
Introduction

This handbook is a guide to ordinal theory. Ordinal theory concerns itself with satoshis,

giving them individual identities and allowing them to be tracked, transferred, and

imbued with meaning.

Satoshis, not bitcoin, are the atomic, native currency of the Bitcoin network. One bitcoin

can be sub-divided into 100,000,000 satoshis, but no further.

Ordinal theory does not require a sidechain or token aside from Bitcoin, and can be used

without any changes to the Bitcoin network. It works right now.

Ordinal theory imbues satoshis with numismatic value, allowing them to be collected and

traded as curios.

Individual satoshis can be inscribed with arbitrary content, creating unique Bitcoin-native

digital artifacts that can be held in Bitcoin wallets and transferred using Bitcoin

transactions. Inscriptions are as durable, immutable, secure, and decentralized as Bitcoin

itself.

Other, more unusual use-cases are possible: off-chain colored-coins, public key

infrastructure with key rotation, a decentralized replacement for the DNS. For now

though, such use-cases are speculative, and exist only in the minds of fringe ordinal

theorists.

For more details on ordinal theory, see the overview.

For more details on inscriptions, see inscriptions.

When you're ready to get your hands dirty, a good place to start is with inscriptions, a

curious species of digital artifact enabled by ordinal theory.

Links

• GitHub

• BIP

• Discord

• Open Ordinals Institute Website

• Open Ordinals Institute X

• Mainnet Block Explorer

• Signet Block Explorer

Ordinal Theory Handbook https://docs.ordinals.com/print.html

1 of 84 2/7/24, 17:46

https://docs.ordinals.com/print.html#introduction
https://docs.ordinals.com/print.html#introduction
https://docs.ordinals.com/overview.html
https://docs.ordinals.com/overview.html
https://docs.ordinals.com/inscriptions.html
https://docs.ordinals.com/inscriptions.html
https://docs.ordinals.com/guides/inscriptions.html
https://docs.ordinals.com/guides/inscriptions.html
https://docs.ordinals.com/print.html#links
https://docs.ordinals.com/print.html#links
https://github.com/ordinals/ord/
https://github.com/ordinals/ord/
https://github.com/ordinals/ord/blob/master/bip.mediawiki
https://github.com/ordinals/ord/blob/master/bip.mediawiki
https://discord.gg/ordinals
https://discord.gg/ordinals
https://ordinals.org/
https://ordinals.org/
https://x.com/ordinalsorg
https://x.com/ordinalsorg
https://ordinals.com/
https://ordinals.com/
https://signet.ordinals.com/
https://signet.ordinals.com/

Videos

• Ordinal Theory Explained: Satoshi Serial Numbers and NFTs on Bitcoin

• Ordinals Workshop with Rodarmor

Ordinal Theory Handbook https://docs.ordinals.com/print.html

2 of 84 2/7/24, 17:46

https://docs.ordinals.com/print.html#videos
https://docs.ordinals.com/print.html#videos
https://www.youtube.com/watch?v=rSS0O2KQpsI
https://www.youtube.com/watch?v=rSS0O2KQpsI
https://www.youtube.com/watch?v=MC_haVa6N3I
https://www.youtube.com/watch?v=MC_haVa6N3I

Ordinal Theory Overview

Ordinals are a numbering scheme for satoshis that allows tracking and transferring

individual sats. These numbers are called ordinal numbers. Satoshis are numbered in the

order in which they're mined, and transferred from transaction inputs to transaction

outputs first-in-first-out. Both the numbering scheme and the transfer scheme rely on

order, the numbering scheme on the order in which satoshis are mined, and the transfer

scheme on the order of transaction inputs and outputs. Thus the name, ordinals.

Technical details are available in the BIP.

Ordinal theory does not require a separate token, another blockchain, or any changes to

Bitcoin. It works right now.

Ordinal numbers have a few different representations:

• Integer notation: 2099994106992659 The ordinal number, assigned according to the

order in which the satoshi was mined.

• Decimal notation: 3891094.16797 The first number is the block height in which the

satoshi was mined, the second the offset of the satoshi within the block.

• Degree notation: 3°111094′214″16797‴ . We'll get to that in a moment.

• Percentile notation: 99.99971949060254% . The satoshi's position in Bitcoin's supply,

expressed as a percentage.

• Name: satoshi . An encoding of the ordinal number using the characters a through

z .

Arbitrary assets, such as NFTs, security tokens, accounts, or stablecoins can be attached

to satoshis using ordinal numbers as stable identifiers.

Ordinals is an open-source project, developed on GitHub. The project consists of a BIP

describing the ordinal scheme, an index that communicates with a Bitcoin Core node to

track the location of all satoshis, a wallet that allows making ordinal-aware transactions, a

block explorer for interactive exploration of the blockchain, functionality for inscribing

satoshis with digital artifacts, and this manual.

Rarity

Humans are collectors, and since satoshis can now be tracked and transferred, people

will naturally want to collect them. Ordinal theorists can decide for themselves which sats

are rare and desirable, but there are some hints…

Ordinal Theory Handbook https://docs.ordinals.com/print.html

3 of 84 2/7/24, 17:46

https://docs.ordinals.com/print.html#ordinal-theory-overview
https://docs.ordinals.com/print.html#ordinal-theory-overview
https://ordinals.com/
https://ordinals.com/
https://github.com/ordinals/ord/blob/master/bip.mediawiki
https://github.com/ordinals/ord/blob/master/bip.mediawiki
https://ordinals.com/sat/2099994106992659
https://ordinals.com/sat/2099994106992659
https://ordinals.com/sat/2099994106992659
https://ordinals.com/sat/3891094.16797
https://ordinals.com/sat/3891094.16797
https://ordinals.com/sat/3891094.16797
https://ordinals.com/sat/3%C2%B0111094%E2%80%B2214%E2%80%B316797%E2%80%B4
https://ordinals.com/sat/3%C2%B0111094%E2%80%B2214%E2%80%B316797%E2%80%B4
https://ordinals.com/sat/3%C2%B0111094%E2%80%B2214%E2%80%B316797%E2%80%B4
https://ordinals.com/sat/99.99971949060254%25
https://ordinals.com/sat/99.99971949060254%25
https://ordinals.com/sat/99.99971949060254%25
https://ordinals.com/sat/satoshi
https://ordinals.com/sat/satoshi
https://ordinals.com/sat/satoshi
https://github.com/ordinals/ord
https://github.com/ordinals/ord
https://docs.ordinals.com/print.html#rarity
https://docs.ordinals.com/print.html#rarity

Bitcoin has periodic events, some frequent, some more uncommon, and these naturally

lend themselves to a system of rarity. These periodic events are:

• Blocks: A new block is mined approximately every 10 minutes, from now until the

end of time.

• Difficulty adjustments: Every 2016 blocks, or approximately every two weeks, the

Bitcoin network responds to changes in hashrate by adjusting the difficulty target

which blocks must meet in order to be accepted.

• Halvings: Every 210,000 blocks, or roughly every four years, the amount of new sats

created in every block is cut in half.

• Cycles: Every six halvings, something magical happens: the halving and the difficulty

adjustment coincide. This is called a conjunction, and the time period between

conjunctions a cycle. A conjunction occurs roughly every 24 years. The first

conjunction should happen sometime in 2032.

This gives us the following rarity levels:

• common : Any sat that is not the first sat of its block

• uncommon : The first sat of each block

• rare : The first sat of each difficulty adjustment period

• epic : The first sat of each halving epoch

• legendary : The first sat of each cycle

• mythic : The first sat of the genesis block

Which brings us to degree notation, which unambiguously represents an ordinal number

in a way that makes the rarity of a satoshi easy to see at a glance:

Ordinal theorists often use the terms "hour", "minute", "second", and "third" for A, B, C,

and D, respectively.

Now for some examples. This satoshi is common:

This satoshi is uncommon:

A°B′C″D‴
│ │ │ ╰─ Index of sat in the block
│ │ ╰─── Index of block in difficulty adjustment period
│ ╰───── Index of block in halving epoch
╰─────── Cycle, numbered starting from 0

1°1′1″1‴
│ │ │ ╰─ Not first sat in block
│ │ ╰─── Not first block in difficulty adjustment period
│ ╰───── Not first block in halving epoch
╰─────── Second cycle

Ordinal Theory Handbook https://docs.ordinals.com/print.html

4 of 84 2/7/24, 17:46

This satoshi is rare:

This satoshi is epic:

This satoshi is legendary:

And this satoshi is mythic:

If the block offset is zero, it may be omitted. This is the uncommon satoshi from above:

Rare Satoshi Supply

1°1′1″0‴
│ │ │ ╰─ First sat in block
│ │ ╰─── Not first block in difficulty adjustment period
│ ╰───── Not first block in halving epoch
╰─────── Second cycle

1°1′0″0‴
│ │ │ ╰─ First sat in block
│ │ ╰─── First block in difficulty adjustment period
│ ╰───── Not the first block in halving epoch
╰─────── Second cycle

1°0′1″0‴
│ │ │ ╰─ First sat in block
│ │ ╰─── Not first block in difficulty adjustment period
│ ╰───── First block in halving epoch
╰─────── Second cycle

1°0′0″0‴
│ │ │ ╰─ First sat in block
│ │ ╰─── First block in difficulty adjustment period
│ ╰───── First block in halving epoch
╰─────── Second cycle

0°0′0″0‴
│ │ │ ╰─ First sat in block
│ │ ╰─── First block in difficulty adjustment period
│ ╰───── First block in halving epoch
╰─────── First cycle

1°1′1″
│ │ ╰─ Not first block in difficulty adjustment period
│ ╰─── Not first block in halving epoch
╰───── Second cycle

Ordinal Theory Handbook https://docs.ordinals.com/print.html

5 of 84 2/7/24, 17:46

https://docs.ordinals.com/print.html#rare-satoshi-supply
https://docs.ordinals.com/print.html#rare-satoshi-supply

Total Supply

• common : 2.1 quadrillion

• uncommon : 6,929,999

• rare : 3437

• epic : 32

• legendary : 5

• mythic : 1

Current Supply

• common : 1.9 quadrillion

• uncommon : 808,262

• rare : 369

• epic : 3

• legendary : 0

• mythic : 1

At the moment, even uncommon satoshis are quite rare. As of this writing, 745,855

uncommon satoshis have been mined - one per 25.6 bitcoin in circulation.

Names

Each satoshi has a name, consisting of the letters A through Z, that get shorter the further

into the future the satoshi was mined. They could start short and get longer, but then all

the good, short names would be trapped in the unspendable genesis block.

As an example, 1905530482684727°'s name is "iaiufjszmoba". The name of the last

satoshi to be mined is "a". Every combination of 10 characters or less is out there, or will

be out there, someday.

Exotics

Satoshis may be prized for reasons other than their name or rarity. This might be due to a

quality of the number itself, like having an integer square or cube root. Or it might be due

to a connection to a historical event, such as satoshis from block 477,120, the block in

which SegWit activated, or 2099999997689999°, the last satoshi that will ever be mined.

Such satoshis are termed "exotic". Which satoshis are exotic and what makes them so is

Ordinal Theory Handbook https://docs.ordinals.com/print.html

6 of 84 2/7/24, 17:46

https://docs.ordinals.com/print.html#total-supply
https://docs.ordinals.com/print.html#total-supply
https://docs.ordinals.com/print.html#current-supply
https://docs.ordinals.com/print.html#current-supply
https://docs.ordinals.com/print.html#names
https://docs.ordinals.com/print.html#names
https://docs.ordinals.com/print.html#exotics
https://docs.ordinals.com/print.html#exotics

subjective. Ordinal theorists are encouraged to seek out exotics based on criteria of their

own devising.

Inscriptions

Satoshis can be inscribed with arbitrary content, creating Bitcoin-native digital artifacts.

Inscribing is done by sending the satoshi to be inscribed in a transaction that reveals the

inscription content on-chain. This content is then inextricably linked to that satoshi,

turning it into an immutable digital artifact that can be tracked, transferred, hoarded,

bought, sold, lost, and rediscovered.

Archaeology

A lively community of archaeologists devoted to cataloging and collecting early NFTs has

sprung up. Here's a great summary of historical NFTs by Chainleft.

A commonly accepted cut-off for early NFTs is March 19th, 2018, the date the first

ERC-721 contract, SU SQUARES, was deployed on Ethereum.

Whether or not ordinals are of interest to NFT archaeologists is an open question! In one

sense, ordinals were created in early 2022, when the Ordinals specification was finalized.

In this sense, they are not of historical interest.

In another sense though, ordinals were in fact created by Satoshi Nakamoto in 2009

when he mined the Bitcoin genesis block. In this sense, ordinals, and especially early

ordinals, are certainly of historical interest.

Many ordinal theorists favor the latter view. This is not least because the ordinals were

independently discovered on at least two separate occasions, long before the era of

modern NFTs began.

On August 21st, 2012, Charlie Lee posted a proposal to add proof-of-stake to Bitcoin to

the Bitcoin Talk forum. This wasn't an asset scheme, but did use the ordinal algorithm,

and was implemented but never deployed.

On October 8th, 2012, jl2012 posted a scheme to the same forum which uses decimal

notation and has all the important properties of ordinals. The scheme was discussed but

never implemented.

These independent inventions of ordinals indicate in some way that ordinals were

discovered, or rediscovered, and not invented. The ordinals are an inevitability of the

mathematics of Bitcoin, stemming not from their modern documentation, but from their

Ordinal Theory Handbook https://docs.ordinals.com/print.html

7 of 84 2/7/24, 17:46

https://docs.ordinals.com/print.html#inscriptions
https://docs.ordinals.com/print.html#inscriptions
https://docs.ordinals.com/print.html#archaeology
https://docs.ordinals.com/print.html#archaeology
https://mirror.xyz/chainleft.eth/MzPWRsesC9mQflxlLo-N29oF4iwCgX3lacrvaG9Kjko
https://mirror.xyz/chainleft.eth/MzPWRsesC9mQflxlLo-N29oF4iwCgX3lacrvaG9Kjko
https://tenthousandsu.com/
https://tenthousandsu.com/
https://bitcointalk.org/index.php?topic=102355.0
https://bitcointalk.org/index.php?topic=102355.0
https://bitcointalk.org/index.php?topic=102355.0
https://bitcointalk.org/index.php?topic=102355.0
https://bitcointalk.org/index.php?topic=117224.0
https://bitcointalk.org/index.php?topic=117224.0

ancient genesis. They are the culmination of a sequence of events set in motion with the

mining of the first block, so many years ago.

Ordinal Theory Handbook https://docs.ordinals.com/print.html

8 of 84 2/7/24, 17:46

Digital Artifacts

Imagine a physical artifact. A rare coin, say, held safe for untold years in the dark, secret

clutch of a Viking hoard, now dug from the earth by your grasping hands. It…

…has an owner. You. As long as you keep it safe, nobody can take it from you.

…is complete. It has no missing parts.

…can only be changed by you. If you were a trader, and you made your way to 18th

century China, none but you could stamp it with your chop-mark.

…can only be disposed of by you. The sale, trade, or gift is yours to make, to whomever

you wish.

What are digital artifacts? Simply put, they are the digital equivalent of physical artifacts.

For a digital thing to be a digital artifact, it must be like that coin of yours:

• Digital artifacts can have owners. A number is not a digital artifact, because nobody

can own it.

• Digital artifacts are complete. An NFT that points to off-chain content on IPFS or

Arweave is incomplete, and thus not a digital artifact.

• Digital artifacts are permissionless. An NFT which cannot be sold without paying a

royalty is not permissionless, and thus not a digital artifact.

• Digital artifacts are uncensorable. Perhaps you can change a database entry on a

centralized ledger today, but maybe not tomorrow, and thus one cannot be a digital

artifact.

• Digital artifacts are immutable. An NFT with an upgrade key is not a digital artifact.

The definition of a digital artifact is intended to reflect what NFTs should be, sometimes

are, and what inscriptions always are, by their very nature.

Ordinal Theory Handbook https://docs.ordinals.com/print.html

9 of 84 2/7/24, 17:46

https://docs.ordinals.com/print.html#digital-artifacts
https://docs.ordinals.com/print.html#digital-artifacts

Inscriptions

Inscriptions inscribe sats with arbitrary content, creating bitcoin-native digital artifacts,

more commonly known as NFTs. Inscriptions do not require a sidechain or separate

token.

These inscribed sats can then be transferred using bitcoin transactions, sent to bitcoin

addresses, and held in bitcoin UTXOs. These transactions, addresses, and UTXOs are

normal bitcoin transactions, addresses, and UTXOS in all respects, with the exception that

in order to send individual sats, transactions must control the order and value of inputs

and outputs according to ordinal theory.

The inscription content model is that of the web. An inscription consists of a content type,

also known as a MIME type, and the content itself, which is a byte string. This allows

inscription content to be returned from a web server, and for creating HTML inscriptions

that use and remix the content of other inscriptions.

Inscription content is entirely on-chain, stored in taproot script-path spend scripts.

Taproot scripts have very few restrictions on their content, and additionally receive the

witness discount, making inscription content storage relatively economical.

Since taproot script spends can only be made from existing taproot outputs, inscriptions

are made using a two-phase commit/reveal procedure. First, in the commit transaction, a

taproot output committing to a script containing the inscription content is created.

Second, in the reveal transaction, the output created by the commit transaction is spent,

revealing the inscription content on-chain.

Inscription content is serialized using data pushes within unexecuted conditionals, called

"envelopes". Envelopes consist of an OP_FALSE OP_IF … OP_ENDIF wrapping any number

of data pushes. Because envelopes are effectively no-ops, they do not change the

semantics of the script in which they are included, and can be combined with any other

locking script.

A text inscription containing the string "Hello, world!" is serialized as follows:

First the string ord is pushed, to disambiguate inscriptions from other uses of envelopes.

OP_FALSE
OP_IF
 OP_PUSH "ord"
 OP_PUSH 1
 OP_PUSH "text/plain;charset=utf-8"
 OP_PUSH 0
 OP_PUSH "Hello, world!"
OP_ENDIF

Ordinal Theory Handbook https://docs.ordinals.com/print.html

10 of 84 2/7/24, 17:46

https://docs.ordinals.com/print.html#inscriptions-1
https://docs.ordinals.com/print.html#inscriptions-1

OP_PUSH 1 indicates that the next push contains the content type, and OP_PUSH

0 indicates that subsequent data pushes contain the content itself. Multiple data pushes

must be used for large inscriptions, as one of taproot's few restrictions is that individual

data pushes may not be larger than 520 bytes.

The inscription content is contained within the input of a reveal transaction, and the

inscription is made on the first sat of its input. This sat can then be tracked using the

familiar rules of ordinal theory, allowing it to be transferred, bought, sold, lost to fees,

and recovered.

Content

The data model of inscriptions is that of a HTTP response, allowing inscription content to

be served by a web server and viewed in a web browser.

Fields

Inscriptions may include fields before an optional body. Each field consists of two data

pushes, a tag and a value.

Currently, there are six defined fields:

• content_type , with a tag of 1 , whose value is the MIME type of the body.

• pointer , with a tag of 2 , see pointer docs.

• parent , with a tag of 3 , see provenance.

• metadata , with a tag of 5 , see metadata.

• metaprotocol , with a tag of 7 , whose value is the metaprotocol identifier.

• content_encoding , with a tag of 9 , whose value is the encoding of the body.

• delegate , with a tag of 11 , see delegate.

The beginning of the body and end of fields is indicated with an empty data push.

Unrecognized tags are interpreted differently depending on whether they are even or

odd, following the "it's okay to be odd" rule used by the Lightning Network.

Even tags are used for fields which may affect creation, initial assignment, or transfer of

an inscription. Thus, inscriptions with unrecognized even fields must be displayed as

"unbound", that is, without a location.

Odd tags are used for fields which do not affect creation, initial assignment, or transfer,

such as additional metadata, and thus are safe to ignore.

Ordinal Theory Handbook https://docs.ordinals.com/print.html

11 of 84 2/7/24, 17:46

https://docs.ordinals.com/print.html#content
https://docs.ordinals.com/print.html#content
https://docs.ordinals.com/print.html#fields
https://docs.ordinals.com/print.html#fields
https://docs.ordinals.com/inscriptions/pointer.html
https://docs.ordinals.com/inscriptions/pointer.html
https://docs.ordinals.com/inscriptions/provenance.html
https://docs.ordinals.com/inscriptions/provenance.html
https://docs.ordinals.com/inscriptions/metadata.html
https://docs.ordinals.com/inscriptions/metadata.html
https://docs.ordinals.com/inscriptions/delegate.html
https://docs.ordinals.com/inscriptions/delegate.html

Inscription IDs

The inscriptions are contained within the inputs of a reveal transaction. In order to

uniquely identify them they are assigned an ID of the form:

521f8eccffa4c41a3a7728dd012ea5a4a02feed81f41159231251ecf1e5c79dai0

The part in front of the i is the transaction ID (txid) of the reveal transaction. The

number after the i defines the index (starting at 0) of new inscriptions being inscribed in

the reveal transaction.

Inscriptions can either be located in different inputs, within the same input or a

combination of both. In any case the ordering is clear, since a parser would go through

the inputs consecutively and look for all inscription envelopes .

Input Inscription Count Indices

0 2 i0, i1

1 1 i2

2 3 i3, i4, i5

3 0

4 1 i6

Inscription Numbers

Inscriptions are assigned inscription numbers starting at zero, first by the order reveal

transactions appear in blocks, and the order that reveal envelopes appear in those

transactions.

Due to a historical bug in ord which cannot be fixed without changing a great many

inscription numbers, inscriptions which are revealed and then immediately spent to fees

are numbered as if they appear last in the block in which they are revealed.

Inscriptions which are cursed are numbered starting at negative one, counting down.

Cursed inscriptions on and after the jubilee at block 824544 are vindicated, and are

assigned positive inscription numbers.

Sandboxing

HTML and SVG inscriptions are sandboxed in order to prevent references to off-chain

content, thus keeping inscriptions immutable and self-contained.

Ordinal Theory Handbook https://docs.ordinals.com/print.html

12 of 84 2/7/24, 17:46

https://docs.ordinals.com/print.html#inscription-ids
https://docs.ordinals.com/print.html#inscription-ids
https://docs.ordinals.com/print.html#inscription-numbers
https://docs.ordinals.com/print.html#inscription-numbers
https://docs.ordinals.com/print.html#sandboxing
https://docs.ordinals.com/print.html#sandboxing

This is accomplished by loading HTML and SVG inscriptions inside iframes with the

sandbox attribute, as well as serving inscription content with Content-Security-Policy

headers.

Reinscriptions

Previously inscribed sats can be reinscribed with the --reinscribe command if the

inscription is present in the wallet. This will only append an inscription to a sat, not

change the initial inscription.

Reinscribe with satpoint: ord wallet inscribe --fee-rate <FEE_RATE> --reinscribe

--file <FILE> --satpoint <SATPOINT>

Reinscribe on a sat (requires sat index): ord --index-sats wallet inscribe --fee-rate

<FEE_RATE> --reinscribe --file <FILE> --sat <SAT>

Ordinal Theory Handbook https://docs.ordinals.com/print.html

13 of 84 2/7/24, 17:46

https://docs.ordinals.com/print.html#reinscriptions
https://docs.ordinals.com/print.html#reinscriptions

Delegate

Inscriptions may nominate a delegate inscription. Requests for the content of an

inscription with a delegate will instead return the content and content type of the

delegate. This can be used to cheaply create copies of an inscription.

Specification

To create an inscription I with delegate inscription D:

• Create an inscription D. Note that inscription D does not have to exist when making

inscription I. It may be inscribed later. Before inscription D is inscribed, requests for

the content of inscription I will return a 404.

• Include tag 11 , i.e. OP_PUSH 11 , in I, with the value of the serialized binary

inscription ID of D, serialized as the 32-byte TXID , followed by the four-byte little-

endian INDEX , with trailing zeroes omitted.

NB The bytes of a bitcoin transaction ID are reversed in their text representation, so the

serialized transaction ID will be in the opposite order.

Example

An example of an inscription which delegates to

000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1fi0 :

Note that the value of tag 11 is decimal, not hex.

The delegate field value uses the same encoding as the parent field. See provenance for

more examples of inscrpition ID encodings;

OP_FALSE
OP_IF
 OP_PUSH "ord"
 OP_PUSH 11
 OP_PUSH 0x1f1e1d1c1b1a191817161514131211100f0e0d0c0b0a09080706050403020100
OP_ENDIF

Ordinal Theory Handbook https://docs.ordinals.com/print.html

14 of 84 2/7/24, 17:46

https://docs.ordinals.com/print.html#delegate
https://docs.ordinals.com/print.html#delegate
https://docs.ordinals.com/print.html#specification
https://docs.ordinals.com/print.html#specification
https://docs.ordinals.com/print.html#example
https://docs.ordinals.com/print.html#example
https://docs.ordinals.com/inscriptions/provenance.html
https://docs.ordinals.com/inscriptions/provenance.html

Metadata

Inscriptions may include CBOR metadata, stored as data pushes in fields with tag 5 .

Since data pushes are limited to 520 bytes, metadata longer than 520 bytes must be split

into multiple tag 5 fields, which will then be concatenated before decoding.

Metadata is human readable, and all metadata will be displayed to the user with its

inscription. Inscribers are encouraged to consider how metadata will be displayed, and

make metadata concise and attractive.

Metadata is rendered to HTML for display as follows:

• null , true , false , numbers, floats, and strings are rendered as plain text.

• Byte strings are rendered as uppercase hexadecimal.

• Arrays are rendered as tags, with every element wrapped in tags.

• Maps are rendered as <dl> tags, with every key wrapped in <dt> tags, and every

value wrapped in <dd> tags.

• Tags are rendered as the tag , enclosed in a <sup> tag, followed by the value.

CBOR is a complex spec with many different data types, and multiple ways of

representing the same data. Exotic data types, such as tags, floats, and bignums, and

encoding such as indefinite values, may fail to display correctly or at all. Contributions to

ord to remedy this are welcome.

Example

Since CBOR is not human readable, in these examples it is represented as JSON. Keep in

mind that this is only for these examples, and JSON metadata will not be displayed

correctly.

The metadata {"foo":"bar","baz":[null,true,false,0]} would be included in an

inscription as:

And rendered as:

OP_FALSE
OP_IF
 ...
 OP_PUSH 0x05 OP_PUSH '{"foo":"bar","baz":[null,true,false,0]}'
 ...
OP_ENDIF

Ordinal Theory Handbook https://docs.ordinals.com/print.html

15 of 84 2/7/24, 17:46

https://docs.ordinals.com/print.html#metadata
https://docs.ordinals.com/print.html#metadata
https://cbor.io/
https://cbor.io/
https://docs.ordinals.com/print.html#example-1
https://docs.ordinals.com/print.html#example-1

Metadata longer than 520 bytes must be split into multiple fields:

Which would then be concatenated into

{"very":"long","metadata":"is","finally":"done"} .

<dl>
 ...
 <dt>metadata</dt>
 <dd>
 <dl>
 <dt>foo</dt>
 <dd>bar</dd>
 <dt>baz</dt>
 <dd>

 null
 true
 false
 0

 </dd>
 </dl>
 </dd>
 ...
</dl>

OP_FALSE
OP_IF
 ...
 OP_PUSH 0x05 OP_PUSH '{"very":"long","metadata":'
 OP_PUSH 0x05 OP_PUSH '"is","finally":"done"}'
 ...
OP_ENDIF

Ordinal Theory Handbook https://docs.ordinals.com/print.html

16 of 84 2/7/24, 17:46

Pointer

In order to make an inscription on a sat other than the first of its input, a zero-based

integer, called the "pointer", can be provided with tag 2 , causing the inscription to be

made on the sat at the given position in the outputs. If the pointer is equal to or greater

than the number of total sats in the outputs of the inscribe transaction, it is ignored, and

the inscription is made as usual. The value of the pointer field is a little endian integer,

with trailing zeroes ignored.

An even tag is used, so that old versions of ord consider the inscription to be unbound,

instead of assigning it, incorrectly, to the first sat.

This can be used to create multiple inscriptions in a single transaction on different sats,

when otherwise they would be made on the same sat.

Examples

An inscription with pointer 255:

An inscription with pointer 256:

An inscription with pointer 256, with trailing zeroes, which are ignored:

OP_FALSE
OP_IF
 OP_PUSH "ord"
 OP_PUSH 1
 OP_PUSH "text/plain;charset=utf-8"
 OP_PUSH 2
 OP_PUSH 0xff
 OP_PUSH 0
 OP_PUSH "Hello, world!"
OP_ENDIF

OP_FALSE
OP_IF
 OP_PUSH "ord"
 OP_PUSH 1
 OP_PUSH "text/plain;charset=utf-8"
 OP_PUSH 2
 OP_PUSH 0x0001
 OP_PUSH 0
 OP_PUSH "Hello, world!"
OP_ENDIF

Ordinal Theory Handbook https://docs.ordinals.com/print.html

17 of 84 2/7/24, 17:46

https://docs.ordinals.com/print.html#pointer
https://docs.ordinals.com/print.html#pointer
https://docs.ordinals.com/print.html#examples
https://docs.ordinals.com/print.html#examples

OP_FALSE
OP_IF
 OP_PUSH "ord"
 OP_PUSH 1
 OP_PUSH "text/plain;charset=utf-8"
 OP_PUSH 2
 OP_PUSH 0x000100
 OP_PUSH 0
 OP_PUSH "Hello, world!"
OP_ENDIF

Ordinal Theory Handbook https://docs.ordinals.com/print.html

18 of 84 2/7/24, 17:46

Provenance

The owner of an inscription can create child inscriptions, trustlessly establishing the

provenance of those children on-chain as having been created by the owner of the parent

inscription. This can be used for collections, with the children of a parent inscription being

members of the same collection.

Children can themselves have children, allowing for complex hierarchies. For example, an

artist might create an inscription representing themselves, with sub inscriptions

representing collections that they create, with the children of those sub inscriptions being

items in those collections.

Specification

To create a child inscription C with parent inscription P:

• Create an inscribe transaction T as usual for C.

• Spend the parent P in one of the inputs of T.

• Include tag 3 , i.e. OP_PUSH 3 , in C, with the value of the serialized binary inscription

ID of P, serialized as the 32-byte TXID , followed by the four-byte little-endian

INDEX , with trailing zeroes omitted.

NB The bytes of a bitcoin transaction ID are reversed in their text representation, so the

serialized transaction ID will be in the opposite order.

Example

An example of a child inscription of

000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1fi0 :

Note that the value of tag 3 is binary, not hex, and that for the child inscription to be

recognized as a child,

000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1fi0 must be

OP_FALSE
OP_IF
 OP_PUSH "ord"
 OP_PUSH 1
 OP_PUSH "text/plain;charset=utf-8"
 OP_PUSH 3
 OP_PUSH 0x1f1e1d1c1b1a191817161514131211100f0e0d0c0b0a09080706050403020100
 OP_PUSH 0
 OP_PUSH "Hello, world!"
OP_ENDIF

Ordinal Theory Handbook https://docs.ordinals.com/print.html

19 of 84 2/7/24, 17:46

https://docs.ordinals.com/print.html#provenance
https://docs.ordinals.com/print.html#provenance
https://docs.ordinals.com/print.html#specification-1
https://docs.ordinals.com/print.html#specification-1
https://docs.ordinals.com/print.html#example-2
https://docs.ordinals.com/print.html#example-2

spent as one of the inputs of the inscribe transaction.

Example encoding of inscription ID

000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1fi255 :

And of inscription ID

000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1fi256 :

Notes

The tag 3 is used because it is the first available odd tag. Unrecognized odd tags do not

make an inscription unbound, so child inscriptions would be recognized and tracked by

old versions of ord .

A collection can be closed by burning the collection's parent inscription, which guarantees

that no more items in the collection can be issued.

OP_FALSE
OP_IF
 …
 OP_PUSH 3
 OP_PUSH
0x1f1e1d1c1b1a191817161514131211100f0e0d0c0b0a09080706050403020100ff
 …
OP_ENDIF

OP_FALSE
OP_IF
 …
 OP_PUSH 3
 OP_PUSH
0x1f1e1d1c1b1a191817161514131211100f0e0d0c0b0a090807060504030201000001
 …
OP_ENDIF

Ordinal Theory Handbook https://docs.ordinals.com/print.html

20 of 84 2/7/24, 17:46

https://docs.ordinals.com/print.html#notes
https://docs.ordinals.com/print.html#notes

Recursion

An important exception to sandboxing is recursion: access to ord 's /content endpoint

is permitted, allowing inscriptions to access the content of other inscriptions by

requesting /content/<INSCRIPTION_ID> .

This has a number of interesting use-cases:

• Remixing the content of existing inscriptions.

• Publishing snippets of code, images, audio, or stylesheets as shared public

resources.

• Generative art collections where an algorithm is inscribed as JavaScript, and

instantiated from multiple inscriptions with unique seeds.

• Generative profile picture collections where accessories and attributes are inscribed

as individual images, or in a shared texture atlas, and then combined, collage-style,

in unique combinations in multiple inscriptions.

The recursive endpoints are:

• /r/blockhash/<HEIGHT> : block hash at given block height.

• /r/blockhash : latest block hash.

• /r/blockheight : latest block height.

• /r/blocktime : UNIX time stamp of latest block.

• /r/children/<INSCRIPTION_ID> : the first 100 child inscription ids.

• /r/children/<INSCRIPTION_ID>/<PAGE> : the set of 100 child inscription ids on

<PAGE> .

• /r/metadata/<INSCRIPTION_ID> : JSON string containing the hex-encoded CBOR

metadata.

• /r/sat/<SAT_NUMBER> : the first 100 inscription ids on a sat.

• /r/sat/<SAT_NUMBER>/<PAGE> : the set of 100 inscription ids on <PAGE> .

• /r/sat/<SAT_NUMBER>/at/<INDEX> : the inscription id at <INDEX> of all inscriptions

on a sat. <INDEX> may be a negative number to index from the back. 0 being the

first and -1 being the most recent for example.

Note: <SAT_NUMBER> only allows the actual number of a sat no other sat notations like

degree, percentile or decimal. We may expand to allow those in the future.

Responses from the above recursive endpoints are JSON. For backwards compatibility

additional endpoints are supported, some of which return plain-text responses.

• /blockheight : latest block height.

• /blockhash : latest block hash.

Ordinal Theory Handbook https://docs.ordinals.com/print.html

21 of 84 2/7/24, 17:46

https://docs.ordinals.com/print.html#recursion
https://docs.ordinals.com/print.html#recursion
https://docs.ordinals.com/inscriptions.html#sandboxing
https://docs.ordinals.com/inscriptions.html#sandboxing

• /blockhash/<HEIGHT> : block hash at given block height.

• /blocktime : UNIX time stamp of latest block.

Examples

• /r/blockheight :

• /r/blockhash/0 :

• /r/blocktime :

• /r/metadata/

35b66389b44535861c44b2b18ed602997ee11db9a30d384ae89630c9fc6f011fi3 :

• /r/sat/1023795949035695 :

• /r/sat/1023795949035695/at/-1 :

• /r/children/

60bcf821240064a9c55225c4f01711b0ebbcab39aa3fafeefe4299ab158536fai0/49 :

777000

"000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f"

1700770905

"a2657469746c65664d656d6f727966617574686f726e79656c6c6f775f6f72645f626f74"

{
"ids":[

"17541f6adf6eb160d52bc6eb0a3546c7c1d2adfe607b1a3cddc72cc0619526adi0"
],

"more":false,
"page":0

}

{
"id":"17541f6adf6eb160d52bc6eb0a3546c7c1d2adfe607b1a3cddc72cc0619526adi0"

}

Ordinal Theory Handbook https://docs.ordinals.com/print.html

22 of 84 2/7/24, 17:46

https://docs.ordinals.com/print.html#examples-1
https://docs.ordinals.com/print.html#examples-1

{
"ids":[

"7cd66b8e3a63dcd2fada917119830286bca0637267709d6df1ca78d98a1b4487i4900",

"7cd66b8e3a63dcd2fada917119830286bca0637267709d6df1ca78d98a1b4487i4901",
 ...

"7cd66b8e3a63dcd2fada917119830286bca0637267709d6df1ca78d98a1b4487i4935",
"7cd66b8e3a63dcd2fada917119830286bca0637267709d6df1ca78d98a1b4487i4936"

],
"more":false,
"page":49

}

Ordinal Theory Handbook https://docs.ordinals.com/print.html

23 of 84 2/7/24, 17:46

Ordinal Theory FAQ

What is ordinal theory?

Ordinal theory is a protocol for assigning serial numbers to satoshis, the smallest

subdivision of a bitcoin, and tracking those satoshis as they are spent by transactions.

These serial numbers are large numbers, like this 804766073970493. Every satoshi, which

is ¹⁄₁₀₀₀₀₀₀₀₀ of a bitcoin, has an ordinal number.

Does ordinal theory require a side chain, a separate

token, or changes to Bitcoin?

Nope! Ordinal theory works right now, without a side chain, and the only token needed is

bitcoin itself.

What is ordinal theory good for?

Collecting, trading, and scheming. Ordinal theory assigns identities to individual satoshis,

allowing them to be individually tracked and traded, as curios and for numismatic value.

Ordinal theory also enables inscriptions, a protocol for attaching arbitrary content to

individual satoshis, turning them into bitcoin-native digital artifacts.

How does ordinal theory work?

Ordinal numbers are assigned to satoshis in the order in which they are mined. The first

satoshi in the first block has ordinal number 0, the second has ordinal number 1, and the

last satoshi of the first block has ordinal number 4,999,999,999.

Satoshis live in outputs, but transactions destroy outputs and create new ones, so ordinal

theory uses an algorithm to determine how satoshis hop from the inputs of a transaction

to its outputs.

Fortunately, that algorithm is very simple.

Ordinal Theory Handbook https://docs.ordinals.com/print.html

24 of 84 2/7/24, 17:46

https://docs.ordinals.com/print.html#ordinal-theory-faq
https://docs.ordinals.com/print.html#ordinal-theory-faq
https://docs.ordinals.com/print.html#what-is-ordinal-theory
https://docs.ordinals.com/print.html#what-is-ordinal-theory
https://docs.ordinals.com/print.html#does-ordinal-theory-require-a-side-chain-a-separate-token-or-changes-to-bitcoin
https://docs.ordinals.com/print.html#does-ordinal-theory-require-a-side-chain-a-separate-token-or-changes-to-bitcoin
https://docs.ordinals.com/print.html#does-ordinal-theory-require-a-side-chain-a-separate-token-or-changes-to-bitcoin
https://docs.ordinals.com/print.html#does-ordinal-theory-require-a-side-chain-a-separate-token-or-changes-to-bitcoin
https://docs.ordinals.com/print.html#what-is-ordinal-theory-good-for
https://docs.ordinals.com/print.html#what-is-ordinal-theory-good-for
https://docs.ordinals.com/print.html#how-does-ordinal-theory-work
https://docs.ordinals.com/print.html#how-does-ordinal-theory-work

Satoshis transfer in first-in-first-out order. Think of the inputs to a transaction as being a

list of satoshis, and the outputs as a list of slots, waiting to receive a satoshi. To assign

input satoshis to slots, go through each satoshi in the inputs in order, and assign each to

the first available slot in the outputs.

Let's imagine a transaction with three inputs and two outputs. The inputs are on the left

of the arrow and the outputs are on the right, all labeled with their values:

Now let's label the same transaction with the ordinal numbers of the satoshis that each

input contains, and question marks for each output slot. Ordinal numbers are large, so

let's use letters to represent them:

To figure out which satoshi goes to which output, go through the input satoshis in order

and assign each to a question mark:

What about fees, you might ask? Good question! Let's imagine the same transaction, this

time with a two satoshi fee. Transactions with fees send more satoshis in the inputs than

are received by the outputs, so to make our transaction into one that pays fees, we'll

remove the second output:

The satoshis e and f now have nowhere to go in the outputs:

So they go to the miner who mined the block as fees. The BIP has the details, but in short,

fees paid by transactions are treated as extra inputs to the coinbase transaction, and are

ordered how their corresponding transactions are ordered in the block. The coinbase

transaction of the block might look like this:

Where can I find the nitty-gritty details?

The BIP!

[2] [1] [3] → [4] [2]

[a b] [c] [d e f] → [? ? ? ?] [? ?]

[a b] [c] [d e f] → [a b c d] [e f]

[2] [1] [3] → [4]

[a b] [c] [d e f] → [a b c d]

[SUBSIDY] [e f] → [SUBSIDY e f]

Ordinal Theory Handbook https://docs.ordinals.com/print.html

25 of 84 2/7/24, 17:46

https://github.com/ordinals/ord/blob/master/bip.mediawiki
https://github.com/ordinals/ord/blob/master/bip.mediawiki
https://docs.ordinals.com/print.html#where-can-i-find-the-nitty-gritty-details
https://docs.ordinals.com/print.html#where-can-i-find-the-nitty-gritty-details
https://github.com/ordinals/ord/blob/master/bip.mediawiki
https://github.com/ordinals/ord/blob/master/bip.mediawiki

Why are sat inscriptions called "digital artifacts"

instead of "NFTs"?

An inscription is an NFT, but the term "digital artifact" is used instead, because it's simple,

suggestive, and familiar.

The phrase "digital artifact" is highly suggestive, even to someone who has never heard

the term before. In comparison, NFT is an acronym, and doesn't provide any indication of

what it means if you haven't heard the term before.

Additionally, "NFT" feels like financial terminology, and the both word "fungible" and

sense of the word "token" as used in "NFT" is uncommon outside of financial contexts.

How do sat inscriptions compare to…

Ethereum NFTs?

Inscriptions are always immutable.

There is simply no way to for the creator of an inscription, or the owner of an inscription,

to modify it after it has been created.

Ethereum NFTs can be immutable, but many are not, and can be changed or deleted by

the NFT contract owner.

In order to make sure that a particular Ethereum NFT is immutable, the contract code

must be audited, which requires detailed knowledge of the EVM and Solidity semantics.

It is very hard for a non-technical user to determine whether or not a given Ethereum NFT

is mutable or immutable, and Ethereum NFT platforms make no effort to distinguish

whether an NFT is mutable or immutable, and whether the contract source code is

available and has been audited.

Inscription content is always on-chain.

There is no way for an inscription to refer to off-chain content. This makes inscriptions

more durable, because content cannot be lost, and scarcer, because inscription creators

must pay fees proportional to the size of the content.

Some Ethereum NFT content is on-chain, but much is off-chain, and is stored on

platforms like IPFS or Arweave, or on traditional, fully centralized web servers. Content on

IPFS is not guaranteed to continue to be available, and some NFT content stored on IPFS

has already been lost. Platforms like Arweave rely on weak economic assumptions, and

Ordinal Theory Handbook https://docs.ordinals.com/print.html

26 of 84 2/7/24, 17:46

https://docs.ordinals.com/print.html#why-are-sat-inscriptions-called-digital-artifacts-instead-of-nfts
https://docs.ordinals.com/print.html#why-are-sat-inscriptions-called-digital-artifacts-instead-of-nfts
https://docs.ordinals.com/print.html#why-are-sat-inscriptions-called-digital-artifacts-instead-of-nfts
https://docs.ordinals.com/print.html#why-are-sat-inscriptions-called-digital-artifacts-instead-of-nfts
https://docs.ordinals.com/print.html#how-do-sat-inscriptions-compare-to
https://docs.ordinals.com/print.html#how-do-sat-inscriptions-compare-to
https://docs.ordinals.com/print.html#ethereum-nfts
https://docs.ordinals.com/print.html#ethereum-nfts

will likely fail catastrophically when these economic assumptions are no longer met.

Centralized web servers may disappear at any time.

It is very hard for a non-technical user to determine where the content of a given

Ethereum NFT is stored.

Inscriptions are much simpler.

Ethereum NFTs depend on the Ethereum network and virtual machine, which are highly

complex, constantly changing, and which introduce changes via backwards-incompatible

hard forks.

Inscriptions, on the other hand, depend on the Bitcoin blockchain, which is relatively

simple and conservative, and which introduces changes via backwards-compatible soft

forks.

Inscriptions are more secure.

Inscriptions inherit Bitcoin's transaction model, which allow a user to see exactly which

inscriptions are being transferred by a transaction before they sign it. Inscriptions can be

offered for sale using partially signed transactions, which don't require allowing a third

party, such as an exchange or marketplace, to transfer them on the user's behalf.

By comparison, Ethereum NFTs are plagued with end-user security vulnerabilities. It is

commonplace to blind-sign transactions, grant third-party apps unlimited permissions

over a user's NFTs, and interact with complex and unpredictable smart contracts. This

creates a minefield of hazards for Ethereum NFT users which are simply not a concern for

ordinal theorists.

Inscriptions are scarcer.

Inscriptions require bitcoin to mint, transfer, and store. This seems like a downside on the

surface, but the raison d'etre of digital artifacts is to be scarce and thus valuable.

Ethereum NFTs, on the other hand, can be minted in virtually unlimited qualities with a

single transaction, making them inherently less scarce, and thus, potentially less valuable.

Inscriptions do not pretend to support on-chain royalties.

On-chain royalties are a good idea in theory but not in practice. Royalty payment cannot

be enforced on-chain without complex and invasive restrictions. The Ethereum NFT

ecosystem is currently grappling with confusion around royalties, and is collectively

coming to grips with the reality that on-chain royalties, which were messaged to artists as

an advantage of NFTs, are not possible, while platforms race to the bottom and remove

royalty support.

Inscriptions avoid this situation entirely by making no false promises of supporting

royalties on-chain, thus avoiding the confusion, chaos, and negativity of the Ethereum

Ordinal Theory Handbook https://docs.ordinals.com/print.html

27 of 84 2/7/24, 17:46

NFT situation.

Inscriptions unlock new markets.

Bitcoin's market capitalization and liquidity are greater than Ethereum's by a large

margin. Much of this liquidity is not available to Ethereum NFTs, since many Bitcoiners

prefer not to interact with the Ethereum ecosystem due to concerns related to simplicity,

security, and decentralization.

Such Bitcoiners may be more interested in inscriptions than Ethereum NFTs, unlocking

new classes of collector.

Inscriptions have a richer data model.

Inscriptions consist of a content type, also known as a MIME type, and content, which is

an arbitrary byte string. This is the same data model used by the web, and allows

inscription content to evolve with the web, and come to support any kind of content

supported by web browsers, without requiring changes to the underlying protocol.

RGB and Taro assets?

RGB and Taro are both second-layer asset protocols built on Bitcoin. Compared to

inscriptions, they are much more complicated, but much more featureful.

Ordinal theory has been designed from the ground up for digital artifacts, whereas the

primary use-case of RGB and Taro are fungible tokens, so the user experience for

inscriptions is likely to be simpler and more polished than the user experience for RGB

and Taro NFTs.

RGB and Taro both store content off-chain, which requires additional infrastructure, and

which may be lost. By contrast, inscription content is stored on-chain, and cannot be lost.

Ordinal theory, RGB, and Taro are all very early, so this is speculation, but ordinal theory's

focus may give it the edge in terms of features for digital artifacts, including a better

content model, and features like globally unique symbols.

Counterparty assets?

Counterparty has its own token, XCP, which is required for some functionality, which

makes most bitcoiners regard it as an altcoin, and not an extension or second layer for

bitcoin.

Ordinal theory has been designed from the ground up for digital artifacts, whereas

Counterparty was primarily designed for financial token issuance.

Ordinal Theory Handbook https://docs.ordinals.com/print.html

28 of 84 2/7/24, 17:46

https://docs.ordinals.com/print.html#rgb-and-taro-assets
https://docs.ordinals.com/print.html#rgb-and-taro-assets
https://docs.ordinals.com/print.html#counterparty-assets
https://docs.ordinals.com/print.html#counterparty-assets

Inscriptions for…

Artists

Inscriptions are on Bitcoin. Bitcoin is the digital currency with the highest status and

greatest chance of long-term survival. If you want to guarantee that your art survives into

the future, there is no better way to publish it than as inscriptions.

Cheaper on-chain storage. At $20,000 per BTC and the minimum relay fee of 1 satoshi per

vbyte, publishing inscription content costs $50 per 1 million bytes.

Inscriptions are early! Inscriptions are still in development, and have not yet launched on

mainnet. This gives you an opportunity to be an early adopter, and explore the medium

as it evolves.

Inscriptions are simple. Inscriptions do not require writing or understanding smart

contracts.

Inscriptions unlock new liquidity. Inscriptions are more accessible and appealing to bitcoin

holders, unlocking an entirely new class of collector.

Inscriptions are designed for digital artifacts. Inscriptions are designed from the ground up

to support NFTs, and feature a better data model, and features like globally unique

symbols and enhanced provenance.

Inscriptions do not support on-chain royalties. This is negative, but only depending on how

you look at it. On-chain royalties have been a boon for creators, but have also created a

huge amount of confusion in the Ethereum NFT ecosystem. The ecosystem now grapples

with this issue, and is engaged in a race to the bottom, towards a royalties-optional

future. Inscriptions have no support for on-chain royalties, because they are technically

infeasible. If you choose to create inscriptions, there are many ways you can work around

this limitation: withhold a portion of your inscriptions for future sale, to benefit from

future appreciation, or perhaps offer perks for users who respect optional royalties.

Collectors

Inscriptions are simple, clear, and have no surprises. They are always immutable and on-

chain, with no special due diligence required.

Inscriptions are on Bitcoin. You can verify the location and properties of inscriptions easily

with Bitcoin full node that you control.

Ordinal Theory Handbook https://docs.ordinals.com/print.html

29 of 84 2/7/24, 17:46

https://docs.ordinals.com/print.html#inscriptions-for
https://docs.ordinals.com/print.html#inscriptions-for
https://docs.ordinals.com/print.html#artists
https://docs.ordinals.com/print.html#artists
https://docs.ordinals.com/print.html#collectors
https://docs.ordinals.com/print.html#collectors

Bitcoiners

Let me begin this section by saying: the most important thing that the Bitcoin network

does is decentralize money. All other use-cases are secondary, including ordinal theory.

The developers of ordinal theory understand and acknowledge this, and believe that

ordinal theory helps, at least in a small way, Bitcoin's primary mission.

Unlike many other things in the altcoin space, digital artifacts have merit. There are, of

course, a great deal of NFTs that are ugly, stupid, and fraudulent. However, there are

many that are fantastically creative, and creating and collecting art has been a part of the

human story since its inception, and predates even trade and money, which are also

ancient technologies.

Bitcoin provides an amazing platform for creating and collecting digital artifacts in a

secure, decentralized way, that protects users and artists in the same way that it provides

an amazing platform for sending and receiving value, and for all the same reasons.

Ordinals and inscriptions increase demand for Bitcoin block space, which increase

Bitcoin's security budget, which is vital for safeguarding Bitcoin's transition to a fee-

dependent security model, as the block subsidy is halved into insignificance.

Inscription content is stored on-chain, and thus the demand for block space for use in

inscriptions is unlimited. This creates a buyer of last resort for all Bitcoin block space. This

will help support a robust fee market, which ensures that Bitcoin remains secure.

Inscriptions also counter the narrative that Bitcoin cannot be extended or used for new

use-cases. If you follow projects like DLCs, Fedimint, Lightning, Taro, and RGB, you know

that this narrative is false, but inscriptions provide a counter argument which is easy to

understand, and which targets a popular and proven use case, NFTs, which makes it

highly legible.

If inscriptions prove, as the authors hope, to be highly sought after digital artifacts with a

rich history, they will serve as a powerful hook for Bitcoin adoption: come for the fun, rich

art, stay for the decentralized digital money.

Inscriptions are an extremely benign source of demand for block space. Unlike, for

example, stablecoins, which potentially give large stablecoin issuers influence over the

future of Bitcoin development, or DeFi, which might centralize mining by introducing

opportunities for MEV, digital art and collectables on Bitcoin, are unlikely to produce

individual entities with enough power to corrupt Bitcoin. Art is decentralized.

Inscription users and service providers are incentivized to run Bitcoin full nodes, to

publish and track inscriptions, and thus throw their economic weight behind the honest

chain.

Ordinal theory and inscriptions do not meaningfully affect Bitcoin's fungibility. Bitcoin

users can ignore both and be unaffected.

Ordinal Theory Handbook https://docs.ordinals.com/print.html

30 of 84 2/7/24, 17:46

https://docs.ordinals.com/print.html#bitcoiners
https://docs.ordinals.com/print.html#bitcoiners

We hope that ordinal theory strengthens and enriches bitcoin, and gives it another

dimension of appeal and functionality, enabling it more effectively serve its primary use

case as humanity's decentralized store of value.

Ordinal Theory Handbook https://docs.ordinals.com/print.html

31 of 84 2/7/24, 17:46

Contributing to ord

Suggested Steps

1. Find an issue you want to work on.

2. Figure out what would be a good first step towards resolving the issue. This could be

in the form of code, research, a proposal, or suggesting that it be closed, if it's out of

date or not a good idea in the first place.

3. Comment on the issue with an outline of your suggested first step, and asking for

feedback. Of course, you can dive in and start writing code or tests immediately, but

this avoids potentially wasted effort, if the issue is out of date, not clearly specified,

blocked on something else, or otherwise not ready to implement.

4. If the issue requires a code change or bugfix, open a draft PR with tests, and ask for

feedback. This makes sure that everyone is on the same page about what needs to

be done, or what the first step in solving the issue should be. Also, since tests are

required, writing the tests first makes it easy to confirm that the change can be

tested easily.

5. Mash the keyboard randomly until the tests pass, and refactor until the code is

ready to submit.

6. Mark the PR as ready to review.

7. Revise the PR as needed.

8. And finally, mergies!

Start small

Small changes will allow you to make an impact quickly, and if you take the wrong tack,

you won't have wasted much time.

Ideas for small issues:

• Add a new test or test case that increases test coverage

• Add or improve documentation

• Find an issue that needs more research, and do that research and summarize it in a

comment

• Find an out-of-date issue and comment that it can be closed

• Find an issue that shouldn't be done, and provide constructive feedback detailing

why you think that is the case

Ordinal Theory Handbook https://docs.ordinals.com/print.html

32 of 84 2/7/24, 17:46

https://docs.ordinals.com/print.html#contributing-to-ord
https://docs.ordinals.com/print.html#contributing-to-ord
https://docs.ordinals.com/print.html#contributing-to-ord
https://docs.ordinals.com/print.html#contributing-to-ord
https://docs.ordinals.com/print.html#suggested-steps
https://docs.ordinals.com/print.html#suggested-steps
https://docs.ordinals.com/print.html#start-small
https://docs.ordinals.com/print.html#start-small

Merge early and often

Break up large tasks into multiple smaller steps that individually make progress. If there's

a bug, you can open a PR that adds a failing ignored test. This can be merged, and the

next step can be to fix the bug and unignore the test. Do research or testing, and report

on your results. Break a feature into small sub-features, and implement them one at a

time.

Figuring out how to break down a larger PR into smaller PRs where each can be merged is

an art form well-worth practicing. The hard part is that each PR must itself be an

improvement.

I strive to follow this advice myself, and am always better off when I do.

Small changes are fast to write, review, and merge, which is much more fun than laboring

over a single giant PR that takes forever to write, review, and merge. Small changes don't

take much time, so if you need to stop working on a small change, you won't have wasted

much time as compared to a larger change that represents many hours of work. Getting a

PR in quickly improves the project a little bit immediately, instead of having to wait a long

time for larger improvement. Small changes are less likely to accumulate merge conflict.

As the Athenians said: The fast commit what they will, the slow merge what they must.

Get help

If you're stuck for more than 15 minutes, ask for help, like a Rust Discord, Stack Exchange,

or in a project issue or discussion.

Practice hypothesis-driven debugging

Formulate a hypothesis as to what is causing the problem. Figure out how to test that

hypothesis. Perform that tests. If it works, great, you fixed the issue or now you know

how to fix the issue. If not, repeat with a new hypothesis.

Pay attention to error messages

Read all error messages and don't tolerate warnings.

Ordinal Theory Handbook https://docs.ordinals.com/print.html

33 of 84 2/7/24, 17:46

https://docs.ordinals.com/print.html#merge-early-and-often
https://docs.ordinals.com/print.html#merge-early-and-often
https://docs.ordinals.com/print.html#get-help
https://docs.ordinals.com/print.html#get-help
https://docs.ordinals.com/print.html#practice-hypothesis-driven-debugging
https://docs.ordinals.com/print.html#practice-hypothesis-driven-debugging
https://docs.ordinals.com/print.html#pay-attention-to-error-messages
https://docs.ordinals.com/print.html#pay-attention-to-error-messages

Donate

Ordinals is open-source and community funded. The current lead maintainer of ord is

raphjaph. Raph's work on ord is entirely funded by donations. If you can, please consider

donating!

The donation address for Bitcoin is

bc1q8kt9pyd6r27k2840l8g5d7zshz3cg9v6rfda0m248lva3ve5072q3sxelt. The donation

address for inscriptions is

bc1qn3map8m9hmk5jyqdkkwlwvt335g94zvxwd9aql7q3vdkdw9r5eyqvlvec0.

Both addresses are in a 2 of 4 multisig wallet with keys held by raphjaph, erin, rodarmor,

and ordinally.

Donations received will go towards funding maintenance and development of ord , as

well as hosting costs for ordinals.com.

Thank you for donating!

Ordinal Theory Handbook https://docs.ordinals.com/print.html

34 of 84 2/7/24, 17:46

https://docs.ordinals.com/print.html#donate
https://docs.ordinals.com/print.html#donate
https://github.com/raphjaph/
https://github.com/raphjaph/
https://mempool.space/address/bc1q8kt9pyd6r27k2840l8g5d7zshz3cg9v6rfda0m248lva3ve5072q3sxelt
https://mempool.space/address/bc1q8kt9pyd6r27k2840l8g5d7zshz3cg9v6rfda0m248lva3ve5072q3sxelt
https://mempool.space/address/bc1qn3map8m9hmk5jyqdkkwlwvt335g94zvxwd9aql7q3vdkdw9r5eyqvlvec0
https://mempool.space/address/bc1qn3map8m9hmk5jyqdkkwlwvt335g94zvxwd9aql7q3vdkdw9r5eyqvlvec0
https://twitter.com/raphjaph
https://twitter.com/raphjaph
https://twitter.com/realizingerin
https://twitter.com/realizingerin
https://twitter.com/rodarmor
https://twitter.com/rodarmor
https://twitter.com/veryordinally
https://twitter.com/veryordinally
https://ordinals.com/
https://ordinals.com/

Ordinal Theory Guides

See the table of contents for a list of guides, including a guide to the explorer, a guide for

sat hunters, and a guide to inscriptions.

Ordinal Theory Handbook https://docs.ordinals.com/print.html

35 of 84 2/7/24, 17:46

https://docs.ordinals.com/print.html#ordinal-theory-guides
https://docs.ordinals.com/print.html#ordinal-theory-guides

Ordinal Explorer

The ord binary includes a block explorer. We host an instance of the block explorer on

mainnet at ordinals.com, and on signet at signet.ordinals.com.

Running The Explorer

The server can be run locally with:

ord server

To specify a port add the --http-port flag:

ord server --http-port 8080

The JSON-API endpoints are enabled by default, to disable them add the --disable-

json-api flag (see here for more info):

ord server --disable-json-api

Search

The search box accepts a variety of object representations.

Blocks

Blocks can be searched by hash, for example, the genesis block:

000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f

Transactions

Transactions can be searched by hash, for example, the genesis block coinbase

transaction:

4a5e1e4baab89f3a32518a88c31bc87f618f76673e2cc77ab2127b7afdeda33b

Outputs

Ordinal Theory Handbook https://docs.ordinals.com/print.html

36 of 84 2/7/24, 17:46

https://docs.ordinals.com/print.html#ordinal-explorer
https://docs.ordinals.com/print.html#ordinal-explorer
https://ordinals.com/
https://ordinals.com/
https://signet.ordinals.com/
https://signet.ordinals.com/
https://docs.ordinals.com/print.html#running-the-explorer
https://docs.ordinals.com/print.html#running-the-explorer
https://docs.ordinals.com/guides/explorer.html#json-api
https://docs.ordinals.com/guides/explorer.html#json-api
https://docs.ordinals.com/print.html#search
https://docs.ordinals.com/print.html#search
https://docs.ordinals.com/print.html#blocks
https://docs.ordinals.com/print.html#blocks
https://ordinals.com/search/000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f
https://ordinals.com/search/000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f
https://docs.ordinals.com/print.html#transactions
https://docs.ordinals.com/print.html#transactions
https://ordinals.com/search/4a5e1e4baab89f3a32518a88c31bc87f618f76673e2cc77ab2127b7afdeda33b
https://ordinals.com/search/4a5e1e4baab89f3a32518a88c31bc87f618f76673e2cc77ab2127b7afdeda33b
https://docs.ordinals.com/print.html#outputs
https://docs.ordinals.com/print.html#outputs

Transaction outputs can be searched by outpoint, for example, the only output of the

genesis block coinbase transaction:

4a5e1e4baab89f3a32518a88c31bc87f618f76673e2cc77ab2127b7afdeda33b:0

Sats

Sats can be searched by integer, their position within the entire bitcoin supply:

2099994106992659

By decimal, their block and offset within that block:

481824.0

By degree, their cycle, blocks since the last halving, blocks since the last difficulty

adjustment, and offset within their block:

1°0′0″0‴

By name, their base 26 representation using the letters "a" through "z":

ahistorical

Or by percentile, the percentage of bitcoin's supply that has been or will have been issued

when they are mined:

100%

JSON-API

By default the ord server gives access to endpoints that return JSON instead of HTML if

you set the HTTP Accept: application/json header. The structure of these objects

closely follows what is shown in the HTML. These endpoints are:

• /inscription/<INSCRIPTION_ID>

• /inscriptions

• /inscriptions/block/<BLOCK_HEIGHT>

• /inscriptions/block/<BLOCK_HEIGHT>/<PAGE_INDEX>

• /inscriptions/<FROM>

• /inscriptions/<FROM>/<N>

• /output/<OUTPOINT>

• /output/<OUTPOINT>

• /sat/<SAT>

Ordinal Theory Handbook https://docs.ordinals.com/print.html

37 of 84 2/7/24, 17:46

https://ordinals.com/search/4a5e1e4baab89f3a32518a88c31bc87f618f76673e2cc77ab2127b7afdeda33b:0
https://ordinals.com/search/4a5e1e4baab89f3a32518a88c31bc87f618f76673e2cc77ab2127b7afdeda33b:0
https://docs.ordinals.com/print.html#sats
https://docs.ordinals.com/print.html#sats
https://ordinals.com/search/2099994106992659
https://ordinals.com/search/2099994106992659
https://ordinals.com/search/481824.0
https://ordinals.com/search/481824.0
https://ordinals.com/search/1%C2%B00%E2%80%B20%E2%80%B30%E2%80%B4
https://ordinals.com/search/1%C2%B00%E2%80%B20%E2%80%B30%E2%80%B4
https://ordinals.com/search/ahistorical
https://ordinals.com/search/ahistorical
https://ordinals.com/search/100%
https://ordinals.com/search/100%
https://docs.ordinals.com/print.html#json-api
https://docs.ordinals.com/print.html#json-api

To get a list of the latest 100 inscriptions you would do:

To see information about a UTXO, which includes inscriptions inside it, do:

Which returns:

curl -s -H "Accept: application/json" 'http://0.0.0.0:80/inscriptions'

curl -s -H "Accept: application/json" 'http://0.0.0.0:80/output/
bc4c30829a9564c0d58e6287195622b53ced54a25711d1b86be7cd3a70ef61ed:0'

{
 "value": 10000,
 "script_pubkey": "OP_PUSHNUM_1 OP_PUSHBYTES_32
156cc4878306157720607cdcb4b32afa4cc6853868458d7258b907112e5a434b",
 "address":
"bc1pz4kvfpurqc2hwgrq0nwtfve2lfxvdpfcdpzc6ujchyr3ztj6gd9sfr6ayf",
 "transaction":
"bc4c30829a9564c0d58e6287195622b53ced54a25711d1b86be7cd3a70ef61ed",
 "sat_ranges": null,
 "inscriptions": [
 "6fb976ab49dcec017f1e201e84395983204ae1a7c2abf7ced0a85d692e442799i0"
]
}

Ordinal Theory Handbook https://docs.ordinals.com/print.html

38 of 84 2/7/24, 17:46

Ordinal Inscription Guide

Individual sats can be inscribed with arbitrary content, creating Bitcoin-native digital

artifacts that can be held in a Bitcoin wallet and transferred using Bitcoin transactions.

Inscriptions are as durable, immutable, secure, and decentralized as Bitcoin itself.

Working with inscriptions requires a Bitcoin full node, to give you a view of the current

state of the Bitcoin blockchain, and a wallet that can create inscriptions and perform sat

control when constructing transactions to send inscriptions to another wallet.

Bitcoin Core provides both a Bitcoin full node and wallet. However, the Bitcoin Core wallet

cannot create inscriptions and does not perform sat control.

This requires ord , the ordinal utility. ord doesn't implement its own wallet, so ord

wallet subcommands interact with Bitcoin Core wallets.

This guide covers:

1. Installing Bitcoin Core

2. Syncing the Bitcoin blockchain

3. Creating a Bitcoin Core wallet

4. Using ord wallet receive to receive sats

5. Creating inscriptions with ord wallet inscribe

6. Sending inscriptions with ord wallet send

7. Receiving inscriptions with ord wallet receive

8. Batch inscribing with ord wallet inscribe --batch

Getting Help

If you get stuck, try asking for help on the Ordinals Discord Server, or checking GitHub for

relevant issues and discussions.

Installing Bitcoin Core

Bitcoin Core is available from bitcoincore.org on the download page.

Making inscriptions requires Bitcoin Core 24 or newer.

This guide does not cover installing Bitcoin Core in detail. Once Bitcoin Core is installed,

you should be able to run bitcoind -version successfully from the command line. Do

NOT use bitcoin-qt .

Ordinal Theory Handbook https://docs.ordinals.com/print.html

39 of 84 2/7/24, 17:46

https://docs.ordinals.com/print.html#ordinal-inscription-guide
https://docs.ordinals.com/print.html#ordinal-inscription-guide
https://github.com/ordinals/ord
https://github.com/ordinals/ord
https://github.com/ordinals/ord
https://docs.ordinals.com/print.html#getting-help
https://docs.ordinals.com/print.html#getting-help
https://discord.com/invite/87cjuz4FYg
https://discord.com/invite/87cjuz4FYg
https://github.com/ordinals/ord/issues
https://github.com/ordinals/ord/issues
https://github.com/ordinals/ord/discussions
https://github.com/ordinals/ord/discussions
https://docs.ordinals.com/print.html#installing-bitcoin-core
https://docs.ordinals.com/print.html#installing-bitcoin-core
https://bitcoincore.org/
https://bitcoincore.org/
https://bitcoincore.org/en/download/
https://bitcoincore.org/en/download/

Configuring Bitcoin Core

ord requires Bitcoin Core's transaction index and rest interface.

To configure your Bitcoin Core node to maintain a transaction index, add the following to

your bitcoin.conf :

Or, run bitcoind with -txindex :

Details on creating or modifying your bitcoin.conf file can be found here.

Syncing the Bitcoin Blockchain

To sync the chain, run:

…and leave it running until getblockcount :

agrees with the block count on a block explorer like the mempool.space block explorer.

ord interacts with bitcoind , so you should leave bitcoind running in the background

when you're using ord .

The blockchain takes about 600GB of disk space. If you have an external drive you want

to store blocks on, use the configuration option blocksdir=<external_drive_path> . This

is much simpler than using the datadir option because the cookie file will still be in the

default location for bitcoin-cli and ord to find.

Troubleshooting

Make sure you can access bitcoind with bitcoin-cli -getinfo and that it is fully

synced.

If bitcoin-cli -getinfo returns Could not connect to the server , bitcoind is not

txindex=1

bitcoind -txindex

bitcoind -txindex

bitcoin-cli getblockcount

Ordinal Theory Handbook https://docs.ordinals.com/print.html

40 of 84 2/7/24, 17:46

https://docs.ordinals.com/print.html#configuring-bitcoin-core
https://docs.ordinals.com/print.html#configuring-bitcoin-core
https://github.com/bitcoin/bitcoin/blob/master/doc/bitcoin-conf.md
https://github.com/bitcoin/bitcoin/blob/master/doc/bitcoin-conf.md
https://docs.ordinals.com/print.html#syncing-the-bitcoin-blockchain
https://docs.ordinals.com/print.html#syncing-the-bitcoin-blockchain
https://mempool.space/
https://mempool.space/
https://docs.ordinals.com/print.html#troubleshooting
https://docs.ordinals.com/print.html#troubleshooting

running.

Make sure rpcuser , rpcpassword , or rpcauth are NOT set in your bitcoin.conf file.

ord requires using cookie authentication. Make sure there is a file .cookie in your

bitcoin data directory.

If bitcoin-cli -getinfo returns Could not locate RPC credentials , then you must

specify the cookie file location. If you are using a custom data directory (specifying the

datadir option), then you must specify the cookie location like bitcoin-cli -

rpccookiefile=<your_bitcoin_datadir>/.cookie -getinfo . When running ord you

must specify the cookie file location with --cookie-

file=<your_bitcoin_datadir>/.cookie .

Make sure you do NOT have disablewallet=1 in your bitcoin.conf file. If bitcoin-cli

listwallets returns Method not found then the wallet is disabled and you won't be

able to use ord .

Make sure txindex=1 is set. Run bitcoin-cli getindexinfo and it should return

something like

If it only returns {} , txindex is not set. If it returns "synced": false , bitcoind is still

creating the txindex . Wait until "synced": true before using ord .

If you have maxuploadtarget set it can interfere with fetching blocks for ord index.

Either remove it or set whitebind=127.0.0.1:8333 .

Installing ord

The ord utility is written in Rust and can be built from source. Pre-built binaries are

available on the releases page.

You can install the latest pre-built binary from the command line with:

Once ord is installed, you should be able to run:

{
"txindex": {
"synced": true,
"best_block_height": 776546

 }
}

curl --proto '=https' --tlsv1.2 -fsLS https://ordinals.com/install.sh | bash
-s

Ordinal Theory Handbook https://docs.ordinals.com/print.html

41 of 84 2/7/24, 17:46

https://docs.ordinals.com/print.html#installing-ord
https://docs.ordinals.com/print.html#installing-ord
https://docs.ordinals.com/print.html#installing-ord
https://docs.ordinals.com/print.html#installing-ord
https://github.com/ordinals/ord
https://github.com/ordinals/ord
https://github.com/ordinals/ord/releases
https://github.com/ordinals/ord/releases

Which prints out ord 's version number.

Creating a Bitcoin Core Wallet

ord uses Bitcoin Core to manage private keys, sign transactions, and broadcast

transactions to the Bitcoin network.

To create a Bitcoin Core wallet named ord for use with ord , run:

Receiving Sats

Inscriptions are made on individual sats, using normal Bitcoin transactions that pay fees

in sats, so your wallet will need some sats.

Get a new address from your ord wallet by running:

And send it some funds.

You can see pending transactions with:

Once the transaction confirms, you should be able to see the transactions outputs with

ord wallet outputs .

Creating Inscription Content

Sats can be inscribed with any kind of content, but the ord wallet only supports content

types that can be displayed by the ord block explorer.

Additionally, inscriptions are included in transactions, so the larger the content, the

higher the fee that the inscription transaction must pay.

ord --version

ord wallet create

ord wallet receive

ord wallet transactions

Ordinal Theory Handbook https://docs.ordinals.com/print.html

42 of 84 2/7/24, 17:46

https://docs.ordinals.com/print.html#creating-a-bitcoin-core-wallet
https://docs.ordinals.com/print.html#creating-a-bitcoin-core-wallet
https://docs.ordinals.com/print.html#receiving-sats
https://docs.ordinals.com/print.html#receiving-sats
https://docs.ordinals.com/print.html#creating-inscription-content
https://docs.ordinals.com/print.html#creating-inscription-content

Inscription content is included in transaction witnesses, which receive the witness

discount. To calculate the approximate fee that an inscribe transaction will pay, divide the

content size by four and multiply by the fee rate.

Inscription transactions must be less than 400,000 weight units, or they will not be

relayed by Bitcoin Core. One byte of inscription content costs one weight unit. Since an

inscription transaction includes not just the inscription content, limit inscription content

to less than 400,000 weight units. 390,000 weight units should be safe.

Creating Inscriptions

To create an inscription with the contents of FILE , run:

Ord will output two transactions IDs, one for the commit transaction, and one for the

reveal transaction, and the inscription ID. Inscription IDs are of the form TXIDiN , where

TXID is the transaction ID of the reveal transaction, and N is the index of the inscription

in the reveal transaction.

The commit transaction commits to a tapscript containing the content of the inscription,

and the reveal transaction spends from that tapscript, revealing the content on chain and

inscribing it on the first sat of the input that contains the corresponding tapscript.

Wait for the reveal transaction to be mined. You can check the status of the commit and

reveal transactions using the mempool.space block explorer.

Once the reveal transaction has been mined, the inscription ID should be printed when

you run:

Parent-Child Inscriptions

Parent-child inscriptions enable what is colloquially known as collections, see provenance

for more information.

To make an inscription a child of another, the parent inscription has to be inscribed and

present in the wallet. To choose a parent run ord wallet inscriptions and copy the

inscription id (<PARENT_INSCRIPTION_ID>).

ord wallet inscribe --fee-rate FEE_RATE --file FILE

ord wallet inscriptions

Ordinal Theory Handbook https://docs.ordinals.com/print.html

43 of 84 2/7/24, 17:46

https://docs.ordinals.com/print.html#creating-inscriptions
https://docs.ordinals.com/print.html#creating-inscriptions
https://mempool.space/
https://mempool.space/
https://docs.ordinals.com/print.html#parent-child-inscriptions
https://docs.ordinals.com/print.html#parent-child-inscriptions
https://docs.ordinals.com/inscriptions/provenance.html
https://docs.ordinals.com/inscriptions/provenance.html

Now inscribe the child inscription and specify the parent like so:

This relationship cannot be added retroactively, the parent has to be present at inception

of the child.

Sending Inscriptions

Ask the recipient to generate a new address by running:

Send the inscription by running:

See the pending transaction with:

Once the send transaction confirms, the recipient can confirm receipt by running:

Receiving Inscriptions

Generate a new receive address using:

The sender can transfer the inscription to your address using:

See the pending transaction with:

ord wallet inscribe --fee-rate FEE_RATE --parent <PARENT_INSCRIPTION_ID> --
file CHILD_FILE

ord wallet receive

ord wallet send --fee-rate <FEE_RATE> <ADDRESS> <INSCRIPTION_ID>

ord wallet transactions

ord wallet inscriptions

ord wallet receive

ord wallet send ADDRESS INSCRIPTION_ID

ord wallet transactions

Ordinal Theory Handbook https://docs.ordinals.com/print.html

44 of 84 2/7/24, 17:46

https://docs.ordinals.com/print.html#sending-inscriptions
https://docs.ordinals.com/print.html#sending-inscriptions
https://docs.ordinals.com/print.html#receiving-inscriptions
https://docs.ordinals.com/print.html#receiving-inscriptions

Once the send transaction confirms, you can confirm receipt by running:

ord wallet inscriptions

Ordinal Theory Handbook https://docs.ordinals.com/print.html

45 of 84 2/7/24, 17:46

Batch Inscribing

Multiple inscriptions can be created inscriptions at the same time using the pointer field.

This is especially helpful for collections, or other cases when multiple inscriptions should

share the same parent, since the parent can passed into a reveal transaction that creates

multiple children.

To create a batch inscription using a batchfile in batch.yaml , run the following

command:

Example batch.yaml

ord wallet inscribe --fee-rate 21 --batch batch.yaml

Ordinal Theory Handbook https://docs.ordinals.com/print.html

46 of 84 2/7/24, 17:46

https://docs.ordinals.com/print.html#batch-inscribing
https://docs.ordinals.com/print.html#batch-inscribing
https://docs.ordinals.com/inscriptions/pointer.html
https://docs.ordinals.com/inscriptions/pointer.html
https://docs.ordinals.com/print.html#example-batchyaml
https://docs.ordinals.com/print.html#example-batchyaml
https://docs.ordinals.com/print.html#example-batchyaml
https://docs.ordinals.com/print.html#example-batchyaml

example batch file

inscription modes:
- `separate-outputs`: inscribe on separate postage-sized outputs
- `shared-output`: inscribe on a single output separated by postage
- `same-sat`: inscribe on the same sat
mode: separate-outputs

parent inscription:
parent: 6ac5cacb768794f4fd7a78bf00f2074891fce68bd65c4ff36e77177237aacacai0

postage for each inscription:
postage: 12345

sat to inscribe on, can only be used with `same-sat`:
sat: 5000000000

inscriptions to inscribe
inscriptions:
path to inscription content

- file: mango.avif
inscription to delegate content to (optional)
delegate:

6ac5cacb768794f4fd7a78bf00f2074891fce68bd65c4ff36e77177237aacacai0
destination (optional, if no destination is specified a new wallet change

address will be used)
destination: bc1qw508d6qejxtdg4y5r3zarvary0c5xw7kv8f3t4
inscription metadata (optional)
metadata:
title: Delicious Mangos
description: >

 Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aliquam
semper,
 ligula ornare laoreet tincidunt, odio nisi euismod tortor, vel blandit
 metus est et odio. Nullam venenatis, urna et molestie vestibulum, orci
 mi efficitur risus, eu malesuada diam lorem sed velit. Nam fermentum
 dolor et luctus euismod.

inscription metaprotocol (optional)
metaprotocol: DOPEPROTOCOL-42069

- file: token.json

- file: tulip.png
destination: bc1pdqrcrxa8vx6gy75mfdfj84puhxffh4fq46h3gkp6jxdd0vjcsdyspfxcv6
metadata:
author: Satoshi Nakamoto

Ordinal Theory Handbook https://docs.ordinals.com/print.html

47 of 84 2/7/24, 17:46

Sat Hunting

This guide is out of date. Since it was written, the ord binary was changed to only build the full

satoshi index when the --index-sats flag is supplied. Additionally, ord now has a built-in

wallet that wraps a Bitcoin Core wallet. See ord wallet --help .

Ordinal hunting is difficult but rewarding. The feeling of owning a wallet full of UTXOs,

redolent with the scent of rare and exotic sats, is beyond compare.

Ordinals are numbers for satoshis. Every satoshi has an ordinal number and every

ordinal number has a satoshi.

Preparation

There are a few things you'll need before you start.

1. First, you'll need a synced Bitcoin Core node with a transaction index. To turn on

transaction indexing, pass -txindex on the command-line:

Or put the following in your Bitcoin configuration file:

Launch it and wait for it to catch up to the chain tip, at which point the following

command should print out the current block height:

2. Second, you'll need a synced ord index.

◦ Get a copy of ord from the repo.

◦ Run RUST_LOG=info ord index . It should connect to your bitcoin core node

and start indexing.

◦ Wait for it to finish indexing.

3. Third, you'll need a wallet with UTXOs that you want to search.

bitcoind -txindex

txindex=1

bitcoin-cli getblockcount

Ordinal Theory Handbook https://docs.ordinals.com/print.html

48 of 84 2/7/24, 17:46

https://docs.ordinals.com/print.html#sat-hunting
https://docs.ordinals.com/print.html#sat-hunting
https://docs.ordinals.com/print.html#preparation
https://docs.ordinals.com/print.html#preparation
https://github.com/bitcoin/bitcoin/blob/master/doc/bitcoin-conf.md#configuration-file-path
https://github.com/bitcoin/bitcoin/blob/master/doc/bitcoin-conf.md#configuration-file-path
https://github.com/ordinals/ord/
https://github.com/ordinals/ord/

Searching for Rare Ordinals

Searching for Rare Ordinals in a Bitcoin Core Wallet

The ord wallet command is just a wrapper around Bitcoin Core's RPC API, so searching

for rare ordinals in a Bitcoin Core wallet is Easy. Assuming your wallet is named foo :

1. Load your wallet:

2. Display any rare ordinals wallet foo 's UTXOs:

Searching for Rare Ordinals in a Non-Bitcoin Core Wallet

The ord wallet command is just a wrapper around Bitcoin Core's RPC API, so to search

for rare ordinals in a non-Bitcoin Core wallet, you'll need to import your wallet's

descriptors into Bitcoin Core.

Descriptors describe the ways that wallets generate private keys and public keys.

You should only import descriptors into Bitcoin Core for your wallet's public keys, not its

private keys.

If your wallet's public key descriptor is compromised, an attacker will be able to see your

wallet's addresses, but your funds will be safe.

If your wallet's private key descriptor is compromised, an attacker can drain your wallet of

funds.

1. Get the wallet descriptor from the wallet whose UTXOs you want to search for rare

ordinals. It will look something like this:

2. Create a watch-only wallet named foo-watch-only :

bitcoin-cli loadwallet foo

ord --wallet foo --index-sats wallet sats

wpkh([bf1dd55e/84'/0'/

0']xpub6CcJtWcvFQaMo39ANFi1MyXkEXM8T8ZhnxMtSjQAdPmVSTHYnc8Hwoc11VpuP8cb8

JUTboZB5A7YYGDonYySij4XTawL6iNZvmZwdnSEEep/0/*)#csvefu29

Ordinal Theory Handbook https://docs.ordinals.com/print.html

49 of 84 2/7/24, 17:46

https://docs.ordinals.com/print.html#searching-for-rare-ordinals
https://docs.ordinals.com/print.html#searching-for-rare-ordinals
https://docs.ordinals.com/print.html#searching-for-rare-ordinals-in-a-bitcoin-core-wallet
https://docs.ordinals.com/print.html#searching-for-rare-ordinals-in-a-bitcoin-core-wallet
https://docs.ordinals.com/print.html#searching-for-rare-ordinals-in-a-non-bitcoin-core-wallet
https://docs.ordinals.com/print.html#searching-for-rare-ordinals-in-a-non-bitcoin-core-wallet
https://github.com/bitcoin/bitcoin/blob/master/doc/descriptors.md
https://github.com/bitcoin/bitcoin/blob/master/doc/descriptors.md

Feel free to give it a better name than foo-watch-only !

3. Load the foo-watch-only wallet:

4. Import your wallet descriptors into foo-watch-only :

If you know the Unix timestamp when your wallet first started receive transactions,

you may use it for the value of "timestamp" instead of 0 . This will reduce the time

it takes for Bitcoin Core to search for your wallet's UTXOs.

5. Check that everything worked:

6. Display your wallet's rare ordinals:

Searching for Rare Ordinals in a Wallet that Exports Multi-path

Descriptors

Some descriptors describe multiple paths in one descriptor using angle brackets, e.g.,

<0;1> . Multi-path descriptors are not yet supported by Bitcoin Core, so you'll first need

to convert them into multiple descriptors, and then import those multiple descriptors into

Bitcoin Core.

1. First get the multi-path descriptor from your wallet. It will look something like this:

bitcoin-cli createwallet foo-watch-only true true

bitcoin-cli loadwallet foo-watch-only

bitcoin-cli importdescriptors \

'[{ "desc": "wpkh([bf1dd55e/84h/0h/

0h]xpub6CcJtWcvFQaMo39ANFi1MyXkEXM8T8ZhnxMtSjQAdPmVSTHYnc8Hwoc11VpuP8cb8

JUTboZB5A7YYGDonYySij4XTawL6iNZvmZwdnSEEep/0/*)#tpnxnxax", "timestamp":0

}]'

bitcoin-cli getwalletinfo

ord wallet sats

wpkh([bf1dd55e/84h/0h/

0h]xpub6CcJtWcvFQaMo39ANFi1MyXkEXM8T8ZhnxMtSjQAdPmVSTHYnc8Hwoc11VpuP8cb8

JUTboZB5A7YYGDonYySij4XTawL6iNZvmZwdnSEEep/<0;1>/*)#fw76ulgt

Ordinal Theory Handbook https://docs.ordinals.com/print.html

50 of 84 2/7/24, 17:46

https://docs.ordinals.com/print.html#searching-for-rare-ordinals-in-a-wallet-that-exports-multi-path-descriptors
https://docs.ordinals.com/print.html#searching-for-rare-ordinals-in-a-wallet-that-exports-multi-path-descriptors
https://docs.ordinals.com/print.html#searching-for-rare-ordinals-in-a-wallet-that-exports-multi-path-descriptors
https://docs.ordinals.com/print.html#searching-for-rare-ordinals-in-a-wallet-that-exports-multi-path-descriptors

2. Create a descriptor for the receive address path:

And the change address path:

3. Get and note the checksum for the receive address descriptor, in this case

tpnxnxax :

And for the change address descriptor, in this case 64k8wnd7 :

wpkh([bf1dd55e/84'/0'/

0']xpub6CcJtWcvFQaMo39ANFi1MyXkEXM8T8ZhnxMtSjQAdPmVSTHYnc8Hwoc11VpuP8cb8

JUTboZB5A7YYGDonYySij4XTawL6iNZvmZwdnSEEep/0/*)

wpkh([bf1dd55e/84'/0'/

0']xpub6CcJtWcvFQaMo39ANFi1MyXkEXM8T8ZhnxMtSjQAdPmVSTHYnc8Hwoc11VpuP8cb8

JUTboZB5A7YYGDonYySij4XTawL6iNZvmZwdnSEEep/1/*)

bitcoin-cli getdescriptorinfo \

'wpkh([bf1dd55e/84h/0h/

0h]xpub6CcJtWcvFQaMo39ANFi1MyXkEXM8T8ZhnxMtSjQAdPmVSTHYnc8Hwoc11VpuP8cb8

JUTboZB5A7YYGDonYySij4XTawL6iNZvmZwdnSEEep/0/*)'

{

"descriptor": "wpkh([bf1dd55e/84'/0'/

0']xpub6CcJtWcvFQaMo39ANFi1MyXkEXM8T8ZhnxMtSjQAdPmVSTHYnc8Hwoc11VpuP8cb8

JUTboZB5A7YYGDonYySij4XTawL6iNZvmZwdnSEEep/0/*)#csvefu29",

"checksum": "tpnxnxax",

"isrange": true,

"issolvable": true,

"hasprivatekeys": false

}

bitcoin-cli getdescriptorinfo \

'wpkh([bf1dd55e/84h/0h/

0h]xpub6CcJtWcvFQaMo39ANFi1MyXkEXM8T8ZhnxMtSjQAdPmVSTHYnc8Hwoc11VpuP8cb8

JUTboZB5A7YYGDonYySij4XTawL6iNZvmZwdnSEEep/1/*)'

Ordinal Theory Handbook https://docs.ordinals.com/print.html

51 of 84 2/7/24, 17:46

4. Load the wallet you want to import the descriptors into:

5. Now import the descriptors, with the correct checksums, into Bitcoin Core.

If you know the Unix timestamp when your wallet first started receive transactions,

you may use it for the value of the "timestamp" fields instead of 0 . This will reduce

the time it takes for Bitcoin Core to search for your wallet's UTXOs.

6. Check that everything worked:

7. Display your wallet's rare ordinals:

{

"descriptor": "wpkh([bf1dd55e/84'/0'/

0']xpub6CcJtWcvFQaMo39ANFi1MyXkEXM8T8ZhnxMtSjQAdPmVSTHYnc8Hwoc11VpuP8cb8

JUTboZB5A7YYGDonYySij4XTawL6iNZvmZwdnSEEep/1/*)#fyfc5f6a",

"checksum": "64k8wnd7",

"isrange": true,

"issolvable": true,

"hasprivatekeys": false

}

bitcoin-cli loadwallet foo-watch-only

bitcoin-cli \

 importdescriptors \

'[

 {

 "desc": "wpkh([bf1dd55e/84h/0h/

0h]xpub6CcJtWcvFQaMo39ANFi1MyXkEXM8T8ZhnxMtSjQAdPmVSTHYnc8Hwoc11VpuP8cb8

JUTboZB5A7YYGDonYySij4XTawL6iNZvmZwdnSEEep/0/*)#tpnxnxax"

 "timestamp":0

 },

 {

 "desc": "wpkh([bf1dd55e/84h/0h/

0h]xpub6CcJtWcvFQaMo39ANFi1MyXkEXM8T8ZhnxMtSjQAdPmVSTHYnc8Hwoc11VpuP8cb8

JUTboZB5A7YYGDonYySij4XTawL6iNZvmZwdnSEEep/1/*)#64k8wnd7",

 "timestamp":0

 }

]'

bitcoin-cli getwalletinfo

Ordinal Theory Handbook https://docs.ordinals.com/print.html

52 of 84 2/7/24, 17:46

Exporting Descriptors

Sparrow Wallet

Navigate to the Settings tab, then to Script Policy , and press the edit button to

display the descriptor.

Transferring Ordinals

The ord wallet supports transferring specific satoshis. You can also use bitcoin-cli

commands createrawtransaction , signrawtransactionwithwallet , and

sendrawtransaction , how to do so is complex and outside the scope of this guide.

ord wallet sats

Ordinal Theory Handbook https://docs.ordinals.com/print.html

53 of 84 2/7/24, 17:46

https://docs.ordinals.com/print.html#exporting-descriptors
https://docs.ordinals.com/print.html#exporting-descriptors
https://docs.ordinals.com/print.html#sparrow-wallet
https://docs.ordinals.com/print.html#sparrow-wallet
https://docs.ordinals.com/print.html#transferring-ordinals
https://docs.ordinals.com/print.html#transferring-ordinals

Teleburning

Teleburn addresses can be used to burn assets on other blockchains, leaving behind in

the smoking rubble a sort of forwarding address pointing to an inscription on Bitcoin.

Teleburning an asset means something like, "I'm out. Find me on Bitcoin."

Teleburn addresses are derived from inscription IDs. They have no corresponding private

key, so assets sent to a teleburn address are burned. Currently, only Ethereum teleburn

addresses are supported. Pull requests adding teleburn addresses for other chains are

welcome.

Ethereum

Ethereum teleburn addresses are derived by taking the first 20 bytes of the SHA-256 hash

of the inscription ID, serialized as 36 bytes, with the first 32 bytes containing the

transaction ID, and the last four bytes containing big-endian inscription index, and

interpreting it as an Ethereum address.

Example

The ENS domain name rodarmor.eth, was teleburned to inscription zero.

Running the inscription ID of inscription zero is

6fb976ab49dcec017f1e201e84395983204ae1a7c2abf7ced0a85d692e442799i0 .

Passing 6fb976ab49dcec017f1e201e84395983204ae1a7c2abf7ced0a85d692e442799i0 to

the teleburn command:

Returns:

Indicating that 0xe43A06530BdF8A4e067581f48Fae3b535559dA9e is the Ethereum teleburn

address for inscription zero, which is, indeed, the current owner, on Ethereum, of

rodarmor.eth .

$ ord teleburn
6fb976ab49dcec017f1e201e84395983204ae1a7c2abf7ced0a85d692e442799i0

{
"ethereum": "0xe43A06530BdF8A4e067581f48Fae3b535559dA9e"

}

Ordinal Theory Handbook https://docs.ordinals.com/print.html

54 of 84 2/7/24, 17:46

https://docs.ordinals.com/print.html#teleburning
https://docs.ordinals.com/print.html#teleburning
https://docs.ordinals.com/print.html#ethereum
https://docs.ordinals.com/print.html#ethereum
https://docs.ordinals.com/print.html#example-3
https://docs.ordinals.com/print.html#example-3
https://app.ens.domains/rodarmor.eth
https://app.ens.domains/rodarmor.eth
https://ordinals.com/inscription/6fb976ab49dcec017f1e201e84395983204ae1a7c2abf7ced0a85d692e442799i0
https://ordinals.com/inscription/6fb976ab49dcec017f1e201e84395983204ae1a7c2abf7ced0a85d692e442799i0

Collecting

Currently, ord is the only wallet supporting sat-control and sat-selection, which are

required to safely store and send rare sats and inscriptions, hereafter ordinals.

The recommended way to send, receive, and store ordinals is with ord , but if you are

careful, it is possible to safely store, and in some cases send, ordinals with other wallets.

As a general note, receiving ordinals in an unsupported wallet is not dangerous. Ordinals

can be sent to any bitcoin address, and are safe as long as the UTXO that contains them is

not spent. However, if that wallet is then used to send bitcoin, it may select the UTXO

containing the ordinal as an input, and send the inscription or spend it to fees.

A guide to creating an ord -compatible wallet with Sparrow Wallet, is available in this

handbook.

Please note that if you follow this guide, you should not use the wallet you create to send

BTC, unless you perform manual coin-selection to avoid sending ordinals.

Ordinal Theory Handbook https://docs.ordinals.com/print.html

55 of 84 2/7/24, 17:46

https://docs.ordinals.com/print.html#collecting
https://docs.ordinals.com/print.html#collecting
https://github.com/ordinals/ord/
https://github.com/ordinals/ord/
https://docs.ordinals.com/guides/collecting/sparrow-wallet.html
https://docs.ordinals.com/guides/collecting/sparrow-wallet.html
https://sparrowwallet.com/
https://sparrowwallet.com/

Collecting Inscriptions and Ordinals with

Sparrow Wallet

Users who cannot or have not yet set up the ord wallet can receive inscriptions and

ordinals with alternative bitcoin wallets, as long as they are very careful about how they

spend from that wallet.

This guide gives some basic steps on how to create a wallet with Sparrow Wallet which is

compatible with ord and can be later imported into ord

���� Warning!! ����

As a general rule if you take this approach, you should use this wallet with the Sparrow

software as a receive-only wallet.

Do not spend any satoshis from this wallet unless you are sure you know what you are

doing. You could very easily inadvertently lose access to your ordinals and inscriptions if

you don't heed this warning.

Wallet Setup & Receiving

Download the Sparrow Wallet from the releases page for your particular operating

system.

Select File -> New Wallet and create a new wallet called ord .

Ordinal Theory Handbook https://docs.ordinals.com/print.html

56 of 84 2/7/24, 17:46

https://docs.ordinals.com/print.html#collecting-inscriptions-and-ordinals-with-sparrow-wallet
https://docs.ordinals.com/print.html#collecting-inscriptions-and-ordinals-with-sparrow-wallet
https://docs.ordinals.com/print.html#collecting-inscriptions-and-ordinals-with-sparrow-wallet
https://docs.ordinals.com/print.html#collecting-inscriptions-and-ordinals-with-sparrow-wallet
https://github.com/ordinals/ord
https://github.com/ordinals/ord
https://sparrowwallet.com/
https://sparrowwallet.com/
https://docs.ordinals.com/print.html#-warning-
https://docs.ordinals.com/print.html#-warning-
https://docs.ordinals.com/print.html#wallet-setup--receiving
https://docs.ordinals.com/print.html#wallet-setup--receiving
https://sparrowwallet.com/download/
https://sparrowwallet.com/download/

Change the Script Type to Taproot (P2TR) and select the New or Imported Software

Wallet option.

Select Use 12 Words and then click Generate New . Leave the passphrase blank.

Ordinal Theory Handbook https://docs.ordinals.com/print.html

57 of 84 2/7/24, 17:46

A new 12 word BIP39 seed phrase will be generated for you. Write this down somewhere

safe as this is your backup to get access to your wallet. NEVER share or show this seed

phrase to anyone else.

Once you have written down the seed phrase click Confirm Backup .

Ordinal Theory Handbook https://docs.ordinals.com/print.html

58 of 84 2/7/24, 17:46

Re-enter the seed phrase which you wrote down, and then click Create Keystore .

Ordinal Theory Handbook https://docs.ordinals.com/print.html

59 of 84 2/7/24, 17:46

Click Import Keystore .

Ordinal Theory Handbook https://docs.ordinals.com/print.html

60 of 84 2/7/24, 17:46

Click Apply . Add a password for the wallet if you want to.

Ordinal Theory Handbook https://docs.ordinals.com/print.html

61 of 84 2/7/24, 17:46

You now have a wallet which is compatible with ord , and can be imported into ord

using the BIP39 Seed Phrase. To receive ordinals or inscriptions, click on the Receive tab

and copy a new address.

Each time you want to receive you should use a brand-new address, and not re-use

existing addresses.

Note that bitcoin is different to some other blockchain wallets, in that this wallet can

generate an unlimited number of new addresses. You can generate a new address by

clicking on the Get Next Address button. You can see all of your addresses in the

Addresses tab of the app.

You can add a label to each address, so you can keep track of what it was used for.

Ordinal Theory Handbook https://docs.ordinals.com/print.html

62 of 84 2/7/24, 17:46

Validating / Viewing Received Inscriptions

Once you have received an inscription you will see a new transaction in the

Transactions tab of Sparrow, as well as a new UTXO in the UTXOs tab.

Initially this transaction may have an "Unconfirmed" status, and you will need to wait for

it to be mined into a bitcoin block before it is fully received.

Ordinal Theory Handbook https://docs.ordinals.com/print.html

63 of 84 2/7/24, 17:46

https://docs.ordinals.com/print.html#validating--viewing-received-inscriptions
https://docs.ordinals.com/print.html#validating--viewing-received-inscriptions

To track the status of your transaction you can right-click on it, select Copy Transaction

ID and then paste that transaction id into mempool.space.

Once the transaction has confirmed, you can validate and view your inscription by

heading over to the UTXOs tab, finding the UTXO you want to check, right-clicking on the

Output and selecting Copy Transaction Output . This transaction output id can then be

pasted into the ordinals.com search.

Freezing UTXO's

As explained above, each of your inscriptions is stored in an Unspent Transaction Output

(UTXO). You want to be very careful not to accidentally spend your inscriptions, and one

way to make it harder for this to happen is to freeze the UTXO.

To do this, go to the UTXOs tab, find the UTXO you want to freeze, right-click on the

Output and select Freeze UTXO .

Ordinal Theory Handbook https://docs.ordinals.com/print.html

64 of 84 2/7/24, 17:46

https://mempool.space/
https://mempool.space/
https://ordinals.com/
https://ordinals.com/
https://docs.ordinals.com/print.html#freezing-utxos
https://docs.ordinals.com/print.html#freezing-utxos

This UTXO (Inscription) is now un-spendable within the Sparrow Wallet until you unfreeze

it.

Importing into ord wallet

For details on setting up Bitcoin Core and the ord wallet check out the Inscriptions Guide

When setting up ord , instead of running ord wallet create to create a brand-new

wallet, you can import your existing wallet using ord wallet restore "BIP39 SEED

PHRASE" using the seed phrase you generated with Sparrow Wallet.

There is currently a bug which causes an imported wallet to not be automatically

rescanned against the blockchain. To work around this you will need to manually trigger a

rescan using the bitcoin core cli: bitcoin-cli -rpcwallet=ord rescanblockchain

767430

You can then check your wallet's inscriptions using ord wallet inscriptions

Note that if you have previously created a wallet with ord , then you will already have a

wallet with the default name, and will need to give your imported wallet a different name.

You can use the --wallet parameter in all ord commands to reference a different

wallet, eg:

ord --wallet ord_from_sparrow wallet restore "BIP39 SEED PHRASE"

ord --wallet ord_from_sparrow wallet inscriptions

bitcoin-cli -rpcwallet=ord_from_sparrow rescanblockchain 767430

Sending inscriptions with Sparrow Wallet

���� Warning ����

While it is highly recommended that you set up a bitcoin core node and run the ord

software, there are certain limited ways you can send inscriptions out of Sparrow Wallet

in a safe way. Please note that this is not recommended, and you should only do this if

you fully understand what you are doing.

Using the ord software will remove much of the complexity we are describing here, as it

is able to automatically and safely handle sending inscriptions in an easy way.

Ordinal Theory Handbook https://docs.ordinals.com/print.html

65 of 84 2/7/24, 17:46

https://docs.ordinals.com/print.html#importing-into-ord-wallet
https://docs.ordinals.com/print.html#importing-into-ord-wallet
https://docs.ordinals.com/print.html#importing-into-ord-wallet
https://docs.ordinals.com/print.html#importing-into-ord-wallet
https://docs.ordinals.com/print.html#importing-into-ord-wallet
https://docs.ordinals.com/guides/inscriptions.html
https://docs.ordinals.com/guides/inscriptions.html
https://github.com/ordinals/ord/issues/1589
https://github.com/ordinals/ord/issues/1589
https://docs.ordinals.com/print.html#sending-inscriptions-with-sparrow-wallet
https://docs.ordinals.com/print.html#sending-inscriptions-with-sparrow-wallet
https://docs.ordinals.com/print.html#-warning--1
https://docs.ordinals.com/print.html#-warning--1

���� Additional Warning ����

Don't use your sparrow inscriptions wallet to do general sends of non-inscription bitcoin.

You can setup a separate wallet in sparrow if you need to do normal bitcoin transactions,

and keep your inscriptions wallet separate.

Bitcoin's UTXO model

Before sending any transaction it's important that you have a good mental model for

bitcoin's Unspent Transaction Output (UTXO) system. The way Bitcoin works is

fundamentally different to many other blockchains such as Ethereum. In Ethereum

generally you have a single address in which you store ETH, and you cannot differentiate

between any of the ETH - it is just all a single value of the total amount in that address.

Bitcoin works very differently in that we generate a new address in the wallet for each

receive, and every time you receive sats to an address in your wallet you are creating a

new UTXO. Each UTXO can be seen and managed individually. You can select specific

UTXO's which you want to spend, and you can choose not to spend certain UTXO's.

Some Bitcoin wallets do not expose this level of detail, and they just show you a single

summed up value of all the bitcoin in your wallet. However, when sending inscriptions it

is important that you use a wallet like Sparrow which allows for UTXO control.

Inspecting your inscription before sending

Like we have previously described inscriptions are inscribed onto sats, and sats are

stored within UTXOs. UTXO's are a collection of satoshis with some particular value of the

number of satoshis (the output value). Usually (but not always) the inscription will be

inscribed on the first satoshi in the UTXO.

When inspecting your inscription before sending the main thing you will want to check is

which satoshi in the UTXO your inscription is inscribed on.

To do this, you can follow the Validating / Viewing Received Inscriptions described above

to find the inscription page for your inscription on ordinals.com

There you will find some metadata about your inscription which looks like the following:

Ordinal Theory Handbook https://docs.ordinals.com/print.html

66 of 84 2/7/24, 17:46

https://docs.ordinals.com/print.html#-additional-warning-
https://docs.ordinals.com/print.html#-additional-warning-
https://docs.ordinals.com/print.html#bitcoins-utxo-model
https://docs.ordinals.com/print.html#bitcoins-utxo-model
https://docs.ordinals.com/print.html#inspecting-your-inscription-before-sending
https://docs.ordinals.com/print.html#inspecting-your-inscription-before-sending
https://docs.ordinals.com/guides/collecting/sparrow-wallet.html#validating--viewing-received-inscriptions
https://docs.ordinals.com/guides/collecting/sparrow-wallet.html#validating--viewing-received-inscriptions

There is a few of important things to check here:

• The output identifier matches the identifier of the UTXO you are going to send

• The offset of the inscription is 0 (this means that the inscription is located on the

first sat in the UTXO)

• the output_value has enough sats to cover the transaction fee (postage) for

sending the transaction. The exact amount you will need depends on the fee rate

you will select for the transaction

If all of the above are true for your inscription, it should be safe for you to send it using

the method below.

���� Be very careful sending your inscription particularly if the offset value is not 0 . It is

not recommended to use this method if that is the case, as doing so you could

accidentally send your inscription to a bitcoin miner unless you know what you are doing.

Sending your inscription

Ordinal Theory Handbook https://docs.ordinals.com/print.html

67 of 84 2/7/24, 17:46

https://docs.ordinals.com/print.html#sending-your-inscription
https://docs.ordinals.com/print.html#sending-your-inscription

To send an inscription navigate to the UTXOs tab, and find the UTXO which you previously

validated contains your inscription.

If you previously froze the UXTO you will need to right-click on it and unfreeze it.

Select the UTXO you want to send, and ensure that is the only UTXO is selected. You

should see UTXOs 1/1 in the interface. Once you are sure this is the case you can hit

Send Selected .

You will then be presented with the transaction construction interface. There is a few

things you need to check here to make sure that this is a safe send:

• The transaction should have only 1 input, and this should be the UTXO with the label

you want to send

• The transaction should have only 1 output, which is the address/label where you

want to send the inscription

If your transaction looks any different, for example you have multiple inputs, or multiple

outputs then this may not be a safe transfer of your inscription, and you should abandon

sending until you understand more, or can import into the ord wallet.

You should set an appropriate transaction fee, Sparrow will usually recommend a

reasonable one, but you can also check mempool.space to see what the recommended

fee rate is for sending a transaction.

Ordinal Theory Handbook https://docs.ordinals.com/print.html

68 of 84 2/7/24, 17:46

https://mempool.space/
https://mempool.space/

You should add a label for the recipient address, a label like alice address for

inscription #123 would be ideal.

Once you have checked the transaction is a safe transaction using the checks above, and

you are confident to send it you can click Create Transaction .

Here again you can double check that your transaction looks safe, and once you are

confident you can click Finalize Transaction for Signing .

Ordinal Theory Handbook https://docs.ordinals.com/print.html

69 of 84 2/7/24, 17:46

Here you can triple check everything before hitting Sign .

Ordinal Theory Handbook https://docs.ordinals.com/print.html

70 of 84 2/7/24, 17:46

And then actually you get very very last chance to check everything before hitting

Broadcast Transaction . Once you broadcast the transaction it is sent to the bitcoin

network, and starts being propagated into the mempool.

Ordinal Theory Handbook https://docs.ordinals.com/print.html

71 of 84 2/7/24, 17:46

If you want to track the status of your transaction you can copy the Transaction Id

(Txid) and paste that into mempool.space

Once the transaction has confirmed you can check the inscription page on ordinals.com

to validate that it has moved to the new output location and address.

Troubleshooting

Sparrow wallet is not showing a transaction/UTXO, but I can see it on

mempool.space!

Make sure that your wallet is connected to a bitcoin node. To validate this, head into the

Preferences -> Server settings, and click Edit Existing Connection .

Ordinal Theory Handbook https://docs.ordinals.com/print.html

72 of 84 2/7/24, 17:46

https://mempool.space/
https://mempool.space/
https://ordinals.com/
https://ordinals.com/
https://docs.ordinals.com/print.html#troubleshooting-1
https://docs.ordinals.com/print.html#troubleshooting-1
https://docs.ordinals.com/print.html#sparrow-wallet-is-not-showing-a-transactionutxo-but-i-can-see-it-on-mempoolspace
https://docs.ordinals.com/print.html#sparrow-wallet-is-not-showing-a-transactionutxo-but-i-can-see-it-on-mempoolspace
https://docs.ordinals.com/print.html#sparrow-wallet-is-not-showing-a-transactionutxo-but-i-can-see-it-on-mempoolspace
https://docs.ordinals.com/print.html#sparrow-wallet-is-not-showing-a-transactionutxo-but-i-can-see-it-on-mempoolspace

From there you can select a node and click Test Connection to validate that Sparrow is

able to connect successfully.

Ordinal Theory Handbook https://docs.ordinals.com/print.html

73 of 84 2/7/24, 17:46

Ordinal Theory Handbook https://docs.ordinals.com/print.html

74 of 84 2/7/24, 17:46

Testing

Ord can be tested using the following flags to specify the test network. For more

information on running Bitcoin Core for testing, see Bitcoin's developer documentation.

Most ord commands in inscriptions and explorer can be run with the following network

flags:

Network Flag

Testnet --testnet or -t

Signet --signet or -s

Regtest --regtest or -r

Regtest doesn't require downloading the blockchain or indexing ord.

Example

Run bitcoind in regtest with:

Create a wallet in regtest with:

Get a regtest receive address with:

Mine 101 blocks (to unlock the coinbase) with:

Inscribe in regtest with:

Mine the inscription with:

bitcoind -regtest -txindex

ord -r wallet create

ord -r wallet receive

bitcoin-cli -regtest generatetoaddress 101 <receive address>

ord -r wallet inscribe --fee-rate 1 --file <file>

bitcoin-cli -regtest generatetoaddress 1 <receive address>

Ordinal Theory Handbook https://docs.ordinals.com/print.html

75 of 84 2/7/24, 17:46

https://docs.ordinals.com/print.html#testing
https://docs.ordinals.com/print.html#testing
https://developer.bitcoin.org/examples/testing.html
https://developer.bitcoin.org/examples/testing.html
https://docs.ordinals.com/guides/inscriptions.html
https://docs.ordinals.com/guides/inscriptions.html
https://docs.ordinals.com/guides/explorer.html
https://docs.ordinals.com/guides/explorer.html
https://docs.ordinals.com/print.html#example-4
https://docs.ordinals.com/print.html#example-4

View the inscription in the regtest explorer:

By default, browsers don't support compression over HTTP. To test compressed content

over HTTP, use the --decompress flag:

Testing Recursion

When testing out recursion, inscribe the dependencies first (example with p5.js):

This should return a inscription_id which you can then reference in your recursive

inscription.

ATTENTION: These ids will be different when inscribing on mainnet or signet, so be sure

to change those in your recursive inscription for each chain.

Then you can inscribe your recursive inscription with:

Finally you will have to mine some blocks and start the server:

ord -r server

ord -r server --decompress

ord -r wallet inscribe --fee-rate 1 --file p5.js

ord -r wallet inscribe --fee-rate 1 --file recursive-inscription.html

bitcoin-cli generatetoaddress 6 <receive address>
ord -r server

Ordinal Theory Handbook https://docs.ordinals.com/print.html

76 of 84 2/7/24, 17:46

https://docs.ordinals.com/print.html#testing-recursion
https://docs.ordinals.com/print.html#testing-recursion
https://docs.ordinals.com/inscriptions/recursion.html
https://docs.ordinals.com/inscriptions/recursion.html
https://p5js.org/
https://p5js.org/

Moderation

ord includes a block explorer, which you can run locally with ord server .

The block explorer allows viewing inscriptions. Inscriptions are user-generated content,

which may be objectionable or unlawful.

It is the responsibility of each individual who runs an ordinal block explorer instance to

understand their responsibilities with respect to unlawful content, and decide what

moderation policy is appropriate for their instance.

In order to prevent particular inscriptions from being displayed on an ord instance, they

can be included in a YAML config file, which is loaded with the --config option.

To hide inscriptions, first create a config file, with the inscription ID you want to hide:

The suggested name for ord config files is ord.yaml , but any filename can be used.

Then pass the file to --config when starting the server:

ord --config ord.yaml server

Note that the --config option comes after ord but before the server subcommand.

ord must be restarted in to load changes to the config file.

ordinals.com

The ordinals.com instances use systemd to run the ord server service, which is called

ord , with a config file located at /var/lib/ord/ord.yaml .

To hide an inscription on ordinals.com :

1. SSH into the server

2. Add the inscription ID to /var/lib/ord/ord.yaml

3. Restart the service with systemctl restart ord

4. Monitor the restart with journalctl -u ord

Currently, ord is slow to restart, so the site will not come back online immediately.

hidden:
- 00i0

Ordinal Theory Handbook https://docs.ordinals.com/print.html

77 of 84 2/7/24, 17:46

https://docs.ordinals.com/print.html#moderation
https://docs.ordinals.com/print.html#moderation
https://docs.ordinals.com/print.html#ordinalscom
https://docs.ordinals.com/print.html#ordinalscom
https://docs.ordinals.com/print.html#ordinalscom

Reindexing

Sometimes the ord database must be reindexed, which means deleting the database

and restarting the indexing process with either ord index update or ord server .

Reasons to reindex are:

1. A new major release of ord, which changes the database scheme

2. The database got corrupted somehow

The database ord uses is called redb, so we give the index the default file name

index.redb . By default we store this file in different locations depending on your

operating system.

Platform Value Example

Linux
$XDG_DATA_HOME /ord or

$HOME /.local/share/ord
/home/alice/.local/share/ord

macOS
$HOME /Library/Application

Support/ord

/Users/Alice/Library/Application

Support/ord

Windows
{FOLDERID_RoamingAppData}

\ord

C:

\Users\Alice\AppData\Roaming\ord

So to delete the database and reindex on MacOS you would have to run the following

commands in the terminal:

You can of course also set the location of the data directory yourself with ord --data-

dir <DIR> index update or give it a specific filename and path with ord --index

<FILENAME> index update .

rm ~/Library/Application Support/ord/index.redb
ord index update

Ordinal Theory Handbook https://docs.ordinals.com/print.html

78 of 84 2/7/24, 17:46

https://docs.ordinals.com/print.html#reindexing
https://docs.ordinals.com/print.html#reindexing
https://github.com/cberner/redb
https://github.com/cberner/redb

Ordinal Bounty Hunting Hints

• The ord wallet can send and receive specific satoshis. Additionally, ordinal theory is

extremely simple. A clever hacker should be able to write code from scratch to

manipulate satoshis using ordinal theory in no time.

• For more information about ordinal theory, check out the FAQ for an overview, the

BIP for the technical details, and the ord repo for the ord wallet and block explorer.

• Satoshi was the original developer of ordinal theory. However, he knew that others

would consider it heretical and dangerous, so he hid his knowledge, and it was lost

to the sands of time. This potent theory is only now being rediscovered. You can

help by researching rare satoshis.

Good luck and godspeed!

Ordinal Theory Handbook https://docs.ordinals.com/print.html

79 of 84 2/7/24, 17:46

https://docs.ordinals.com/print.html#ordinal-bounty-hunting-hints
https://docs.ordinals.com/print.html#ordinal-bounty-hunting-hints
https://docs.ordinals.com/faq.html
https://docs.ordinals.com/faq.html
https://github.com/ordinals/ord/blob/master/bip.mediawiki
https://github.com/ordinals/ord/blob/master/bip.mediawiki
https://github.com/ordinals/ord
https://github.com/ordinals/ord

Ordinal Bounty 0

Criteria

Send a sat whose ordinal number ends with a zero to the submission address:

��: 1857578125803250

�: 1857578125803251

The sat must be the first sat of the output you send.

Reward

100,000 sats

Submission Address

1PE7u4wbDP2RqfKN6geD1bG57v9Gj9FXm3

Status

Claimed by @count_null!

Ordinal Theory Handbook https://docs.ordinals.com/print.html

80 of 84 2/7/24, 17:46

https://docs.ordinals.com/print.html#ordinal-bounty-0
https://docs.ordinals.com/print.html#ordinal-bounty-0
https://docs.ordinals.com/print.html#criteria
https://docs.ordinals.com/print.html#criteria
https://ordinals.com/ordinal/1857578125803250
https://ordinals.com/ordinal/1857578125803250
https://ordinals.com/ordinal/1857578125803251
https://ordinals.com/ordinal/1857578125803251
https://docs.ordinals.com/print.html#reward
https://docs.ordinals.com/print.html#reward
https://docs.ordinals.com/print.html#submission-address
https://docs.ordinals.com/print.html#submission-address
https://mempool.space/address/1PE7u4wbDP2RqfKN6geD1bG57v9Gj9FXm3
https://mempool.space/address/1PE7u4wbDP2RqfKN6geD1bG57v9Gj9FXm3
https://mempool.space/address/1PE7u4wbDP2RqfKN6geD1bG57v9Gj9FXm3
https://docs.ordinals.com/print.html#status
https://docs.ordinals.com/print.html#status
https://twitter.com/rodarmor/status/1560793241473400833
https://twitter.com/rodarmor/status/1560793241473400833

Ordinal Bounty 1

Criteria

The transaction that submits a UTXO containing the oldest sat, i.e., that with the lowest

number, amongst all submitted UTXOs will be judged the winner.

The bounty is open for submissions until block 753984—the first block of difficulty

adjustment period 374. Submissions included in block 753984 or later will not be

considered.

Reward

200,000 sats

Submission Address

145Z7PFHyVrwiMWwEcUmDgFbmUbQSU9aap

Status

Claimed by @ordinalsindex!

Ordinal Theory Handbook https://docs.ordinals.com/print.html

81 of 84 2/7/24, 17:46

https://docs.ordinals.com/print.html#ordinal-bounty-1
https://docs.ordinals.com/print.html#ordinal-bounty-1
https://docs.ordinals.com/print.html#criteria-1
https://docs.ordinals.com/print.html#criteria-1
https://docs.ordinals.com/print.html#reward-1
https://docs.ordinals.com/print.html#reward-1
https://docs.ordinals.com/print.html#submission-address-1
https://docs.ordinals.com/print.html#submission-address-1
https://mempool.space/address/145Z7PFHyVrwiMWwEcUmDgFbmUbQSU9aap
https://mempool.space/address/145Z7PFHyVrwiMWwEcUmDgFbmUbQSU9aap
https://mempool.space/address/145Z7PFHyVrwiMWwEcUmDgFbmUbQSU9aap
https://docs.ordinals.com/print.html#status-1
https://docs.ordinals.com/print.html#status-1
https://twitter.com/rodarmor/status/1569883266508853251
https://twitter.com/rodarmor/status/1569883266508853251

Ordinal Bounty 2

Criteria

Send an uncommon sat to the submission address:

��: 347100000000000

�: 6685000001337

Confirm that the submission address has not received transactions before submitting

your entry. Only the first successful submission will be rewarded.

Reward

300,000 sats

Submission Address

1Hyr94uypwWq5CQffaXHvwUMEyBPp3TUZH

Status

Claimed by @utxoset!

Ordinal Theory Handbook https://docs.ordinals.com/print.html

82 of 84 2/7/24, 17:46

https://docs.ordinals.com/print.html#ordinal-bounty-2
https://docs.ordinals.com/print.html#ordinal-bounty-2
https://docs.ordinals.com/print.html#criteria-2
https://docs.ordinals.com/print.html#criteria-2
https://ordinals.com/sat/347100000000000
https://ordinals.com/sat/347100000000000
https://ordinals.com/sat/6685000001337
https://ordinals.com/sat/6685000001337
https://docs.ordinals.com/print.html#reward-2
https://docs.ordinals.com/print.html#reward-2
https://docs.ordinals.com/print.html#submission-address-2
https://docs.ordinals.com/print.html#submission-address-2
https://mempool.space/address/1Hyr94uypwWq5CQffaXHvwUMEyBPp3TUZH
https://mempool.space/address/1Hyr94uypwWq5CQffaXHvwUMEyBPp3TUZH
https://mempool.space/address/1Hyr94uypwWq5CQffaXHvwUMEyBPp3TUZH
https://docs.ordinals.com/print.html#status-2
https://docs.ordinals.com/print.html#status-2
https://twitter.com/rodarmor/status/1582424455615172608
https://twitter.com/rodarmor/status/1582424455615172608

Ordinal Bounty 3

Criteria

Ordinal bounty 3 has two parts, both of which are based on ordinal names. Ordinal names

are a modified base-26 encoding of ordinal numbers. To avoid locking short names inside

the unspendable genesis block coinbase reward, ordinal names get shorter as the ordinal

number gets longer. The name of sat 0, the first sat to be mined is nvtdijuwxlp and the

name of sat 2,099,999,997,689,999, the last sat to be mined, is a .

The bounty is open for submissions until block 840000—the first block after the fourth

halving. Submissions included in block 840000 or later will not be considered.

Both parts use frequency.tsv, a list of words and the number of times they occur in the

Google Books Ngram dataset. filtered to only include the names of sats which will have

been mined by the end of the submission period, that appear at least 5000 times in the

corpus.

frequency.tsv is a file of tab-separated values. The first column is the word, and the

second is the number of times it appears in the corpus. The entries are sorted from least-

frequently occurring to most-frequently occurring.

frequency.tsv was compiled using this program.

To search an ord wallet for sats with a name in frequency.tsv , use the following ord

command:

This command requires the sat index, so --index-sats must be passed to ord when first

creating the index.

Part 0

Rare sats pair best with rare words.

The transaction that submits the UTXO containing the sat whose name appears with the

lowest number of occurrences in frequency.tsv shall be the winner of part 0.

Part 1

ord wallet sats --tsv frequency.tsv

Ordinal Theory Handbook https://docs.ordinals.com/print.html

83 of 84 2/7/24, 17:46

https://docs.ordinals.com/print.html#ordinal-bounty-3
https://docs.ordinals.com/print.html#ordinal-bounty-3
https://docs.ordinals.com/print.html#criteria-3
https://docs.ordinals.com/print.html#criteria-3
https://docs.ordinals.com/bounty/frequency.tsv
https://docs.ordinals.com/bounty/frequency.tsv
http://storage.googleapis.com/books/ngrams/books/datasetsv2.html
http://storage.googleapis.com/books/ngrams/books/datasetsv2.html
https://github.com/casey/onegrams
https://github.com/casey/onegrams
https://github.com/ordinals/ord
https://github.com/ordinals/ord
https://github.com/ordinals/ord
https://docs.ordinals.com/print.html#part-0
https://docs.ordinals.com/print.html#part-0
https://docs.ordinals.com/print.html#part-1
https://docs.ordinals.com/print.html#part-1

Popularity is the font of value.

The transaction that submits the UTXO containing the sat whose name appears with the

highest number of occurrences in frequency.tsv shall be the winner of part 1.

Tie Breaking

In the case of a tie, where two submissions occur with the same frequency, the earlier

submission shall be the winner.

Reward

• Part 0: 200,000 sats

• Part 1: 200,000 sats

• Total: 400,000 sats

Submission Address

17m5rvMpi78zG8RUpCRd6NWWMJtWmu65kg

Status

Unclaimed!

Ordinal Theory Handbook https://docs.ordinals.com/print.html

84 of 84 2/7/24, 17:46

https://docs.ordinals.com/print.html#tie-breaking
https://docs.ordinals.com/print.html#tie-breaking
https://docs.ordinals.com/print.html#reward-3
https://docs.ordinals.com/print.html#reward-3
https://docs.ordinals.com/print.html#submission-address-3
https://docs.ordinals.com/print.html#submission-address-3
https://mempool.space/address/17m5rvMpi78zG8RUpCRd6NWWMJtWmu65kg
https://mempool.space/address/17m5rvMpi78zG8RUpCRd6NWWMJtWmu65kg
https://mempool.space/address/17m5rvMpi78zG8RUpCRd6NWWMJtWmu65kg
https://docs.ordinals.com/print.html#status-3
https://docs.ordinals.com/print.html#status-3

