
Array

Array Storage

Arrays in Yul take up slots depending on their array type. Array types include:

• Fixed Array, i.e. fixedU256Array

• Dynamic Array, i.e. dynamicU256Array

Because the length of a fixed arrays are known, they take up slots as much as their

length. i.e. fixedU256Array is of length 3 , therefore, it will take up 3 slots starting from

its current slot. However, slot taking of a fixed array is also controlled by its data type,

uint256 will take up an entire slot. So there will be as many slots occupied as 3 uint256

numbers in the fixedU256Array .

In the case of fixedU8Array , which has a known length of 3, because it's of type uint8 ,

it will be packed in that slot where it should start from.

Dynamic arrays are different, because, their lengths are not known, so there is no set

amount of slots allocated for it, therefore, at their slots, which we will call slot , the

length of the array is stored. Then the array elements can be found starting at slot

keccak256(slot) and spanning up till keccak256(slot) + ((the length of the array) - 1).

contract Array {

 uint8[3] public fixedU8Array;

 uint8[] public dynamicU8Array;

 uint256[3] public fixedU256Array;

 uint256[] public dynamicU256Array;

}

/*

* Array Variable | Slot(s) Occupied | Values Stored At Slot(s)

[sload(slot)]

* __________________|_______________________|

* fixedU8Array | 0 - 2 | 0 <= x <= 2

* dynamicU8Array | 3 | keccak256(3) + (0 <= x <

dynamicU8Array.length)

* fixedU256Array | 4 - 6 | 4 <= x <= 6

* dynamicU256Array | 7 | keccak256(7) + (0 <= x <

dynamicU256Array.length)

* __________________|_______________________|

*/

book https://yul-by-example.vercel.app/print.html

1 of 32 2/27/24, 05:52

https://yul-by-example.vercel.app/print.html#array
https://yul-by-example.vercel.app/print.html#array
https://yul-by-example.vercel.app/print.html#array-storage
https://yul-by-example.vercel.app/print.html#array-storage

If dynamicU256Array should have 5 elements, at its slot in storage, which we will assume

as c , the value 5 will be stored. Then to get these 5 elements, they will be found at:

Index 0 => keccak256(c) + 0

Index 1 => keccak256(c) + 1

Index 2 => keccak256(c) + 2

Index 3 => keccak256(c) + 3

Index 4 => keccak256(c) + 4

All 5 elements. Adding one element to the array will increment the value at slot c to 6

and also add an:

Index 5 => keccak256(c) + 5

Which is the 6th element.

Reading From An Array

While reading the elements of the fixedU256Array is simple, because, type uint256

takes up 32 bytes, the same cannot be said for the fixexU8Array as they're packed and

care would be taken to avoid messing up the value stored at that slot. We can always call

an sload(slot) to get the value of any index stored at any slot.

However, for fixedU8Array on initialization:

Once the slot where the values of the fixedU8Array has been located, which we shall

address as loc , we can call a simple sload(loc) to get the value stored at that slot,

which will be returned as:

It will be packed, as stated earlier. We can then use a masking to return any index in the

array based of the uint8 type, 1 byte by calculating its offset precisely.

contract Array {

 uint8[3] public fixedU8Array;

 constructor() {

 // Initialize array variables.

 fixedU8Array = [1, 2, 3];

 }

}

0x00030201

book https://yul-by-example.vercel.app/print.html

2 of 32 2/27/24, 05:52

https://yul-by-example.vercel.app/print.html#reading-from-an-array
https://yul-by-example.vercel.app/print.html#reading-from-an-array

More Info

Click to read more.

book https://yul-by-example.vercel.app/print.html

3 of 32 2/27/24, 05:52

https://yul-by-example.vercel.app/print.html#more-info
https://yul-by-example.vercel.app/print.html#more-info
https://rb.gy/yvbfwf
https://rb.gy/yvbfwf

Bitwise

What Are Bitwise Operations?

Understanding Bitwise Operators

Bitwise Operators:

More Info

Understanding Bitwise Operators Bitwise Operators Wiki

 Name | Symbol

________________|___________

 AND | &

 LEFT SHIFT | <<

 NOT | ~

 OR | |

 RIGHT SHIFT | >>

 XOR | ^

book https://yul-by-example.vercel.app/print.html

4 of 32 2/27/24, 05:52

https://yul-by-example.vercel.app/print.html#bitwise
https://yul-by-example.vercel.app/print.html#bitwise
https://yul-by-example.vercel.app/print.html#what-are-bitwise-operations
https://yul-by-example.vercel.app/print.html#what-are-bitwise-operations
https://rb.gy/gxiku
https://rb.gy/gxiku
https://yul-by-example.vercel.app/print.html#bitwise-operators
https://yul-by-example.vercel.app/print.html#bitwise-operators
https://yul-by-example.vercel.app/print.html#more-info-1
https://yul-by-example.vercel.app/print.html#more-info-1
https://rb.gy/gxiku
https://rb.gy/gxiku
https://rb.gy/gzjxq
https://rb.gy/gzjxq

Call

Calldata encoding: https://rb.gy/vmzhck.

The callContract function in the CallerContract contract calls the setNumber function in

the CalledContract contract via a call opcode. This opcode takes in 7 arguments: gas

address

value

dataOffset

dataSize

returnDataOffset

returnDataSize

gas

Amount of gas to send in call , usually set to gas() or any specified number, n .

address

Address to make call to. If the address does not have a function that matches the

identifier, the fallback function is called. If it doesn't have one, it returns false .

NOTE : Call s made to invalid addresses return true, call returns false on two

occassions:

1. The address has no fallback function.

2. The function called reverts.

value

Amount in ETH to be sent.

dataOffset and dataSize

The dataOffset and dataSize are determined by the size of the encoded calldata sent

to the adderss .

First, we store the function selector, 3fb5c1cb , which we already have as a literal in

location 0x00 , setting location 0x00 to 0x1f to:

book https://yul-by-example.vercel.app/print.html

5 of 32 2/27/24, 05:52

https://yul-by-example.vercel.app/print.html#call
https://yul-by-example.vercel.app/print.html#call
https://yul-by-example.vercel.app/print.html#gas
https://yul-by-example.vercel.app/print.html#gas
https://yul-by-example.vercel.app/print.html#gas
https://yul-by-example.vercel.app/print.html#address
https://yul-by-example.vercel.app/print.html#address
https://yul-by-example.vercel.app/print.html#address
https://yul-by-example.vercel.app/print.html#value
https://yul-by-example.vercel.app/print.html#value
https://yul-by-example.vercel.app/print.html#value
https://yul-by-example.vercel.app/print.html#dataoffset-and-datasize
https://yul-by-example.vercel.app/print.html#dataoffset-and-datasize
https://yul-by-example.vercel.app/print.html#dataoffset-and-datasize
https://yul-by-example.vercel.app/print.html#dataoffset-and-datasize
https://yul-by-example.vercel.app/print.html#dataoffset-and-datasize
https://yul-by-example.vercel.app/print.html#dataoffset-and-datasize

NOTE: If we store the selector in a variable:

and then save it to location 0x00, we will have:

PS: FIXED AND DYNAMIC BYTE ARRAYS ARE LEFT ALIGNED, EVERYTHING ELSE IS RIGHT

ALIGNED.

We can then encode the number we want to pass, takes as 4 , in the next location 0x20 -

0x3f , leaving us with:

In location 0x20 - 0x3f . We can then calculate the offset and size of bytes we want to

pass through in our call opcode by observing the location of 3f in location 0x00 -

0x1f , getting the size in bytes from that point to 0x1f , and then adding it to 32 bytes,

which is the size of the data stored in location 0x20 - 0x3f .

The location of 3f is 0x1c , our dataOffset .

This will leave us with 0x1c to 0x1f , which is 4 bytes, and 0x20 - 0x3f which is 32

bytes. 32 bytes + 4 bytes = 36 bytes , our data size.

returnDataOffset and returnDataSize

Specifies the offset and size of the data returned from the call to copy to memory. The

returnDataSize is obtained via the returndatasize() opcode in Yul. The offset is any

offset specified by the developer to match his desired returned value. If there is no

returned data or the returned data is not needed, 0x00 or 0 can be passed for both

cases.

0x003fb5c1cb

bytes4 selector = 0x3fb5c1cb;

0x3fb5c1cb00

0x0004

let success := call(gas(), _called, 0, 0x1c, 0x24, 0, 0)

// 0x1c == Offset.

// 0x24 == 36 bytes.

let success := call(gas(), _called, 0, 0x1c, 0x24, 0, 0)

book https://yul-by-example.vercel.app/print.html

6 of 32 2/27/24, 05:52

https://yul-by-example.vercel.app/print.html#returndataoffset-and-returndatasize
https://yul-by-example.vercel.app/print.html#returndataoffset-and-returndatasize
https://yul-by-example.vercel.app/print.html#returndataoffset-and-returndatasize
https://yul-by-example.vercel.app/print.html#returndataoffset-and-returndatasize
https://yul-by-example.vercel.app/print.html#returndataoffset-and-returndatasize
https://yul-by-example.vercel.app/print.html#returndataoffset-and-returndatasize

Calldata Encoding

NOTE: m => memory location, c => calldata location (which is still memory, but

dedicated at the moment).

This file is used to elaborate how the arguments encoded in the src/Calldata.sol file have

been encoded for all functions defined in the CallerContract contract.

Function 1:

callAdd

Assume num = 7

This calls the add(uint256) function with selector 0x1003e2d2 . The calldata arguments

for the add function can fit into the scratch space i.e. first 64 bytes of memory, 0x00

to 0x5f . So we can comfortably fill it between 0x00 and 0x5f .

Encoding

Function 2:

callMultiply

Assume num1 = 6, num2 = 7

This calls the multiply(uint8,uint8) function with selector 0x6a7a8e0b . The data

arguments we need will not be contained in the scratch space as they're the

selector , num1 and num2 , all 32 bytes. We will need to encode them in the free memory,

which starts from 0x80 . Also, despite us having uint8 types which would mean 0xff ,

c : ----------- | m : 0x00 - 0x1f | 4 bytes, starting from 1f

=> 0x001003e2d2

=> Function Selector (This part of the memory is not included as a starting

point in the calldata, but a place to store the selector of the function to

call).

c : 0x00 - 0x1f | m : 0x20 - 0x3f | 32 bytes

=> 0x0007

=> Hex encoding of the number we want to pass as argument to the function

selector.

Total: 36 bytes | 36 | 0x24

book https://yul-by-example.vercel.app/print.html

7 of 32 2/27/24, 05:52

https://yul-by-example.vercel.app/print.html#calldata-encoding
https://yul-by-example.vercel.app/print.html#calldata-encoding
https://yul-by-example.vercel.app/print.html#function-1
https://yul-by-example.vercel.app/print.html#function-1
https://yul-by-example.vercel.app/print.html#calladd
https://yul-by-example.vercel.app/print.html#calladd
https://yul-by-example.vercel.app/print.html#calladd
https://yul-by-example.vercel.app/print.html#assume-num--7
https://yul-by-example.vercel.app/print.html#assume-num--7
https://yul-by-example.vercel.app/print.html#encoding
https://yul-by-example.vercel.app/print.html#encoding
https://yul-by-example.vercel.app/print.html#function-2
https://yul-by-example.vercel.app/print.html#function-2
https://yul-by-example.vercel.app/print.html#callmultiply
https://yul-by-example.vercel.app/print.html#callmultiply
https://yul-by-example.vercel.app/print.html#callmultiply
https://yul-by-example.vercel.app/print.html#assume-num1--6-num2--7
https://yul-by-example.vercel.app/print.html#assume-num1--6-num2--7

the ABI demands we pass them as 32 bytes as well.

Encoding

Function 3

callArraySum

Assume num1 = 1, num2 = 2, num3 = 3, num4 = 4

This calls the arraySum(uint256[]) function with selector 0x7c2b11cd with 4 array

values.

Encoding

c : ----------- | m : 0x80 - 0x9f | 4 bytes, starting from 9f

=> 0x006a7a8e0b

c : 0x00 - 0x1f | m : 0xa0 - 0xbf | 32 bytes

=> 0x0006

=> Hex encoding of the first argument to the function selector.

c : 0x20 - 0x3f | m : 0xc0 - 0xdf | 32 bytes

=> 0x0007

=> Hex encoding of the second argument to the function selector.

Total: 68 bytes | 68 | 0x44

book https://yul-by-example.vercel.app/print.html

8 of 32 2/27/24, 05:52

https://yul-by-example.vercel.app/print.html#encoding-1
https://yul-by-example.vercel.app/print.html#encoding-1
https://yul-by-example.vercel.app/print.html#function-3
https://yul-by-example.vercel.app/print.html#function-3
https://yul-by-example.vercel.app/print.html#callarraysum
https://yul-by-example.vercel.app/print.html#callarraysum
https://yul-by-example.vercel.app/print.html#callarraysum
https://yul-by-example.vercel.app/print.html#assume-num1--1-num2--2-num3--3-num4--4
https://yul-by-example.vercel.app/print.html#assume-num1--1-num2--2-num3--3-num4--4
https://yul-by-example.vercel.app/print.html#encoding-2
https://yul-by-example.vercel.app/print.html#encoding-2

Function 4

callSetString

Assume str = "Hello"

This calls the setString(string) function with selector 0x7fcaf666 with 4 array values.

However, this might get tricky. Since the memory can only contain one 32 bytes value at a

time, we might make some impositions that will restrict the set string to 32 characters.

However, since we want to set a storage string in the CalledContract , the max a storage

string can take is 31 bytes, so we will restrict our function to only take in 31 bytes. These

first two lines will handle that for us. Having strings with len > 31

c : ----------- | m : 0x80 - 0x9f | 4 bytes, starting from 9f

=> 0x007c2b11cd

c : 0x00 - 0x1f | m : 0xa0 - 0xbf | 32 bytes

=> 0x0020

=> Array pointer (points to 0x20 in calldata, the length of the array is

stored there).

c : 0x20 - 0x3f | m : 0xc0 - 0xdf | 32 bytes

=> 0x0004

=> Length of array.

c : 0x40 - 0x5f | m : 0xe0 - 0xff | 32 bytes

=> 0x0001

=> First number, 1.

c : 0x60 - 0x7f | m : 0x0100 - 0x011f | 32 bytes

=> 0x0002

=> Second number, 2.

c : 0x80 - 0x9f | m : 0x0120 - 0x013f | 32 bytes

=> 0x0003

=> Third number, 3.

c : 0x0xa0 - 0xbf | m : 0x0140 - 0x015f | 32 bytes

=> 0x0004

=> Fourth number, 1.

Total: 196 bytes | 196 | 0xc4

function callSetString(string calldata str) public {

 uint8 len = uint8(bytes(str).length);

 if (len > 31) revert();

 _;

}

book https://yul-by-example.vercel.app/print.html

9 of 32 2/27/24, 05:52

https://yul-by-example.vercel.app/print.html#function-4
https://yul-by-example.vercel.app/print.html#function-4
https://yul-by-example.vercel.app/print.html#callsetstring
https://yul-by-example.vercel.app/print.html#callsetstring
https://yul-by-example.vercel.app/print.html#callsetstring
https://yul-by-example.vercel.app/print.html#assume-str--hello
https://yul-by-example.vercel.app/print.html#assume-str--hello

NOTE : Whenever a memory reference is passed inside a function, it advances the free

memory pointer by 64 bytes. Memory references includes: abi.encode() ,

abi.encodePacked() , bytes memory , string memory , bytes constant (Storage

variable, this will advance the pointer by 128 bytes because the value will be substituted

and read again).

It is advised to ALWAYS use mload(0x40) to write to the next slot then update to avoid

accidental overwrites.

Encoding

This moves the memory by 64 bytes, which we will store at a random location we know

won't be overwritten until the function call is over 0x0200 .

PS: FIXED AND DYNAMIC BYTE ARRAYS ARE LEFT ALIGNED, EVERYTHING ELSE IS RIGHT

ALIGNED.

Function 5

callStructCall

Assume num1 = 6, num2 = 7

function callSetString(string calldata str) public {

 _;

 bytes memory strCopy = bytes(str);

 _;

}

c : ----------- | m : 0x80 - 0x9f | 4 bytes, starting from 9f

=> 0x007fcaf666

c : 0x00 - 0x1f | m : 0xa0 - 0xbf | 32 bytes

=> 0x0020

=> String pointer (points to 0x20 in calldata, the length of the string is

stored there).

c : 0x20 - 0x3f | m : 0xc0 - 0xdf | 32 bytes

=> 0x0005

=> Length of string "Hello".

c : 0x40 - 0x5f | m : 0xe0 - 0xff | 32 bytes

=> 0x48656c6c6f00

=> String Hello in bytes.

Total: 100 bytes | 100 | 0x64

book https://yul-by-example.vercel.app/print.html

10 of 32 2/27/24, 05:52

https://yul-by-example.vercel.app/print.html#encoding-3
https://yul-by-example.vercel.app/print.html#encoding-3
https://yul-by-example.vercel.app/print.html#function-5
https://yul-by-example.vercel.app/print.html#function-5
https://yul-by-example.vercel.app/print.html#callstructcall
https://yul-by-example.vercel.app/print.html#callstructcall
https://yul-by-example.vercel.app/print.html#callstructcall
https://yul-by-example.vercel.app/print.html#assume-num1--6-num2--7-1
https://yul-by-example.vercel.app/print.html#assume-num1--6-num2--7-1

The encoding is similar to the callMultiply .

book https://yul-by-example.vercel.app/print.html

11 of 32 2/27/24, 05:52

Conditionals

There are no parentheses in the if statements, and there are no elses, rather, use switch.

0 => False

1 => True

If

Switch

if lt(x, 10) { res := 0 }

if gt(x, 10) { res := 1 }

switch lt(x, 79)

case 1 { isTrue := 0x01 }

default { isTrue := 0x00 }

book https://yul-by-example.vercel.app/print.html

12 of 32 2/27/24, 05:52

https://yul-by-example.vercel.app/print.html#conditionals
https://yul-by-example.vercel.app/print.html#conditionals
https://yul-by-example.vercel.app/print.html#if
https://yul-by-example.vercel.app/print.html#if
https://yul-by-example.vercel.app/print.html#switch
https://yul-by-example.vercel.app/print.html#switch

Counter

Study: https://rb.gy/3wj60

Yul does not have any checks for over and underflow, therefore, whenever the inc() is

called, the function asserts that the current number is not equal to the max of uint256,

And then, increments it by one.

Also, calling the dec() will assert that the current value is not equal to 0 , and then,

decrements it by one.

0xff

book https://yul-by-example.vercel.app/print.html

13 of 32 2/27/24, 05:52

https://yul-by-example.vercel.app/print.html#counter
https://yul-by-example.vercel.app/print.html#counter

Enums

enum s are treated as uint8 , hence, packed.

myEnum myenum = myEnum.STOPPED;

book https://yul-by-example.vercel.app/print.html

14 of 32 2/27/24, 05:52

https://yul-by-example.vercel.app/print.html#enums
https://yul-by-example.vercel.app/print.html#enums

Errors

Errors are encoded the same way a calldata is encoded. First their 4 byte selector, then

their arguments. And are read starting from the start of the selector with a size as large at

their selector + encoded arguments.

Errors that do not want to return data simply revert with (0x00, 0x00) .

if lt(errorNumber, mainNumber) {

 mstore(0x00, errorSelector) // 4 bytes.

 mstore(0x04, storedNumberForError) // 32 bytes.

 revert(0x00, 0x24) // Reads 36 bytes.

}

if lt(errorNumber, mainNumber) {

 revert(0x00, 0x00)

}

book https://yul-by-example.vercel.app/print.html

15 of 32 2/27/24, 05:52

https://yul-by-example.vercel.app/print.html#errors
https://yul-by-example.vercel.app/print.html#errors

EtherWallet

On Deployment

constructor is marked payable , and will accept payments >= 0 ETH to deploy contract.

In this case, it retrieves the address of msg.sender from the caller() opcode and saves

it in slot 0 (the owner variable). receive() allows ETH sent from external sources.

getBalance()

To get the balance of the contract, there are two ways to go about that:

1. balance(address()) address() returns the address of the contract in execution,

address(this) . balance(address _address) returns the balance of ETH at

_address .

2. selfbalance() This is an easier way to get the balance of the executing contract.

withdraw()

It evaluates that caller() is the owner of the contract by comparing the value of

caller() with the value stored at slot 0 . If they match, the _amount passed is

withdrawn via call . If they don't, it stores the UnauthorizedSelector at location 0x00 ,

and reverts, returning the first 4 bytes of the error selector.

book https://yul-by-example.vercel.app/print.html

16 of 32 2/27/24, 05:52

https://yul-by-example.vercel.app/print.html#etherwallet
https://yul-by-example.vercel.app/print.html#etherwallet
https://yul-by-example.vercel.app/print.html#on-deployment
https://yul-by-example.vercel.app/print.html#on-deployment
https://yul-by-example.vercel.app/print.html#getbalance
https://yul-by-example.vercel.app/print.html#getbalance
https://yul-by-example.vercel.app/print.html#withdraw
https://yul-by-example.vercel.app/print.html#withdraw

Events

Events are emitted through the log() opcode which can allow up to 4 indexed events

(for anonymous events) and 3 indexed events (for non-anonymous events). They range

from log0 to log4 with each having a default offset and size as their first two

parameters. This offset and size is the start and size of the ABI encoded data of the

event's unindexed arguments. If there are no unindexed values, then 0x00 is stored for

both offset and size .

Refer to https://rb.gy/bf8b1.

If the event is a non-anonymous event , the first topic, topic[0] is the event signature ,

then the subsequent topics, topic[1] - topic[3] are the indexed values of that event.

If the event is an anonymous event , there is no event signature stored, just the indexed

event values.

book https://yul-by-example.vercel.app/print.html

17 of 32 2/27/24, 05:52

https://yul-by-example.vercel.app/print.html#events
https://yul-by-example.vercel.app/print.html#events

Fallback

This is a function called when the function selector sent as a transaction to the

contract doesn't match any function in that contract.

It is specified with a:

OR

In our Fallback contract, it sends 1 Wei to any caller.

fallback() external {}

fallback() external payable {}

book https://yul-by-example.vercel.app/print.html

18 of 32 2/27/24, 05:52

https://yul-by-example.vercel.app/print.html#fallback
https://yul-by-example.vercel.app/print.html#fallback
https://yul-by-example.vercel.app/src/Fallback.sol
https://yul-by-example.vercel.app/src/Fallback.sol

ForLoop

In Yul, there is only a for loop, and no while loop, however, we can rewrite a for loop

to match a while loop.

Is the Yul way of writing:

While Loop Imitation

Source: http://rb.gy/4narf.

for { let i := 0 } lt(i, 10) { i := add(i, 1) }

for (i = 0; i < 10; i++)

assembly {

 let x := 0

 let i := 0

 for { } lt(i, 0x100) { } { // while(i < 256), 100 (hex) = 256

 x := add(x, mload(i))

 i := add(i, 0x20)

 }

}

book https://yul-by-example.vercel.app/print.html

19 of 32 2/27/24, 05:52

https://yul-by-example.vercel.app/print.html#forloop
https://yul-by-example.vercel.app/print.html#forloop
https://yul-by-example.vercel.app/print.html#while-loop-imitation
https://yul-by-example.vercel.app/print.html#while-loop-imitation

Functions

Yul can have functions in them, and these functions can return values as well.

A Simple Sum Function Without Return Value

This function will take two numbers, add them, and then store the sum in location 0x00 .

A Simple Sum Function With Return Value

This function will take two numbers, add them, return the value as total and then store

it in location 0x00 .

PS : BEWARE OF OVER AND UNDERFLOWS!!!

assembly {

 function sum(num1, num2) {

 mstore(0x00, add(num1, num2))

 }

 sum(a, b)

}

assembly {

 function sum(num1, num2) -> total {

 total := add(num1, num2)

 }

 mstore(0x00, sum(a, b))

}

book https://yul-by-example.vercel.app/print.html

20 of 32 2/27/24, 05:52

https://yul-by-example.vercel.app/print.html#functions
https://yul-by-example.vercel.app/print.html#functions
https://yul-by-example.vercel.app/print.html#a-simple-sum-function-without-return-value
https://yul-by-example.vercel.app/print.html#a-simple-sum-function-without-return-value
https://yul-by-example.vercel.app/print.html#a-simple-sum-function-with-return-value
https://yul-by-example.vercel.app/print.html#a-simple-sum-function-with-return-value

Hash

Study http://rb.gy/8bqae.

49206f64206e746f20657078746563206f736d6f6e6565206f6877206574646e6f732065646e7

26e7561737464204941422063696e676e64656f206f7420746765207368746920697463706f2e

book https://yul-by-example.vercel.app/print.html

21 of 32 2/27/24, 05:52

https://yul-by-example.vercel.app/print.html#hash
https://yul-by-example.vercel.app/print.html#hash

Hello World!

Source: http://rb.gy/j97db.

A simple Yul "Hello World!" code.

Returned string is ABI Encoded .

book https://yul-by-example.vercel.app/print.html

22 of 32 2/27/24, 05:52

https://yul-by-example.vercel.app/print.html#hello-world
https://yul-by-example.vercel.app/print.html#hello-world

IsContract

This checks if an address is a contract or an EOA by looking at the size of the code. EOA s

do not have code, contracts have code. The extcodesize() opcode returns the size of

this code which is 0 for EOA s and > 0 for contracts .

book https://yul-by-example.vercel.app/print.html

23 of 32 2/27/24, 05:52

https://yul-by-example.vercel.app/print.html#iscontract
https://yul-by-example.vercel.app/print.html#iscontract

Mapping

Read about mapping storage here: http://rb.gy/87a8q.

book https://yul-by-example.vercel.app/print.html

24 of 32 2/27/24, 05:52

https://yul-by-example.vercel.app/print.html#mapping
https://yul-by-example.vercel.app/print.html#mapping

SafeOperations

A version of Unchecked.sol with overflow checks.

book https://yul-by-example.vercel.app/print.html

25 of 32 2/27/24, 05:52

https://yul-by-example.vercel.app/print.html#safeoperations
https://yul-by-example.vercel.app/print.html#safeoperations
https://yul-by-example.vercel.app/src/Unchecked.sol
https://yul-by-example.vercel.app/src/Unchecked.sol

SendEther

Sends ether to any address (including address(0)) using call .

book https://yul-by-example.vercel.app/print.html

26 of 32 2/27/24, 05:52

https://yul-by-example.vercel.app/print.html#sendether
https://yul-by-example.vercel.app/print.html#sendether

SignatureVerification

Resource: http://rb.gy/akusx.

book https://yul-by-example.vercel.app/print.html

27 of 32 2/27/24, 05:52

https://yul-by-example.vercel.app/print.html#signatureverification
https://yul-by-example.vercel.app/print.html#signatureverification

SimpleStorage

State variables are stored in locations called slot s. This code writes to a state variable

slot using sstore(slot, value) , and reads from that particular slot using sload(slot) .

book https://yul-by-example.vercel.app/print.html

28 of 32 2/27/24, 05:52

https://yul-by-example.vercel.app/print.html#simplestorage
https://yul-by-example.vercel.app/print.html#simplestorage

Structs

I honestly do not know how to explain what I have written for you to understand ������. I

hope you do.

book https://yul-by-example.vercel.app/print.html

29 of 32 2/27/24, 05:52

https://yul-by-example.vercel.app/print.html#structs
https://yul-by-example.vercel.app/print.html#structs

Types

Showcasing the basic types uint , string , address , using Yul.

book https://yul-by-example.vercel.app/print.html

30 of 32 2/27/24, 05:52

https://yul-by-example.vercel.app/print.html#types
https://yul-by-example.vercel.app/print.html#types

Unchecked

Yul unchecked default math operations.

book https://yul-by-example.vercel.app/print.html

31 of 32 2/27/24, 05:52

https://yul-by-example.vercel.app/print.html#unchecked
https://yul-by-example.vercel.app/print.html#unchecked

YulERC20

A simple implementation of OpenZeppelin's ERC20 contract, but with all functionalities

written in Yul.

book https://yul-by-example.vercel.app/print.html

32 of 32 2/27/24, 05:52

https://yul-by-example.vercel.app/print.html#yulerc20
https://yul-by-example.vercel.app/print.html#yulerc20

