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Introduction

Since starting my first job in software engineering, I have been fascinated with databases

and query languages. It seems almost magical to ask a computer a question and get

meaningful data back efficiently. After many years of working as a generalist software

developer and an end-user of data technologies, I started working for a startup that

threw me into the deep end of distributed database development. This is the book that I

wish had existed when I started on this journey. Although this is only an introductory-

level book, I hope to demystify how query engines work.

My interest in query engines eventually led to me becoming involved in the Apache Arrow

project, where I donated the initial Rust implementation in 2018, then donated the

DataFusion in-memory query engine in 2019, and finally, donated the Ballista distributed

compute project in 2021. I do not plan on building anything else outside the Arrow

project and am now continuing to contribute to these projects within Arrow.

The Arrow project now has many active committers and contributors working on the Rust

implementation, and it has improved significantly compared to my initial contribution.

Although Rust is a great choice for a high-performance query engine, it is not ideal for

teaching the concepts around query engines, so I recently built a new query engine,

implemented in Kotlin, as I was writing this book. Kotlin is a very concise language and

easy to read, making it possible to include source code examples in this book. I would

encourage you to get familiar with the source code as you work your way through this

book and consider making some contributions. There is no better way to learn than to get

some hands-on experience!

The query engine covered in this book was originally intended to be part of the Ballista

project (and was for a while) but as the project evolved, it became apparent that it would

make more sense to keep the query engine in Rust and support Java, and other

languages, through a UDF mechanism rather than duplicating large amounts of query

execution logic in multiple languages.

Now that Ballista has been donated to Apache Arrow, I have updated this book to refer to

the query engine in the companion repository simply as "KQuery", short for Kotlin Query

Engine, but if anyone has suggestions for a better name, please let me know!

Updates to this book will be made available free of charge as they become available, so

please check back occasionally or follow me on Twitter (@andygrove_io) to receive

notifications when new content is available.

Feedback
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Please send me a DM on Twitter at @andygrove_io or send an email to

agrove@apache.org if you have any feedback on this book.

This book is also available for purchase in ePub, MOBI, and PDF format from

https://leanpub.com/how-query-engines-work
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What Is a Query Engine?

A query engine is a piece of software that can execute queries against data to produce

answers to questions, such as:

• What were my average sales by month so far this year?

• What were the five most popular web pages on my site in the past day?

• How does web traffic compare month-by-month with the previous year?

The most widespread query language is Structured Query Language (abbreviated as SQL).

Many developers will have encountered relational databases at some point in their

careers, such as MySQL, Postgres, Oracle, or SQL Server. All of these databases contain

query engines that support SQL.

Here are some example SQL queries.

SQL Example: Average Sales By Month

SQL Example: Top 5 Web Pages Yesterday

SQL is powerful and widely understood but has limitations in the world of so-called "Big

Data," where data scientists often need to mix in custom code with their queries.

Platforms and tools such as Apache Hadoop, Apache Hive, and Apache Spark are now

widely used to query and manipulate vast data volumes.

Here is an example that demonstrates how Apache Spark can be used to perform a

simple aggregate query against a Parquet data set. The real power of Spark is that this

query can be run on a laptop or on a cluster of hundreds of servers with no code changes

required.

Example of Apache Spark Query using DataFrame

SELECT month, AVG(sales)
FROM product_sales
WHERE year = 2020
GROUP BY month;

SELECT page_url, COUNT(*) AS num_visits
FROM apache_log
WHERE event_date = yesterday()
GROUP BY page_url
ORDER BY num_visits DESC
LIMIT 5;
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Why Are Query Engines Popular?

Data is growing at an ever-increasing pace and often cannot fit on a single computer.

Specialist engineering skills are needed to write distributed code for querying data, and it

isn't practical to write custom code each time new answers are needed from data.

Query engines provide a set of standard operations and transformations that the end-

user can combine in different ways through a simple query language or application

programming interface and are tuned for good performance.

What This Book Covers

This book provides an overview of every step involved in building a general-purpose

query engine.

The query engine discussed in this book is a simple query engine developed specifically

for this book, with the code being developed alongside writing the book content to make

sure that I could write about topics while I was facing design decisions.

Source Code

Full source code for the query engine discussed in this book is located in the following

GitHub repository.

Refer to the README in the project for up-to-date instructions for building the project

using Gradle.

val spark: SparkSession = SparkSession.builder
  .appName("Example")
  .master("local[*]")
  .getOrCreate()

val df = spark.read.parquet("/mnt/nyctaxi/parquet")
  .groupBy("passenger_count")
  .sum("fare_amount")
  .orderBy("passenger_count")

df.show()

https://github.com/andygrove/how-query-engines-work
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Why Kotlin?

The focus of this book is query engine design, which is generally programming language-

agnostic. I chose Kotlin for this book because it is concise and easy to comprehend. It is

also 100% compatible with Java, meaning that you can call Kotlin code from Java, and

other Java-based languages, such as Scala.

However, the DataFusion query engine in the Apache Arrow project is also primarily

based on the design in this book. Readers who are more interested in Rust than JVM can

refer to the DataFusion source code in conjunction with this book.

This book is also available for purchase in ePub, MOBI, and PDF format from

https://leanpub.com/how-query-engines-work

Copyright © 2020-2023 Andy Grove. All rights reserved.

How Query Engines Work https://howqueryengineswork.com/print.html

6 of 98 10/26/23, 17:16

https://howqueryengineswork.com/print.html#why-kotlin
https://howqueryengineswork.com/print.html#why-kotlin
https://leanpub.com/how-query-engines-work
https://leanpub.com/how-query-engines-work


Apache Arrow

Apache Arrow started as a specification for a memory format for columnar data, with

implementations in Java and C++. The memory format is efficient for vectorized

processing on modern hardware such as CPUs with SIMD (Single Instruction, Multiple

Data) support and GPUs.

There are several benefits to having a standardized memory format for data:

• High-level languages such as Python or Java can make calls into lower-level

languages such as Rust or C++ for compute-intensive tasks by passing pointers to

the data, rather than making a copy of the data in a different format, which would

be very expensive.

• Data can be transferred between processes efficiently without much serialization

overhead because the memory format is also the network format (although data

can also be compressed).

• It should make it easier to build connectors, drivers, and integrations between

various open-source and commercial projects in the data science and data analytics

space and allow developers to use their favorite language to leverage these

platforms.

Apache Arrow now has implementations in many programming languages, including C,

C++, C#, Go, Java, JavaScript, Julia, MATLAB, Python, R, Ruby, and Rust.

Arrow Memory Model

The memory model is described in detail on the Arrow web site, but essentially each

column is represented by a single vector holding the raw data, along with separate

vectors representing null values and offsets into the raw data for variable-width types.

Inter-Process Communication (IPC)

As I mentioned earlier, data can be passed between processes by passing a pointer to the

data. However, the receiving process needs to know how to interpret this data, so an IPC

format is defined for exchanging metadata such as schema information. Arrow uses

Google Flatbuffers to define the metadata format.

Compute Kernels
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The scope of Apache Arrow has expanded to provide computational libraries for

evaluating expressions against data. The Java, C++, C, Python, Ruby, Go, Rust, and

JavaScript implementations contain computational libraries for performing computations

on Arrow memory.

Since this book mostly refers to the Java implementation, it is worth pointing out that

Dremio recently donated Gandiva, which is a Java library that compiles expressions down

to LLVM and supports SIMD. JVM developers can delegate operations to the Gandiva

library and benefit from performance gains that wouldn't be possible natively in Java.

Arrow Flight Protocol

More recently, Arrow has defined a Flight protocol for efficiently streaming Arrow data

over the network. Flight is based on gRPC and Google Protocol Buffers.

The Flight protocol defines a FlightService with the following methods:

Handshake

Handshake between client and server. Depending on the server, the handshake may be

required to determine the token that should be used for future operations. Both request

and response are streams to allow multiple round-trips depending on the auth

mechanism.

ListFlights

Get a list of available streams given a particular criteria. Most flight services will expose

one or more streams that are readily available for retrieval. This API allows listing the

streams available for consumption. A user can also provide a criteria. The criteria can

limit the subset of streams that can be listed via this interface. Each flight service allows

its own definition of how to consume criteria.

GetFlightInfo

For a given FlightDescriptor, get information about how the flight can be consumed. This

is a useful interface if the consumer of the interface can already identify the specific flight

to consume. This interface can also allow a consumer to generate a flight stream through

a specified descriptor. For example, a flight descriptor might be something that includes a

SQL statement or a Pickled Python operation that will be executed. In those cases, the

descriptor will not be previously available within the list of available streams provided by
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ListFlights, but will be available for consumption for the duration defined by the specific

flight service.

GetSchema

For a given FlightDescriptor, get the Schema as described in Schema.fbs::Schema. This is

used when a consumer needs the Schema of flight stream. Similar to GetFlightInfo, this

interface may generate a new flight that was not previously available in ListFlights.

DoGet

Retrieve a single stream associated with a particular descriptor associated with the

referenced ticket. A Flight can be composed of one or more streams where each stream

can be retrieved using a separate opaque ticket that the flight service uses for managing

a collection of streams.

DoPut

Push a stream to the flight service associated with a particular flight stream. This allows a

client of a flight service to upload a stream of data. Depending on the particular flight

service, a client consumer could be allowed to upload a single stream per descriptor or an

unlimited number. In the latter, the service might implement a 'seal' action that can be

applied to a descriptor once all streams are uploaded.

DoExchange

Open a bidirectional data channel for a given descriptor. This allows clients to send and

receive arbitrary Arrow data and application-specific metadata in a single logical stream.

In contrast to DoGet/DoPut, this is more suited for clients offloading computation (rather

than storage) to a Flight service.

DoAction

Flight services can support an arbitrary number of simple actions in addition to the

possible ListFlights, GetFlightInfo, DoGet, DoPut operations that are potentially available.

DoAction allows a flight client to do a specific action against a flight service. An action

includes opaque request and response objects that are specific to the type of action

being undertaken.
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ListActions

A flight service exposes all of the available action types that it has along with descriptions.

This allows different flight consumers to understand the capabilities of the flight service.

Arrow Flight SQL

There is a proposal to add SQL capabilities to Arrow Flight. At the time of writing (Jan

2021), there is a PR up for a C++ implementation and the tracking issue is ARROW-14698.

Query Engines

DataFusion

The Rust implementation of Arrow contains an in-memory query engine named

DataFusion, which was donated to the project in 2019. This project is maturing rapidly

and is gaining traction. For example, InfluxData is building the core of the next generation

of InfluxDB by leveraging DataFusion.

Ballista

Ballista is a distributed compute platform primarily implemented in Rust, and powered by

Apache Arrow. It is built on an architecture that allows other programming languages

(such as Python, C++, and Java) to be supported as first-class citizens without paying a

penalty for serialization costs.

The foundational technologies in Ballista are:

• Apache Arrow for the memory model and type system.

• Apache Arrow Flight protocol for efficient data transfer between processes.

• Apache Arrow Flight SQL protocol for use by business intelligence tools and JDBC

drivers to connect to a Ballista cluster

• Google Protocol Buffers for serializing query plans.

• Docker for packaging up executors along with user-defined code.

• Kubernetes for deployment and management of the executor docker containers.

Ballista was donated to the Arrow project in 2021 and is not ready for production use

although it is capable of running a number of queries from the popular TPC-H benchmark

with good performance.
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C++ Query Engine

The C++ implementation has work in progress to add a query engine and the current

focus is on implementing efficient compute primitives and a Dataset API.

This book is also available for purchase in ePub, MOBI, and PDF format from

https://leanpub.com/how-query-engines-work
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Choosing a Type System

_The source code discussed in this chapter can be found in the datatypes  module of the

KQuery project. _ The first step in building a query engine is to choose a type system to

represent the different types of data that the query engine will be processing. One option

would be to invent a proprietary type system specific to the query engine. Another option

is to use the type system of the data source that the query engine is designed to query

from.

If the query engine is going to support querying multiple data sources, which is often the

case, then there is likely some conversion required between each supported data source

and the query engine's type system, and it will be important to use a type system capable

of representing all the data types of all the supported data sources.

Row-Based or Columnar?

An important consideration is whether the query engine will process data row-by-row or

whether it will represent data in a columnar format.

Many of today's query engines are based on the Volcano Query Planner where each step

in the physical plan is essentially an iterator over rows. This is a simple model to

implement but tends to introduce per-row overheads that add up pretty quickly when

running a query against billions of rows. This overhead can be reduced by instead

iterating over batches of data. Furthermore, if these batches represent columnar data

rather than rows, it is possible to use "vectorized processing" and take advantage of SIMD

(Single Instruction Multiple Data) to process multiple values within a column with a single

CPU instruction. This concept can be taken even further by leveraging GPUs to process

much larger quantities of data in parallel.

Interoperability

Another consideration is that we may want to make our query engine accessible from

multiple programming languages. It is common for users of query engines to use

languages such as Python, R, or Java. We may also want to build ODBC or JDBC drivers to

make it easy to build integrations.

Given these requirements, it would be good to find an industry standard for representing

columnar data and for exchanging this data efficiently between processes.

It will probably come as little surprise that I believe that Apache Arrow provides an ideal
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foundation.

Type System

We will use Apache Arrow as the basis for our type system. The following Arrow classes

are used to represent schema, fields, and data types.

• Schema provides metadata for a data source or the results from a query. A schema

consists of one or more fields.

• Field provides the name and data type for a field within a schema, and specifies

whether it allows null values or not.

• FieldVector provides columnar storage for data for a field.

• ArrowType represents a data type.

KQuery introduces some additional classes and helpers as an abstraction over the

Apache Arrow type system.

KQuery provides constants that can be referenced for the supported Arrow data types

Rather than working directly with FieldVector , KQuery introduces a ColumnVector

interface as an abstraction to provide more convenient accessor methods, avoiding the

need to case to a specific FieldVector  implementation for each data type.

This abstraction also makes it possible to have an implementation for scalar values,

avoiding the need to create and populate a FieldVector  with a literal value repeated for

object ArrowTypes {
val BooleanType = ArrowType.Bool()
val Int8Type = ArrowType.Int(8, true)
val Int16Type = ArrowType.Int(16, true)
val Int32Type = ArrowType.Int(32, true)
val Int64Type = ArrowType.Int(64, true)
val UInt8Type = ArrowType.Int(8, false)
val UInt16Type = ArrowType.Int(16, false)
val UInt32Type = ArrowType.Int(32, false)
val UInt64Type = ArrowType.Int(64, false)
val FloatType = ArrowType.FloatingPoint(FloatingPointPrecision.SINGLE)
val DoubleType = ArrowType.FloatingPoint(FloatingPointPrecision.DOUBLE)
val StringType = ArrowType.Utf8()

}

interface ColumnVector {
fun getType(): ArrowType
fun getValue(i: Int) : Any?
fun size(): Int

}
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every index in the column.

KQuery also provides a RecordBatch class to represent a batch of columnar data.

This book is also available for purchase in ePub, MOBI, and PDF format from

https://leanpub.com/how-query-engines-work

Copyright © 2020-2023 Andy Grove. All rights reserved.

class LiteralValueVector(
val arrowType: ArrowType,
val value: Any?,
val size: Int) : ColumnVector {

override fun getType(): ArrowType {
return arrowType

  }

override fun getValue(i: Int): Any? {
if (i<0 || i>=size) {

throw IndexOutOfBoundsException()
    }

return value
  }

override fun size(): Int {
return size

  }

}

class RecordBatch(val schema: Schema, val fields: List<ColumnVector>) {

fun rowCount() = fields.first().size()

fun columnCount() = fields.size

/** Access one column by index */
fun field(i: Int): ColumnVector {

return fields[i]
  }

}
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Data Sources

_The source code discussed in this chapter can be found in the datasource  module of

the KQuery project. _ A query engine is of little use without a data source to read from

and we want the ability to support multiple data sources, so it is important to create an

interface that the query engine can use to interact with data sources. This also allows

users to use our query engine with their custom data sources. Data sources are often

files or databases but could also be in-memory objects.

Data Source Interface

During query planning, it is important to understand the schema of the data source so

that the query plan can be validated to make sure that referenced columns exist and that

data types are compatible with the expressions being used to reference them. In some

cases, the schema might not be available, because some data sources do not have a fixed

schema and are generally referred to as "schema-less". JSON documents are one

example of a schema-less data source.

During query execution, we need the ability to fetch data from the data source and need

to be able to specify which columns to load into memory for efficiency. There is no sense

loading columns into memory if the query doesn't reference them.

KQuery DataSource Interface

Data Source Examples

There are a number of data sources that are often encountered in data science or

analytics.

Comma-Separated Values (CSV)

interface DataSource {

/** Return the schema for the underlying data source */
fun schema(): Schema

/** Scan the data source, selecting the specified columns */
fun scan(projection: List<String>): Sequence<RecordBatch>

}

How Query Engines Work https://howqueryengineswork.com/print.html

15 of 98 10/26/23, 17:16

https://howqueryengineswork.com/print.html#data-sources
https://howqueryengineswork.com/print.html#data-sources
https://github.com/andygrove/how-query-engines-work
https://github.com/andygrove/how-query-engines-work
https://howqueryengineswork.com/print.html#data-source-interface
https://howqueryengineswork.com/print.html#data-source-interface
https://howqueryengineswork.com/print.html#data-source-examples
https://howqueryengineswork.com/print.html#data-source-examples
https://howqueryengineswork.com/print.html#comma-separated-values-csv
https://howqueryengineswork.com/print.html#comma-separated-values-csv


CSV files are text files with one record per line and fields are separated with commas,

hence the name "Comma Separated Values". CSV files do not contain schema information

(other than optional column names on the first line in the file) although it is possible to

derive the schema by reading the file first. This can be an expensive operation.

JSON

The JavaScript Object Notation format (JSON) is another popular text-based file format.

Unlike CSV files, JSON files are structured and can store complex nested data types.

Parquet

Parquet was created to provide a compressed, efficient columnar data representation

and is a popular file format in the Hadoop ecosystem. Parquet is built from the ground up

with complex nested data structures in mind, and uses the record shredding and

assembly algorithm described in the Dremel paper.

Parquet files contain schema information and data is stored in batches (referred to as

"row groups") where each batch consists of columns. The row groups can contain

compressed data and can also contain optional metadata such as minimum and

maximum values for each column. Query engines can be optimised to use this metadata

to determine when row groups can be skipped during a scan.

Orc

The Optimized Row Columnar (Orc) format is similar to Parquet. Data is stored in

columnar batches called "stripes".

This book is also available for purchase in ePub, MOBI, and PDF format from

https://leanpub.com/how-query-engines-work
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Logical Plans & Expressions

_The source code discussed in this chapter can be found in the logical-plan  module of

the KQuery project. _ A logical plan represents a relation (a set of tuples) with a known

schema. Each logical plan can have zero or more logical plans as inputs. It is convenient

for a logical plan to expose its child plans so that a visitor pattern can be used to walk

through the plan.

Printing Logical Plans

It is important to be able to print logical plans in human-readable form to help with

debugging. Logical plans are typically printed as a hierarchical structure with child nodes

indented.

We can implement a simple recursive helper function to format a logical plan.

Here is an example of a logical plan formatted using this method.

Serialization

It is sometimes desirable to be able to serialize query plans so that they can easily be

transferred to another process. It is good practice to add serialization early on as a

precaution against accidentally referencing data structures that cannot be serialized (such

as file handles or database connections).

interface LogicalPlan {
fun schema(): Schema
fun children(): List<LogicalPlan>

}

fun format(plan: LogicalPlan, indent: Int = 0): String {
val b = StringBuilder()
0.rangeTo(indent).forEach { b.append("\t") }

  b.append(plan.toString()).append("\n")
  plan.children().forEach { b.append(format(it, indent+1)) }
return b.toString()

}

Projection: #id, #first_name, #last_name, #state, #salary
  Filter: #state = 'CO'
    Scan: employee.csv; projection=None
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One approach would be to use the implementation languages' default mechanism for

serializing data structures to/from a format such as JSON. In Java, the Jackson library

could be used. Kotlin has the kotlinx.serialization  library, and Rust has a serde crate,

for example.

Another option would be to define a language-agnostic serialization format using Avro,

Thrift, or Protocol Buffers and then write code to translate between this format and the

language-specific implementation.

Since publishing the first edition of this book, a new standard named "substrait" has

emerged, with the goal of providing cross-language serialization for relational algebra. I

am excited about this project and predict that it will become the de-facto standard for

representing query plans and open up many integration possibilities. For example, it

would be possible to use a mature Java-based query planner such as Apache Calcite,

serialize the plan in Substrait format, and then execute the plan in a query engine

implemented in a lower-level language, such as C++ or Rust. For more information, visit

https://substrait.io/.

Logical Expressions

One of the fundamental building blocks of a query plan is the concept of an expression

that can be evaluated against data at runtime.

Here are some examples of expressions that are typically supported in query engines.

Expression Examples

Literal Value "hello", 12.34

Column Reference user_id, first_name, last_name

Math Expression salary * state_tax

Comparison

Expression
x >= y

Boolean Expression birthday = today() AND age >= 21

Aggregate Expression
MIN(salary), MAX(salary), SUM(salary), AVG(salary),

COUNT(*)

Scalar Function CONCAT(first_name, " ", last_name)

Aliased Expression salary * 0.02 AS pay_increase

Of course, all of these expressions can be combined to form deeply nested expression

trees. Expression evaluation is a textbook case of recursive programming.

When we are planning queries, we will need to know some basic metadata about the
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output of an expression. Specifically, we need to have a name for the expression so that

other expressions can reference it and we need to know the data type of the values that

the expression will produce when evaluated so that we can validate that the query plan is

valid. For example, if we have an expression a + b  then it can only be valid if both a  and

b  are numeric types.

Also note that the data type of an expression can be dependent on the input data. For

example, a column reference will have the data type of the column it is referencing, but a

comparison expression always returns a Boolean value.

Column Expressions

The Column  expression simply represents a reference to a named column. The metadata

for this expression is derived by finding the named column in the input and returning that

column's metadata. Note that the term "column" here refers to a column produced by

the input logical plan and could represent a column in a data source, or it could represent

the result of an expression being evaluated against other inputs.

Literal Expressions

We need the ability to represent literal values as expressions so that we can write

expressions such as salary * 0.05 .

Here is an example expression for literal strings.

interface LogicalExpr {
fun toField(input: LogicalPlan): Field

}

class Column(val name: String): LogicalExpr {

override fun toField(input: LogicalPlan): Field {
return input.schema().fields.find { it.name == name } ?:

throw SQLException("No column named '$name'")
  }

override fun toString(): String {
return "#$name"

  }

}
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Here is an example expression for literal longs.

Binary Expressions

Binary expressions are simply expressions that take two inputs. There are three

categories of binary expressions that we will implement, and those are comparison

expressions, Boolean expressions, and math expressions. Because the string

representation is the same for all of these, we can use a common base class that provides

the toString  method. The variables "l" and "r" refer to the left and right inputs.

Comparison expressions such as =  or <  compare two values of the same data type and

return a Boolean value. We also need to implement Boolean operators AND  and OR

which also take two arguments and produce a Boolean result, so we can use a common

class LiteralString(val str: String): LogicalExpr {

override fun toField(input: LogicalPlan): Field {
return Field(str, ArrowTypes.StringType)

  }

override fun toString(): String {
return "'$str'"

  }

}

class LiteralLong(val n: Long): LogicalExpr {

override fun toField(input: LogicalPlan): Field {
return Field(n.toString(), ArrowTypes.Int64Type)

  }

override fun toString(): String {
return n.toString()

  }

}

abstract class BinaryExpr(
val name: String,
val op: String,
val l: LogicalExpr,
val r: LogicalExpr) : LogicalExpr {

override fun toString(): String {
return "$l $op $r"

  }
}
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base class for these as well.

This base class provides a concise way to implement the concrete comparison

expressions.

Comparison Expressions

Boolean Expressions

The base class also provides a concise way to implement the concrete Boolean logic

expressions.

abstract class BooleanBinaryExpr(
    name: String,
    op: String,
    l: LogicalExpr,
    r: LogicalExpr) : BinaryExpr(name, op, l, r) {

override fun toField(input: LogicalPlan): Field {
return Field(name, ArrowTypes.BooleanType)

  }

}

/** Equality (`=`) comparison */
class Eq(l: LogicalExpr, r: LogicalExpr)
    : BooleanBinaryExpr("eq", "=", l, r)

/** Inequality (`!=`) comparison */
class Neq(l: LogicalExpr, r: LogicalExpr)
    : BooleanBinaryExpr("neq", "!=", l, r)

/** Greater than (`>`) comparison */
class Gt(l: LogicalExpr, r: LogicalExpr)
    : BooleanBinaryExpr("gt", ">", l, r)

/** Greater than or equals (`>=`) comparison */
class GtEq(l: LogicalExpr, r: LogicalExpr)
    : BooleanBinaryExpr("gteq", ">=", l, r)

/** Less than (`<`) comparison */
class Lt(l: LogicalExpr, r: LogicalExpr)
    : BooleanBinaryExpr("lt", "<", l, r)

/** Less than or equals (`<=`) comparison */
class LtEq(l: LogicalExpr, r: LogicalExpr)
    : BooleanBinaryExpr("lteq", "<=", l, r)
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Math Expressions

Math expressions are another specialization of a binary expression. Math expressions

typically operate on values of the same data type and produce a result of the same data

type.

Aggregate Expressions

Aggregate expressions perform an aggregate function such as MIN , MAX , COUNT , SUM , or

AVG  on an input expression.

/** Logical AND */
class And(l: LogicalExpr, r: LogicalExpr)
    : BooleanBinaryExpr("and", "AND", l, r)

/** Logical OR */
class Or(l: LogicalExpr, r: LogicalExpr)
    : BooleanBinaryExpr("or", "OR", l, r)

abstract class MathExpr(
    name: String,
    op: String,
    l: LogicalExpr,
    r: LogicalExpr) : BinaryExpr(name, op, l, r) {

override fun toField(input: LogicalPlan): Field {
return Field("mult", l.toField(input).dataType)

  }

}

class Add(l: LogicalExpr, r: LogicalExpr) : MathExpr("add", "+", l, r)
class Subtract(l: LogicalExpr, r: LogicalExpr) : MathExpr("subtract", "-", l, 
r)
class Multiply(l: LogicalExpr, r: LogicalExpr) : MathExpr("mult", "*", l, r)
class Divide(l: LogicalExpr, r: LogicalExpr) : MathExpr("div", "/", l, r)
class Modulus(l: LogicalExpr, r: LogicalExpr) : MathExpr("mod", "%", l, r)
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For aggregate expressions where the aggregated data type is the same as the input type,

we can simply extend this base class.

For aggregate expressions where the data type is not dependent on the input type, we

need to override the toField  method. For example, the "COUNT" aggregate expression

always produces an integer regardless of the data type of the values being counted.

Logical Plans

With the logical expressions in place, we can now implement the logical plans for the

various transformations that the query engine will support.

Scan

The Scan  logical plan represents fetching data from a DataSource  with an optional

abstract class AggregateExpr(
val name: String,
val expr: LogicalExpr) : LogicalExpr {

override fun toField(input: LogicalPlan): Field {
return Field(name, expr.toField(input).dataType)

  }

override fun toString(): String {
return "$name($expr)"

  }
}

class Sum(input: LogicalExpr) : AggregateExpr("SUM", input)
class Min(input: LogicalExpr) : AggregateExpr("MIN", input)
class Max(input: LogicalExpr) : AggregateExpr("MAX", input)
class Avg(input: LogicalExpr) : AggregateExpr("AVG", input)

class Count(input: LogicalExpr) : AggregateExpr("COUNT", input) {

override fun toField(input: LogicalPlan): Field {
return Field("COUNT", ArrowTypes.Int32Type)

  }

override fun toString(): String {
return "COUNT($expr)"

  }
}
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projection. Scan  is the only logical plan in our query engine that does not have another

logical plan as an input. It is a leaf node in the query tree.

Projection

The Projection  logical plan applies a projection to its input. A projection is a list of

expressions to be evaluated against the input data. Sometimes this is as simple as a list of

columns, such as SELECT a, b, c FROM foo , but it could also include any other type of

expression that is supported. A more complex example would be SELECT (CAST(a AS 

float) * 3.141592)) AS my_float FROM foo .

class Scan(
val path: String,
val dataSource: DataSource,
val projection: List<String>): LogicalPlan {

val schema = deriveSchema()

override fun schema(): Schema {
return schema

  }

private fun deriveSchema() : Schema {
val schema = dataSource.schema()
if (projection.isEmpty()) {

return schema
    } else {

return schema.select(projection)
    }
  }

override fun children(): List<LogicalPlan> {
return listOf()

  }

override fun toString(): String {
return if (projection.isEmpty()) {

"Scan: $path; projection=None"
    } else {

"Scan: $path; projection=$projection"
    }
  }

}
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Selection (also known as Filter)

The selection  logical plan applies a filter expression to determine which rows should be

selected (included) in its output. This is represented by the WHERE  clause in SQL. A simple

example would be SELECT * FROM foo WHERE a > 5 . The filter expression needs to

evaluate to a Boolean result.

Aggregate

class Projection(
val input: LogicalPlan,
val expr: List<LogicalExpr>): LogicalPlan {

override fun schema(): Schema {
return Schema(expr.map { it.toField(input) })

  }

override fun children(): List<LogicalPlan> {
return listOf(input)

  }

override fun toString(): String {
return "Projection: ${ expr.map {

        it.toString() }.joinToString(", ")
    }"
  }
}

class Selection(
val input: LogicalPlan,
val expr: Expr): LogicalPlan {

override fun schema(): Schema {
// selection does not change the schema of the input
return input.schema()

  }

override fun children(): List<LogicalPlan> {
return listOf(input)

  }

override fun toString(): String {
return "Filter: $expr"

  }
}
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The Aggregate  logical plan is more complex than Projection , Selection , or Scan  and

calculates aggregates of underlying data such as calculating minimum, maximum,

averages, and sums of data. Aggregates are often grouped by other columns (or

expressions). A simple example would be SELECT job_title, AVG(salary) FROM 

employee GROUP BY job_title .

Note that in this implementation, the output of the aggregate plan is organized with

grouping columns followed by aggregate expressions. It will often be necessary to wrap

the aggregate logical plan in a projection so that columns are returned in the order

requested in the original query.

This book is also available for purchase in ePub, MOBI, and PDF format from

https://leanpub.com/how-query-engines-work

Copyright © 2020-2023 Andy Grove. All rights reserved.

class Aggregate(
val input: LogicalPlan,
val groupExpr: List<LogicalExpr>,
val aggregateExpr: List<AggregateExpr>) : LogicalPlan {

override fun schema(): Schema {
return Schema(groupExpr.map { it.toField(input) } +

           aggregateExpr.map { it.toField(input) })
  }

override fun children(): List<LogicalPlan> {
return listOf(input)

  }

override fun toString(): String {
return "Aggregate: groupExpr=$groupExpr, aggregateExpr=$aggregateExpr"

  }
}
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Building Logical Plans

_The source code discussed in this chapter can be found in the dataframe  module of the

KQuery project. _

Building Logical Plans The Hard Way

Now that we have defined classes for a subset of logical plans, we can combine them

programmatically.

Here is some verbose code for building a plan for the query SELECT * FROM employee 

WHERE state = 'CO'  against a CSV file containing the columns id, first_name, 

last_name, state, job_title, salary .

This prints the following plan:

The same code can also be written more concisely like this:

// create a plan to represent the data source
val csv = CsvDataSource("employee.csv")

// create a plan to represent the scan of the data source (FROM)
val scan = Scan("employee", csv, listOf())

// create a plan to represent the selection (WHERE)
val filterExpr = Eq(Column("state"), LiteralString("CO"))
val selection = Selection(scan, filterExpr)

// create a plan to represent the projection (SELECT)
val projectionList = listOf(Column("id"),
                            Column("first_name"),
                            Column("last_name"),
                            Column("state"),
                            Column("salary"))
val plan = Projection(selection, projectionList)

// print the plan
println(format(plan))

Projection: #id, #first_name, #last_name, #state, #salary
    Filter: #state = 'CO'
        Scan: employee; projection=None
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Although this is more concise, it is also harder to interpret, so it would be nice to have a

more elegant way to create logical plans. This is where a DataFrame interface can help.

Building Logical Plans using DataFrames

Implementing a DataFrame style API allows us to build logical query plans in a much

more user-friendly way. A DataFrame is just an abstraction around a logical query plan

and has methods to perform transformations and actions. It is similar to a fluent-style

builder API.

Here is a minimal starting point for a DataFrame interface that allows us to apply

projections and selections to an existing DataFrame.

Here is the implementation of this interface.

val plan = Projection(
  Selection(
    Scan("employee", CsvDataSource("employee.csv"), listOf()),
    Eq(Column(3), LiteralString("CO"))
  ),
  listOf(Column("id"),
         Column("first_name"),
         Column("last_name"),
         Column("state"),
         Column("salary"))
)
println(format(plan))

interface DataFrame {

/** Apply a projection */
fun project(expr: List<LogicalExpr>): DataFrame

/** Apply a filter */
fun filter(expr: LogicalExpr): DataFrame

/** Aggregate */
fun aggregate(groupBy: List<LogicalExpr>,

                aggregateExpr: List<AggregateExpr>): DataFrame

/** Returns the schema of the data that will be produced by this DataFrame. 
*/
fun schema(): Schema

/** Get the logical plan */
fun logicalPlan() : LogicalPlan

}
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Before we can apply a projection or selection, we need a way to create an initial

DataFrame that represents an underlying data source. This is usually obtained through

an execution context.

Here is a simple starting point for an execution context that we will enhance later.

With this groundwork in place, we can now create a logical query plan using the context

and the DataFrame API.

class DataFrameImpl(private val plan: LogicalPlan) : DataFrame {

override fun project(expr: List<LogicalExpr>): DataFrame {
return DataFrameImpl(Projection(plan, expr))

  }

override fun filter(expr: LogicalExpr): DataFrame {
return DataFrameImpl(Selection(plan, expr))

  }

override fun aggregate(groupBy: List<LogicalExpr>,
                         aggregateExpr: List<AggregateExpr>): DataFrame {

return DataFrameImpl(Aggregate(plan, groupBy, aggregateExpr))
  }

override fun schema(): Schema {
return plan.schema()

  }

override fun logicalPlan(): LogicalPlan {
return plan

  }

}

class ExecutionContext {

fun csv(filename: String): DataFrame {
return DataFrameImpl(Scan(filename, CsvDataSource(filename), listOf()))

  }

fun parquet(filename: String): DataFrame {
return DataFrameImpl(Scan(filename, ParquetDataSource(filename), 

listOf()))
  }
}
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This is much cleaner and more intuitive, but we can go a step further and add some

convenience methods to make this a little more comprehensible. This is specific to Kotlin,

but other languages have similar concepts.

We can create some convenience methods for creating the supported expression objects.

We can also define infix operators on the LogicalExpr  interface for building binary

expressions.

With these convenience methods in place, we can now write expressive code to build our

logical query plan.

val ctx = ExecutionContext()

val plan = ctx.csv("employee.csv")
              .filter(Eq(Column("state"), LiteralString("CO")))
              .select(listOf(Column("id"),
                             Column("first_name"),
                             Column("last_name"),
                             Column("state"),
                             Column("salary")))

fun col(name: String) = Column(name)
fun lit(value: String) = LiteralString(value)
fun lit(value: Long) = LiteralLong(value)
fun lit(value: Double) = LiteralDouble(value)

infix fun LogicalExpr.eq(rhs: LogicalExpr): LogicalExpr { return Eq(this, 
rhs) }
infix fun LogicalExpr.neq(rhs: LogicalExpr): LogicalExpr { return Neq(this, 
rhs) }
infix fun LogicalExpr.gt(rhs: LogicalExpr): LogicalExpr { return Gt(this, 
rhs) }
infix fun LogicalExpr.gteq(rhs: LogicalExpr): LogicalExpr { return GtEq(this, 
rhs) }
infix fun LogicalExpr.lt(rhs: LogicalExpr): LogicalExpr { return Lt(this, 
rhs) }
infix fun LogicalExpr.lteq(rhs: LogicalExpr): LogicalExpr { return LtEq(this, 
rhs) }

val df = ctx.csv(employeeCsv)
   .filter(col("state") eq lit("CO"))
   .select(listOf(
       col("id"),
       col("first_name"),
       col("last_name"),
       col("salary"),
       (col("salary") mult lit(0.1)) alias "bonus"))
   .filter(col("bonus") gt lit(1000))
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Physical Plans & Expressions

_The source code discussed in this chapter can be found in the physical-plan  module of

the KQuery project. _ The logical plans defined in chapter five specify what to do but not

how to do it, and it is good practice to have separate logical and physical plans, although it

is possible to combine them to reduce complexity.

One reason to keep logical and physical plans separate is that sometimes there can be

multiple ways to execute a particular operation, meaning that there is a one-to-many

relationship between logical plans and physical plans.

For example, there could be separate physical plans for single-process versus distributed

execution, or CPU versus GPU execution.

Also, operations such as Aggregate  and Join  can be implemented with a variety of

algorithms with different performance trade-offs. When aggregating data that is already

sorted by the grouping keys, it is efficient to use a Group Aggregate (also known as a Sort

Aggregate) which only needs to hold state for one set of grouping keys at a time and can

emit a result as soon as one set of grouping keys ends. If the data is not sorted, then a

Hash Aggregate is typically used. A Hash Aggregate maintains a HashMap of

accumulators by grouping keys.

Joins have an even wider variety of algorithms, including Nested Loop Join, Sort-Merge

Join, and Hash Join.

Physical plans return iterators over record batches.

Physical Expressions

We have defined logical expressions that are referenced in the logical plans, but we now

need to implement physical expression classes containing the code to evaluate the

expressions at runtime.

There could be multiple physical expression implementations for each logical expression.

For example, for the logical expression AddExpr  that adds two numbers, we could have

one implementation that uses the CPU and one that uses the GPU. The query planner

could choose which one to use based on the hardware capabilities of the server that the

interface PhysicalPlan {
fun schema(): Schema
fun execute(): Sequence<RecordBatch>
fun children(): List<PhysicalPlan>

}
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code is running on.

Physical expressions are evaluated against record batches and the results are columns.

Here is the interface that we will use to represent physical expressions.

Column Expressions

The Column  expression simply evaluates to a reference to the ColumnVector  in the

RecordBatch  being processed. The logical expression for Column  references inputs by

name, which is user-friendly for writing queries, but for the physical expression we want

to avoid the cost of name lookups every time the expression is evaluated, so it references

columns by index instead.

Literal Expressions

The physical implementation of a literal expression is simply a literal value wrapped in a

class that implements the appropriate trait and provides the same value for every index

in a column.

interface Expression {
fun evaluate(input: RecordBatch): ColumnVector

}

class ColumnExpression(val i: Int) : Expression {

override fun evaluate(input: RecordBatch): ColumnVector {
return input.field(i)

  }

override fun toString(): String {
return "#$i"

  }
}
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With this class in place, we can create our physical expressions for literal expressions of

each data type.

Binary Expressions

class LiteralValueVector(
val arrowType: ArrowType,
val value: Any?,
val size: Int) : ColumnVector {

override fun getType(): ArrowType {
return arrowType

  }

override fun getValue(i: Int): Any? {
if (i<0 || i>=size) {

throw IndexOutOfBoundsException()
    }

return value
  }

override fun size(): Int {
return size

  }

}

class LiteralLongExpression(val value: Long) : Expression {
override fun evaluate(input: RecordBatch): ColumnVector {
return LiteralValueVector(ArrowTypes.Int64Type,

                              value,
                              input.rowCount())
  }
}

class LiteralDoubleExpression(val value: Double) : Expression {
override fun evaluate(input: RecordBatch): ColumnVector {
return LiteralValueVector(ArrowTypes.DoubleType,

                              value,
                              input.rowCount())
  }
}

class LiteralStringExpression(val value: String) : Expression {
override fun evaluate(input: RecordBatch): ColumnVector {
return LiteralValueVector(ArrowTypes.StringType,

                              value.toByteArray(),
                              input.rowCount())
  }
}
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For binary expressions, we need to evaluate the left and right input expressions and then

evaluate the specific binary operator against those input values, so we can provide a base

class to simplify the implementation for each operator.

Comparison Expressions

The comparison expressions simply compare all values in the two input columns and

produce a new column (a bit vector) containing the results.

Here is an example for the equality operator.

abstract class BinaryExpression(val l: Expression, val r: Expression) : 
Expression {
override fun evaluate(input: RecordBatch): ColumnVector {
val ll = l.evaluate(input)
val rr = r.evaluate(input)

    assert(ll.size() == rr.size())
if (ll.getType() != rr.getType()) {

throw IllegalStateException(
"Binary expression operands do not have the same type: " +
"${ll.getType()} != ${rr.getType()}")

    }
return evaluate(ll, rr)

  }

abstract fun evaluate(l: ColumnVector, r: ColumnVector) : ColumnVector
}

class EqExpression(l: Expression,
                   r: Expression): BooleanExpression(l,r) {

override fun evaluate(l: Any?, r: Any?, arrowType: ArrowType) : Boolean {
return when (arrowType) {

      ArrowTypes.Int8Type -> (l as Byte) == (r as Byte)
      ArrowTypes.Int16Type -> (l as Short) == (r as Short)
      ArrowTypes.Int32Type -> (l as Int) == (r as Int)
      ArrowTypes.Int64Type -> (l as Long) == (r as Long)
      ArrowTypes.FloatType -> (l as Float) == (r as Float)
      ArrowTypes.DoubleType -> (l as Double) == (r as Double)
      ArrowTypes.StringType -> toString(l) == toString(r)

else -> throw IllegalStateException(
"Unsupported data type in comparison expression: $arrowType")

    }
  }
}
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Math Expressions

The implementation for math expressions is very similar to the code for comparison

expressions. A base class is used for all math expressions.

Here is an example of a specific math expression extending this base class.

Aggregate Expressions

The expressions we have looked at so far produce one output column from one or more

input columns in each batch. Aggregate expressions are more complex because they

abstract class MathExpression(l: Expression,
                              r: Expression): BinaryExpression(l,r) {

override fun evaluate(l: ColumnVector, r: ColumnVector): ColumnVector {
val fieldVector = FieldVectorFactory.create(l.getType(), l.size())
val builder = ArrowVectorBuilder(fieldVector)

    (0 until l.size()).forEach {
val value = evaluate(l.getValue(it), r.getValue(it), l.getType())

      builder.set(it, value)
    }
    builder.setValueCount(l.size())

return builder.build()
  }

abstract fun evaluate(l: Any?, r: Any?, arrowType: ArrowType) : Any?
}

class AddExpression(l: Expression,
                    r: Expression): MathExpression(l,r) {

override fun evaluate(l: Any?, r: Any?, arrowType: ArrowType) : Any? {
return when (arrowType) {

        ArrowTypes.Int8Type -> (l as Byte) + (r as Byte)
        ArrowTypes.Int16Type -> (l as Short) + (r as Short)
        ArrowTypes.Int32Type -> (l as Int) + (r as Int)
        ArrowTypes.Int64Type -> (l as Long) + (r as Long)
        ArrowTypes.FloatType -> (l as Float) + (r as Float)
        ArrowTypes.DoubleType -> (l as Double) + (r as Double)

else -> throw IllegalStateException(
"Unsupported data type in math expression: $arrowType")

      }
  }

override fun toString(): String {
return "$l+$r"

  }
}
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aggregate values across multiple batches of data and then produce one final value, so we

need to introduce the concept of accumulators, and the physical representation of each

aggregate expression needs to know how to produce an appropriate accumulator for the

query engine to pass input data to.

Here are the main interfaces for representing aggregate expressions and accumulators.

The implementation for the Max  aggregate expression would produce a specific

MaxAccumulator.

Here is an example implementation of the MaxAccumulator.

interface AggregateExpression {
fun inputExpression(): Expression
fun createAccumulator(): Accumulator

}

interface Accumulator {
fun accumulate(value: Any?)
fun finalValue(): Any?

}

class MaxExpression(private val expr: Expression) : AggregateExpression {

override fun inputExpression(): Expression {
return expr

  }

override fun createAccumulator(): Accumulator {
return MaxAccumulator()

  }

override fun toString(): String {
return "MAX($expr)"

  }
}
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Physical Plans

With the physical expressions in place, we can now implement the physical plans for the

various transformations that the query engine will support.

Scan

The Scan execution plan simply delegates to a data source, passing in a projection to limit

the number of columns to load into memory. No additional logic is performed.

class MaxAccumulator : Accumulator {

var value: Any? = null

override fun accumulate(value: Any?) {
if (value != null) {

if (this.value == null) {
this.value = value

      } else {
val isMax = when (value) {
is Byte -> value > this.value as Byte
is Short -> value > this.value as Short
is Int -> value > this.value as Int
is Long -> value > this.value as Long
is Float -> value > this.value as Float
is Double -> value > this.value as Double
is String -> value > this.value as String
else -> throw UnsupportedOperationException(

"MAX is not implemented for data type: ${value.javaClass.name}")
        }

if (isMax) {
this.value = value

        }
      }
    }
  }

override fun finalValue(): Any? {
return value

  }
}
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Projection

The projection execution plan simply evaluates the projection expressions against the

input columns and then produces a record batch containing the derived columns. Note

that for the case of projection expressions that reference existing columns by name, the

derived column is simply a pointer or reference to the input column, so the underlying

data values are not being copied.

class ScanExec(val ds: DataSource, val projection: List<String>) : 
PhysicalPlan {

override fun schema(): Schema {
return ds.schema().select(projection)

  }

override fun children(): List<PhysicalPlan> {
// Scan is a leaf node and has no child plans
return listOf()

  }

override fun execute(): Sequence<RecordBatch> {
return ds.scan(projection);

  }

override fun toString(): String {
return "ScanExec: schema=${schema()}, projection=$projection"

  }
}
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Selection (also known as Filter)

The selection execution plan is the first non-trivial plan, since it has conditional logic to

determine which rows from the input record batch should be included in the output

batches.

For each input batch, the filter expression is evaluated to return a bit vector containing

bits representing the Boolean result of the expression, with one bit for each row. This bit

vector is then used to filter the input columns to produce new output columns. This is a

simple implementation that could be optimized for cases where the bit vector contains all

ones or all zeros to avoid overhead of copying data to new vectors.

class ProjectionExec(
val input: PhysicalPlan,
val schema: Schema,
val expr: List<Expression>) : PhysicalPlan {

override fun schema(): Schema {
return schema

  }

override fun children(): List<PhysicalPlan> {
return listOf(input)

  }

override fun execute(): Sequence<RecordBatch> {
return input.execute().map { batch ->

val columns = expr.map { it.evaluate(batch) }
        RecordBatch(schema, columns)
      }
  }

override fun toString(): String {
return "ProjectionExec: $expr"

  }
}
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Hash Aggregate

The HashAggregate plan is more complex than the previous plans because it must

process all incoming batches and maintain a HashMap of accumulators and update the

accumulators for each row being processed. Finally, the results from the accumulators

are used to create one record batch at the end containing the results of the aggregate

class SelectionExec(
val input: PhysicalPlan,
val expr: Expression) : PhysicalPlan {

override fun schema(): Schema {
return input.schema()

  }

override fun children(): List<PhysicalPlan> {
return listOf(input)

  }

override fun execute(): Sequence<RecordBatch> {
val input = input.execute()
return input.map { batch ->

val result = (expr.evaluate(batch) as ArrowFieldVector).field as
BitVector

val schema = batch.schema
val columnCount = batch.schema.fields.size
val filteredFields = (0 until columnCount).map {

          filter(batch.field(it), result)
      }

val fields = filteredFields.map { ArrowFieldVector(it) }
      RecordBatch(schema, fields)
    }

private fun filter(v: ColumnVector, selection: BitVector) : FieldVector {
val filteredVector = VarCharVector("v",

                                       RootAllocator(Long.MAX_VALUE))
    filteredVector.allocateNew()

val builder = ArrowVectorBuilder(filteredVector)

var count = 0
    (0 until selection.valueCount).forEach {

if (selection.get(it) == 1) {
        builder.set(count, v.getValue(it))
        count++
      }
    }
    filteredVector.valueCount = count

return filteredVector
  }
}
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query.
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class HashAggregateExec(
val input: PhysicalPlan,
val groupExpr: List<PhysicalExpr>,
val aggregateExpr: List<PhysicalAggregateExpr>,
val schema: Schema) : PhysicalPlan {

override fun schema(): Schema {
return schema

  }

override fun children(): List<PhysicalPlan> {
return listOf(input)

  }

override fun toString(): String {
return "HashAggregateExec: groupExpr=$groupExpr, aggrExpr=$aggregateExpr"

  }

override fun execute(): Sequence<RecordBatch> {
val map = HashMap<List<Any?>, List<Accumulator>>()

// for each batch from the input executor
    input.execute().iterator().forEach { batch ->

// evaluate the grouping expressions
val groupKeys = groupExpr.map { it.evaluate(batch) }

// evaluate the expressions that are inputs to the aggregate functions
val aggrInputValues = aggregateExpr.map {

        it.inputExpression().evaluate(batch)
    }

// for each row in the batch
    (0 until batch.rowCount()).forEach { rowIndex ->

// create the key for the hash map
val rowKey = groupKeys.map {
val value = it.getValue(rowIndex)
when (value) {
is ByteArray -> String(value)
else -> value

      }
    }

// get or create accumulators for this grouping key
val accumulators = map.getOrPut(rowKey) {

        aggregateExpr.map { it.createAccumulator() }
    }

// perform accumulation
    accumulators.withIndex().forEach { accum ->

val value = aggrInputValues[accum.index].getValue(rowIndex)
      accum.value.accumulate(value)
    }

// create result batch containing final aggregate values
val allocator = RootAllocator(Long.MAX_VALUE)
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Joins

As the name suggests, the Join operator joins rows from two relations. There are a

number of different types of joins with different semantics:

• [INNER] JOIN : This is the most commonly used join type and creates a new relation

containing rows from both the left and right inputs. When the join expression

consists only of equality comparisons between columns from the left and right

inputs then the join is known as an "equi-join". An example of an equi-join would be

SELECT * FROM customer JOIN orders ON customer.id = order.customer_id .

• LEFT [OUTER] JOIN : A left outer join produces rows that contain all values from the

left input, and optionally rows from the right input. Where this is no match on the

right-hand side then null values are produced for the right columns.

• RIGHT [OUTER] JOIN : This is the opposite of the left join. All rows from the right are

returned along with rows from the left where available.

• SEMI JOIN : A semi join is similar to a left join but it only returns rows from the left

input where there is match to the right input. No data is returned from the right

input. Not all SQL implementations support semi joins explicitly and they are often

written as subqueries instead. An example of a semi join would be SELECT id FROM 

val root = VectorSchemaRoot.create(schema.toArrow(), allocator)
    root.allocateNew()
    root.rowCount = map.size

val builders = root.fieldVectors.map { ArrowVectorBuilder(it) }

    map.entries.withIndex().forEach { entry ->
val rowIndex = entry.index
val groupingKey = entry.value.key
val accumulators = entry.value.value

      groupExpr.indices.forEach {
        builders[it].set(rowIndex, groupingKey[it])
      }
      aggregateExpr.indices.forEach {
        builders[groupExpr.size+it].set(rowIndex, 
accumulators[it].finalValue())
      }
    }

val outputBatch = RecordBatch(schema, root.fieldVectors.map {
       ArrowFieldVector(it)
    })

return listOf(outputBatch).asSequence()
  }

}
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foo WHERE EXISTS (SELECT * FROM bar WHERE foo.id = bar.id) .

• ANTI JOIN : An into join is the opposite of a semi join. It only returns rows from the

left input where this is match on the right input. An example of an anti join would be

SELECT id FROM foo WHERE NOT EXISTS (SELECT * FROM bar WHERE foo.id = 

bar.id) .

• CROSS JOIN : A cross join returns every possible combination of rows from the left

input combined with rows from the right input. If the left input contains 100 rows

and the right input contains 200 rows then 20,000 rows will be returned. This is

known as a cartesian product.

KQuery does not yet implement the join operator.

Subqueries

Subqueries are queries within queries. They can be correlated or uncorrelated (involving

a join to other relations or not). When a subquery returns a single value then it is known

as a scalar subquery.

Scalar subqueries

A scalar subquery returns a single value and can be used in many SQL expressions where

a literal value could be used.

Here is an example of a correlated scalar subquery:

SELECT id, name, (SELECT count(*) FROM orders WHERE customer_id = customer.id) 

AS num_orders FROM customers

Here is an example of an uncorrelated scalar subquery:

SELECT * FROM orders WHERE total > (SELECT avg(total) FROM sales WHERE 

customer_state = 'CA')

Correlated subqueries are translated into joins before execution (this is explained in

chapter 9).

Uncorrelated queries can be executed individually and the resulting value can be

substituted into the top-level query.

EXISTS and IN subqueries

The EXISTS  and IN  expressions (and their negated forms, NOT EXISTS  and NOT IN ) can

How Query Engines Work https://howqueryengineswork.com/print.html

45 of 98 10/26/23, 17:16

https://howqueryengineswork.com/print.html#subqueries
https://howqueryengineswork.com/print.html#subqueries
https://howqueryengineswork.com/print.html#scalar-subqueries
https://howqueryengineswork.com/print.html#scalar-subqueries
https://howqueryengineswork.com/print.html#exists-and-in-subqueries
https://howqueryengineswork.com/print.html#exists-and-in-subqueries


be used to create semi-joins and anti-joins.

Here is an example of a semi-join that selects all rows from the left relation ( foo ) where

there is a matching row returned by the subquery.

SELECT id FROM foo WHERE EXISTS (SELECT * FROM bar WHERE foo.id = bar.id)

Correlated subqueries are typically converted into joins during logical plan optimization

(this is explained in chapter 9)

KQuery does not yet implement subqueries.

Creating Physical Plans

With our physical plans in place, the next step is to build a query planner to create

physical plans from logical plans, which we cover in the next chapter.

This book is also available for purchase in ePub, MOBI, and PDF format from
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Query Planner

_The source code discussed in this chapter can be found in the query-planner  module of

the KQuery project. _ We have defined logical and physical query plans, and now we need

a query planner that can translate the logical plan into the physical plan.

The query planner may choose different physical plans based on configuration options or

based on the target platform's hardware capabilities. For example, queries could be

executed on CPU or GPU, on a single node, or distributed in a cluster.

Translating Logical Expressions

The first step is to define a method to translate logical expressions to physical

expressions recursively. The following code sample demonstrates an implementation

based on a switch statement and shows how translating a binary expression, which has

two input expressions, causes the code to recurse back into the same method to

translate those inputs. This approach walks the entire logical expression tree and creates

a corresponding physical expression tree.

The following sections will explain the implementation for each type of expression.

Column Expressions

The logical Column expression references columns by name, but the physical expression

uses column indices for improved performance, so the query planner needs to perform

the translation from column name to column index and throw an exception if the column

name is not valid.

This simplified example looks for the first matching column name and does not check if

there are multiple matching columns, which should be an error condition.

fun createPhysicalExpr(expr: LogicalExpr,
                       input: LogicalPlan): PhysicalExpr = when (expr) {
is ColumnIndex -> ColumnExpression(expr.i)
is LiteralString -> LiteralStringExpression(expr.str)
is BinaryExpr -> {
val l = createPhysicalExpr(expr.l, input)
val r = createPhysicalExpr(expr.r, input)

    ...
  }
  ...
}
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Literal Expressions

The physical expressions for literal values are straightforward, and the mapping from

logical to physical expression is trivial because we need to copy the literal value over.

Binary Expressions

To create a physical expression for a binary expression we first need to create the

physical expression for the left and right inputs and then we need to create the specific

physical expression.

is Column -> {
val i = input.schema().fields.indexOfFirst { it.name == expr.name }
if (i == -1) {
throw SQLException("No column named '${expr.name}'")

  }
  ColumnExpression(i)

is LiteralLong -> LiteralLongExpression(expr.n)
is LiteralDouble -> LiteralDoubleExpression(expr.n)
is LiteralString -> LiteralStringExpression(expr.str)
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Translating Logical Plans

We need to implement a recursive function to walk the logical plan tree and translate it

into a physical plan, using the same pattern described earlier for translating expressions.

Scan

Translating the Scan plan simply requires copying the data source reference and the

logical plan's projection.

is BinaryExpr -> {
val l = createPhysicalExpr(expr.l, input)
val r = createPhysicalExpr(expr.r, input)
when (expr) {
// comparision
is Eq -> EqExpression(l, r)
is Neq -> NeqExpression(l, r)
is Gt -> GtExpression(l, r)
is GtEq -> GtEqExpression(l, r)
is Lt -> LtExpression(l, r)
is LtEq -> LtEqExpression(l, r)

// boolean
is And -> AndExpression(l, r)
is Or -> OrExpression(l, r)

// math
is Add -> AddExpression(l, r)
is Subtract -> SubtractExpression(l, r)
is Multiply -> MultiplyExpression(l, r)
is Divide -> DivideExpression(l, r)

else -> throw IllegalStateException(
"Unsupported binary expression: $expr")

    }
}

fun createPhysicalPlan(plan: LogicalPlan) : PhysicalPlan {
return when (plan) {
is Scan -> ...
is Selection -> ...

    ...
}

is Scan -> ScanExec(plan.dataSource, plan.projection)
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Projection

There are two steps to translating a projection. First, we need to create a physical plan for

the projection's input, and then we need to convert the projection's logical expressions to

physical expressions.

Selection (also known as Filter)

The query planning step for Selection  is very similar to Projection .

Aggregate

The query planning step for aggregate queries involves evaluating the expressions that

define the optional grouping keys and evaluating the expressions that are the inputs to

the aggregate functions, and then creating the physical aggregate expressions.

is Projection -> {
val input = createPhysicalPlan(plan.input)
val projectionExpr = plan.expr.map { createPhysicalExpr(it, plan.input) }
val projectionSchema = Schema(plan.expr.map { it.toField(plan.input) })

  ProjectionExec(input, projectionSchema, projectionExpr)
}

is Selection -> {
val input = createPhysicalPlan(plan.input)
val filterExpr = createPhysicalExpr(plan.expr, plan.input)

  SelectionExec(input, filterExpr)
}

is Aggregate -> {
val input = createPhysicalPlan(plan.input)
val groupExpr = plan.groupExpr.map { createPhysicalExpr(it, plan.input) }
val aggregateExpr = plan.aggregateExpr.map {
when (it) {

is Max -> MaxExpression(createPhysicalExpr(it.expr, plan.input))
is Min -> MinExpression(createPhysicalExpr(it.expr, plan.input))
is Sum -> SumExpression(createPhysicalExpr(it.expr, plan.input))
else -> throw java.lang.IllegalStateException(

"Unsupported aggregate function: $it")
    }
  }
  HashAggregateExec(input, groupExpr, aggregateExpr, plan.schema())
}
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Query Optimizations

_The source code discussed in this chapter can be found in the optimizer  module of the

KQuery project. _ We now have functional query plans, but we rely on the end-user to

construct the plans in an efficient way. For example, we expect the user to construct the

plan so that filters happen as early as possible, especially before joins, since this limits the

amount of data that needs to be processed.

This is a good time to implement a simple rules-based query optimizer that can re-

arrange the query plan to make it more efficient.

This is going to become even more important once we start supporting SQL in chapter

eleven, because the SQL language only defines how the query should work and does not

always allow the user to specify the order that operators and expressions are evaluated

in.

Rule-Based Optimizations

Rule based optimizations are a simple and pragmatic approach to apply common sense

optimizations to a query plan. These optimizations are typically executed against the

logical plan before the physical plan is created, although rule-based optimizations can

also be applied to physical plans.

The optimizations work by walking through the logical plan using the visitor pattern and

creating a copy of each step in the plan with any necessary modifications applied. This is

a much simpler design than attempting to mutate state while walking the plan and is well

aligned with a functional programming style that prefers immutable state.

We will use the following interface to represent optimizer rules.

We will now look at some common optimization rules that most query engines

implement.

Projection Push-Down

The goal of the projection push-down rule is to filter out columns as soon as possible

after reading data from disk and before other phases of query execution, to reduce the

amount of data that is kept in memory (and potentially transfered over the network in the

interface OptimizerRule {
fun optimize(plan: LogicalPlan) : LogicalPlan

}
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case of distributed queries) between operators.

In order to know which columns are referenced in a query, we must write recursive code

to examine expressions and build up a list of columns.

With this utility code in place, we can go ahead and implement the optimizer rule. Note

that for the Projection , Selection , and Aggregate  plans we are building up the list of

column names, but when we reach the Scan  (which is a leaf node) we replace it with a

version of the scan that has the list of column names used elsewhere in the query.

fun extractColumns(expr: List<LogicalExpr>,
                   input: LogicalPlan,
                   accum: MutableSet<String>) {

  expr.forEach { extractColumns(it, input, accum) }
}

fun extractColumns(expr: LogicalExpr,
                   input: LogicalPlan,
                   accum: MutableSet<String>) {

when (expr) {
is ColumnIndex -> accum.add(input.schema().fields[expr.i].name)
is Column -> accum.add(expr.name)
is BinaryExpr -> {

       extractColumns(expr.l, input, accum)
       extractColumns(expr.r, input, accum)
    }

is Alias -> extractColumns(expr.expr, input, accum)
is CastExpr -> extractColumns(expr.expr, input, accum)
is LiteralString -> {}
is LiteralLong -> {}
is LiteralDouble -> {}
else -> throw IllegalStateException(

"extractColumns does not support expression: $expr")
  }
}
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Given this input logical plan:

This optimizer rule will transform it to the following plan.

Predicate Push-Down

The Predicate Push-Down optimization aims to filter out rows as early as possible within a

query, to avoid redundant processing. Consider the following which joins an employee

class ProjectionPushDownRule : OptimizerRule {

override fun optimize(plan: LogicalPlan): LogicalPlan {
return pushDown(plan, mutableSetOf())

  }

private fun pushDown(plan: LogicalPlan,
                       columnNames: MutableSet<String>): LogicalPlan {

return when (plan) {
is Projection -> {

        extractColumns(plan.expr, columnNames)
val input = pushDown(plan.input, columnNames)

        Projection(input, plan.expr)
      }

is Selection -> {
        extractColumns(plan.expr, columnNames)

val input = pushDown(plan.input, columnNames)
        Selection(input, plan.expr)
      }

is Aggregate -> {
        extractColumns(plan.groupExpr, columnNames)
        extractColumns(plan.aggregateExpr.map { it.inputExpr() }, 
columnNames)

val input = pushDown(plan.input, columnNames)
        Aggregate(input, plan.groupExpr, plan.aggregateExpr)
      }

is Scan -> Scan(plan.name, plan.dataSource, 
columnNames.toList().sorted())

else -> throw new UnsupportedOperationException()
    }
  }

}

Projection: #id, #first_name, #last_name
  Filter: #state = 'CO'
    Scan: employee; projection=None

Projection: #id, #first_name, #last_name
  Filter: #state = 'CO'
    Scan: employee; projection=[first_name, id, last_name, state]
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table and dept  table and then filters on employees based in Colorado.

The query will produce the correct results but will have the overhead of performing the

join for all employees and not just those employees that are based in Colorado. The

predicate push-down rule would push the filter down into the join as shown in the

following query plan.

The join will now only process a subset of employees, resulting in better performance.

Eliminate Common Subexpressions

Given a query such as SELECT sum(price * qty) as total_price, sum(price * qty * 

tax_rate) as total_tax FROM ... , we can see that the expression price * qty

appears twice. Rather than perform this computation twice, we could choose to re-write

the plan to compute it once.

Original plan:

Optimized plan:

Converting Correlated Subqueries to Joins

Given a query such as SELECT id FROM foo WHERE EXISTS (SELECT * FROM bar WHERE 

foo.id = bar.id) , a simple implementation would be to scan all rows in foo  and then

perform a lookup in bar  for each row in foo . This would be extremely inefficient, so

Projection: #dept_name, #first_name, #last_name
  Filter: #state = 'CO'
    Join: #employee.dept_id = #dept.id
      Scan: employee; projection=[first_name, id, last_name, state]
      Scan: dept; projection=[id, dept_name]

Projection: #dept_name, #first_name, #last_name
  Join: #employee.dept_id = #dept.id
    Filter: #state = 'CO'
      Scan: employee; projection=[first_name, id, last_name, state]
    Scan: dept; projection=[id, dept_name]

Projection: sum(#price * #qty), sum(#price * #qty * #tax)
  Scan: sales

Projection: sum(#_price_mult_qty), sum(#_price_mult_qty * #tax)
  Projection: #price * #qty as _price_mult_qty
    Scan: sales
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query engines typically translate correlated subqueries into joins. This is also known as

subquery decorrelation.

This query can be rewritten as SELECT foo.id FROM foo JOIN bar ON foo.id = bar.id .

If the query is modified to use NOT EXISTS  rather than EXISTS  then the query plan

would use a LeftAnti  rather than LeftSemi  join.

Cost-Based Optimizations

Cost-based optimization refers to optimization rules that use statistics about the

underlying data to determine a cost of executing a particular query and then choose an

optimal execution plan by looking for one with a low cost. Good examples would be

choosing which join algorithm to use, or choosing which order tables should be joined in,

based on the sizes of the underlying tables.

One major drawback to cost-based optimizations is that they depend on the availability of

accurate and detailed statistics about the underlying data. Such statistics would typically

include per-column statistics such as the number of null values, number of distinct

values, min and max values, and histograms showing the distribution of values within the

column. The histogram is essential to be able to detect that a predicate such as state = 

'CA'  is likely to produce more rows than state = 'WY'  for example (California is the

most populated US state, with 39 million residents, and Wyoming is the least populated

state, with fewer than 1 million residents).

When working with file formats such as Orc or Parquet, some of these statistics are

available, but generally it is necessary to run a process to build these statistics, and when

working with multiple terabytes of data, this can be prohibitive, and outweigh the benefit,

especially for ad-hoc queries.

This book is also available for purchase in ePub, MOBI, and PDF format from

https://leanpub.com/how-query-engines-work

Copyright © 2020-2023 Andy Grove. All rights reserved.

Projection: foo.id
  LeftSemi Join: foo.id = bar.id
    TableScan: foo projection=[id]
    TableScan: bar projection=[id]

Projection: foo.id
  LeftAnti Join: foo.id = bar.id
    TableScan: foo projection=[id]
    TableScan: bar projection=[id]
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Query Execution

We are now able to write code to execute optimized queries against CSV files.

Before we execute the query with KQuery, it might be useful to use a trusted alternative

so that we know what the correct results should be and to get some baseline

performance metrics for comparison.

Apache Spark Example

_The source code discussed in this chapter can be found in the spark  module of KQuery.

_ First, we need to create a Spark context. Note that we are using a single thread for

execution so that we can make a relatively fair comparison to the performance of the

single threaded implementation in KQuery.

Next, we need to register the CSV file as a DataFrame against the context.

val spark = SparkSession.builder()
  .master("local[1]")
  .getOrCreate()

val schema = StructType(Seq(
StructField("VendorID", DataTypes.IntegerType),
StructField("tpep_pickup_datetime", DataTypes.TimestampType),
StructField("tpep_dropoff_datetime", DataTypes.TimestampType),
StructField("passenger_count", DataTypes.IntegerType),
StructField("trip_distance", DataTypes.DoubleType),
StructField("RatecodeID", DataTypes.IntegerType),
StructField("store_and_fwd_flag", DataTypes.StringType),
StructField("PULocationID", DataTypes.IntegerType),
StructField("DOLocationID", DataTypes.IntegerType),
StructField("payment_type", DataTypes.IntegerType),
StructField("fare_amount", DataTypes.DoubleType),
StructField("extra", DataTypes.DoubleType),
StructField("mta_tax", DataTypes.DoubleType),
StructField("tip_amount", DataTypes.DoubleType),
StructField("tolls_amount", DataTypes.DoubleType),
StructField("improvement_surcharge", DataTypes.DoubleType),
StructField("total_amount", DataTypes.DoubleType)

))

val tripdata = spark.read.format("csv")
  .option("header", "true")
  .schema(schema)
  .load("/mnt/nyctaxi/csv/yellow_tripdata_2019-01.csv")

tripdata.createOrReplaceTempView("tripdata")
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Finally, we can go ahead and execute SQL against the DataFrame.

Executing this code on my desktop produces the following output.

KQuery Examples

_The source code discussed in this chapter can be found in the examples  module of the

KQuery project. _ Here is the equivalent query implemented with KQuery. Note that this

code differs from the Spark example because KQuery doesn't have the option of

specifying the schema of the CSV file yet, so all data types are strings, and this means that

we need to add an explicit cast to the query plan to convert the fare_amount  column to a

numeric type.

val start = System.currentTimeMillis()

val df = spark.sql(
"""SELECT passenger_count, MAX(fare_amount)

    |FROM tripdata
    |GROUP BY passenger_count""".stripMargin)

df.foreach(row => println(row))

val duration = System.currentTimeMillis() - start

println(s"Query took $duration ms")

[1,623259.86]
[6,262.5]
[3,350.0]
[5,760.0]
[9,92.0]
[4,500.0]
[8,87.0]
[7,78.0]
[2,492.5]
[0,36090.3]
Query took 14418 ms
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This produces the following output on my desktop.

We can see that the results match those produced by Apache Spark. We also see that the

performance is respectable for this size of input. It is very likely that Apache Spark will

outperform KQuery with larger data sets since it is optimized for "Big Data".

Removing The Query Optimizer

Let's remove the optimizations and see how much they helped with performance.

val time = measureTimeMillis {

val ctx = ExecutionContext()

val df = ctx.csv("/mnt/nyctaxi/csv/yellow_tripdata_2019-01.csv", 1*1024)
            .aggregate(
               listOf(col("passenger_count")),
               listOf(max(cast(col("fare_amount"), ArrowTypes.FloatType))))

val optimizedPlan = Optimizer().optimize(df.logicalPlan())
val results = ctx.execute(optimizedPlan)

results.forEach { println(it.toCSV()) }

println("Query took $time ms")

Schema<passenger_count: Utf8, MAX: FloatingPoint(DOUBLE)>
1,623259.86
2,492.5
3,350.0
4,500.0
5,760.0
6,262.5
7,78.0
8,87.0
9,92.0
0,36090.3

Query took 6740 ms
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This produces the following output on my desktop.

The results are the same, but the query took about five times as long to execute. This

clearly shows the benefit of the projection push-down optimization that was discussed in

the previous chapter.

This book is also available for purchase in ePub, MOBI, and PDF format from

https://leanpub.com/how-query-engines-work

Copyright © 2020-2023 Andy Grove. All rights reserved.

val time = measureTimeMillis {

val ctx = ExecutionContext()

val df = ctx.csv("/mnt/nyctaxi/csv/yellow_tripdata_2019-01.csv", 1*1024)
            .aggregate(
               listOf(col("passenger_count")),
               listOf(max(cast(col("fare_amount"), ArrowTypes.FloatType))))

val results = ctx.execute(df.logicalPlan())

results.forEach { println(it.toCSV()) }

println("Query took $time ms")

1,623259.86
2,492.5
3,350.0
4,500.0
5,760.0
6,262.5
7,78.0
8,87.0
9,92.0
0,36090.3

Query took 36090 ms
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SQL Support

_The source code discussed in this chapter can be found in the sql  module of the

KQuery project. _ In addition to having the ability to hand-code logical plans, it would be

more convenient in some cases to just write SQL. In this chapter, we will build a SQL

parser and query planner that can translate SQL queries into logical plans.

Tokenizer

The first step is to convert the SQL query string into a list of tokens representing

keywords, literals, identifiers, and operators.

This is a subset of all possible tokens, but it is sufficient for now.

We will then need a tokenizer class. This is not particularly interesting to walk through

here, and full source code can be found in the companion GitHub repository.

Given the input "SELECT a + b FROM c"  we expect the output to be as follows:

Pratt Parser

interface Token
data class IdentifierToken(val s: String) : Token
data class LiteralStringToken(val s: String) : Token
data class LiteralLongToken(val s: String) : Token
data class KeywordToken(val s: String) : Token
data class OperatorToken(val s: String) : Token

class Tokenizer {
fun tokenize(sql: String): List<Token> {
// see github repo for code

  }
}

listOf(
  KeywordToken("SELECT"),
  IdentifierToken("a"),
  OperatorToken("+"),
  IdentifierToken("b"),
  KeywordToken("FROM"),
  IdentifierToken("c")
)

How Query Engines Work https://howqueryengineswork.com/print.html

61 of 98 10/26/23, 17:16

https://howqueryengineswork.com/print.html#sql-support
https://howqueryengineswork.com/print.html#sql-support
https://github.com/andygrove/how-query-engines-work
https://github.com/andygrove/how-query-engines-work
https://howqueryengineswork.com/print.html#tokenizer
https://howqueryengineswork.com/print.html#tokenizer
https://howqueryengineswork.com/print.html#pratt-parser
https://howqueryengineswork.com/print.html#pratt-parser


We are going to hand-code a SQL parser based on the Top Down Operator Precedence

paper published by Vaughan R. Pratt in 1973. Although there are other approaches to

building SQL parsers such as using Parser Generators and Parser Combinators, I have

found Pratt's approach to work well and it results in code that is efficient, easy to

comprehend, and easy to debug.

Here is a bare-bones implementation of a Pratt parser. In my opinion, it is beautiful in its

simplicity. Expression parsing is performed by a simple loop that parses a "prefix"

expression followed by an optional "infix" expression and keeps doing this until the

precedence changes in such a way that the parser recognizes that it has finished parsing

the expression. Of course, the implementation of parsePrefix  and parseInfix  can

recursively call back into the parse  method and this is where it becomes very powerful.

This interface refers to a new SqlExpr  class which will be our representation of a parsed

expression and will largely be a one to one mapping to the expressions defined in the

logical plan but for binary expressions we can use a more generic structure where the

operator is a string rather than create separate data structures for all the different binary

expressions that we will support.

Here are some examples of SqlExpr  implementations.

interface PrattParser {

/** Parse an expression */
fun parse(precedence: Int = 0): SqlExpr? {
var expr = parsePrefix() ?: return null
while (precedence < nextPrecedence()) {

      expr = parseInfix(expr, nextPrecedence())
    }

return expr
  }

/** Get the precedence of the next token */
fun nextPrecedence(): Int

/** Parse the next prefix expression */
fun parsePrefix(): SqlExpr?

/** Parse the next infix expression */
fun parseInfix(left: SqlExpr, precedence: Int): SqlExpr

}
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With these classes in place it is possible to represent the expression foo = 'bar'  with

the following code.

Parsing SQL Expressions

Let's walk through this approach for parsing a simple math expression such as 1 + 2 * 

3 . This expression consists of the following tokens.

We need to create an implementation of the PrattParser  trait and pass the tokens into

the constructor. The tokens are wrapped in a TokenStream  class that provides some

convenience methods such as next  for consuming the next token, and peek  for when

we want to look ahead without consuming a token.

Implementing the nextPrecedence  method is simple because we only have a small

/** SQL Expression */
interface SqlExpr

/** Simple SQL identifier such as a table or column name */
data class SqlIdentifier(val id: String) : SqlExpr {
override fun toString() = id

}

/** Binary expression */
data class SqlBinaryExpr(val l: SqlExpr, val op: String, val r: SqlExpr) : 
SqlExpr {
override fun toString(): String = "$l $op $r"

}

/** SQL literal string */
data class SqlString(val value: String) : SqlExpr {
override fun toString() = "'$value'"

}

val sqlExpr = SqlBinaryExpr(SqlIdentifier("foo"), "=", SqlString("bar"))

listOf(
  LiteralLongToken("1"),
  OperatorToken("+"),
  LiteralLongToken("2"),
  OperatorToken("*"),
  LiteralLongToken("3")
)

class SqlParser(val tokens: TokenStream) : PrattParser {
}
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number of tokens that have any precedence here and we need to have the multiplication

and division operators have higher precedence than the addition and subtraction

operator. Note that the specific numbers returned by this method are not important

since they are just used for comparisons. A good reference for operator precedence can

be found in the PostgreSQL documentation.

The prefix parser just needs to know how to parse literal numeric values.

The infix parser just needs to know how to parse operators. Note that after parsing an

operator, this method recursively calls back into the top level parse  method to parse the

expression following the operator (the right-hand side of the binary expression).

The precedence logic can be demonstrated by parsing the math expressions 1 + 2 * 3

and 1 * 2 + 3  which should be parsed as 1 + (2 * 3)  and (1 * 2) + 3  respectively.

_Example: Parsing 1 + 2 _ 3 *

override fun nextPrecedence(): Int {
val token = tokens.peek()
return when (token) {
is OperatorToken -> {

when (token.s) {
"+", "-" -> 50
"*", "/" -> 60
else -> 0

      }
    }

else -> 0
  }
}

override fun parsePrefix(): SqlExpr? {
val token = tokens.next() ?: return null
return when (token) {
is LiteralLongToken -> SqlLong(token.s.toLong())
else -> throw IllegalStateException("Unexpected token $token")

  }
}

override fun parseInfix(left: SqlExpr, precedence: Int): SqlExpr {
val token = tokens.peek()
return when (token) {
is OperatorToken -> {

      tokens.next()
      SqlBinaryExpr(left, token.s, parse(precedence) ?:

throw SQLException("Error parsing infix"))
    }

else -> throw IllegalStateException("Unexpected infix token $token")
  }
}
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These are the tokens along with their precedence values.

The final result correctly represents the expression as 1 + (2 * 3) .

_Example: Parsing 1 _ 2 + 3 *

The final result correctly represents the expression as (1 * 2) + 3 .

Parsing a SELECT statement

Now that we have the ability to parse some simple expressions, the next step is to extend

the parser to support parsing a SELECT statement into a concrete syntax tree (CST). Note

that with other approaches to parsing such as using a parser generator like ANTLR there

is an intermediate stage known as an Abstract Syntax Tree (AST) which then needs to be

translated to a Concrete Syntax Tree but with the Pratt Parser approach we go directly

from tokens to the CST.

Here is an example CST that can represent a simple single-table query with a projection

and selection. This will be extended to support more complex queries in later chapters.

Tokens:      [1]  [+]  [2]  [*]  [3]
Precedence:  [0] [50]  [0] [60]  [0]

SqlBinaryExpr(
    SqlLong(1),
    "+",
    SqlBinaryExpr(SqlLong(2), "*", SqlLong(3))
)

Tokens:      [1]  [*]  [2]  [+]  [3]
Precedence:  [0] [60]  [0] [50]  [0]

SqlBinaryExpr(
    SqlBinaryExpr(SqlLong(1), "*", SqlLong(2)),
    "+",
    SqlLong(3)
)

data class SqlSelect(
val projection: List<SqlExpr>,
val selection: SqlExpr,
val tableName: String) : SqlRelation
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SQL Query Planner

The SQL Query Planner translates the SQL Query Tree into a Logical Plan. This turns out

to be a much harder problem than translating a logical plan to a physical plan due to the

flexibility of the SQL language. For example, consider the following simple query.

Although this is intuitive to a human reading the query, the selection part of the query

(the WHERE  clause) refers to one expression ( state ) that is not included in the output of

the projection so clearly needs to be applied before the projection but also refers to

another expression ( salary/12 AS monthly_salary ) which is only available after the

projection is applied. We will face similar issues with the GROUP BY , HAVING , and ORDER 

BY  clauses.

There are multiple solutions to this problem. One approach would be to translate this

query to the following logical plan, splitting the selection expression into two steps, one

before and one after the projection. However, this is only possible because the selection

expression is a conjunctive predicate (the expression is true only if all parts are true) and

this approach might not be possible for more complex expressions. If the expression had

been state = 'CO' OR monthly_salary > 1000  then we could not do this.

A simpler and more generic approach would be to add all the required expressions to the

projection so that the selection can be applied after the projection, and then remove any

columns that were added by wrapping the output in another projection.

It is worth noting that we will build a "Predicate Push Down" query optimizer rule in a

later chapter that will be able to optimize this plan and push the state = 'CO'  part of

the predicate further down in the plan so that it is before the projection.

SELECT id, first_name, last_name, salary/12 AS monthly_salary
FROM employee
WHERE state = 'CO' AND monthly_salary > 1000

Filter: #monthly_salary > 1000
  Projection: #id, #first_name, #last_name, #salary/12 AS monthly_salary
    Filter: #state = 'CO'
      Scan: table=employee

Projection: #id, #first_name, #last_name, #monthly_salary
  Filter: #state = 'CO' AND #monthly_salary > 1000
    Projection: #id, #first_name, #last_name, #salary/12 AS monthly_salary, 
#state
      Scan: table=employee
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Translating SQL Expressions

Translating SQL expressions to logical expressions is fairly simple, as demonstrated in

this example code.

Planning SELECT

If we only wanted to support the use case where all columns referenced in the selection

also exist in the projection we could get away with some very simple logic to build the

query plan.

private fun createLogicalExpr(expr: SqlExpr, input: DataFrame) : LogicalExpr 
{
return when (expr) {
is SqlIdentifier -> Column(expr.id)
is SqlAlias -> Alias(createLogicalExpr(expr.expr, input), expr.alias.id)
is SqlString -> LiteralString(expr.value)
is SqlLong -> LiteralLong(expr.value)
is SqlDouble -> LiteralDouble(expr.value)
is SqlBinaryExpr -> {

val l = createLogicalExpr(expr.l, input)
val r = createLogicalExpr(expr.r, input)
when(expr.op) {
// comparison operators
"=" -> Eq(l, r)
"!=" -> Neq(l, r)
">" -> Gt(l, r)
">=" -> GtEq(l, r)
"<" -> Lt(l, r)
"<=" -> LtEq(l, r)
// boolean operators
"AND" -> And(l, r)
"OR" -> Or(l, r)
// math operators
"+" -> Add(l, r)
"-" -> Subtract(l, r)
"*" -> Multiply(l, r)
"/" -> Divide(l, r)
"%" -> Modulus(l, r)
else -> throw SQLException("Invalid operator ${expr.op}")

      }
    }

else -> throw new UnsupportedOperationException()
  }
}
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However, because the selection could reference both inputs to the projections and

outputs from the projection we need to create a more complex plan with an intermediate

projection. The first step is to determine which columns are references by the selection

filter expression. To do this we will use the visitor pattern to walk the expression tree and

build a mutable set of column names.

Here is the utility method we will use to walk the expression tree.

With this in place we can now write the following code to convert a SELECT statement into

a valid logical plan. This code sample is not perfect and probably contains some bugs for

edge cases where there are name clashes between columns in the data source and

aliased expressions but we will ignore this for the moment to keep the code simple.

fun createDataFrame(select: SqlSelect, tables: Map<String, DataFrame>) : 
DataFrame {

// get a reference to the data source
var df = tables[select.tableName] ?:

throw SQLException("No table named '${select.tableName}'")

val projectionExpr = select.projection.map { createLogicalExpr(it, df) }

if (select.selection == null) {
// apply projection
return df.select(projectionExpr)

  }

// apply projection then wrap in a selection (filter)
return df.select(projectionExpr)

           .filter(createLogicalExpr(select.selection, df))
}

private fun visit(expr: LogicalExpr, accumulator: MutableSet<String>) {
when (expr) {
is Column -> accumulator.add(expr.name)
is Alias -> visit(expr.expr, accumulator)
is BinaryExpr -> {

      visit(expr.l, accumulator)
      visit(expr.r, accumulator)
     }
  }
}
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Planning for Aggregate Queries

As you can see, the SQL query planner is relatively complex and the code for parsing

fun createDataFrame(select: SqlSelect, tables: Map<String, DataFrame>) : 
DataFrame {

// get a reference to the data source
var df = tables[select.tableName] ?:
throw SQLException("No table named '${select.tableName}'")

// create the logical expressions for the projection
val projectionExpr = select.projection.map { createLogicalExpr(it, df) }

if (select.selection == null) {
// if there is no selection then we can just return the projection
return df.select(projectionExpr)

  }

// create the logical expression to represent the selection
val filterExpr = createLogicalExpr(select.selection, df)

// get a list of columns references in the projection expression
val columnsInProjection = projectionExpr

    .map { it.toField(df.logicalPlan()).name}
    .toSet()

// get a list of columns referenced in the selection expression
val columnNames = mutableSetOf<String>()

  visit(filterExpr, columnNames)

// determine if the selection references any columns not in the projection
val missing = columnNames - columnsInProjection

// if the selection only references outputs from the projection we can
// simply apply the filter expression to the DataFrame representing
// the projection
if (missing.size == 0) {
return df.select(projectionExpr)

             .filter(filterExpr)
  }

// because the selection references some columns that are not in the
// projection output we need to create an interim projection that has
// the additional columns and then we need to remove them after the
// selection has been applied
return df.select(projectionExpr + missing.map { Column(it) })

           .filter(filterExpr)
           .select(projectionExpr.map {
              Column(it.toField(df.logicalPlan()).name)
            })
}
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aggregate queries is quite involved. If you are interested in learning more, please refer to

the source code.

This book is also available for purchase in ePub, MOBI, and PDF format from

https://leanpub.com/how-query-engines-work

Copyright © 2020-2023 Andy Grove. All rights reserved.
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Parallel Query Execution

So far, we have been using a single thread to execute queries against individual files. This

approach is not very scalable, because queries will take longer to run with larger files or

with multiple files. The next step is to implement distributed query execution so that

query execution can utilize multiple CPU cores and multiple servers.

The simplest form of distributed query execution is parallel query execution utilizing

multiple CPU cores on a single node using threads.

The NYC taxi data set is already conveniently partitioned because there is one CSV file for

each month of each year, meaning that there are twelve partitions for the 2019 data set,

for example. The most straightforward approach to parallel query execution would be to

use one thread per partition to execute the same query in parallel and then combine the

results. Suppose this code is running on a computer with six CPU cores with hyper-

threading support. In that case, these twelve queries should execute in the same elapsed

time as running one of the queries on a single thread, assuming that each month has a

similar amount of data.

Here is an example of running an aggregate SQL query in parallel across twelve

partitions. This example is implemented using Kotlin coroutines, rather than using

threads directly.

The source code for this example can be found at jvm/examples/src/main/kotlin

/ParallelQuery.kt  in the KQuery GitHub repository.

Let us start with the single-threaded code for running one query against one partition.

With this in place, we can now write the following code to run this query in parallel across

each of the twelve partitions of data.

fun executeQuery(path: String, month: Int, sql: String): List<RecordBatch> {
val monthStr = String.format("%02d", month);
val filename = "$path/yellow_tripdata_2019-$monthStr.csv"
val ctx = ExecutionContext()

  ctx.registerCsv("tripdata", filename)
val df = ctx.sql(sql)
return ctx.execute(df).toList()

}
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Here is the output from this example, running on a desktop computer with 24 cores.

As you can see, the total duration was around the same time as the slowest query.

Although we have successfully executed the aggregate query against the partitions, our

result is a list of batches of data with duplicate values. For example, there will most likely

be a result for passenger_count=1  from each of the partitions.

Combining Results

For simple queries consisting of projection and selection operators, the results of the

parallel queries can be combined (similar to a SQL UNION ALL  operation), and no further

processing is required. More complex queries involving aggregates, sorts, or joins will

val start = System.currentTimeMillis()
val deferred = (1..12).map {month ->
  GlobalScope.async {

val sql = "SELECT passenger_count, " +
"MAX(CAST(fare_amount AS double)) AS max_fare " +
"FROM tripdata " +
"GROUP BY passenger_count"

val start = System.currentTimeMillis()
val result = executeQuery(path, month, sql)
val duration = System.currentTimeMillis() - start

    println("Query against month $month took $duration ms")
    result
  }
}
val results: List<RecordBatch> = runBlocking {
  deferred.flatMap { it.await() }
}
val duration = System.currentTimeMillis() - start
println("Collected ${results.size} batches in $duration ms")

Query against month 8 took 17074 ms
Query against month 9 took 18976 ms
Query against month 7 took 20010 ms
Query against month 2 took 21417 ms
Query against month 11 took 21521 ms
Query against month 12 took 22082 ms
Query against month 6 took 23669 ms
Query against month 1 took 23735 ms
Query against month 10 took 23739 ms
Query against month 3 took 24048 ms
Query against month 5 took 24103 ms
Query against month 4 took 25439 ms
Collected 12 batches in 25505 ms
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require a secondary query to be run on the results of the parallel queries to combine the

results. The terms "map" and "reduce" are often used to explain this two-step process.

The "map" step refers to running one query in parallel across the partitions, and the

"reduce" step refers to combining the results into a single result.

For this particular example, it is now necessary to run a secondary aggregation query

almost identical to the aggregate query executed against the partitions. One difference is

that the second query may need to apply different aggregate functions. For the aggregate

functions min , max , and sum , the same operation is used in the map and reduce steps,

to get the min of the min or the sum of the sums. For the count expression, we do not

want the count of the counts. We want to see the sum of the counts instead.

This produces the final result set:

Smarter Partitioning

Although the strategy of using one thread per file worked well in this example, it does not

work as a general-purpose approach to partitioning. If a data source has thousands of

small partitions, starting one thread per partition would be inefficient. A better approach

would be for the query planner to decide how to share the available data between a

specified number of worker threads (or executors).

Some file formats already have a natural partitioning scheme within them. For example,

Apache Parquet files consist of multiple "row groups" containing batches of columnar

val sql = "SELECT passenger_count, " +
"MAX(max_fare) " +
"FROM tripdata " +
"GROUP BY passenger_count"

val ctx = ExecutionContext()
ctx.registerDataSource("tripdata", InMemoryDataSource(results.first().schema, 
results))
val df = ctx.sql(sql)
ctx.execute(df).forEach { println(it) }

1,671123.14
2,1196.35
3,350.0
4,500.0
5,760.0
6,262.5
7,80.52
8,89.0
9,97.5
0,90000.0
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data. A query planner could inspect the available Parquet files, build a list of row groups

and then schedule reading these row groups across a fixed number of threads or

executors.

It is even possible to apply this technique to unstructured files such as CSV files, but this is

not trivial. It is easy to inspect the file size and break the file into equal-sized chunks, but a

record could likely span two chunks, so it is necessary to read backward or forwards from

a boundary to find the start or end of the record. It is insufficient to look for a newline

character because these often appear within records and are also used to delimit

records. It is common practice to convert CSV files into a structured format such as

Parquet early on in a processing pipeline to improve the efficiency of subsequent

processing.

Partition Keys

One solution to this problem is to place files in directories and use directory names

consisting of key-value pairs to specify the contents.

For example, we could organize the files as follows:

Given this structure, the query planner could now implement a form of "predicate push

down" to limit the number of partitions included in the physical query plan. This

approach is often referred to as "partition pruning".

Parallel Joins

When performing an inner join with a single thread, a simple approach is to load one side

of the join into memory and then scan the other side, performing lookups against the

data stored in memory. This classic Hash Join algorithm is efficient if one side of the join

can fit into memory.

The parallel version of this is known as a Partitioned Hash Join or Parallel Hash Join. It

involves partitioning both inputs based on the join keys and performing a classic Hash

Join on each pair of input partitions.

This book is also available for purchase in ePub, MOBI, and PDF format from

https://leanpub.com/how-query-engines-work

/mnt/nyxtaxi/csv/year=2019/month=1/tripdata.csv
/mnt/nyxtaxi/csv/year=2019/month=2/tripdata.csv
...
/mnt/nyxtaxi/csv/year=2019/month=12/tripdata.csv
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Distributed Query Execution

The previous section on Parallel Query Execution covered some fundamental concepts

such as partitioning, which we will build on in this section.

To somewhat over-simplify the concept of distributed query execution, the goal is to be

able to create a physical query plan which defines how work is distributed to a number of

"executors" in a cluster. Distributed query plans will typically contain new operators that

describe how data is exchanged between executors at various points during query

execution.

In the following sections we will explore how different types of plans are executed in a

distributed environment and then discuss building a distributed query scheduler.

Embarrassingly Parallel Operators

Certain operators can run in parallel on partitions of data without any significant

overhead when running in a distributed environment. The best examples of these are

Projection and Filter. These operators can be applied in parallel to each input partition of

the data being operated on and produce a corresponding output partition for each one.

These operators do not change the partitioning scheme of the data.

Distributed Aggregates

Let's use the example SQL query that we used in the previous chapter on Parallel Query

How Query Engines Work https://howqueryengineswork.com/print.html

76 of 98 10/26/23, 17:16

https://howqueryengineswork.com/print.html#distributed-query-execution
https://howqueryengineswork.com/print.html#distributed-query-execution
https://howqueryengineswork.com/print.html#embarrassingly-parallel-operators
https://howqueryengineswork.com/print.html#embarrassingly-parallel-operators
https://howqueryengineswork.com/print.html#distributed-aggregates
https://howqueryengineswork.com/print.html#distributed-aggregates


Execution and look at the distributed planning implications of an aggregate query.

We can execute this query in parallel on all partitions of the tripdata  table, with each

executor in the cluster processing a subset of these partitions. However, we need to then

combine all the resulting aggregated data onto a single node and then apply the final

aggregate query so that we get a single result set without duplicate grouping keys

( passenger_count  in this case). Here is one possible logical query plan for representing

this. Note the new Exchange  operator which represents the exchange of data between

executors. The physical plan for the exchange could be implemented by writing

intermediate results to shared storage, or perhaps by streaming data directly to other

executors.

Here is a diagram showing how this query could be executed in a distributed

environment:

SELECT passenger_count, MAX(max_fare)
FROM tripdata
GROUP BY passenger_count

HashAggregate: groupBy=[passenger_count], aggr=[MAX(max_fare)]
  Exchange:
    HashAggregate: groupBy=[passenger_count], aggr=[MAX(max_fare)]
      Scan: tripdata.parquet
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Distributed Joins

Joins are often the most expensive operation to perform in a distributed environment.

The reason for this is that we need to make sure that we organize the data in such a way

that both input relations are partitioned on the join keys. For example, if we joining a

customer  table to an order  table where the join condition is customer.id = 

order.customer_id , then all the rows in both tables for a specific customer must be

processed by the same executor. To achieve this, we have to first repartition both tables

on the join keys and write the partitions to disk. Once this has completed then we can

perform the join in parallel with one join for each partition. The resulting data will remain

partitioned by the join keys. This particular join algorithm is called a partitioned hash join.

The process of repartitioning the data is known as performing a "shuffle".
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Distributed Query Scheduling

Distributed query plans are fundamentally different to in-process query plans because

we can't just build a tree of operators and start executing them. The query now requires

co-ordination across executors which means that we now need to build a scheduler.

At a high level, the concept of a distributed query scheduler is not complex. The scheduler

needs to examine the whole query and break it down into stages that can be executed in

isolation (usually in parallel across the executors) and then schedule these stages for

execution based on the available resources in the cluster. Once each query stage

completes then any subsequent dependent query stages can be scheduled. This process
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repeats until all query stages have been executed.

The scheduler could also be responsible for managing the compute resources in the

cluster so that extra executors can be started on demand to handle the query load.

In the remainder of this chapter, we will discuss the following topics, referring to Ballista

and the design that is being implemented in that project.

• Producing a distributed query plan

• Serializing query plans and exchanging them with executors

• Exchange intermediate results between executors

• Optimizing distributed queries

Producing a Distributed Query Plan

As we have seen in the previous examples, some operators can run in parallel on input

partitions and some operators require data to be repartitioned. These changes in

partitioning are key to planning a distributed query. Changes in partitioning within a plan

are sometimes called pipeline breakers and these changes in partitioning define the

boundaries between query stages.

We will now use the following SQL query to see how this process works.

The physical (non-distributed) plan for this query would look something like this:

Assuming that the customer and order tables are not already partitioned on customer id,

we will need to schedule execution of the first two query stages to repartition this data.

These two query stages can run in parallel.

Next, we can schedule the join, which will run in parallel for each partition of the two

SELECT customer.id, sum(order.amount) as total_amount
FROM customer JOIN order ON customer.id = order.customer_id
GROUP BY customer.id

Projection: #customer.id, #total_amount
  HashAggregate: groupBy=[customer.id], aggr=[MAX(max_fare) AS total_amount]
    Join: condition=[customer.id = order.customer_id]
      Scan: customer
      Scan: order

Query Stage #1: repartition=[customer.id]
  Scan: customer
Query Stage #2: repartition=[order.customer_id]
  Scan: order
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inputs. The next operator after the join is the aggregate, which is split into two parts; the

aggregate that runs in parallel and then the final aggregate that requires a single input

partition. We can perform the parallel part of this aggregate in the same query stage as

the join because this first aggregate does not care how the data is partitioned. This gives

us our third query stage, which can now be scheduled for execution. The output of this

query stage remains partitioned by customer id.

The final query stage performs the aggregate of the aggregates, reading from all of the

partitions from the previous stage.

To recap, here is the full distributed query plan showing the query stages that are

introduced when data needs to be repartitioned or exchanged between pipelined

operations.

Serializing a Query Plan

The query scheduler needs to send fragments of the overall query plan to executors for

execution.

There are a number of options for serializing a query plan so that it can be passed

between processes. Many query engines choose the strategy of using the programming

Query Stage #3: repartition=[]
  HashAggregate: groupBy=[customer.id], aggr=[MAX(max_fare) AS total_amount]
    Join: condition=[customer.id = order.customer_id]
      Query Stage #1
      Query Stage #2

Query Stage #4:
  Projection: #customer.id, #total_amount
    HashAggregate: groupBy=[customer.id], aggr=[MAX(max_fare) AS 
total_amount]
      QueryStage #3

Query Stage #4:
  Projection: #customer.id, #total_amount
    HashAggregate: groupBy=[customer.id], aggr=[MAX(max_fare) AS 
total_amount]
      Query Stage #3: repartition=[]
        HashAggregate: groupBy=[customer.id], aggr=[MAX(max_fare) AS 
total_amount]
          Join: condition=[customer.id = order.customer_id]
            Query Stage #1: repartition=[customer.id]
              Scan: customer
            Query Stage #2: repartition=[order.customer_id]
              Scan: order
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languages native serialization support, which is a suitable choice if there is no

requirement to be able to exchange query plans between different programming

languages and this is usually the simplest mechanism to implement.

However, there are advantages in using a serialization format that is programming

language-agnostic. Ballista uses Google's Protocol Buffers format to define query plans.

The project is typically abbreviated as "protobuf".

Here is a subset of the Ballista protocol buffer definition of a query plan.

Full source code can be found at proto/ballista.proto  in the Ballista github repository.

The protobuf project provides tools for generating language-specific source code for

serializing and de-serializing data.

Serializing Data

message LogicalPlanNode {
  LogicalPlanNode input = 1;
  FileNode file = 10;
  ProjectionNode projection = 20;
  SelectionNode selection = 21;
  LimitNode limit = 22;
  AggregateNode aggregate = 23;
}

message FileNode {
  string filename = 1;
  Schema schema = 2;
  repeated string projection = 3;
}

message ProjectionNode {
  repeated LogicalExprNode expr = 1;
}

message SelectionNode {
  LogicalExprNode expr = 2;
}

message AggregateNode {
  repeated LogicalExprNode group_expr = 1;
  repeated LogicalExprNode aggr_expr = 2;
}

message LimitNode {
  uint32 limit = 1;
}
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Data must also be serialized as it is streamed between clients and executors and between

executors.

Apache Arrow provides an IPC (Inter-process Communication) format for exchanging data

between processes. Because of the standardized memory layout provided by Arrow, the

raw bytes can be transferred directly between memory and an input/output device (disk,

network, etc) without the overhead typically associated with serialization. This is

effectively a zero copy operation because the data does not have to be transformed from

its in-memory format to a separate serialization format.

However, the metadata about the data, such as the schema (column names and data

types) does need to be encoded using Google Flatbuffers. This metadata is small and is

typically serialized once per result set or per batch so the overhead is small.

Another advantage of using Arrow is that it provides very efficient exchange of data

between different programming languages.

Apache Arrow IPC defines the data encoding format but not the mechanism for

exchanging it. Arrow IPC could be used to transfer data from a JVM language to C or Rust

via JNI for example.

Choosing a Protocol

Now that we have chosen serialization formats for query plans and data, the next

question is how do we exchange this data between distributed processes.

Apache Arrow provides a Flight protocol which is intended for this exact purpose. Flight is

a new general-purpose client-server framework to simplify high performance transport of

large datasets over network interfaces.

The Arrow Flight libraries provide a development framework for implementing a service

that can send and receive data streams. A Flight server supports several basic kinds of

requests:

• Handshake: a simple request to determine whether the client is authorized and, in

some cases, to establish an implementation-defined session token to use for future

requests

• ListFlights: return a list of available data streams

• GetSchema: return the schema for a data stream

• GetFlightInfo: return an “access plan” for a dataset of interest, possibly requiring

consuming multiple data streams. This request can accept custom serialized

commands containing, for example, your specific application parameters.

• DoGet: send a data stream to a client

• DoPut: receive a data stream from a client
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• DoAction: perform an implementation-specific action and return any results, i.e. a

generalized function call

• ListActions: return a list of available action types

The GetFlightInfo  method could be used to compile a query plan and return the

necessary information for receiving the results, for example, followed by calls to DoGet

on each executor to start receiving the results from the query.

Streaming

It is important that results of a query can be made available as soon as possible and be

streamed to the next process that needs to operate on that data, otherwise there would

be unacceptable latency involved as each operation would have to wait for the previous

operation to complete.

However, some operations require all the input data to be received before any output

can be produced. A sort operation is a good example of this. It isn't possible to

completely sort a dataset until the whole data set has been received. The problem can be

alleviated by increasing the number of partitions so that a large number of partitions are

sorted in parallel and then the sorted batches can be combined efficiently using a merge

operator.

Custom Code

It is often necessary to run custom code as part of a distributed query or computation.

For a single language query engine it is often possible to use the language's built-in

serialization mechanism to transmit this code over the network at query execution time

which is very convenient during development. Another approach is to publish compiled

code to a repository so that it can be downloaded into a cluster at runtime. For JVM based

systems, a maven repository could be used. A more general purpose approach is to

package all runtime dependencies into a Docker image.

The query plan needs to provide the necessary information to load the user code at

runtime. For JVM based systems this could be a classpath and a class name. For C based

systems, this could be the path to a shared object. In either case, the user code will need

to implement some known API.

Distributed Query Optimizations
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Distributed query execution has a lot of overhead compared to parallel query execution

on a single host and should only be used when there is benefit in doing so. I recommend

reading the paper Scalability! But at what COST for some interesting perspectives on this

topic.

Also, there are many ways to distribute the same query so how do we know which one to

use?

One answer is to build a mechanism to determine the cost of executing a particular query

plan and then create some subset of all possible combinations of query plan for a given

problem and determine which one is most efficient.

There are many factors involved in computing the cost of an operation and there are

different resource costs and limitations involved.

• Memory: We are typically concerned with availability of memory rather than

performance. Processing data in memory is orders of magnitude faster than reading

and writing to disk.

• CPU: For workloads that are parallelizable, more CPU cores means better

throughput.

• GPU: Some operations are orders of magnitude faster on GPUs compared to CPUs.

• Disk: Disks have finite read and write speeds and cloud vendors typically limit the

number of I/O operations per second (IOPS). Different types of disk have different

performance characteristics (spinning disk vs SSD vs NVMe).

• Network: Distributed query execution involves streaming data between nodes.

There is a throughput limitation imposed by the networking infrastructure.

• Distributed Storage: It is very common for source data to be stored in a distributed

file system (HDFS) or object store (Amazon S3, Azure Blob Storage) and there is a

cost in transferring data between distributed storage and local file systems.

• Data Size: The size of the data matters. When performing a join between two tables

and data needs to be transferred over the network, it is better to transfer the

smaller of the two tables. If one of the tables can fit in memory than a more efficient

join operation can be used.

• Monetary Cost: If a query can be computed 10% faster at 3x the cost, is it worth it?

That is a question best answered by the user of course. Monetary costs are typically

controlled by limiting the amount of compute resource that is available.

Query costs can be computed upfront using an algorithm if enough information is known

ahead of time about the data, such as how large the data is, the cardinality of the

partition of join keys used in the query, the number of partitions, and so on. This all

depends on certain statistics being available for the data set being queried.

Another approach is to just start running a query and have each operator adapt based on

the input data it receives. Apache Spark 3.0.0 introduced an Adaptive Query Execution

feature that does just this.
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Testing

Query engines are complex, and it is easy to inadvertently introduce subtle bugs that

could result in queries returning incorrect results, so it is important to have rigorous

testing in place.

Unit Testing

An excellent first step is to write unit tests for the individual operators and expressions,

asserting that they produce the correct output for a given input. It is also essential to

cover error cases.

Here are some suggestions for things to consider when writing unit tests:

• What happens if an unexpected data type is used? For example, calculating SUM  on

an input of strings.

• Tests should cover edge cases, such as using the minimum and maximum values for

numeric data types, and NaN (not a number) for floating point types, to ensure that

they are handled correctly.

• Tests should exist for underflow and overflow cases. For example, what happens

when two long (64-bit) integer types are multiplied?

• Tests should also ensure that null values are handled correctly.

When writing these tests, it is important to be able to construct record batches and

column vectors with arbitrary data to use as inputs for operators and expressions. Here is

an example of such a utility method.

How Query Engines Work https://howqueryengineswork.com/print.html

87 of 98 10/26/23, 17:16

https://howqueryengineswork.com/print.html#testing
https://howqueryengineswork.com/print.html#testing
https://howqueryengineswork.com/print.html#unit-testing
https://howqueryengineswork.com/print.html#unit-testing


Here is an example unit test for the "greater than or equals" ( >= ) expression being

evaluated against a record batch containing two columns containing double-precision

floating point values.

private fun createRecordBatch(schema: Schema,
                              columns: List<List<Any?>>): RecordBatch {

val rowCount = columns[0].size
val root = VectorSchemaRoot.create(schema.toArrow(),

                                       RootAllocator(Long.MAX_VALUE))
    root.allocateNew()
    (0 until rowCount).forEach { row ->
        (0 until columns.size).forEach { col ->

val v = root.getVector(col)
val value = columns[col][row]
when (v) {

is Float4Vector -> v.set(row, value as Float)
is Float8Vector -> v.set(row, value as Double)

                ...
            }
        }
    }
    root.rowCount = rowCount

return RecordBatch(schema, root.fieldVectors.map { ArrowFieldVector(it) 
})
}

@Test
fun `gteq doubles`() {

val schema = Schema(listOf(
            Field("a", ArrowTypes.DoubleType),
            Field("b", ArrowTypes.DoubleType)
    ))

val a: List<Double> = listOf(0.0, 1.0,
Double.MIN_VALUE, Double.MAX_VALUE, 

Double.NaN)
val b = a.reversed()

val batch = createRecordBatch(schema, listOf(a,b))

val expr = GtEqExpression(ColumnExpression(0), ColumnExpression(1))
val result = expr.evaluate(batch)

    assertEquals(a.size, result.size())
    (0 until result.size()).forEach {
        assertEquals(if (a[it] >= b[it]) 1 else 0, result.getValue(it))
    }
}
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Integration Testing

Once unit tests are in place, the next step is to write integration tests that execute queries

consisting of multiple operators and expressions and assert that they produce the

expected output.

There are a few popular approaches to integration testing of query engines:

• Imperative Testing: Hard-coded queries and expected results, either written as

code or stored as files containing the queries and results.

• Comparative Testing: This approach involves executing queries against another

(trusted) query engine and asserting that both query engines produced the same

results.

• Fuzzing: Generating random operator and expression trees to capture edge cases

and get comprehensive test coverage.

Fuzzing

Much of the complexity of query engines comes from the fact that operators and

expressions can be combined through infinite combinations due to the nested nature of

operator and expression trees, and it is unlikely that hand-coding test queries will be

comprehensive enough.

Fuzzing is a technique for producing random input data. When applied to query engines,

this means creating random query plans.

Here is an example of creating random expressions against a DataFrame. This is a

recursive method and can produce deeply nested expression trees, so it is important to

build in a maximum depth mechanism.
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Here is example of an expression generated with this method. Note that column

references are represented here with an index following a hash, e.g. #1  represents

column at index 1. This expression is almost certainly invalid (depending on the query

engine implementation), and this is to be expected when using a fuzzer. This is still

valuable because it will test error conditions that otherwise would not be covered when

manually writing tests.

A similar approach can be taken when creating logical query plans.

fun createExpression(input: DataFrame, depth: Int, maxDepth: Int): 
LogicalExpr {

return if (depth == maxDepth) {
// return a leaf node
when (rand.nextInt(4)) {

0 -> ColumnIndex(rand.nextInt(input.schema().fields.size))
1 -> LiteralDouble(rand.nextDouble())
2 -> LiteralLong(rand.nextLong())
3 -> LiteralString(randomString(rand.nextInt(64)))
else -> throw IllegalStateException()

        }
    } else {

// binary expressions
val l = createExpression(input, depth+1, maxDepth)
val r = createExpression(input, depth+1, maxDepth)
return when (rand.nextInt(8)) {

0 -> Eq(l, r)
1 -> Neq(l, r)
2 -> Lt(l, r)
3 -> LtEq(l, r)
4 -> Gt(l, r)
5 -> GtEq(l, r)
6 -> And(l, r)
7 -> Or(l, r)
else -> throw IllegalStateException()

        }
    }
}

#5 > 0.5459397414890019 < 0.3511239641785846 OR 0.9137719758607572 > 
-6938650321297559787 < #0 AND #3 < #4 AND 'qn0NN' OR 
'1gS46UuarGz2CdeYDJDEW3Go6ScMmRhA3NgPJWMpgZCcML1Ped8haRxOkM9F' >= 
-8765295514236902140 < 4303905842995563233 OR 
'IAseGJesQMOI5OG4KrkitichlFduZGtjXoNkVQI0Alaf2ELUTTIci' = 0.857970478666058 
>= 0.8618195163699196 <= '9jaFR2kDX88qrKCh2BSArLq517cR8u2' OR 
0.28624225053564 <= 0.6363627130199404 > 0.19648131921514966 >= 
-567468767705106376 <= #0 AND 0.6582592932801918 = 
'OtJ0ryPUeSJCcMnaLngBDBfIpJ9SbPb6hC5nWqeAP1rWbozfkPjcKdaelzc' >= #0 >= 
-2876541212976899342 = #4 >= -3694865812331663204 = 'gWkQLswcU' != #3 > 
'XiXzKNrwrWnQmr3JYojCVuncW9YaeFc' >= 0.5123788261193981 >= #2
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Here is an example of a logical query plan produced by this code.

This straightforward approach to fuzzing will produce a high percentage of invalid plans.

It could be improved to reduce the risk of creating invalid logical plans and expressions

by adding more contextual awareness. For example, generating an AND  expression could

generate left and right expressions that produce a Boolean result. However, there is a

danger in only creating correct plans because it could limit the test coverage. Ideally, it

should be possible to configure the fuzzer with rules for producing query plans with

different characteristics.
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fun createPlan(input: DataFrame,
               depth: Int,
               maxDepth: Int,
               maxExprDepth: Int): DataFrame {

return if (depth == maxDepth) {
        input
    } else {

// recursively create an input plan
val child = createPlan(input, depth+1, maxDepth, maxExprDepth)
// apply a transformation to the plan
when (rand.nextInt(2)) {

0 -> {
val exprCount = 1.rangeTo(rand.nextInt(1, 5))

                child.project(exprCount.map {
                    createExpression(child, 0, maxExprDepth)
                })
            }

1 -> child.filter(createExpression(input, 0, maxExprDepth))
else -> throw IllegalStateException()

        }
    }
}

Filter: 'VejBmVBpYp7gHxHIUB6UcGx' OR 0.7762591612853446
  Filter: 'vHGbOKKqR' <= 0.41876514212913307
    Filter: 0.9835090312561898 <= 3342229749483308391
      Filter: -5182478750208008322 < -8012833501302297790
        Filter: 0.3985688976088563 AND #1
          Filter: #5 OR 'WkaZ54spnoI4MBtFpQaQgk'
            Scan: employee.csv; projection=None
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Benchmarks

Each query engine is unique in terms of performance, scalability, and resource

requirements, often with different trade-offs. It is important to have good benchmarks to

understand the performance and scalability characteristics.

Measuring Performance

Performance is often the simplest characteristic to measure and usually refers to the time

it takes to perform a particular operation. For example, benchmarks can be built to

measure the performance of specific queries or categories of query.

Performance tests typically involve executing a query multiple times and measuring

elapsed time.

Measuring Scalability

Scalability can be an overloaded term and there are many different types of scalability.

The term scalability generally refers to how performance varies with different values for

some variable that affects performance.

One example would be measuring scalability as total data size increases to discover how

performance is impacted, when querying 10 GB of data versus 100 GB or 1 TB. A common

goal is to demonstrate linear scalability, meaning that querying 100 GB of data should

take 10 times as long as querying 10 GB of data. Linear scalability makes it easy for users

to reason about expected behavior.

Other examples of variables that affect performance are:

• Number of concurrent users, requests, or queries.

• Number of data partitions.

• Number of physical disks.

• Number of cores.

• Number of nodes.

• Amount of RAM available.

• Type of hardware (Raspberry Pi versus Desktop, for example).

Concurrency
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When measuring scalability based on number of concurrent requests, we are often more

interested in throughput (total number of queries executed per period of time) rather

than the duration of individual queries, although we typically would collect that

information as well.

Automation

Benchmarks are often very time-consuming to run and automation is essential so that

the benchmarks can be run often, perhaps once per day or once per week, so that any

performance regressions can be caught early.

Automation is also important for ensuring that benchmarks are executed consistently

and that results are collected with all relevant details that might be needed when

analyzing the results.

Here are some examples of the type of data that should be collected when executing

benchmarks:

Hardware Configuration

• Type of hardware

• Number of CPU cores

• Available memory and disk space

• Operating system name and version

Environment

• Environment variables (being careful not to leak secrets)

Benchmark Configuration

• Version of benchmark software used

• Version of software under test

• Any configuration parameters or files

• Filenames of any data files being queried

• Data sizes and checksums for the data files

• Details about the query that was executed
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Benchmark Results

• Date/time benchmark was started

• Start time and end time for each query

• Error information for any failed queries

Comparing Benchmarks

It is important to compare benchmarks between releases of the software so that changes

in performance characteristics are apparent and can be investigated further. Benchmarks

produce a lot of data that is often hard to compare manually, so it can be beneficial to

build tooling to help with this process.

Rather than comparing two sets of performance data directly, tooling can perform a "diff"

of the data and show percentage differences between two or more runs of the same

benchmark. It is also useful to be able to produce charts showing multiple benchmark

runs.

Publishing Benchmark Results

Here is an example of some real benchmark results, comparing query execution time for

the Rust and JVM executors in Ballista, compared to Apache Spark. Although it is clear

from this data that the Rust executor is performing well, the benefit can be expressed

much better by producing a chart.

CPU Cores Ballista Rust Ballista JVM Apache Spark

3 21.431 51.143 56.557

6 9.855 26.002 30.184

9 6.51 24.435 26.401

12 5.435 17.529 18.281

Rather than chart the query execution times, it is often better to chart the throughput. In

this case, throughput in terms of queries per minute can be calculated by dividing 60

seconds by the execution time. If a query takes 5 seconds to execute on a single thread,

then it should be possible to run 12 queries per minute.

Here is an example chart showing the scalability of throughput as the number of CPU

cores increases.
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Ballista Scalability: CPU Cores
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Transaction Processing Council (TPC) Benchmarks

The Transaction Processing Council is a consortium of database vendors that collaborate

on creating and maintaining various database benchmark suites to allow for fair

comparisons between vendor's systems. Current TPC member companies include

Microsoft, Oracle, IBM, Hewlett Packard Enterprise, AMD, Intel, and NVIDIA.

The first benchmark, TPC-A, was published in 1989 and other benchmarks have been

created since then. TPC-C is a well known OLTP benchmark used when comparing

traditional RDBMS databases, and TPC-H (discontinued) and TPC-DS are often used for

measuring performance of "Big Data" query engines.

TPC benchmarks are seen as the "gold standard" in the industry and are complex and

time consuming to implement fully. Also, results for these benchmarks can only be

published by TPC members and only after the benchmarks have been audited by the TPC.

Taking TPC-DS as an example, the only companies to have ever published official results

at the time of writing are Alibaba.com, H2C, SuperMicro, and Databricks.

However, the TPC has a Fair Use policy that allows non-members to create unofficial

benchmarks based on TPC benchmarks, as long as certain conditions are followed, such

as prefixing any use of the term TPC with "derived from TPC". For example, "Performance
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of Query derived from TPC-DS Query 14". TPC Copyright Notice and License Agreements

must also be maintained. There are also limitations on the types of metrics that can be

published.

Many open source projects simply measure the time to execute individual queries from

the TPC benchmark suites and use this as a way to track performance over time and for

comparison with other query engines.

This book is also available for purchase in ePub, MOBI, and PDF format from

https://leanpub.com/how-query-engines-work
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Further Resources

I hope that you found this book useful and that you now have a better understanding of

the internals of query engines. If there are topics that you feel haven't been covered

adequately, or at all, I would love to hear about it so I can consider adding additional

content in a future revision of this book.

Feedback can be posted on the public forum on the Leanpub site, or you can message me

directly via twitter at @andygrove_io.

Open-Source Projects

There are numerous open-source projects that contain query engines and working with

these projects is a great way to learn more about the topic. Here are just a few examples

of popular open-source query engines.

• Apache Arrow

• Apache Calcite

• Apache Drill

• Apache Hadoop

• Apache Hive

• Apache Impala

• Apache Spark

• Facebook Presto

• NVIDIA RAPIDS Accelerator for Apache Spark

YouTube

I only recently discovered Andy Pavlo's lecture series, which is available on YouTube

(here). This covers much more than just query engines, but there is extensive content on

query optimization and execution. I highly recommend watching these videos.

Sample Data

Earlier chapters reference the New York City Taxi & Limousine Commission Trip Record

Data data set. The yellow and green taxi trip records include fields capturing pick-up and

drop-off dates/times, pick-up and drop-off locations, trip distances, itemized fares, rate

types, payment types, and driver-reported passenger counts. The data is provided in CSV
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format. The KQuery project contains source code for converting these CSV files into

Parquet format.

Data can be downloaded by following the links on the website or by downloading the files

directly from S3. For example, users on Linux or Mac can use curl  or wget  to download

the January 2019 data for Yellow Taxis with the following command and create scripts to

download other files based on the file naming convention.
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wget https://s3.amazonaws.com/nyc-tlc/trip+data/yellow_tripdata_2019-01.csv
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