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Abstract

I tried intuitive visualizations of important concepts introduced in “Linear Algebra for Everyone”.1

This is aimed at promoting understanding of vector/matrix calculations and algorithms from the
perspectives of matrix factorizations. They include Column-Row (CR), Gaussian Elimination (LU),
Gram-Schmidt Orthogonalization (QR), Eigenvalues and Diagonalization (QΛQT), and Singular Value
Decomposition (UΣV T). All the artworks including this article are maintained in the GitHub repository
https://github.com/kenjihiranabe/The-Art-of-Linear-Algebra/.

Foreword

I am happy to see Kenji Hiranabe’s pictures of matrix operations in linear algebra ! The pictures are an
excellent way to show the algebra. We can think of matrix multiplications by row · column dot products,
but that is not all – it is “linear combinations” and “rank 1 matrices” that complete the algebra and the art.
I am very grateful to see the books in Japanese translation and the ideas in Kenji’s pictures.

– Gilbert Strang
Professor of Mathematics at MIT
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1 Viewing a Matrix – 4 Ways

A matrix (m× n) can be seen as 1 matrix, mn numbers, n columns and m rows.
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Figure 1: Viewing a Matrix in 4 Ways

A =

a11 a12
a21 a22
a31 a32

 =

 | |
a1 a2

| |

 =

−a∗
1−

−a∗
2−

−a∗
3−



Here, the column vectors are in bold as a1. Row vectors include ∗ as in a∗
1. Transposed vectors and

matrices are indicated by T as in aT and AT.

2 Vector times Vector – 2 Ways

Hereafter I point to specific sections of “Linear Algebra for Everyone” and present graphics which illustrate
the concepts with short names in colored circles.

• Sec. 1.1 (p.2) Linear combination and dot products

• Sec. 1.3 (p.25) Matrix of Rank One

• Sec. 1.4 (p.29) Row way and column way
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Figure 2: Vector times Vector - (v1), (v2)

(v1) is a elementary operation of two vectors, but (v2) multiplies the column to the row and produce a
rank 1 matrix. Knowing this outer product (v2) is the key for the later sections.

3 Matrix times Vector – 2 Ways

A matrix times a vector creates a vector of three dot products (Mv1) as well as a linear combination (Mv2)
of the column vectors of A.
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• Sec. 1.1 (p.3) Linear combinations

• Sec. 1.3 (p.21) Matrices and Column Spaces
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Figure 3: Matrix times Vector - (Mv1), (Mv2)

At first, you learn (Mv1). But when you get used to viewing it as (Mv2), you can understand Ax as a
linear combination of the columns of A. Those products fill the column space of A denoted as C(A). The
solution space of Ax = 0 is the nullspace of A denoted as N(A).

Also, (vM1) and (vM2) shows the same patterns for a row vector times a matrix.
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Figure 4: Vector times Matrix - (vM1), (vM2)

The products fill the row space of A denoted as C(AT). The solution space of yA = 0 is the left-nullspace
of A denoted as N(AT).

The four subspaces consists of N(A) + C(AT) (which are perpendicular to each other) in Rn and N(AT)
+ C(A) in Rm (which are perpendicular to each other).

• Sec. 3.5 (p.124) Dimensions of the Four Subspaces
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Figure 5: The Four Subspaces

See A = CR (Sec 6.1) for the rank r.

4 Matrix times Matrix – 4 Ways

“Matrix times Vector” naturally extends to “Matrix times Matrix”.

• Sec. 1.4 (p.35) Four Ways to Multiply AB = C

• Also see the back cover of the book
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Figure 6: Matrix times Matrix - (MM1), (MM2), (MM3), (MM4)

5 Practical Patterns

Here, I show some practical patterns which allow you to capture the coming factorizations more intuitively.
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Figure 7: Pattern 1, 2 - (P1), (P1)

Pattern 1 is a combination of (MM2) and (Mv2). Pattern 2 is an extention of (MM3). Note that Pattern
1 is a column operation (multiplying a matrix from right), whereas Pattern 2 is a row operation (multiplying
a matrix from left).

! !

!" # $! $" $#

%$

%%

%&

# %$$! %%$" %&$# "& #

%$

%%

%&

'$
'

'
%

'

'&
'

#

%$'$
'

%%'%
'

%&'&
'

!""#$%&'()(*%)'+&)#(,)-.%/(0.+,(-12(.%'1-
34)#23(2)41(4+#5,&6

!""#$%&'()(*%)'+&)#(,)-.%/(0.+,(-12(#20-
34)#23(2)41(.+76

!"# !$#

Figure 8: Pattern 1′, 2′ - (P1′), (P2′)

(P1′) multipies the diagonal numbers to the columns of the matrix, whereas (P2′) multipies the diagonal
numbers to the row of the matrx. Both are variants of (P1) and (P2).
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Figure 9: Pattern 3 - (P3)

This pattern appears when you solve differential equations and recurrence equations:

• Sec. 6 (p.201) Eigenvalues and Eigenvectors

• Sec. 6.4 (p.243) Systems of Differential Equations
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du(t)

dt
= Au(t), u(0) = u0

un+1 = Aun, u0 = u0

In both cases, the solutions are expressed with eigenvalues (λ1, λ2, λ3), eigenvectors X =
[
x1 x2 x3

]
of A, and the coefficients c =

[
c1 c2 c3

]T
which are the coordinates of the initial condition u(0) = u0 in

terms of the eigenvectors X.

u0 = c1x1 + c2x2 + c3x3

c =

c1c2
c3

 = X−1u0

and the general solution of the two equations are:

u(t) = eAtu0 = XeΛtX−1u0 = XeΛtc = c1e
λ1tx1 + c2e

λ2tx2 + c3e
λ3tx3

un = Anu0 = XΛnX−1u0 = XΛnc = c1λ
n
1x1 + c2λ

n
2x2 + c3λ

n
3x3

See Figure 9: Pattern 3 (P3) above again to get XDc.
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Figure 10: Pattern 4 - (P4)

This pattern (P4) works in both eigenvalue decomposition and singular value decomposition. Both de-
compositions are expressed as a product of three matrices with a diagonal matrix in the middle, and also a
sum of rank 1 matrices with the eigenvalue/singular value coefficients.

More details are discussed in the next section.
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6 The Five Factorizations of a Matrix

• Preface p.vii, The Plan for the Book.

A = CR,A = LU,A = QR,A = QΛQT, A = UΣV T are illustrated one by one.

A = CR
Independent columns in C
Row echelon form in R
Leads to column rank = row rank

A = LU
LU decomposition from
Gaussian elimination
(Lower triangular)(Upper triangular)

A = QR
QR decomposition as
Gram-Schmidt orthogonalization
Orthogonal Q and triangular R

S = QΛQT
Eigenvalue decomposition
of a symmetric matrix S
Eigenvectors in Q, eigenvalues in Λ

A = UΣV T
Singular value decomposition
of all matrices A
Singular values in Σ

Table 1: The Five Factorization

6.1 A = CR

• Sec.1.4 Matrix Multiplication and A = CR (p.29)

All general rectangular matrices A have the same row rank as the column rank. This factorization is the
most intuitive way to understand this theorem. C consists of independent columns of A, and R is the row
reduced echelon form of A. A = CR reduces to r independent columns in C times r independent rows in R.

A = CR[
1 2 3
2 3 5

]
=

[
1 2
2 3

] [
1 0 1
0 1 1

]
Procedure: Look at the columns of A from left to right. Keep independent ones, discard dependent ones

which can be created by the former columns. The column 1 and the column 2 survive, and the column 3
is discarded because it is expressed as a sum of the former two columns. To rebuild A by the independent
columns 1, 2, you find a row echelon form R appearing in the right.

! !" ! "" ! "" ! "" ! !"

#$%&'

! " #

Figure 11: Column Rank in CR

Now you see the column rank is two because there are only two independent columns in C and all the
columns of A are linear combinations of the two columns of C.
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Figure 12: Row Rank in CR

And you see the row rank is two because there are only two independent rows in R and all the rows of A
are linear combinations of the two rows of R.

6.2 A = LU

Solving Ax = b via Gaussian elimination can be expressed as an LU factorization. Usually, you apply
elementary row operation matrices (E) to A to make upper trianglar U .

EA = U

A = E−1U

let L = E−1, A = LU

Now solve Ax = b in 2 steps: (1) forward Lc = b and (2) back Ux = c.

• Sec.2.3 (p.57) Matrix Computations and A = LU

Here, we directly calculate L and U from A.

A =

 |
l1
|

 [
−u∗

1−
]
+

0 0 0
0
0

A2

 =

 |
l1
|

 [
−u∗

1−
]
+

 |
l2
|

 [
−u∗

2−
]
+

0 0 0
0 0 0
0 0 A3

 = LU

!! " "

! "#

Figure 13: Recursive Rank 1 Matrix Peeling from A

To find L and U , peel off the rank 1 matrix made of the first row and the first column of A. This leaves
A2. Do this recursively and decompose A into the sum of rank 1 matrices.

!!

"

!"#$%
! " "

! "

Figure 14: LU rebuilds A

To rebuild A from L times U , use column-row multiplication.

6.3 A = QR

A = QR changes the columns of A into perpendicular columns of Q, keeping C(A) = C(Q).

• Sec.4.4 Orthogonal matrices and Gram-Schmidt (p.165)

In Gram-Schmidt, the normalized a1 is q1. Then a2 is adjusted to be perpendicular to q1 to create q2.
This procedure gives:
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q1 = a1/||a1||
q2 = a2 − (qT

1 a2)q1, q2 = q2/||q2||
q3 = a3 − (qT

1 a3)q1 − (qT
2 a3)q2, q3 = q3/||q3||

In the reverse direction, letting rij = qT
i aj and you get:

a1 = r11q1

a2 = r12q1 + r22q2

a3 = r13q1 + r23q2 + r33q3

The original A becomes QR: orthogonal Q times upper triangular R.

A =

 | | |
q1 q2 q3
| | |

r11 r12 r13
r22 r23

r33

 = QR

QQT = QTQ = I

!!

! "# "#
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"
# !

" !"
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Figure 15: A = QR

Each column vector of A can be rebuilt from Q and R .
See Pattern 1 (P1) again for the graphic interpretation.

6.4 S = QΛQT

All symmetric matrices S must have real eigenvalues and orthogonal eigenvectors. The eigenvalues are the
diagonal elements of Λ and the eigenvectors are in Q.

• Sec.6.3 (p.227) Symmetric Positive Definite Matrices

S = QΛQT =

 | | |
q1 q2 q3
| | |

λ1

λ2

λ3

−qT
1 −

−qT
2 −

−qT
3 −



= λ1

 |
q1
|

 [
−qT

1 −
]
+ λ2

 |
q2
|

 [
−qT

2 −
]
+ λ3

 |
q3
|

 [
−qT

3 −
]

= λ1P1 + λ2P2 + λ3P3

P1 = q1q
T
1 , P2 = q2q

T
2 , P3 = q3q

T
3
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#

#
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!
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! $$%%%$
!
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Figure 16: S = QΛQT
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A symmetric matrix S is diagonalized into Λ by an orthogonal matrix Q and its transpose. And it is
broken down into a combination of rank 1 projection matrices P = qqT. This is the spectral theorem.

Note that Pattern 4 (P4) is working for the decomposition.

S = ST = λ1P1 + λ2P2 + λ3P3

QQT = P1 + P2 + P3 = I

P1P2 = P2P3 = P3P1 = O

P 2
1 = P1 = PT

1 , P 2
2 = P2 = PT

2 , P 2
3 = P3 = PT

3

6.5 A = UΣV T

• Sec.7.1 (p.259) Singular Values and Singular Vecrtors

Every matrix (including rectangular one) has a singular value decomposition (SVD). A = UΣV T has the
singular vectors of A in U and V . The following illustrates the ’reduced’ SVD.

!"

!"#$%

! "!
&

&

'

'
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&

'
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! %" &#'"

!
%$ &%'$

!

Figure 17: A = UΣV T

You can find V as an orthonormal basis of Rn (eigenvectors of ATA), and U as an orthonormal basis of
Rm (eigenvectors of AAT). Together they diagonalize A into Σ. This is also expressed as a combination of
rank 1 matrices.

A = UΣV T =

 | | |
u1 u2 u3

| | |

σ1

σ2

[
−vT

1 −
−vT

2 −

]
= σ1

 |
u1

|

 [
−vT

1 −
]
+ σ2

 |
u2

|

 [
−vT

2 −
]

= σ1u1v
T
1 + σ2u2v

T
2

Note that:

UUT = Im

V V T = In

See Pattern 4 (P4) for the graphic notation.

Conclusion and Acknowledgements

I presented systematic visualizations of matrix/vector multiplication and their application to the Five Matrix
Factorizations. I hope you enjoyed them and will use them in your understanding of Linear Algebra.

Ashley Fernandes helped me with beautifying this paper in typesetting and made it much more consistent
and professional.

To conclude this paper, I’d like to thank Prof. Gilbert Strang for publishing “Linear Algebra for Every-
one”. It guides us through a new vision to these beautiful landscapes in Linear Algebra. Everyone can reach a
fundamental understanding of its underlying ideas in a practical manner that introduces us to contemporary
and also traditional data science and machine learning. An important part of the matrix world.
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Figure 19: Matrix World

5. Gilbert Strang, artwork by Kenji Hiranabe, The Four Subspaces and the solutions to Ax = b
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Figure 20: The Four Subspaces and the solutions to Ax = b
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