp

bc1pqqqsq9txsqqqqqqp

bc1pqqqsq9txsqqqqqqqqp

bc1pqqqsq9txsqqqqqqqqqp

bc1pqqqsq9txsqqqqqqqqqqqp

For	the	initial	version	of	segwit	(version	0),	this	wasn’t	a	practical	concern.	Only

two	valid	lengths	were	defined	for	v0	segwit	outputs:	22	bytes	and	34	bytes.

Those	correspond	to	bech32	addresses	42	characters	or	62	characters	long,	so

someone	would	need	to	add	or	remove	the	letter	“q”	from	the	penultimate

position	of	a	bech32	address	20	times	in	order	to	send	money	to	an	invalid

address	without	a	wallet	being	able	to	detect	it.	However,	it	would	become	a

problem	for	users	in	the	future	if	a	segwit-based	upgrade	were	ever	to	be

implemented.

Bech32m

Although	bech32	worked	well	for	segwit	v0,	developers	didn’t	want	to

unnecessarily	constrain	output	sizes	in	later	versions	of	segwit.	Without

constraints,	adding	or	removing	a	single	“q”	in	a	bech32	address	could	result	in	a

user	accidentally	sending	their	money	to	an	output	that	was	either	unspendable

or	spendable	by	anyone	(allowing	those	bitcoins	to	be	taken	by	anyone).

Developers	exhaustively	analyzed	the	bech32	problem	and	found	that	changing	a

single	constant	in	their	algorithm	would	eliminate	the	problem,	ensuring	that	any

insertion	or	deletion	of	up	to	five	characters	will	only	fail	to	be	detected	less

often	than	one	time	in	a	billion.

The	version	of	bech32	with	a	single	different	constant	is	known	as	Bech32

Modified	(bech32m).	All	of	the	characters	in	bech32	and	bech32m	addresses	for

the	same	underlying	data	will	be	identical	except	for	the	last	six	(the	checksum).

That	means	a	wallet	will	need	to	know	which	version	is	in	use	in	order	to

validate	the	checksum,	but	both	address	types	contain	an	internal	version	byte

that	makes	determining	that	easy.

Encoding	and	Decoding	bech32m	addresses

In	this	section,	we’ll	look	at	the	encoding	and	parsing	rules	for	bech32m	Bitcoin

addresses	since	they	encompass	the	ability	to	parse	bech32	addresses	and	are	the

current	recommended	address	format	for	Bitcoin	wallets.

Bech32m	addresses	start	with	a	Human	Readable	Part	(HRP).	There	are	rules	in

BIP173	for	creating	your	own	HRPs,	but	for	Bitcoin	you	only	need	to	know

about	the	HRPs	already	chosen,	shown	in	Table	4-2.

Table	4-2.	Bech32	HRPs	for	Bitcoin

bc Bitcoin	mainnet

tb Bitcoin	testnet

The	HRP	is	followed	by	a	separator,	the	number	“1”.	Earlier	proposals	for	a

protocol	separator	used	a	colon	but	some	operating	systems	and	applications

which	allow	a	user	to	double	click	on	a	word	to	highlight	it	for	copy	and	pasting

won’t	extend	the	highlighting	to	and	past	a	colon.	A	number	ensured	double-

click	highlighting	would	work	with	any	program	that	supports	bech32m	strings

in	general	(which	include	other	numbers).	The	number	“1”	was	chosen	because

bech32	strings	don’t	otherwise	use	it	in	order	to	prevent	accidental	transliteration

between	the	number	“1”	and	the	lowercase	letter	“l”.

The	other	part	of	a	bech32m	address	is	called	the	“data	part”.	There	are	three

elements	to	this	part:

Witness	version

A	single	byte	which	encodes	as	a	single	character	in	a	bech32m	Bitcoin

address	immediately	following	the	separator.	This	letter	represents	the	segwit

version.	The	letter	“q”	is	the	encoding	of	“0”	for	segwit	v0,	the	initial	version

of	segwit	where	bech32	addresses	were	introduced.	The	letter	“p”	is	the

encoding	of	“1”	for	segwit	v1	(also	called	taproot)	where	bech32m	began	to

be	used.	There	are	seventeen	possible	versions	of	segwit	and	it’s	required	for

Bitcoin	that	the	first	byte	of	a	bech32m	data	part	decode	to	the	number	0

through	16	(inclusive).

Witness	program

From	2	to	40	bytes.	For	segwit	v0,	this	witness	program	must	be	either	20	or

32	bytes;	no	other	length	is	valid.	For	segwit	v1,	the	only	defined	length	as	of

this	writing	is	32	bytes	but	other	lengths	may	be	defined	later.

Checksum

Exactly	6	characters.	This	is	created	using	a	BCH	code,	a	type	of	error

correction	code	(although	for	Bitcoin	addresses,	we’ll	see	later	that	it’s

essential	to	use	the	checksum	only	for	error	detection—not	correction).

Let’s	illustrate	these	rules	by	walking	through	an	example	of	creating	bech32

and	bech32m	addresses.	For	all	of	the	following	examples,	we’ll	use	the

bech32m	reference	code	for	Python.

Let’s	start	by	generating	four	output	scripts,	one	for	each	of	the	different	segwit

outputs	in	use	at	the	time	of	publication,	plus	one	for	a	future	segwit	version	that

doesn’t	yet	have	a	defined	meaning.	The	scripts	are	listed	in	Table	4-3.

Table	4-3.	Scripts	for	different	types	of	segwit	outputs

P2WPKH OP_0	2b626ed108ad00a944bb2922a309844611d25468

P2WSH OP_0

648a32e50b6fb7c5233b228f60a6a2ca4158400268844c4bc295ed5e8c3d626f

P2TR OP_1

2ceefa5fa770ff24f87c5475d76eab519eda6176b11dbe1618fcf755bfac5311

Future OP_16	0000

https://github.com/sipa/bech32/tree/master/ref

Example

For	the	P2WPKH	output,	the	witness	program	contains	a	commitment

constructed	in	exactly	the	same	way	as	the	commitment	for	a	P2PKH	output

seen	in	“Legacy	Addresses	for	P2PKH”.	A	public	key	is	passed	into	a	SHA256

hash	function.	The	resultant	32	byte	digest	is	then	passed	into	a	RIPEMD-160

hash	function.	The	digest	of	that	function	(the	commitment)	is	placed	in	the

witness	program.

For	the	P2WSH	output,	we	don’t	use	the	P2SH	algorithm.	Instead	we	take	the

script,	pass	it	into	a	SHA256	hash	function,	and	use	the	32-byte	digest	of	that

function	in	the	witness	program.	For	P2SH,	the	SHA256	digest	was	hashed

again	with	RIPEMD-160,	but	that	may	not	be	secure	in	some	cases;	for	details,

see	“P2SH	collision	attacks”.	A	result	of	using	SHA256	without	RIPEMD160	is

that	P2WSH	commitments	are	32	bytes	(256	bits)	instead	20	bytes	(160	bits).

For	the	Pay-to-Taproot	(P2TR)	output,	the	witness	program	is	a	point	on	the

secp256k1	curve.	It	may	be	a	simple	public	key,	but	in	most	cases	it	should	be	a

public	key	that	commits	to	some	additional	data.	We’ll	learn	more	about	that

commitment	in	XREF	HERE.

For	the	example	of	a	future	segwit	version,	we	simply	use	the	highest	possible

segwit	version	number	(16)	and	the	smallest	allowed	witness	program	(2	bytes)

with	a	null	value.

Now	that	we	know	the	version	number	and	the	witness	program,	we	can	convert

each	of	them	into	a	bech32	address.	Let’s	use	the	bech32m	reference	library	for

Python	to	quickly	generate	those	addresses,	and	then	take	a	deeper	look	at	what’s

happening:

wget	https://raw.githubusercontent.com/sipa/bech32/master/ref/python/segwit_addr.py

2023-01-30	11:59:10	(46.3	MB/s)	-	‘segwit_addr.py’	saved	[5022/5022]

$	python

>>>	from	segwit_addr	import	*

>>>	from	binascii	import	unhexlify

>>>	help(encode)

encode(hrp,	witver,	witprog)

				Encode	a	segwit	address.

>>>	encode('bc',	0,	unhexlify('2b626ed108ad00a944bb2922a309844611d25468'))

'bc1q9d3xa5gg45q2j39m9y32xzvygcgay4rgc6aaee'

>>>	encode('bc',	0,	unhexlify('648a32e50b6fb7c5233b228f60a6a2ca4158400268844c4bc295ed5e8c3d626f'))

'bc1qvj9r9egtd7mu2gemy28kpf4zefq4ssqzdzzycj7zjhk4arpavfhsct5a3p'

>>>	encode('bc',	1,	unhexlify('2ceefa5fa770ff24f87c5475d76eab519eda6176b11dbe1618fcf755bfac5311'))

'bc1p9nh05ha8wrljf7ru236awm4t2x0d5ctkkywmu9sclnm4t0av2vgs4k3au7'

>>>	encode('bc',	16,	unhexlify('0000'))

'bc1sqqqqkfw08p'

If	we	open	the	file	 segwit_addr.py 	and	look	at	what	the	code	is	doing,	the

first	thing	we	will	notice	is	the	sole	difference	between	bech32	(used	for	segwit

v0)	and	bech32m	(used	for	later	segwit	versions)	is	the	constant.

BECH32_CONSTANT	=	1

BECH32M_CONSTANT	=	0x2bc830a3

Next	we	notice	the	code	produce	the	checksum.	In	the	final	step	of	the

checksum,	the	appropriate	constant	is	merged	into	the	value	using	an	xor

operation.	That	single	value	is	the	only	difference	between	bech32	and	bech32m.

With	the	checksum	created,	each	5-bit	character	in	the	data	part	(including	the

witness	version,	witness	program,	and	checksum)	is	converted	to	alphanumeric

characters.

For	decoding	back	into	a	scriptPubKey,	we	work	in	reverse.	First	let’s	use	the

reference	library	to	decode	two	of	our	addresses:

>>>	help(decode)

decode(hrp,	addr)

				Decode	a	segwit	address.

>>>	_	=	decode("bc",	"bc1q9d3xa5gg45q2j39m9y32xzvygcgay4rgc6aaee");	_[0],	bytes(_[1]).hex()

(0,	'2b626ed108ad00a944bb2922a309844611d25468')

>>>	_	=	decode("bc",	"bc1p9nh05ha8wrljf7ru236awm4t2x0d5ctkkywmu9sclnm4t0av2vgs4k3au7");	_[0],	bytes(_[1]).hex()

(1,	'2ceefa5fa770ff24f87c5475d76eab519eda6176b11dbe1618fcf755bfac5311')

We	get	back	both	the	witness	version	and	the	witness	program.	Those	can	be

inserted	into	the	template	for	our	scriptPubKey:

<version>	<program>

For	example:

OP_0	2b626ed108ad00a944bb2922a309844611d25468

OP_1	2ceefa5fa770ff24f87c5475d76eab519eda6176b11dbe1618fcf755bfac5311

WARNING

One	possible	mistake	here	to	be	aware	of	is	that	a	witness	version	of	 0 	is	for	 OP_0 ,	which	uses	the	byte

0x00—but	a	witness	version	of	 1 	uses	 OP_1 ,	which	is	byte	0x51.	Witness	versions	 2 	through	 16 	use

0x52	through	0x60,	respectively.

When	implementing	bech32m	encoding	or	decoding,	we	very	strongly

recommend	that	you	use	the	test	vectors	provided	in	BIP350.	We	also	ask	that

you	ensure	your	code	passes	the	test	vectors	related	to	paying	future	segwit

versions	that	haven’t	been	defined	yet.	This	will	help	make	your	software	is

usable	for	many	years	to	come	even	if	you	aren’t	able	to	add	support	for	new

Bitcoin	features	as	soon	as	they	become	available.

Private	key	formats

The	private	key	can	be	represented	in	a	number	of	different	formats,	all	of	which

correspond	to	the	same	256-bit	number.	Table	4-4	shows	several	common

formats	used	to	represent	private	keys.	Different	formats	are	used	in	different

circumstances.	Hexadecimal	and	raw	binary	formats	are	used	internally	in

software	and	rarely	shown	to	users.	The	WIF	is	used	for	import/export	of	keys

between	wallets	and	often	used	in	QR	code	(barcode)	representations	of	private

keys.

MODERN	RELEVANCY	OF	PRIVATE	KEY	FORMATS

Early	Bitcoin	wallet	software	generated	one	or	more	independent	private	keys

when	a	new	user	wallet	was	initialized.	When	the	initial	set	of	keys	had	all	been

used,	the	wallet	might	generate	additional	private	keys.	Individual	private	keys

could	be	exported	or	imported.	Any	time	new	private	keys	were	generated	or

imported,	a	new	backup	of	the	wallet	needed	to	be	created.

Later	Bitcoin	wallets	began	using	deterministic	wallets	where	all	private	keys

are	generated	from	a	single	seed	value.	These	wallets	only	ever	need	to	be

backed	up	once	for	typical	onchain	use.	However,	if	a	user	exports	a	single

private	key	from	one	of	these	wallets	and	an	attacker	acquires	that	key	plus	some

non-private	data	about	the	wallet,	they	can	potentially	derive	any	private	key	in

the	wallet—allowing	the	attacker	to	steal	all	of	the	wallet	funds.	Additionally,

keys	cannot	be	imported	into	deterministic	wallets.	This	means	almost	no

modern	wallets	support	the	ability	to	export	or	import	an	individual	key.	The

information	in	this	section	is	mainly	of	interest	to	anyone	needing	compatibility

with	early	Bitcoin	wallets.

For	more	information,	see	XREF	HERE.

Table	4-4.	Private	key	representations	(encoding	formats)

Type Prefix Description

Raw None 32	bytes

Hex None 64	hexadecimal	digits

WIF 5 Base58Check	encoding:	base58	with

version	prefix	of	128-	and	32-bit

checksum

WIF-

compressed

K	or	L As	above,	with	added	suffix	0x01

before	encoding

Table	4-5	shows	the	private	key	generated	in	several	different	formats.

Table	4-5.	Example:	Same	key,	different	formats

Format Private	key

Hex 1e99423a4ed27608a15a2616a2b0e9e52ced330ac530edcc32c8ffc6a526aedd

WIF 5J3mBbAH58CpQ3Y5RNJpUKPE62SQ5tfcvU2JpbnkeyhfsYB1Jcn

WIF-

compressed

KxFC1jmwwCoACiCAWZ3eXa96mBM6tb3TYzGmf6YwgdGWZgawvrtJ

All	of	these	representations	are	different	ways	of	showing	the	same	number,	the

same	private	key.	They	look	different,	but	any	one	format	can	easily	be

converted	to	any	other	format.	Note	that	the	“raw	binary”	is	not	shown	in

Table	4-5	as	any	encoding	for	display	here	would,	by	definition,	not	be	raw

binary	data.

We	use	the	 wif-to-ec 	command	from	Bitcoin	Explorer	(see	XREF	HERE)

to	show	that	both	WIF	keys	represent	the	same	private	key:

$	bx	wif-to-ec	5J3mBbAH58CpQ3Y5RNJpUKPE62SQ5tfcvU2JpbnkeyhfsYB1Jcn

1e99423a4ed27608a15a2616a2b0e9e52ced330ac530edcc32c8ffc6a526aedd

$	bx	wif-to-ec	KxFC1jmwwCoACiCAWZ3eXa96mBM6tb3TYzGmf6YwgdGWZgawvrtJ

1e99423a4ed27608a15a2616a2b0e9e52ced330ac530edcc32c8ffc6a526aedd

Compressed	private	keys

Ironically,	the	term	“compressed	private	key”	is	a	misnomer,	because	when	a

private	key	is	exported	as	WIF-compressed	it	is	actually	one	byte	longer	than	an

“uncompressed”	private	key.	That	is	because	the	private	key	has	an	added	one-

byte	suffix	(shown	as	01	in	hex	in	Table	4-6),	which	signifies	that	the	private	key

is	from	a	newer	wallet	and	should	only	be	used	to	produce	compressed	public

keys.	Private	keys	are	not	themselves	compressed	and	cannot	be	compressed.

The	term	“compressed	private	key”	really	means	“private	key	from	which	only

compressed	public	keys	should	be	derived,”	whereas	“uncompressed	private

key”	really	means	“private	key	from	which	only	uncompressed	public	keys

should	be	derived.”	You	should	only	refer	to	the	export	format	as	“WIF-

compressed”	or	“WIF”	and	not	refer	to	the	private	key	itself	as	“compressed”	to

avoid	further	confusion

Table	4-6	shows	the	same	key,	encoded	in	WIF	and	WIF-compressed	formats.

Table	4-6.	Example:	Same	key,	different	formats

Format Private	key

Hex 1E99423A4ED27608A15A2616A2B0E9E52CED330AC530EDCC32C8FFC6A526AEDD

WIF 5J3mBbAH58CpQ3Y5RNJpUKPE62SQ5tfcvU2JpbnkeyhfsYB1Jcn

Hex-

compressed

1E99423A4ED27608A15A2616A2B0E9E52CED330AC530EDCC32C8FFC6A526AEDD01

WIF-

compressed

KxFC1jmwwCoACiCAWZ3eXa96mBM6tb3TYzGmf6YwgdGWZgawvrtJ

Notice	that	the	hex-compressed	private	key	format	has	one	extra	byte	at	the	end

(01	in	hex).	While	the	base58	encoding	version	prefix	is	the	same	(0x80)	for

both	WIF	and	WIF-compressed	formats,	the	addition	of	one	byte	on	the	end	of

the	number	causes	the	first	character	of	the	base58	encoding	to	change	from	a	5

to	either	a	K	or	L.	Think	of	this	as	the	base58	equivalent	of	the	decimal	encoding

difference	between	the	number	100	and	the	number	99.	While	100	is	one	digit

longer	than	99,	it	also	has	a	prefix	of	1	instead	of	a	prefix	of	9.	As	the	length

changes,	it	affects	the	prefix.	In	base58,	the	prefix	5	changes	to	a	K	or	L	as	the

length	of	the	number	increases	by	one	byte.

Remember,	these	formats	are	not	used	interchangeably.	In	a	newer	wallet	that

implements	compressed	public	keys,	the	private	keys	will	only	ever	be	exported

as	WIF-compressed	(with	a	K	or	L	prefix).	If	the	wallet	is	an	older

implementation	and	does	not	use	compressed	public	keys,	the	private	keys	will

only	ever	be	exported	as	WIF	(with	a	5	prefix).	The	goal	here	is	to	signal	to	the

wallet	importing	these	private	keys	whether	it	must	search	the	blockchain	for

compressed	or	uncompressed	public	keys	and	addresses.

If	a	bitcoin	wallet	is	able	to	implement	compressed	public	keys,	it	will	use	those

in	all	transactions.	The	private	keys	in	the	wallet	will	be	used	to	derive	the	public

key	points	on	the	curve,	which	will	be	compressed.	The	compressed	public	keys

will	be	used	to	produce	Bitcoin	addresses	and	those	will	be	used	in	transactions.

When	exporting	private	keys	from	a	new	wallet	that	implements	compressed

public	keys,	the	WIF	is	modified,	with	the	addition	of	a	one-byte	suffix	 01 	to

the	private	key.	The	resulting	base58check-encoded	private	key	is	called	a

“compressed	WIF”	and	starts	with	the	letter	K	or	L,	instead	of	starting	with	“5”

as	is	the	case	with	WIF-encoded	(uncompressed)	keys	from	older	wallets.

TIP

“Compressed	private	keys”	is	a	misnomer!	They	are	not	compressed;	rather,	WIF-compressed	signifies	that

the	keys	should	only	be	used	to	derive	compressed	public	keys	and	their	corresponding	Bitcoin	addresses.

Ironically,	a	“WIF-compressed”	encoded	private	key	is	one	byte	longer	because	it	has	the	added	 01 	suffix

to	distinguish	it	from	an	“uncompressed”	one.

Advanced	Keys	and	Addresses

In	the	following	sections	we	will	look	at	advanced	forms	of	keys	and	addresses,

such	as	vanity	addresses	and	paper	wallets.

Vanity	Addresses

Vanity	addresses	are	valid	Bitcoin	addresses	that	contain	human-readable

messages.	For	example,	 1LoveBPzzD72PUXLzCkYAtGFYmK5vYNR33 	is	a

valid	address	that	contains	the	letters	forming	the	word	“Love”	as	the	first	four

base58	letters.	Vanity	addresses	require	generating	and	testing	billions	of

candidate	private	keys,	until	a	Bitcoin	address	with	the	desired	pattern	is	found.

Although	there	are	some	optimizations	in	the	vanity	generation	algorithm,	the

process	essentially	involves	picking	a	private	key	at	random,	deriving	the	public

key,	deriving	the	Bitcoin	address,	and	checking	to	see	if	it	matches	the	desired

vanity	pattern,	repeating	billions	of	times	until	a	match	is	found.

Once	a	vanity	address	matching	the	desired	pattern	is	found,	the	private	key

from	which	it	was	derived	can	be	used	by	the	owner	to	spend	bitcoin	in	exactly

the	same	way	as	any	other	address.	Vanity	addresses	are	no	less	or	more	secure

than	any	other	address.	They	depend	on	the	same	Elliptic	Curve	Cryptography

(ECC)	and	SHA	as	any	other	address.	You	can	no	more	easily	find	the	private

key	of	an	address	starting	with	a	vanity	pattern	than	you	can	any	other	address.

In	Chapter	1,	we	introduced	Eugenia,	a	children’s	charity	director	operating	in

the	Philippines.	Let’s	say	that	Eugenia	is	organizing	a	bitcoin	fundraising	drive

and	wants	to	use	a	vanity	Bitcoin	address	to	publicize	the	fundraising.	Eugenia

will	create	a	vanity	address	that	starts	with	“1Kids”	to	promote	the	children’s

charity	fundraiser.	Let’s	see	how	this	vanity	address	will	be	created	and	what	it

means	for	the	security	of	Eugenia’s	charity.

Generating	vanity	addresses

It’s	important	to	realize	that	a	Bitcoin	address	is	simply	a	number	represented	by

symbols	in	the	base58	alphabet.	The	search	for	a	pattern	like	“1Kids”	can	be

seen	as	searching	for	an	address	in	the	range	from

1Kids11111111111111111111111111111 	to

1Kidszzzzzzzzzzzzzzzzzzzzzzzzzzzzz .	There	are	approximately

58 	(approximately	1.4	*	10)	addresses	in	that	range,	all	starting	with

“1Kids.”	Table	4-7	shows	the	range	of	addresses	that	have	the	prefix	1Kids.

Table	4-7.	The	range	of	vanity	addresses	starting	with	“1Kids”

From 1Kids11111111111111111111111111111

1Kids11111111111111111111111111112

1Kids11111111111111111111111111113

…

29 51

To 1Kidszzzzzzzzzzzzzzzzzzzzzzzzzzzzz

Let’s	look	at	the	pattern	“1Kids”	as	a	number	and	see	how	frequently	we	might

find	this	pattern	in	a	Bitcoin	address	(see	Table	4-8).	An	average	desktop

computer	PC,	without	any	specialized	hardware,	can	search	approximately

100,000	keys	per	second.

Table	4-8.	The	frequency	of	a	vanity	pattern	(1KidsCharity)	and	average	search	time	on	a	desktop	PC

Length Pattern Frequency
Average	search

time

1 1K 1	in	58	keys <	1	milliseconds

2 1Ki 1	in	3,364 50	milliseconds

3 1Kid 1	in	195,000 <	2	seconds

4 1Kids 1	in	11	million 1	minute

5 1KidsC 1	in	656	million 1	hour

6 1KidsCh 1	in	38	billion 2	days

7 1KidsCha 1	in	2.2	trillion 3–4	months

8 1KidsChar 1	in	128	trillion 13–18	years

9 1KidsChari 1	in	7

quadrillion

800	years

10 1KidsCharit 1	in	400

quadrillion

46,000	years

11 1KidsCharity 1	in	23

quintillion

2.5	million	years

As	you	can	see,	Eugenia	won’t	be	creating	the	vanity	address	“1KidsCharity”

anytime	soon,	even	if	she	had	access	to	several	thousand	computers.	Each

additional	character	increases	the	difficulty	by	a	factor	of	58.	Patterns	with	more

than	seven	characters	are	usually	found	by	specialized	hardware,	such	as

custom-built	desktops	with	multiple	GPUs.	Vanity	searches	on	GPU	systems	are

many	orders	of	magnitude	faster	than	on	a	general-purpose	CPU.

Another	way	to	find	a	vanity	address	is	to	outsource	the	work	to	a	pool	of	vanity

miners.	A	pool	is	a	service	that	allows	those	with	GPU	hardware	to	earn	bitcoin

searching	for	vanity	addresses	for	others.	For	a	fee,	Eugenia	can	outsource	the

search	for	a	seven-character	pattern	vanity	address	and	get	results	in	a	few	hours

instead	of	having	to	run	a	CPU	search	for	months.

Generating	a	vanity	address	is	a	brute-force	exercise:	try	a	random	key,	check

the	resulting	address	to	see	if	it	matches	the	desired	pattern,	repeat	until

successful.

Vanity	address	security	and	privacy

Vanity	addresses	were	popular	in	the	early	years	of	Bitcoin	but	have	almost

entirely	disappeared	from	use	as	of	2023.	There	are	two	likely	causes	for	this

trend:

1.	 Deterministic	wallets:	as	we	saw	in	“Recovery	Codes”,	it’s	possible	to	back

up	every	key	in	most	modern	wallets	by	simply	writing	down	a	few	words	or

characters.	This	is	achieved	by	deriving	every	key	in	the	wallet	from	those

words	or	characters	using	a	deterministic	algorithm.	It’s	not	possible	to	use

vanity	addresses	with	a	deterministic	wallet	unless	the	user	backs	up

additional	data	for	every	vanity	address	they	create.	More	practically,	most

wallets	using	deterministic	key	generation	simply	don’t	allow	importing	a

private	key	or	key	tweak	from	a	vanity	generator.

2.	 Avoiding	address	reuse:	using	a	vanity	address	to	receive	multiple	payments

to	the	same	address	creates	a	link	between	all	of	those	payments.	This	might

be	acceptable	to	Eugenia	if	her	non-profit	needs	to	report	its	income	and

expenditures	to	a	tax	authority	anyway.	However,	it	also	reduces	the	privacy

of	people	who	either	pay	Eugenia	or	receive	payments	from	her.	For	example,

Alice	may	want	to	donate	anonymously	and	Bob	may	not	want	his	other

customers	to	know	that	he	gives	discount	pricing	to	Eugenia.

Given	those	problems,	we	don’t	expect	to	see	many	vanity	addresses	in	the

future,	although	there	will	probably	always	be	some.

Paper	Wallets

Paper	wallets	are	bitcoin	private	keys	printed	on	paper.	Often	the	paper	wallet

also	includes	the	corresponding	Bitcoin	address	for	convenience,	but	this	is	not

necessary	because	it	can	be	derived	from	the	private	key.

WARNING

Paper	wallets	are	an	OBSOLETE	technology	and	are	dangerous	for	most	users.	There	are	many	subtle

pitfalls	involved	in	generating	them,	not	least	of	which	the	possibility	that	the	generating	code	is

compromised	with	a	“back	door”.	Hundreds	of	bitcoin	have	been	stolen	this	way.	Paper	wallets	are	shown

here	for	informational	purposes	only	and	should	not	be	used	for	storing	bitcoin.	Use	a	recovery	code	to

backup	your	keys,	possibly	with	a	hardware	signing	device	to	store	keys	and	sign	transactions.	DO	NOT

USE	PAPER	WALLETS.

Paper	wallets	come	in	many	shapes,	sizes,	and	designs,	but	at	a	very	basic	level

are	just	a	key	and	an	address	printed	on	paper.	Table	4-9	shows	the	simplest	form

of	a	paper	wallet.

Table	4-9.	Simplest	form	of	a	paper	wallet—a	printout	of	the	Bitcoin	address	and	private	key

Public	address Private	key	(WIF)

1424C2F4bC9JidNjjTUZCbUxv6Sa1Mt62x 5J3mBbAH58CpQ3Y5RNJpUKPE62SQ5tfcvU2JpbnkeyhfsYB1Jcn

Paper	wallets	come	in	many	designs	and	sizes,	with	many	different	features.

Figure	4-10	shows	a	sample	paper	wallet.

Figure	4-10.	An	example	of	a	simple	paper	wallet

Some	are	intended	to	be	given	as	gifts	and	have	seasonal	themes,	such	as

Christmas	and	New	Year’s	themes.	Others	are	designed	for	storage	in	a	bank

vault	or	safe	with	the	private	key	hidden	in	some	way,	either	with	opaque

scratch-off	stickers,	or	folded	and	sealed	with	tamper-proof	adhesive	foil.	Other

designs	feature	additional	copies	of	the	key	and	address,	in	the	form	of

detachable	stubs	similar	to	ticket	stubs,	allowing	you	to	store	multiple	copies	to

protect	against	fire,	flood,	or	other	natural	disasters.

Figure	4-11.	An	example	of	a	paper	wallet	with	additional	copies	of	the	keys	on	a	backup	“stub”

From	the	original	public-key	focused	design	of	Bitcoin	to	modern	addresses	and

scripts	like	bech32m	and	pay-to-taproot—and	even	addresses	for	future	Bitcoin

upgrades—you’ve	learned	how	the	Bitcoin	protocol	allows	spenders	to	identify

the	wallets	which	should	receive	their	payments.	But	when	it’s	actually	your

wallet	receiving	the	payments,	you’re	going	to	want	the	assurance	that	you’ll

still	have	access	to	that	money	even	if	something	happens	to	your	wallet	data.	In

the	next	chapter,	we’ll	look	at	how	Bitcoin	wallets	are	designed	to	protect	their

funds	from	a	variety	of	threats.

About	the	Authors

Andreas	M.	Antonopoulos	is	a	noted	technologist	and	serial	entrepreneur	who

has	become	one	of	the	most	well-known	and	well-respected	figures	in	bitcoin.

As	an	engaging	public	speaker,	teacher,	and	writer,	Andreas	makes	complex

subjects	accessible	and	easy	to	understand.	As	an	advisor,	he	helps	startups

recognize,	evaluate,	and	navigate	security	and	business	risks.

Andreas	grew	up	with	the	internet,	starting	his	first	company,	an	early	BBS	and

proto-ISP,	as	a	teenager	in	his	home	in	Greece.	He	earned	degrees	in	computer

science,	data	communications,	and	distributed	systems	from	University	College

London	(UCL)—recently	ranked	among	the	world’s	top	10	universities.	After

moving	to	the	United	States,	Andreas	cofounded	and	managed	a	successful

technology	research	company,	and	in	that	role	advised	dozens	of	Fortune	500

company	executives	on	networking,	security,	data	centers,	and	cloud	computing.

More	than	200	of	his	articles	on	security,	cloud	computing,	and	data	centers	have

been	published	in	print	and	syndicated	worldwide.	He	holds	two	patents	in

networking	and	security.

In	1990,	Andreas	started	teaching	various	IT	topics	in	private,	professional,	and

academic	environments.	He	honed	his	speaking	skills	in	front	of	audiences

ranging	in	size	from	five	executives	in	a	boardroom	to	thousands	of	people	in

large	conferences.	With	more	than	400	speaking	engagements	under	his	belt	he

is	considered	a	world-class	and	charismatic	public	speaker	and	teacher.	In	2014,

he	was	appointed	as	a	teaching	fellow	with	the	University	of	Nicosia,	the	first

university	in	the	world	to	offer	a	masters	degree	in	digital	currency.	In	this	role,

he	helped	develop	the	curriculum	and	cotaught	the	Introduction	to	Digital

Currencies	course,	offered	as	a	massive	open	online	course	(MOOC)	through	the

university.

As	a	bitcoin	entrepreneur,	Andreas	has	founded	a	number	of	bitcoin	businesses

and	launched	several	community	open	source	projects.	He	serves	as	an	advisor

to	several	bitcoin	and	cryptocurrency	companies.	He	is	a	widely	published

author	of	articles	and	blog	posts	on	bitcoin,	a	permanent	host	on	the	popular

Let’s	Talk	Bitcoin	podcast,	and	a	frequent	speaker	at	technology	and	security

conferences	worldwide.

David	A.	Harding	is	a	technical	writer	focused	on	creating	documentation	for

open	source	software.	He	is	the	co-author	of	the	Bitcoin	Optech	weekly

newsletter	(2018-23),	21.co	Bitcoin	Computer	tutorials	(2015-17),	and

Bitcoin.org	developer	documentation	(2014-15).	He	is	also	a	Brink.dev	grant

committee	member	(2022-23)	and	former	board	member	(2020-22).	David

previously	worked	freelance	(2007-15).

	1. Introduction
	History of Bitcoin
	Bitcoin Uses, Users, and Their Stories
	Getting Started
	Choosing a Bitcoin Wallet
	Quick Start
	Recovery Codes
	Bitcoin addresses
	Receiving bitcoin
	Getting Your First Bitcoin
	Finding the Current Price of Bitcoin
	Sending and Receiving Bitcoin

	2. How Bitcoin Works
	Bitcoin Overview
	Buying from an Online Store

	Bitcoin Transactions
	Transaction Inputs and Outputs
	Transaction Chains
	Making Change
	Coin selection
	Common Transaction Forms

	Constructing a Transaction
	Getting the Right Inputs
	Creating the Outputs
	Adding the Transaction to the Ledger

	Bitcoin Mining
	Mining Transactions in Blocks
	Spending the Transaction

	3. Bitcoin Core: The Reference Implementation
	From Bitcoin to Bitcoin Core
	Bitcoin Development Environment
	Compiling Bitcoin Core from the Source Code
	Selecting a Bitcoin Core Release
	Configuring the Bitcoin Core Build
	Building the Bitcoin Core Executables

	Running a Bitcoin Core Node
	Configuring the Bitcoin Core Node

	Bitcoin Core Application Programming Interface (API)
	Getting Information on Bitcoin Core’s Status
	Exploring and Decoding Transactions
	Exploring Blocks
	Using Bitcoin Core’s Programmatic Interface

	Alternative Clients, Libraries, and Toolkits
	C/C++
	JavaScript
	Java
	Python
	Go
	Rust
	C#

	4. Keys and Addresses
	Public Key Cryptography
	Private Keys
	Elliptic Curve Cryptography Explained
	Public Keys

	ScriptPubKey and ScriptSig
	IP Addresses: The Original Address For Bitcoin (P2PK)
	Legacy Addresses for P2PKH
	Base58Check Encoding
	Decode from Base58Check

	Compressed public keys
	Legacy Pay-to-Script-Hash (P2SH)
	Bech32 addresses
	Problems with bech32 addresses
	Bech32m
	Private key formats

	Advanced Keys and Addresses
	Vanity Addresses
	Paper Wallets

	About the Authors

