
Preface

This series was written in Chinese originally. This Engine version is mainly translated

by Google Translate. So please forgive me for the terrible writing.

This series of articles introduces the implementation of a Lua interpreter from scratch in

the Rust language.

The Rust language has a distinctive personality and is also widely popular, however the

learning curve is steep. After I finished reading "Rust Programming Language" and wrote

some practice codes, I deeply felt that I had to go through a larger project practice to

understand and master.

Implementing a Lua Interpreter is very suitable as this exercise project. Because of its

moderate scale, it is enough to cover most of the basic features of Rust without being

difficult to reach; clear goal, no need to spend energy discussing requirements; in

addition, Lua language It is also an excellently designed and widely used language.

Implementing a Lua interpreter can not only practice Rust language skills, but also gain an

in-depth understanding of Lua language.

This series of articles documents the learning and exploration process during this project.

Similar to other from scratch Build your own X projects, this project also has a clear big

goal, an unknown exploration process and a continuous sense of accomplishment, but

with some differences:

• Most of the authors of other projects have been immersed in related fields for many

years, but my job is not in the direction of programming language or compilation

principles. I don't have complete theoretical knowledge for implementing an

interpreter, and I just cross the river by feeling the stones. But think of the good in

everything, which also provides a real beginner's perspective.

• Most of the other projects are for the purpose of learning or teaching, simplifying

the complexity and realizing a prototype with only the most basic functions. But my

goal is to implement a production-level Lua interpreter, pursuing stability,

completeness, and performance.

In addition, since the original intention of the project is to learn the Rust language, there

will also be some learning notes and usage experience of the Rust language in the article.

Content

The content is organized as follows. Chapter 1 implements a minimal interpreter that can

only parse print "hello, world!" statements. Although simple, it includes the

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

1 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#preface
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#preface
https://wubingzheng.github.io/build-lua-in-rust/zh/
https://wubingzheng.github.io/build-lua-in-rust/zh/
https://translate.google.com/
https://translate.google.com/
https://survey.stackoverflow.co/2022/?utm_source=so-owned&utm_medium=announcement-banner&utm_campaign=dev-survey-2022&utm_content=results#section-most-loved-dreaded-and-wanted-programming-scripting-and-markup-languages
https://survey.stackoverflow.co/2022/?utm_source=so-owned&utm_medium=announcement-banner&utm_campaign=dev-survey-2022&utm_content=results#section-most-loved-dreaded-and-wanted-programming-scripting-and-markup-languages
https://doc.rust-lang.org/stable/book/title-page.html
https://doc.rust-lang.org/stable/book/title-page.html
http://lua-users.org/wiki/LuaImplementations
http://lua-users.org/wiki/LuaImplementations
https://www.lua.org/manual/5.4/
https://www.lua.org/manual/5.4/
https://build-your-own-x.vercel.app/
https://build-your-own-x.vercel.app/
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#content
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#content

complete process of the interpreter and builds the basic framework. Subsequent

chapters will gradually add Lua features to this minimal interpreter.

Chapter 2 introduces the most basic concepts of types and variables in programming

languages. Chapter 3 introduces several features of the Rust language with the goal of

perfecting the string type. Chapter 4 implements the table structure in Lua and

introduces the key ExpDesc concept in syntax analysis. Chapter 5 is about tedious

arithmetic calculations.

In Chapter 6 Control Structures, things start to get interesting, jumping back and forth

between bytecodes based on judgment conditions. Chapter 7 introduces logical and

relational operations, combined with the control structures of the previous chapter

through specific optimizations.

Chapter 8 introduces functions. The basic concept and implementation of functions are

relatively simple, but variable parameters and multiple return values require careful

management of the stack. The closure introduced in Chapter 9 is a powerful feature in

the Lua language, and the key here is Upvalue and its escape.

Every feature is designed on demand, but not completed in one step like a prophet. Take

the conditional jump instruction as example, at the beginning, in order to support the if

statement, we add Test(u8, u16) bytecode, which means if the value of the first

associated parameter is false, then jump forward to the distance represented by the

second associated parameter; then in order to support the while statement and need to

jump backward, we change the second associated parameter from u16 to i16 type, and

use a negative number to represent backward jump; then in order to support logical

operations, which may jump if true or false both, we add TestAndJump and TestOrJump

two bytecodes to replace Test . As a result, according to our own learning and

development path, we produced a set of bytecodes slightly different from the official

version of Lua.

Each chapter starts with Lua's functional features, discussing how to design and then

introducing specific implementations. It's not only important to explain "how to do it," but

also to explain "why to do it". However, to achieve complete Lua features, some articles

may be boring, especially in the first few chapters. Readers can browse the relatively

interesting Definition of String Type and Escape of Upvalue, to judge whether this series

of articles is to your taste.

Each chapter has a complete runnable code, and the code for each chapter is based on

the final code of the previous chapter, ensuring that the entire project is continuous. In

the beginning chapters, after introducing the design principles, the code will be explained

line by line; later on, only the key parts of the code will be explained; and in the last two

chapters will basically not talk about the code.

At present, these chapters only complete the core part of the Lua interpreter, and are still

far from a complete interpreter. The To be continued section lists a partial list of

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

2 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/ch06-01.if.html
https://wubingzheng.github.io/build-lua-in-rust/en/ch06-01.if.html
https://wubingzheng.github.io/build-lua-in-rust/en/ch06-01.if.html
https://wubingzheng.github.io/build-lua-in-rust/en/ch06-01.if.html
https://wubingzheng.github.io/build-lua-in-rust/en/ch06-01.if.html
https://wubingzheng.github.io/build-lua-in-rust/en/ch06-03.while_break.html
https://wubingzheng.github.io/build-lua-in-rust/en/ch06-03.while_break.html
https://wubingzheng.github.io/build-lua-in-rust/en/ch06-03.while_break.html
https://wubingzheng.github.io/build-lua-in-rust/en/ch06-03.while_break.html
https://wubingzheng.github.io/build-lua-in-rust/en/ch07-01.logical_in_condition.html
https://wubingzheng.github.io/build-lua-in-rust/en/ch07-01.logical_in_condition.html
https://wubingzheng.github.io/build-lua-in-rust/en/ch07-01.logical_in_condition.html
https://wubingzheng.github.io/build-lua-in-rust/en/ch07-01.logical_in_condition.html
https://wubingzheng.github.io/build-lua-in-rust/en/ch03-01.string_type.html
https://wubingzheng.github.io/build-lua-in-rust/en/ch03-01.string_type.html
https://wubingzheng.github.io/build-lua-in-rust/en/ch09-02.escape_and_closure.html
https://wubingzheng.github.io/build-lua-in-rust/en/ch09-02.escape_and_closure.html
https://github.com/WuBingzheng/build-lua-in-rust/tree/main/listing
https://github.com/WuBingzheng/build-lua-in-rust/tree/main/listing
https://wubingzheng.github.io/build-lua-in-rust/en/TO_BE_CONTINUED.html
https://wubingzheng.github.io/build-lua-in-rust/en/TO_BE_CONTINUED.html

unfinished features.

The basic syntax of Lua and Rust will not be explained in this article. We expect readers to

have a basic understanding of both languages. The more familiar with the Lua language,

the better. There are no high requirements for the Rust language, as long as you have

read "Rust Programming Language" and understand the basic grammar. After all, the

original intention of this project is to learn Rust. In addition, when it comes to

implementing a language interpreter, it will remind people of the difficult compilation

principle. However, in reality, since Lua is a very simple language and there is Lua's official

implementation of the interpreter code as a reference, this project requires little

theoretical knowledge and is mainly focused on practical engineering.

Due to my limited technical ability in compiling principles, Lua language, Rust language,

etc., there must be mistakes in projects and articles. In addition, this English version

articles are automatically translated from the Chinese version mostly, so there may be

many not appropriate or not fluent sentences. You are welcome to come to the project's

github homepage to submit issue feedback.

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

3 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/zh/
https://wubingzheng.github.io/build-lua-in-rust/zh/
https://github.com/WuBingzheng/build-lua-in-rust
https://github.com/WuBingzheng/build-lua-in-rust

hello, world!

Following the tradition of introducing programming languages, we start with "hello,

world!". However, instead of writing a program to directly output this sentence, we need

to implement a minimal Lua interpreter to interpret and execute the following Lua code:

Although this code is simple, our minimal version of the interpreter will still contain the

complete process of a general-purpose interpreter, including steps such as lexical

analysis, syntax analysis, bytecode generation, and virtual machine execution. In the

future, as long as features are added on the basis of this process, a complete Lua

interpreter can be gradually realized.

However, this Lua code is not as simple as it seems. It contains many concepts such as

global variables (print), string constants ("hello, world!"), standard library (print) and

function calls. These concepts depend on Lua's internal concepts such as values and

stacks. Being able to interpret and execute this code gives you an intuitive understanding

of how the interpreter works.

In order to complete this interpreter, this chapter first introduces the necessary

knowledge of compilation principles. This should be the only theoretical part in the entire

series of articles, and it may also be the section with the most errors. It then introduces

the two core concepts of bytecode and value. Then gradually implement lexical analysis,

syntax analysis and virtual machine. Finally, an interpreter (only) capable of executing the

above Lua code is completed.

print "hello, world!"

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

4 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#hello-world
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#hello-world

Compilation principle

The principle of compilation is a very profound and mature subject. It is not necessary or

capable to give a complete or accurate introduction here. It is just a simple concept

introduction according to the subsequent implementation process. If you are familiar

with the concept of an interpreter, you can skip this section.

Compiled and Interpreted language

Regardless of the programming language, before the source code is handed over to the

computer for execution, a translation process is necessary to translate the source code

into a computer-executable language. According to the timing of this translation,

programming languages can be roughly divided into two types:

• Compiled type, that is, the compiler first compiles the source code into a computer

language and generates an executable file. This file is subsequently executed

directly by the computer. For example, under Linux, use the compiler gcc to compile

the C language source code into an executable file.

• Interpreted type requires an interpreter, which loads and parses the source

program in real time, and then maps the parsed results to pre-compiled subroutine

and executes them. This interpreter is generally implemented by the above

compiled language.

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

5 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#compilation-principle
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#compilation-principle
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#compiled-and-interpreted-language
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#compiled-and-interpreted-language

The figure above roughly shows the two types of translation and execution processes.

Lua is an interpreted language, and our goal is to implement a Lua interpreter.

Parse and Execute

The general compilation principle process is as follows:

• The character stream corresponds to the source code, that is, the source code is

treated as a character stream.

• Lexical analysis, which splits the character stream into tokens supported by the

language. For example, the above Lua code is split into two Tokens: "identification

print " and "string "hello, world!" ". Lua ignores whitespace characters.

• Syntax analysis, which parses the Token stream into a syntax tree according to

grammer rules. For example, the two tokens just now are recognized as a function

call statement, in which "identity print " is the function name, and "string "hello,

world!" " is the parameter.

interprete
+-------------+ compile +-----------------+ +-------------+ & execute
+-----------------+
| source file | --------> | executable file | | source file |
-----------> | Lua interpreter |
| bar.c | | bar.exe | | bar.lua |
| lua.exe |
+-------------+ +-----------------+ +-------------+
+-----------------+
 ^
^
 | execute
| execute
 | machine code
| machine code
 +----------------+
+----------------+
 | computer |
| computer |
 +----------------+
+----------------+

 Compiled
Interpreted

 Lexical Analysis Syntax Analysis Semantic Analysis
Character Stream --------> Token Stream --------> Syntax Tree -------->
Intermediate Code ...

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

6 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#parse-and-execute
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#parse-and-execute

• Semantic analysis, which generates the corresponding intermediate code from the

statement of this function call, these codes indicate where to find the function body,

where to load the parameters and so on.

After intermediate code is generated, compiled and interpreted languages diverge. The

compiled language moves on, eventually generating machine code that can be executed

directly, and packaged as an executable file. For the interpreted language, this is the end,

the generated intermediate code (generally called bytecode) is the result of compilation;

and the execution of the bytecode is the task of the virtual machine.

The virtual machine converts the bytecode into a corresponding series of precompiled

subroutine, and then executes them. For example, to execute the bytecode generated

above, the virtual machine first finds the corresponding function, namely print , which is

a function in the Lua standard library; then loads the parameters, namely "hello, world";

finally calls the print function which outputs "hello, world!".

The above just describes a general process. Specific to each language or each interpreter

process may be different. For example, some interpreters may not generate bytecode,

but let the virtual machine directly execute the syntax tree. The official implementation of

Lua omits the syntax tree, and the bytecode is directly generated by syntax analysis. Each

of these options has advantages and disadvantages, but they are beyond the scope of

our topic and will not be discussed here. Our interpreter is a full reference to the official

Lua implementation in the main process, so the final process is as follows:

From this we can clarify the main functional components of our interpreter: lexical

analysis, syntax analysis and virtual machine. The combination of lexical analysis and

syntax analysis can be called the "parsing" process, and the virtual machine is the

"execution" process, then the bytecode is the link connecting the two processes. The two

processes of parsing and execution are relatively independent. Next, we use the bytecode

as a breakthrough to start implementing our interpreter.

 Lexical Analysis Syntax Analysis
Character Stream --------> Token Stream --------> Bytecode
 ^
 |
 virtual machine

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

7 of 314 10/23/23, 08:47

Bytecode

As a beginner, it is natural to feel lost and unsure of how to start implementing an

interpreter. No way to start.

Fortunately, the previous section introduces the bytecode at the end, and divides the

entire interpreter process into two stages: parsing and execution. Then we can start with

the bytecode:

• Determine the bytecode first,

• then let the parsing process (lexical analysis and parsing) try to generate this set of

bytecodes,

• Then let the execution process (virtual machine) try to execute this set of bytecodes.

But what does bytecode look like? How to define? What type? We can refer to the official

implementation of Lua.

Output of luac

For the convenience of description, the object code is listed again here:

The official implementation of Lua comes with a very useful tool, luac , namely Lua

Compiler, which translates the source code into bytecode and outputs it. It is our right-

hand man in this project. Take a look at its output to the "hello, world!" program:

The first 2 lines of the output are incomprehensible, so ignore them now. The following

should be the bytecode, and there are comments, which is great. But still do not

understand. Check out Lua's official manual, but I can't find any explanation about

bytecode. It turns out that the Lua language standard only defines the characteristics of

 generate execute
 parse -------> bytecode <------- virtual machine

print "hello, world!"

$ luac -l hello_world.lua

main <hello_world.lua:0,0> (5 instructions at 0x600000d78080)
0+ params, 2 slots, 1 upvalue, 0 locals, 2 constants, 0 functions
 1 [1] VARARGPREP 0
 2 [1] GETTABUP 0 0 0 ; _ENV "print"
 3 [1] LOADK 1 1 ; "hello, world!"
 4 [1] CALL 0 2 1 ; 1 in 0 out
 5 [1] RETURN 0 1 1 ; 0 out

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

8 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#bytecode
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#bytecode
https://wubingzheng.github.io/build-lua-in-rust/en/ch01-01.principles.html
https://wubingzheng.github.io/build-lua-in-rust/en/ch01-01.principles.html
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#output-of-luac
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#output-of-luac
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#output-of-luac
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#output-of-luac
https://www.lua.org/manual/5.4/
https://www.lua.org/manual/5.4/

the language, while the bytecode belongs to the "concrete implementation" part, just like

the variable naming in the interpreter code, which does not belong to the definition scope

of the Lua standard. In fact, the Luajit project, that is fully compatible with Lua 5.1, uses a

completely different bytecode. We can even implement an interpreter without bytecode.

Since the manual does not explain it, we can only check the the comment in source code.

Here we only introduce the 5 bytecodes that appear above:

1. VARARGPREP, temporarily unused, ignored.

2. GETTABUP, this is a bit complicated, it can be temporarily understood as: loading

global variables onto the stack. The three parameters are the stack index (0) as the

target address, (ignore the second one,) and the index (0) of the global variable

name in the constant table. The global variable name listed in the comments later is

"print".

3. LOADK, load constants onto the stack. The two parameters are the stack index (1) as

the destination address, and the constant index (1) as the loading source. The value

of the constant listed in the comment below is "hello, world!".

4. CALL, function call. The three parameters are the stack index (0) of the function, the

number of parameters, and the number of return values. The following comment

indicates that there is 1 parameter and 0 return value.

5. RETURN, temporarily unused, ignored.

Take a look at it together:

• First load the global variable named print into the stack (0);

• Then load the string constant "hello, world!" into the stack (1);

• Then execute the function at the stack (0) position, and take the stack (1) position as

a parameter.

The stack diagram during execution is as follows:

We currently only need to implement the above three bytecodes 2, 3, and 4.

Bytecode Definition

Now define the bytecode format.

First refer to the format definition of Lua's official implementation. Source code has

 +-----------------+
0 | print | <- function
 +-----------------+
1 | "hello, world!" |
 +-----------------+
 | |

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

9 of 314 10/23/23, 08:47

http://wiki.luajit.org/Bytecode-2.0
http://wiki.luajit.org/Bytecode-2.0
https://github.com/lua/lua/blob/v5.4.0/lopcodes.h#L196
https://github.com/lua/lua/blob/v5.4.0/lopcodes.h#L196
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#bytecode-definition
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#bytecode-definition
https://github.com/lua/lua/blob/v5.4.0/lopcodes.h#L13
https://github.com/lua/lua/blob/v5.4.0/lopcodes.h#L13

comments on the bytecode format:

The bytecode is represented by a 32bit unsigned integer. The first 7 bits represent the

command, and the following 25 bits represent the parameters. There are 5 formats of

bytecode, and the parameters of each format are different. If you like this sense of

precise bit control, you may immediately think of various bit operations, and you may

already be excited. But don’t worry, let's look at Luajit’s bytecode format first:

It is also a 32bit unsigned integer, but the division of fields is only accurate to bytes, and

there are only 2 formats, which is much simpler than the official Lua implementation. In C

language, by defining matching struct and union, bytecode can be constructed and

parsed more conveniently, thus avoiding bit operations.

Since the Lua language does not specify the bytecode format, we can also design our own

bytecode format. For different types of commands like this, where each command has

unique associated parameters, it is very suitable to use Rust's enum: use tags as

commands, and use associated values as parameters. Let's define the bytecodes like this:

 We assume that instructions are unsigned 32-bit integers.
 All instructions have an opcode in the first 7 bits.
 Instructions can have the following formats:

 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
iABC C(8) | B(8) |k| A(8) | Op(7) |
iABx Bx(17) | A(8) | Op(7) |
iAsBx sBx (signed)(17) | A(8) | Op(7) |
iAx Ax(25) | Op(7) |
isJ sJ(25) | Op(7) |

 A signed argument is represented in excess K: the represented value is
 the written unsigned value minus K, where K is half the maximum for the
 corresponding unsigned argument.

A single bytecode instruction is 32 bit wide and has an 8 bit opcode field
and
several operand fields of 8 or 16 bit. Instructions come in one of two
formats:

+---+---+---+---+
| B | C | A | OP|
| D | A | OP|
+---+---+---+---+

#[derive(Debug)]
pub enum ByteCode {
 GetGlobal(u8, u8),
 LoadConst(u8, u8),
 Call(u8, u8),
}

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

10 of 314 10/23/23, 08:47

Luajit's bytecode definition can avoid bit operations, and using Rust's enum can go a step

further, where you don't even need to care about the memory layout of each bytecode.

You can use the enum creation syntax to construct bytecode, such as

ByteCode::GetGlobal(1,2) ; use pattern matching match to parse bytecode. The parsing

and virtual-matchine modules in Section 1.4 construct and parse bytecodes respectively.

But also pay attention to ensure that the enum does not exceed 32bit, so we still need to

understand the layout of the enum. The size of the enum tag in Rust is in bytes and is

allocated on demand. So as long as there are less than 2^8=256 kinds of bytecodes, the

tag only needs 1 byte. Only 7 bits are used to indicate the command type in Lua's official

bytecode, so 256 is enough. Then there is still 3 bytes of space to store parameters. In the

two bytecode types of Luajit, the parameters only occupy 3 bytes, which is enough. This

article introduces the method of static checking, but due to the need for third-party

libraries or macros, we don't use it here for the time being.

Rust's enum is really nice!

Two Tables

As you can see from analysis above, we also need two tables except the bytecodes.

First, we need a constant table to store all the constants during the parsing process. The

generated bytecodes refer to the corresponding constant through the index parameter.

And during the execution process, the virtual machine reads the constants from this table

through the bytecodes' parameter. In this example, there are two constants, one is the

name of the global variable print , and the other is the string constant "hello, world!".

This is the meaning of 2 constants in the second line of the above luac output.

Then we need a global variable table to save global variables according to variable names.

During execution the virtual matchine first queries the global variable name in the

constant table through the parameters in the bytecodes, and then queries the global

variable table according to the name. The global variable table is only used (add, read,

modify) during execution, and has nothing to do with the parsing process.

The specific definition of these two tables needs to rely on the concept of Lua's "value",

which will be introduced in the next section.

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

11 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/ch01-04.lets_do_it.html
https://wubingzheng.github.io/build-lua-in-rust/en/ch01-04.lets_do_it.html
https://stackoverflow.com/questions/62547749/can-i-limit-the-size-of-a-rust-enum
https://stackoverflow.com/questions/62547749/can-i-limit-the-size-of-a-rust-enum
https://stackoverflow.com/questions/62547749/can-i-limit-the-size-of-a-rust-enum
https://stackoverflow.com/questions/62547749/can-i-limit-the-size-of-a-rust-enum
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#two-tables
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#two-tables
https://wubingzheng.github.io/build-lua-in-rust/en/ch01-02.byte_codes.html#output-of-luac
https://wubingzheng.github.io/build-lua-in-rust/en/ch01-02.byte_codes.html#output-of-luac

Value and Type

The previous section defined the bytecode, and mentioned at the end that we need two

tables, the constant table and the global variable table, respectively to maintain the

relationship between constants/variables and "values", so their definitions depend on the

"Value" 's definition in Lua. This section introduces and defines Lua's value.

For the convenience of description, all the words "variable" in this section later include

variables and constants.

Lua is a dynamically typed language, and the "type" is bound to a value, not to a variable.

For example, in the first line of the following code, the variable n contains the

information: "the name is n"; while value 10 contains the information: "the type is an

integer" and "the value is 10". So in line 2, it's OK to assign n to a different type value.

For comparison, here's the statically typed language Rust. In the first line, the information

of n is: "the name is n" and "the type is i32"; the information of 10 is: "the value is 10". It

can be seen that the "type" information has changed from the attribute of the variable to

the attribute of the value. So you can't assign n to a string value later.

The following two diagrams represent the relationship between variables, values, and

types in dynamically typed and statically typed languages, respectively:

local n = 10
n = "hello" -- OK

let mut n: i32 = 10;
n = "hello"; // !!! Wrong

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

12 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#value-and-type
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#value-and-type

Value

In summary, the value of Lua contains type information. This is also very suitable for

defining with enum:

Currently 3 types are defined:

• Nil , Lua's null value.

• String for the hello, world! string. For the associated value type, the simplest

 variable values variable values
+---------+ +---------------+ +---------------+
+-----------+
| name: n |--\-->| type: Integer | | name: n |----->| value: 10
|
+---------+ | | value: 10 | | type: Integer | |
+-----------+
 | +---------------+ +---------------+ X
 | |
 | +----------------+ |
+----------------+
 \-->| type: String | \-->| value:
"hello" |
 | value: "hello" |
+----------------+
 +----------------+

 dynamic type static type
 "type" is bound to values "type" is bound to variables

use std::fmt;
use crate::vm::ExeState;

#[derive(Clone)]
pub enum Value {
 Nil,

String(String),
 Function(fn (&mut ExeState) -> i32),
}

impl fmt::Debug for Value {
fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {

match self {
 Value::Nil => write!(f, "nil"),
 Value::String(s) => write!(f, "{s}"),
 Value::Function(_) => write!(f, "function"),
 }
 }
}

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

13 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#value
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#value

String is temporarily used, and it will be optimized later.

• Function for print . The associated function type definition refers to the C API

function definition typedef int (*lua_CFunction) (lua_State *L); in Lua, and

will be improved later. Among them, ExeState corresponds to lua_State , which

will be introduced in the next section.

Other types such as integers, floating-point numbers and tables will be added in the

future.

Above the Value definition, the Clone trait is implemented via #[derive(Clone)] . This is

because Value will definitely involve assignment operations, and the String type includes

Rust's string String , which does not support direct copying, namely the Copy trait is not

implemented, or it owns the data on the heap. So we can only declare the whole Value as

Clone . All assignments involving Value need to be done through clone() . It seems that

the performance is worse than direct assignment. We will discuss this issue later when we

define more types.

We also manually implemented the Debug trait to define the print format, after all, the

function of the current object code is to print "hello, world!". Since the function pointer

parameter associated with Function does not support the Debug trait, it cannot be

automatically implemented by #[derive(Debug)] .

Two Tables

After defining the Value, we can define the two tables mentioned at the end of the

previous section.

Constant table stores constants. Bytecodes refer to constants by index directly, so

constant tables can be represented by Rust's variable-length array Vec<Value> .

The global variable table, which stores global variables according to their names, can

temporarily be represented by Rust's HashMap<String, Value> . We will change this later.

Compared with the ancient C language, components such as Vec and HashMap in

the Rust standard library have brought great convenience and consistent

experience.

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

14 of 314 10/23/23, 08:47

https://doc.rust-lang.org/stable/book/ch04-01-what-is-ownership.html#memory-and-allocation
https://doc.rust-lang.org/stable/book/ch04-01-what-is-ownership.html#memory-and-allocation
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#two-tables-1
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#two-tables-1

Let's Do It

The previous chapters introduced the basics of compilation principles, and defined the

two most important concepts, ByteCode and Value. Next, we can start coding to

implement our interpreter!

The code corresponding to this series of articles is all managed by Cargo that comes with

Rust. Projects currently using the binary type will be changed to the library type in the

future.

The minimalist interpreter to be implemented at present is very simple, with very little

code. I wrote all the code in one file at the beginning. However, it is foreseeable that the

code volume of this project will increase with the increase of features. So in order to

avoid subsequent changes to the file, we directly create multiple files now:

• Program entry: main.rs ;

• Three components: lexical analysis lex.rs , syntax analysis parse.rs , and virtual

machine vm.rs ;

• Two concepts: byte code byte_code.rs , and value value.rs .

The latter two concepts and their codes have been introduced before. The other 4 files

are described below. Let's start with the program entry.

Program Entry

For the sake of simplicity, our interpreter has only one way of working, which is to accept

a parameter as a Lua source code file, and then parse and execute it. Here is the code:

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

15 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#lets-do-it
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#lets-do-it
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#program-entry
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#program-entry

The first 2 lines reference two standard libraries. env is used to obtain command line

arguments. fs::File is used to open Lua source files.

The middle lines refer to other file modules through use keyword.

Then look at the main() function. The first few lines read the parameters and open the

source file. For the sake of simplicity, we use unwrap() to terminate the program if fail to

open file. We will improve the error handing later.

The last 2 lines are the core function:

• First, the syntax analysis module parse (who also calls lexical analysis lex

internally) parses the file and returns the parsing result proto ;

• Then create a virtual machine and execute proto .

This process is different from Lua's officially APIs (complete example) :

This is because the official implementation of Lua is a "library", and the API only exposes

the lua_State data structure, which contains both parsing and executing parts. So you

must first create lua_State , and then call parsing and execution based on it. The parsing

result is also passed through the stack of Lua_state . However, we currently do not have

a similar unified state data structure, so we can only call the parsing and execution

functions separately.

use std::env;
use std::fs::File;

mod value;
mod bytecode;
mod lex;
mod parse;
mod vm;

fn main() {
let args: Vec<String> = env::args().collect();
if args.len() != 2 {

println!("Usage: {} script", args[0]);
return;

 }
let file = File::open(&args[1]).unwrap();

let proto = parse::load(file);
 vm::ExeState::new().execute(&proto);
}

lua_State *L = lua_open(); // Create lua_State
luaL_loadfile(L, filename); // Parse and put the parsing result on the top of
the stack
lua_pcall(L, 0, 0, 0); // top of execution stack

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

16 of 314 10/23/23, 08:47

https://doc.rust-lang.org/stable/book/ch12-01-accepting-command-line-arguments.html#reading-the-argument-values
https://doc.rust-lang.org/stable/book/ch12-01-accepting-command-line-arguments.html#reading-the-argument-values
https://doc.rust-lang.org/stable/book/ch12-01-accepting-command-line-arguments.html#reading-the-argument-values
https://doc.rust-lang.org/stable/book/ch12-01-accepting-command-line-arguments.html#reading-the-argument-values
https://doc.rust-lang.org/stable/book/ch07-04-bringing-paths-into-scope-with-the-use-keyword.html
https://doc.rust-lang.org/stable/book/ch07-04-bringing-paths-into-scope-with-the-use-keyword.html
https://www.lua.org/pil/24.1.html
https://www.lua.org/pil/24.1.html

Let's look at the analysis and execution process respectively.

Lexical Analysis

Although the main() function calls the syntax analysis parse module firstly, but the

syntax analysis calls the lexical analysis lex module internally. So let's see the lexical

analysis first.

The output of lexical analysis is Token stream. For the "hello, world!" program, you only

need to use the two Tokens "identity print " and "string "hello, world!" ". For

simplicity, we only support these two kinds of tokens for the time being. In addition, we

also define an Eos to indicate the end of the file:

Instead of returning a whole Token list after parsing the input file at one time, we provide

a function similar to an iterator so that the syntax analysis module can be called on

demand. To do this first define a lexical analyzer:

For now only one member is included, the input file.

It provides 2 APIs: new() creates a parser based on the input file; next() returns the

next Token.

The specific parsing process is pure and boring string handling, and the code is skipped.

According to the Rust convention, the return value of the next() function here should be

defined as Option<Token> , where Some<Token> means that a new token has been read,

and None means the end of the file. But since Token itself is an enum , it seems more

convenient to directly add an Eos in it. And if it is changed to the Option<Token> type,

#[derive(Debug)]
pub enum Token {
 Name(String),

String(String),
 Eos,
}

#[derive(Debug)]
pub struct Lex {
 input: File,
}

impl Lex {
pub fn new(input: File) -> Self ;
pub fn next(&mut self) -> Token;

}

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

17 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#lexical-analysis
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#lexical-analysis

then an additional layer of judgment will be required in the syntax analysis call, as shown

in the following code. So I chose to add the Eos type.

Syntax Analysis

The parsing result proto in the main() function concats the parsing and execution

phases. But in view of Rust's powerful type mechanism, proto does not show a specific

type in the above code. Now let's define it. It has been introduced in the bytecode section

that the analysis result needs to contain two parts: bytecode sequence and constant

table. Then you can define the format of the parsing result as follows:

The constant table constants is a Vec containing the Value type, and the bytecode

sequence byte_codes is a Vec containing the ByteCode type. They are both Vec

structures with the same functionality but different containment types. In the ancient C

language, to include the two types Value and ByteCode , either write a set of codes for

each type, or use complex features such as macros or function pointers. Generics in the

Rust language can abstract the same set of logic for different types. More features of

generics will be used in subsequent code.

After defining ParseProto , let's look at the syntax analysis process. We currently only

support the statement of print "hello, world!" , which is the format of Name String .

The Name is first read from the lexer, followed by the string constant. If it is not in this

format, an error will be reported. The specific code is as follows:

loop {
if let Some(token) = lex.next() { // extra check

match token {
 ... // parse
 }
 } else {

break
 }
}

#[derive(Debug)]
pub struct ParseProto {

pub constants: Vec::<Value>,
pub byte_codes: Vec::<ByteCode>,

}

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

18 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#syntax-analysis
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#syntax-analysis
https://wubingzheng.github.io/build-lua-in-rust/en/ch01-02.byte_codes.html
https://wubingzheng.github.io/build-lua-in-rust/en/ch01-02.byte_codes.html
https://doc.rust-lang.org/stable/book/ch10-01-syntax.html
https://doc.rust-lang.org/stable/book/ch10-01-syntax.html

The input is the source file File , and the output is the ParseProto just defined.

The main body of the function is a loop, and the Token is cyclically read through the

next() function provided by the lexical analyzer lex created at the beginning of the

function. We currently only support one type of statement, Name LiteralString , and the

semantics are function calls. So the analysis logic is also very simple:

• When Name is encountered, it is considered to be the beginning of a statement:

◦ Use Name as a global variable and store it in the constant table;

◦ Generate GetGlobal bytecode, load the global variable on the stack according

to the name. The first parameter is the index of the target stack. Since we

currently only support the function call statement, the stack is only used for

function calls, so the function must be at position 0; the second parameter is

the index of the global variable name in the global variable;

◦ Read the next Token, and it is expected to be a string constant, otherwise

panic;

◦ Add string constants to the constant table;

◦ Generate LoadConst bytecode to load constants onto the stack. The first

parameter is the target stack index, which is behind the function and is 1; the

pub fn load(input: File) -> ParseProto {
let mut constants = Vec::new();
let mut byte_codes = Vec::new();
let mut lex = Lex::new(input);

loop {
match lex.next() {

 Token::Name(name) => { // `Name LiteralString` as function call
 constants.push(Value::String(name));
 byte_codes.push(ByteCode::GetGlobal(0, (constants.len()-1) as
u8));

if let Token::String(s) = lex.next() {
 constants.push(Value::String(s));
 byte_codes.push(ByteCode::LoadConst(1,
(constants.len()-1) as u8));
 byte_codes.push(ByteCode::Call(0, 1));
 } else {

panic!("expected string");
 }
 }
 Token::Eos => break,
 t => panic!("unexpected token: {t:?}"),
 }
 }

 dbg!(&constants);
 dbg!(&byte_codes);
 ParseProto { constants, byte_codes }
}

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

19 of 314 10/23/23, 08:47

second parameter is the index of the constant in the constant table;

◦ Once the function and parameters are ready, Call bytecode can be

generated to call the function. At present, the two parameters are the function

position and the number of parameters, which are fixed at 0 and 1

respectively.

• When Eos is encountered, exit the loop.

• When encountering other Tokens (currently only of Token::String type), panic.

After the function, the constant table and bytecode sequence are output through dbg!

for debugging. It can be compared with the output of luac .

Finally returns ParseProto .

Virtual Machine Execution

After parsing and generating ParseProto , it is the turn of the virtual machine to execute.

According to the previous analysis, the virtual machine currently requires two

components: the stack and the global variable table. So define the virtual machine state

as follows:

When creating a virtual machine, you need to add the print function in the global

variable table in advance:

The print function is defined as follows:

pub struct ExeState {
 globals: HashMap<String, Value>,
 stack: Vec::<Value>,
}

impl ExeState {
pub fn new() -> Self {

let mut globals = HashMap::new();
 globals.insert(String::from("print"), Value::Function(lib_print));

 ExeState {
 globals,
 stack: Vec::new(),
 }
 }

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

20 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#virtual-machine-execution
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#virtual-machine-execution

Currently the print function only supports one parameter, and it is assumed that this

parameter is at position 1 of the stack. The function prints this parameter. Because this

function does not need to return data to the caller, it returns 0.

After the initialization is completed, the following is the core virtual machine execution

function, that is, the big bytecode dispatching loop: read the bytecode sequence in turn

and execute the corresponding predefined subrotines. The specific code is as follows:

Currently only 3 bytecodes are supported. All subrotines are clear, needless to explain.

Test

// "print" function in Lua's std-lib.
// It supports only 1 argument and assumes the argument is at index:1 on
stack.
fn lib_print(state: &mut ExeState) -> i32 {

println!("{:?}", state.stack[1]);
0

}

pub fn execute(&mut self, proto: &ParseProto) {
for code in proto.byte_codes.iter() {

match *code {
 ByteCode::GetGlobal(dst, name) => {

let name = &proto.constants[name as usize];
if let Value::String(key) = name {

let v =
self.globals.get(key).unwrap_or(&Value::Nil).clone();

self.set_stack(dst, v);
 } else {

panic!("invalid global key: {name:?}");
 }
 }
 ByteCode::LoadConst(dst, c) => {

let v = proto.constants[c as usize].clone();
self.set_stack(dst, v);

 }
 ByteCode::Call(func, _) => {

let func = &self.stack[func as usize];
if let Value::Function(f) = func {

 f(self);
 } else {

panic!("invalid function: {func:?}");
 }
 }
 }
 }
 }

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

21 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#test
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#test

So far, we have implemented a Lua interpreter with a complete process! Look at the

running effect:

The output is divided into 3 parts. Part 1 is the constant table, containing 2 string

constants. The second part is the bytecode sequence, which can be compared with the

output of luac in the Bytecode section. The last line is the result we expected: "hello,

world!".

There is an additional function. The parsing part does not support only one line

statement, but a loop. So we can support multiple print statements, such as:

There is a small problem which is print appears twice in the constant table. It can be

optimized here that every time adding a value to the constant table, check whether it

already exists first. We will finish this in the next chapter.

Summary

The purpose of this chapter is to implement a minimal Lua interpreter but with complete

process, in order to get familiar with the interpreter architecture. To this end, we first

introduced the basics of compiling principles, then introduced the two core concepts of

Lua's bytecode and value, and finally accomplished it!

We have been emphasizing the "complete process" because we only need to add features

onto this framework in the following chapters. Let's move on!

$ cargo r -q --test_lua/hello.lua
[src/parse.rs:39] &constants = [
 print,
 hello, world!,
]
[src/parse.rs:40] &byte_codes = [
 GetGlobal(
 0,
 0,
),
 LoadConst(
 1,
 1,
),
 Call(
 0,
),
]
hello world!

print "hello, world!"
print "hello, again..."

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

22 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/ch01-02.byte_codes.html
https://wubingzheng.github.io/build-lua-in-rust/en/ch01-02.byte_codes.html
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#summary
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#summary

Variables and Assignment

In the last chapter, we completed a simple Lua interpreter but with a complete process. In

the future, we will continue to add new features based on this interpreter.

This chapter begins by adding some simple types, including boolean, integer, and

floating-point number. Then it introduces local variables.

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

23 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#variables-and-assignment
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#variables-and-assignment

More Types

This section adds simple types, including boolean, integer, and float. Other types such as

Table and UserData will be implemented in subsequent chapters.

We first improve the lexical analysis to support the tokens corresponding to these types,

and then generate the corresponding bytecodes through the syntax analysis, and add

support for these bytecodes in the virtual machine. Finally we modify the function call to

support printing these types.

Improve Lexical Analysis

The lexical analysis in the previous chapter only supports 2 tokens. So now no matter

what features are added, the lexical analysis must be changed first to add the

corresponding Tokens. In order to avoid adding tokens piecemeal in each chapter in the

future, it is now added here in one go.

The Lua official website lists the complete lexical conventions. It includes:

• Name, which has been implemented before, is used for variables, etc.

• Constants, including string, integer, and floating-point constants.

• Keywords:

• Symbols:

The corresponding Token is defined as:

 and break do else else if end

 false for function goto if in

 local nil not or repeat return

 then true until while

 + - * / % ^ #

 & ~ | << >> //

 == ~= <= >= < > =

 () { } [] ::

 ; : ,

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

24 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#more-types
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#more-types
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#improve-lexical-analysis
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#improve-lexical-analysis
https://www.lua.org/manual/5.4/manual.html#3.1
https://www.lua.org/manual/5.4/manual.html#3.1

The specific implementation is nothing more than tedious string parsing, which is skipped

here. For the sake of simplicity, this implementation only supports most simple types, but

does not support complex types such as long strings, long comments, string escapes,

hexadecimal numbers, and floating point numbers only support scientific notation Law.

These do not affect the main features to be added later.

Type of Values

After lexical analysis supports more types, we add these types to Value:

#[derive(Debug, PartialEq)]
pub enum Token {

// keywords
 And, Break, Do, Else, Elseif, End,
 False, For, Function, Goto, If, In,
 Local, Nil, Not, Or, Repeat, Return,
 Then, True, Until, While,

// + - * / % ^ #
 Add, Sub, Mul, Div, Mod, Pow, Len,
// & ~ | << >> //
 BitAnd, BitXor, BitOr, ShiftL, ShiftR, Idiv,
// == ~= <= >= < > =
 Equal, NotEq, LesEq, GreEq, Less, Greater, Assign,
// () { } [] ::
 ParL, ParR, CurlyL, CurlyR, SqurL, SqurR, DoubColon,
// ; : ,
 SemiColon, Colon, Comma, Dot, Concat, Dots,

// constant values
 Integer(i64),
 Float(f64),

String(String),

// name of variables or table keys
 Name(String),

// end
 Eos,
}

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

25 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#type-of-values
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#type-of-values

One of the special places is that the debug mode is used for the output of floating-point

numbers: {:?} . Because Rust's common output format {} for floating-point numbers is

integer + decimal format, and a more reasonable way should be to choose a more

suitable one between "integer decimal" and "scientific notation", corresponding to %g in

C language's printf . For example, it is unreasonable to output "0.000000" for the

number 1e-10 . This seems to be a historical issue of Rust. For compatibility and other

reasons, only the debug mode {:?} can be used to correspond to %g . I don't get into it

here.

In addition, in order to facilitate the distinction between "integer" and "floating point

number without decimal part", in Lua's official implementation, .0 will be added after

the latter. For example, 2 will be output as 2.0 for the floating point number. The code

is as follows. This is so sweet. And this is also the default behavior of Rust's {:?} mode,

so we don't need special handling for this.

Before Lua 5.3, Lua has only one numeric type, the default is floating point. I

understand this because Lua was originally intended for configuration files, for

users rather than programmers. For ordinary users, the concepts of integer and

floating point numbers are not distinguished, and there is no difference between

#[derive(Clone)]
pub enum Value {
 Nil,
 Boolean(bool),
 Integer(i64),
 Float(f64),

String(String),
 Function(fn (&mut ExeState) -> i32),
}

impl fmt::Debug for Value {
fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {

match self {
 Value::Nil => write!(f, "nil"),
 Value::Boolean(b) => write!(f, "{b}"),
 Value::Integer(i) => write!(f, "{i}"),
 Value::Float(n) => write!(f, "{n:?}"),
 Value::String(s) => write!(f, "{s}"),
 Value::Function(_) => write!(f, "function"),
 }
 }
}

if (buff[strspn(buff, "-0123456789")] == '\0') { /* looks like an int?
*/
 buff[len++] = lua_getlocaledecpoint();
 buff[len++] = '0'; /* adds '.0' to result */
 }

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

26 of 314 10/23/23, 08:47

https://internals.rust-lang.org/t/pre-rfc-draft-g-or-floating-points-for-humans/9110
https://internals.rust-lang.org/t/pre-rfc-draft-g-or-floating-points-for-humans/9110
http://www.lua.org/versions.html#5.3
http://www.lua.org/versions.html#5.3

configuring 10 seconds and 10.0 seconds ; in addition, for some calculations, such

as 7/2 , the result is obviously 3.5 and Not 3 . However, with the expansion of

Lua's use, for example, as a glue language between many large programs, the

demand for integers has become increasingly strong, so integers and floating-point

numbers are distinguished at the language level.

Syntax Analysis

Now we add support for these types in the parser. Since currently only the function call

statement is supported, that is, the format of function parameter ; and the "function"

only supports global variables, so this time only the "parameter" part needs to support

these new types. For function calls in Lua voice, if the parameter is a string constant or a

table structure, then the parentheses () can be omitted, as in the "hello, world!"

example in the previous chapter. But for other cases, such as several new types added

this time, brackets () must be required. So the modification of the parameter part is as

follows:

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

27 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#syntax-analysis-1
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#syntax-analysis-1

This code first parses the function. Like the code in the previous chapter, it still only

supports global variables. Then parse the parameters. In addition to the support for

string constants, a more general way of parentheses () is added. Which handles various

type constants:

• Floating-point constants, similar to string constants, call the load_const() function,

put it in the constant table at compile time, and then load it through LoadConst

bytecode during execution.

• Nil and Boolean types, there is no need to put Nil, true and false in the constant

table. It is more convenient to encode directly into bytecode, and it is faster at

execution time (because there is one less memory read). So LoadNil and LoadBool

bytecodes are added.

Token::Name(name) => {
// function, global variable only
let ic = add_const(&mut constants, Value::String(name));

 byte_codes.push(ByteCode::GetGlobal(0, ic as u8));

// argument, (var) or "string"
match lex. next() {

 Token::ParL => { // '('
let code = match lex. next() {

 Token::Nil => ByteCode::LoadNil(1),
 Token::True => ByteCode::LoadBool(1, true),
 Token::False => ByteCode::LoadBool(1, false),
 Token::Integer(i) =>

if let Ok(ii) = i16::try_from(i) {
 ByteCode::LoadInt(1, ii)
 } else {
 load_const(&mut constants, 1, Value::Integer(i))
 }
 Token::Float(f) => load_const(&mut constants, 1,
Value::Float(f)),
 Token::String(s) => load_const(&mut constants, 1,
Value::String(s)),
 _ => panic!("invalid argument"),
 };
 byte_codes. push(code);

if lex.next() != Token::ParR { // ')'
panic!("expected `)`");

 }
 }
 Token::String(s) => {

let code = load_const(&mut constants, 1, Value::String(s));
 byte_codes. push(code);
 }
 _ => panic!("expected string"),
 }
}

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

28 of 314 10/23/23, 08:47

• Integer constants combine the above two approaches. Because a bytecode has 4

bytes, the opcode occupies 1 byte, the destination address occupies 1 byte, and

there are 2 bytes left, which can store the integer of i16 . Therefore, for numbers in

the range of i16 (this is also a high probability event), it can be directly encoded

into the bytecode, and the LoadInt bytecode is added for this purpose; if it exceeds

the range of i16 , it is stored in the constant table . This is also the official

implementation of Lua for reference. From this we can see Lua's pursuit of

performance, it adds a bytecode and process codes in order to reduce a memory

access only. We will see many such cases in the future.

Since only the function call statment is currently supported, the function is fixed at the 0

position of the stack during execution, and the parameter is fixed at the 1 position. The

target addresses of the above bytecodes are also fixedly filled with 1 .

The main code has been introduced. The definition of the function load_const() used to

generate LoadConst bytecode is listed below:

Test

So far, the parsing process has completed the support for new types. The rest of the

virtual machine execution part just supports the newly added bytecode LoadInt ,

LoadBool and LoadNil . Skip it here.

Then you can test the following code:

The output is as follows:

fn add_const(constants: &mut Vec<Value>, c: Value) -> usize {
 constants. push(c)
}

fn load_const(constants: &mut Vec<Value>, dst: usize, c: Value) -> ByteCode {
 ByteCode::LoadConst(dst as u8, add_const(constants, c) as u8)
}

print(nil)
print(false)
print(123)
print(123456)
print(123456.0)

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

29 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#test-1
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#test-1

There is a small problem left over from the last chapter, that is, print appears many

times in the constant table. This needs to be modified to check whether it already exists

every time a constant is added.

Add Constants

Modify the add_const() function above as follows:

constants.iter().position() positions the index. Its parameter is a closure, which

needs to compare two Value , for which Value needs to be implemented PartialEq

[src/parse.rs:64] &constants = [
 print,
 print,
 print,
 print,
 123456,
 print,
 123456.0,
]
byte_codes:
 GetGlobal(0, 0)
 LoadNil(1)
 Call(0, 1)
 GetGlobal(0, 0)
 LoadBool(1, false)
 Call(0, 1)
 GetGlobal(0, 0)
 LoadInt(1, 123)
 Call(0, 1)
 GetGlobal(0, 0)
 LoadConst(1, 1)
 Call(0, 1)
 GetGlobal(0, 0)
 LoadConst(1, 2)
 Call(0, 1)
nil
false
123
123456
123456.0

fn add_const(constants: &mut Vec<Value>, c: Value) -> usize {
 constants.iter().position(|v| v == &c)
 .unwrap_or_else(|| {
 constants. push(c);
 constants.len() - 1
 })
}

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

30 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#add-constants
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#add-constants
https://doc.rust-lang.org/stable/book/ch13-01-closures.html
https://doc.rust-lang.org/stable/book/ch13-01-closures.html

trait:

Here we think that two integers and floating point numbers that are numerically equal

are different, such as Integer(123456) and Float(123456.0) , because these are indeed

two values, and the two cannot be combined when dealing with constant tables value,

otherwise in the test code in the previous section, the last line will also load the integer

123456 .

But during Lua execution, these two values are equal, that is, the result of 123 == 123.0

is true . We will deal with this issue in a later chapter.

Going back to the position() function, its return value is Option<usize> , Some(i)

means found, and returns the index directly; while None means not found, you need to

add a constant first, and then return the index. According to the programming habit of C

language, it is the following if-else judgment, but here we try to use a more functional

way. Personally, I feel that this method is not clearer, but since you are learning Rust, try

to use the Rust method first.

After completing the transformation of the add_const() function, duplicate values can

be avoided in the constant table. The relevant output is intercepted as:

impl PartialEq for Value {
fn eq(&self, other: &Self) -> bool {

// TODO compare Integer vs Float
match (self, other) {

 (Value::Nil, Value::Nil) => true,
 (Value::Boolean(b1), Value::Boolean(b2)) => *b1 == *b2,
 (Value::Integer(i1), Value::Integer(i2)) => *i1 == *i2,
 (Value::Float(f1), Value::Float(f2)) => *f1 == *f2,
 (Value::String(s1), Value::String(s2)) => *s1 == *s2,
 (Value::Function(f1), Value::Function(f2)) => std::ptr::eq(f1,
f2),
 (_, _) => false,
 }
 }
}

if let Some(i) = constants.iter().position(|v| v == &c) {
 i
 } else {
 constants. push(c);
 constants.len() - 1
 }

[src/parse.rs:64] &constants = [
 print,
 123456,
 123456.0,
]

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

31 of 314 10/23/23, 08:47

Although the above will check for duplicates when adding constants, the check is done by

traversing the array. The time complexity of adding all constants is O(N^2). If a Lua code

segment contains a lot of constants, such as 1 million, the parsing will be too slow. For

this we need a hash table to provide fast lookups. TODO.

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

32 of 314 10/23/23, 08:47

Local Variables

This section describes the definition and access of local variables, while the assignment is

covered in the next section.

For the sake of simplicity, we only support the simplified format for defining local variable

statements: local name = expression , that is to say, it does not support multiple

variables or no initialization. We will support the full format in later chapter. The target

code is as follows:

How are local variables managed, stored, and accessed? First refer to the results of luac :

Compared with the program that directly prints "hello, world!" in the previous chapter,

there are several differences:

• 1 local in the second line of the output, indicating that there is 1 local variable.

But this is just an illustration and has nothing to do with the following bytecode.

• LOADK, loads the constant at index 0 of the stack. Corresponding to line [1] of the

source code, that is, defining local variables. It can be seen that variables are stored

on the stack and assigned during execution.

• The target address of GETTABUP is 1 (it was 0 in the previous chapter), that is,

print is loaded into location 1, because location 0 is used to store local variables.

• MOVE, the new bytecode, is used to copy the value in the stack. The two parameters

are the destination index and the source index. Here is to copy the value of index 0

to index 2. It is to use the local variable a as the parameter of print.

After the first 4 bytecodes are executed, the layout on the stack is as follows:

local a = "hello, local!" -- define new local var 'a'
print(a) -- use 'a'

main <local.lua:0,0> (6 instructions at 0x6000006e8080)
0+ params, 3 slots, 1 upvalue, 1 local, 2 constants, 0 functions
 1 [1] VARARGPREP 0
 2 [1] LOADK 0 0 ; "hello, world!"
 3 [2] GETTABUP 1 0 1 ; _ENV "print"
 4 [2] MOVE 2 0
 5 [2] CALL 1 2 1 ; 1 in 0 out
 6 [2] RETURN 1 1 1 ; 0 out

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

33 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#local-variables
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#local-variables

It can be seen that local variables are stored on the stack during execution. In the

previous chapter, the stack was only used for function calls, and now it stores local

variables too. Relatively speaking, local variables are more persistent and only become

invalid after the end of the current block. The function call is invalid after the function

returns.

Define Local Variables

Now we add support of handling local variables. First define the local variable table

locals . In the value and type section, it shows that Lua variables only contain variable

name information, but no type information, so this table only saves variable names,

defined as Vec<String> . In addition, this table is only used during syntax analysis, but

not needed during virtual machine execution, so it does not need to be added to

ParseProto .

Currently, 2 statements are supported (2 formats of function calls):

Among them, exp is an expression, which currently supports a variety of constants, such

as strings and numbers.

Now we add a new statement, the simplified form of defining a local variable:

This also includes exp . So extract this part as a function load_exp() . Then the syntax

analysis code corresponding to the definition of local variables is as follows:

 +-----------------+ MOVE
0 | local a |----\
 +-----------------+ |
1 | print | |
 +-----------------+ |
2 | "hello, world!" |<---/
 +-----------------+
 | |

Name String
Name (exp)

localName = exp

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

34 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#define-local-variables
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#define-local-variables
https://wubingzheng.github.io/build-lua-in-rust/en/ch01-03.value_and_type.html
https://wubingzheng.github.io/build-lua-in-rust/en/ch01-03.value_and_type.html

The code is relatively simple and needs no explaination. The load_exp() function refers

to the following section.

What needs special attention is that when the variable name var is first parsed, it cannot

be directly added to the local variable table locals , but can only be added after the

expression is parsed. It can be considered that when var is parsed, there is no complete

definition of local variables; it needs to wait until the end of the entire statement to

complete the definition and add it to the local variable table. The following subsections

explain the specific reasons.

Access Local Variables

Now access the local variable, that is, the code print(a) . That is to increase the

processing of local variables in exp .

In fact, in the Name (exp) format of the function call statement in the previous

section, you can add global variables in exp . In this way, Lua code such as

print(print) can be supported. It's just that at that time, I only cared about adding

other types of constants, and forgot to support global variables. This also reflects

the current state, that is, the addition of functional features is all based on feeling,

while the completeness or even correctness cannot be guaranteed at all. We will

address this issue in subsequent chapters.

So modify the code of load_exp() (the processing part of the original various constant

types is omitted here):

 Token::Local => { // local name = exp
let var = if let Token::Name(var) = lex.next() {

 var // can not add to locals now
 } else {

panic!("expected variable");
 };

if lex.next() != Token::Assign {
panic!("expected `=`");

 }

 load_exp(&mut byte_codes, &mut constants, lex.next(), locals.len());

// add to locals after load_exp()
 locals. push(var);
 }

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

35 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#access-local-variables
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#access-local-variables

The processing of variables in the load_exp() function is also placed in a separate

load_var() function, because the "function" part of the previous function call statement

can also call this load_var() function, so that local variables can also be supported as a

function.

The processing logic for variables is to search the Name in the local variable table

locals ,

• if exist, it is a local variable, then generate the Move bytecode, which is a new

bytecode;

• otherwise, it is a global variable. The handling process was introduced in the

previous chapter, so it is skipped here.

It is foreseeable that after supporting Upvalue, it will also be handled in this

function.

When the load_var() function looks up variables in the variable table, it searches from

the back to the front, that is, the .rposition() function is used. This is because we did

not check for duplicate names when registering local variables. If there is a duplicate

name, it will be registered as usual, that is, it will be pushed at the end of the local

variable table. In this case, the reverse search will find the variable registered later, and

the variable registered first will never be located. It is equivalent to the variable registered

later covering the previous variable. For example, the following code is legal and outputs

456 :

fn load_exp(byte_codes: &mut Vec<ByteCode>, constants: &mut Vec<Value>,
 locals: &Vec<String>, token: Token, dst: usize) {

let code = match token {
 ... // other type consts, such as Token::Float()...
 Token::Name(var) => load_var(constants, locals, dst, var),
 _ => panic!("invalid argument"),
 };
 byte_codes. push(code);
}

fn load_var(constants: &mut Vec<Value>, locals: &Vec<String>, dst: usize,
name: String) -> ByteCode {

if let Some(i) = locals.iter().rposition(|v| v == &name) {
// local variable

 ByteCode::Move(dst as u8, i as u8)
 } else {

// global variable
let ic = add_const(constants, Value::String(name));

 ByteCode::GetGlobal(dst as u8, ic as u8)
 }
}

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

36 of 314 10/23/23, 08:47

I find this approach very ingenious. If you check if a local variable exists every time adding

a local variable, it will definitely consume performance. And this kind of repeated

definition of local variables is rare (maybe I am ignorant), and it is not worth checking

duplication (whether it is error reporting or reuse) for this small probability situation. The

current approach (reverse lookup) not only guarantees performance, but also can

correctly support this situation of repeated definitions.

There are similar shadow variables in Rust. However, I guess Rust should not be able to

ignore it so simply, because when a variable in Rust is invisible (such as being shadowed),

it needs to be dropped, so it is still necessary to specially judge this shadow situation and

handle it specially.

Another problem is that as mentioned at the end of the previous paragraph Define Local

Variables, when the variable name var is parsed, it cannot be directly added to the local

variable table locals , but must only be added after parsing the expression. At that time,

because there was no "access" to the local variable, the specific reason was not

explained. Now it can be explained. For example for the following code:

This kind of statement is relatively common in Lua code, that is, assign a commonly used

"global variable" to a "local variable" with the same name, so that it will be the local

variable accessed when this name is referenced later. Local variables are much faster

than global variables (local variables are accessed through the stack index, while global

variables need to look up the global variable table in real time, which is the difference

between the two bytecodes of Move and GetGlobal), which will improve performance.

Going back to the question just now, if the variable name print is just added to the local

variable table when it is parsed, then when the expression print behind = is parsed,

the local variable table will find the newly added print , then it is equivalent to assigning

the local variable print to the local variable print , and the cycle is meaningless (if you

do this, print will be assigned the value of nil).

To sum up, variables must be added to the local variable table after parsing the

expression behind = .

Where the Function is Called

Previously, our interpreter only supported function call statements, so the stack is only a

local a = 123
local a = 456
print(a) -- 456

local print = print

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

37 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/ch02-02.local.html#define-local-variables
https://wubingzheng.github.io/build-lua-in-rust/en/ch02-02.local.html#define-local-variables
https://wubingzheng.github.io/build-lua-in-rust/en/ch02-02.local.html#define-local-variables
https://wubingzheng.github.io/build-lua-in-rust/en/ch02-02.local.html#define-local-variables
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#where-the-function-is-called
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#where-the-function-is-called

place for function calls. When a function call is executed, the function and parameters are

fixed at 0 and 1 respectively. Now that local variables are supported, the stack is not just a

place for function calls, and the positions of functions and parameters are not fixed, but

need to become the first free position on the stack, that is, the next position of local

variables. to this end:

• During syntax analysis, we can get the number of local variables through

locals.len() , that is, the first free position on the stack.

• When the virtual machine is executing, we need to add a field func_index in

ExeState , set this field before the function call to indicate this position, and use it in

the function. The corresponding codes are as follows:

Test

So far, we have realized the definition and access of local variables, and also re-organized

the code in the process, making the previous function call statement more powerful. Both

the function and the parameter support global variables and local variables. So the 2-line

object code at the beginning of this article is too simple. You can try the following code:

Results of the:

 ByteCode::Call(func, _) => {
self.func_index = func as usize; // set func_index
let func = &self. stack[self. func_index];
if let Value::Function(f) = func {

 f(self);
 } else {

panic!("invalid function: {func:?}");
 }
 }

fn lib_print(state: &mut ExeState) -> i32 {
println!("{:?}", state.stack[state.func_index + 1]); // use func_index
0

}

local a = "hello, local!" -- define a local by string
local b = a -- define a local by another local
print(b) -- print local variable
print(print) -- print global variable
local print = print --define a local by global variable with same name
print "I'm local-print!" -- call local function

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

38 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#test-2
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#test-2

In line with expectations! The bytecodes are a bit long, you can compare it with the output

of luac . We used to be able to analyze and imitate the bytecode sequence compiled by

luac , but now we can compile and output bytecode independently. Great progress!

OO in Syntax Analysis Code

The feature has been completed. However, with the increase of features, the code in the

syntax analysis part becomes more chaotic. For example, the definition of the above

load_exp() function has a bunch of parameters. In order to organize the code, the

syntax analysis is also transformed into an object-oriented model, and methods are

defined around ParseProto . These methods can get all the information through self ,

so there is no need to pass many parameters. For specific changes, see commit f89d2fd.

Bringing together several independent members also presents a small problem, a

problem specific to the Rust language. For example, the original code for reading a string

constant is as follows, first call load_const() to generate and return the bytecode, and

then call byte_codes.push() to save the bytecode. These two function calls can be

written together:

After changing to object-oriented mode, the code is as follows:

[src/parse.rs:71] &constants = [
 hello, local!,
 print,
 I'm local-print!,
]
byte_codes:
 LoadConst(0, 0)
 Move(1, 0)
 GetGlobal(2, 1)
 Move(3, 1)
 Call(2, 1)
 GetGlobal(2, 1)
 GetGlobal(3, 1)
 Call(2, 1)
 GetGlobal(2, 1)
 Move(3, 2)
 LoadConst(4, 2)
 Call(3, 1)
hello, local!
function
I'm local-print!

byte_codes.push(load_const(&mut constants, iarg, Value::String(s)));

self.byte_codes.push(self.load_const(iarg, Value::String(s)));

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

39 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#oo-in-syntax-analysis-code
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#oo-in-syntax-analysis-code
https://github.com/WuBingzheng/build-lua-in-rust/commit/f89d2fd6bca4574d1d18d60f9363731bfd89e4b1
https://github.com/WuBingzheng/build-lua-in-rust/commit/f89d2fd6bca4574d1d18d60f9363731bfd89e4b1

But this cannot be compiled, and the error is as follows:

Although the Rust compiler is very strict, the error message is still very clear, and even

gives correct modification method.

self is referenced 2 times by mut. Although self.byte_codes is not used in

self.load_const() , and there is no conflict in fact, the compiler does not know these

details. The compiler only knows that self is referenced twice. This is the consequence

of bringing together multiple members. The solution is to introduce a local variable as

suggested by Rust, and then split this line of code into two lines:

The situation here is simple and easy to fixed, because the returned bytecode code is not

related to self.constants , so it has no connection with self , so self.byte_codes can

be used normally below. If the content returned by a method is still associated with this

data structure, the solution becomes not so simple. This situation will be encountered

later when the virtual machine is executed.

error[E0499]: cannot borrow `*self` as mutable more than once at a time
 --> src/parse.rs:70:38
 |
70 | self.byte_codes.push(self.load_const(iarg,
Value::String(s)));
 |
---------------------^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^-
 | | | |
 | | | second mutable borrow occurs here
 | | first borrow later used by call
 | first mutable borrow occurs here
 |
help: try adding a local storing this argument...
 --> src/parse.rs:70:38
 |
70 | self.byte_codes.push(self.load_const(iarg,
Value::String(s)));
 |
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
help: ...and then using that local as the argument to this call
 --> src/parse.rs:70:17
 |
70 | self.byte_codes.push(self.load_const(iarg,
Value::String(s)));
 |
^^^

For more information about this error, try `rustc --explain E0499`.

let code = self.load_const(iarg, Value::String(s));
self.byte_codes.push(code);

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

40 of 314 10/23/23, 08:47

Variable Assignment

In the program that prints "hello, world!" at the beginning of Chapter 1, we support global

variables, namely the print function. However, it only supports access, but not

assignment or creation. Now the only global variable print is manually added to the

global variable table when creating a virtual machine. In the previous section, we

implemented the definition and access of local variables, but assignment is also not

supported. This section will implement assignment of global variables and local variables.

The assignment of simple variables is relatively simple, but the complete assignment

statement in Lua is very complicated, such as t[f()] = 123 . Here we first realize the

variable assignment, and then briefly introduce the difference between the complete

assignment statement.

Combination of Assignments

The variable assignment statements to be supported in this section are expressed as

follows:

The left side of the equal sign = (lvalue) currently has two categories, local variables and

global variables; the right side is the expression exp in the previous chapter, which can

be roughly divided into three categories: constants, local variables, and global variables.

So this is a 2*3 combination:

• local = const , load the constant to the specified location on the stack,

corresponding to the bytecode LoadNil , LoadBool , LoadInt and LoadConst , etc.

• local = local , copy the value on the stack, corresponding to the bytecode Move .

• local = global , assign the value on the stack to the global variable, corresponding

to the bytecode GetGlobal .

• global = const , to assign a constant to a global variable, you need to add the

constant to the constant table first, and then complete the assignment through the

bytecode SetGlobalConst .

• global = local , assign local variable to global variable, corresponding to bytecode

SetGlobal .

• global = global , assign global variable to global variable, corresponding to

Name = exp

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

41 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#variable-assignment
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#variable-assignment
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#combination-of-assignments
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#combination-of-assignments

bytecode SetGlobalGlobal .

Among these 6 cases, the first 3 are assigned to local variables. The load_exp() function

in the previous section has been implemented and will not be introduced here. The latter

three are assigned to global variables, and three new bytecodes are added accordingly.

The parameter format of these 3 bytecodes is similar, and they all have 2 parameters,

which are:

1. The index of the name of the target global variable in the constant table, similar to

the second parameter of the previous GetGlobal bytecode. So in these three cases,

you need to add the name of the global variable to the constant table first.

2. Source index, the three bytecodes are: the index in the constant table, the address

on the stack, and the index of the name of the global variable in the constant table.

The fourth case above, that is global = const , handles all constant types with only one

bytecode, not like previous local variables which set different bytecodes for some types

(such as LoadNil , LoadBool , etc.). This is because local variables are located directly

through the index on the stack, and the virtual machine executes its assignment very

quickly. If the source data can be inlined into the bytecode and reduce the access to the

constant table once, it can be significantly proportional performance improvement.

However, accessing global variables requires a table lookup, and the execution of the

virtual machine is slow. At this time, the performance improvement brought by the inline

source data is relatively small, so it is unnecessary. After all, more bytecodes bring more

complexity in the parsing and execution stages.

Lexical Analysis

Originally, function calls and local variable definitions were supported, but now variable

assignment statements are added. as follows:

There is a problem here. The newly added variable assignment statement also starts with

Name , which is the same as function call. Therefore, based on the indistinguishability of

the first token at the beginning, it is necessary to "peek" forward at another token: if it is

an equal sign = , it is a variable assignment statement, otherwise it is a function call

statement. The "peek" here is in quotation marks to emphasize that it is a real peek but

not take the token, because the subsequent statement analysis still needs to use this

token. To this end, the lexical analysis also adds a peek() method:

Name String
Name (exp)
localName = exp
Name = exp # add new

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

42 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/ch02-01.more_types.html#syntax-analysis
https://wubingzheng.github.io/build-lua-in-rust/en/ch02-01.more_types.html#syntax-analysis
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#lexical-analysis-1
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#lexical-analysis-1

The ahead is a newly added field in the Lex structure, which is used to save the Token

that is parsed from the character stream but cannot be returned. According to the

convention of Rust language, this ahead should be of type Option<Token> , Some(Token)

means that there is a Token read ahead, and None means there is no Token. But for the

same reason as next() return value type, the Token type is directly used here, and

Token::Eos is used to represent no Read Token in advance.

The original external next() function is changed to do_next() internal function, which

is called by the newly added peek() and new next() functions.

The newly added peek() function returns &Token instead of Token , because the owner

of the Token is still Lex, and it has not been handed over to the caller. Just "lending" it to

the caller to "look". If the caller not only wants to "see" but also "change", then &mut

Token is needed, but we only need to look, and do not need to change. Now that there is

& borrowing, it involves lifetime in Rust. Since this function has only one input lifetime

parameter, that is &mut self , according to elision rules, which is given to all output

lifetime parameters, the annotation of the lifetime can be omitted below. This default

lifetime means to the compiler that the legal cycle of the returned reference &Token is

less than or equal to the input parameter, namely &mut self , that is, Lex itself.

I personally think that the owner of variables, borrowing (reference), and variable

borrowing are the core concepts of the Rust language. The concept itself is very

simple, but it takes a period of in-depth struggle with the compiler to understand it

deeply. The concept of lifetime is based on the above-mentioned core concepts, but

it is also slightly more complicated and needs to be understood in practice.

The new next() is a simple wrapper for the original do_next() function, which handles

the Token that may be stored in ahead and peeked before: if it exists, it will directly

return this Token without calling do_next() . But this "direct return" in Rust is not very

straightforward. Since Token type is not Copy (because its String(String) type is not

pub fn next(&mut self) -> Token {
if self.ahead == Token::Eos {

self.do_next()
 } else {
 mem::replace(&mut self.ahead, Token::Eos)
 }
 }

pub fn peek(&mut self) -> &Token {
if self.ahead == Token::Eos {

self.ahead = self.do_next();
 }
 &self.ahead
 }

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

43 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/ch01-04.lets_do_it.html#lexical-analysis
https://wubingzheng.github.io/build-lua-in-rust/en/ch01-04.lets_do_it.html#lexical-analysis
https://doc.rust-lang.org/stable/book/ch10-03-lifetime-syntax.html
https://doc.rust-lang.org/stable/book/ch10-03-lifetime-syntax.html
https://doc.rust-lang.org/stable/book/ch10-03-lifetime-syntax.html#lifetime-elision
https://doc.rust-lang.org/stable/book/ch10-03-lifetime-syntax.html#lifetime-elision

Copy), so cannot return directly. The simple solution is to use Clone , but the meaning of

Clone is to tell us that there is a price to pay, for example, for string type, we need to copy

the string content; and we don't need 2 copies of strings, because the Token is returned.

After that, we don't need this Token anymore. So the result we need now is: return the

Token in ahead , and simultaneously clean up ahead (here naturally set to represent "no"

Token::Eos). This scene is very similar to the gif of "Raiders of the Lost Ark" that is widely

circulated on the Internet (search for "Raiders of the Lost Ark gif" on the internet), and the

sandbag in the hand "replaces" the treasure on the mechanism. "Replace" here is a

keyword, and this requirement can be fulfilled with the std::mem::replace() function in

the standard library. This requirement is so common (at least very common in C language

projects) that it feels surprised to use such a long-name function to achieve it. But it is

precisely because of these restrictions that the security promised by Rust is guaranteed.

But if ahead is of Option<Token> type, then you can use the take() method of Option ,

which looks simpler and has exactly the same function.

Syntax Analysis

With the increase of functions, there will be more and more internal codes in the big cycle

of syntax analysis, so we first put each statement into an independent function, namely

function_call() and local() , and then add variable assignment statement

assignment() . The peek() function added in the lexical analysis just now is used here:

Then look at the assignment() function:

fn chunk(&mut self) {
loop {

match self. lex. next() {
 Token::Name(name) => {

if self.lex.peek() == &Token::Assign {
self. assignment(name);

 } else {
self. function_call(name);

 }
 }
 Token::Local => self. local(),
 Token::Eos => break,
 t => panic!("unexpected token: {t:?}"),
 }
 }
 }

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

44 of 314 10/23/23, 08:47

https://doc.rust-lang.org/stable/book/ch04-01-what-is-ownership.html#memory-and-allocation
https://doc.rust-lang.org/stable/book/ch04-01-what-is-ownership.html#memory-and-allocation
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#syntax-analysis-2
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#syntax-analysis-2

For the case where the lvalue is a local variable, call load_exp() to handle it. For the case

of global variables, according to the type of the expression on the right, generate

SetGlobalConst , SetGlobal and SetGlobalGlobal bytecodes respectively.

Test

Use the following code to test the above six variable assignments:

fn assignment(&mut self, var: String) {
self. lex. next(); // `=`

if let Some(i) = self. get_local(&var) {
// local variable
self. load_exp(i);

 } else {
// global variable
let dst = self.add_const(var) as u8;

let code = match self. lex. next() {
// from const values

 Token::Nil => ByteCode::SetGlobalConst(dst,
self.add_const(Value::Nil) as u8),
 Token::True => ByteCode::SetGlobalConst(dst,
self.add_const(Value::Boolean(true)) as u8),
 Token::False => ByteCode::SetGlobalConst(dst,
self.add_const(Value::Boolean(false)) as u8),
 Token::Integer(i) => ByteCode::SetGlobalConst(dst,
self.add_const(Value::Integer(i)) as u8),
 Token::Float(f) => ByteCode::SetGlobalConst(dst,
self.add_const(Value::Float(f)) as u8),
 Token::String(s) => ByteCode::SetGlobalConst(dst,
self.add_const(Value::String(s)) as u8),

// from variable
 Token::Name(var) =>

if let Some(i) = self. get_local(&var) {
// local variable

 ByteCode::SetGlobal(dst, i as u8)
 } else {

// global variable
 ByteCode::SetGlobalGlobal(dst, self.
add_const(Value::String(var)) as u8)
 }

 _ => panic!("invalid argument"),
 };

self.byte_codes.push(code);
 }
 }

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

45 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#test-3
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#test-3

Execution is as expected. The specific execution results will no longer be posted.

Complete Assignment Statement

The function of the above variable assignment is very simple, but the complete

assignment statement of Lua is very complicated. Mainly manifested in the following two

places:

First of all, the left side of the equal sign = now only supports local variables and global

variables, but the assignment of table fields is also supported in the complete assignment

statement, such as t.k = 123 , or the more complex t[f()+g ()] = 123 . The above

assignment() function is difficult to add table support. For this reason, it is necessary to

add an intermediate expression layer, that is, the ExpDesc structure introduced by the

subsequent chapter.

Second, the expression following the equal sign = is now divided into 3 categories, for 3

bytecodes. If we want to introduce other types of expressions later, such as upvalue,

table index (such as t.k), or operation results (such as a+b), do we have to add a

bytecode to each type? The answer is, no. But this will involve some problems that have

not been encountered yet, so it is not easy to explain. If not, what needs to be done? This

also involves the ExpDesc mentioned above.

We will implement Lua's complete assignment statement in the future, and the current

assignment code will be completely discarded at that time.

local a = 456
a = 123
print(a)
a = a
print(a)
a = g
print(a)
g = 123
print(g)
g = a
print(g)
g = g2
print(g)

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

46 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#complete-assignment-statement
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#complete-assignment-statement

String

Before moving on to improve our interpreter, this chapter pauses to discuss the string

type in Lua in detail. In a high-level language like Lua, strings are easy to use; but in a low-

level language like Rust, strings are not so simple. Here is a quote from "Rust

Programming Language":

New Rustaceans commonly get stuck on strings for a combination of three reasons:

Rust’s propensity for exposing possible errors, strings being a more complicated

data structure than many programmers give them credit for, and UTF-8. These

factors combine in a way that can seem difficult when you’re coming from other

programming languages.

Implementing and optimizing strings in the Lua interpreter is a great opportunity to

explore Rust strings.

Based on the definition of string type, this chapter will also make an important decision:

use Rc to implement garbage collection.

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

47 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#string
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#string
https://doc.rust-lang.org/stable/book/ch08-02-strings.html
https://doc.rust-lang.org/stable/book/ch08-02-strings.html
https://doc.rust-lang.org/stable/book/ch08-02-strings.html
https://doc.rust-lang.org/stable/book/ch08-02-strings.html
https://wubingzheng.github.io/build-lua-in-rust/en/ch03-05.rc-vs-gc
https://wubingzheng.github.io/build-lua-in-rust/en/ch03-05.rc-vs-gc
https://wubingzheng.github.io/build-lua-in-rust/en/ch03-05.rc-vs-gc
https://wubingzheng.github.io/build-lua-in-rust/en/ch03-05.rc-vs-gc
https://wubingzheng.github.io/build-lua-in-rust/en/ch03-05.rc-vs-gc

String Definition

This section does not add new features for now, but stops to discuss and optimize the

string type.

Ownership section in the book "Rust Programming Language" introduces the heap using

strings as an example of stack and heap, and the relationship with ownership; String

section says the strings are complex. We will now use strings to explore Rust's allocation

of heaps and stacks, and initially experience the complexity of strings.

Heap and Stack

"Rust Programming Language" uses strings as an example to introduce the concept of

heap and stack, and the relationship between stack and ownership. Here is a brief recap.

Rust's String consists of two parts:

1. Metadata, generally located on the stack, includes 3 fields: a pointer to the memory

block, the length of the string, and the capacity of the memory block. The following

are represented by buffer , len and cap respectively.

2. The private memory block used to store the string content is applied on the heap.

Owned by the string, so is freed when the string ends. Because of this piece of

memory on the heap, String is not Copy , which in turn leads to Value not being

Copy . In order to copy Value , it can only be defined as Clone .

For example, for a string whose content is "hello, world!", the memory layout is as follows.

On the left is the metadata on the stack, where buffer points to the memory block on

the heap, len is the length of the string, which is 13, and cap is the capacity of the

memory block, which is likely to be aligned to 16. On the right is the block of memory on

the heap that stores the contents of the string.

What needs to be explained here is that the metadata "generally" located on the stack

above is for simple types. But for complex types, such as Vec<String> , the String

metadata part is also stored on the heap as the content of the array (similar to the

memory block part of String). Below is an array Vec with 2 string members. The metadata

 stack heap
 +--------+
 | buffer +------->+----------------+
 |--------| |hello, world! |
 | len=13 | +----------------+
 |--------|
 | cap=16 |
 +--------+

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

48 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#string-definition
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#string-definition
https://doc.rust-lang.org/stable/book/ch04-01-what-is-ownership.html
https://doc.rust-lang.org/stable/book/ch04-01-what-is-ownership.html
https://doc.rust-lang.org/stable/book/ch08-02-strings.html
https://doc.rust-lang.org/stable/book/ch08-02-strings.html
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#heap-and-stack
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#heap-and-stack
https://doc.rust-lang.org/stable/book/trpl-zh-cn/ch04-01-what-is-ownership.html
https://doc.rust-lang.org/stable/book/trpl-zh-cn/ch04-01-what-is-ownership.html

of the array itself is on the stack, but the metadata of the string is on the heap.

In this case, although the metadata array part is on the heap, it still has the characteristics

of the stack, including last-in-first-out, fast access through indexes, fixed known size, and

no need for management (allocation and free). In fact, the stack of the virtual machine of

our Lua interpreter is a similar Vec<Value> type. Similarly, although its data is on the

heap, it has the characteristics of a stack. The term "stack" has two meanings here: the

stack at the Rust level, and the stack at the Lua virtual machine. The latter is on the heap

at the Rust level. The "stack" mentioned below in this article is the latter meaning, that is,

the stack of the Lua virtual machine. But it doesn't matter if you understand it as a Rust

stack.

Use String

Currently the string type of Value uses String in the Rust standard library directly:

The biggest problem with this definition is that if you want to copy the Value of a string,

you must deeply copy the string content, that is, Clone. The following diagram represents

the memory layout for copying a string:

 stack heap
 +--------+
 | buffer +------->+-------------+-------------+----
 |--------| | buf|len|cap | buf|len|cap | ...
 | len=2 | +--+----------+--+----------+----
 |--------| | V
 | cap=4 | V +----------------+
 +--------+ +--------+ |hello, world! |
 |print | +----------------+
 +--------+

#[derive(Clone)]
struct Value {

String(String),

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

49 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#use-string
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#use-string

The left side of the figure is the stack of the Lua virtual machine, and each line represents

a word. Since we are developing based on a 64-bit system, a word is 8 bytes.

The t in line 1 represents the tag of enum Value . Since our Value type is less than 256

types, 1 byte can be represented, so t occupies 1 byte. The next 3 lines buffer , len and

cap form a Rust standard library String. Each field occupies one word. buffer is 8-byte

aligned, so there are 7 bytes empty between t and this part is unusable. These 4 lines

(the rectangle surrounded by four + in the figure) constitute a value of string type in

total.

There is no default layout for enums in Rust (although it can be specified). We only

list one layout possibility here. This does not affect the discussion in this section.

To deeply copy the string Value, you need to copy the metadata on the stack and the

memory block on the heap, which is a great waste of performance and memory. The

most straightforward way to solve this problem in Rust is to use Rc .

Use Rc<String>

In order to quickly copy the string String, it is necessary to allow multiple owners of the

string at the same time. Rust's Rc provides this feature. Encapsulate Rc outside String,

 stack heap
 | |
 +--------+
 |t| |
 |-+------|
 | buffer +------->+----------------+
 |--------| |hello, world! |
 | len=13 | +----------------+
 |--------|
 | cap=16 |
 +--------+
 : :
 : :
 +--------+
 |t| |
 |-+------|
 | buffer +------->+----------------+
 |--------| |hello, world! |
 | len=13 | +----------------+
 |--------|
 | cap=16 |
 +--------+
 | |

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

50 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#use-rcstring
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#use-rcstring
https://doc.rust-lang.org/stable/book/ch15-04-rc.html
https://doc.rust-lang.org/stable/book/ch15-04-rc.html

and only need to update the Rc count when copying. It is defined as follows:

The memory layout is as follows:

The count and weak on the right side of the figure are the packages of Rc . Since there

are currently 2 Values pointing to this string, count is 2.

Using Rc directly causes the interpreter to use reference counting to implement garbage

collection. The subsection below is devoted to this high-impact decision.

Although this solution solves the problem of copying, it also brings a new problem, that is,

accessing the content of the string requires 2 pointer jumps. This wastes memory and

affects execution performance. Some optimization schemes are introduced below.

Use Rc<str>

Strings in Lua have a feature that they are read-only! If you want to process the string,

such as truncation, connection, replacement, etc., a new string will be generated. Rust's

String is designed for mutable strings, so it is a bit wasteful to represent read-only strings.

For example, the cap field in metadata can be removed, and there is no need to reserve

memory for possible modifications. For example, in the above example, the length of

"hello, world!" is only 13, but a memory block of 16 is allocated for. In Rust, it is more

suitable to represent a read-only string is &str , which is the slice of String . But &str is

a reference, and does not have ownership of the string, but needs to be attached to a

string. However, it has a reference that is not a string (the reference of a string is

&String). Intuitively, it should be a reference to str . What is str ? It's as if it never

#[derive(Clone)]
struct Value {

String(Rc<String>),

 stack heap
 | |
 +--------+
 |t| |
 |-+------|
 | Rc +----+-->+--------+--------+--------+--------+--------+
 +--------+ | |count=2 | weak=0 | buffer | len=13 | cap=16 |
 : : | +--------+--------+-+------+--------+--------+
 : : | |
 +--------+ | V
 |t| | | +----------------+
 |-+------| | |hello, world! |
 | Rc +----/ +----------------+
 +--------+
 | |

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

51 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/ch03-05.gc_vs_rc.html
https://wubingzheng.github.io/build-lua-in-rust/en/ch03-05.gc_vs_rc.html
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#use-rcstr
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#use-rcstr
https://doc.rust-lang.org/stable/book/ch04-03-slices.html
https://doc.rust-lang.org/stable/book/ch04-03-slices.html

appeared alone.

For example. For code like this:

Where r is &str type, and the memory layout is as follows:

Then dereferencing &str , what you get is the "world" memory. However, a general

reference is an address, but length information is also added here, indicating that str

includes length information in addition to memory. The length information is not on the

original data like String, but follows the reference together. In fact, str does not exist

independently, it must follow a reference (such as &str) or a pointer (such as Box(str)).

This is dynamic size type.

And Rc is also a pointer, so Rc<str> can be defined. It is defined as follows:

The memory layout is as follows:

let s = String::from("hello, world!"); // String
let r = s[7..12]; // &str

 stack heap
s: +--------+
 | buffer +------->+----------------+
 |--------| |hello, world! |
 | len=13 | +-------^--------+
 |--------| |
 | cap=16 | |
 +--------+ |
 |
r: +--------+ |
 | buffer +----------------/
 |--------|
 | len=5 |
 +--------+

#[derive(Clone)]
struct Value {

String(Rc<str>),

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

52 of 314 10/23/23, 08:47

https://doc.rust-lang.org/stable/book/ch19-04-advanced-types.html#dynamically-sized-types-and-the-sized-trait
https://doc.rust-lang.org/stable/book/ch19-04-advanced-types.html#dynamically-sized-types-and-the-sized-trait

Among them, "hello, world!" is the original data, which is encapsulated by Rc. The length

information len=13 is stored on the stack along with Rc .

This scheme looks very good! Compared with the Rc<String> scheme above, this

scheme removes the useless cap field, does not need to reserve memory, and also saves

a layer of pointer jumps. But this solution also has 2 problems:

First, the content needs to be copied when creating the string value. The previous

solution only needs to copy the metadata part of the string, which is only 3 words long.

And this scheme should copy the string content to the newly created Rc package. Imagine

creating a 1M long string, this copying affects performance a lot.

Secondly, it occupies 2 words of space on the stack. Although the problem was more

serious in the earliest scheme of directly using String to occupy 3 characters, it can be

understood that our current standard has been improved. At present, other types in

Value only occupy a maximum of 1 word (plus tag, a total of 2 words). What can be

spoiled is that the types of tables and UserData to be added in the future also only

occupy 1 word, so it is a waste to change the size of Value from 2 to 3 just because of the

string type. Not only does it take up more memory, but it's also unfriendly to the CPU

cache.

The key to these problems is that len follows Rc , not the data. It would be perfect if we

could put len on the heap, say between weak and "hello, world!" in the picture. This is

trivial for C, but Rust doesn't support it. The reason is that str is a dynamically sized

type. So if you choose a fixed size type, can it be realized? Such as arrays.

 stack heap
 | |
 +--------+
 |t| |
 |-+------|
 | Rc +----+-->+--------+--------+-------------+
 |--------| | |count=2 | weak=0 |hello, world!|
 | len=13 | | +--------+--------+-------------+
 +--------+ |
 : : |
 : : |
 +--------+ |
 |t| | |
 |-+------| |
 | Rc +----/
 +--------+
 | len=13 |
 +--------+
 | |

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

53 of 314 10/23/23, 08:47

Use Rc<(u8, [u8; 47])>

Arrays in Rust have intrinsic size information. For example, the sizes of [u8; 10] and

[u8; 20] are 10 and 20 respectively. This size is known at compile time, and there is no

need to store it following the pointer. Two arrays with different lengths are different

types, such as [u8; 10] and [u8; 20] are different types. Therefore, the array is a

fixed-size type, which can solve the problem in the previous section, that is, only one

word is needed on the stack.

Since it is a fixed length, it can only store strings smaller than this length, so this solution

is incomplete and can only be a supplementary solution for performance optimization.

However, most of the strings encountered in Lua are very short, at least in my experience,

so this optimization is still very meaningful. To do this, we need to define 2 string types,

one is a fixed-length array, which is used to optimize short strings, and the other is the

previous Rc<String> scheme, which is used to store long strings. The first byte of the

fixed-length array is used to represent the actual length of the string, so the array can be

split into two parts. Let's first assume that an array with a total length of 48 is used (1 byte

represents the length, and 47 bytes store the string content), then the definition is as

follows:

The memory layout for short strings is as follows:

The first byte len at the beginning of the array part on the right in the figure indicates

the actual length of the following string. The next 47 bytes can be used to store string

content.

This solution is the same as Rc<str> mentioned above, it needs to copy the string

struct Value {
 FixStr(Rc<(u8, [u8; 47])>), // len<=47

String(Rc<String>), // len>47

 stack heap
 | |
 +--------+
 |t| |
 |-+------|
 | Rc +----+-->+--------+--------+----------------------------+
 +--------+ | |count=2 | weak=0 |len|hello, world! |
 : : | +--------+--------+----------------------------+
 : : |
 +--------+ |
 |t| | |
 |-+------| |
 | Rc +----/
 +--------+
 | |

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

54 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#use-rcu8-u8-47
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#use-rcu8-u8-47

content, so it is not suitable for long strings. This is not a big problem. Originally, this

solution was designed to optimize short strings. Then even if it is a short string, the

selection of the array length is also critical. If it is very long, the space waste is serious for

short strings; if it is very short, the coverage ratio is not high. However, this solution can

continue to be optimized, using arrays with multi-level lengths, such as 16, 32, 48, 64, etc.

However, this also creates some complications.

In addition, the selection of the array length also depends on the memory management

library used by Rust. For example, if we choose the length to be 48, plus the two counting

fields encapsulated by Rc of 16 bytes, then the length of the memory block on the right

heap in the above figure is 64 bytes, which is a very "regular" length. For example, the

memory management library jemalloc manages small memory blocks into lengths of 16,

32, 48, 64, and 128, so the above-mentioned memory application with a total length of 64

is not wasted. If we choose the array length to be 40, the total length of the memory block

is 56, and it will still be matched to the category of 64, and 64-56=8 bytes will be wasted.

Of course, it is very bad behavior to rely on the specific implementation of other libraries

to make decisions, but fortunately, the impact is not great.

Here we choose an array length of 48, that is, only strings with lengths from 0 to 47 can

be represented.

Then compare it with the Rc<String> scheme to see how the optimization works. First of

all, the biggest advantage of this solution is that only one memory allocation is required,

and only one pointer jump is required during execution.

Second, compare the allocated memory size. In the Rc<String> scheme, you need to

apply for 2 blocks of memory: one is the Rc count and string metadata, fixed 2+3=5

words, 40 bytes, according to the memory strategy of jemalloc, it will occupy 48 bytes of

memory ; The second is the string content. The memory size is related to the length of

the string, and also depends on the memory management strategy of Rust String and the

implementation of the underlying library. For example, a string with a length of 1 may

occupy 16 bytes of memory; A character string with a length of 47 may occupy 48 bytes or

64 bytes of memory. The two blocks of memory together occupy 64 to 112 bytes, which is

greater than or equal to this fixed-length array solution.

Let's look at the next solution along the line of "optimizing short strings".

Use Inline Arrays

Compared with Rc<String> , the previous solution reduces one layer of pointer jumps.

The following solution goes a step further, directly removing the storage on the heap, and

storing the string completely on the stack.

We want the size of the Value type to be 2 words, or 16 bytes. One of them is used for

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

55 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#use-inline-arrays
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#use-inline-arrays

tag, and one is used for string length, so there are 14 bytes remaining, which can be used

to store strings with a length less than 14. This scheme is also a supplementary scheme,

and it must also be used in conjunction with a long string definition. details as follows:

The short string InlineStr is associated with two parameters: the string length of the

u8 type, and the u8 array with a length of 14, which also makes full use of the 7 bytes

behind t that have been wasted before. hollow. The long string String still uses the

Rc<String> scheme.

The memory layout for short strings is as follows:

The t and l pointed to by the arrow v on the grid represent the tag and length of 1

byte, respectively. The actual string content spans 2 words. If you draw the stack

horizontally, it looks clearer:

This solution has the best performance, but the worst ability, and can only handle strings

with a length no greater than 14. There are three usage scenarios of string type in Lua:

global variable name, table index, and string value. Most of the first two are not larger

than 14 bytes, so it should be able to cover most cases.

It can be further optimized by adding another type to store strings with a length of 15.

// sizeof(Value) - 1(tag) - 1(len)
const INLSTR_MAX: usize = 14;

struct Value {
 InlineStr(u8, [u8; INLSTR_MAX]), // len<=14

String(Rc<String>), // len>14

 stack
 | |
 +vv------+
 |tlhello,|
 |--------|
 | world! |
 +--------+
 : :
 : :
 +vv------+
 |tlhello,|
 |--------|
 | world! |
 +--------+
 | |

stack:
 --+-+-+--------------+......+-+-+--------------+--
 |t|l|hello, world! | |t|l|hello, world! |
 --+------------------+......+------------------+--

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

56 of 314 10/23/23, 08:47

Since the length is known, one byte originally used to store the length can also be used to

store the content of the string. However, the optimization brought by this solution is not

obvious and less than the complexity brought, so it is not used. It is defined as follows.

Summary and Choice

In this section, we used and analyzed String , Rc<String> , Rc<str> , Rc<(u8, [u8;

47])> and inline (u8, [u8; 14]) and several other schemes. Each has advantages and

disadvantages. A reasonable approach is to treat long and short strings differently, use

short strings to optimize, and use long strings to cover the bottom line. 3 options are

available:

• In order to guarantee the length of the Value type as 2 words, only Rc<String>

can be used for long strings.

• For short strings, the final inlining solution does not use heap memory at all, and the

optimization effect is the best.

• The penultimate fixed-length array scheme is a compromise between the above two

schemes, which is slightly tasteless. However, there is only one disadvantage, which

is to introduce greater complexity, and strings need to deal with 3 types. In the next

section, generics are used to shield these three types, which solves this

shortcoming.

The final solution is as follows:

The original InlineStr and FixStr both represent specific implementation solutions,

and the characteristics of external performance are long and short, so they are renamed

ShortStr , MidStr and LongStr , which are more intuitive.

In this way, most cases (short strings) can be processed quickly, and for a small number

of cases (long strings), although slow, they can also be processed correctly, and do not

affect the overall situation (for example, Rc<str> takes up 2 word, directly makes Value

struct Value {
 InlineStr(u8, [u8; INLSTR_MAX]), // len<=14
 Len15Str([u8; 15]), //len=15

String(Rc<String>), // len>15

const SHORT_STR_MAX: usize = 14; // sizeof(Value) - 1(tag) - 1(len)
const MID_STR_MAX: usize = 48 - 1;

struct Value {
 ShortStr(u8, [u8; SHORT_STR_MAX]),
 MidStr(Rc<(u8, [u8; MID_STR_MAX])>),
 LongStr(Rc<Vec<u8>>),

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

57 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#summary-and-choice
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#summary-and-choice

larger, even if it affects the overall situation), and ultimately improves the overall

processing efficiency. This is a very common and effective optimization idea. Our scheme

achieves optimization by distinguishing between two sets of definitions, which is a typical

example. It would be even more beautiful if this goal can be achieved with only one set of

definitions and one set of algorithms without distinguishing definitions. We will encounter

such an example later in the syntax analysis of assignment statement.

After distinguishing between long and short strings, it also brings two new problems:

1. When generating the string type Value , we need to choose ShortStr , MidStr or

LongStr according to the length of the string. This choice should be implemented

automatically, not by the caller, otherwise it will be troublesome and may make

mistakes. For example, the self.add_const(Value::String(var)) statement that

appears many times in the syntax analysis code needs to be improved.

2. Strings are composed of "characters", but ShortStr and MidStr are both

composed of u8 , what is the difference? How does u8 express Unicode correctly?

How to deal with illegal characters?

The next few sections discuss these two issues.

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

58 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/ch04-05.table_rw_and_bnf.html
https://wubingzheng.github.io/build-lua-in-rust/en/ch04-05.table_rw_and_bnf.html

Type Conversion

The previous section introduced three string types in the Value type. When creating a

string type, different types need to be generated according to the length. This judgment

should not be handed over to the caller, but should be done automatically. For example,

the existing statement:

should be changed to:

The str_to_value() function converts the string var into the string type corresponding

to Value .

From trait

This function of converting (or generating) from one type to another is very common, so

the From and Into traits are defined in the Rust standard library for this. These two

operations are opposite to each other, and generally only need to implement From . The

following implements the conversion of the string String type to Value type:

self. add_const(Value::String(var));

self.add_const(str_to_value(var));

impl From<String> for Value {
fn from(s: String) -> Self {

let len = s.len();
if len <= SHORT_STR_MAX {

// A string with a length of [0-14]
let mut buf = [0; SHORT_STR_MAX];

 buf[..len].copy_from_slice(s.as_bytes());
 Value::ShortStr(len as u8, buf)

 } else if len <= MID_STR_MAX {
// A string with a length of [15-47]
let mut buf = [0; MID_STR_MAX];

 buf[..len].copy_from_slice(s.as_bytes());
 Value::MidStr(Rc::new((len as u8, buf)))

 } else {
// Strings with length greater than 47

 Value::LongStr(Rc::new(s))
 }
 }
}

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

59 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#type-conversion
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#type-conversion
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#from-trait
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#from-trait
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#from-trait
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#from-trait

Then, the statement at the beginning of this section can be changed to use the into()

function:

Generics

So far, the requirements at the beginning of this section have been completed. But since

strings can do this, so can other types. And other types of transformations are more

intuitive. Listed below are only two conversions from numeric types to the Value type:

Then, adding a numerical type Value to the constant table can also pass the into()

function:

This may seem like a bit of an overkill. But if you implement From for all types that can be

converted to Value , then you can put .into() inside add_const() :

Only the first 2 lines of code of this function are listed here. The following is the original

logic of adding constants, which is omitted here.

Look at the second line of code first, put .into() inside the add_const() function, then

there is no need for .into() when calling externally. For example, the previous

statement of adding strings and integers can be abbreviated as:

self.add_const(var.into());

impl From<f64> for Value {
fn from(n: f64) -> Self {

 Value::Float(n)
 }
}

impl From<i64> for Value {
fn from(n: i64) -> Self {

 Value::Integer(n)
 }
}

let n = 1234_i64;
self.add_const(Value::Integer(n)); // old way
self.add_const(n.into()); // new way

fn add_const(&mut self, c: impl Into<Value>) -> usize {
let c = c.into();

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

60 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#generics
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#generics

Many places in the existing code can be modified in this way, and it will become much

clearer, so it is worthwhile to implement the From trait for these types.

However, here comes the problem: in the above 2 lines of code, the types of parameters

accepted by the two add_const() function calls are inconsistent! In the function

definition, how to write this parameter type? The answer lies in the definition of the

add_const() function above: c: impl Into<Value> . Its full writing is as follows:

This definition means: the parameter type is T , and its constraint is Into<Value> , that is,

this T needs to be able to be converted into Value , and no arbitrary type or data

structure can be added to the constant table inside.

This is generic in the Rust language! Many books and articles have introduced them very

clearly, so we do not introduce generics completely here. In fact, we have used generics

very early, such as the definition of the global variable table: HashMap<String, Value> . In

most cases, some library defines types and functions with generics, and we just use. And

add_const() here is defining a function with generics. The next section will introduce

another generic usage example.

Reverse Conversion

The above is to convert the basic type to Value type. But in some cases, the reverse

conversion is required, that is, converting the Value type to the corresponding base type.

For example, the global variable table of the virtual machine is indexed by the string type,

and the name of the global variable is stored in the Value type constant table, so it is

necessary to convert the Value type to a string type to be used as an index use. Among

them, the read operation and write operation of the global variable table are different,

and the corresponding HashMap APIs are as follows:

The difference between reading and writing is that the parameter k of the read get()

function is a reference, while the parameter k of the write insert() function is the

index itself. The reason is also simple, just use the index when reading, but add the index

to the dictionary when writing, and consume k . So we need to realize the conversion of

self. add_const(var);
self. add_const(n);

fn add_const<T: Into<Value>>(&mut self, c: T) -> usize {

pub fn get<Q: ?Sized>(&self, k: &Q) -> Option<&V> // omit the constraint of
K, Q
pub fn insert(&mut self, k: K, v: V) -> Option<V>

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

61 of 314 10/23/23, 08:47

https://doc.rust-lang.org/stable/book/ch10-01-syntax.html
https://doc.rust-lang.org/stable/book/ch10-01-syntax.html
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#reverse-conversion
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#reverse-conversion

the Value type to the string type itself and its reference, namely String and &String .

But for the latter, we use the more generic &str instead. (TODO: should use AsRef here)

The function names of the two conversion calls here are different,

std::str::from_utf8() and String::from_utf8_lossy() . The former does not take

_lossy and the latter does. The reason lies in UTF-8, etc., which will be explained in detail

when UTF8 is introduced later.

In addition, this reverse conversion may fail, such as converting a string Value type to an

integer type. But this involves error handling, and we will make modifications after sorting

out the error handling in a unified manner. Here still use panic!() to handle possible

failures.

After supporting Environment, the global variable table will be re-implemented with

Lua table type and Upvalue, then the index will be directly of Value type, and the

conversion here is no need any more.

In the code executed by the virtual machine, when reading and writing the global variable

table, the conversion of the Value type to a string is completed through into() twice:

impl<'a> From<&'a Value> for &'a str {
fn from(v: &'a Value) -> Self {

match v {
 Value::ShortStr(len, buf) => std::str::from_utf8(&buf[..*len as
usize]).unwrap(),
 Value::MidStr(s) => std::str::from_utf8(&s.1[..s.0 as
usize]).unwrap(),
 Value::LongStr(s) => s,
 _ => panic!("invalid string Value"),
 }
 }
}

impl From<&Value> for String {
fn from(v: &Value) -> Self {

match v {
 Value::ShortStr(len, buf) => String::from_utf8_lossy(&buf[..*len
as usize]).to_string(),
 Value::MidStr(s) => String::from_utf8_lossy(&s.1[..s.0 as
usize]).to_string(),
 Value::LongStr(s) => s.as_ref().clone(),
 _ => panic!("invalid string Value"),
 }
 }
}

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

62 of 314 10/23/23, 08:47

https://doc.rust-lang.org/stable/book/ch04-03-slices.html#string-slices-as-parameters
https://doc.rust-lang.org/stable/book/ch04-03-slices.html#string-slices-as-parameters
https://doc.rust-lang.org/stable/book/ch04-03-slices.html#string-slices-as-parameters
https://doc.rust-lang.org/stable/book/ch04-03-slices.html#string-slices-as-parameters
https://wubingzheng.github.io/build-lua-in-rust/en/ch03-04.unicode_utf8.html
https://wubingzheng.github.io/build-lua-in-rust/en/ch03-04.unicode_utf8.html
https://wubingzheng.github.io/build-lua-in-rust/en/ch09-06.environment.html
https://wubingzheng.github.io/build-lua-in-rust/en/ch09-06.environment.html

 ByteCode::GetGlobal(dst, name) => {
let name: &str = (&proto.constants[name as

usize]).into();
let v =

self.globals.get(name).unwrap_or(&Value::Nil).clone();
self.set_stack(dst.into(), v);

 }
 ByteCode::SetGlobal(name, src) => {

let name = &proto.constants[name as usize];
let value = self.stack[src as usize].clone();
self.globals.insert(name.into(), value);

 }

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

63 of 314 10/23/23, 08:47

Input Type

In the previous section we defined a function with generics. In fact, we "use" more generic

types than "define". This chapter discusses another "use" example, which is the input

type of the entire interpreter, that is, the lexical analysis module reads the source code.

Currently only reading source code from files is supported, and Rust's file type

std::fs::File does not even include standard input. The lexical analysis data structure

Lex is defined as follows:

The method read_char() for reading characters is defined as follows:

Here we only focus on the self.input.read() call.

Use Read

The official implementation of Lua supports two types of input files (including standard

input) and strings as source code. According to the idea of Rust generics, the input we

want to support may not be limited to some specific types, but a type that supports certain

features (ie traits). In other words, as long as it is a character stream, you can read

characters one by one. This feature is so common that the std::io::Read trait is

provided in the Rust standard library. So modify the definition of Lex as follows:

There are two changes here:

• Changed the original Lex to Lex<R> , indicating that Lex is based on the generic

type R ,

• Change the original field input type File to R .

pub struct Lex {
 input: File,

// omit other members

impl Lex {
fn read_char(&mut self) -> char {

let mut buf: [u8; 1] = [0];
self.input.read(&mut buf).unwrap();

 buf[0] as char
 }

pub struct Lex<R> {
 input: R,

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

64 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#input-type
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#input-type
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#use-read
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#use-read
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#use-read
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#use-read
https://doc.rust-lang.org/std/io/trait.Read.html
https://doc.rust-lang.org/std/io/trait.Read.html
https://doc.rust-lang.org/std/io/trait.Read.html
https://doc.rust-lang.org/std/io/trait.Read.html

Correspondingly, the implementation part should also be changed:

Added <R: Read> , indicating that the constraint of <R> is Read , that is, the type R must

support the Read trait. This is because the input.read() function is used in the

read_char() method.

The read_char() method itself does not need to be modified, and the input.read()

function can still be used normally, but its meaning has changed slightly:

• When the input used the File type before, the read() function called was a

method of the File type that implemented the Read trait;

• The read() function is now called on all types that implement the Read trait.

The statement here is rather convoluted, so you can ignore it if you don’t understand it.

In addition, generic definitions must be added to other places where Lex is used. For

example, the definition of ParseProto is modified as follows:

The parameter of its load() method is also changed from File to R :

load() supports R just to create Lex<R> , and ParseProto does not use R directly. But

<R> still needs to be added to the definition of ParseProto , which is a bit long-winded.

What's more verbose is that if there are other types that need to include ParseProto ,

then <R> should also be added. This is called generic type propagate. This problem can

be circumvented by defining dyn , which will also bring some additional performance

overhead. However, here ParseProto is an internal type and will not be exposed to other

types, so <R> in Lex is equivalent to only spreading one layer, which is acceptable, and

dyn will not be adopted.

Now that Read is supported, types other than files can be used. Next look at using stdin

like and string types.

Use Standard Input

The standard input std::io::Stdin type implements the Read trait, so it can be used

directly. Modify the main() function to use standard input:

impl<R: Read> Lex<R> {

pub struct ParseProto<R> {
 lex: Lex<R>,

pub fn load(input: R) -> Self {

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

65 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#use-standard-input
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#use-standard-input
https://doc.rust-lang.org/std/io/struct.Stdin.html
https://doc.rust-lang.org/std/io/struct.Stdin.html
https://doc.rust-lang.org/std/io/struct.Stdin.html
https://doc.rust-lang.org/std/io/struct.Stdin.html

Test source code from standard input:

Use String

The string type does not directly support the Read trait, because the string type itself

does not have the function of recording the read position. Read can be realized by

encapsulating std::io::Cursor type, which is used to encapsulates AsRef<[u8]> to

support recording position. Its definition is clear:

This type naturally implements the Read trait. Modify the main() function to use strings

as source code input:

Use BufReader

Reading and writing files directly is a performance-intensive operation. The above

implementation only reads one byte at a time, which is very inefficient for file types. This

frequent and small amount of file reading operation requires a layer of cache outside.

The std::io::BufReader type in the Rust standard library provides this functionality.

This type naturally also implements the Read trait, and also implements the BufRead

trait using the cache, providing more methods.

I originally defined Lex's input field as BufReader<R> type, instead of R type above. But

fn main() {
let input = std::io::stdin(); // standard input
let proto = parse::ParseProto::load(input);

 vm::ExeState::new().execute(&proto);
}

echo 'print "i am from stdin!"' | cargo r

pub struct Cursor<T> {
 inner: T,
 pos: u64,
}

fn main() {
let input = std::io::Cursor::new("print \"i am from string!\""); //

string+Cursor
let proto = parse::ParseProto::load(input);

 vm::ExeState::new().execute(&proto);
}

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

66 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#use-string-1
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#use-string-1
https://doc.rust-lang.org/std/io/struct.Cursor.html
https://doc.rust-lang.org/std/io/struct.Cursor.html
https://doc.rust-lang.org/std/io/struct.Cursor.html
https://doc.rust-lang.org/std/io/struct.Cursor.html
https://doc.rust-lang.org/src/std/io/cursor.rs.html#74-77
https://doc.rust-lang.org/src/std/io/cursor.rs.html#74-77
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#use-bufreader
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#use-bufreader
https://doc.rust-lang.org/std/io/struct.BufReader.html
https://doc.rust-lang.org/std/io/struct.BufReader.html
https://doc.rust-lang.org/std/io/struct.BufReader.html
https://doc.rust-lang.org/std/io/struct.BufReader.html

later it was found to be wrong, because when BufReader reads data, it first reads from

the source to the internal cache, and then returns. Although it is very practical for file

types, while the internal cache is unnecessary for string types, and there is one more

unnecessary memory copy. And also found that the standard input std::io::Stdin also

has its own cache already, so no need to add another layer. Therefore, BufReader is not

used inside Lex, but let the caller add it according to the needs (for example, for File

type).

Let’s modify the main() function to encapsulate BufReader outside the original File

type:

Give Up Seek

At the beginning of this section, we only require that the input type supports character-

by-character reading. In fact, it is not true, we also require that the read position can be

modified, that is, the Seek trait. This is what the original putback_char() method

requires, using the input.seek() method:

The application scenario of this function is that in lexical analysis, sometimes it is

necessary to judge the type of the current character according to the next character. For

example, after reading the character - , if the next character is still - , it is a comment;

otherwise it is Subtraction, at this time the next character will be put back into the input

source as the next Token. Previously introduced that the same is true for reading Token

in syntax analysis, and the current statement type must be judged according to the next

Token. At that time, the peek() function was added to Lex, which could "peek" at the

next Token without consuming it. The peek() here and the putback_char() above are

two ways to deal with this situation. The pseudo codes are as follows:

fn main() {
// omit parameter handling
let file = File::open(&args[1]).unwrap();

let input = BufReader::new(file); // encapsulate BufReader
let proto = parse::ParseProto::load(input);

 vm::ExeState::new().execute(&proto);
}

fn putback_char(&mut self) {
self.input.seek(SeekFrom::Current(-1)).unwrap();

 }

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

67 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#give-up-seek
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#give-up-seek
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#give-up-seek
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#give-up-seek
https://wubingzheng.github.io/build-lua-in-rust/en/ch02-03.assignment.html
https://wubingzheng.github.io/build-lua-in-rust/en/ch02-03.assignment.html

When using the File type before, because the seek() function is supported, it is easy to

support the put_back function later, so the second method is adopted. But now the

input has been changed to Read type, if input.seek() is still used, then the input is also

required to have std::io::Seek trait constraints. Among the three types we have tested

above, the cached file BufReader<File> and the string Cursor<String> both support

Seek , but the standard input std::io::Stdin does not support it, and there may be

other input types that support Read but not Seek (such as std::net::TcpStream). If we

add Seek constraints here, the road will be narrowed.

Since Seek cannot be used, there is no need to use the second method. You can also

consider the first method, which is at least consistent with Token's peek() function.

The more straightforward approach is to add an ahead_char: char field in Lex to save

the character peeked to, similar to the peek() function and the corresponding ahead:

Token field. It's simpler to do this, but there's a more general way of doing it in the Rust

standard library, using Peekable . Before introducing Peekable, let's look at the Bytes

type it depends on.

Use Bytes

The implementation of the read_char() function listed at the beginning of this section is

a bit complicated relative to its purpose (reading a character). I later discovered a more

abstract method, the bytes() method of the Read triat, which returns an iterator

Bytes , and each call to next() returns a byte. Modify the Lex definition as follows:

Modify the constructor and read_char() function accordingly.

// Method 1: peek()
if input.peek() == xxx then
 input.next() // Consume the peek just now
 handle(xxx)
end

// Method 2: put_back()
if input.next() == xxx then
 handle(xxx)
else
 input.put_back() // plug it back and read it next time
end

pub struct Lex<R> {
 input: Bytes::<R>,

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

68 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#use-bytes
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#use-bytes

The code for read_char() does not seem to be reduced here. But its main body is just

input.next() call, and the rest is the processing of the return value. After the error

handling is added later, these judgment processing will be more useful.

Use Peekable

The peekable() method in the Bytes document, which returns the Peekable type, is

exactly what we need. It based on the iterator, and we can "peek" a piece of data forward.

Its definition is clear:

To this end, modify the definition of Lex as follows:

Modify the constructor accordingly, and add the peek_char() function:

impl<R: Read> Lex<R> {
pub fn new(input: R) -> Self {Lex {

 input: input.bytes(), // generate iterator Bytes
 ahead: Token::Eos,
 }
 }

fn read_char(&mut self) -> char {
match self.input.next() { // just call next(), simpler

Some(Ok(ch)) => ch as char,
Some(_) => panic!("lex read error"),
None => '\0',

 }
 }

pub struct Peekable<I: Iterator> {
 iter: I,

/// Remember a peeked value, even if it was None.
 peeked: Option<Option<I::Item>>,
}

pub struct Lex<R> {
 input: Peekable::<Bytes::<R>>,

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

69 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#use-peekable
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#use-peekable
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#use-peekable
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#use-peekable
https://doc.rust-lang.org/src/core/iter/adapters/peekable.rs.html#15-19
https://doc.rust-lang.org/src/core/iter/adapters/peekable.rs.html#15-19

Here input.peek() is basically the same as input.next() above, the difference is that

the return type is a reference. This is the same as the reason why the Lex::peek()

function returns &Token , because the owner of the returned value is still input, and it

does not move out, but just "peek". But here we are of char type, which is Copy, so

directly dereference *ch , and finally return char type.

Summary

So far, we have completed the optimization of the input type. From the beginning, only

the File type is supported, and finally the Read trait is supported. There is not much

content to sort out, but in the process of realization and exploration at the beginning, it

took a lot of effort to bump into things. In this process, I also thoroughly figured out some

basic types in the standard library, such as Read , BufRead , BufReader , also discovered

and learned the Cursor and Peekable types, and also learned more about the official

website documents way of organization. Learning the Rust language by doing is the

ultimate goal of this project.

impl<R: Read> Lex<R> {
pub fn new(input: R) -> Self {

 Lex {
 input: input.bytes().peekable(), // generate iterator Bytes
 ahead: Token::Eos,
 }
 }

fn peek_char(&mut self) -> char {
match self. input. peek() {

Some(Ok(ch)) => *ch as char,
Some(_) => panic!("lex peek error"),
None => '\0',

 }
 }

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

70 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#summary-1
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#summary-1

Unicode and UTF-8

The previous sections of this chapter refine the string-related content, clarifying some

issues, but also introducing some confusion. For example, the definitions of the three

string types in Value , some are of [u8] type, some are of String type:

Another example is the mixed use of "byte" and "character" in the previous section. The

same is true for the lexical analysis code, which reads bytes of type u8 from the input

character stream, but converts them to characters of type char via as .

The reason these confusions haven't caused problems so far is because our test

programs only involve ASCII characters. Problems arise if other characters are involved.

For example, for the following Lua code:

The execution result is wrong:

The output is not the expected 你好 , but ä½ å¥½ . Let's explain the reason for this

"garbled code" and fix this problem.

Unicode and UTF-8 Concepts

These two are very general concepts, and only the most basic introduction is given here.

Unicode uniformly encodes most of the characters in the world. Among them, in order to

pub enum Value {
 ShortStr(u8, [u8; SHORT_STR_MAX]), // [u8] type
 MidStr(Rc<(u8, [u8; MID_STR_MAX])>), // [u8] type
 LongStr(Rc<String>), // String type

fn read_char(&mut self) -> char {
match self. input. next() {

Some(Ok(ch)) => ch as char, // u8 -> char

print "你好"

$ cargo r -q -- test_lua/nihao.lua
constants: [print, ä½ å¥½]
byte_codes:
 GetGlobal(0, 0)
 LoadConst(1, 1)
 Call(0, 1)
ä½ å¥½

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

71 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#unicode-and-utf-8
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#unicode-and-utf-8
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#unicode-and-utf-8-concepts
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#unicode-and-utf-8-concepts

be compatible with the ASCII code, the encoding of the ASCII character set is consistent.

For example, the ASCII and Unicode encodings of the English letter p are both 0x70, and

U+0070 is written in Unicode. The Unicode encoding of Chinese 你 is U+4F60 .

Unicode just numbers the character, while how the computer stores it is another matter.

The easiest way is to store directly according to the Unicode encoding. Since Unicode

currently supports more than 140,000 characters (still increasing), it needs at least 3 bytes

to represent, so the English letter p is 00 00 70 , and the Chinese 你 is 00 4F 60 . The

problem with this method is that 3 bytes are required for the ASCII part, which (for

English) is wasteful. So there are other encoding methods, UTF-8 is one of them. UTF-8 is

a variable-length encoding. For example, each ASCII character only occupies 1 byte. Here

the encoding of the English letter p is still 0x70, and it is written as \x70 according to

UTF-8; while each Chinese character occupies 3 bytes, for example, the UTF-8 encoding of

Chinese 你 is \xE4\xBD\xA0 . The more detailed encoding rules of UTF-8 are omitted

here. Here are a few examples:

Garbled Code

After introducing the coding concepts, let’s analyze the reasons for the garbled characters

in the Lua test code at the beginning of this section. Use hexdump to view source code

files:

The last line is the comment I added, indicating each Unicode text. You can see that the

encoding of p and 你 is consistent with the UTF-8 encoding introduced above. Indicates

that this file is UTF-8 encoded. How the file is encoded depends on the text editor and

operating system used.

Our current lexical analysis reads "bytes" one by one, so for the Chinese 你 , it is

considered by the lexical analysis to be 3 independent bytes, namely e4 , bd and a0 .

Then use as to convert to char . Rust's char is Unicode encoded, so we get 3 Unicode

characters. By querying Unicode, we can get these 3 characters are ä , ½ and (the last

one is a blank character), which is the first half of the "garbled characters" we

char | Unicode | UTF-8
-----+---------+---------------
p | U+0070 | \x70
r | U+0072 | \x72

你 | U+4F60 | \xE4\xBD\xA0

好 | U+597D | \xE5\xA5\xBD

$ hexdump -C test_lua/nihao.lua
00000000 70 72 69 6e 74 20 22 e4 bd a0 e5 a5 bd 22 0a |print "......".|

p r i n t " |--你---| |--好---| "

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

72 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#garbled-code
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#garbled-code

encountered at the beginning. The following 好 corresponds to the second half of the

garbled characters. The 6 characters represented by these 6 bytes are sequentially

pushed into Token::String (Rust String type), and finally printed out by println! .

Rust's String type is UTF-8 encoded, but this does not affect the output.

Summarize the process of garbled characters:

• The source file is UTF-8 encoded;

• Read byte by byte, at this time UTF-8 encoding has been fragmented;

• Each byte is interpreted as Unicode, resulting in garbled characters;

• Storage and printing.

You can also verify it again through Rust coding:

Click on the upper right corner to run and see the result.

The core of the garbled problem lies in the conversion of "byte" to "char". So there are 2

workarounds:

1. When reading the source code, modify it to read "char" one by one. This solution

has bigger problems:

◦ The input type of Lex we introduced in the previous section is Read trait,

which only supports reading by "byte". If you want to read according to the

"character char", you need to convert it to the String type first, and you need

the BufRead trait, which has stricter requirements for input, such as

Cursor<T> encapsulated outside the string. not support.

◦ If the source code input is UTF-8 encoding, and finally Rust’s storage is also

UTF-8 encoding, if it is read according to the Unicode encoding “character

char”, then it needs two meaningless steps from UTF-8 to Unicode and then to

let s = String::from("print hello"); // Rust's String is UTF-8 encoded,
so it can simulate Lua source files

println!("string: {}", &s); // normal output
println!("bytes in UTF-8: {:x?}", s.as_bytes()); // View UTF-8 encoding

print!("Unicode: ");
for ch in s.chars() { // Read "characters" one by one, check the Unicode

encoding
print!("{:x} ", ch as u32);

 }
println!("");

let mut x = String::new();
for b in s.as_bytes().iter() { // read "bytes" one by one

 x.push(*b as char); // as char, bytes are interpreted as Unicode,
resulting in garbled characters
 }

println!("wrong: {}", x);

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

73 of 314 10/23/23, 08:47

UTF-8 conversion.

◦ There is another most important reason, which will be discussed soon, Lua

strings can contain arbitrary data, not necessarily legal UTF-8 content, and may

not be correctly converted to "character char" .

2. When reading the source code, still read byte by byte; when saving, it is no longer

converted to "character char", but directly saved according to "byte". This makes it

impossible to continue to use Rust's String type to save, the specific solution is

shown below.

It is obvious (it just seems obvious now. I was confused at the beginning, and tried for a

long time) should choose the second option.

String Definition

Now let's see the difference between the contents of strings in Lua and Rust languages.

Lua introduction to strings: We can specify any byte in a short literal string. In other

words, Lua strings can represent arbitrary data. Rather than calling it a string, it is better

to say that it is a series of continuous data, and does not care about the content of the

data.

And the introduction of the Rust string String type: A UTF-8–encoded, growable string.

Easy to understand. Two features: UTF-8 encoding, and growable. Lua's strings are

immutable, Rust's are growable, but this distinction is beyond the scope of this

discussion. Now the focus is on the former feature, which is UTF-8 encoding, which

means that Rust strings cannot store arbitrary data. This can be better observed through

the definition of Rust's string:

You can see that String is the encapsulation of Vec<u8> type. It is through this

encapsulation that the data in vec is guaranteed to be legal UTF-8 encoding, and no

arbitrary data will be mixed in. If arbitrary data is allowed, just define the alias type

String = Vec<u8>; directly.

To sum up, Rust's string String is only a subset of Lua string; the Rust type

corresponding to the Lua string type is not String , but Vec<u8> that can store arbitrary

data.

pub struct String {
 vec: Vec<u8>,
}

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

74 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#string-definition-1
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#string-definition-1
https://www.lua.org/manual/5.4/manual.html#3.1
https://www.lua.org/manual/5.4/manual.html#3.1
https://doc.rust-lang.org/std/string/struct.String.html
https://doc.rust-lang.org/std/string/struct.String.html

Modify the Code

Now that we have figured out the cause of the garbled characters and analyzed the

difference between Rust and Lua strings, we can start modifying the interpreter code. The

places that need to be modified are as follows:

• The type associated with Token::String in lexical analysis is changed from String

to Vec<u8> to support arbitrary data, not limited to legal UTF-8 encoded data.

• Correspondingly, the type associated with Value::LongStr is also changed from

String to Vec<u8> . This is consistent with the other two string types ShortStr and

MidStr.

• In lexical analysis, the original reading functions peek_char() and read_char() are

changed to peek_byte() and next_byte() respectively, and the return type is

changed from "char" to "byte". It turns out that although the name is char , it

actually reads "bytes" one by one, so there is no need to modify the function

content this time.

• In the code, the original matching character constant such as 'a' should be

changed to a byte constant such as b'a' .

• If the original read_char() reads to the end, it will return \0 , because \0 is

considered to be a special character at that time. Now Lua's string can contain any

value, including \0 , so \0 cannot be used to indicate the end of reading. At this

point, Rust's Option is needed, and the return value type is defined as Option<u8> .

But this makes it inconvenient to call this function, requiring pattern matching (if

let Some(b) =) every time to get out the bytes. Fortunately, there are not many

places where this function is called. But another function peek_byte() is called in

many places. It stands to reason that the return value of this function should also be

changed to Option<u8> , but in fact the bytes returned by this function are used to

"look at it", as long as it does not match several possible paths, it can be regarded as

No effect. So when this function reads to the end, it can still return \0 , because \0

will not match any possible path. If you really read to the end, then just leave it to

the next next_byte() to process.

It is the inconvenience brought by Option (it must be matched to get the

value) that withdraws its value. In my C language programming experience, the

handling of this special case of function return is generallyIt is represented by

a special value, such as NULL for the pointer type, and 0 or -1 for the int

type. This brings two problems: one is that the caller may not handle this

special value, which will directly lead to bugs; the other is that these special

values may later become ordinary values (for example, our \0 this time is a

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

75 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#modify-the-code
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#modify-the-code

typical example), then all places that call this function must be modified. Rust's

Option perfectly solves these two problems.

• In lexical analysis, strings support escape. This part is all boring character

processing, and the introduction is omitted here.

• Add impl From<Vec<u8>> for Value to convert the string constant in

Token::String(Vec<u8>) to Value type. This also involves a lot of details of Vec

and strings, which is very cumbersome and has little to do with the main line. The

following two sections will be devoted to it.

Conversion from &str, String, &[u8], Vec to Value

The conversion of String and &str to Value has been implemented before. Now add

Vec<u8> and &[u8] to Value conversion. The relationship between these 4 types is as

follows:

• String is an encapsulation of Vec<u8> . The encapsulated Vec<u8> can be

returned by into_bytes() .

• &str is a slice of String (can be considered a reference?).

• &[u8] is a slice of Vec<u8> .

So String and &str can depend on Vec<u8> and &[u8] respectively. And it seems that

Vec<u8> and &[u8] can also depend on each other, that is, only one of them can be

directly converted to Value . However, this will lose performance. analyse as below:

• Source type: Vec<u8> is owned, while &[u8] is not.

• Destination type: Value::ShortStr/MidStr only needs to copy the string content

(into Value and Rc respectively), without taking ownership of the source data. And

Value::LongStr needs to take ownership of Vec .

2 source types, 2 destination types, 4 conversion combinations are available:

 slice
 &[u8] <---------> Vec<u8>
 ^
 |encapsulate
 slice |
 &str <---------> String

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

76 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#conversion-from-str-string-u8-vec-to-value
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#conversion-from-str-string-u8-vec-to-value
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#conversion-from-str-string-u8-vec-to-value
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#conversion-from-str-string-u8-vec-to-value

If we directly implement Vec<u8> , and for &[8] , first create Vec<u8> through

.to_vec() and then indirectly convert it to Value . So for the first case above, only the

content of the string needs to be copied, and the Vec created by .to_vec() is wasted.

If we directly implement &[8] , and for Vec<u8> , it is first converted to &[u8] by

reference and then indirectly converted to Value . Then for the fourth case above, it is

necessary to convert the reference to &u[8] first, and then create a Vec through

.to_vec() to obtain ownership. One more unnecessary creation.

So for the sake of efficiency, it is better to directly implement the conversion of Vec<u8>

and &[u8] to Value . However, maybe the compiler will optimize these, and the above

considerations are nothing to worry about. However, this can help us understand the two

types Vec<u8> and &[u8] more deeply, and the concept of ownership in Rust. The final

conversion code is as follows:

 | Value::ShortStr/MidStr | Value::LongStr
----------+-------------------------+-----------------------
 &[u8] | 1. Copy string content | 2. Create a Vec and allocate memory
 Vec<u8> | 3. Copy string content | 4. Transfer ownership

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

77 of 314 10/23/23, 08:47

Reverse Conversion

The conversion from Value to String and &str has been implemented before. Now to

add the conversion to Vec<u8> . First list the code:

// convert &[u8], Vec<u8>, &str and String into Value
impl From<&[u8]> for Value {

fn from(v: &[u8]) -> Self {

vec_to_short_mid_str(v).unwrap_or(Value::LongStr(Rc::new(v.to_vec())))
 }
}
impl From<&str> for Value {

fn from(s: &str) -> Self {
 s.as_bytes().into() // &[u8]
 }
}

impl From<Vec<u8>> for Value {
fn from(v: Vec<u8>) -> Self {

 vec_to_short_mid_str(&v).unwrap_or(Value::LongStr(Rc::new(v)))
 }
}
impl From<String> for Value {

fn from(s: String) -> Self {
 s.into_bytes().into() // Vec<u8>
 }
}

fn vec_to_short_mid_str(v: &[u8]) -> Option<Value> {
let len = v.len();
if len <= SHORT_STR_MAX {

let mut buf = [0; SHORT_STR_MAX];
 buf[..len].copy_from_slice(&v);

Some(Value::ShortStr(len as u8, buf))

 } else if len <= MID_STR_MAX {
let mut buf = [0; MID_STR_MAX];

 buf[..len].copy_from_slice(&v);
Some(Value::MidStr(Rc::new((len as u8, buf))))

 } else {
None

 }
}

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

78 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#reverse-conversion-1
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#reverse-conversion-1

• Since the three strings of Value are all consecutive u8 sequences, it is easy to

convert to &[u8] .

• The conversion to &str needs to be processed by std::str::from_utf8() to

handle the &[u8] type just obtained. This function does not involve new memory

allocation, but only verifies the validity of the UTF-8 encoding. If it is illegal, it will fail,

and here we panic directly through unwrap() .

• Conversion to String , through String::from_utf8_lossy() to process the &[u8]

type just obtained. This function also verifies the legality of UTF-8 encoding, but if

the verification fails, a special character u+FFFD will be used to replace the illegal

data. But the original data cannot be modified directly, so a new string will be

created. If the verification is successful, there is no need to create new data, just

return the index of the original data. The return type Cow of this function is also

worth learning.

The different processing methods of the above two functions are because &str has no

ownership, so new data cannot be created, but an error can only be reported. It can be

seen that ownership is very critical in the Rust language.

The conversion from Value to String , the current requirement is only used when the

global variable table needs to be set. You can see that this conversion always calls

.to_string() to create a new string. This makes the optimization of strings in our

chapter (mainly Section 1) meaningless. Later, after introducing the Lua table structure,

the index type of the global variable table will be changed from String to Value , and

then the operation of the global variable table will not need this conversion. However,

impl<'a> From<&'a Value> for &'a [u8] {
fn from(v: &'a Value) -> Self {

match v {
 Value::ShortStr(len, buf) => &buf[..*len as usize],
 Value::MidStr(s) => &s.1[..s.0 as usize],
 Value::LongStr(s) => s,
 _ => panic!("invalid string Value"),
 }
 }
}

impl<'a> From<&'a Value> for &'a str {
fn from(v: &'a Value) -> Self {

 std::str::from_utf8(v.into()).unwrap()
 }
}

impl From<&Value> for String {
fn from(v: &Value) -> Self {

String::from_utf8_lossy(v.into()).to_string()
 }
}

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

79 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/ch03-01.string_type.html
https://wubingzheng.github.io/build-lua-in-rust/en/ch03-01.string_type.html

this conversion is still used in other places.

Test

So far, the function of Lua string is more complete. The test code at the beginning of this

section can also be output normally. More methods can be handled by escape, and

verified with the following test code:

Summarize

This chapter has learned the Rust string type, which involves ownership, memory

allocation, Unicode and UTF-8 encoding, etc., and deeply understands what is said in

"Rust Programming Language": Rust strings are complex because the string itself is

complex of. Through these learnings, Lua's string type is optimized, and generics and

From traits are also involved. Although it did not add new features to our Lua interpreter,

it also gained a lot.

print "tab:\thi" -- tab

print "\xE4\xBD\xA0\xE5\xA5\xBD" -- 你好

print "\xE4\xBD" -- invalid UTF-8
print "\72\101\108\108\111" -- Hello
print "null: \0." -- '\0'

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

80 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#test-4
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#test-4
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#summarize
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#summarize

Garbage Collection and Rc

In the above section String Definition, we used Rc to define the string type in Lua, which

involves an important topic: garbage collection(GC). Garbage collection is a very general

and in-depth topic. Here we only introduce the parts related to our interpreter

implementation.

GC vs RC

The Lua language manages memory automatically, meaning it releases unused memory

automatically through garbage collection. There are two main ways to implement

garbage collection: mark-and-sweep and reference counting (RC). Sometimes RC is not

considered GC, so the narrow GC refers to the former, that is, the mark-clear scheme. The

GC mentioned below in this section is its narrow meaning.

In comparison, RC has two disadvantages:

• It is impossible to judge circular references, which can lead to memory leaks. This is

fatal. In fact, Rc in Rust also has this problem. Rust's strategy for this is: it's up to

the programmer to avoid circular references.

• Performance is worse than GC. This is not absolute, but it seems to be the

mainstream view. The main reason is that each clone or drop operation needs to

update the reference counter, which in turn affects the CPU cache.

Based on the above reasons, the mainstream languages will not adopt the RC scheme,

but chose the GC scheme, including the official implementation version of Lua. However,

we still chose to use Rc in the definition of strings in this chapter, that is, to adopt the RC

scheme, because of two shortcomings of GC:

• Implement complex. Although it may be relatively simple to implement a simple GC

solution, it is very difficult to pursue performance. Many languages (such as Python,

Go, Lua) also continuously improve their GC during versions. It's hard to get there in

one step.

• More complex in Rust. Originally, the biggest feature of the Rust language is

automatic memory management. The manual memory management function of the

GC scheme is contrary to this feature of Rust, will make it more complicated. There

are many discussions and projects on the Internet about implementing GC with Rust

(such as 1, 2, [3](https://manishearth.github.io/blog/2021/04/05/a-tour-of-safe-

tracing-gc- designs-in-rust/), [4] (https://coredumped.dev/2022/04/11/implementing-

a-safe-garbage-collector-in-rust/), etc.), obviously beyond Rust beginners range of

capabilities.

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

81 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#garbage-collection-and-rc
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#garbage-collection-and-rc
https://wubingzheng.github.io/build-lua-in-rust/en/ch03-01.string_type.html
https://wubingzheng.github.io/build-lua-in-rust/en/ch03-01.string_type.html
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#gc-vs-rc
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#gc-vs-rc
https://doc.rust-lang.org/stable/book/ch15-06-reference-cycles.html
https://doc.rust-lang.org/stable/book/ch15-06-reference-cycles.html
https://doc.rust-lang.org/stable/book/ch15-06-reference-cycles.html
https://doc.rust-lang.org/stable/book/ch15-06-reference-cycles.html
https://zackoverflow.dev/writing/unsafe-rust-vs-zig/
https://zackoverflow.dev/writing/unsafe-rust-vs-zig/
https://manishearth.github.io/blog/2015/09/01/designing-a-gc-in-rust/
https://manishearth.github.io/blog/2015/09/01/designing-a-gc-in-rust/
https://crates.io/crates/gc
https://crates.io/crates/gc

In contrast, if you adopt the RC scheme, you only need to use Rc in Rust, and no

additional memory management is required. That is, the garbage collection part can be

avoided entirely.

Countermeasures for the two shortcomings of the above-mentioned RC scheme: one is

circular references, which can only be handed over to Lua programmers to avoid circular

references, but in common cases, such as a table setting itself as a metatable, we can

handle it specially to avoid memory leaks. The second is performance, and we can only

give up the pursuit of this aspect.

It is a difficult decision to adopt the RC scheme to realize garbage collection. Because the

goal of this project from the beginning is to fully comply with the Lua manual and be fully

compatible with the official implementation version. After adopting the RC scheme, the

scenario of circular reference cannot be handled, which destroys this goal. Due to my

limited ability, I have to do this for the time being. However, GC solutions may also be

tried in the future. Alternative GC schemes have very little impact on the rest of our

interpreter. Interested readers can try it out by themselves first.

Rc in Rust

Ok, now let's leave the topic of garbage collection and discuss Rc in Rust simply.

In many articles introducing Rust, it is mentioned that Rc should be avoided as much as

possible, because the unique ownership mechanism of Rust language not only provides

automatic memory management at compile time, but also optimizes program design.

Other languages that support pointers (such as C, C++) can use pointers to point at will,

and each object may be pointed to by many other objects, and the entire program can

easily form a chaotic "Object Sea". However, Rust's ownership mechanism forces Rust

programmers to have only one owner for each object when designing a program, and the

entire program forms a clear "Object Tree". In most scenarios, the latter (Object Tree) is

obviously a better design. However, Rc breaks this specification, and the whole program

becomes a chaotic "Object Sea" again. So try to avoid using Rc .

I agree with this point of view very much. In the process of implementing this Lua

interpreter project, in order to follow Rust's ownership mechanism, I had to adjust the

previous C language design ideas, and the adjusted results were often indeed clearer.

From a certain point of view, the Lua interpreter project can be divided into two parts:

• The interpreter itself, mainly lexical analysis and syntax analysis;

• The Lua code to be interpreted and executed, including the value, stack, and preset

execution flow corresponding to the bytecode, which is the virtual machine part.

For the former part, we fully follow the design requirements of Object Tree and strive for

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

82 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#rc-in-rust
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#rc-in-rust

a clear program structure. For the latter, since we cannot limit the Lua code written by

Lua programmers (for example, Lua code can easily realize the data structure of the

graph, which obviously does not conform to Object Tree), so we will not go into this part

pursue Object Tree. Even if GC is used to achieve garbage collection, it will inevitably

involve a lot of unsafe code, which is more contrary to the design intent of Rust than Rc .

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

83 of 314 10/23/23, 08:47

Table

This chapter implements the only data structure in Lua: the table. The definition,

construction, and reading and writing of tables are completed in sequence.

In order to realize the write operation, that is, the assignment of table members, the key

data structure ExpDesc is introduced in the syntax analysis stage.

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

84 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#table
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#table

Table Definition

Lua's table is externally represented as a unified hash table, and its index can be a

number, a string, or all other Value types except nil and Nan . However, for

performance considerations, there is a special treatment for numeric types, that is, an

array is used to store items indexed by consecutive numbers. So in the implementation,

the table is actually composed of two parts: an array and a hash table. For this we define

the table:

In order to support the characteristics of the meta table, other fields will be added in the

future, which will be ignored here.

The table (and thread, UserData, etc. introduced later) type in the Lua language does not

represent the object data itself, but just a reference to the object data, all operations on

table types are references to operations. For example, the assignment of a table only

copies the reference of the table, rather than "deep copying" the data of the entire table.

So the table type defined in Value cannot be Table , but must be a reference or a

pointer. When the string type was defined in the previous chapter, Rc was introduced

and references and pointers were discussed. For the same reason, the pointer Rc is also

used to encapsulate Table this time. In addition, RefCell needs to be introduced here

to provide internal mutability. In summary, the table type is defined as follows:

The definition of the hash table part in Table is HashMap<Value, Value> , that is, the type

of index and value are Value both. The index type of HashMap is required to implement

the two traits Eq and Hash . This is also easy to understand. The working principle of the

hash table is to quickly locate by calculating the hash value (Hash) of the index when

inserting and searching, and to handle hash conflicts by comparing the index (Eq). Next,

implement these two traits.

Eq trait

We have implemented the PartialEq trait for Value before, which compares whether

two Values are equal, or we can use the == operator on the Value type. The requirement

of Eq is higher, which requires reflexivity on the basis of PartialEq , that is, it is required

pub struct Table {
pub array: Vec<Value>,
pub map: HashMap<Value, Value>,

}

pub enum Value {
 Table(Rc<RefCell<Table>>),

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

85 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#table-definition
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#table-definition
https://www.lua.org/manual/5.4/manual.html#2.1
https://www.lua.org/manual/5.4/manual.html#2.1
https://wubingzheng.github.io/build-lua-in-rust/en/ch03-01.string_type.html
https://wubingzheng.github.io/build-lua-in-rust/en/ch03-01.string_type.html
https://doc.rust-lang.org/stable/book/ch15-05-interior-mutability.html
https://doc.rust-lang.org/stable/book/ch15-05-interior-mutability.html
https://doc.rust-lang.org/std/collections/struct.HashMap.html
https://doc.rust-lang.org/std/collections/struct.HashMap.html
https://doc.rust-lang.org/std/collections/struct.HashMap.html
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#eq-trait
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#eq-trait
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#eq-trait
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#eq-trait

to satisfy x==x for any value x of this type. In most cases, it is reflexive, but there are

also counterexamples. For example, in floating-point numbers, Nan != Nan , so although

the floating-point type implements PartialEq , it does not implement Eq . Although our

Value type includes floating-point numbers, since the Lua language prohibits the use of

Nan as an index (specifically, we will judge whether the index is Nan when the virtual

machine performs a table insertion operation), it can be considered that Value type

satisfies reflexivity. For types that satisfy reflexivity, we just tell Rust that it does, no

special implementation is required:

Hash trait

Most of the basic types in Rust have already implemented the Hash trait, and we only

need to call .hash() for each type according to the semantics.

The code to implement the Hash trait is as follows:

Many types, such as bool , Rc pointers, etc., have already implemented the hash

method, but the floating-point type f64 does not. The reason is also because of Nan .

Here is a detailed [discussion](https: //internals.rust-lang.org/t/f32-f64-should-implement-

hash/5436/2). It has been stated in the Eq trait section that Lua prohibits the use of Nan

as an index, we can ignore Nan and the default floating-point type can be hashed. One

way is to treat the floating-point number as a piece of memory for hashing. Here we

choose to convert to the simpler integer i64 for hashing.

impl Eq for Value {}

impl Hash for Value {
fn hash<H: Hasher>(&self, state: &mut H) {

match self {
 Value::Nil => (),
 Value::Boolean(b) => b.hash(state),
 Value::Integer(i) => i.hash(state),
 Value::Float(f) => // TODO try to convert to integer

unsafe {
 mem::transmute::<f64, i64>(*f).hash(state)
 }
 Value::ShortStr(len, buf) => buf[..*len as usize].hash(state),
 Value::MidStr(s) => s.1[..s.0 as usize].hash(state),
 Value::LongStr(s) => s.hash(state),
 Value::Table(t) => Rc::as_ptr(t).hash(state),
 Value::Function(f) => (*f as *const usize).hash(state),
 }
 }
}

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

86 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#hash-trait
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#hash-trait
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#hash-trait
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#hash-trait

This conversion uses the mem::transmute() function of the standard library, and this

function is unsafe . We can clearly know that this conversion is safe (really?), so we can

use this unsafe with confidence.

When I first learned the Rust language, I saw that the description of some libraries

clearly stated that "unsafe code is not included", and I felt that this is a very proud

feature. So when I started this project, I also hoped not to have any unsafe code. But

now it seems that unsafe is not a scourge. It may be similar to goto in C language.

As long as it is used reasonably, it can bring great convenience.

For the string type, the hash needs to be calculated for the string content. For the table

type, only the hash of the pointer needs to be calculated, and the contents of the table

are ignored. This is because string comparisons are content comparisons, and table

comparisons are comparisons of table references.

Debug and Display traits

Because Rust's matches are exhaustive, so the compiler will remind us to add the Table

type in the Debug trait:

There are 2 lines in the code block. Line 1 uses borrow() , which is a dynamic reference to

RefCell type, to ensure that there are no other variable references. This dynamic

reference introduces additional runtime overhead relative to most compile-time checks in

Rust.

In the official implementation of Lua, the output format of the table type is the address of

the table, which can be used for simple debugging. We have increased the length of the

array and hash table parts of the table here, which is more convenient for debugging. In

addition, we implement the Display trait for Value, which is used for the official output

of print :

 Value::Table(t) => {
let t = t.borrow();
write!(f, "table:{}:{}", t.array.len(), t.map.len())

 }

impl fmt::Display for Value {
fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {

match self {
 Value::Table(t) => write!(f, "table: {:?}", Rc::as_ptr(t)),

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

87 of 314 10/23/23, 08:47

https://www.lua.org/manual/5.4/manual.html#3.4.4
https://www.lua.org/manual/5.4/manual.html#3.4.4
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#debug-and-display-traits
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#debug-and-display-traits
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#debug-and-display-traits
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#debug-and-display-traits
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#debug-and-display-traits
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#debug-and-display-traits
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#debug-and-display-traits
https://doc.rust-lang.org/stable/book/ch06-02-match.html#matches-are-exhaustive
https://doc.rust-lang.org/stable/book/ch06-02-match.html#matches-are-exhaustive

Table Construction

This section describes the construction of tables. The construction supports 3 types: list

type, record type, and general type. See the following sample codes respectively:

Let's first look at how the official implementation of Lua handles the construction of

tables. The output of luac is as follows:

The bytecodes related to the construction of the table are lines 4 to 12:

• Line 4, NEWTABLE, is used to create a table. There are 3 parameters in total, which

are the position of the new table on the stack, the length of the array part, and the

part length of the hash table.

• Line 5, I don't understand it, ignore it for now.

• Lines 6, 7, and 8, three LOADIs, respectively load the values 100, 200, and 300 of the

array part to the stack for later use.

• Lines 9 and 10, bytecode SETFIELD, insert x and y into the hash table part

respectively.

• Line 11, bytecode SETTABLE, inserts the key into the hash table.

• Line 12, SETLIST, loads the data loaded on the stack in lines 6-8 above, and inserts it

into the array at one time.

The stack situation corresponding to the execution of each bytecode is as follows:

local key = "kkk"
print { 100, 200, 300; -- list style
 x="hello", y="world"; -- record style
 [key]="vvv"; -- general style
}

$ luac -l test_lua/table.lua

main <test_lua/table.lua:0,0> (14 instructions at 0x600001820080)
0+ params, 6 slots, 1 upvalue, 1 local, 7 constants, 0 functions
 1 [1] VARARGPREP 0
 2 [1] LOADK 0 0 ; "kkk"
 3 [2] GETTABUP 1 0 1 ; _ENV "print"
 4 [2] NEWTABLE 2 3 3 ; 3
 5 [2] EXTRAARG 0
 6 [2] LOADI 3 100
 7 [2] LOADI 4 200
 8 [2] LOADI 5 300
 9 [3] SETFIELD 2 2 3k ; "x" "hello"
 10 [3] SETFIELD 2 4 5k ; "y" "world"
 11 [4] SETTABLE 2 0 6k ; "vvv"
 12 [5] SETLIST 2 3 0
 13 [2] CALL 1 2 1 ; 1 in 0 out
 14 [5] RETURN 1 1 1 ; 0 out

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

88 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#table-construction
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#table-construction

First of all, it can be seen that the table is constructed in real time by inserting members

one by one during the execution of the virtual machine. This is a bit beyond my

expectation (although I didn't think about the process before). I have previously written

code similar to the following:

It is natural to put days inside the day_of_week() function, because this variable is only

used inside this function. However, according to the realization of the above table

structure, every time this function is called, the table will be constructed in real time, that

is, the 7 dates will be inserted into the table. This cost is a bit high (8 string hashes and 1

string are required In comparison, at least 9 bytecodes are required, and there is more

than one memory allocation brought about by creating a table). It feels not even as fast as

comparing week by week names (an average of 4 string comparisons are required, and 2

bytecodes are compared for a total of 8). A better way is to put the days variable outside

the function (that is UpValue introduced later), and there is no need to construct a table

every time you enter the function, but in this way it is not a good programming practice to

put variables inside a function outside. Another approach (not supported by Lua's official

implementation) is to construct a table composed of all constants in the parsing stage,

and then just quote it later, but this will bring some complexity. No energy to finish by

now.

Back to the construction of the table, the processing methods for the array part and the

hash table part are different:

• The array part is to first load the values onto the stack in sequence, and finally insert

them into the array at one time;

• The hash table part is directly inserted into the hash table each time.

 | | /<--- 9.SETFILED
 +-------+ |<---10.SETFILED
4.NEWTABLE | { } |<----+--+<---11.SETTABLE
 +-------+ |
 6.LOADI | 100 |---->|
 +-------+ |12.SETLIST
 7.LOADI | 200 |---->|
 +-------+ |
 8.LOADI | 300 |---->/
 +-------+
 | |

local function day_of_week(day)
local days = {

"Sunday"=0, "Monday"=1, "Tuesday"=2,
"Wednesday"=3, "Thursday"=4, "Friday"=5,
"Saturday"=6,

 }
return days[day]

end

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

89 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/ch09-01.upvalue.html
https://wubingzheng.github.io/build-lua-in-rust/en/ch09-01.upvalue.html

One is batch and one is sequential. The reasons for the different methods are speculated

as follows:

• If the array part is also inserted one by one, then inserting certain types of

expressions requires 2 bytecodes. For example, for global variables, you need to use

GetGlobal bytecode to load it on the stack first, and then use a bytecode similar to

AppendTable to insert into the array, then inserting N values requires at most 2N

bytecodes . If you insert in batches, only N+1 bytecodes are needed for N values. So

bulk insert is better for the array part.

• As for the hash table part, each piece of data has two values of key and value. If the

batch method is also used, 2 bytecodes are required to load both values onto the

stack. And if it is inserted one by one, only one bytecode is needed in many cases.

For example, the last three items in the above sample code only correspond to one

bytecode. In this way, the batch method requires more bytecodes, so inserting one

by one is more suitable for the hash table part.

In this section, according to the official Lua implementation method, the following 4

bytecodes are correspondingly added:

However, the two bytecodes in the middle do not support the case where the value is a

constant, only the index on the stack is supported. We'll add optimizations to constants in

a later section.

Syntax Analysis

After introducing the principle of table construction, let's look at the specific

implementation. Look at the syntax analysis section first. The code is very long, but it is

just according to the above introduction, the logic is very simple. The code is posted here

for reference only, readers who are not interested can skip here.

pub enum ByteCode {
 NewTable(u8, u8, u8),
 SetTable(u8, u8, u8), // key is on the stack
 SetField(u8, u8, u8), // key is a string constant
 SetList(u8, u8),

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

90 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#syntax-analysis-3
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#syntax-analysis-3

fn table_constructor(&mut self, dst: usize) {
let table = dst as u8;
let inew = self.byte_codes.len();
self.byte_codes.push(ByteCode::NewTable(table, 0, 0)); // Create a new

table

let mut narray = 0;
let mut nmap = 0;
let mut sp = dst + 1;
loop {

match self. lex. peek() {
 Token::CurlyR => { // `}`

self. lex. next();
break;

 }
 Token::SqurL => { // `[` exp `]` `=` exp, general formula
 nmap += 1;

self. lex. next();

self.load_exp(sp); // key
self.lex.expect(Token::SqurR); // `]`
self.lex.expect(Token::Assign); // `=`
self. load_exp(sp + 1); // value

self.byte_codes.push(ByteCode::SetTable(table, sp as u8, sp
as u8 + 1));
 },
 Token::Name(_) => { // Name `=` exp | Name
 nmap += 1;

let key = if let Token::Name(key) = self. lex. next() {
self. add_const(key)

 };
if self.lex.peek() == &Token::Assign { // Name `=` exp,

recorded
self. lex. next();
self. load_exp(sp); // value
self.byte_codes.push(ByteCode::SetField(table, key as

u8, sp as u8));
 } else {
 narray += 1;

self.load_exp_with_ahead(sp, Token::Name(key)); // exp,
list

 sp += 1;
if sp - (dst + 1) > 50 { // too many, reset it

self.byte_codes.push(ByteCode::SetList(table, (sp -
(dst + 1)) as u8));
 sp = dst + 1;
 }
 }
 },
 _ => { // exp, list
 narray += 1;

self. load_exp(sp);

 sp += 1;

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

91 of 314 10/23/23, 08:47

The NewTable bytecode is generated at the beginning of the function, but since the

number of members of the array and the hash table is not yet known, the latter two

parameters are temporarily filled with 0. And write down the position of this bytecode,

and modify the parameters at the end of the function.

The intermediate loop is to traverse all members of the table. There are 3 syntax types in

total:

• General type, [exp] = exp , key and value are both expressions, respectively

loaded to the sp and sp+1 positions of the stack through the load_exp() function,

and then generate SetTable bytecode;

• Record type, Name = exp , key is Name, which is a string constant, added to the

constant table, value is an expression, and finally generates SetField bytecode.

There is a place here that is related to Rust's ownership mechanism, that is, the key

obtained by matching the pattern branch Token::Name(key) of match

self.lex.peek() cannot be directly passed through add_const(* key) added to

the constant table. This is because peek() returns not Token itself, but a reference

to Token , which is returned by self.lex.peek() , so the associated self.lex and

self are also in the referenced state; calling self.add_const() is also a mut

reference to self , which violates the reference rules. The correct way is to abandon

the return value of peek() , but call self.lex.next() to return Token and re-

match. At this time, Rust's inspection is too strict, because the Token reference

returned by self.lex.peek() does not affect self.add_const() . It should be that

Rust has no ability to determine that there is no influence between the two.

if sp - (dst + 1) > 50 { // too many, reset it
self.byte_codes.push(ByteCode::SetList(table, (sp - (dst

+ 1)) as u8));
 sp = dst + 1;
 }
 },
 }

match self. lex. next() {Token::SemiColon | Token::Comma => (),
 Token::CurlyR => break,
 t => panic!("invalid table {t:?}"),
 }
 }

if sp > dst + 1 {
self.byte_codes.push(ByteCode::SetList(table, (sp - (dst + 1)) as

u8));
 }

// reset narray and nmap
self.byte_codes[inew] = ByteCode::NewTable(table, narray, nmap);

}

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

92 of 314 10/23/23, 08:47

• List type, exp , is loaded to the sp position of the stack, and sp is updated, waiting

for the last SetList to perform insertion. But you can't load data on the stack

infinitely, because this will cause the stack to reallocate memory all the time, so if

the current data on the stack exceeds 50, generate a SetList bytecode to clean up

the stack.

What needs to be explained here is that when the Name is parsed, it may be either a

record type or a list type. We need to peek the next Token to distinguish between the

two: if the next Token is = , it is a record type , otherwise it is tabular. The problem here is

that Name is already peeked, and the lexical analysis only supports peek one Token

because of [using Peekable](./ch03-03.read_input.md#use peekable), so it can only

Modify the expression parsing function load_exp() to support a Token read in advance,

and add load_exp_with_ahead() function for this purpose. In the entire Lua grammar,

there is only one place that needs to look forward to two Tokens.

This kind of behavior that needs to look forward to two Tokens to determine the

expression, I wonder if it is called LL(2)?

Virtual Machine Execution

The following is the virtual machine execution code of the newly added 4 bytecodes,

which is also very simple and can be skipped:

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

93 of 314 10/23/23, 08:47

https://en.wikipedia.org/wiki/LL_parser
https://en.wikipedia.org/wiki/LL_parser
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#virtual-machine-execution-1
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#virtual-machine-execution-1

The first bytecode NewTable is very simple and will not be introduced. The latter two

bytecodes SetTable and SetField are similar, and both need to get the mut reference

of the table through borrow_mut() . The final bytecode SetList encounters Rust’s

ownership problem again, and needs to explicitly call the clone() function on the list on

the stack to create a pointer to an independent list. If clone() is not called, then the

table variable obtained by the first line if let statement matching is a reference to

the member on the stack, that is, a reference to the stack, and this reference needs to

continue until the third line, so it cannot be released in advance; the second line calling

stack.drain() needs to obtain the variable reference of the stack, which conflicts with

the reference obtained by the table variable in the first line. Therefore, clone() needs

to generate a pointer to an independent table, so that the table variable matched in the

first line is only a reference to the table, and is separated from the reference to the stack,

thereby avoiding conflicts.

The mandatory clone() here increases performance consumption, but also avoids

potential bugs. For example, the stack location where the table is located may be

included in the subsequent stack.drain() , so the address becomes invalid, and then

the operation of inserting data into the table in the third subsequent line will be

 ByteCode::NewTable(dst, narray, nmap) => {
let table = Table::new(narray as usize, nmap as usize);
self.set_stack(dst, Value::Table(Rc::new(RefCell::new(table))));

 }
 ByteCode::SetTable(table, key, value) => {

let key = self.stack[key as usize].clone();
let value = self.stack[value as usize].clone();
if let Value::Table(table) = &self. stack[table as usize] {

 table.borrow_mut().map.insert(key, value);
 } else {

panic!("not table");
 }
 }
 ByteCode::SetField(table, key, value) => {

let key = proto.constants[key as usize].clone();
let value = self.stack[value as usize].clone();
if let Value::Table(table) = &self. stack[table as usize] {

 table.borrow_mut().map.insert(key, value);
 } else {

panic!("not table");
 }
 }
 ByteCode::SetList(table, n) => {

let ivalue = table as usize + 1;
if let Value::Table(table) = self.stack[table as usize].clone() {

let values = self. stack. drain(ivalue .. ivalue + n as usize);
 table.borrow_mut().array.extend(values);
 } else {

panic!("not table");
 }
 }

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

94 of 314 10/23/23, 08:47

abnormal. Of course, in the scenario of SetList , the syntax analysis will ensure that the

stack location cleaned by stack.drain() does not include the table, but the Rust

compiler does not know, and there is no guarantee that it will not be included in the

future. So clone() here completely eliminates this hidden danger, and it is worthwhile.

So far, we have completed the construction of the table, and the following sections will

introduce the reading and writing of the table.

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

95 of 314 10/23/23, 08:47

ExpDesc Concept

Before introducing the reading and writing of tables, this section first introduces

ExpDesc , the core data structure of syntax analysis.

Problems with Table Construction

There is a performance issue with the construction of the table implemented in the

previous section. For example, for the general type [exp] = exp , the expression

corresponding to the key and value will be loaded to the top of the stack through the

load_exp() function in turn as a temporary variable; then SetTable bytecode will be

generated, including The indices of the two temporary variables on top of the stack. code

show as below:

This is wasteful because certain expression types, such as local variables, temporary

variables, and constants, can be referenced directly without being loaded on the stack.

For example, the following Lua code:

According to the current implementation, the runtime stack and bytecode sequence are

as follows:

 Token::SqurL => { // `[` exp `]` `=` exp
 nmap += 1;

self. lex. next();

self.load_exp(sp); // load key to the top of the stack
self.lex.expect(Token::SqurR); // `]`
self.lex.expect(Token::Assign); // `=`
self.load_exp(sp + 1); // load value to the top of the stack

self.byte_codes.push(ByteCode::SetTable(table, sp as u8, sp as u8 +
1));
 },

local k = 'kkk'
local v = 'vvv'
local t = { [k] = v }

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

96 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#expdesc-concept
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#expdesc-concept
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#problems-with-table-construction
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#problems-with-table-construction

In fact, neither of these two temporary variables is needed, but only one bytecode is

needed: SetTable 2 0 1 , where the three parameters are the indexes of the table, key,

and value on the stack. This is also the way Lua is officially implemented, that is, to

directly refer to the index as much as possible, and avoid unnecessary temporary

variables. The runtime stack and bytecode sequences are as follows:

These two methods (whether to introduce temporary variables) correspond to two types

of virtual machines: stack-based and register-based.

Stack-based and Register-based

First list the bytecode of the current implementation in the above example:

In the current implementation, we can be sure that the key and value are to be loaded to

the top of the stack, so the first parameter (that is, the target address) in the two Move

bytecodes can be omitted; in addition, we can also be sure when setting the table, the key

and value must be at the top of the stack, so the last two parameters of SetTable

bytecode can also be omitted. So the bytecode sequence can be simplified as follows:

 +---------+
 0 | "kkk" |---\[1] Move 3 0
 +---------+ |
 1 | "vvv" |---|-\[2] Move 4 1
 +---------+ | |
 2 | { } |<--|-|---------\
 +---------+ | | |
 3 | "kkk" |<--/ | --\ |
 +---------+ | >--/[3] SetTable 2 3 4
 4 | "vvv" |<----/ --/
 +---------+
 | |

 +---------+
 0 | "kkk" |---\
 +---------+ >--\[1] SetTable 2 0 1
 1 | "vvv" |---/ |
 +---------+ |
 2 | { } |<------/
 +---------+
 | |

Move 3 0 # Load k to position 3. Now 3 is the top of the stack
Move 4 1 # Load v to position 4. Now 4 is the top of the stack
SetTable 2 3 4

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

97 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#stack-based-and-register-based
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#stack-based-and-register-based

This method of operating parameters through the top of the stack is called a stack-based

virtual machine. The virtual machines of many scripting languages such as Java and

Python are based on stacks. The method of directly indexing parameters in the bytecode

(such as SetTable 2 0 1) is called register-based virtual machine. The "register" here is

not a register in the computer CPU, but a virtual concept. For example, in our Lua

interpreter, it is a register implemented by a stack and a constant table. Lua was the first

(official virtual machine) register-based mainstream language.

The above is the write statement through the table as an example. Let's introduce

another example that is easier to understand, the addition statement (although we have

not implemented addition yet, it is indeed easier to understand). For the following Lua

code:

The bytecode generated by a stack-based virtual machine might look like this:

The bytecode generated by a register-based virtual machine might look like this:

It can be seen intuitively that the number of bytecode sequences based on the register

virtual machine is small, but each bytecode is longer. It is generally believed that the

performance of register-based bytecode is slightly better, but the implementation is more

complicated. A more detailed description and comparison of these two types is beyond

the scope of this article, and I have no ability to introduce them. The reason why I chose

register-based in this project is simply because that's what the official Lua

implementation does. I didn't know these two ways until I even wrote part of the project.

Next, just continue to follow the register-based method instead of entangled with the

stack-based method.

One thing to note is that the register-based method is just trying to avoid using the

Push 0 # load k to the top of the stack
Push 1 # load v to the top of the stack
SetTable 2 # Use the two values at the top of the stack as key and value,
 # and set them to the table at position 2

local
local a = 1
local b = 2
r = a + b

Push 1 # load a to the top of the stack
Push 2 # load b to the top of the stack
Add # Pop and add the 2 numbers at the top of the stack, and push the
result to the top of the stack
Pop 0 # Pop the result at the top of the stack and assign it to r

Add 0 1 2

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

98 of 314 10/23/23, 08:47

temporary variable on the top of the stack. It is also needed when necessary. How to

choose a register or a temporary variable will be described in detail later.

Intermediary ExpDesc

Since we want to follow the register-based method, why do we need to load both key and

value to the top of the stack and use the stack-based method in the construction of the

table in the previous section? It's because we can't implement a register-based approach

yet. Now load_exp() function directly generates bytecode and loads it to the specified

position of the stack after encountering Token. code show as below:

Therefore, when parsing the general-purpose writing statement of the above table, when

the expression of key and value is encountered, it is immediately loaded to the top of the

stack, and it becomes a stack-based method.

And if we want to realize the register-based method to generate bytecodes such as

SetTable 2 0 1 , when encountering key or value expressions, we cannot generate

bytecodes immediately, but need to save them temporarily and wait for the opportunity

When it is mature, deal with it according to the situation. Or use the Lua code at the

beginning of this section as an example:

The table construction statement in line 3 is parsed as follows:

• [, determined as a general formula;

• k , as a Name, first determine that it is a local variable, the index is 0, and then save

it as a key;

•] and = , as expected;

• v , as a Name, is also determined to be a local variable, the index is 1, and then

saved as a value;

fn load_exp(&mut self, dst: usize) {
let code = match self. lex. next() {

 Token::Nil => ByteCode::LoadNil(dst as u8),
 Token::True => ByteCode::LoadBool(dst as u8, true),
 Token::False => ByteCode::LoadBool(dst as u8, false),
 Token::Float(f) => self. load_const(dst, f),
 Token::String(s) => self. load_const(dst, s),

// omit other tokens
 };

self.byte_codes.push(code);
 }

local k = 'kkk'
local v = 'vvv'
local t = { [k] = v }

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

99 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#intermediary-expdesc
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#intermediary-expdesc

• At this point, an initialization statement is completed, and the indexes of the key and

value saved before are 0 and 1 respectively, so the bytecode SetTable 2 0 1 can

be generated.

The key here is "save the key/value". We are going to add this staging mechanism now. A

solution is to directly save the read Token. For example, in this example, the key and

value are saved as Token::Name("k") and Token::Name("v") respectively. But doing so

has several problems:

• A small problem is that Name may be a local variable or a global variable. We will

see later that the handling of these two variables is different, and Token::Name

cannot distinguish between these two types.

• The slightly bigger problem is that some expressions are more complex and contain

more than one Token, such as t.k , a+1 , foo() , etc., which cannot be represented

by a Token. To support tables in this chapter, we must support expression

statements such as t.k or even t.k.x.y .

• The bigger problem is that table reads t.k can at least be implemented in a stack-

based way, but table writes cannot. For example, t.k = 1 is the left part of the

assignment statement. When parsing, it must be saved first, then parse the rvalue

expression, and finally execute the assignment. To support the write statement of

the table, it is necessary to add this temporary storage mechanism first. This is why

this section must be inserted before supporting the read and write functions of the

table.

So, we need a new type to hold intermediate results. To this end we introduce ExpDesc

(the name comes from the official Lua implementation code):

Now it seems that its type is the type currently supported by the expression, but

Token::Name is split into Local and Global , so introducing this type is a bit of a fuss.

But in the next section to support the reading and writing of tables, as well as subsequent

statements such as calculation expressions and conditional jumps, ExpDesc will show its

talents!

The original parsing process is to directly generate bytecode from Token:

#[derive(Debug, PartialEq)]
enum ExpDesc {
 Nil,
 Boolean(bool),
 Integer(i64),
 Float(f64),

String(Vec<u8>),
 Local(usize), // on stack, including local and temporary variables
 Global(usize), // global variable
}

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

100 of 314 10/23/23, 08:47

Now that the ExpDesc layer is added in the middle, the parsing process becomes:

Syntax Analysis and ExpDesc

ExpDesc is very important, and I will introduce it from another angle here.

Section 1.1 The general compilation process is introduced in the basic compilation

principle:

We still use the above addition code as an example:

According to the above general compilation process, for the addition statement in the last

line, the syntax analysis will get the syntax tree:

Then during semantic analysis, first see + , and know that this is an addition statement,

so you can directly generate bytecode: Add ? 1 2 . Among them, ? is the target address

of the addition, which is handled by the assignment statement and is ignored here; 1

and 2 are the stack indexes of the two addends respectively.

 Token::Integer -> ByteCode::LoadInt
 Token::String -> ByteCode::LoadConst
 Token::Name -> ByteCode::Move | ByteCode::GetGlobal
 ...

 Token::Integer -> ExpDesc::Integer -> ByteCode::LoadInt
 Token::String -> ExpDesc::String -> ByteCode::LoadConst
 Token::Name -> ExpDesc::Local -> ByteCode::Move
 Token::Name -> ExpDesc::Global -> ByteCode::GetGlobal
 ...

 Lexical Analysis Syntax Analysis Semantic Analysis
Character Stream --------> Token Stream --------> Syntax Tree -------->
Intermediate Code ...

local
local a = 1
local b = 2
r = a + b

 |
 V
 +
 / \
 a b

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

101 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#syntax-analysis-and-expdesc
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#syntax-analysis-and-expdesc
https://wubingzheng.github.io/build-lua-in-rust/en/ch01-01.principles.html
https://wubingzheng.github.io/build-lua-in-rust/en/ch01-01.principles.html

But our current approach, which is also the official implementation of Lua, omits the

"semantic analysis" step, directly generates intermediate code from syntax analysis, and

generates code while analyzing. Then when syntactic analysis, you can't have a global

perspective like the above-mentioned semantic analysis. For example, for the addition

statement a+b , when a is read, it is not known that it is an addition statement, so it can

only be saved first. When + is read, it is determined that it is an addition statement, and

then the second addend is read, and then bytecode is generated. We introduce an

intermediate layer ExpDesc for this purpose. So ExpDesc is equivalent to the role of the

"syntax tree" in the general process. It's just that the syntax tree is global, and ExpDesc is

local, and it is the smallest granularity.

It can be seen intuitively that this method of Lua omits the semantic analysis step, and

the speed should be slightly faster, but because there is no global perspective, the

implementation is relatively complicated. A more detailed description and comparison of

these two approaches is beyond the scope of this article. We choose to follow Lua's

official implementation method and choose the method of syntactic analysis to directly

generate bytecode.

Summary

This section introduces the concept of ExpDesc and describes its role. In the next section,

the existing code will be modified based on ExpDesc.

 Lexical Analysis Syntax Analysis
Character stream --------> Token stream ----(ExpDesc)---> intermediate code
...

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

102 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#summary-2
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#summary-2

ExpDesc Rewrite

The previous section introduced the concept of ExpDesc and introduced its function and

role. This section is based on ExpDesc to modify the existing code. This transformation

does not support new features, but only lays the foundation for the reading and writing

functions of the next table and more features to follow.

First of all, the most important thing is the function load_exp() for parsing expressions.

This function originally generated bytecode directly from Token. Now it needs to be split

into two steps: Token to ExpDesc, and generating bytecode from ExpDesc. Then, on this

basis, transform the table constructor and variable assignment statement.

exp()

Transform the load_exp() function step 1, Token to ExpDesc, create a new exp()

function, the code is as follows:

It is relatively simple, similar to the main structure of the previous load_exp() function,

or even simpler, that is, several Token types supported by the expression statement are

converted into the corresponding ExpDesc. Among them, Name and table construction

need further processing. Name is to be distinguished from a local variable or a global

variable by the simple_name() function. The processing of the table construction branch

becomes a lot more reasonable, [before] (./ch04-02.table_constructor.md#other scenes)

fn exp(&mut self) -> ExpDesc {
match self. lex. next() {

 Token::Nil => ExpDesc::Nil,
 Token::True => ExpDesc::Boolean(true),
 Token::False => ExpDesc::Boolean(false),
 Token::Integer(i) => ExpDesc::Integer(i),
 Token::Float(f) => ExpDesc::Float(f),
 Token::String(s) => ExpDesc::String(s),
 Token::Name(var) => self. simple_name(var),
 Token::CurlyL => self. table_constructor(),
 t => panic!("invalid exp: {:?}", t),
 }
 }

fn simple_name(&mut self, name: String) -> ExpDesc {
// search reversely, so new variable covers old one with same name
if let Some(ilocal) = self.locals.iter().rposition(|v| v == &name) {

 ExpDesc::Local(ilocal)
 } else {
 ExpDesc::Global(self. add_const(name))
 }
 }

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

103 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#expdesc-rewrite
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#expdesc-rewrite
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#exp
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#exp

need to add an ugly return in this branch, now because this function does not generate

bytes code, so this branch can also end naturally. However, although bytecode is no

longer needed, ExpDesc is required, so the table constructor table_constructor()

needs to return an ExpDesc. Because the newly created table is finally put on the stack, it

returns ExpDesc::Local(i) . Note that the ExpDesc::Local type does not just represent

"local variables", but "variables on the stack". The name "Local" is used to be consistent

with the official Lua code.

In addition to not generating bytecode, this function has another change compared with

load_exp() , that is, there is no dst parameter. In most cases, it is fine, but there is a

problem with the constructor of the table. Because the table construction process is to

create a table on the stack first, the bytecode generated by the subsequent initialization

statement needs to bring the index of the table on the stack as a parameter. For example

SetTable 3 4 5 , the first parameter is the index of the table on the stack. So the original

table_constructor() function needs a dst parameter. Now there is no such

parameter, what should I do? We can assume that all table constructions create new

tables at the top of the stack. So it is necessary to maintain the current top position of the

stack.

Stack Top sp

To maintain the current stack top position, first add sp indicating the current stack top in

ParseProto . In the past, the current position of the top of the stack was calculated in real

time wherever it was needed, but now it is changed to a global variable, and many places

are suddenly coupled. Later, as the characteristics increase, this coupling will become

larger and larger, and it will become more and more out of control. But it is too

cumbersome to pass the top position of the stack through parameters. In comparison, it

is more convenient to maintain a global stack top delegate, but be careful.

The stack has three functions: function calls, local variables, and temporary variables. The

first two have specific statements (function call statements and local variable definition

statements) for specific processing. The last one, temporary variables, are used in many

places, such as the table construction statement mentioned above, so they need to be

carefully managed when they are used, and they cannot affect each other. In addition,

because local variables also occupy the stack space, before parsing a statement each

time, the value of sp on the top of the stack is initialized to the number of current local

variables, which is where temporary variables are allowed to be used.

Let's look at the use of the sp in the table constructor table_constructor() :

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

104 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#stack-top-sp
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#stack-top-sp
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#stack-top-sp
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#stack-top-sp

Use the sp at the beginning of the function to replace the dst parameter passed in the

previous version as the location of the new table. Before the function ends, reset the top

position of the stack. In the following subsections, we will continue to introduce the use of

the sp of the stack when this function actually builds the table.

discharge()

The second step of transforming the load_exp() function is from ExpDesc to bytecode.

In fact, it is more accurate to say that ExpDesc is loaded onto the stack. We use the

function name discharge in the official Lua code to represent "loading".

fn table_constructor(&mut self) -> ExpDesc {
let table = self.sp; // Create a new table at the top of the stack
self.sp += 1; // update sp, if subsequent statements need temporary

variables, use the stack position behind the table

// omit intermediate construction code

self.sp = table + 1; // Before returning, set the sp on the top of
the stack, keep only the newly created table, and clean up other temporary
variables that may be used during construction
 ExpDesc::Local(table) // return the type of the table (temporary
variable on the stack) and the position on the stack
 }

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

105 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#discharge
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#discharge

This function is also very simple. Generate the corresponding bytecode according to

ExpDesc, and discharge the expression statement represented by ExpDesc onto the

stack. Note that the last line of this function updates the top position of the stack to the

next position of dst. In most cases, it is as expected. If it is not as expected, the caller

needs to update the top position of the stack after the function returns.

In addition to this most basic function, there are several helper functions. The

discharge() function is to force the expression discharge to the dst position of the

stack. But sometimes you just want to discharge the expression on the stack. If the

expression is already on the stack, such as ExpDesc::Local type, then you don’t need to

discharge it. A new function discharge_if_need() is introduced for this purpose. In most

cases, it doesn't even care where it is loaded, so create a new function discharge_top() ,

using the top position of the stack. The two function codes are as follows:

// discharge @desc into @dst, and set self.sp=dst+1
fn discharge(&mut self, dst: usize, desc: ExpDesc) {

let code = match desc {
 ExpDesc::Nil => ByteCode::LoadNil(dst as u8),
 ExpDesc::Boolean(b) => ByteCode::LoadBool(dst as u8, b),
 ExpDesc::Integer(i) =>

if let Ok(i) = i16::try_from(i) {
 ByteCode::LoadInt(dst as u8, i)
 } else {

self. load_const(dst, i)
 }
 ExpDesc::Float(f) => self. load_const(dst, f),
 ExpDesc::String(s) => self. load_const(dst, s),
 ExpDesc::Local(src) =>

if dst != src {
 ByteCode::Move(dst as u8, src as u8)
 } else {

return;
 }
 ExpDesc::Global(iname) => ByteCode::GetGlobal(dst as u8, iname
as u8),
 };

self.byte_codes.push(code);
self.sp = dst + 1;

 }

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

106 of 314 10/23/23, 08:47

In addition, the discharge_const() function is added, and several constant types are

added to the constant table, and other types are discharged as needed. This function will

be used in the construction and assignment statements of the following tables:

After completing the exp() and discharge() functions, the previous load_exp()

function can be combined with these two new functions:

At the end of this chapter, the parsing of expressions in the parsing process will directly

call a series of functions of exp() and discharge, instead of calling the load_exp()

function.

// discharge @desc into the top of stack, if need
fn discharge_top(&mut self, desc: ExpDesc) -> usize {

self.discharge_if_need(self.sp, desc)
 }

// discharge @desc into @dst, if need
fn discharge_if_need(&mut self, dst: usize, desc: ExpDesc) -> usize {

if let ExpDesc::Local(i) = desc {
 i // no need
 } else {

self.discharge(dst, desc);
 dst
 }
 }

// for constant types, add @desc to constants;
// otherwise, discharge @desc into the top of stack
fn discharge_const(&mut self, desc: ExpDesc) -> ConstStack {

match desc {
// add const

 ExpDesc::Nil => ConstStack::Const(self.add_const(())),
 ExpDesc::Boolean(b) => ConstStack::Const(self.add_const(b)),
 ExpDesc::Integer(i) => ConstStack::Const(self.add_const(i)),
 ExpDesc::Float(f) => ConstStack::Const(self.add_const(f)),
 ExpDesc::String(s) => ConstStack::Const(self.add_const(s)),

// discharge to stack
 _ => ConstStack::Stack(self.discharge_top(desc)),
 }
 }

fn load_exp(&mut self) {
let sp0 = self.sp;
let desc = self. exp();
self. discharge(sp0, desc);

 }

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

107 of 314 10/23/23, 08:47

table_constructor()

After splitting the load_exp() function into exp() and discharge() , the constructor of

the table can be transformed. Or take general-purpose initialization as an example, in

previous version, the key and value are directly loaded onto the stack, no matter what

type. We can now call exp() to read the key and value, and then do different processing

according to the type. The specific processing method can refer to the official

implementation of Lua. There are three bytecodes SETTABLE , SETFIELD and SETI ,

corresponding to the three types of key variables on the stack, string constants, and small

integer constants. In addition, these 3 bytecodes have 1 bit to mark whether the value is a

variable or a constant on the stack. There are 3 key types and 2 value types, a total of

3*2=6 situation. Although we can also distinguish between variables and constants on the

stack by reserving a bit in value, this will result in only 7bit address space. So we still

distinguish variables and constants on the stack by adding bytecode types. It ends up as

follows:

Another rule is that nil and Nan of floating-point numbers are not allowed to be used

as keys. The parsing code for the key is as follows:

 value\key | variable | string constant | small integer constant
 -----------+---------------+-----------------+---------------
 variable | SetTable | SetField | SetInt
 -----------+---------------+-----------------+---------------
 constant | SetTableConst | SetFieldConst | SetIntConst

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

108 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#table_constructor
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#table_constructor
https://wubingzheng.github.io/build-lua-in-rust/en/ch04-02.table_constructor.html#syntax-analysis
https://wubingzheng.github.io/build-lua-in-rust/en/ch04-02.table_constructor.html#syntax-analysis

The above code handles three types of keys: local variables, string constants, and small

integers. In addition, nil and floating-point numbers Nan are prohibited. For other types,

they are uniformly discharged to the top of the stack and converted to variables on the

stack.

Then parse the value to distinguish between variables and constants on the stack. code

show as below:

let entry = match self. lex. peek() {
 Token::SqurL => { // `[` exp `]` `=` exp

self. lex. next();

let key = self.exp(); // read key
self.lex.expect(Token::SqurR); // `]`
self.lex.expect(Token::Assign); // `=`

 TableEntry::Map(match key {
 ExpDesc::Local(i) => // variables on the stack
 (ByteCode::SetTable, ByteCode::SetTableConst, i),
 ExpDesc::String(s) => // string constant
 (ByteCode::SetField, ByteCode::SetFieldConst, self.
add_const(s)),
 ExpDesc::Integer(i) if u8::try_from(i).is_ok() => // small
integer
 (ByteCode::SetInt, ByteCode::SetIntConst, i as usize),
 ExpDesc::Nil =>

panic!("nil can not be table key"),
 ExpDesc::Float(f) if f.is_nan() =>

panic!("NaN can not be table key"),
 _ => // For other types, discharge them onto the stack
uniformly and turn them into variables on the stack
 (ByteCode::SetTable, ByteCode::SetTableConst,
self.discharge_top(key)),
 })
 }

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

109 of 314 10/23/23, 08:47

The logic of the above two pieces of code itself is very clear, but the parameter types

associated with TableEntry::Map are somewhat special. The first piece of code deals

with the type of the key, and determines the type of 2 bytecodes, or the tag of ByteCode .

This tag is to be used as an associated parameter of TableEntry::Map . Then what type is

that? It must not be ByteCode , because the enum type includes not only the tag, but also

the associated value. If it is a ByteCode type, then it is not ByteCode::SetTable but a

complete ByteCode::SetTable(table,key,0) , that is, first generate a complete bytecode,

and then read Modify the bytecode when the value is reached. That would be too

complicated.

《Rust Programming Language》 introduces these enums with () as initialization

syntax, looks like a function call, they are indeed implemented as functions returning an

instance constructed from parameters. That is to say ByteCode::SetTable can be

regarded as a function, and its parameter type is fn(u8,u8,u8)->ByteCode . When I read

this book for the first time, I was confused by the countless new concepts in it, so I had no

impression of reading this sentence at all, and even if I saw it, I couldn’t understand it or

remember it. When I wrote this project for more than half, I read this book completely

again. This time, I understood most of the concepts in it very smoothly, and I can also

notice the introduction of function pointers. And it just happened to work, what a find!

match entry {
 TableEntry::Map((op, opk, key)) => {

let value = self.exp(); // read value
let code = match self. discharge_const(value) {

// value is a constant, use opk, such as
`ByteCode::SetTableConst`
 ConstStack::Const(i) => opk(table as u8, key as u8, i as
u8),

// value is not a constant, then discharge to the stack, and
use op, such as `ByteCode::SetTable`
 ConstStack::Stack(i) => op(table as u8, key as u8, i as u8),
 };

self.byte_codes.push(code);

 nmap += 1;
self.sp = sp0;

 }

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

110 of 314 10/23/23, 08:47

https://doc.rust-lang.org/stable/book/ch19-05-advanced-functions-and-closures.html#function-pointers
https://doc.rust-lang.org/stable/book/ch19-05-advanced-functions-and-closures.html#function-pointers

Table Read/Write and BNF

After introducing ExpDesc and modifying the existing syntax analysis in the previous two

sections, this section implements table reading and writing.

The index of the table in Lua supports two methods, examples are as follows: t["k"]

and t.k , where the latter is a special form of the former. All table read and write

operations need to use the table index. Need to add the type of table index in ExpDesc.

The read and write operations of the table itself are not complicated, but it will make

other statements suddenly become complicated:

• The read operation of the table may have multiple consecutive levels, such as

t.x.y , so when parsing the expression, the end cannot be judged immediately, but

the next Token needs to be peeked to judge.

• The write operation of the table, that is, the assignment statement. The current

assignment statement only supports the assignment of "variables", that is, the

lvalue only supports one Token::Name. To add support for table indexes, the

handling of lvalues needs to be reimplemented. It is not enough to parse only one

Token, but to parse an lvalue. So how is it considered a complete lvalue? For

example, not all expressions can be used as lvalues, such as function calls or table

constructions.

• Previously, the assignment statement and function call statement were

distinguished based on the second Token. If it is an equal sign = , it is an assignment

statement. Now to support the write operation of the table, such as t.k = 123 ,

then the second Token is a dot . instead of the equal sign = , but it is still an

assignment statement. The previous judgment method is invalid. So is there any

new way to distinguish between assignment statements and function call

statements?

The first read operation problem is easy to solve. The next two questions related to write

operations are very difficult. We cannot answer them accurately now, but can only guess

the answers. This leads to a bigger problem, that is, the previous syntax analysis is based

on guesswork! For example, the format of the definition statement of local variables, etc.,

are guessed based on the experience of using the Lua language, and cannot guarantee its

accuracy and completeness. But it was relatively simple before, so you can make a guess.

In addition, in order not to interrupt the rhythm of the entire project, I did not delve into

this issue. Now to introduce the reading and writing of the table, the statement becomes

complicated, and it is impossible to continue to mix it up by guessing. It is necessary to

introduce a formal grammatical description.

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

111 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#table-readwrite-and-bnf
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#table-readwrite-and-bnf

BNF

The last chapter of the Lua manual is called: The Complete Syntax of Lua, the content is

mainly a set of BNF descriptions. We don't need to know the meaning of the term "BNF",

we just need to know that this is a formal grammar description method, where the Lua

grammar can be described completely and accurately. The grammatical rules of BNF itself

are also very simple, and most of them are clear at a glance. Here are only two:

• {A} represents 0 or more A

• [A] represents optional 1 A

The code segment of Lua is called chunk , so the definition of chunk is used as the entry,

and several descriptions are listed:

It can be obtained from these rules: a chunk contains a block . A block contains zero or

more stat s and an optional retstat . A stat has many types of statements. Among

them, we have implemented the two statements functioncall and local , and then

implemented the remaining types one by one to complete the entire grammar of Lua

(although it is still far from the complete Lua language).

I don't quite understand what is the difference between chunk and block here?

Why list two separately?

That is to say, we will implement the interpreter according to this set of specifications in

the future, and we no longer need to rely on guesswork! Pick a few and compare them

with our previous ones, such as local variable definition statements, and you can find that

it should support multiple variables and multiple initializations expression, even without

chunk ::= block

block ::= {stat} [retstat]

stat ::= ‘;’ |
 varlist ‘=’ explist |
 functioncall |
 label |
 break |
 goto Name |
 do block end |
 while exp do block end |
 repeat block until exp |
 if exp then block {elseif exp then block} [else block] end |
 for Name ‘=’ exp ‘,’ exp [‘,’ exp] do block end |
 for namelist in explist do block end |
 function funcname funcbody |
 local function Name funcbody |
 local attnamelist [‘=’ explist]

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

112 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#bnf
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#bnf
https://www.lua.org/manual/5.4/manual.html#9
https://www.lua.org/manual/5.4/manual.html#9

an initialization expression. This shows that our previous statement analysis is very

imperfect. Later in this section, we will improve the sentences we already support based

on BNF. Now find out the rules related to the table index:

At first glance it looks a bit complicated. Take var as an example for analysis. Here var

deduces three cases, the first Name is a simple variable, and the latter two are table

indexes, which are grammar sugar for general methods and string indexes. It involves

prefixexp and exp . Among them, exp is very similar to the exp() function we

currently implement, but we still lack some situations, which also need to be added later.

In addition, Name is directly in the exp() function, and now it has to be moved to var .

Eliminate Left Recursion

There is a big problem here, the above 3 rules are recursively referenced. for example:

• var refers to prefixexp which refers to var ;

• exp refers to prefixexp which refers to exp .

But these two examples are fundamentally different.

For the first example, after bringing in var and expanding it, it is

The problem is that the 2nd and 3rd items of the derivation rule start with prefixexp

both. Then during syntax analysis, for example, if you read a Name, you can match item

1, or items 2 and 3, so it is impossible to judge which rule should be selected. This was a

headache. I spent two days on this problem, and tried various solutions but couldn't solve

it. Later, I searched the Internet and found the concept of "eliminating left recursion", and

I vaguely recalled that this was a compulsory topic in the course of compiling principles.

And there is a standard method for elimination: For rules that contain left recursion, they

can be expressed as follows:

var ::= Name | prefixexp '[' exp ']' | prefixexp '.' Name

exp ::= nil | false | true | Numeral | LiteralString | '...' | functiondef |
prefixexp | tableconstructor | exp binop exp | unop exp

prefixexp ::= var | functioncall | '(' exp ')'

functioncall ::= prefixexp args | prefixexp ':' Name args

prefixexp ::= Name | prefixexp '[' exp ']' | prefixexp '.' Name | prefixexp
args | prefixexp ':' Name args | '(' exp ')'

A := Aα | β

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

113 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#eliminate-left-recursion
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#eliminate-left-recursion

Then it can be rewritten as follows:

where ε is not matched. This eliminates left recursion. Take the above prefixexp as an

example, first apply the above standard form, you can get:

Then bring in the above rewritten formula to get:

This way we get rules without left recursion.

And the second example at the beginning of this section, about exp , although there are

recursive references, but it is not "left" recursion, so there is no such problem.

Read Table and prefixexp

The advantage of using BNF rules is that you don't need to think about Lua's grammar,

just follow the rules to implement.

After obtaining the above BNF rules, the analysis of prefixexp can be completed:

A := βA'
A’ := αA’ | ε

α = '[' exp ']' | '.' Name | args | ':' Name args
β = Name | '(' exp ')'

prefixexp := (Name | '(' exp ')') A'
A' := ('[' exp ']' | '.' Name | args | ':' Name args) A' | ε

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

114 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#read-table-and-prefixexp
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#read-table-and-prefixexp
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#read-table-and-prefixexp
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#read-table-and-prefixexp

The first paragraph of code corresponds to β mentioned above, namely Name | '('

exp ')' .

The loop in the second paragraph corresponds to the above A' := αA' | ε , if it matches

the α part, it is '[' exp ']' | '.' Name | args | ':' Name args , then the loop

fn prefixexp(&mut self, ahead: Token) -> ExpDesc {
let sp0 = self.sp;

// beta
let mut desc = match ahead {

 Token::Name(name) => self.simple_name(name),
 Token::ParL => { // `(` exp `)`

let desc = self.exp();
self.lex.expect(Token::ParR);

 desc
 }
 t => panic!("invalid prefixexp {t:?}"),
 };

// A' = alpha A'
loop {

match self.lex.peek() {
 Token::SqurL => { // `[` exp `]`

self.lex.next();
let itable = self.discharge_if_need(sp0, desc);

 desc = match self.exp() {
 ExpDesc::String(s) => ExpDesc::IndexField(itable,
self.add_const(s)),
 ExpDesc::Integer(i) if u8::try_from(i).is_ok() =>
ExpDesc::IndexInt(itable, u8::try_from(i).unwrap()),
 key => ExpDesc::Index(itable,
self.discharge_top(key)),
 };

self.lex.expect(Token::SqurR);
 }
 Token::Dot => { // .Name

self.lex.next();
let name = self.read_name();
let itable = self.discharge_if_need(sp0, desc);

 desc = ExpDesc::IndexField(itable, self.add_const(name));
 }
 Token::Colon => todo!("args"), // :Name args
 Token::ParL | Token::CurlyL | Token::String(_) => { // args

self.discharge(sp0, desc);
 desc = self.args();
 }
 _ => { // Epsilon

return desc;
 }
 }
 }
 }

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

115 of 314 10/23/23, 08:47

continues after parsing; if there is no match, it corresponds to ε , and the loop exits. Here

this loop supports many continuous operations, such as t.f() , which is a table index

followed by a function call. Or more sequential operations like t.t.t.k and f()()() . If

you follow the native method in the previous chapters and make a function as soon as

you think of it, it will be difficult to support this kind of continuous operation, it is difficult

to realize and it is difficult to think of it. But according to BNF, it can be realized correctly

and completely.

Corresponding to the three types of bytecodes in the construction of the table, that is, the

key is a variable on the stack, a string constant and a small integer. There are also three

types of ExpDesc here, namely Index , IndexField and IndexInt . When discharging,

add 3 corresponding bytecodes, GetTable , GetField and GetInt . This naturally solves

the first problem at the beginning of this section, that is, the reading operation of the

table is realized, and it is implemented correctly and completely!

Another feature of encoding according to the BNF rule is that you can only understand

the processing logic inside each matching branch, but not the overall relationship

between each branch. This is like solving a physics application problem. First, analyze the

physical principles and list the equations, each of which has a corresponding physical

meaning; but when solving the equations, the specific solution steps have been

completely separated from the physical correspondence, which is a math tools.

The prefixexp() function is listed above, and the implementation of the exp() function

is similar, which is omitted here.

Write Table and Assignment Statement

After implementing prefixexp and exp according to BNF, the problem about table write

operation at the beginning of this section can be solved. The problem can be solved by

reimplementing the assignment statement according to BNF. What we want to achieve

this time is "complete assignment statement", and finally there is no need to emphasize

"variable assignment statement".

Although the assignment statement looks similar to the local variable definition

statement, it is actually completely different and much more complicated. The

assignment statement in BNF is defined as follows:

The left side of the assignment operator = is the var list. var expands to 3 kinds. The

first Name is a variable, currently supports local variables and global variables, and will

varlist '=' explist
varlist ::= var {‘,’ var}
var ::= Name | prefixexp '[' exp ']' | prefixexp '.' Name

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

116 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#write-table-and-assignment-statement
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#write-table-and-assignment-statement

support upvalue after the introduction of closures. The latter two are table indexes. It can

be seen from this that only these types of assignment are supported, while other types

such as function calls do not support assignment. Look at the right side of = , which is a

list of expressions, which can be parsed directly using the completed exp() function.

After reading the BNF grammatical rules of the assignment statement, there are three

semantic rules.

First, compare the number of variables on the left of = and the number of expressions

on the right side:

• If equal, assign values one by one;

• If the number of variables is less than the number of expressions, the variable list

and the corresponding expression list are assigned one by one, and the extra

expressions are ignored;

• If the number of variables is greater than the number of expressions, the expression

list and the corresponding variable list are assigned one by one, and the extra

variables are assigned to nil .

Second, if the last expression on the right side of = has multiple values (such as function

calls and variable parameters), it will be expanded as much as possible. However, we

don't support these two types yet, so ignore this case for now.

Finally, all expressions to the right of = are evaluated before assignment. Instead of

evaluating and assigning values simultaneously. For example, in the following Lua

statement, the two expressions b and a on the right should be evaluated first to obtain

2 and 1 , and then assigned to a and b on the left respectively. This exchanges the two

variables. But if we assign a value while evaluating, we first evaluate b on the right, get

2 , and assign it to a . Then evaluate a on the right to get the 2 that was just assigned,

and then assign it to b . The end result is that both variables will be 2 .

The diagram below depicts the execution process of Error:

Since all values must be evaluated first, the obtained value must be stored in one place

first, which is naturally the top of the stack as a temporary variable. The diagram below

describes the correct execution process:

local a, b = 1, 2
a, b = b, a --swap 2 variables!!!

 +-------+
 /--(1)--| a |<------\
 | +-------+ |
 \------>| b |--(2)--/
 +-------+
 | |

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

117 of 314 10/23/23, 08:47

In the figure, (1) and (2) are to evaluate the expression and put it in the temporary

position on the top of the stack; (3) and (4) are to assign the value of the temporary

position on the top of the stack to the variable.

The functionality of this approach is correct, but the performance is relatively poor.

Because each assignment requires 2 operations, first evaluating and then assigning, it

requires 2 bytecodes. But in most cases, only one operation is required. For example,

assigning a local variable to another local variable requires only one Move bytecode. In

particular, the most common assignment statement in a program is the assignment of a

single variable. The order of a single variable does not matter, and there is no need to

evaluate a temporary variable first. Therefore, the above method of first evaluating to the

top of the stack and then assigning a value is for the correctness of a few cases, while

sacrificing the performance of most cases. This situation is relatively common in

programming. The general solution is to add a quick path to most cases. For example, the

following logic can be used in our current situation:

There is a more elegant solution to this specific problem, though. The key here is that in

the case of multiple assignments, the assignment of the last variable does not depend on

the assignment of other variables, and it can be assigned directly without first evaluating

to a temporary variable. So the new solution is: special treatment (direct assignment) is

made to the last variable, and other variables are still evaluated first and then assigned.

In this way, for the assignment statement of a single variable (the single variable is

naturally the last variable), it degenerates into a direct assignment. In this way, the

correctness of multiple variables is guaranteed, and the performance of most cases

(single variable) is also guaranteed. Pretty!

The following figure describes this scheme: for the previous variable a , first evaluate to

the temporary variable on the top of the stack, and assign the last variable b directly,

and then assign the temporary variable on the top of the stack to the corresponding

variable in turn.

 +-------+
 /---(1)--| a |<-------\
 | +-------+ |
 | /-(2)-| b |<----\ |
 | | +-------+ | |
 \------->| tmp1 |-(3)-/ |
 | +-------+ |
 \---->| tmp2 |--(4)---/
 +-------+
 | |

if single variable then
 var = exp // direct assignment, quick path
else // multiple variables
 tmp_vars = exp_list // evaluate all to temporary variables first
 var_list = tmp_vars // assign values uniformly

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

118 of 314 10/23/23, 08:47

Since we execute the last expression first, thenthe previous expressions are also assigned

in reverse order. In this way, all expressions are assigned in reverse order.

So far, the syntax and semantic rules of assignment statements have been introduced.

The next step is to rewrite the assignment() function. The logic of the function body is as

follows:

1. Call prefixexp() to read the lvalue list and save it as ExpDesc;

2. Call exp() to read the rvalue expression list, the last expression retains ExpDesc,

and the remaining expressions are discharged to the top of the stack;

3. Align the number of lvalues and rvalues;

4. Assignment, first assign the last expression to the last lvalue, and then assign the

temporary variable on the top of the stack to the corresponding lvalue in turn.

The specific code is omitted here. Only step 4, assignment, will be described in detail

below.

Execute the Assignment

Assignment statements consist of lvalues and rvalues:

• Each lvalue is read by the prefixexp() function, returning an ExpDesc type.

However, it can be seen from BNF that the assignment statement only supports

variables and table indexes. The variables include local variables and global

variables, corresponding to the two ExpDesc types Local and Global respectively,

and the table indexes include Index , IndexField and IndexInt . So there are up

to a total of five types.

• Each rvalue is read by the exp() function, which also returns an ExpDesc type, and

supports arbitrary ExpDesc types.

To sum up, there are 5 types on the left and N types on the right (N is the number of all

types of ExpDesc), and there are a total of 5*N combinations. A bit much, need to sort

out.

First of all, for the case where the lvalue is a local variable, the assignment is equivalent to

 +-------+
 /---(1)--| a |<------\
 | +-------+ |
 | | b |--(2)--/
 | +-------+ <-------\
 \------->| tmp1 |--(3)----/
 +-------+
 | |

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

119 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#execute-the-assignment
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#execute-the-assignment

discharging the expression to the stack location of the local variable. Just call the

discharge() function. This function already handles all N types of ExpDesc.

The remaining four lvalue types are a bit more complicated, but these four cases are

similar. The following uses the global variable Global type as an example to introduce.

Several combinations of assignments were introduced in the previous Assignment

section. For the case where the lvalue is a global variable, the rvalue supports three types

of expressions: constant, local variable, and global variable. At that time, for the sake of

simplicity, the three expressions SetGlobalConst , SetGlobal , and SetGlobalGlobal

were directly generated. Now it can be foreseen that there will be more types of

expressions in the future, such as the reading of tables added in this section (such as

t.k), and subsequent additions such as UpValue and operations (such as a+b). If a new

bytecode is added for each new type, it will become very complicated.

Moreover, expressions such as table indexing and operations require 2 parameters to

represent, and the assignment bytecode of this series of global variables cannot be filled

with 2 parameters to represent the source expression of the assignment (one bytecode

supports up to 3 u8 Type parameter, this series of bytecodes needs 1 parameter to

represent the destination address, and it seems that 2 parameters can be used to

represent the source expression. But through the output of luac, you can see Lua's official

global variable assignment bytecode SETTABUP has 3 parameters. In addition to the 2

parameters representing the source and destination addresses, there is an additional

parameter. Although it is not clear what the function of the extra parameter is, let’s

assume that we will use it later That parameter, so our series of bytecodes leaves only

one parameter position for the source expression). So how to deal with such complex

expressions? The answer is to first evaluate these complex expressions to the top of the

stack as temporary variables, which are of Local type, and then use SetGlobal to

complete the assignment.

Here are two extremes:

• The previous practice was to define a bytecode for each source expression type;

• The solution just discussed is to discharge all types on the stack first, and then only

use one SetGlobal bytecode.

Between these two extremes, we refer to the choice of Lua's official implementation,

which is to define a bytecode for the constant type (ExpDesc's String , Float , etc.), while

other types are first discharged to the stack and converted to Local type. Although the

constant type is actually not a specific type (including multiple types such as String ,

Float), but the processing method is the same, through the add_const() function to

add to the constant table, and use the constant table Index to represent, so when dealing

with assignment statements, it can be seen as a type. Thus, our rvalue expressions are

simplified to two types: constants and Local variables on the stack! In the official

implementation of Lua, the SETTABUP bytecode of global variable assignment uses 1 bit

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

120 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/ch02-03.assignment.html#combination-of-assignments
https://wubingzheng.github.io/build-lua-in-rust/en/ch02-03.assignment.html#combination-of-assignments

to indicate whether the source expression is a constant or a variable on the stack. The

generation of our bytecode is inconvenient to precisely manipulate bits, so a new

bytecode SetGlobalConst is added to represent constants.

Why does the official Lua implementation treat constants specially, but not optimize

other types (such as global variables, UpValue, table indexes, etc.)? There are two reasons

for my personal guess:

• If a global variable or UpValue or table index is accessed so frequently that it is

necessary to optimize, then you can simply create a local variable to optimize, such

as local print = print . For constants, it is inappropriate to assign values to local

variables in many cases. For example, changing an assignment statement g = 100

to local h = 100; g = a seems awkward and unnecessary.

• Accessing global variables is based on the variable name table lookup, which is a

relatively time-consuming operation, and the cost of adding a bytecode is not

obvious in comparison. Access to other types is similar. The access constant is

directly referenced through the index, and the cost of adding a bytecode is relatively

high.

So far, the assignment of global variables has been introduced, and the assignment of

table indexes (that is, the write operation of the table) is similar. For the three types

Index , IndexField and IndexInt , we define SetTable , SetField , SetInt ,

SetTableConst , SetFieldConst , SetIntConst 6 bytecodes.

Finally, the code for assignment is as follows:

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

121 of 314 10/23/23, 08:47

So far, according to the BNF re-assignment statement, it naturally supports the read and

write operations of the table.

Assignment and Function Call statement

// process assignment: var = value
fn assign_var(&mut self, var: ExpDesc, value: ExpDesc) {

if let ExpDesc::Local(i) = var {
// self.sp will be set to i+1 in self.discharge(), which is
// NOT expected, but it's ok because self.sp will not be used
// before next statement.
self.discharge(i, value);

 } else {
match self.discharge_const(value) {

 ConstStack::Const(i) => self.assign_from_const(var, i),
 ConstStack::Stack(i) => self.assign_from_stack(var, i),
 }
 }
 }

fn assign_from_stack(&mut self, var: ExpDesc, value: usize) {
let code = match var {

 ExpDesc::Local(i) => ByteCode::Move(i as u8, value as u8),
 ExpDesc::Global(name) => ByteCode::SetGlobal(name as u8, value as
u8),
 ExpDesc::Index(t, key) => ByteCode::SetTable(t as u8, key as u8,
value as u8),
 ExpDesc::IndexField(t, key) => ByteCode::SetField(t as u8, key as
u8, value as u8),
 ExpDesc::IndexInt(t, key) => ByteCode::SetInt(t as u8, key, value
as u8),
 _ => panic!("assign from stack"),
 };

self.byte_codes.push(code);
 }

fn assign_from_const(&mut self, var: ExpDesc, value: usize) {
let code = match var {

 ExpDesc::Global(name) => ByteCode::SetGlobalConst(name as u8,
value as u8),
 ExpDesc::Index(t, key) => ByteCode::SetTableConst(t as u8, key as
u8, value as u8),
 ExpDesc::IndexField(t, key) => ByteCode::SetFieldConst(t as u8,
key as u8, value as u8),
 ExpDesc::IndexInt(t, key) => ByteCode::SetIntConst(t as u8, key,
value as u8),
 _ => panic!("assign from const"),
 };

self.byte_codes.push(code);
 }

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

122 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#assignment-and-function-call-statement
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#assignment-and-function-call-statement

Now look back at the last of the three questions raised at the beginning of this section,

that is, how to distinguish between assignment statements and function call statements

during syntax analysis.

Let’s start with the BNF representation of the assignment statement:

The beginning of the statement is varlist , after expansion is the variable var , and then

it is Name and prefixexp . Name corresponds to Token::Name , but prefixexp still needs

to be expanded. Here is its definition:

Among them, the first var returns to the beginning of the assignment statement just

now, and the circular reference is ignored. The last one starts with (, which is also very

simple. After the functioncall in the middle is expanded, it also starts with prefixexp ,

which is also a circular reference, but this time it cannot be ignored, because

functioncall itself is also a complete statement, that is, if a A statement starts with

prefixexp , which may be an assignment statement or a function call statement. How to

distinguish between these two statements? As explained in the previous section, the left

value of an assignment statement can only be a variable or a table index. types, and

function calls cannot be used as lvalues. This is the key to the distinction!

In summary, the final parsing logic is: if it starts with Name or (, parse it according to

prefixexp , and judge the parsing result:

• If it is a function call, it is considered a complete functioncall statement;

• Otherwise, it is considered as an assignment statement, and the result of this

parsing is only the first var of the assignment statement.

To do this, add a function call type Call in ExpDesc and let the function call statement

args() return. In the load() function, this part of the code is as follows:

varlist '=' explist
varlist ::= var {‘,’ var}
var ::= Name | prefixexp '[' exp ']' | prefixexp '.' Name

prefixexp ::= var | functioncall | '(' exp ')'
functioncall ::= prefixexp args | prefixexp ':' Name args

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

123 of 314 10/23/23, 08:47

Summary

In this section, the parsing of the assignment statement is re-analyzed through BNF, and

finally the read and write operations of the table are realized. In addition, the statement

of local variable definition also needs to be rewritten according to BNF, which is relatively

simple, and the introduction is omitted here.

So far, this chapter has completed the basic operations of table definition, construction,

reading and writing; and introduce the very important ExpDesc concept and BNF rules.

match self.lex.next() {
 Token::SemiColon => (),
 t@Token::Name(_) | t@Token::ParL => {

// functioncall and var-assignment both begin with
// `prefixexp` which begins with `Name` or `(`.
let desc = self.prefixexp(t);
if desc == ExpDesc::Call {

// prefixexp() matches the whole functioncall
// statement, so nothing more to do

 } else {
// prefixexp() matches only the first variable, so we
// continue the statement
self.assignment(desc);

 }
 }

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

124 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#summary-3
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#summary-3

Arithmetic Operations

Supported operations are described in the Lua Manual. This chapter mainly discusses

and implements arithmetic operations and bit operations, and also implements string

concatenation operations and length operations by the way. These operations are

handled in the same way. As for relational operations and logical operations, special

processing needs to be done after conditional statements are introduced.

Simple unary operations are introduced first, then binary operations. Finally we discuss

the floating-point conversions.

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

125 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#arithmetic-operations
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#arithmetic-operations
https://www.lua.org/manual/5.4/manual.html#3.4.1
https://www.lua.org/manual/5.4/manual.html#3.4.1

Unary Operation

The syntax of unary operations in Lua:

The unary operation is in the last term: exp ::= unop exp . That is, in the expression

exp , unary operators can be preceded.

Lua supports 4 unary operators:

• - , take the negative. This token is also a binary operator: subtraction.

• not , logical negation.

• ~ , bitwise inversion. This Token is also a binary operator: bitwise xor.

• # , take the length, used for strings and tables, etc.

In the syntax analysis code, just add these 4 unary operators:

The following takes negative - as an example, and the others are similar.

Negative

It can be seen from the above BNF that the operand of the negation operation is also the

expression exp , and the expression is represented by ExpDesc, so several types of

ExpDesc are considered:

• Integers and floating-point numbers are directly negated, for example,

ExpDesc::Integer(10) is directly converted to ExpDesc::Integer(-10) . That is to

say, for -10 in the source code, two tokens Sub and Integer(10) will be

generated during the lexical analysis stage, and then converted into -10 by the

syntax analysis. There is no need to directly support negative numbers in lexical

analysis, because there can also be the following situation - -10 , that is, multiple

consecutive negative operations. For this case, grammatical analysis is more

suitable than lexical analysis.

exp ::= nil | false | true | Numeral | LiteralString | '...' | functiondef |
prefixexp | tableconstructor | exp binop exp | unop exp

fn exp(&mut self) -> ExpDesc {
match self. lex. next() {

 Token::Sub => self. unop_neg(),
 Token::Not => self. unop_not(),
 Token::BitNot => self. unop_bitnot(),
 Token::Len => self. unop_len(),

// omit other exp branches

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

126 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#unary-operation
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#unary-operation
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#negative
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#negative

• Other constant types, such as strings, do not support negation, so a panic is

reported.

• Other types are evaluated when the virtual machine is running. Generate a new

bytecode Neg(u8, u8) , and the two parameters are the destination and source

operand addresses on the stack. Only 1 bytecode is added here. In contrast, the

Read Global Variables and Table Read operations introduced in the previous

chapters both set 3 for optimization Bytecode, three types of parameters are

processed separately: variables on the stack, constants, and small integers. But for

the negative operation here, the last two types (constants and small integers) have

been processed in the above two cases, so we only need to add the bytecode

Neg(u8, u8) to handle the first type type (variables on the stack). However, the

binary operation in the next section cannot fully handle the constant type, so it is

necessary to add 3 bytecodes for each operator like the table reading operation.

According to the previous chapter Introduction to ExpDesc, for the last case, two steps

are required to generate the bytecode: first, the exp() function returns the ExpDesc

type, and then discharge() function generates bytecode based on ExpDesc. Currently,

the existing type of ExpDesc cannot express a unary operation statement, and a new type

UnaryOp is required. How is this new type defined?

From an execution point of view, unary operations are very similar to assignments

between local variables. The latter is to copy a value on the stack to another location; the

former is also, but an operation conversion is added during the copying process.

Therefore, the ExpDesc type returned by the unary operation statement can refer to the

local variable. For local variables, the expression exp() function returns the

ExpDesc::Local(usize) type, and the associated usize type parameter is the position of

the local variable on the stack. For the unary operation, the

ExpDesc::UnaryOp(fn(u8,u8)->ByteCode, usize) type is added. Compared with the

ExpDesc::Local type, an associated parameter is added, which is done during the

copying process, operation. The parameter type of this operation is

fn(u8,u8)->ByteCode . This method of passing the enum tag through the function type is

described in Use ExpDesc to rewrite the table structure, and will not be repeated here.

Also take the negative operation as an example to generate

ExpDesc::UnaryOp(ByteCode::Neg, i) , where i is the stack address of the operand.

The specific parsing code is as follows:

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

127 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/ch02-00.variables.html
https://wubingzheng.github.io/build-lua-in-rust/en/ch02-00.variables.html
https://wubingzheng.github.io/build-lua-in-rust/en/ch04-05.table_rw_and_bnf.html
https://wubingzheng.github.io/build-lua-in-rust/en/ch04-05.table_rw_and_bnf.html
https://wubingzheng.github.io/build-lua-in-rust/en/ch04-04.expdesc_rewrite.html
https://wubingzheng.github.io/build-lua-in-rust/en/ch04-04.expdesc_rewrite.html
https://wubingzheng.github.io/build-lua-in-rust/en/ch04-04.expdesc_rewrite.html#table_constructor
https://wubingzheng.github.io/build-lua-in-rust/en/ch04-04.expdesc_rewrite.html#table_constructor

After generating the ExpDesc::UnaryOp type, generating bytecode from this type is

simple:

So far, we have completed the unary operation of negation, and the other three unary

operations are similar and omitted here.

In addition, since the unary operation statement is defined as: exp ::= unop exp , the

operand is also an expression statement, here is a recursive reference, so it naturally

supports multiple consecutive unary operations, such as not - ~123 statement .

The above is the syntax analysis part; and the virtual machine execution part needs to

add the processing of these 4 new bytecodes. It is also very simple and omitted here.

The next section introduces binary operations, which are much more complicated.

fn unop_neg(&mut self) -> ExpDesc {
match self.exp_unop() {

 ExpDesc::Integer(i) => ExpDesc::Integer(-i),
 ExpDesc::Float(f) => ExpDesc::Float(-f),
 ExpDesc::Nil | ExpDesc::Boolean(_) | ExpDesc::String(_) => panic!
("invalid - operator"),
 desc => ExpDesc::UnaryOp(ByteCode::Neg, self.discharge_top(desc))
 }
 }

fn discharge(&mut self, dst: usize, desc: ExpDesc) {
let code = match desc {

 ExpDesc::UnaryOp(op, i) => op(dst as u8, i as u8),

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

128 of 314 10/23/23, 08:47

Binary operations

Compared with the unary operation in the previous section, although the binary

operation only has one more operand, it introduces many problems, mainly including

BNF left recursion, priority, operand type, and evaluation order, etc.

BNF Left Recursive

The complete syntax of the binary operation statement in Lua is as follows:

For simplicity, the other parts are simplified to OTHERS , then we get:

It is a left recursion rule, we need to eliminate left recursion according to the method

introduced before, and get:

The previous exp() function only implemented the OTHERS part of the first line above,

and now we need to add the A' part of the second line, which is also a recursive

reference, which is implemented using a loop. Modify the exp() function structure as

follows:

Among them, the second operand right_desc is also recursively called exp() function to

exp ::= nil | false | true | Numeral | LiteralString | '...' | functiondef |
prefixexp | tableconstructor | exp binop exp | unop exp

exp ::= exp binop exp | OTHERS

exp ::= OTHERS A'
A' := binop exp A' | Epsilon

fn exp(&mut self) -> ExpDesc {
// OTHERS
let mut desc = match self. lex. next() {

// The original various OTHERS type processing is omitted here
 };

// A' := binop exp A' | Epsilon
while is_binop(self. lex. peek()) {

let binop = self.lex.next(); // operator
let right_desc = self.exp(); // second operand

 desc = self. process_binop(binop, desc, right_desc);
 }
 desc
 }

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

129 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#binary-operations
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#binary-operations
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#bnf-left-recursive
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#bnf-left-recursive
https://wubingzheng.github.io/build-lua-in-rust/en/ch04-05.table_rw_and_bnf.html#eliminate-left-recursion
https://wubingzheng.github.io/build-lua-in-rust/en/ch04-05.table_rw_and_bnf.html#eliminate-left-recursion

read, which leads to a problem: priority.

Priority

In the unary operation statement in the previous section, the exp() function is also

called recursively to read the operand, but because there is only one operand, so no need

for priority. Or we can say that all unary operators have the same priority. And unary

operators are right associative. For example, the following two examples of consecutive

unary operations are executed in order from right to left, regardless of the specific

operator:

• ~ -10 , take negative first, then invert bit by bit,

• - ~10 , first bitwise invert, then negative.

But for the binary operation statement, it is necessary to consider the priority. For

example, the following two statements:

• a + b - c , perform the previous addition first, and then perform the subsequent

subtraction,

• a + b * c , perform the subsequent multiplication first, and then perform the

previous addition.

Corresponding to the exp() function code above, the OTHERS part at the beginning

reads the first operand a ; then reads the operator + in the while loop; and then calls

the exp() function recursively to read the right operand, so it needs to be calculated at

this time. Also take the above two sentences as an example:

• a + b - c , end after reading b and use it as the right operand; then perform

addition a + b ; and then loop through the following - c part again;

• a + b * c , after reading b , continue down, read and execute the entire b * c

and use the execution result as the right operand; then perform addition; and end

the loop.

So in syntax analysis, how to judge which of the above situations is the case? After

reading b , should we stop parsing and calculate addition first, or continue parsing? It

depends on the priorities of the next operator and the current operator:

• When the priority of the next operator is not greater than the current operator, it is

 - +
 / \ / \
 + c a *
/ \ / \
a b b c

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

130 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#priority
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#priority

the first case, stop parsing and complete the current operation first;

• When the priority of the next operator is greater than the current operator, it is the

second case and needs to continue parsing.

For this, refer to the list of all operator precedence in the Lua language:

From top to bottom, the priority becomes higher. The connectors .. and exponentiation

^ are right associative, and other operators are left associative. In the judging rules listed

above, parsing is stopped (instead of continuing parsing) for cases of equal priority, so

the default is left associative. Therefore, special treatment is required for two right-

associated operators, that is, different priorities are defined for them to the left and to

the right, and the one to the left is higher, which will become a right-association.

In summary, define the priority function:

For Tokens that are not binary operators, -1 is returned, which is the lowest priority, and

parsing can be stopped no matter what the current operator is. According to Rust's

customary practice, this function should return Option<(i32, i32)> type, and then

return None for tokens that are not binary operators. But it is simpler to return -1 at the

or
and
< > <= >= ~= ==
|
~
&
<< >>
..
+ -
* / // %
unary operators (not # - ~)
^

fn binop_pri(binop: &Token) -> (i32, i32) {
match binop {

 Token::Pow => (14, 13), // right associative
 Token::Mul | Token::Mod | Token::Div | Token::Idiv => (11, 11),
 Token::Add | Token::Sub => (10, 10),
 Token::Concat => (9, 8), // right associative
 Token::ShiftL | Token::ShiftR => (7, 7),
 Token::BitAnd => (6, 6),
 Token::BitNot => (5, 5),
 Token::BitOr => (4, 4),
 Token::Equal | Token::NotEq | Token::Less | Token::Greater |
Token::LesEq | Token::GreEq => (3, 3),
 Token::And => (2, 2),
 Token::Or => (1, 1),
 _ => (-1, -1)
 }
}

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

131 of 314 10/23/23, 08:47

https://www.lua.org/manual/5.4/manual.html#3.4.8
https://www.lua.org/manual/5.4/manual.html#3.4.8

calling place, and there is no need to process Option one more time.

This function appears to be a property of the Token type, so it seems to be a suitable

method defined as Token . But Token type is defined in lex.rs ; while priority is a

concept of syntax, it should be implemented in parse.rs . The Rust language does not

allow methods to be added to a type's non-defining file. So the above function is defined

as an ordinary function in the parse.rs file (rather than the method of ParseProto like

other functions).

Now, according to the priority, modify the exp() function again:

First, add a limit parameter to exp() , as the priority of the current operator, and limit

the subsequent parsing range. However, this parameter belongs to the internal concept

of the statement, and the caller of this function does not need to know this parameter;

therefore, the actual processing function exp_limit() is added, and exp() is turned

into an outer encapsulation function, using limit=0 to call the former. The reason why

the initial call uses limit=0 is that 0 is less than any binary operator priority defined in

the binop_pri() function, so the first operator will continue to be parsed (rather than

return to exit the loop); but 0 is greater than the priority -1 of the non-operator, so if it

is followed by the non-operator, it will also exit normally.

The above parsing code combines loops and recursive calls, which is very difficult for

those who are not familiar with the algorithm (like me), and it is difficult to write the

complete code directly. However, according to the BNF specification after eliminating left

recursion, the loop and recursion can be completed, and then the function can be easily

completed according to the priority and conditional exit.

fn exp(&mut self) -> ExpDesc {
self.exp_limit(0)

 }
fn exp_limit(&mut self, limit: i32) -> ExpDesc {

// OTHERS
let mut desc = match self. lex. next() {

// The original various OTHERS type processing is omitted here
 };

// A' := binop exp A' | Epsilon
loop {

let (left_pri, right_pri) = binop_pri(self. lex. peek());
if left_pri <= limit {

return desc; // stop parsing
 }

// continue parsing
let binop = self. lex. next();
let right_desc = self.exp_limit(right_pri);

 desc = self. process_binop(binop, desc, right_desc);
 }
 }

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

132 of 314 10/23/23, 08:47

In addition, it should be noted that unary operators are also listed in the operator

precedence table above, so when parsing unary operation statements in the previous

section, the exp() function cannot be used when reading the operand expression (initial

Priority 0), instead specify an initial priority of 12:

The priority of the exponentiation operation ^ is actually higher than that of the unary

operator, so the execution order of the statement -a^10 is: first exponentiation, and

then negation.

Evaluation Order

There is a very subtle bug in the parsing code above, which concerns the order in which

the operands are evaluated.

The processing of each operand requires 2 steps: first call the exp() function to read the

operand and return ExpDesc, and then call the discharge() function to discharge the

operand to the stack for bytecode operation. The binary operation has 2 operands, so a

total of 4 steps are required. Now discuss the sequence of these 4 steps.

According to the processing logic of the binary operation in the exp() function of the

current version:

• read the first operand first, desc ;

• After judging that it is a binary operation, call exp_limit() recursively, and read the

second operand, right_desc ;

• Then discharge the ExpDesc of the above two operands to the stack in the

process_binop() function.

Simplified is:

• parse the first operand;

• parse the second operand;

• discharge the first operand;

• discharge the second operand.

During the parsing and discharge stages, bytecode may be generated. So in this order,

the bytecodes related to the two operands may be interspersed. Like the following

example:

fn exp_unop(&mut self) -> ExpDesc {
self.exp_limit(12) // 12 is all unary operators' priority

 }

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

133 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#evaluation-order
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#evaluation-order

Ignoring the previous local variable definition, and ignoring the operation of undefined

global variables will throw an exception. Here, the focus is only on the subsequent

addition statement. Generates the following bytecode sequence with the current version

of the interpreter:

It can be seen that the bytecodes related to the two operands are interspersed here. In

this example, interleaving is fine. But in some cases, parsing the second operand will

affect the evaluation of the first operand, and interleaving will cause problems at this

time. Like the following example:

For the last sentence, we expected 1 + 2*3 , but if we follow the current order of

evaluation:

1. First parse the left operand t.k to generate ExpDesc::IndexField , but not

discharge;

2. Then parse the right operand f(t)*2 , and execute f(t) during the parsing process,

thus modifying the value of t.k to 100 ;

3. Then discharge the left operationNumber, generate GetField bytecode, but at this

time t.k has been modified by the previous step! Here comes the error. What is

actually executed is 100 + 2*3 .

In summary, we need to ensure that the bytecodes of the two operands cannot be

interspersed! Then modify the exp_limit() function as follows:

local a = -g1 + -g2

constants: ['g1', 'g2']
byte_codes:
 GetGlobal(0, 0) # parse the first operand
 GetGlobal(1, 1) # parse the second operand
 Neg(2, 0) # discharge the first operand
 Neg(3, 1) # discharge the second operand
 Add(0, 2, 3)

local t = { k = 1 }
local function f(t) t.k = 100; return 2 end -- modify the value of t.k
local r = t.k + f(t)*3

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

134 of 314 10/23/23, 08:47

Discharge the first operand onto the stack before parsing the second operand. However,

this is not necessary for constant types, because:

• the constant will not be affected by the second operand as in the above example;

• Constants are also to be directly folded in subsequent attempts.

So far, the transformation of exp_limit() function for binary operation syntax analysis

has been completed. As for the specific processing process_binop() function of the

binary operation, it is introduced below.

Bytecode

The unary operation introduced in the previous section has only one operand, which can

be divided into two cases: constants and variables. Constants are evaluated directly, and

variables generate bytecodes. So each unary operation has only one bytecode. Binary

operations are more complicated because they involve 2 operands.

First of all, although binary operators are mostly numerical calculations, because Lua's

metatable is similar to operator overloading, other types of constants (such as strings,

bools, etc.) may be legal operands. When parsing unary operations, these types of

constants will directly report an error, but for binary operations, it needs to be executed

at the execution stage to determine whether it is legal.

Secondly, if both operands are constants of numeric type (integer and floating point),

then the result can be directly calculated during syntax analysis, which is called constant

folding.

fn exp_limit(&mut self, limit: i32) -> ExpDesc {
// The original various OTHERS type processing is omitted here

loop {
// Omit the processing of judging the priority

// discharge the first operand! ! !
if !matches!(desc, ExpDesc::Integer(_) | ExpDesc::Float(_) |

ExpDesc::String(_)) {
 desc = ExpDesc::Local(self. discharge_top(desc));
 }

// continue parsing
let binop = self. lex. next();
let right_desc = self.exp_limit(right_pri); // parse the second

operand
 desc = self. process_binop(binop, desc, right_desc);
 }
 }

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

135 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#bytecode-1
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#bytecode-1

Otherwise, bytecode is generated and executed by the virtual machine. Similar to Read

Global Variables and Read Table operations that have been supported before, each

binary operator is also set to 3 types of right operands: variables on the stack, constants,

and small integers.

The left operand is uniformly discharged to the stack, because it is rare for the left

operand to be a constant. If we also add corresponding bytecodes for constants and

small integer types, such as 10-a , then there are too many bytecode types.

Finally, for addition and multiplication that satisfy the commutative law, if the left

operation is a constant, then it can be exchanged. For example, 10+a can be converted

to a+10 first. Since the right operand 10 is a small integer, it can be use AddInt

bytecode then.

ExpDesc

Similar to the new ExpDesc type introduced by the unary operation introduced in the

previous section, the binary operation also needs a new type because it has one more

operand:

Syntax analysis

So far, the basic requirements of the binary operation statement have been introduced.

Let's look at the code implementation, that is, the process_binop() function called in the

exp() function:

enum ExpDesc {
 UnaryOp(fn(u8,u8)->ByteCode, usize), // (opcode, operand)
 BinaryOp(fn(u8,u8,u8)->ByteCode, usize, usize), // (opcode, left-
operand, right-operand)

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

136 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/ch02-00.variables.html
https://wubingzheng.github.io/build-lua-in-rust/en/ch02-00.variables.html
https://wubingzheng.github.io/build-lua-in-rust/en/ch02-00.variables.html
https://wubingzheng.github.io/build-lua-in-rust/en/ch02-00.variables.html
https://wubingzheng.github.io/build-lua-in-rust/en/ch04-05.table_rw_and_bnf.html
https://wubingzheng.github.io/build-lua-in-rust/en/ch04-05.table_rw_and_bnf.html
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#expdesc
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#expdesc
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#syntax-analysis-4
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#syntax-analysis-4

Try constant folding first. This part of the function is introduced in the next section

because it involves the processing of integer and floating point types. Because the two

operands are not necessarily constants, they may not be able to be folded. If the fold is

not successful, then the operator and the two operands will be used later, so the

fold_const() function here can only pass in references.

If it is not a constant and cannot be folded, then call the do_binop() function to return

ExpDesc. Here, the enum tag is used as a function, which has been introduced before,

and will not be introduced here.

Let's look at the do_binop() function:

fn process_binop(&mut self, binop: Token, left: ExpDesc, right: ExpDesc)
-> ExpDesc {

if let Some(r) = fold_const(&binop, &left, &right) { // constant
fold

return r;
 }

match binop {
 Token::Add => self.do_binop(left, right, ByteCode::Add,
ByteCode::AddInt, ByteCode::AddConst),
 Token::Sub => self.do_binop(left, right, ByteCode::Sub,
ByteCode::SubInt, ByteCode::SubConst),
 Token::Mul => self.do_binop(left, right, ByteCode::Mul,
ByteCode::MulInt, ByteCode::MulConst),

// omit more types
 }
 }

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

137 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/ch04-04.expdesc_rewrite.html#table_constructor
https://wubingzheng.github.io/build-lua-in-rust/en/ch04-04.expdesc_rewrite.html#table_constructor

First, judge if it is addition or multiplication, and the left operand is a numeric constant,

then exchange the two operands, so that the bytecode of xxCoust or xxInt can be

generated later.

Then, discharge the left operand onto the stack;

Then, judge whether the type of the right operand is a numeric constant, or discharge it

to the stack.

Finally, ExpDesc::BinaryOp is generated.

So far, the grammatical analysis of the binary operation statement is basically completed.

Integer and Float

So far, we have introduced the general analysis process of binary operations, but there is

still a detail, that is, the different processing rules for integer and floating point types.

Since there is a lot of content in this aspect, and it is relatively independent from the

above-mentioned main analysis process, it will be introduced separately in the next

section.

fn do_binop(&mut self, mut left: ExpDesc, mut right: ExpDesc, opr:
fn(u8,u8,u8)->ByteCode,
 opi: fn(u8,u8,u8)->ByteCode, opk: fn(u8,u8,u8)->ByteCode) ->
ExpDesc {

if opr == ByteCode::Add || opr == ByteCode::Mul { // commutative
if matches!(left, ExpDesc::Integer(_) | ExpDesc::Float(_)) {

// swap the left-const-operand to right, in order to use
opi/opk
 (left, right) = (right, left);
 }
 }

let left = self.discharge_top(left);

let (op, right) = match right {
 ExpDesc::Integer(i) =>

if let Ok(i) = u8::try_from(i) {
 (opi, i as usize)
 } else {
 (opk, self.add_const(i))
 }
 ExpDesc::Float(f) => (opk, self.add_const(f)),
 _ => (opr, self.discharge_top(right)),
 };

 ExpDesc::BinaryOp(op, left, right)
 }

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

138 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#integer-and-float
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#integer-and-float

Integer and Float

In versions before Lua 5.3, only one type of number is supported, which is floating-point

by default. You can use integers by modifying the source code of the Lua interpreter. I

understand that this is because Lua was originally used as a configuration language, and

most of its users are not programmers, and it does not distinguish between integers and

floating-point numbers. For example, 5 and 5.0 are two identical numbers. Later, as the

use of Lua expanded, and the need to support integers became stronger (such as bit

operations), finally in Lua version 5.3, integers and floating-point numbers were

distinguished. This also brings some complexity. The main binary operators are divided

into the following three types of processing rules kind:

• Supports integer and floating point numbers, including + , - , * , // and % . If both

operands are integers, the result is also an integer; otherwise (both operands have

at least one floating-point number) the result is a floating-point number.

• Only floats are supported, including / and ^ . Regardless of the type of the

operands, the result is a floating point number. For example 5/2 , although both

operands are integers, they will be converted to floating point numbers, and then

the result is 2.5 .

• Only integers are supported, including 5 bit operations. The operands must be

integers, and the result is also an integer.

The processing of the above three types will be reflected in the constant folding

fold_const() function of syntax analysis and when the virtual machine executes. The

code is cumbersome and omitted here.

Type Conversion

Lua also defines the above rules of type conversion (mainly the rules in the case of

incomplete conversion):

• Integer to Float: If the full conversion is not possible, the closest floating point

number is used. i.e. the conversion will not fail, only precision will be lost.

• Float to integer: If the conversion cannot be completed, an exception will be thrown.

In the Rust language, the rules for converting integers to floating-points are the same, but

converting floating-points to integers is different. This is considered a bug and will be

fixed. Before the fix, we can only do this integrity check ourselves, that is, throw an

exception if the conversion fails. For this we implement the ftoi() function:

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

139 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#integer-and-float-1
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#integer-and-float-1
https://www.lua.org/manual/5.4/manual.html#3.4.1
https://www.lua.org/manual/5.4/manual.html#3.4.1
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#type-conversion-1
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#type-conversion-1
https://www.lua.org/manual/5.4/manual.html#3.4.3
https://www.lua.org/manual/5.4/manual.html#3.4.3
https://web.mit.edu/rust-lang_v1.25/arch/amd64_ubuntu1404/share/doc/rust/html/book/first-edition/casting-between-types.html#numeric-casts
https://web.mit.edu/rust-lang_v1.25/arch/amd64_ubuntu1404/share/doc/rust/html/book/first-edition/casting-between-types.html#numeric-casts
https://github.com/rust-lang/rust/issues/10184
https://github.com/rust-lang/rust/issues/10184
https://github.com/rust-lang/rust/issues/10184
https://github.com/rust-lang/rust/issues/10184

You can directly use as when converting an integer to a floating-point type, and you

need to use this function when converting a floating-point type to an integer.

This conversion will be involved in the syntax analysis and virtual machine execution

stages, so create a new utils.rs file to put these general functions.

Compare

In the Lua language, in most cases, the distinction between integers and floating-point

numbers is avoided as much as possible. The most direct example is that the result of the

statement 5 == 5.0 is true, so Value::Integer(5) and Value::Float(5.0) are equal in

the Lua language. Another point is that if these two values are used as the key of the

table, they are also considered to be the same key. To this end, we have to modify the

two trait implementations of Value before.

The first is the PartialEq trait that compares for equality:

Then there is the Hash trait:

pub fn ftoi(f: f64) -> Option<i64> {
let i = f as i64;
if i as f64 != f {

 none
 } else {

Some(i)
 }
}

impl PartialEq for Value {
fn eq(&self, other: &Self) -> bool {

match (self, other) {
 (Value::Integer(i), Value::Float(f)) |
 (Value::Float(f), Value::Integer(i)) => *i as f64 == *f && *i ==
*f as i64,

impl Hash for Value {
fn hash<H: Hasher>(&self, state: &mut H) {

match self {
 Value::Float(f) =>

if let Some(i) = ftoi(*f) {
 i.hash(state)
 } else {

unsafe {
 mem::transmute::<f64, i64>(*f).hash(state)
 }
 }

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

140 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#compare
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#compare

However, there is still one place where the type needs to be distinguished, that is, when

adding a constant to the constant table during syntax analysis, when querying whether

the constant already exists. To do this, implement a type-sensitive comparison method:

Test

At this point, the syntax analysis of the binary operation statement is finally completed.

The virtual machine execution part is very simple and is skipped here. You can test the

Lua code as follows:

impl Value {
pub fn same(&self, other: &Self) -> bool {

// eliminate Integer and Float with same number value
 mem::discriminant(self) == mem::discriminant(other) && self == other
 }
}

g = 10
local a,b,c = 1.1, 2.0, 100

print(100+g) -- commutative, AddInt
print(a-1)
print(100/c) -- result is float
print(100>>b) -- 2.0 will be convert to int 2
print(100>>a) -- panic

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

141 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#test-5
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#test-5

Control Structure

This chapter introduces the control structure. The most obvious change is that since now,

the virtual machine no longer only executes sequentially, but jumps. And because the

parsing of the syntax block is called recursively during syntax analysis, the local variable

scope needs to be dealt with, which makes the meaning and boundary of the block

clearer.

Several control structures in Lua language are very common, similar to other languages,

nothing special. Next, the first section introduces the if branch of the simplest if

statement, and introduces conditional jumps and block processing. Then introduce other

control structures in turn, most of which are implemented through conditional jumps

(Test bytecode) and unconditional jumps (Jump bytecode). Except that the numeric-for

statement uses 2 special bytecodes for performance considerations due to its complex

semantics. The generic-for statement needs to use functions, so it will be introduced after

introducing functions in subsequent chapters.

In addition, this chapter also discusses and attempts to introduce the continue statement

that does not exist in Lua, and guarantees backward compatibility.

In addition, although this chapter fully implements each control structure functionally, the

implementation here will be optimized after the introduction of relational and logical

operations in the next chapter.

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

142 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#control-structure
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#control-structure

if statement

The biggest difference between the conditional judgment statement and the previously

implemented statement is that the bytecode is no longer executed sequentially, and

jumps may occur. To this end, we add a new bytecode Test , associated with 2

parameters:

• The first parameter, u8 type, determines the location of the condition on the stack;

• The second parameter, u16 type, the number of bytecodes to jump forward.

The semantics of this bytecode is: if the statement represented by the first parameter is

false, then jump forward to the bytecode of the number specified by the second

parameter. The control structure diagram is as follows:

The definition of Test bytecode is as follows:

The second parameter is the number of bytecodes to jump to, that is, the relative

position. If absolute positions are used, the code to parse and execute is slightly simpler,

but less expressive. The range of 16bit is 65536. If absolute position is used, the code

beyond 65536 in a function cannot use jump bytecode. And if you use the relative

position, then it supports jumping within the range of 65536 of the bytecode itself, and

you can support very long functions. So we use relative positions. This also introduces a

problem that has been ignored, which is the range of parameters in the bytecode. For

example, the stack index parameters are all of the u8 type, so if there are more than 256

local variables in a function, it will overflow and cause bugs. In the follow-up, the range of

parameters needs to be specially dealt with.

According to the above control structure diagram, the syntax analysis code for

completing the if statement is as follows:

+-------------------+
| if condition then |---\ skip the block if $condition is false
+-------------------+ |
 |
 block |
 |
+-----+ |
| end | |
+-----+ |
<-----------------------/

pub enum ByteCode {
// condition structures

 Test(u8, u16),

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

143 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#if-statement
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#if-statement
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#if-statement
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#if-statement

The code flow has been explained line by line in the comments. What needs to be

explained in detail here is the block() function called recursively.

End of Block

The original block() function is actually the entry point of the entire syntax analysis,

which is executed only once (without recursive calls), and reads to the end of the source

code Token::Eos as the end:

The expected end of the code block in the if statement to be supported is the keyword

end ; other keywords such as elseif and else will be included in the future. The end of

the code block is not just Token::Eos , we need to modify the block() function, and

consider the Token that is not the beginning of a legal statement (such as Eos , keyword

end , etc.) as a block End, and it is up to the caller to determine whether it is the expected

end. There are 2 ways to modify the specific code:

fn if_stat(&mut self) {
let icond = self.exp_discharge_top(); // read condition statement
self.lex.expect(Token::Then); // `then` keyword

// generate `Test` placeholder, and the 2 parameters will be added
later

self.byte_codes.push(ByteCode::Test(0, 0));
let itest = self.byte_codes.len() - 1;

// parse the block! And it is expected to return the `end` keyword,
// does not support `elseif` and `else` branches temporarily.
assert_eq!(self. block(), Token::End);

// Fix Test bytecode parameter.
// `iend` is the current position of the bytecode sequence,
// `itest` is the position of the Test bytecode, and the difference
// between the two is the number of bytecodes that need to be

jumped.
let iend = self.byte_codes.len() - 1;
self.byte_codes[itest] = ByteCode::Test(icond as u8, (iend - itest)

as u16);
 }

fn block(&mut self) {
loop {

match self. lex. next() {
// Other statement parsing is omitted here

 Token::Eos => break, // Eos exits
 }
 }
 }

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

144 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#end-of-block
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#end-of-block

• Use lex.peek() instead of lex.next() in the above code. If the Token you see is

not the beginning of a legal statement, exit the loop. At this time, the Token has not

been read by consumption. The external caller then calls lex.next() to read the

Token for judgment. If this is done, then all the current statement processing codes

must add a lex.next() at the very beginning to skip the seen Token, which is more

verbose. For example, in the if_stat() function in the previous paragraph, it is

necessary to use lex.next() to skip the keyword if .

• Still use lex.next() , for the Token that is not read at the beginning of a legal

statement, it will be returned to the caller as the function return value. We adopt

this method, the code is as follows:

So in the if_stat() function above, it is necessary to judge the return value of block()

as Token::End :

The original syntax analysis entry function chunk() also needs to increase the judgment

of the return value of block() :

Variable Scope in Block

Another area of the block() function that needs to be changed is the scope of local

variables. That is, local variables defined inside the block are not visible outside.

This feature is very core! But the implementation is very simple. Just record the number

of current local variables at the entry of block() , and then clear the newly added local

variables before exiting. code show as below:

fn block(&mut self) -> Token {
loop {

match self. lex. next() {
// Other statement parsing is omitted here

 t => break t, // return t
 }
 }
 }

// parse syntax block! And it is expected to return the end keyword,
temporarily does not support elseif and else branches

assert_eq!(self. block(), Token::End);

fn chunk(&mut self) {
assert_eq!(self. block(), Token::Eos);

 }

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

145 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#variable-scope-in-block
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#variable-scope-in-block

After the Upvalue is introduced later, other processing is required.

do Statement

The above two subsections deal with the problem of blocks. The simplest statement to

create a block is the do statement. Because it is too simple, we introduce it here by the

way. The syntax analysis code is as follows:

Virtual Machine Execution

The previous virtual machine execution was to execute bytecodes sequentially, and use

Rust's for statement to loop through:

Now to support the jump of the Test bytecode, it is necessary to be able to modify the

position of the next traversal during the loop traversal of the bytecode sequence. Rust's

fn block(&mut self) -> Token {
let nvar = self.locals.len(); // record the original number of local

variables
loop {

match self. lex. next() {
// Other statement parsing is omitted here

 t => {
self.locals.truncate(nvar); // invalidate local

variables defined inside the block
break t;

 }
 }
 }
 }

// BNF:
// do block end
fn do_stat(&mut self) {

assert_eq!(self. block(), Token::End);
 }

pub fn execute<R: Read>(&mut self, proto: &ParseProto<R>) {
for code in proto.byte_codes.iter() {

match *code {
// All bytecode pre-defined logic is omitted here

 }
 }
 }

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

146 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#do-statement
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#do-statement
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#do-statement
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#do-statement
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#virtual-machine-execution-2
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#virtual-machine-execution-2

for statement does not supported modifies the traversal position during the loop, so we

need to manually control the loop:

Loop execution is controlled by the bytecode location pc . After all bytecodes are

executed, pc will be incremented by 1, pointing to the next bytecode; for the jump

bytecode Test , pc will be modified additionally. Since Test bytecode will also execute

pc auto-increment at the end, so its jump position is actually the target address minus 1.

In fact, you can add a continue; statement here to skip the last auto-increment of pc . I

don't know which of these two approaches is better.

As can be seen from the judgment of the above code, there are only two false values in

the Lua language: nil and false . Other values, such as 0, empty table, etc., are all true

values.

Test

So far we have implemented the simplest if statement.

Since we do not yet support relational operations, the judgment condition after if can

only use other statements. The test code is as follows:

pub fn execute<R: Read>(&mut self, proto: &ParseProto<R>) {
let mut pc = 0; // bytecode index
while pc < proto.byte_codes.len() {

match proto.byte_codes[pc] {
// The pre-defined logic of other bytecodes is omitted here

// condition structures
 ByteCode::Test(icond, jmp) => {

let cond = &self. stack[icond as usize];
if matches!(cond, Value::Nil | Value::Boolean(false)) {

 pc += jmp as usize; // jump if false
 }
 }
 }

 pc += 1; // next bytecode
 }
 }

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

147 of 314 10/23/23, 08:47

https://stackoverflow.com/a/70283398/4794937
https://stackoverflow.com/a/70283398/4794937
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#test-6
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#test-6

The conditional statement a in the first judgment statement is an undefined global

variable, the value is nil , which is false, so the internal statement is not executed.

The conditional statement print in the second judgment statement is a defined global

variable and is true, so the internal statement will execute. The local variable a is defined

inside the block, which is executed normally inside, but after the end of the block, a is

invalid, and then it is used as an undefined global variable, and the print is nil .

if a then
print "skip this"

end
if print then

local a = "I am true"
print(a)

end

print (a) -- should be nil

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

148 of 314 10/23/23, 08:47

elseif and else branches

The previous section supported the if statement. This section continues with the

elseif and else branches.

The complete BNF specification is as follows:

In addition to the if judgment, there can also be multiple optional elseif judgment

branches in a row, followed by an optional else branch at the end. The control structure

diagram is as follows:

The above diagram depicts the situation where there are 2 elseif branches and 1 else

branch. Except for the judgment jump of if in the upper right corner, the rest are jumps

to be added. There are 2 types of jumps:

 if exp then block {else if exp then block} [else block] end

 +-------------------+
 | if condition then |-------\ jump to the next `elseif` branch if
$condition is false
 +-------------------+ |
 |
 block |
/<---- |
| +-----------------------+<--/
| | elseif condition then |-----\ jump to the next `elseif` branch if
$condition is false
| +-----------------------+ |
| |
| block |
+<---- |
| +-----------------------+<----/
| | elseif condition then |-------\ jump to the `else` branch if
$condition is false
| +-----------------------+ |
| |
| block |
+<---- |
| +------+ |
| | else | |
| +------+<-----------------------/
|
| block
|
| +-----+
| | end |
| +-----+
\---> All block jump here.
 The last block gets here without jump.

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

149 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#elseif-and-else-branches
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#elseif-and-else-branches
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#elseif-and-else-branches
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#elseif-and-else-branches
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#elseif-and-else-branches
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#elseif-and-else-branches
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#elseif-and-else-branches

• The conditional jump on the right side of the figure is executed by the Test

bytecode added in the previous section;

• The unconditional jump on the left side of the figure needs to add Jump bytecode,

which is defined as follows:

The syntax analysis process is as follows:

• For the if judgment branch, compared with the previous section, the position of

the conditional jump remains unchanged, and it is still the end position of the block;

however, an unconditional jump instruction needs to be added at the end of the

block to jump to the end of the entire if statement;

• For the elseif branch, it is handled in the same way as the if branch.

• For the else branch, no processing is required.

The format of the final generated bytecode sequence should be as follows, where ...

represents the bytecode sequence of the inner code block:

The syntax analysis code is as follows:

pub enum ByteCode {
// condition structures

 Test(u8, u16),
 Jump(u16),

 Test --\ `if` branch
 ... |
/<-- Jump |
| /<---/
| Test ----\ `elseif` branch
| ... |
+<-- Jump |
| /<-----/
| Test ------\ `elseif` branch
| ... |
+<-- Jump |
| /<-------/
| ... `else` branch
|
\--> end of all

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

150 of 314 10/23/23, 08:47

The processing function do_if_block() for if and elseif is as follows:

fn if_stat(&mut self) {
let mut jmp_ends = Vec::new();

// `if` branch
let mut end_token = self. do_if_block(&mut jmp_ends);

// optional multiple `elseif` branches
while end_token == Token::Elseif { // If the previous block ends

with the keyword `elseif`
 end_token = self.do_if_block(&mut jmp_ends);
 }

// optional `else` branch
if end_token == Token::Else { // If the previous block ends with the

keyword `else`
 end_token = self. block();
 }

assert_eq!(end_token, Token::End); // Syntax: `end` at the end

// Repair the unconditional jump bytecode at the end of the
// block in all `if` and `elseif` branches, and jump to the
// current position
let iend = self.byte_codes.len() - 1;
for i in jmp_ends.into_iter() {

self.byte_codes[i] = ByteCode::Jump((iend - i) as i16);
 }
 }

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

151 of 314 10/23/23, 08:47

Virtual Machine Execution

The implementation of the newly added unconditional jump bytecode Jump is very

simple. Compared with the previous conditional jump bytecode Test , only the

conditional judgment is removed:

fn do_if_block(&mut self, jmp_ends: &mut Vec<usize>) -> Token {
let icond = self.exp_discharge_top(); // read judgment statement
self.lex.expect(Token::Then); // Syntax: `then` keyword

self.byte_codes.push(ByteCode::Test(0, 0)); // generate Test
bytecode placeholder, leave the parameter blank

let itest = self.byte_codes.len() - 1;

let end_token = self. block();

// If there is an `elseif` or `else` branch, then the current
// block needs to add an unconditional jump bytecode, to jump
// to the end of the entire `if` statement. Since the position
// of the end is not known yet, the parameter is left blank and the
// The bytecode index is recorded into `jmp_ends`.
// No need to jump if there are no other branches.
if matches!(end_token, Token::Elseif | Token::Else) {

self.byte_codes.push(ByteCode::Jump(0));
 jmp_ends.push(self.byte_codes.len() - 1);
 }

// Fix the previous Test bytecode.
// `iend` is the current position of the bytecode sequence,
// `itest` is the position of the Test bytecode, and the difference
// between the two is the number of bytecodes that need to be

jumped.
let iend = self.byte_codes.len() - 1;
self.byte_codes[itest] = ByteCode::Test(icond as u8, (iend - itest)

as i16);

return end_token;
 }

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

152 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#virtual-machine-execution-3
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#virtual-machine-execution-3

// conditional jump
 ByteCode::Test(icond, jmp) => {

let cond = &self. stack[icond as usize];
if matches!(cond, Value::Nil | Value::Boolean(false)) {

 pc += jmp as usize; // jump if false
 }
 }

// unconditional jump
 ByteCode::Jump(jmp) => {
 pc += jmp as usize;
 }

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

153 of 314 10/23/23, 08:47

while and break Statements

This section introduces the while and break statement.

while Statement

Compared with the simple form of the if statement (excluding elseif and else

branches), the while statement just adds an unconditional jump bytecode at the end of

the internal block, jumping back to the beginning of the statement. As shown in the jump

on the left in the figure below:

The format of the final generated bytecode sequence is as follows, where ... represents

the bytecode sequence of the inner code block:

The syntax analysis process and code also add an unconditional jump bytecode on the

basis of the if statement. We skip the code here. One thing that needs to be changed is

that the unconditional jump here is a backward jump. But the second parameter of the

previous Jump bytecode is u16 type, which can only jump forward. Now we need to

change to i16 type, and use a negative number to represent a backward jump:

Correspondingly, the execution part of the virtual machine needs to be modified as

follows:

/--->+----------------------+
| | while condition then |---\ skip the block if $condition is false
| +----------------------+ |
| |
| block |
\<---- |
 +-----+ |
 | end | |
 +-----+ |
 <--------------------------/

/--> Test --\ `if` branch
| ... |
\--- Jump |
 <----/ The end of the entire `while` statement

pub enum ByteCode {
 Jump(i16),

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

154 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#while-and-break-statements
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#while-and-break-statements
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#while-and-break-statements
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#while-and-break-statements
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#while-and-break-statements
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#while-and-break-statements
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#while-and-break-statements
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#while-statement
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#while-statement
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#while-statement
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#while-statement

Compared with C language, Rust's type management is stricter, so it looks more verbose.

break Statement

The while statement itself is very simple, but it introduces another statement: break .

The break statement itself is also very simple, just unconditionally jump to the end of the

block, but the problem is that not all blocks support break , for example, the block inside

the if introduced earlier does not support break , only the block of the loop statement

supports break . To be precise, what the break wants to jump out of is the loop block of

the nearest layer. For example, the following example:

There are 3 layers of blocks in the code, the outer and middle while blocks support

break , and the inner if block does not support break . At this time, break is to jump out

of the middle block.

If the break statement is not within a loop block, it is a syntax error.

In order to realize the above functions, a parameter can be added to the block()

function to indicate the latest loop block when calling recursively. Since the block has not

ended when the jump bytecode is generated, and the jump destination address is not yet

known, so the jump bytecode can only be generated first, and the parameters are left

blank; and then the byte is repaired at the end of the block code parameter. So the

parameter of the block() function is the index list of the break jump bytecode of the

latest loop block. When calling the block() function,

• If it is a loop block, create a new index list as a call parameter, and after the call

ends, use the current address (that is, the end position of the block) to repair the

bytecode in the list;

• If it is not a cyclic block, use the current list (that is, the current most recent cyclic

block) as the call parameter.

// unconditional jump
 ByteCode::Jump(jmp) => {
 pc = (pc as isize + jmp as isize) as usize;
 }

while 123 do -- outer loop block, support `break`
while true do -- middle-level loop block, support `break`

 a = a + 1
if a < 10 then -- inner block, does not support `break`

 `break` -- `break` out of the `while true do` loop
end

end
end

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

155 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#break-statement
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#break-statement
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#break-statement
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#break-statement

But the recursive call of block() function is not direct recursion, but indirect recursion. If

you want to pass parameters in this way, then all parsing functions must add this

parameter, which is too complicated. So put this index list into the global ParseProto .

Locality is sacrificed for coding convenience.

Let's look at the specific coding implementation. First add the break_blocks field in

ParseProto , the type is a list of "jump bytecode index list":

When parsing the while statement, add a list before calling the block() function; after

calling, fix the jump bytecode in the list:

After the block is prepared, the break statement can be implemented:

continue Statement?

pub struct ParseProto<R: Read> {
 break_blocks: Vec::<Vec::<usize>>,

fn while_stat(&mut self) {

// Omit the conditional judgment statement processing part

// Before calling block(), append a list
self.break_blocks.push(Vec::new());

// call block()
assert_eq!(self.block(), Token::End);

// After calling block(), pop up the list just added, and fix the
jump bytecode in it

for i in self.break_blocks.pop().unwrap().into_iter() {
self.byte_codes[i] = ByteCode::Jump((iend - i) as i16);

 }
 }

fn `break`_stat(&mut self) {
// Get the bytecode list of the nearest loop block
if let Some(breaks) = self.break_blocks. last_mut() {

// Generate a jump bytecode placeholder, the parameter is left
blank

self.byte_codes.push(ByteCode::Jump(0));
// Append to the bytecode list

 `break`s.push(self.byte_codes.len() - 1);
 } else {

// Syntax error if there is no loop block
panic!("break outside loop");

 }
 }

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

156 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#continue-statement
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#continue-statement
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#continue-statement
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#continue-statement

After implementing the break statement, the continue statement naturally comes to

mind. Moreover, the implementation of continue is similar to break , the difference is

that one jumps to the end of the loop, and the other jumps to the beginning of the loop.

Adding this function is a convenient thing. But Lua does not support the continue

statement! A small part of this has to do with the repeat..until statement. We discuss

the continue statement in more detail after introducing the repeat..until statement

in the next section.

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

157 of 314 10/23/23, 08:47

repeat..until and continue

Statements

This section introduces the repeat..until statement, and discusses and attempts to

introduce the continue statement that Lua language does not support.

repeat..until Statement

The repeat..until statement is similar to the while statement, except that the

judgment condition is placed behind to ensure that the internal code block is executed at

least once.

The format of the final generated bytecode sequence is as follows, where ... represents

the bytecode sequence of the inner code block:

Compared with the bytecode sequence of the while statement, it seems that the Test is

put at the end and the original Jump bytecode is replaced. But the situation is not that

simple! Putting the judgment conditional statement behind the block will introduce a big

problem. The local variables defined in the block may be used in the judgment

conditional statement. For example, the following example:

The variable ok after the last line until is obviously intended to refer to the local

variable defined in the second line. However, the previous code block analysis function

block() has deleted the internally defined local variables at the end of the function. That

 +--------+
 | repeat |
 +--------+
/--->
| block
|
| +-----------------+
\----| until condition |
 +-----------------+

 ... <--\
 Test ---/ `until` judgment condition

-- keep retrying until the request succeeds
repeat

local ok = request_xxx()
until ok

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

158 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#repeatuntil-and-continue-statements
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#repeatuntil-and-continue-statements
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#repeatuntil-and-continue-statements
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#repeatuntil-and-continue-statements
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#repeatuntil-and-continue-statements
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#repeatuntil-and-continue-statements
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#repeatuntil-and-continue-statements
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#repeatuntil-and-continue-statements
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#repeatuntil-statement
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#repeatuntil-statement
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#repeatuntil-statement
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#repeatuntil-statement
https://wubingzheng.github.io/build-lua-in-rust/en/ch06-01.if.html#variable-scope-in-block
https://wubingzheng.github.io/build-lua-in-rust/en/ch06-01.if.html#variable-scope-in-block

is to say, according to the previous syntax analysis logic, when until is parsed, the

internally defined ok local variable has become invalid and cannot be used. This is clearly

unacceptable.

In order to support the ability to read internal local variables during until , the original

block() function needs to be modified (the code is always messed up by these strange

requirements), and the control of local variables is independent. For this reason, a

block_scope() function is added, which only does syntax analysis; while the scope of

internal local variables is completed by the outer block() function. In this way, the place

where the block() function was originally called (such as if, while statement, etc.) does

not need to be modified, and this special repeat..until statement calls the

block_scope() function for finer control. code show as below:

Then, the analysis code of the repeat..until statement is as follows:

In the above code, the 2 lines commented complete the scope control of the internal local

variables in the original block() function. After calling exp_discharge_top() and

fn block(&mut self) -> Token {
let nvar = self. locals. len();
let end_token = self. block_scope();
self.locals.truncate(nvar); // expire internal local variables
return end_token;

 }
fn block_scope(&mut self) -> Token {

 ... // The original block parsing process
 }

fn repeat_stat(&mut self) {
let istart = self.byte_codes.len();

self. push_break_block();

let nvar = self.locals.len(); // Internal local variable scope
control!

assert_eq!(self. block_scope(), Token::Until);

let icond = self.exp_discharge_top();

// expire internal local variables AFTER condition exp.
self.locals.truncate(nvar); // Internal local variable scope

control!

let iend = self.byte_codes.len();
self.byte_codes.push(ByteCode::Test(icond as u8, -((iend - istart +

1) as i16)));

self. pop_break_block();
 }

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

159 of 314 10/23/23, 08:47

parsing the conditional judgment statement, the internally defined local variables are

deleted.

continue statement

It took a lot of space to explain the scope of variables in the repeat..until statement,

which has a lot to do with the continue statement that does not exist in Lua.

When the break statement was supported in the previous section, it was mentioned that

the Lua language does not support the continue statement. There is a lot of debate on

this issue, and there is a high demand for adding a continue statement in Lua. As early

as 2012, there was a related proposal, which listed in detail the advantages and

disadvantages of adding the continue statement and related discussions. Twenty years

have passed, and even though the stubborn Lua added the goto statement in version

5.2, it still did not add the continue statement.

The "Unofficial FAQ" explains this:

• The continue statement is just one of many control statements, similar ones

include goto , break with label, etc. The continue statement is nothing special,

there is no need to add this statement;

• Conflicts with existing repeat..until statements.

In addition, an email from Roberto, the author of Lua, is more representative of the

official attitude. The reason for this is the first point above, that is, the continue

statement is just one of many control statements. An interesting thing is that there are

two examples in this email, and the other example just happens to be repeat..until

besides continue . The above unofficial FAQ also mentioned that these two statements

conflict.

The reason for the conflict between these two statements is that if there is a continue

statement in the repeat..until internal code block, then it will jump to the until

conditional judgment position. If there are local variables defined in the block are used in

until statement, while the continue statement may skip the definition and jump to the

until , then this local variable is meaningless in until . This is where the conflict lies. For

example the following code:

In contrast, the equivalent of the repeat..until statement in the C language is the

repeat
 `continue` -- jump to until, skip the definition of `ok`

local ok = request_xxx()
until ok -- how to deal with `ok` here?

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

160 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#continue-statement-1
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#continue-statement-1
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#continue-statement-1
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#continue-statement-1
http://lua-users.org/wiki/ContinueProposal
http://lua-users.org/wiki/ContinueProposal
https://www.luafaq.org/#T1.26
https://www.luafaq.org/#T1.26
http://lua-users.org/lists/lua-l/2008-02/msg01183.html
http://lua-users.org/lists/lua-l/2008-02/msg01183.html

do..while statement, which supports continue . This is because in the do..while

statement of the C language, the conditional judgment after the while is outside the

scope of the internal code block. For example, the following code will compile error:

Such a specification (the conditional judgment is outside the scope of the inner code

block) is not convenient in some usage scenarios (such as the above example), but there

are also very simple solutions (such as move ok definition outside the loop), and the

syntax analysis is simpler, for example, there is no need to separate the block_scope()

function. Then why does Lua stipulate that the conditional judgment statement should be

placed within the inner scope? The speculation is as follows, if Lua also follows the

practice of C language (the conditional judgment is outside the scope of the internal code

block), and then the user writes the following Lua code, ok after the until will be parsed

as a Global variables, without reporting errors like C language! This is not the user's

intention, thus causing a serious bug.

To sum up, the repeat..until statement needs to put the conditional judgment

statement after until in the scope of the internal code block in order to avoid bugs with

a high probability; then when the continue statement jumps to the conditional

statement, it may skip the definition of local variables, and then there is a conflict.

Try Adding continue Statement

Lua's official reason for not supporting the continue statement is mainly that they think

the frequency of use of the continue statement is very low and it is not worth

supporting. But in my personal programming experience, whether in Lua or other

languages, the frequency of use of the continue statement is still very high. Although it

may not be as good as break , it is far more than goto and break with labels, and even

more than repeat..until statement. Besides, the way to implement the continue

function in Lua (repeat..until true + break , or goto) is more verbose than using

continue directly. So can we add a continue statement to our interpreter?

First of all, we have to resolve the conflict with repeat..until mentioned above. There

are several solutions:

• Make a rule that the continue statement is not supported in repeat..until , just

do {
bool ok = request_xx();

 } while (ok); // error: 'ok' undeclared

repeat
local ok = request_xxx()

until ok

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

161 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#try-adding-continue-statement
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#try-adding-continue-statement
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#try-adding-continue-statement
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#try-adding-continue-statement
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#try-adding-continue-statement
https://www.luafaq.org/#T1.26
https://www.luafaq.org/#T1.26
https://www.luafaq.org/#T1.26
https://www.luafaq.org/#T1.26
https://www.luafaq.org/#T1.26

like the if statement does not support continue . But this is very easy to cause

misunderstanding. For example, a piece of code has two layers of loops, the outer

layer is a while loop, and the inner layer is a repeat loop; the user wrote a

continue statement in the inner loop, intending to make the inner repeat loop

take effect, but because repeat does not actually support continue , Then it will

take effect in the outer while loop, and continue the outer while loop. This is a

serious potential bug.

• Make a rule that the continue statement is prohibited in repeat..until . If there is

continue , an error will be reported. This can avoid the potential bugs of the above

scheme, but this prohibition is too strict.

• Make a rule that if an internal local variable is defined in repeat..until , the

continue statement is prohibited. This plan is a little more relaxed than the last

one, but it can be more relaxed.

• Make a rule that after the continue statement appears in repeat..until , the

definition of internal local variables is prohibited; in other words, continue

prohibits jumping to local variable definitions. This is similar to the restriction on

subsequent goto statements. However, it can be more relaxed.

• On the basis of the previous solution, only the local variables defined after the

continue statement are used in the conditional judgment statement after the

until , which is prohibited. It’s just that the judgment of whether to use local

variables in the statement is very complicated. If function closures and Upvalue are

supported later, it is basically impossible to judge. So this plan is not feasible.

In the end, I chose to use the second-to-last solution. For specific coding implementation,

there used to be break_blocks in ParseProto to record break statements, and now a

similar continue_blocks is added, but the member type is (icode, nvar) . Among

them, the first variable icode is the same as the members of break_blocks , and records

the position of the Jump bytecode corresponding to the continue statement for

subsequent correction; the second variable nvar represents the number of local

variables in the continue statement, which is used for Subsequent checks to see if the

new local variable has been jumped.

Second, adding a continue statement cannot affect existing code. In order to support

the continue statement, it is necessary to use continue as a keyword (similar to the

break keyword), so many existing Lua codes use continue as a label, or even a variable

name or function name (essentially a variable name) will fail to parse. To this end, a tricky

solution is not to use continue as a keyword, but to judge when parsing a statement that

if it starts with continue and is followed by a block-ending Token (such as end , etc.), it is

considered to be continue statement. Thus in most other places, continue will still be

interpreted as a normal Name.

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

162 of 314 10/23/23, 08:47

In the corresponding block_scope() function, the part starting with Token::Name, the

newly added code is as follows:

The try_continue_stat() function is defined as follows:

Before parsing to the code block of the loop body, it must be prepared first, which is the

push_loop_block() function. After the block ends, use pop_loop_block() to handle

break s and continue s. The jump corresponding to break s is to jump to the end of the

block, that is, the current position; the jump position corresponding to continue s is

determined according to different loops (for example, the while loop jumps to the

beginning of the loop, and the repeat loop jumps to the end of the loop) , so parameters

are required to specify; in addition, when processing continus, it is necessary to check

loop {
match self. lex. next() {

// Omit parsing of other types of statements
 t@Token::Name(_) | t@Token::ParL => {

// this is not standard!
if self.try_continue_stat(&t) { // !! New !!

continue;
 }

// The following omits the parsing of standard
// function calls and variable assignment statements

 }

fn try_continue_stat(&mut self, name: &Token) -> bool {
if let Token::Name(name) = name {

if name.as_str() != "continue" { // The beginning of the
judgment statement is `continue`

return false;
 }

if !matches!(self.lex.peek(), Token::End | Token::Elseif |
Token::Else) {

return false; // Judgment followed by one of these 3 Tokens
 }

// Then, it's the `continue` statement. The following processing
// is similar to the break statement processing
if let Some(continues) = self.continue_blocks.last_mut() {

self.byte_codes.push(ByteCode::Jump(0));
 continues.push((self.byte_codes.len() - 1,
self.locals.len()));
 } else {

panic!("continue outside loop");
 }

true
 } else {

false
 }
 }

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

163 of 314 10/23/23, 08:47

whether there are new definitions of local variables, that is, compare the number of

current local variables with the number of local variables in the continue statement.

So far, we have implemented the continue statement while ensuring backward

compatibility! You can use the following code to test:

// before entering loop block
fn push_loop_block(&mut self) {

self. break_blocks. push(Vec::new());
self. `continue`_blocks. push(Vec::new());

 }

// after leaving loop block, fix `break` and `continue` Jumps
fn pop_loop_block(&mut self, icon`continue`: usize) {

// breaks
let iend = self.byte_codes.len() - 1;
for i in self.break_blocks.pop().unwrap().into_iter() {

self.byte_codes[i] = ByteCode::Jump((iend - i) as i16);
 }

// continues
let end_nvar = self. locals. len();
for (i, i_nvar) in self.`continue`_blocks.pop().unwrap().into_iter()

{
if i_nvar < end_nvar {

// i_nvar is the number of local variables in the
// `continue` statement, end_nvar is the number of
// current local variables
panic!("`continue` jump into local scope");

 }
self.byte_codes[i] = ByteCode::Jump((i`continue` as isize - i as

isize) as i16 - 1);
 }
 }

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

164 of 314 10/23/23, 08:47

repeat..until Existence

As can be seen above, the existence of the repeat..until statement introduces two

problems because the scope of the local variables defined in the block needs to be

extended in the until part:

• In programming implementation, it is necessary to create a block_scope()

function;

• Conflict with continue statement.

I personally think that introducing the above two problems in order to support a

statement that is rarely used like repeat..until is not worth the candle. If I were to

design the Lua language, this statement would not be supported.

-- validate compatibility
continue = print -- continue as global variable name, and assign it a value
continue(continue) -- call continue as function

-- continue in while loop
local c = true
while c do

print "hello, while"
if true then

 c = false
 continue

end
print "should not print this!"

end

-- continue in repeat loop
repeat

print "hello, repeat"
local ok = true
if true then

 continue -- continue after local
end
print "should not print this!"

until ok

-- continue skip local in repeat loop
-- PANIC!
repeat

print "hello, repeat again"
if true then

 continue -- skip `ok`!!! error in parsing
end
local ok = true

until ok

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

165 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#repeatuntil-existence
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#repeatuntil-existence
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#repeatuntil-existence
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#repeatuntil-existence

In the 8.4 Exercise section of the official "Lua Programming (4th Edition)" book, the

following questions are raised:

Exercise 8.3: Many people think that because repeat-until is rarely used, it should

not appear at the end in a simple programming language like Lua language. What

do you think?

I really want to know the author's answer to this question, but unfortunately, none of the

exercises in this book give an answer.

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

166 of 314 10/23/23, 08:47

numerical-for Statement

Lua's for statement supports two types:

• Numeric: for Name '=' exp ',' exp [',' exp] do block end

• Generics: for namelist in explist do block end

Generic-for requires function support, and it will be implemented after introducing

functions in the next chapter. This section implements numeric-for. It can be seen from

the BNF definition that the first two tokens of the two types are the same, and the third

token of the numeric type is = . By this distinction two types can be distinguished:

Control Structure

The semantics of the numerical-for statement is obvious. The three expressions after the

equal sign = are the initial value init , the limit , and the step . step can be positive

or negative, but not 0. The control structure diagram is as follows (assuming step>0 in the

diagram):

The execution logic in the boxes can be implemented with 1 bytecode respectively, so 2

bytecodes must be executed in each loop: first i+=step , and then judge i<=limit . For

performance, the judgment function of the first bytecode can also be added to the

bottom bytecode, so that only one bytecode is executed each loop. The control structure

diagram is as follows:

fn for_stat(&mut self) {
let name = self. read_name();
if self.lex.peek() == &Token::Assign {

self.for_numerical(name); // numerical
 } else {
 todo!("generic for"); // generic
 }
 }

 +--------------+
/--->| i <= limit ? |--No--\ jump to the end if exceed limit
| +--------------+ |
| |
| block |
| |
| +-----------+ |
\----| i += step | |
 +-----------+ |
 <-----------------/

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

167 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#numerical-for-statement
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#numerical-for-statement
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#control-structure-1
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#control-structure-1

Add 2 new bytecodes:

These two bytecodes correspond to the bytecodes of the two boxes in the above figure,

and the two associated parameters are the stack start position and jump position

respectively. Later, we will see that the first bytecode needs to do other preparations

besides judging the jump, so it is called prepare.

Variable Storage

The first parameter associated with the above two bytecodes is the starting position of

the stack. To be precise, it is the location where the above three values (init, limit, step)

are stored. These 3 values naturally need to be stored on the stack, because one of the

functions of the stack is to store temporary variables, and because there is no other place

available. The 3 values are stored sequentially, so only one parameter is needed to locate

3 values.

In addition, the for statement also has a control variable, which can reuse the position on

the stack of init. During parsing, create an internal temporary variable whose name is

Name in BNF, pointing to the position of the first variable on the stack. In order to keep

the positions of the other 2 temporary variables from being occupied, 2 more anonymous

local variables need to be created. Therefore, the stack at execution time is as follows:

 +--------------+
 | i <= limit ? |--No--\ jump to the end if exceed limit
 +--------------+ |
/------> |
| block |
| |
| +--------------+ |
| | i += step | |
\--Yes--| i <= limit ? | |
 +--------------+ |
 <----------------/

pub enum ByteCode {
// for-loop

 ForPrepare(u8, u16),
 ForLoop(u8, u16),

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

168 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#variable-storage
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#variable-storage

The numerical-for statement is special only in the above three temporary variables, and

the rest is similar to the control structure introduced before, which is nothing more than

jumping according to the conditional judgment statement. The syntax analysis code is as

follows:

 | |
sp +--------+
 | init/i | control variable Name
sp+1 +--------+
 | limit | anonymous variable ""
sp+2 +--------+
 | step | anonymous variable ""
 +--------+
 | |

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

169 of 314 10/23/23, 08:47

Integer and Float-point Types

The previously supported control statements(such as if , while) mainly introduce the

syntax analysis part; while the virtual machine execution part only performs simple

fn for_numerical(&mut self, name: String) {
self.lex.next(); // skip `=`

// Read 3 expressions: init, limit, step (default is 1), and place
// them on the stack in turn
match self.explist() {

2 => self.discharge(self.sp, ExpDesc::Integer(1)),
3 => (),

 _ => panic!("invalid numerical-for exp"),
 }

// Create 3 local variables to occupy the position on the stack.
// Subsequent if the internal block needs local or temporary

variables,
// The position after these 3 variables on the stack will be used.
self.locals.push(name); // control variable, can be referenced in

internal block
self.locals.push(String::from("")); // anonymous variable, purely

for placeholder
self.locals.push(String::from("")); // Same as above

self.lex.expect(Token::Do);

// Generate ForPrepare bytecode
self.byte_codes.push(ByteCode::ForPrepare(0, 0));
let iprepare = self.byte_codes.len() - 1;
let iname = self.sp - 3;

self. push_loop_block();

// inner block
assert_eq!(self. block(), Token::End);

// delete 3 temporary variables
self. locals. pop();
self. locals. pop();
self. locals. pop();

// Generate ForLoop bytecode and fix the previous ForPrepare
let d = self.byte_codes.len() - iprepare;
self.byte_codes.push(ByteCode::ForLoop(iname as u8, d as u16));
self.byte_codes[iprepare] = ByteCode::ForPrepare(iname as u8, d as

u16);

self.pop_loop_block(self.byte_codes.len() - 1);
 }

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

170 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#integer-and-float-point-types
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#integer-and-float-point-types

operations on the stack according to the bytecode. However, the syntax analysis part of

the numerical-for loop is relatively simple (mainly because it is similar to the previous

control structures), while the virtual machine execution part is very complicated. In fact, it

is not difficult, it is just cumbersome. The reason is that Lua supports 2 numeric types,

integers and floats. There are a total of 3 expressions (or called variables) in the numeric-

for statement, init , limit , and step , each of which may be one of two types, and

there are 8 possibilities in total. Although in some cases the type of some variables (such

as constants) can be determined in the syntax analysis stage, it is of little significance to

deal with this special case alone, and finally it is necessary to deal with all three variables

of unknown type situation, which needs to be handled during the execution phase of the

virtual machine.

It is too complicated to deal with 8 types one by one; and they cannot be completely

classified into one type, because the representation ranges of integers and floating-point

numbers are different. In this regard, the Lua language regulations is divided into two

categories:

• If init and step are integers, then treat them as integers;

• Otherwise, handle them as floating point numbers.

As for why the second limit variable is not considered in the first category, it is not

clear. I think there are some possible reasons, but I'm not sure about them, so I won't

discuss them here. It can be realized according to the regulations of Lua. But it does

introduce some complications.

Somewhere the 8 possibilities need to be grouped into the 2 types above. It can't be done

in the syntax analysis phase, and it is too costly to perform each time the loop is

executed, so it is classified once at the beginning of the loop. This is what the ForPrepare

bytecode does:

• If init and step are integers, then convert limit to an integer;

• Otherwise, convert all 3 variables to floats.

In this way, each time the loop is executed, that is, the ForLoop bytecode, only two cases

need to be handled.

It is easy to convert integers to floating-point numbers in the second category, but to

convert the floating-point limit to integers in the first category, you must pay attention to

the following two points:

• If step is positive, limit is rounded down; if step is negative, limit is rounded

up.

• If the limit exceeds the representation range of the integer, then it is converted to

the maximum or minimum value of the integer. There is an extreme situation here,

such as step is negative, init is the maximum value of an integer, and limit

exceeds the maximum value of an integer, then init is smaller than limit , and

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

171 of 314 10/23/23, 08:47

https://www.lua.org/manual/5.4/manual.html#3.3.5
https://www.lua.org/manual/5.4/manual.html#3.3.5

because Lua clearly stipulates that the control variable of the numerical-for loop will

not overflow and reverse, So the expectation is that the loop will not be executed.

But according to the above conversion, limit is converted to the maximum value

because it exceeds the maximum value of the integer, which is equal to init , and 1

cycle will be executed. Therefore, for special treatment, you can set init and

limit to 0 and 1 respectively, so that the loop will not be executed.

The specific code for limit variable conversion is as follows:

Virtual Machine Execution

After introducing the above integer and floating-point number types and conversion

details, the next step is to implement the virtual machine execution part of the two

bytecodes.

The ForPrepare bytecode does two things: first, it is divided into integer and floating point

type loops according to the variable type; Then compare init and limit to determine

whether to execute the first cycle. code show as below:

fn for_int_limit(limit: f64, is_step_positive: bool, i: &mut i64) -> i64 {
if is_step_positive {

if limit < i64::MIN as f64 {
 *i = 0; // Modify init together to ensure that the loop will not
be executed
 -1
 } else {
 limit.floor() as i64 // round down
 }
 } else {

if limit > i64::MAX as f64 {
 *i = 0;

1
 } else {
 limit.ceil() as i64 // round up
 }
 }
}

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

172 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#virtual-machine-execution-4
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#virtual-machine-execution-4

The ForLoop bytecode also does two things: first, add step to the control variable; then

compare the control variable and limit to determine whether to execute the next loop.

The code is omitted here.

So far, we have completed the numeric-for statement.

 ByteCode::ForPrepare(dst, jmp) => {
// clear into 2 cases: integer and float
// stack: i, limit, step
if let (&Value::Integer(mut i), &Value::Integer(step)) =

 (&self.stack[dst as usize], &self.stack[dst as
usize + 2]) {

// integer case
if step == 0 {

panic!("0 step in numerical for");
 }

let limit = match self.stack[dst as usize + 1] {
 Value::Integer(limit) => limit,
 Value::Float(limit) => {

let limit = for_int_limit(limit, step>0, &mut
i);

self.set_stack(dst+1, Value::Integer(limit));
 limit
 }

// TODO convert string
 _ => panic!("invalid limit type"),
 };

if !for_check(i, limit, step>0) {
 pc += jmp as usize;
 }
 } else {

// float case
let i = self.make_float(dst);
let limit = self.make_float(dst+1);
let step = self.make_float(dst+2);
if step == 0.0 {

panic!("0 step in numerical for");
 }

if !for_check(i, limit, step>0.0) {
 pc += jmp as usize;
 }
 }
 }

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

173 of 314 10/23/23, 08:47

goto Statement

This section describes the goto statement.

The goto statement and label can be used together for more convenient code control.

But the goto statement also has the following restrictions:

• You cannot jump to the label defined by the inner block, but you can jump to the

outer block;

• You cannot jump outside the function (note that the above rule has restricted

jumping into the function). Since we do not support functions yet, ignore this for

now;

• You cannot jump into the scope of local variables, that is, you cannot skip local

statements. Note here that the scope ends at the last non-void statement, and the

label is considered a void statement. My personal understanding is the statement

that does not generate bytecode. For example the following code:

The continue label is behind the local variable var , but because it is a void statement, it

does not belong to the scope of var, so the above goto is a legal jump.

The implementation of the goto statement naturally uses Jump bytecode. The main task

of syntax analysis is to match goto and label, and generate Jump bytecode at the place

of goto statement to jump to the corresponding label. Since the goto statement can

jump forward, the definition of the corresponding label may not be encountered when

the goto statement is encountered; it can also jump backward, so when the label

statement is encountered, it needs to be saved for subsequent goto matching.

Therefore, two new lists need to be added to ParseProto to save the goto and label

information encountered during syntax analysis:

while xx do
if yy then goto continue end
local var = 123
-- some code

 ::continue::
end

struct GotoLabel {
 name: String, // The label name to jump to/defined
 icode: usize, // current bytecode index
 nvar: usize, // the current number of local variables, used to determine
whether to jump into the scope of local variables
}

pub struct ParseProto<R: Read> {
 gotos: Vec<GotoLabel>,
 labels: Vec<GotoLabel>,

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

174 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#goto-statement
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#goto-statement
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#goto-statement
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#goto-statement

Both lists have the same member type, GotoLabel . Among them, nvar is the current

number of local variables. Make sure that the nvar corresponding to the paired goto

statement cannot be smaller than the nvar corresponding to the label statement,

otherwise it means that there is a new local variable definition between the goto and

label statements, that is, goto jump into the scope of the local variable.

There are two implementations of matching goto statement and lable:

• One-time match at the end of the block:

◦ When encountering a goto statement, create a new GotoLabel to join the list,

and generate a placeholder Jump bytecode;

◦ When encountering a label statement, create a new GotoLabel to add to the

list.

Finally, at the end of the block, match once and fix the placeholder bytecode.

• Live match:

◦ When encountering a goto statement, try to match from the existing label list,

if the match is successful, directly generate a complete Jump bytecode;

otherwise create a new GotoLabel , and generate a placeholder Jump

bytecode;

◦ When encountering a label statement, try to match it from the existing goto

list, and if it matches, repair the corresponding placeholder bytecode; since

there may be other goto statements adjusted to this point, it is still necessary

to create a new GotoLabel .

At the end of the block, all matches have completed already.

It can be seen that although real-time matching is a little more complicated, it is more

cohesive, and there is no need to execute a final function at the end. But this solution has

a big problem: it is difficult to judge non-void statements. For example, in the example at

the beginning of this section, when the continue label is parsed, it cannot be judged

whether there are other non-void statements in the future. If there is, it is an illegal jump.

It can only be judged after parsing to the end of the block. In the first one-time matching

scheme, the matching is done at the end of the block. At this time, it is convenient to

judge the non-void statement. Therefore, we choose one-time matching here. It should

be noted that when Upvalue is introduced later, it will be found that the one-time

matching scheme is flawed.

After introducing the above details, the overall process of syntax analysis is as follows:

• After entering the block, first record the number of goto and label before (outer

layer);

• Parse block, record goto and label statement information;

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

175 of 314 10/23/23, 08:47

• Before the end of the block, match the goto statement that appears in this block

with all (including the outer layer) label statements: if there is a goto statement that

is not matched, it will still be returned to the goto list, because it may be a jump to

the block The label defined in the outer layer after exiting; finally delete all the labels

defined in the block, because after exiting the block, there should be no other goto

statements to jump in.

• Before the end of the entire Lua chunk, judge whether the goto list is empty. If it is

not empty, it means that some goto statements have no destination, and an error

is reported.

The corresponding code is as follows:

Record the number of goto and label existing in the outer layer at the beginning of

parsing the block; and match and clean up the goto and label defined inside before the

end of the block:

The specific matching code is as follows:

fn block_scope(&mut self) -> Token {
let igoto = self.gotos.len(); // Record the number of outer goto

before
let ilabel = self.labels.len(); // record the number of outer labels
loop {

// omit other statement analysis
 t => { // end of block

// Match goto and label before exiting the block
self.close_goto_labels(igoto, ilabel);
break t;

 }
 }
 }

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

176 of 314 10/23/23, 08:47

Finally, before the chunk is parsed, check that all gotos are matched:

This completes the goto statement.

// The parameters igoto and ilable are the starting positions of goto
// and label defined in the current block
fn close_goto_labels(&mut self, igoto: usize, ilabel: usize) {

// Try to match "goto defined in the block" and "all labels".
let mut no_dsts = Vec::new();
for goto in self. gotos. drain(igoto..) {

if let Some(label) = self.labels.iter().rev().find(|l|l.name ==
goto.name) { // matches

if label.icode != self.byte_codes.len() && label.nvar >
goto.nvar {

// Check whether to jump into the scope of local
variables.

// 1. The bytecode corresponding to the label is not the
last one,

// indicating that there are non-void statements in
the follow-up

// 2. The number of local variables corresponding to the
label is

// greater than that of goto, indicating that there
are newly

// defined local variables
panic!("goto jump into scope {}", goto.name);

 }
let d = (label.icode as isize - goto.icode as isize) as i16;
self.byte_codes[goto.icode] = ByteCode::Jump(d - 1); // fix

bytecode
 } else {

// If there is no match, put it back
 no_dsts.push(goto);
 }
 }

self. gotos. append(&mut no_dsts);

// Delete the label defined inside the function
self. labels. truncate(ilabel);

 }

fn chunk(&mut self) {
assert_eq!(self. block(), Token::Eos);
if let Some(goto) = self. gotos. first() {

panic!("goto {} no destination", &goto.name);
 }
 }

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

177 of 314 10/23/23, 08:47

Logical and Relational Operations

This chapter introduces logical operations and relational operations. Both types of

operations have two application scenarios: conditional judgment and evaluation. For

example the following code:

The analysis methods in these two scenarios are slightly different. Generally speaking,

conditional judgments occur more often than evaluations, so when introducing these two

types of operations in this chapter, we first introduce the parsing in conditional judgment

scenarios and optimize them; then complete the evaluation scenario.

The scene of conditional judgment is derived from the control structure in the previous

chapter, which is why these two types of operations are not introduced immediately after

arithmetic operations in Chapter 5, but must be introduced after the control structure.

-- logic operation
if a and b then -- conditional judgment

print(t.k or 0) -- evaluate
end

-- Relational operations
if a > b then -- conditional judgment

print(c > d) -- evaluate
end

-- Combination of logical operations and relational operations
if a > b and c < d then -- conditional judgment

print (x > 0 and x or -x) -- evaluate
end

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

178 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#logical-and-relational-operations
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#logical-and-relational-operations

Logical Operations in Conditional

Judgment

Logical operations include 3: and , or , and not . The last not is a unary operation, which

has been introduced in the previous section Unary Operation. This chapter only

introduces the first two and and or .

Then why not introduce and and or in the previous binary operation section? Because

of "short circuit"! In mainstream programming languages (such as C, Rust), logical

operations are short-circuited. For example, for the AND operation, if the first operand is

false, then there is no need (and cannot) to execute or check the second operand. For

example, the statement is_valid() and count() , if the return value of is_valid() is

false, then the subsequent count() cannot be executed. Therefore, the execution

process of logical operations is: 1. First judge the left operand, 2. If it is false, exit, 3.

Otherwise judge the right operand. While the execution process of the binary arithmetic

operation is: 1. First find the left operand, 2. Then find the right operand, 3. Finally

calculate. It can be seen that the flow of logical operations is different from that of

arithmetic operations, so the previous methods cannot be applied.

Before introducing the logic operation in detail, let's look at two usage scenarios of logic

operations:

1. As a judgment condition, such as the judgment condition statement in if, while and

other statements in the previous chapter, such as if t and t.k then ... end ;

2. Evaluation, such as print(v>0 and v or -v) .

In fact, the first scenario can be regarded as a special case of the second scenario. For

example, the above if statement example is equivalent to the following code:

It is to first evaluate the operation statement t and t.k , then put the value into a

temporary variable, and finally judge whether the value is true or false to decide whether

to jump. However, here we don't actually care whether the specific evaluation result is t

or t.k , but only care about true or false, so we can save the temporary variable! As you

can see below, the omission of temporary variables can save a bytecode, which is a great

optimization. Since most applications of logical operations are in the first scenario, it is

worthwhile to separate this scenario from the second general scenario for special

optimization, by omitting temporary variables and directly judging whether to jump

based on the evaluation result.

local tmp = t and t.k
if tmp then
 ...
end

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

179 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#logical-operations-in-conditional-judgment
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#logical-operations-in-conditional-judgment
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#logical-operations-in-conditional-judgment
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#logical-operations-in-conditional-judgment
https://wubingzheng.github.io/build-lua-in-rust/en/ch05-01.unary_ops.html
https://wubingzheng.github.io/build-lua-in-rust/en/ch05-01.unary_ops.html
https://wubingzheng.github.io/build-lua-in-rust/en/ch05-02.binary_ops.html
https://wubingzheng.github.io/build-lua-in-rust/en/ch05-02.binary_ops.html

As the title of this section indicates, this section only introduces the first scenario; while

the next section will introduce the second scenario.

Jump Rules

The short-circuit characteristics of logic operations are introduced above. After each

operand is judged, a jump may occur and the next operand is skipped. The bytecode

corresponding to the logical operation is to jump according to each operand. Different

operation combinations will lead to various jump combinations. Now it is necessary to

summarize jump rules from various jump combinations, so as to be used as subsequent

parsing rules. This is probably the most convoluted part of the whole interpreter.

The following uses the simplest if statement as the application scenario, and first looks

at the most basic and and or operations. The following two figures are the jump

schematic diagrams of if A and B then ... end and if X or Y then ... end

respectively:

The left figure is the AND operation. The processing after the judgment of the two

operands A and B is the same: if True, continue to execute; if False, jump to the end of the

code block.

The figure on the right is the OR operation. The processing flow of the two operands is

different. The processing of the first operand X is: False continues execution, and True

jumps to the following code block to start. While the processing of the second operand Y

is the same as the processing of A and B before.

However, just looking at these two examples is not able to sum up the general law. Also

need to look at some complex:

 A and B X or Y

+-------+ +-------+
| A +-False-\ /--True-+ X |
+---+---+ | | +---+---+
 |True | | |False
 V | | V
+-------+ | | +-------+
| B +-False>+ | | Y +-False-\
+---+---+ | | +---+---+ |
 |True | \---------->|True |
 V | V |
 block | block |
 | | | |
 +<----------/ +<--------/
 V V

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

180 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#jump-rules
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#jump-rules

According to these 4 diagrams, the following rules can be summarized (the specific steps

of induction are omitted here. In practice, more examples may be needed to summarize,

but too many examples are too bloated):

• The jump condition depends on the logical operator (that is, and or or) behind the

statement (such as A, B, X, Y, etc. in the above example):

◦ If it is followed by and operation, False jumps and True continues execution.

For example, A and B in the first picture are followed by and operations, so

they are all False jumps.

A and B and C X or Y or Z (A and B) or Y
A and (X or Y)

+-------+ +-------+ +-------+
+-------+
| A +-False-\ /--True-+ X | | A |-False-\
| A +-False-\
+---+---+ | | +---+---+ +---+---+ |
+---+---+ |
 |True | | |False |True |
|True |
 V | | V V |
V |
+-------+ | | +-------+ +-------+ |
+-------+ |
| B +-False>+ +<-True-+ Y | /--True-+ B | |
/--True-+ X | |
+---+---+ | | +---+---+ | +---+---+ |
| +---+---+ |
 |True | | |False | False|<---------/
| |False |
 V | | V | V
| V |
+-------+ | | +-------+ | +-------+
| +-------+ |
| C +-False>+ | | Z +-False-\ | | Y +-False-\
| | Y +-False>+
+---+---+ | | +---+---+ | | +---+---+ |
| +---+---+ |
 |True | \---------->|True | \---------->|True |
\---------->|True |
 V | V | V |
V |
 block | block | block |
block |
 | | | | | |
| |
 +<---------/ +<----------/ +<---------/
+<---------/
 V V V
V

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

181 of 314 10/23/23, 08:47

◦ If it is followed by an or operation, True jumps and False continues. For

example, X and Z in the second picture are followed by or operations, so they

are all True jumps.

◦ If there is no logical operator behind, that is, the entire judgment statement

ends, False jumps and True continues to execute. This rule is the same as for

and above. This is true for the last judgment statement in the above four

figures.

• Rules for jump target positions:

◦ If the same jump condition continues, jump to the same position. For example,

there are 3 consecutive False jumps in the first picture, and 2 consecutive True

jumps in the second picture; and the two False jumps in the third picture are

not continuous, so the jump positions are different. Then during syntax

analysis, if the two operands have the same jump condition, the jump list is

merged.

◦ If different jump conditions are encountered, terminate the previous jump list

and jump to the end of the current judgment statement. For example, the

False of Z in the second figure terminates the previous two True jump lists and

jumps to the end of the Z statement; another example is the False jump list

before the termination of B’s True in the third figure, and jumps to After the B

statement.

◦ However, the fourth picture does not seem to comply with the above two

rules. The two False jumps are not continuous but connected, or the True jump

of X does not end the False jump list of A. This is because A does not operate

with X , but with (X or Y) ; you need to ask (X or Y) first, and the True jump

of X is brand new at this time, and you don’t know the previous The False jump

list of A; and then when asking A and (X or Y) , the two jump lists of True and

False coexist; the False at the end of the final statement merges the False jump

list of A before, and Termination of X's True jump list.

◦ The end of the judgment statement corresponds to the False jump, so the True

jump list will be terminated and the False jump list will continue. After the end

of the block, terminate the False jumpGo to the end of the block list. This is the

case in the 4 figures above.

So far, the preparation knowledge has been introduced. Let's start coding.

Bytecode

Several conditional judgment statements in the control structure in the previous chapter,

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

182 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#bytecode-2
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#bytecode-2

including if , while , and repeat..until , etc., all deal with the judgment conditions and

jump on False, so there is only one bytecode for testing and jumping, namely Test . But

now we need 2 kinds of jumps, jump on False and jump on True. For this reason, we

remove the previous Test and add 2 bytecodes:

The "And" and "Or" in the naming have nothing to do with the logical operations

introduced in this section, but are derived from the method names of the Option and

Error types in the Rust language, meaning "and then" and "otherwise then" respectively.

However, in the two examples at the beginning of this section, t and t.k can be

described as: if t exists "then then" take t.k, t.k or 100 can be described as: if t.k exists

then take its value "otherwise then" Take 100. It can also be said to be related.

It’s just that the first jump rule introduced above, if it is followed by and operation, False

jumps, corresponding to TestOrJump . The and and Or here do not correspond, but it

doesn't matter much.

In the official Lua implementation, there is still only one bytecode TEST , which is

associated with two parameters: the stack address of the judgment condition (same as

ours), and the jump condition (True jump or False jump). For the specific jump position,

you need to add a JUMP bytecode for an unconditional jump. It seems that 2 bytecodes

are not very efficient. This is done for another application scenario, which will be

introduced in the next section.

ExpDesc

When parsing logical operators to generate jump bytecodes, the destination of the jump

is not yet known. Only one bytecode placeholder can be generated first, and the

parameter of the jump position is left blank. The parameters are filled in after the

destination location is determined later. This approach is the same as when we

introduced control structures in the previous chapter. The difference is that there was

only one jump bytecode in the previous chapter, but this time there may be multiple

bytecode zippers, such as the first picture above, 3 bytecode jumps Go to the same

location. This zipper may be a True jump or a False jump, or these two chains may exist at

the same time, such as when Y is resolved in the fourth figure above. So a new ExpDesc

type is needed to save the jump list. To this end, a new Test type is defined as follows:

pub enum ByteCode {
 TestAndJump(u8, i16), // If Test is True, then Jump.
 TestOrJump(u8, i16), // Jump if Test is False. Same function as `Test`
in the previous chapter.

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

183 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#expdesc-1
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#expdesc-1

Associate 3 parameters. The first one is to determine the position of the condition on the

stack. No matter what type (constant, variable, table index, etc.) it will be discharged to

the stack first, and then the true or false will be judged. The next two parameters are the

two jump lists of True and False, and the contents are the positions of the bytecodes that

need to be completed.

In the official implementation of Lua, the jump list is implemented by jumping to the

blank parameters in the bytecode. For example, if there are three consecutive False

jumps in the first figure above, the bytecodes generated by judging A, B, and C are JUMP

0 , JUMP $A , JUMP $B , and then save them in ExpDesc $C . In this way, $B can be found

through $C , $A can be found through $B , and the parameter 0 indicates the end of the

linked list. Finally, while traversing, it is uniformly fixed as JUMP $end . This design is very

efficient, without additional storage, and the zipper can be realized by using the Jump

parameter that is temporarily left blank. At the same time, it is also slightly obscure and

error-prone. This kind of full use of resources and micro-manipulation of memory

according to bits is a very typical practice of C language projects. The Rust language

standard library provides a list Vec, although it will generate memory allocation on the

heap, which slightly affects performance, but the logic is much clearer and clear at a

glance. As long as it is not a performance bottleneck, obscure and dangerous practices

should be avoided as much as possible, especially when using the safety-oriented Rust

language.

Syntax Analysis

Now it is finally ready to parse. Start with the binary operation part of the exp()

function. Before introducing the evaluation order of binary numerical operations, the first

operand must be processed first. It is also introduced at the beginning of this section that

for the processing order of logical operations, due to the short-circuit characteristics, the

first operation and possible jumps must be processed first, and then the second operand

can be parsed. So, before continuing to parse the second operand, the jump is handled:

enum ExpDesc {
 Test(usize, Vec<usize>, Vec<usize>), // (condition, true-list, false-
list)

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

184 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#syntax-analysis-5
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#syntax-analysis-5
https://wubingzheng.github.io/build-lua-in-rust/en/ch05-02.binary_ops.html#evaluation-order
https://wubingzheng.github.io/build-lua-in-rust/en/ch05-02.binary_ops.html#evaluation-order

In this function, the processing part of logical operation is added. Take and as an

example, generate ExpDesc::Test type, temporarily save the processed 2 jump lists, and

the associated first parameter is useless, fill in 0 here. Call the test_or_jump() function

to process the jump list. According to the rules introduced above, the and operator

corresponds to the False jump, which will terminate the previous True jump list, so the

test_or_jump() function will terminate the previous True jump list and return only the

False jump list. Then create a new list Vec::new() here as the True jump list.

Look at the specific implementation of test_or_jump() :

fn preprocess_binop_left(&mut self, left: ExpDesc, binop: &Token) ->
ExpDesc {

match binop {
 Token::And => ExpDesc::Test(0, Vec::new(), self.
test_or_jump(left)),
 Token::Or => ExpDesc::Test(0, self. test_and_jump(left),
Vec::new()),

 _ => // Omit the part of other types of discharge
 }
 }

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

185 of 314 10/23/23, 08:47

For the or operator and the corresponding test_and_jump() function, it is similar, just

flip the True and False jump lists. It will not be introduced here.

After processing the first operand and the jump, it is very simple to process the second

operand, just connect the jump list:

fn test_or_jump(&mut self, condition: ExpDesc) -> Vec<usize> {
let (icondition, true_list, mut false_list) = match condition {

// It is a constant of True, no need to test or jump, skip it
directly.

// Example: while true do ... end
 ExpDesc::Boolean(true) | ExpDesc::Integer(_) | ExpDesc::Float(_)
| ExpDesc::String(_) => {

return Vec::new();
 }

// The first operand is already of type Test, indicating that
this

// is not the first logical operator.
// Just return the existing two jump lists directly.

 ExpDesc::Test(icondition, true_list, false_list) =>
 (icondition, Some(true_list), false_list),

// The first operand is another type, indicating that this is
the

// first logical operator.
// Only need to discharge the first operand to the stack.
// There was no True jump list before, so return None.
// There was no False jump list before, so create a new list to

save
// this jump instruction.

 _ => (self. discharge_any(condition), None, Vec::new()),
 };

// generate TestOrJump, but leave the second parameter blank
self.byte_codes.push(ByteCode::TestOrJump(icondition as u8, 0));

// Put the newly generated bytecode, if it is in the False jump
list,

// for subsequent repair
 false_list.push(self.byte_codes.len() - 1);

// Finalize the previous True jump list and jump here, if any
if let Some(true_list) = true_list {

self.fix_test_list(true_list);
 }

// return False jump list
 false_list
 }

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

186 of 314 10/23/23, 08:47

After dealing with the binary operation part, the next step is the application scenario. This

section only introduces the application scenarios used as judgment conditions, and the

evaluation will be introduced in the next section. Several control structure statements (if,

while, repeat..until, etc.) directly process the jump bytecode, and the code logic is similar.

In the jump rules introduced at the beginning of this section, the judgment statement of

the entire logical operation ends, which is a False jump, so calling the test_or_jump()

function just introduced can replace and simplify the code that directly processes

bytecodes in the previous chapter logic. Here we still use the if statement as an example:

fn process_binop(&mut self, binop: Token, left: ExpDesc, right: ExpDesc)
-> ExpDesc {

match binop {
// omit other binary operator processing

 Token::And | Token::Or => {
// The first operand has been converted to ExpDesc::Test in

preprocess_binop_left() above
if let ExpDesc::Test(_, mut left_true_list, mut

left_false_list) = left {
let icondition = match right {

// If the second operand is also of Test type, such
as the example

// of `A and (X or Y)` in the fourth figure above in
this section,

// Then connect the two jump lists separately.
 ExpDesc::Test(icondition, mut right_true_list, mut
right_false_list) => {
 left_true_list.append(&mut right_true_list);
 left_false_list.append(&mut right_false_list);
 icondition
 }

// If the second operand is another type, there is
no need to deal with the jump list
 _ => self.discharge_any(right),
 };

// After returning to the connection, I want to create a
new jump list
 ExpDesc::Test(icondition, left_true_list,
left_false_list)
 } else {

panic!("impossible");
 }
 }

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

187 of 314 10/23/23, 08:47

This completes the syntax analysis part.

Virtual Machine Execution

The execution part of the virtual machine first needs to process the newly added 2

bytecodes, which are very simple and will be ignored here. What needs to be said is the

details of a stack operation. The function when assigning a value to the stack before is as

follows:

First determine whether the target address dst is within the range of the stack:

• If it is, assign it directly;

• If it is not and it is just the next position, use push() to push it onto the stack;

• If not, and past the next position, it was impossible to appear before, so call

fn do_if_block(&mut self, jmp_ends: &mut Vec<usize>) -> Token {
let condition = self. exp();

// In the previous chapter, here is to generate Test bytecode.
// Now, replace and simplify to the test_or_jump() function.
// Terminate the True jump list and return a new False jump list.
let false_list = self. test_or_jump(condition);

self.lex.expect(Token::Then);

let end_token = self. block();

if matches!(end_token, Token::Elseif | Token::Else) {
self.byte_codes.push(ByteCode::Jump(0));

 jmp_ends.push(self.byte_codes.len() - 1);
 }

// In the last chapter, here is to fix a Test bytecode just
generated.

// Now, a False jump list needs to be modified.
self.fix_test_list(false_list);

 end_token
 }

fn set_stack(&mut self, dst: u8, v: Value) {
let dst = dst as usize;
match dst.cmp(&self.stack.len()) {

 Ordering::Equal => self. stack. push(v),
 Ordering::Less => self.stack[dst] = v,
 Ordering::Greater => panic!("fail in set_stack"),
 }
 }

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

188 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#virtual-machine-execution-5
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#virtual-machine-execution-5

panic!() .

However, the short-circuit characteristics of logic operations may lead to the above-

mentioned third situation. For example the following statement:

According to our analysis method, the following temporary variables will be generated,

occupying the position on the stack:

But during execution, if g1 is true, the processing of g2 will be skipped, and g3 will be

processed directly. At this time, the position of g2 in the above figure is not set, then g3

will exceed the top of the stack position, as shown in the figure below:

Therefore, it is necessary to modify the above set_stack() function to support setting

elements beyond the top of the stack. This can be achieved by calling set_vec() .

Test

So far, the application scenario of logical operation in conditional judgment has been

completed. This can be tested with the examples in the figures at the beginning of this

section. omitted here.

if (g1 or g2) and g3 then
end

| |
+------+
| g1 |
+------+
| g2 |
+------+
| g3 |
+------+
| |

| |
+------+
| g1 |
+------+
| |
: :
: : <-- set g3, beyond the top of the stack

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

189 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#test-7
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#test-7

Logical Operations in Evaluation

The previous section introduced the logical operations in conditional judgment. This

section introduces another scenario, that is, the evaluation.

In the previous section, the syntax analysis process of logical operations in conditional

judgment scenarios can be divided into two parts:

• Process the logical operation itself, specifically, after encountering the and or or

operator in the exp() function, generate the corresponding bytecode and process

the True and False jump lists;

• After the entire logic operation statement is parsed, put the parsing result into the

conditional judgment scene of the if statement, first terminate the True jump list,

and then terminate the False jump list after the end of the block.

In the evaluation scenario to be introduced in this section, it is also divided into two parts:

• Dealing with the logical operation itself, this part is exactly the same as the previous

section;

• After the entire logical operation statement is parsed, the statement is evaluated,

which is the part to be introduced in this section.

As shown in the figure below, the previous section completed parts (a) and (b), and this

section implements part (c) on the basis of (a).

Result Type

Logical operations in Lua are different from those in C and Rust. The results of logical

operations in C and Rust languages are Boolean types, which only distinguish between

true and false. For example, the following C language code:

 +------------------------+
+--------------------+ /--->| (b) Condition judgment |
| (a) Process | ExpDesc::Test | +------------------------+
| logical operations |------------------>+
+--------------------+ | +-----------------+
 \--->| (c) Evaluation |
 +-----------------+

int i=10, j=11;
printf("%d\n", i && j); // output: 1

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

190 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#logical-operations-in-evaluation
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#logical-operations-in-evaluation
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#result-type
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#result-type

Will output 1 , because the && operator will first convert the two operands to Boolean

type (both are true in this example), and then execute the && operation, the result is

true, which is 1 in C language. The Rust language is stricter, both operands of && must

be of Boolean type, so the result is also of Boolean type.

But logical operations in Lua evaluate to the last evaluated operand. For example, the

following are very common usages:

• print(t and t.k) , first judge whether t exists, and then find the index of t . If t

does not exist, then there is no need to judge t.k , so the result is t which is nil ;

otherwise, it is t.k .

• print(t.k or 100) , index the table and provide a default value. First judge

whether there is k in t , if there is, then there is no need to judge 100 , so the

result is t.k ; otherwise it is 100 .

• print(v>0 and v or -v) , find the absolute value. The result is v if positive, and

-v otherwise. Simulates the ?: ternary operator in C.

Evaluation Rules

In order to understand the sentence "the evaluation result of a logical operation is the

last evaluated operand" more clearly, some examples are shown below. Here we still use

the flowchart at the beginning of the previous section as an example. Let's look at the

most basic operations first:

In the figure on the left, if A is False, the evaluation result is A; otherwise, when B is

evaluated, since B is the last operand, there is no need to make a judgment, and B is the

evaluation result.

In the figure on the right, if X is True, the evaluation result is X; otherwise, when Y is

evaluated, since Y is the last operand, there is no need to make a judgment, and Y is the

 A and B X or Y

+-------+ +-------+
| A +-False-\ /--True-+ X |
+---+---+ | | +---+---+
 |True | | |False
 V | | V
+-------+ | | +-------+
| B | | | | Y |
+---+---+ | | +---+---+
 |<----------/ \---------->|
 V V

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

191 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#evaluation-rules
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#evaluation-rules

evaluation result.

Let's look at a few more complex examples:

The process of summarizing based on these 4 figures is omitted here, and the evaluation

rules are directly given:

1. The last operand does not need to be judged, as long as the previous judgment

does not skip the last operand, then the last operand is the final evaluation result.

For example, in the first figure above, if both A and B are True, then C will be

executed, and C is the evaluation result of the entire statement. C itself does not

need to make judgments.

2. In the syntax analysis stage, after the parsing of the entire logical operation

statement is completed, the operands on the unterminated jump list may be used

as the final evaluation result. This statement is rather convoluted, and the following

example illustrates it. For example, in the first figure above, the True jump lists of A

and B end in B and C respectively, but the False jump lists are not terminated, then

A and B and C X or Y or Z (A and B) or Y
A and (X or Y)

+-------+ +-------+ +-------+
+-------+
| A +-False-\ /--True-+ X | | A |-False-\
| A +-False-\
+---+---+ | | +---+---+ +---+---+ |
+---+---+ |
 |True | | |False |True |
|True |
 V | | V V |
V |
+-------+ | | +-------+ +-------+ |
+-------+ |
| B +-False>+ +<-True-+ Y | /--True-+ B | |
/--True-+ X | |
+---+---+ | | +---+---+ | +---+---+ |
| +---+---+ |
 |True | | |False | False|<---------/
| |False |
 V | | V | V
| V |
+-------+ | | +-------+ | +-------+
| +-------+ |
| C | | | | Z | | | Y |
| | Y | |
+---+---+ | | +---+---+ | +---+---+
| +---+---+ |
 |<---------/ \---------->| \---------->|
\---------->|<---------/
 V V V
V

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

192 of 314 10/23/23, 08:47

both A and B may be the final evaluation results, for example, if A is False Then A is

the final evaluation result. As another counter-example, for example, the two jump

lists of A’s True and False in the third figure above are terminated in B and Y

respectively, that is to say, when the entire statement is parsed, the jump lists of A

are terminated. , then A cannot be the evaluation result, and in either case A will not

reach the end of the statement. Except for the third figure, all judgment conditions

in other figures may be used as the final evaluation result.

After summarizing the evaluation rules, let's start coding.

ExpDesc

A new ExpDesc type representing logical operations was introduced in the previous

section and is defined as follows:

The latter two parameters respectively represent two jump linked lists, which will not be

introduced here, and focus on the first parameter: the position of the judgment

conditional statement on the stack. As mentioned in the previous section, all statements

(such as variables, constants, table indexes, etc.) must be discharged to the stack first to

determine whether they are true or false, so here we can use the stack index of usize

type to represent the statement. This is no problem in the previous section, but in the

evaluation scenario in this section, as mentioned above, the last operand does not need

to be judged, so it may not need to be discharged to the stack. Like the following

example:

According to the current practice, first discharge the second operand t.k to a temporary

variable on the stack; if t is true, assign the temporary variable to x through Move

bytecode. Obviously this temporary variable is unnecessary, and t.k can be directly

assigned to x. To do this, we need to delay the evaluation of the conditional statement, or

delay the discharge. Then you need to transform the ExpDesc::Test type.

Lua's official approach is to assign two jump lists to all types of ExpDesc:

enum ExpDesc {
 Test(usize, Vec<usize>, Vec<usize>), // (condition, true-list, false-
list)

local x = t and t.k

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

193 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#expdesc-2
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#expdesc-2

t and f in the above code are the jump lists of True and False respectively. But it is a bit

inconvenient to define it in the Rust language. Because Rust's enum includes tags and

associated data, corresponding to k and u above, one enum can define ExpDesc; but if

you add two jump lists, you need to encapsulate a layer of struct outside Defined. And the

struct variable is defined in the Rust languageWhen all members must be explicitly

initialized, then in all places where ExpDesc is defined in the code, t and f must be

initialized to Vec::new(). It's not worth it to affect other types for this one type.

Our approach is to define ExpDesc::Test recursively. Change the first parameter type of

ExpDesc::Test from usize to ExpDesc . Of course, it cannot be defined directly, but it

needs to encapsulate a layer of Box pointer:

This definition has no effect on other types of ExpDesc in the existing code. For the Test

type in the existing code, it is only necessary to remove the discharge processing.

Bytecode

The functions of the two new bytecodes TestAndJump and TestOrJump in the previous

section are both: "test" + "jump". And the function we need now is: "test" + "assignment"

+ "jump". To this end, we add 2 more bytecodes:

The function of TestAndSetJump is: if the value of the first parameter is tested to be true,

it is assigned to the stack position of the second parameter and jumps to the bytecode

position of the third parameter. Similar to TestOrSetJump .

typedef struct expdesc {
 expkind k; // type tag

union {
// Data associated with various expkinds, omitted here

 } u;
int t; /* patch list of 'exit when true' */
int f; /* patch list of 'exit when false' */

} expdesc;

enum ExpDesc {
 Test(Box<ExpDesc>, Vec<usize>, Vec<usize>), // (condition, true-list,
false-list)

pub enum ByteCode {
 Jump(i16),
 TestAndJump(u8, i16),
 TestOrJump(u8, i16),
 TestAndSetJump(u8, u8, u8), // add
 TestOrSetJump(u8, u8, u8), // add

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

194 of 314 10/23/23, 08:47

https://doc.rust-lang.org/stable/book/ch15-01-box.html#enabling-recursive-types-with-boxes
https://doc.rust-lang.org/stable/book/ch15-01-box.html#enabling-recursive-types-with-boxes
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#bytecode-3
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#bytecode-3

Here comes a problem. In the previous jump bytecodes (the first 3 in the above code), the

jump parameters are all 2 bytes, i16 type, and the range of jumps can be large. And the

newly added 2 bytecodes are associated with 3 parameters, so there is only one byte left

for the jump parameter.

This is why, as mentioned in the previous section, in the official implementation of Lua, 2

bytecodes are used to represent conditional jump instructions. For example, as opposed

to TestAndJump(t, jmp) , it is TEST(t, 0); JUMP(jmp) ; and in the evaluation scenario

introduced in this section, it is necessary to add a target address parameter dst, which is

TESTSET (dst, t, 0); JUMP(jmp) . This ensures that the jump parameter has 2 bytes of

space. Moreover, although there are 2 bytecodes, during the execution of the virtual

machine, when the TEST or TESTSET bytecode is executed, if a jump is required, the

parameter of the next bytecode JUMP can be directly removed And execute the jump

without having to do another instruction dispatch for the JUMP. It is equivalent to 1

bytecode, and JUMP is only used as an extended parameter, so it does not affect the

performance during execution.

But we still use 1 byte code here, and use 1 byte to represent the jump parameter. In the

conditional judgment scenario in the previous section, the judgment of the last operand

is to jump to the end of the entire block, and the jump distance may be very long,

requiring 2 bytes of space. In the evaluation scenario in this section, only jumps are made

within the logic operation statement. You can refer to the above 6 figures, and the jump

distance will not be very long; and since it only jumps forward, there is no need to

represent negative numbers. So 1 byte u8 type means that 256 distances are enough to

cover. When conditions permit, 1 bytecode is always better than 2.

Syntax Analysis

After introducing the above modification points, now start the syntax analysis. The so-

called evaluation is discharge. So we only need to complete the ExpDesc::Test type in

the discharge() function. In the previous section, this is not complete. The specific

discharge method is: first discharge the recursively defined conditional statement, and

then repair the judgment bytecodes in the two jump lists.

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

195 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#syntax-analysis-6
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#syntax-analysis-6

Fixing the jump list fix_test_set_list() function needs to do 2 things:

• fill jump parameters that were left blank before;

• Replace the previously generated TestAndJump and TestOrJump bytecodes with

TestAndSetJump and TestOrSetJump respectively.

The specific code is as follows:

fn discharge(&mut self, dst: usize, desc: ExpDesc) {
let code = match desc {

// omit other types
 ExpDesc::Test(condition, true_list, false_list) => {

// fix TestSet list after discharging

// first discharge the recursively defined conditional
statement

self.discharge(dst, *condition);

// Fix the judgment bytecode in the True jump list
self.fix_test_set_list(true_list, dst);
// Fix the judgment bytecode in the False jump list
self.fix_test_set_list(false_list, dst);
return;

 }

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

196 of 314 10/23/23, 08:47

Test

So far, the application scenario of logical operations in evaluation has been completed.

This can be tested with the examples in the figures at the beginning of this section.

omitted here.

fn fix_test_set_list(&mut self, list: Vec<usize>, dst: usize) {
let here = self.byte_codes.len();
let dst = dst as u8;
for i in list.into_iter() {

let jmp = here - i - 1; // should not be negative
let code = match self. byte_codes[i] {

 ByteCode::TestOrJump(icondition, 0) =>
if icondition == dst {

// If the conditional statement is just at the
target position,

// there is no need to change it to TestAndSetJump
 ByteCode::TestOrJump(icondition, jmp as i16)
 } else {

// Modify to TestAndSetJump bytecode
 ByteCode::TestOrSetJump(dst as u8, icondition, jmp
as u8)
 }
 ByteCode::TestAndJump(icondition, 0) =>

if icondition == dst {
 ByteCode::TestAndJump(icondition, jmp as i16)
 } else {
 ByteCode::TestAndSetJump(dst as u8, icondition, jmp
as u8)
 }
 _ => panic!("invalid Test"),
 };

self.byte_codes[i] = code;
 }
 }

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

197 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#test-8
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#test-8

Relational Operations in Conditional

Judgment

The previous two sections describe logical operations, and the next two describe

relational operations.

Relational operations, that is, compares, have 6 operators: equal, not equal, greater than,

less than, greater than or equal to, less than or equal to. When introducing logical

operations in the previous two sections, it was said that logical operations cannot use the

analysis process of binary numerical operations in Chapter 5 because of the short-circuit

feature. The relational operations did not use the parsing process in Chapter 5, for a

different reason: for performance.

If performance is not considered, relational operations can use the parsing process in

Chapter 5. For example, for the equal operation, the following bytecode can be

generated: EQ $r $a $b , that is, compare a and b , and assign the Boolean result to r .

If performance is to be considered, it depends on the application scenarios of relational

operations. This part is almost the same as the logical operations introduced in the

previous two sections, and there are also two application scenarios:

1. As a judgment condition, such as the judgment condition statement in the if, while

and other statements in the previous chapter, such as if a == b then ... ;

2. Evaluation, such as print(a == b) .

Like logical operations, the first scenario can be regarded as a simplified version of the

second scenario. It does not require specific evaluation, but only needs to judge whether

it is true or false. For example, the example of the if statement above can also be

interpreted according to the second scenario. It is considered that a == b is first

evaluated to a temporary variable, and then it is judged whether the temporary variable

is true to decide whether to jump. Temporary variables can be omitted here! Since most

applications of relational computing are in the first scenario, it is worthwhile to separate

this scenario from the second general scenario for special optimization, by omitting

temporary variables and directly judging whether to jump based on the evaluation result.

As the title of this section indicates, this section only introduces the first scenario; the

next section will introduce the second scenario.

Bytecode

Still using the if statement and the equal operation as an example, in the if a == b

then ... end scenario, the first bytecode sequence that comes to mind is as follows:

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

198 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#relational-operations-in-conditional-judgment
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#relational-operations-in-conditional-judgment
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#relational-operations-in-conditional-judgment
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#relational-operations-in-conditional-judgment
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#bytecode-4
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#bytecode-4

Now save the temporary variable $tmp and merge the two bytecodes, as follows:

But the problem is that this requires 3 parameters, leaving only 1 byte of space for the

last jump parameter, indicating that the range is too small. For this reason, it can be split

into 2 bytecodes:

In this way, 2 bytes can be used to represent the jump parameter. However, since 2

bytecodes are still needed, what is the difference from the original "EQ+TEST" scheme?

Why make it so complicated?

• When the virtual machine is executing, if it is judged that a and b are equal and

the following JUMP bytecode is skipped, then only 1 bytecode is executed; while the

original "EQ+TEST" scheme always executes 2 bytes code. I don’t know the

probability that the if statement is true, but the probability of the while statement is

true is still very high, so this is equivalent to saving the execution of 1 bytecode with

a high probability;

• Even if the judgment is false and the following JUMP bytecode needs to be executed,

then the next bytecode can be read directly when the EQ bytecode is executed,

without having to go through another instruction distribution. The JUMP bytecode

here is equivalent to an extended parameter of the EQ bytecode, rather than an

independently executed bytecode. This is what Lua's official implementation does.

This is also because the type of bytecode can be ignored in C language, and the

parameters in the bytecode can be directly read through bit operations. But in the

Rust language, if unsafe is not used, the enum tag cannot be ignored and the

parameters can be read directly, so this optimization cannot be implemented in our

interpreter.

• We can directly decide whether to jump or not according to the judgment result. In

the original "EQ+TEST" scheme, it is necessary to write the judgment result into a

temporary variable on the stack first, then read the temporary variable when the

TEST bytecode is executed, and then judge true or false again, thus adding a

temporary variable Reading and writing, but also a true or false judgment.

The advantage is such an advantage. Yes, but not much. Especially compared with the

EQ $tmp $a $b # Compare whether a and b are equal, and the result is
stored in a temporary variable
TEST $tmp $jmp # Determine whether to jump according to the temporary
variable

EQ $a $b $jmp # Compare whether a and b are equal to decide whether to jump

EQ $a $b # Determine whether a and b are equal, if they are equal, skip
the next statement, ie pc++
JUMP $jmp # unconditional jump

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

199 of 314 10/23/23, 08:47

implementation complexity it brings, it is even less. The original "EQ+TEST" scheme only

needs to add a few operators to the Binary Numerical Operation introduced earlier; but

the new scheme needs to be described earlier logical operation coordination. However,

we still choose to follow the official implementation of Lua, and trade the complexity of

the implementation for some execution efficiency optimization.

In addition, regarding the types of the two operands in the bytecode, according to the

previous description of Bytecode Parameter Type, it is similar to the bytecode of the

binary value operation, each relational operator also corresponds to 3 bytecodes, for

example, for equality operators: Equal , EqualInt and EqualConst , a total of 3

bytecodes. A total of 6 relational operators are 18 bytecodes.

Combined with Logical Operations

Combining relational and logical operations is very common. Take the a>b and b<c

statement as an example. According to the introduction in the previous two sections, this

is a logical operation statement. The two operands are a>b and b<c respectively. The

operand discharges to a temporary variable on the stack in order to judge true or false. In

order to avoid the use of temporary variables here, it is necessary to make relational

operations and logical operations cooperate with each other.

For relational operation statements, the ExpDesc type needs to be added: Compare . Let's

see what parameters need to be associated with this type if it is to be combined with

logical operations, that is, for logical operation statements that use relational operations

as operands.

First of all, if it is not converted to the ExpDesc::Test type, then the Compare type needs

to maintain two jump lists of True and False;

Secondly, for the two jumps of True and False, the previous logical operations are

distinguished by 2 bytecodes, TestAndJump and TestOrJump . The same can be done for

relational operations, such as EqualTrue and EqualFalse bytecodes for equal

operations. However, the relational operators have a total of 18 bytecodes. If each

bytecode needs to distinguish between True and False jumps, then 36 bytecodes are

required. That's too many! Fortunately, there is another method. The EQ bytecode

introduced above only has 2 parameters, and a Boolean parameter can be added to

indicate whether to jump True or False.

Finally, for the two jumps of True and False, it needs to be determined according to the

logical operator behind it. For example, in the above example of a>b and b<c , it cannot

be determined when it is parsed to a>b , but it can only be determined when it is parsed

to and . Therefore, the complete bytecode cannot be generated when parsing the

relational operation statement, so the relevant information can only be stored in the

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

200 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/ch05-02.binary_ops.html
https://wubingzheng.github.io/build-lua-in-rust/en/ch05-02.binary_ops.html
https://wubingzheng.github.io/build-lua-in-rust/en/ch04-05.table_rw_and_bnf.html#execute-the-assignment
https://wubingzheng.github.io/build-lua-in-rust/en/ch04-05.table_rw_and_bnf.html#execute-the-assignment
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#combined-with-logical-operations
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#combined-with-logical-operations

Compare type first, and then the bytecode is generated after the jump type is

determined.

In summary, the new types of relational operations are defined as follows:

The first 3 parameters are bytecode type and the first 2 parameters are used to generate

bytecode after determining the jump type; the latter 2 parameters are True and False

jump lists. The whole type is equivalent to the combination of BinaryOp and Test types.

Here is the same problem as the logical operation introduced earlier. When the bytecode

is generated, the destination address of the jump cannot be determined, and the

complete bytecode cannot be generated immediately. It needs to be processed after

determining the destination address. . However, this is different from the previous logical

operation solution. The previous logical operation method is: first generate a bytecode

placeholder, and only leave the parameters of the jump destination address blank; after

determining the destination address, fix the corresponding parameters in the bytecode

(fix_test_list() function). The method of relational operation here is to store all the

information in ExpDesc::Compare (causing the definition of this type to be very long), and

then directly generate the complete bytecode after the destination address is determined

later.

In fact, for the processing of relational operations, theoretically, logical operations can

also be used to generate bytecodes and then repair them. However, there are 18

bytecodes corresponding to relational operations, which is too many. If you still follow

fix_test_list() the method of function matching first and then generating bytecode,

the code is too complicated. If it is in the C language, the parameters in the bytecode can

be directly corrected by bit operations, regardless of the bytecode type; while directly

modifying the associated parameters in the enum in Rust requires unsafe.

Another difference is that when parsing logical operations, bytecodes must be generated

immediately to take place. The Compare type operand of the relational operation will

determine the jump type in the test_or_jump() function immediately after, and then the

bytecode can be generated, so there is no need to occupy a place, and there is no need to

generate a word first. section code then fixed it again.

Syntax Analysis

The syntax analysis of relational operations is divided into two parts:

• The parsing operation itself generates the corresponding ExpDesc::Compare

enum ExpDesc {
 Compare(fn(u8,u8,bool)->ByteCode, usize, usize, Vec<usize>, Vec<usize>),

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

201 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#syntax-analysis-7
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#syntax-analysis-7

according to the operator. This part is similar to Binary Numerical Operation, which

is skipped here.

• The combination of relational operations and logical operations, that is, the

combination of ExpDesc::Compare and ExpDesc::Test . In the previous analysis of

logical operations, the processing of ExpDesc::Compare has been added.

For example, when the left operand is logically operated, bytecode is generated and two

jump lists are processed:

now dealing with the right operand:

fn test_or_jump(&mut self, condition: ExpDesc) -> Vec<usize> {
let (code, true_list, mut false_list) = match condition {

 ExpDesc::Boolean(true) | ExpDesc::Integer(_) | ExpDesc::Float(_)
| ExpDesc::String(_) => {

return Vec::new();
 }

// Add a Compare type.
// Generate 2 bytecodes.
// The two jump lists are handled in the same way as

`ExpDesc::Test` below.
 ExpDesc::Compare(op, left, right, true_list, false_list) => {

// If it is determined to be a True jump, that is, the
associated

// third parameter, the complete bytecode can be generated.
self.byte_codes.push(op(left as u8, right as u8, true));

// Generate Jump bytecode, but the jump destination address
is not

// yet known, and subsequent repairs are required. to this
end,

// Add processing of Jump bytecode in fix_test_list().
 (ByteCode::Jump(0), Some(true_list), false_list)
 }
 ExpDesc::Test(condition, true_list, false_list) => {

let icondition = self.discharge_any(*condition);
 (ByteCode::TestOrJump(icondition as u8, 0), Some(true_list),
false_list)
 }
 _ => {

let icondition = self.discharge_any(condition);
 (ByteCode::TestOrJump(icondition as u8, 0), None,
Vec::new())
 }
 };

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

202 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/ch05-02.binary_ops.html
https://wubingzheng.github.io/build-lua-in-rust/en/ch05-02.binary_ops.html

Virtual Machine Execution

There are 6 relational operators in total. Since we have previously implemented the Eq

trait for Value , the equal and not equal operations can use == and != to directly

compare the Value operands. But for the other 4 operators, you need to implement a

new trait for Value , which is PartialOrd . The reason why it is not Ord is because

different types of Value cannot be compared in size. There is no need to use PartialEq

because different types of Value can be compared for equality, and the return result is

False. For example, the following two statements:

Lua's comparison operators only support numeric and string types. So the PartialOrd

implementation of Value is as follows:

fn process_binop(&mut self, binop: Token, left: ExpDesc, right: ExpDesc)
-> ExpDesc {

match binop {
 Token::And | Token::Or => {

if let ExpDesc::Test(_, mut left_true_list, mut
left_false_list) = left {

match right {
// Add a Compare type.
// The processing method is similar to the

`ExpDesc::Test` type below.
 ExpDesc::Compare(op, l, r, mut right_true_list, mut
right_false_list) => {
 left_true_list.append(&mut right_true_list);
 left_false_list.append(&mut right_false_list);
 ExpDesc::Compare(op, l, r, left_true_list,
left_false_list)
 }
 ExpDesc::Test(condition, mut right_true_list, mut
right_false_list) => {
 left_true_list.append(&mut right_true_list);
 left_false_list.append(&mut right_false_list);
 ExpDesc::Test(condition, left_true_list,
left_false_list)
 }
 _ => ExpDesc::Test(Box::new(right), left_true_list,
left_false_list),
 }
 } else {

panic!("impossible");
 }
 }

print (123 == 'hello') -- prints false
print (123 > 'hello') -- throw exception

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

203 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#virtual-machine-execution-6
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#virtual-machine-execution-6

For floating-point numbers, the partial_cmp() method needs to be called because the

Nan of floating-point numbers cannot be compared.

Types that implement the PartialOrd trait can directly use several relatively large

symbols such as > , < , >= , and <= . But PartialOrd actually has 3 return results for

comparison: true, false, and not comparable. Corresponding to the Lua language, they

are true, false, and throw an exception. However, the above-mentioned 4 comparison

symbols can only give 2 results, and return false if they cannot be compared. So in order

to be able to judge the situation that cannot be compared, we cannot use these 4

symbols directly, but use the original partial_cmp() function. The following is the

execution code of LesEq and Less two bytecodes:

impl PartialOrd for Value {
fn partial_cmp(&self, other: &Self) -> Option<std::cmp::Ordering> {

match (self, other) {
// numbers

 (Value::Integer(i1), Value::Integer(i2)) => Some(i1.cmp(i2)),
 (Value::Integer(i), Value::Float(f)) => (*i as
f64).partial_cmp(f),
 (Value::Float(f), Value::Integer(i)) => f.partial_cmp(&(*i as
f64)),
 (Value::Float(f1), Value::Float(f2)) => f1.partial_cmp(f2),

// strings
 (Value::ShortStr(len1, s1), Value::ShortStr(len2, s2)) =>
Some(s1[..*len1 as usize].cmp(&s2[..*len2 as usize])),
 (Value::MidStr(s1), Value::MidStr(s2)) => Some(s1.1[..s1.0 as
usize].cmp(&s2.1[..s2.0 as usize])),
 (Value::LongStr(s1), Value::LongStr(s2)) => Some(s1.cmp(s2)),

// strings of different types
 (Value::ShortStr(len1, s1), Value::MidStr(s2)) => Some(s1[..*len1
as usize].cmp(&s2.1[..s2.0 as usize])),
 (Value::ShortStr(len1, s1), Value::LongStr(s2)) =>
Some(s1[..*len1 as usize].cmp(s2)),
 (Value::MidStr(s1), Value::ShortStr(len2, s2)) =>
Some(s1.1[..s1.0 as usize].cmp(&s2[..*len2 as usize])),
 (Value::MidStr(s1), Value::LongStr(s2)) => Some(s1.1[..s1.0 as
usize].cmp(s2)),
 (Value::LongStr(s1), Value::ShortStr(len2, s2)) =>
Some(s1.as_ref().as_slice().cmp(&s2[..*len2 as usize])),
 (Value::LongStr(s1), Value::MidStr(s2)) =>
Some(s1.as_ref().as_slice().cmp(&s2.1[..s2.0 as usize])),

 (_, _) => None,
 }
 }
}

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

204 of 314 10/23/23, 08:47

Here unwarp() is used to throw an exception. In the follow-up, when standardizing error

handling, improvements need to be made here.

 ByteCode::LesEq(a, b, r) => {
let cmp = &self.stack[a as usize].partial_cmp(&self.stack[b as

usize]).unwrap();
if !matches!(cmp, Ordering::Greater) == r {

 pc += 1;
 }
 }
 ByteCode::Less(a, b, r) => {

let cmp = &self.stack[a as usize].partial_cmp(&self.stack[b as
usize]).unwrap();

if matches!(cmp, Ordering::Less) == r {
 pc += 1;
 }
 }

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

205 of 314 10/23/23, 08:47

Relational Operations in Evaluation

The previous section introduced the relational operations in conditional judgment. This

section introduces another scenario, that is, the processing during evaluation.

Similar to logical operations, to process the relationship judgment in the evaluation, we

only need to discharge the ExpDesc::Compare parsed in the previous section to the stack.

As shown in the figure below, the previous section completed parts (a) and (b), and this

section implements part (c) on the basis of (a).

The evaluation of the logical operation is to replace the TestAndJump and TestOrJump

bytecodes in the two jump lists with TestAndSetJump and TestOrSetJump respectively.

For relational operations, although we can also do it like this, it would be too verbose to

add a Set version to all 18 bytecodes. Here we refer to the official implementation of Lua.

For the following Lua code:

Compile the available bytecode sequence:

Among them, the 4th and 5th bytecodes are comparison operations. The key lies in the

following two bytecodes:

• The sixth bytecode LFALSESKIP is specially used for the evaluation of relational

operations. The function is to set False to the target address and skip the next

 +------------------------+
+-----------------------+ /--->| (b) Condition judgment |
| (a) Process | ExpDesc::Test | +------------------------+
| relational operations |------------------>+
+-----------------------+ | +-----------------+
 \--->| (c) Evaluation |
 +-----------------+

print(123 == 456)

luac -l tt.lua

main <tt.lua:0,0> (9 instructions at 0x6000037fc080)
0+ params, 2 slots, 1 upvalue, 0 locals, 1 constant, 0 functions
 1 [1] VARARGPREP 0
 2 [1] GETTABUP 0 0 0 ; _ENV "print"
 3 [1] LOADI 1 456
 4 [1] EQI 1 123 1
 5 [1] JMP 1 ; to 7
 6 [1] LFALSESKIP 1
 7 [1] LOADTRUE 1
 8 [1] CALL 0 2 1 ; 1 in 0 out
 9 [1] RETURN 0 1 1 ; 0 out

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

206 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#relational-operations-in-evaluation
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#relational-operations-in-evaluation

statement;

• The seventh bytecode LOADTRUE , the function is to load True to the target address.

These two bytecodes, together with the 4th and 5th bytecodes above, can realize the

function of finding Boolean values:

• If the fourth bytecode comparison result is true, execute the JMP of the fifth, skip

the next statement, execute the seventh statement, and set True;

• If the comparison result of the fourth bytecode is false, then skip the fifth article,

and execute the LFALSESKIP of the sixth article, set False and skip the next article.

This is very clever, but also very long-winded. If you follow the previous method of Binary

Arithmetic Operation, the above function only needs one bytecode: EQ $dst $a $b . The

reason why it is so complicated now is to optimize for relational operations in conditional

judgment scenarios, thus hurting performance in evaluation scenarios, after all, the latter

appears too little.

Syntax Analysis

The evaluation process is to discharge ExpDesc::Compare onto the stack,

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

207 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/ch05-02.binary_ops.html
https://wubingzheng.github.io/build-lua-in-rust/en/ch05-02.binary_ops.html
https://wubingzheng.github.io/build-lua-in-rust/en/ch05-02.binary_ops.html
https://wubingzheng.github.io/build-lua-in-rust/en/ch05-02.binary_ops.html
https://wubingzheng.github.io/build-lua-in-rust/en/ch07-03.relational_in_condition.html#bytecode
https://wubingzheng.github.io/build-lua-in-rust/en/ch07-03.relational_in_condition.html#bytecode
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#syntax-analysis-8
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#syntax-analysis-8

In comparison, the evaluation of the logical operation ExpDesc::Test is simple.

fn discharge(&mut self, dst: usize, desc: ExpDesc) {
let code = match desc {

// omit other types of processing

// Evaluation of the logical operations introduced earlier
 ExpDesc::Test(condition, true_list, false_list) => {

self.discharge(dst, *condition);
self.fix_test_set_list(true_list, dst);
self.fix_test_set_list(false_list, dst);
return;

 }

// evaluation of relational operations
 ExpDesc::Compare(op, left, right, true_list, false_list) => {

// Generate 2 bytecodes for relational operations
self.byte_codes.push(op(left as u8, right as u8, false));
self.byte_codes.push(ByteCode::Jump(1));

// Terminate False jump list, go to `SetFalseSkip` bytecode,
evaluate False

self.fix_test_list(false_list);
self.byte_codes.push(ByteCode::SetFalseSkip(dst as u8));

// Terminate True jump list, go to `LoadBool(true)`
bytecode, evaluate True

self.fix_test_list(true_list);
 ByteCode::LoadBool(dst as u8, true)
 }
 };

self.byte_codes.push(code);

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

208 of 314 10/23/23, 08:47

Function

This chapter introduces functions. There are two types of functions in Lua:

• Lua function, defined in Lua;

• External functions are generally implemented in the interpreter language. For

example, in the official implementation of Lua, they are C functions; while in our

case, they are Rust functions. For example, the print function at the beginning of

this project was implemented in Rust in the interpreter.

The definition (syntax analysis) and call (virtual machine execution) of the former are both

in the Lua language, and the process is complete, so the former will be discussed and

implemented first. Then introduce the latter and related API.

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

209 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#function
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#function

Define and Call

Our interpreter only supported sequential execution at first, and later added control

structures to support conditional jumps, and blocks also make the scope of variables.

Functions, on the other hand, exist more independently in terms of resolution, execution,

or scope. To do this, the current framework for parsing and virtual machine execution

needs to be modified.

Transform ParseProto

The definition of a function can be nested, that is, the function can be defined again

inside another function. If the entire code is regarded as the main function, then our

current syntax analysis is equivalent to only supporting this one function. In order to

support nested definitions of functions, the parsing needs to be modified. First transform

the data structure.

Currently, the context structure of the parsing process is ParseProto , and this is also the

structure returned to the virtual machine for execution. It is defined as follows:

The specific meaning of each field has been introduced in detail before, and will be

ignored here. Here only the fields are distinguished according to the independence of the

function:

• the final lex field is parsed throughout the code;

• All remaining fields are data inside the function.

In order to support nested definitions of functions, the global part (lex field) and the

function part (other fields) need to be disassembled. The newly defined data structure

PerFuncProto_ parsed by the function (because we will not adopt this solution in the

end, _ is added to the name of the structure), including other fields left after removing

lex from the original ParseProto :

pub struct ParseProto<R: Read> {
pub constants: Vec<Value>,
pub byte_codes: Vec<ByteCode>,

 sp: usize,
 locals: Vec<String>,
 break_blocks: Vec<Vec<usize>>,
 continue_blocks: Vec<Vec<(usize, usize)>>,
 gotos: Vec<GotoLabel>,
 labels: Vec<GotoLabel>,
 lex: Lex<R>,
}

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

210 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#define-and-call
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#define-and-call
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#transform-parseproto
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#transform-parseproto

In order to support the nesting of functions, it is necessary to support multiple function

analysis bodies at the same time. The most intuitive idea is to define a list of function

bodies:

Each time a new layer of functions is nested, a new member is pushed into the funcs

field; it pops up after the function is parsed. The last member of funcs represents the

current function. This definition is very intuitive, but there is a problem. It is very

troublesome to access all the fields of the current function. For example, to access the

constants field, you need self.funcs.last().unwrap().constants to read or self

.funcs.last_mut().unwrap().constants writes. It's too inconvenient, and the execution

efficiency should also be affected.

If it is C language, then this problem is easy to solve: add a pointer member of type

PerFuncProto_ in ParseProto , such as current , which points to the last member of

funcs . This pointer is updated every time the function body is pushed or popped. Then

we can directly use this pointer to access the current function, such as

self.current.constants . This approach is very convenient but Rust thinks it is not

"safe", because the validity of this pointer cannot be guaranteed at the Rust syntax level.

Although there are only two places to update this pointer, which is relatively safe, but

since you use Rust, you must follow the rules of Rust.

For Rust, a feasible solution is to add an index (rather than a pointer), such as icurrent ,

pointing to the last member of funcs . This index is also updated every time the function

body is pushed or popped. When accessing the current function information, we can use

self.funcs[icurrent].constants . While the Rust language allows this, it's really just a

variant of the pointer scheme above, and can still cause bugs due to incorrect updates of

the index. For example, if the index exceeds the length of funcs , it will panic, and if it is

smaller than expected, there will be code logic bugs that are more difficult to debug. In

addition, during execution, Rust's list index will be compared with the length of the list,

which will also slightly affect performance.

There is also a less intuitive solution that doesn't have the problems above: use recursion.

When parsing nested functions, the most natural way is to recursively call the code of the

struct PerFuncProto_ {
pub constants: Vec<Value>,
pub byte_codes: Vec<ByteCode>,

 sp: usize,
 ... // omit more fields
}

struct ParseProto<R: Read> {
 funcs: Vec<PerFuncProto_>, // The list of function analysis body
PerFuncProto_ just defined
 lex: Lex<R>, // global data
}

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

211 of 314 10/23/23, 08:47

parsing function, then each call will have an independent stack (Rust's call stack), so we

can create a function parsing body every time you call it and use it Parse the current Lua

function, and return the parsing body for the outer function to process after the call ends.

In this solution, only the information of the current function can be accessed during the

parsing process, and the information of the outer function cannot be accessed. Naturally,

the problem of inconvenient access to the information of the current function just

mentioned does not exist. For example, accessing constants still uses self.constants ,

even without modifying existing code. The only thing to solve is the global data Lex ,

which can be passed on as a parameter of the analysis function.

In this solution, there is no need to define a new data structure, just change the lex field

in the original ParseProto from Lex type to &mut Lex . The syntax analysis function

definition for parsing Lua functions is originally the method of ParseProto , which is

defined as:

Now change to a normal function, defined as:

The parameter lex is global data, and each recursive call is directly passed to the next

layer. The return value is the parsed information of the current Lua function created

inside chunk() .

In addition, the chunk() function internally calls the block() function to parse the code,

and the latter returns the end Token of the block. Previously, the chunk() function was

only used to process the entire code block, so the end Token could only be Token::Eos ;

but now it may also be used to parse other internal functions, and the expected end

Token is Token ::End . Therefore, the chunk() function needs to add a new parameter,

indicating the expected end Token. So the definition is changed to:

Add FuncProto

impl<'a, R: Read> ParseProto<'a, R> {
fn chunk(&mut self) {

 ...
 }

fn chunk(lex: &mut Lex<impl Read>) -> ParseProto {
 ...
}

fn chunk(lex: &mut Lex<impl Read>, end_token: Token) -> ParseProto {
 ...
}

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

212 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#add-funcproto
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#add-funcproto

We just modified ParseProto and the type of lex . Now let's do a small optimization by

the way. The first two pub modified fields in ParseProto are also returned to the virtual

machine for execution; most of the latter fields are only used for syntax analysis, which

are internal data and do not need to be returned to the virtual machine. These two parts

can be disassembled so that only the part needed by the virtual machine is returned. To

do this, add the FuncProto data structure:

So the return value of the chunk() function is changed from ParseProto to FuncProto .

Its full definition is as follows:

In this way, when syntactically analyzing Lua built-in functions, just recursively call

chunk(self.lex, Token::End) . The specific syntax analysis is introduced below.

// Return information to the virtual machine to execute
pub struct FuncProto {

pub constants: Vec<Value>,
pub byte_codes: Vec<ByteCode>,

}

#[derive(Debug)]
struct ParseProto<'a, R: Read> {

// Return information to the virtual machine to execute
 fp: FuncProto,

// syntax analysis internal data
 sp: usize,
 locals: Vec<String>,
 break_blocks: Vec<Vec<usize>>,
 continue_blocks: Vec<Vec<(usize, usize)>>,
 gotos: Vec<GotoLabel>,
 labels: Vec<GotoLabel>,
 lex: Lex<R>,

// global data
 lex: &'a mut Lex<R>,
}

fn chunk(lex: &mut Lex<impl Read>, end_token: Token) -> FuncProto {
// Generate a new ParseProto to parse the current new Lua function
let mut proto = ParseProto::new(lex);

// call block() parsing function
assert_eq!(proto.block(), end_token);
if let Some(goto) = proto. gotos. first() {

panic!("goto {} no destination", &goto.name);
 }

// only returns the FuncProto part
 proto.fp
}

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

213 of 314 10/23/23, 08:47

Syntax Analysis

The general process of parsing Lua functions is introduced above, now let's look at the

specific syntax analysis. By now, we should be familiar with syntax analysis already, and it

can be executed according to BNF. Lua's function definition has 3 places:

1. Global functions;

2. Local functions:

3. An anonymous function is a case of the expression exp statement.

The BNF rules are as follows:

It can be seen from the above rules that the difference between these three definitions is

only at the beginning, and at the end they all belong to funcbody . Here only the simplest

second case, the local function, is introduced.

The parsing process is simple. It should be noted that the processing method of the

stat :=
 `function` funcname funcbody | # 1. Global function
 `local` `function` Name funcbody | # 2. Local function
 # omit other cases

exp := functiondef | omit other cases
functiondef := `function` funcbody # 3. Anonymous function

funcbody ::= '(' [parlist] ')' block end # Function definition

fn local_function(&mut self) {
self.lex.next(); // skip keyword `function`
let name = self.read_name(); // function name, or local variable

name
println!("== function: {name}");

// currently does not support parameters, skip `()`
self.lex.expect(Token::ParL);
self.lex.expect(Token::ParR);

// Call the chunk() parsing function
let proto = chunk(self.lex, Token::End);

// Put the parsed result FuncProto into the constant table
let i = self.add_const(Value::LuaFunction(Rc::new(proto)));
// load function through LoadConst bytecode
self.fp.byte_codes.push(ByteCode::LoadConst(self.sp as u8, i as

u16));

// create local variable
self. locals. push(name);

 }

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

214 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#syntax-analysis-9
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#syntax-analysis-9

function prototype FuncProto returned by the chunk() function is to put it in the

constant table as a constant. It can be compared that a string is a constant composed of a

series of character sequences; and the function prototype FuncProto is a constant

composed of a series of constant tables and bytecode sequences. It also exists in the

constant table, and it is also loaded with LoadConst bytecode.

To this end, it is necessary to add a new Value type LuaFunction to represent the Rust

function, and change the type that originally represented the Lua function from

Function to RustFunction :

The data type associated with LuaFunction is Rc<FuncProto> , and it can also be seen

from here that it is similar to a string constant.

The syntax analysis of "defining a function" is completed above, and the syntax analysis of

"calling a function" is related to functions. But when "calling a function", the Lua function

and the Rust function are treated equally, and the Lua programmer does not even know

what the function is implemented when calling the function; since the Rust function

print() has been called before Syntactic analysis, so there is no need to perform syntax

analysis specifically for Lua function calls.

Virtual Machine Execution

Like syntax analysis, our previous virtual machine execution part only supports one layer

of Lua functions. In order to support function calls, the easiest way is to recursively call

the virtual machine to execute, that is, the execute() function. code show as below:

pub enum Value {
 LongStr(Rc<Vec<u8>>),
 LuaFunction(Rc<FuncProto>),
 RustFunction(fn (&mut ExeState) -> i32),

 ByteCode::Call(func, _) => {
self. func_index = func as usize;
match &self. stack[self. func_index] {

 Value::RustFunction(f) => { // previously supported Rust
functions
 f(self);
 }
 Value::LuaFunction(f) => { // new Lua function

let f = f. clone();
self.execute(&f); // recursively call the virtual machine!

 }
 f => panic!("invalid function: {f:?}"),
 }
 }

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

215 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#virtual-machine-execution-7
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#virtual-machine-execution-7

However, special handling of the stack is required. During parsing, each time a new

function is parsed, the stack pointer (the sp field in the ParseProto structure) starts

from 0. Because during syntax analysis, the absolute starting address of the stack when

the virtual machine is executed is not known. Then, when the virtual machine is

executing, when accessing the stack, the stack index in the bytecode used needs to add

the offset of the stack start address of the current function. For example, for the following

Lua code:

When parsing the foo() function definition, the stack addresses of the local variables x

and y are 0 and 1, respectively. When the last line of code is executed and the foo()

function is called, the function foo is placed at the absolute index 2 of the stack. At this

time, the absolute indexes of the local variables x and y are 3 and 4. Then when the

virtual machine executes, it needs to convert the relative addresses 0 and 1 into 3 and 4.

When executing the Rust function print() before, in order to allow the print()

function to read the parameters, the func_index member is set in ExeState to point to

the address of the function on the stack. Now call the Lua function, still the same.

However, func_index is renamed to base here, and points to the next address of the

function.

local a, b = 1, 2
local function foo()

local x, y = 1, 2
end
foo()

 absolute relative
 address address
 +-----+ <---base of main function
 0 | a | 0
 +-----+
 1 | b | 1
 +-----+
 2 | foo | 2
 +-----+ <---base of foo()
 3 | x | 0
 +-----+
 4 | y | 1
 +-----+
 | |

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

216 of 314 10/23/23, 08:47

All previous write operations to the stack were called set_stack() method, now need to

add self.base offset:

All previous read operations on the stack were directly self.stack[i] , and now a new

function get_stack() is also extracted, and the self.base offset is added when accessing

the stack:

So far, we have completed the most basic definition and calling of Lua functions. Thanks

to the power of recursion, the code changes are not big. But it's just the beginning of the

full feature. The next section adds support for parameters and return values.

 ByteCode::Call(func, _) => {
self.base += func as usize + 1; // Set the absolute address of the

function on the stack
match &self.stack[self.base-1] {

 Value::RustFunction(f) => {
 f(self);
 }
 Value::LuaFunction(f) => {

let f = f. clone();
self. execute(&f);

 }
 f => panic!("invalid function: {f:?}"),
 }

self.base -= func as usize + 1; // restore
 }

fn set_stack(&mut self, dst: u8, v: Value) {
 set_vec(&mut self.stack, self.base + dst as usize, v); // plus
self.base
 }

fn get_stack(&self, dst: u8) -> &Value {
 &self.stack[self.base + dst as usize] // plus self.base
 }

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

217 of 314 10/23/23, 08:47

Arguments

The previous section introduced the definition and calling process of Lua functions. This

section describes the arguments of the function.

The term "argument" has two concepts:

• "parameter", refers to the variable in the function prototype, including information

such as parameter name and parameter type;

• "argument", refers to the actual value when the function is called.

When introducing syntax analysis and virtual machine execution later in this section,

"parameter" and "argument" must be clearly distinguished sometimes.

A very important point is: in the Lua language, the parameters of the function are local

variables! During syntax analysis, the parameters will also be placed in the initial position

of the local variable table, so that if there is a reference to the parameter in the

subsequent code, it will also be located in the local variable table. In the virtual machine

execution phase, the arguments are loaded onto the stack immediately following the

function entry, followed by local variables, which is consistent with the order in the local

variable table in the syntax analysis phase. For example, for the following functions:

When the foo() function is executed, the stack layout is as follows (numbers 0-3 on the

right side of the stack are relative indices):

The only difference between arguments and local variables is that the value of the

parameter is passed in by the caller when calling, while the local variable is assigned

inside the function.

local function foo(a, b)
local x, y = 1, 2

end

| |
+-----+
| foo |
+=====+ <---base
| a | 0 \
+-----+ + arguments
| b | 1 /
+-----+
| x | 2 \
+-----+ + local variables
| y | 3 /
+-----+
| |

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

218 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#arguments
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#arguments

Syntax Analysis of Parameter

The syntax analysis of the parameter is also the syntax analysis of the function definition.

When the function definition was introduced in the previous section, the parameter part

was omitted in the process of syntax analysis, and it is added now. The BNF of the

function definition is funcbody, which is defined as follows:

As you can see, the parameter list consists of two optional parts:

• Multiple optional Names are fixed parameters. In the previous section, when

parsing the new function and creating the FuncProto structure, the locals field of

the local variable table was initialized to an empty list. Now initialize to a parameter

list instead. In this way, the parameters are at the front of the local variable table,

and the subsequent newly created local variables follow, which is consistent with

the stack layout diagram at the beginning of this section. In addition, since the

number of arguments of the calling function in Lua language is allowed to be

different from the number of parameters. If it is more, it will be discarded, and if it is

less, it will be filled with nil. Therefore, the number of parameters should also be

added to the result of FuncProto for comparison during virtual machine execution.

• The last optional ... indicates that this function supports variable arguments. If it

is supported, then in the subsequent syntax analysis, ... can be used in the body

of the function to refer to variable parameters, and in the virtual machine execution

stage, special processing should also be done for variable parameters. Therefore, a

flag needs to be added in FuncProto to indicate whether this function supports

variable parameters.

In summary, there are three modification points in total. Add two fields to FuncProto :

In addition, when initializing the ParseProto structure, use the parameter list to initialize

 funcbody ::= `(` [parlist] `)` block end
 parlist ::= namelist [`,` `...`] | `...`
 namelist ::= Name {`,` Name}

pub struct FuncProto {
// Whether to support variable parameters.
// Used in both parsing and virtual machine execution.
pub has_varargs: bool,

// The number of fixed parameters.
// Used in virtual machine execution.
pub nparam: usize,

pub constants: Vec<Value>,
pub byte_codes: Vec<ByteCode>,

}

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

219 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#syntax-analysis-of-parameter
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#syntax-analysis-of-parameter

the local variable locals field. code show as below:

At this point, the syntax analysis of the parameters is completed. It involves variable

parameters, virtual machine execution and other parts, which will be described in detail

below.

Syntax Analysis of Arguments

Syntactic analysis of arguments, that is, syntactic analysis of function calls. This has been

implemented in the previous chapter when prefixexp was implemented: the parameter

list is read through the explist() function, and loaded to the position behind the

function entry on the stack in turn. Consistent with the stack layout diagram at the

beginning of this section, it is equivalent to assigning values to parameters. The actual

number of arguments is parsed here and written into the arguments of the bytecode

Call for comparison with the formal during the execution phase of the virtual machine.

But the implementation at the time was incomplete and did not support variable

parameters. More details later in this section.

Virtual Machine Execution

In the above syntax analysis of the arguments, the arguments have been loaded onto the

impl<'a, R: Read> ParseProto<'a, R> {
// Add has_varargs and params two parameters
fn new(lex: &'a mut Lex<R>, has_varargs: bool, params: Vec<String>) ->

Self {
 ParseProto {
 fp: FuncProto {
 has_varargs: has_varargs, // Whether to support variable
parameters
 nparam: params.len(), // number of parameters
 constants: Vec::new(),
 byte_codes: Vec::new(),
 },
 sp: 0,
 locals: params, // Initialize the locals field with the
parameter list
 break_blocks: Vec::new(),
 continue_blocks: Vec::new(),
 gotos: Vec::new(),
 labels: Vec::new(),
 lex: lex,
 }
 }

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

220 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#syntax-analysis-of-arguments
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#syntax-analysis-of-arguments
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#virtual-machine-execution-8
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#virtual-machine-execution-8

stack, which is equivalent to assigning values to the parameters, so when the virtual

machine executes the function call, it does not need to process the parameters. However,

in the Lua language, the number of arguments may not be equal to the number of

parameters when a function is called. If there are more arguments than parameters,

there is no need to deal with it, and the extra part is considered to be a temporary

variable that occupies the stack position but is useless; but if the argument is less than

the parameter, then the insufficient part needs to be set to nil, otherwise the subsequent

words The reference to this parameter by the section code will cause Lua's stack access

exception. In addition, the execution of Call bytecode does not require other processing

of parameters.

As mentioned above in the grammatical analysis, the number of parameters and

arguments are respectively in the nparam field in the FuncProto structure and the

associated parameters of Call bytecode. So the virtual machine execution code of the

function call is as follows:

So far, the fixed parameter part is completed, which is relatively simple; the variable

parameter part is introduced below, and it becomes complicated.

Variable Parameters

In Lua, the ... expression is used for variable parameters and variable arguments both.

It's variable parameters in parameter list in function definition; and it's variable

arguments otherwise.

Variable parameters have been mentioned in Syntax Analysis of parameters above, and

their functions are relatively simple, which just indicates that this function does support

variable parameters. The rest of this section mainly introduces the processing of variable

arguments when executing a function call.

At the beginning of this section, the parameters of the function are introduced as local

 ByteCode::Call(func, narg) => { // `narg` is the actual number of
arguments passed in

self.base += func as usize + 1;
match &self.stack[self.base - 1] {

 Value::LuaFunction(f) => {
let narg = narg as usize;
let f = f. clone();
if narg < f.nparam { // `f.nparam` is the number of

parameters in the function definition
self.fill_stack(narg, f.nparam - narg); // fill nil

 }
self. execute(&f);

 }

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

221 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#variable-parameters
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#variable-parameters
https://wubingzheng.github.io/build-lua-in-rust/en/ch08-02.arguments.html#syntax-analysis-of-parameter
https://wubingzheng.github.io/build-lua-in-rust/en/ch08-02.arguments.html#syntax-analysis-of-parameter

variables, and the layout of the stack is drawn. However, this statement is only suitable

for fixed arguments, but not for variable parameters. Add variable parameters to the

previous foo() function as an example, the code is as follows:

What should the stack layout look like after adding variable parameters? In other words,

where does the variable argument exist? When the last line foo() in the above code is

called, 1 and 2 correspond to the parameters a and b respectively, and 3 , 4 and 5

are variable Arguments. Before the call starts, the stack layout is as follows:

After entering the foo() function, where should the next three arguments exist? The

most direct idea is to keep the above layout unchanged, that is, the variable arguments

are stored behind the fixed arguments. However, this is not acceptable! Because this will

occupy the space of local variables, that is, x and y in the example will be moved back,

and the distance moved back is the number of variable arguments. However, the number

of variable arguments cannot be determined during the syntax analysis stage, so the

position of the local variable on the stack cannot be determined, and the local variable

cannot be accessed.

The official implementation of Lua is to ignore the variable parameters in the syntax

analysis stage, so that the local variables are still behind the fixed parameters. But when

the virtual machine is executing, after entering the function, the variable parameters are

moved to the front of the function entry, and the number of variable arguments is

recorded. In this way, when accessing variable parameters, the stack position can be

located according to the function entry position and the number of variable arguments,

that is, stack[self.base - 1 - number of arguments.. self.base - 1] . The following

is a stack layout diagram:

local function foo(a, b, ...)
local x, y = 1, 2
print(x, y, ...)

end
foo(1, 2, 3, 4, 5)

| |
+-----+
| foo |
+=====+ <-- base
| 1 | \
+-----+ + Fixed arguments, corresponding to `a` and `b`
| 2 | /
+-----+
| 3 | \
+-----+ |
| 4 | + Variable arguments, corresponding to `...`
+-----+ |
| 5 | /
+-----+
| |

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

222 of 314 10/23/23, 08:47

Since this solution needs to record additional information (the number of variable

arguments) when the virtual machine is executed, and also move the parameters on the

stack, it is easier to record the variable arguments directly:

Compared with the official implementation of Lua, this method does not use the stack,

but uses Vec , which will have additional memory allocation on the heap. But more

intuitive and clear.

After determining the storage method of the variable arguments, we can perform syntax

analysis and virtual machine execution.

ExpDesc::VarArgs and Application Scenarios

The above is about passing variable parameters when the function is called, and then

| |
+-----+
| 3 | -4 \
+-----+ | num_varargs: usize // record
the #variable arguments
| 4 | -3 + move the variable arguments +-----+
+-----+ | to the front of the function entry | 3 |
| 5 | -2 / +-----+
+-----+
| foo | <-- function entry
+=====+ <-- base
| a=1 | 0 \
+-----+ + fixed arguments, corresponding to `a` and `b`
| b=2 | 1 /
+-----+
| x | 2 \
+-----+ + local variables
| y | 3 / following to fixed arguments

| |
+-----+
| foo | <-- function entry varargs: Vec<Value> // record
variable arguments
+=====+ +-----+-----+-----+
| a=1 | 0 \ | 3 | 4 | 5 |
+-----+ + fixed arguments +-----+-----+-----+
| b=2 | 1 /
+-----+
| x | 2 \
+-----+ + local variables
| y | 3 /

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

223 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#expdescvarargs-and-application-scenarios
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#expdescvarargs-and-application-scenarios

introduces how to access variable parameters in the function body.

Access to a variable argument is an independent expression, the syntax is ... , parsed in

the exp_limit() function, and a new expression type ExpDesc::VarArgs is added, this

type is not associated parameter.

It is very simple to read this expression, first check whether the current function supports

variable parameters (whether there is ... in the function prototype), and then return

ExpDesc::VarArgs . The specific code is as follows:

But what to do with ExpDesc::VarArgs read? This requires first sorting out the three

scenarios of using variable arguments:

1. When ... is used as the last argument of a function call, the last value of a return

statement, or the last list member of a table construction, it represents all the

arguments passed in. For example, the following example:

2. When ... is used as the last expression after the equal sign = of a local variable

definition statement or an assignment statement, the number will be expanded or

reduced as required. For example, the following example:

3. Other places only represent the first actual argument passed in. For example, the

following example:

fn exp_limit(&mut self, limit: i32) -> ExpDesc {
let mut desc = match self. lex. next() {

 Token::Dots => {
if !self.fp.has_varargs { // Check if the current function

supports variable parameters?
panic!("no varargs");

 }
 ExpDesc::VarArgs // New expression type
 }

print("hello: ", ...) -- last argument

local t = {1, 2, ...} -- last list member

return a+b, ... -- the last return value

local x, y = ... -- Take the first 2 arguments and assign them to x and

y respectively

t.k, t.j = a, ... -- Take the first argument and assign it to t.j

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

224 of 314 10/23/23, 08:47

Among them, the first scenario is the most basic, but it is also the most complicated to

implement; the latter two scenarios are special cases and relatively simple to implement.

The three scenarios are analyzed in turn below.

Scenario 1: All Variable Arguments

The first scenario is introduced first, that is, loading all variable arguments. The 3

statements in this scenario are as follows:

1. The last argument of the function call, is to use the variable arguments of the current

function as the variable arguments of the calling function. Here it involves variable

arguments in 2 functions, which is a bit confusing and inconvenient to describe;

2. The last value of the return statement, but the return value is not supported yet,

which will be introduced in the next section;

3. The last list member of the table construction.

The implementation ideas of these three statements are similar. When parsing the

expression list, only the previous expression is discharged, and the last expression is not

discharged; and then after the complete statement is parsed, it is checked separately

whether the last statement is ExpDesc::VarArgs :

• If not, discharge normally. In this case, the quantity of all expressions can be

determined during parsing, and the number of values can be encoded into the

corresponding bytecode.

• If yes (ExpDesc::VarArgs), use the newly added bytecode VarArgs to load all

variable parameters, and the number of arguments is not known during syntax

analysis, but can only be known when the virtual machine is executed, so the total

number of expressions can't be encoded into the corresponding bytecode, so it

needs to be handled with a special value or a new bytecode.

Among the three statements, the third statement table structure is relatively the simplest,

so we introduce it first.

local x, y = ..., b -- not the last expression, only take the first

argument and assign it to x

t.k, t.j = ..., b -- not the last expression, only take the first

argument and assign it to t.k

if ... then -- conditional judgment

 t[...] = ... + f -- table index, and operands of binary operations

end

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

225 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#scenario-1-all-variable-arguments
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#scenario-1-all-variable-arguments

The syntax analysis process of the previous table construction is: in the process of

reading all members in a loop, if an array member is parsed, it will be immediately

discharged to the stack; after the loop reading is completed, all array members are

loaded on the stack in turn, and then generated SetList bytecode adds it to the list. The

second associated parameter of this SetList bytecode is the number of array members.

For simplicity, the processing of batch loading when there are more than 50 members is

ignored here.

Now modify the process: in order to process the last expression alone, when parsing to

an array member, we need delay the discharge. The specific method is relatively simple

but not easy to describe, you can refer to the following code. The code is excerpted from

the table_constructor() function, and only the content related to this section is kept.

The above code sorting process is relatively simple, so I won’t introduce them line by line

// Add this variable to save the last read array member
let mut last_array_entry = None;

// Loop to read all members
loop {

let entry = // omit the code to read members
match entry {

 TableEntry::Map((op, opk, key)) => // omit the code of the
member part of the dictionary
 TableEntry::Array(desc) => {

// Use the replace() function to replace the last read
member with the new member desc

// and discharge. And the new member, the current "last
member", is

// Store in last_array_entry.
if let Some(last) = last_array_entry. replace(desc) {

self.discharge(sp0, last);
 }
 }
 }
 }

// process the last expression, if any
if let Some(last) = last_array_entry {

let num = if self. discharge_expand(last) {
// variable arguments. It is impossible to know the specific

number
// of arguments in the syntax analysis stage, so `0` is used to
// represent all arguments on the stack.
0

 } else {
// not variable arguments, so we can calculate the total number

of members
 (self.sp - (table + 1)) as u8
 };

self.fp.byte_codes.push(ByteCode::SetList(table as u8, num));
 }

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

226 of 314 10/23/23, 08:47

here. There are a few details to cover when dealing with the last expression:

• Added discharge_expand() method for special handling of ExpDesc::VarArgs type

expressions. It is foreseeable that this function will be used by the other two

statements (return statement and function call statement) later. Its code is as

follows:

• If the last expression is a variable parameter, then the second associated parameter

of SetList bytecode is set to 0 . Previously (when variable arguements expressions

were not supported), this parameter of SetList bytecode could not be 0, because if

there is no array member, then it is sufficient not to generate SetList bytecode,

and there is no need to generate an association SetList with parameter 0. So here

we can use 0 as a special value. In contrast, the other two statements in this

scenario (return statement and function call statement) originally support 0

expressions, that is, there is no return value and no parameters, so 0 cannot be

used as a special value. Then think of other ways.

Of course, the special value 0 may not be used here, but a new bytecode, such as

SetListAll , is specially used to deal with this situation. These two approaches are

similar, we still choose to use the special value 0 .

• When the virtual machine is executing, if the second associated parameter of

SetList is 0 , all the values behind the table on the stack will be fetched. That is,

from the position of the table to the top of the stack, they are all expressions used

for initialization. The specific code is as follows, adding the judgment of 0 :

fn discharge_expand(&mut self, desc: ExpDesc) -> bool {
match desc {

 ExpDesc::VarArgs => {
self.fp.byte_codes.push(ByteCode::VarArgs(self.sp as u8));
true

 }
 _ => {

self.discharge(self.sp, desc);
false

 }
 }
 }

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

227 of 314 10/23/23, 08:47

• Since the actual number of expressions can be obtained according to the top of the

stack when the virtual machine is executed in the case of variable arguments, then

can we do this in the case of fixed expressions before? In this way, is the second

parameter associated with SetList useless? The answer is no, because there may

be temporary variables on the stack! For example the following code:

The two operands of the expression g1+g2 are global variables. Before evaluating the

entire expression, they must be loaded on the stack separately, and two temporary

variables need to be occupied. The stack layout is as follows:

At this time, the top of the stack is g2. If the method of going from the back of the list to

the top of the stack is also followed, then g2 will also be considered a member of the list.

Therefore, for the previous case (fixed number of expressions), it is still necessary to

determine the number of expressions in the syntax analysis stage.

• Then, why can the top of the stackto determine the number of expressions in the

case of variable arguments? This requires the virtual machine to clean up temporary

variables when executing bytecodes that load variable parameters. this point is very

important. The specific code is as follows:

 ByteCode::SetList(table, n) => {
let ivalue = self.base + table as usize + 1;
if let Value::Table(table) = self.get_stack(table). clone() {

let end = if n == 0 { // 0, variable arguments, means all
expressions up to the top of stack

self.stack.len()
 } else {
 ivalue + n as usize
 };

let values = self.stack.drain(ivalue .. end);
 table.borrow_mut().array.extend(values);
 } else {

panic!("not table");
 }
 }

t = { g1+g2 }

| |
+-------+
| t |
+-------+
| g1+g2 | load the global variable g1 into here temporaryly, and covered by
g1+g2 later
+-------+
| g2 | load the global variable g2 into here temporaryly
+-------+
| |

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

228 of 314 10/23/23, 08:47

So far, the processing of the variable arguments as the last expression of the table

construction is completed. There are not many related codes, but it is not easy to sort out

the ideas and some details.

Scenario 1: All Variable Arguments (continued)

The table construction statement in the first scenario was introduced above, and now we

introduce the case where variable arguments are used as the last parameter of a function

call. Just listening to this description is confusing. These two statements handle variable

arguments in the same way, and only the differences are introduced here.

It has been explained in the introduction of Syntax Analysis of arguments above that all

arguments are loaded to the top of the stack sequentially through the explist()

function, and the number of arguments is written to Call bytecode. But the

implementation at the time did not support variable arguments. Now in order to support

variable arguments, the last expression needs to be treated specially. To do this, we

modify the explist() function to keep and return the last expression, but just discharge

the previous expressions onto the stack in turn. The specific code is relatively simple, skip

it here. To review, in the assignment statement, when reading the expression list on the

right side of the equal sign = , we also need to keep the last expression not discharged.

After modifying the exp_list() function this time, it can also be used in the assignment

statement.

After modifying the explist() function, combined with the above introduction to the

table construction statement, the variable arguments in the function call can be realized.

code show as below:

 ByteCode::VarArgs(dst) => {
self.stack.truncate(self.base + dst as usize); // Clean up temporary

variables! ! !
self.stack.extend_from_slice(&varargs); // load variable parameters

 }

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

229 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#scenario-1-all-variable-arguments-continued
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#scenario-1-all-variable-arguments-continued
https://wubingzheng.github.io/build-lua-in-rust/en/ch08-02.arguments.html#syntax-analysis-of-arguments
https://wubingzheng.github.io/build-lua-in-rust/en/ch08-02.arguments.html#syntax-analysis-of-arguments
https://wubingzheng.github.io/build-lua-in-rust/en/ch04-05.table_rw_and_bnf.html#write-table-and-assignment-statement
https://wubingzheng.github.io/build-lua-in-rust/en/ch04-05.table_rw_and_bnf.html#write-table-and-assignment-statement

The difference from the table construction statement introduced before is that the

bytecode corresponding to the table construction statement is SetList , and in the case

of fixed members, the associated parameter used to represent the quantity will not be 0 ;

so we can use 0 as a special value to represent a variable number of members. However,

for the function call statement, it supports the case of no argument, that is to say, the

parameter of the argument value associated with the bytecode Call may already be 0 ,

so it is not possible to simply put 0 as a special value. Then, there are 2 options:

fn args(&mut self) -> ExpDesc {
let ifunc = self.sp - 1;
let narg = match self. lex. next() {

 Token::ParL => { // parameter list wrapped in brackets ()
if self.lex.peek() != &Token::ParR {

// Read the argument list. Keep and return the last
expression

// `last_exp`, and discharge the previous expressions
onto the

// stack in turn and return their number `nexp`.
let (nexp, last_exp) = self.explist();
self.lex.expect(Token::ParR);

if self. discharge_expand(last_exp) {
// Variable arguments !!!
// Generate the newly added `VarArgs` bytecode
// and read all variable arguments.

 none
 } else {

// Fixed arguments. `last_exp` is also discharged
onto the stack as the last argument.

Some(nexp + 1)
 }
 } else { // no parameters

self. lex. next();
 some(0)
 }
 }
 Token::CurlyL => { // table construction without parentheses

self. table_constructor();
 some(1)
 }
 Token::String(s) => { // string constant without parentheses

self.discharge(ifunc+1, ExpDesc::String(s));
 some(1)
 }
 t => panic!("invalid args {t:?}"),
 };

// For `n` fixed arguments, convert to `n+1`;
// Converts to `0` for variable arguments.
let narg_plus = if let Some(n) = narg { n + 1 } else { 0 };

 ExpDesc::Call(ifunc, narg_plus)
 }

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

230 of 314 10/23/23, 08:47

• Choose another special value, such as u8::MAX , that is, 255 as a special value;

• Still use 0 as a special value, but in the case of a fixed argument, add 1 to the

parameter. For example, if there are 5 arguments, then write 6 in the Call

bytecode; if N bytecodes, write N+1; in this way, you can ensure that in the case of a

fixed parameter, this parameter must be greater than 0.

I feel that the first solution is slightly better, it's clearer and less error-prone. But the

official implementation of Lua uses the second solution. We also use the second option.

Corresponding to the two variables in the above code:

• narg: Option<usize> indicates the actual number of arguments, None indicates

variable arguments, Some(n) indicates that there are n fixed arguments;

• narg_plus: usize is the corrected value to be written into Call bytecode.

The same thing as the table construction statement introduced before is that since the

special value 0 is used to represent the variable parameter, then when the virtual

machine executes, there must be a way to know the actual number of arguments. The

number of arguments can only be calculated by the distance between the pointer on the

top of the stack and the function entry, so it is necessary to ensure that the top of the

stack is all arguments and there are no temporary variables. For this requirement, there

are two cases:

• The argument is also a variable arguments ... , that is, the last argument is

VarArgs , for example, the call statement is foo(1, 2, ...) , then since the virtual

machine execution of VarArgs introduced before will ensure clean up temporary

variables, so there is no need to clean up again in this case;

• The argument is fixed arguments. For example, if the calling statement is

foo(g1+g2) , then it is necessary to clean up the possible temporary variables.

Correspondingly, the function call in the virtual machine execution phase, that is, the

execution of Call bytecode, needs to be modified as follows:

• Modify the associated parameter narg_plus;

• Clean up possible temporary variables on the stack when needed.

code show as below:

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

231 of 314 10/23/23, 08:47

So far, we have completed the part of the first scenario of variable arguments. This part is

the most basic and also the most complex. Two other scenarios are described below.

Scenario 2: The first N Variable Arguments

Now introduce the second scenario of variable arguments, which requires a fixed number

of variable arguments. The number of paraargumentsmeters to be used in this scenario

is fixed and can be compiled into bytecode, which is much simpler than the previous

scenario.

This scenario includes 2 statements: a local variable definition statement and an

assignment statement. When the variable arguments are used as the last expression

after the equal sign = , the number will be expanded or reduced as required. For

example, the following sample code:

 ByteCode::Call(func, narg_plus) => { // `narg_plus` is the corrected
number of real parameters

self.base += func as usize + 1;
match &self.stack[self.base - 1] {

 Value::LuaFunction(f) => {
let narg = if narg_plus == 0 {

// Variable arguments. As mentioned above, the execution
// of VarArgs bytecode will clean up possible temporary
// variable, so the top of the stack can be used to

determine
// the actual number of arguments.
self.stack.len() - self.base

 } else {
// Fixed arguments. Need to subtract 1 for correction.

 narg_plus as usize - 1
 };

if narg < f.nparam { // fill nil, original logic
self.fill_stack(narg, f.nparam - narg);

 } else if f.has_varargs && narg_plus != 0 {
// If the called function supports variable arguments,

and the
// call is a fixed argument, then we need to clean up

possible
// temporary variables on the stack
self.stack.truncate(self.base + narg);

 }

self. execute(&f);
 }

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

232 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#scenario-2-the-first-n-variable-arguments
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#scenario-2-the-first-n-variable-arguments

The processing of these two statements is basically the same. Only the first local variable

definition statement is introduced here.

The processing flow of the previous statement is to first load the expressions on the right

side of = onto the stack in order to complete the assignment of local variables. If the

number of expressions on the right side of = is less than the number of local variables

on the left, then generate LoadNil bytecode to assign values to the extra local variables;

if it is not less than, no processing is required.

Now special treatment is required for the last expression: if the number of expressions is

less than the number of local variables, and the last expression is a variable arguments

... , then the arguments is read as needed; if it is not variable arguments, it still falls

back to the original method, which is filled with LoadNil . The explist() function that

was modified just now comes in handy again, the specific code is as follows:

In the above code, the added logic is discharge_expand_want() function, which is used

to load want - nexp expressions onto the stack. code show as below:

local x, y = ... -- Take the first 2 arguments and assign them to x and
y respectively
 t.k, t.j = a, ... -- Take the first argument and assign it to t.j

let want = vars.len();

// Read the list of expressions.
// Keep and return the last expression `last_exp`, and discharge the

previous
// the expressions onto the stack in turn and return their number

`nexp`.
let (nexp, last_exp) = self.explist();
match (nexp + 1).cmp(&want) {

 Ordering::Equal => {
// If the expression is consistent with the number of local

variables,
// the last expression is also dischargeed on the stack.
self.discharge(self.sp, last_exp);

 }
 Ordering::Less => {

// If the expressions are less than the number of local
variables,

// we need to try to treat the last expression specially! ! !
self.discharge_expand_want(last_exp, want - nexp);

 }
 Ordering::Greater => {

// If the expression is more than the number of local variables,
// adjust the top pointer of the stack; the last expression
// is no need to deal with it.
self.sp -= nexp - want;

 }
 }

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

233 of 314 10/23/23, 08:47

This function is similar to the discharge_expand() function in the first scenario above,

but there are two differences:

• Previously, all variable arguments in the actual execution were required, but this

function has a certain number of requirements, so there is an additional parameter

want ;

• The previous function needs to return whether it is a variable arguments, so that the

caller can make a distinction; but this function has no return value because the

requirement is clear and the caller does not need to make a distinction.

Compared with the first scenario above, another important change is that VarArgs

bytecode adds an associated parameter to indicate how many arguments need to be

loaded onto the stack. Because in this scenario, this parameter is definitely not less than

2, and in the next scenario, this parameter is fixed at 1, and 0 is not used, so 0 can be

used as a special value to represent the value in the first scenario above: all arguments at

execution time.

The virtual machine execution code of this bytecode is also changed as follows:

fn discharge_expand_want(&mut self, desc: ExpDesc, want: usize) {
debug_assert!(want > 1);
let code = match desc {

 ExpDesc::VarArgs => {
// variadic expression

 ByteCode::VarArgs(self.sp as u8, want as u8)
 }
 _ => {

// For other types of expressions, still use the previous
method, that is, use LoadNil to fill

self.discharge(self.sp, desc);
 ByteCode::LoadNil(self.sp as u8, want as u8 - 1)
 }
 };

self.fp.byte_codes.push(code);
 }

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

234 of 314 10/23/23, 08:47

So far, the second scenario of variable parameters has been completed.

Scenario 3: Only Take the First Variable Argument

The two scenarios introduced above are in a specific statement context, and the variable

arguments are loaded onto the stack through the discharge_expand_want() or

discharge_expand() function respectively. And the 3rd scenario is everywhere except

the above specific statement context. So from this perspective, the third scene can be

regarded as a general scene, so a general loading method must be used. Before the

variable arguments expression is introduced in this section, all other expressions are

loaded onto the stack by calling the discharge() function, which can be regarded as a

general loading method. So in this scenario, the variable arguments expression should

also be loaded through the discharge() function.

In fact, this scenario has already been encountered above. For example, in the second

scenario above, if the number of expressions on the right side of = is equal to the

number of local variables, the last expression is processed by the discharge() function:

Here the last expression of discharge() may also be a variable arguments expression

... , then it is the current scene.

 ByteCode::VarArgs(dst, want) => {
self.stack.truncate(self.base + dst as usize);

let len = varargs.len(); // actual number of arguments
let want = want as usize; // need the number of arguments
if want == 0 { // All arguments are required, and the process

remains unchanged
self.stack.extend_from_slice(&varargs);

 } else if want > len {
// Need more than actual, fill `nil` with fill_stack()
self.stack.extend_from_slice(&varargs);
self.fill_stack(dst as usize + len, want - len);

 } else {
// needs as much or less than actual
self.stack.extend_from_slice(&varargs[..want]);

 }
 }

let (nexp, last_exp) = self.explist();
match (nexp + 1).cmp(&want) {

 Ordering::Equal => {
// If the expression is consistent with the number of
// local variables, the last expression is also normal
// discharged on the stack.
self.discharge(self.sp, last_exp);

 }

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

235 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#scenario-3-only-take-the-first-variable-argument
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#scenario-3-only-take-the-first-variable-argument

For another example, the explist() function is called in the above two scenarios to

process the expression list. Except for the last expression, all previous expressions are

loaded onto the stack by this function by calling discharge() . If there is a variable

arguments expression ... in the previous expression, such as foo(a, ..., b) , then it

is also the current scene.

In addition, the above also lists examples of variable expressions in other statements, all

of which belong to the current scene.

Since this scene belongs to a general scene, there is no need to make any changes in the

syntax analysis stage, but only need to complete the processing of the variable

expression ExpDesc::VarArgs in the discharge() function. This process is also very

simple, just use the VarArgs bytecode introduced above, and only load the first

argument to the stack:

This completes the third scenario.

At this point, all the scenarios of variable arguments are finally introduced.

Summary

This section begins by introducing the mechanism of parameters and arguments

respectively. For parameters, syntax analysis puts the parameters in the local variable

table and uses them as local variables. For arguments, the caller loads the parameters

onto the stack, which is equivalent to assigning values to the parameters.

Most of the following pages introduce the processing of variable arguments, including

three scenarios: all arguments, fixed number of arguments, and the first argument in

general scenarios.

fn discharge(&mut self, dst: usize, desc: ExpDesc) {
let code = match desc {

 ExpDesc::VarArgs => ByteCode::VarArgs(dst as u8, 1), // 1 means
only load the first argument

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

236 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#summary-4
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#summary-4

Return Value

This section describes the return values of Lua functions. First introduce the case of fixed

number return values, and then introduce the case of variable number.

Similar to the parameter characteristics in the previous section involving parameters and

arguments, there are two places involved in realizing the return value of a function:

• The called function generates a return value before exiting. This is done with the

return statement in Lua. Correspondingly, the Return bytecode needs to be

added.

• The caller reads and processes the return value. This part of the functionality is

implemented in Call bytecode. Previous Call bytecode just called the function

without processing the return value.

Just as the arguments are passed by the stack, the return values are also passed by the

stack.

We first introduce the return statement and Return bytecode that the function

generates the return value.

Return Bytecode

Between the called function and the caller, the return values are passed using the stack.

The called function generate return values and loads them on the stack, and then notifies

the caller of the return values' positions on the stack, and the caller reads the return

values from the stack.

Functions in Lua language support multiple return values. If the positions of these return

values on the stack are discontinuous, it is difficult to inform the caller of the specific

return value. Therefore, all return values are required to be arranged continuously on the

stack, so that the caller can be informed by the starting index on the stack and the

number of return values. To do this, all return values need to be loaded onto the top of

the stack in turn. Like the following example:

The stack layout before the function returns is as follows:

local function foo()
local x, y = 1, 2
return x, "Yes", g1+g2

end

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

237 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#return-value
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#return-value
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#return-bytecode
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#return-bytecode
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#return-bytecode
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#return-bytecode

The numbers 0~5 on the right side of the stack are relative addresses. Among them, 2~4

is the position of the return values on the stack, then the information to be returned by

this function is (2, 3) , where 2 is the starting position of the return value on the stack,

and 3 is the return values number. It can be seen that the newly added bytecode

Return needs to be associated with 2 parameters.

In addition to the above-mentioned general cases, there are two special cases, that is, the

cases where the number of return values is 0 and 1.

First of all, for the case where the number of return values is 0, that is, the return

statement with no return value, although the Return bytecode can also be used to

return (0, 0) , but for clarity, we add bytecode Return0 without associate parameter for

this case.

Secondly, for the case where the number of return values is 1, it can be optimized during

syntax analysis. In the case of the above multiple return values, it is mandatory to load all

the return values onto the stack sequentially for the sake of continuity and to be able to

notify the caller of the position of the return value. And if there is only one return value,

continuity is not required, so for local variables that are already on the stack, there is no

need to load them on the stack again. Of course, other types of return values (such as

global variables, constants, table indexes, etc.) still need to be loaded. Like the following

example:

The stack layout before the function returns is as follows:

| |
+-------+
| foo | The caller loads `foo` onto the stack
+=======+ <--base
| x | 0 \
+-------+ + local variables
| y | 1 /
+-------+
| x | 2 \
+-------+ |
| "yes" | 3 + return value
+-------+ |
| g1+g2 | 4 /
+-------+
| g2 | 5<-- temporary variables
+-------+
| |

local function foo()
local x, y = 1, 2
return x

end

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

238 of 314 10/23/23, 08:47

There is only one return value x , and it is a local variable, which is already on the stack,

and it is enough to return (0, 1) , without loading it to the top of the stack again.

In summary, the newly added two bytecodes are defined as follows:

The parsing process of the return statement is as follows:

• for no return value, generate Return0 bytecode;

• For a single return value, on-demand loaded onto the stack and generate Return(?,

1) bytecode;

• For multiple return values, force to be loaded onto the stack sequentially and

generate Return(?, ?) bytecode.

Syntax Analysis of return statement

The parsing process of the return statement is summarized above, and now the syntax

analysis begins. The BNF definition of the return statement is as follows:

In addition to optional multiple return value expressions, there can be 1 optional ; . In

addition, there is another rule, that is, the end token of a block must be followed by the

return statement, such as end , else , etc. This statement is relatively simple, but there

are more details. The code is first listed below:

| |
+-------+
| foo | The caller loads foo onto the stack
+=======+ <--base
| x | 0 \ <-----return values
+-------+ + local variables
| y | 1 /
+-------+
| |

pub enum ByteCode {
 Return0,
 Return(u8, u8),

retstat ::= return [explist][';']

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

239 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#syntax-analysis-of-return-statement
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#syntax-analysis-of-return-statement
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#syntax-analysis-of-return-statement
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#syntax-analysis-of-return-statement
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#syntax-analysis-of-return-statement

Because the processing of single and multiple return values is different, when reading the

fn ret_stat(&mut self) {
let code = match self. lex. peek() {

// return;
 Token::SemiColon => {

self. lex. next();
 ByteCode::Return0 // no return value
 }

// return
 t if is_block_end(t) => {
 ByteCode::Return0 // no return value
 }

 _ => { // has return values
let mut iret = self.sp;

// Read the list of expressions. Only the last one is kept
and ExpDesc

// is returned, while the previous ones are loaded onto the
stack.

// Return value: `nexp` is the number of previously loaded
expressions,

// and `last_exp` is the last expression.
let (nexp, last_exp) = self.explist();

// check optional ';'
if self.lex.peek() == &Token::SemiColon {

self. lex. next();
 }

// check block end
if !is_block_end(self.lex.peek()) {

panic!("'end' expected");
 }

if nexp == 0 {
// single return value, loaded *on demand*

 iret = self.discharge_any(last_exp);
 } else {

// Multiple return values, other return values have been
loaded to

// the top of the stack in turn, now we need to put the
last

// Expressions are also *forced* to be loaded on top of
the stack,

// after other return values
self.discharge(self.sp, last_exp);

 }

 ByteCode::Return(iret as u8, nexp as u8 + 1)
 }
 };

self.fp.byte_codes.push(code);
 }

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

240 of 314 10/23/23, 08:47

return value list, keep the last expression and not directly load it on the stack. At this

point, the modified explist() function in the previous section comes in handy again. If

there is only the last expression, that is, nexp == 0 , then it is a single expression, and it is

loaded on the stack as needed; otherwise, it is the case of multiple return values, and

other return values have been loaded to the stack in turn At the top, it is necessary to

force the last expression to be loaded on the top of the stack, behind other return values.

To review, in the above code, the discharge_any() method in the case of a single return

value is on-demand loading, that is, it does not process expressions already on the stack

(local variables or temporary variables, etc.); and The discharge() method in the case of

multiple return values is forced to load.

Return Bytecode Execution

After completing the syntax analysis, the next step is to introduce the execution of the

Return bytecode by the virtual machine. Two things need to be done:

• To exit from the execution of the current function execute() , use the return

statement of Rust;

• The most intuitive way to tell the caller the position of the return value is to return

the two parameters associated with Return bytecode: the starting position and

number of return values on the stack. However, the starting position here needs to

be converted from a relative position to an absolute position. code show as below:

This is a bit long-winded, and there are 2 problems:

• The prototype of the Rust function type in Lua (such as the print function) is fn

(&mut ExeState) -> i32 , and there is only 1 return value i32 , which represents

the number of Rust function return values. If the Lua function type returns 2 values,

the return information of these two types of functions is inconsistent, which is

inconvenient to handle later.

• Later in this section, a variable number of return values of Lua functions will be

supported, and the specific number of return values needs to be calculated

according to the execution situation.

So it is also changed here to only return the number of Lua function return values, but

not returning the starting position. For this reason, possible temporary variables on the

stack need to be cleaned up to ensure that the return value is at the top of the stack. In

 ByteCode::Return(iret, nret) => {
return (self. base + iret as usize, nret as usize);

 }

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

241 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#return-bytecode-execution
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#return-bytecode-execution

this way, the caller can determine the position of the return value only according to the

number of return values. Also using the above example:

In this example, after clearing the temporary variable g2 at the top of the stack, only

return 3 to the calling function, and the calling function can read the 3 values at the top

of the stack as the return value.

So why do we need to associate 2 parameters in the Return bytecode? In addition to the

number of return values, but also the starting position of the return value? This is

because it is difficult to determine whether there are temporary variables on the top of

the stack during execution during the syntax analysis phase (such as g2 in the above

example), and even if it can be determined, there is nothing to do with these temporary

variables (unless a bytecode is added to clean up the temporary variables). Therefore,

the return value cannot be expressed only by the number. In the virtual machine

execution stage, since possible temporary variables can be cleaned up, there is no need

to return to the starting address without the interference of temporary variables.

In summary, the execution code of Return bytecode is as follows:

Correspondingly, the entry function execute() executed by the virtual machine also

| |
+-------+
| foo | The caller loads foo onto the stack
+=======+ <--base
| x | 0 \
+-------+ + local variables
| y | 1 /
+-------+
| x | 2 \
+-------+ |
| "yes" | 3 + return values
+-------+ |
| g1+g2 | 4 /
+-------+
| | <--clean up the temporary variable `g2`

 ByteCode::Return(iret, nret) => {
// convert relative address to absolute address
let iret = self.base + iret as usize;

// clean up temporary variables to ensure that `nret`
// at the top of the stack is the return value
self.stack.truncate(iret + nret as usize);

return nret as usize;
 }
 ByteCode::Return0 => {

return 0;
 }

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

242 of 314 10/23/23, 08:47

needs to modify the prototype, change it to return a usize value:

Bytecode Traversal and Function Exit

Now that the execute() function is mentioned, let's talk about the traversal and exit of

the bytecode sequence.

At the beginning, this project only supported sequential execution, using Rust Vec's

iterator:

Later, after the jump statement is supported, it is necessary to traverse manually, and

judge whether to exit by whether the pc exceeds the bytecode sequence:

Lua's return statement is now supported, and the execution of the corresponding

Return bytecode will exit the execute() function. If all Lua functions eventually contain

the Return bytecode, there is no need to check whether the pc has exceeded the

bytecode sequence to determine whether to exit. In this way, the original while loop in

the execute() function can be changed to a loop loop, reducing a conditional

judgment:

To do this, we append the Return0 bytecode at the end of all Lua functions:

pub fn execute(&mut self, proto: &FuncProto) -> usize {

for code in proto.byte_codes.iter() {
match *code {

let mut pc = 0;
while pc < proto.byte_codes.len() {

match proto.byte_codes[pc] {

let mut pc = 0;
loop {

match proto.byte_codes[pc] {
 ByteCode::Return0 => { // Return or Return0 bytecode, exit
function

return 0;
 }

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

243 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#bytecode-traversal-and-function-exit
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#bytecode-traversal-and-function-exit

So far, the function of exiting the function and generating a return value is completed.

Next, introduce the second part: the caller reads the return value.

Read Return Values: Position

After the called function returns through the return statement, the virtual machine

execution sequence returns back to the Call bytecode of the outer calling function,

where the return values are read and processed. How to handle the return values? It

depends on the different application scenarios where the function call is made. Because

the Lua function supports multiple return values, and the specific number of return

values cannot be determined during the syntax analysis stage, similar to the variable

parameters expression ... in the previous section, the processing of the function return

values is simlar with the variable parameter and also includes 3 scenarios:

1. When used as the last argument of a function call, the last value of a return

statement, or the last array member of a table construction, read all return values.

For example, the following example:

2. When used as the last expression after the equal sign = of a local variable definition

statement or an assignment statement, the number of return values will be

expanded or reduced as required. For example, the following example:

fn chunk(lex: &mut Lex<impl Read>, end_token: Token) -> FuncProto {
let mut proto = ParseProto::new(lex);
assert_eq!(proto.block(), end_token);
if let Some(goto) = proto. gotos. first() {

panic!("goto {} no destination", &goto.name);
 }

// All Lua functions end with `Return0` bytecode
 proto.fp.byte_codes.push(ByteCode::Return0);

 proto.fp
}

print("hello: ", foo(1, 2)) -- last argument

local t = {1, 2, foo()} -- last list member

return a+b, foo() -- the last return value

local x, y = foo() -- take the first 2 actual parameters and assign them

to x and y respectively

t.k, t.j = a, foo() -- take the first actual parameter and assign it to

t.j

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

244 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#read-return-values-position
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#read-return-values-position

3. Other places only represent the first actual parameter passed in. For example, the

following example:

In addition, there is another scenario:

4. For a single function call statement, the return values are ignored at this time. For

example, the following example:

The fourth scenario does not need to deal with the return values, so ignore it for now. In

the previous three scenarios, it is necessary to move the return values from the top of the

stack to the position of the function entry. For example, for the print("hello", sqr(3,

4)) statement, the stack layout before calling the sqr() function is shown in the left

figure below:

In the left picture, the print function is at the top of the stack, followed by the

parameter "hello" string constant and the sqr() function, and then the two

parameters of the sqr() function: 3 and 4 . The important point here is that in the

local x, y = foo(), b -- not the last expression, just take the first

argument and assign it to x

t.k, t.j = foo(), b -- not the last expression, just take the first

argument and assign it to t.k

if foo() then -- conditional judgment

 t[foo()] = foo() + f -- table index, and binary operands

end

print("no results")

foo(1, 2, 3)

| | | | | |
+-------+ +-------+ +-------+
| print | | print | | print |
+-------+ +-------+ +-------+
|"hello"| |"hello"| |"hello"|
+-------+ +-------+ +-------+
| sqr | | sqr | / | 9 | <--original sqr entry
position
+-------+ +-------+ <--base /-+ +-------+
| 3 | | 3 | | \ | 16 |
+-------+ +-------+ | +-------+
| 4 | | 4 | | | |
+-------+ +-------+ |
| | | 9 | \ |
 +-------+ +return--/
 | 16 | / values
 +-------+
 | |

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

245 of 314 10/23/23, 08:47

syntax analysis stage, the arguments of the function are generated by explist()

bytecodes, which are loaded onto the stack in turn, so the sqr() function must be

located in the print() function's argument location. Then, the return value of the sqr()

function should be moved to the position of the sqr() function as the argument of the

print() function, as shown in the rightmost figure in the above figure.

Therefore, the above three stack layout diagrams are summarized as follows:

• The picture on the left is the state before the sqr() function call;

• The picture in the middle is after the sqr() function is called, that is, the state after

the Return bytecode introduced in the previous part of this section is executed;

• The picture on the right is the expected state after calling the sqr() function, that

is, the return value of the sqr() function is used as the return value of the print()

function.

Therefore, what we need to do is to change the stack layout from the middle picture to

the right picture, so in the processing flow of Call bytecode, move the return value from

the top of the stack to the position of the function entry, which is the last line in the

following code :

Here, the return values are not directly moved to the function entry position, but the

stack data from the function entry to the start position of the return value is cleared

through the Vec::drain() method to realize the return value in place. This is also done

to clean up the stack space occupied by the called function at the same time, so as to

release resources in time.

Read Return Value: Number

 ByteCode::Call(func, narg_plus) => {
self.base += func as usize + 1;
match &self.stack[self.base - 1] {

 Value::LuaFunction(f) => {
// The processing of parameters is omitted here.

// Call the function, `nret` is the number of return values
at the top of the stack

let nret = self. execute(&f);

// Delete the stack values from the function entry to the
// starting position of the return values, so the return
// values are moved to the function entry position.
self.stack.drain(self.base+func as usize ..

self.stack.len()-nret);
 }

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

246 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#read-return-value-number
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#read-return-value-number

The above describes where to put the return values, now let's deal with the number of

return values. This is also the same as the variable parameter expression in the previous

section. According to the above four scenarios, it is also divided into four types:

1. All return values;

2. Fixed the first N return values;

3. The first return value;

4. No return value is required.

Similar to VarArgs bytecode, Call bytecode also needs to add a parameter to indicate

how many return values are needed:

But there is a difference here, that is the number of parameters associated with VarArgs ,

and the value 0 means all variable arguments. The fourth scenario is added here for the

function call, which does not need a return value, that is, a return value of 0 is required,

so the new associated parameters of the Call bytecode cannot be represented by 0 as

a special value for all return values. This is like the scene in the previous section Number

of parameters, that is, there are already 0 parameters, so it cannot be simply used 0 is a

special value. There are two solutions to this problem:

• Refer to the processing method of the number of parameters in the previous

section, use 0 to represent all return values, and change the case of fixed N return

values to N+1 and encode them into the Call bytecode. This is also the scheme

adopted by Lua's official implementation;

• Take the "no need to return value" in the fourth scenario as "ignore the return

value", that is, there is no need to process the return value, or it doesn't matter how

to process the return value. Then in this scenario, we can fill in any number for this

associated parameter. Here we choose to fill in 0 .

We choose the latter option. That is to say, the value 0 has two meanings:

• All return values are required;

• No return value is required.

Although the meanings of these two scenarios are different, the processing method is the

same when the virtual machine is executed, and the return value is not processed. In

other words, all return values (if any) will be placed at the function entry.

If the value of this parameter is not 0 , it corresponds to the second and third scenarios

above, that is, the situation where the first N and the first return values need to be fixedIn

this case, you need to deal with:

pub enum ByteCode {
 Call(u8, u8, u8) // Add the third associated parameter, indicating how
many return values are required

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

247 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/ch08-02.arguments.html#scenario-1-all-variable-arguments
https://wubingzheng.github.io/build-lua-in-rust/en/ch08-02.arguments.html#scenario-1-all-variable-arguments
https://wubingzheng.github.io/build-lua-in-rust/en/ch08-02.arguments.html#scenario-1-all-variable-arguments
https://wubingzheng.github.io/build-lua-in-rust/en/ch08-02.arguments.html#scenario-1-all-variable-arguments

• If the actual return value is less than the expected demand, then nil needs to be

added;

• Otherwise, no processing is required. The extra return value is considered as a

temporary variable on the stack and has no effect.

Next, add this nil filling process in the process of executing Call bytecode in the virtual

machine:

At this point, the virtual machine execution part of Call bytecode is completed.

Syntax Analysis of Scenarios

In previous chapters, we always introduce syntax analysis to generate bytecode first, and

then introduce the virtual machine to execute the bytecode. But this time is different. The

above only introduces the virtual machine execution of Call bytecode in different

scenarios; it does not introduce syntax analysis, that is, how to generate Call bytecode

in each scenario. Make it up now.

The first and second scenarios above are exactly the same as the corresponding scenario

of variable parameter expressions, so there is no need to do these statements here to

modify, we only need to add ExpDesc::Call expressions in discharge_expand() and

discharge_expand_want() . The code of discharge_expand() is listed below, and

``discharge_expand_want()` is similar, so it is omitted here.

 ByteCode::Call(func, narg_plus, want_nret) => {
self.base += func as usize + 1;
match &self.stack[self.base - 1] {

 Value::LuaFunction(f) => {
let nret = self. execute(&f);
self.stack.drain(self.base+func as usize ..

self.stack.len()-nret);

// Fill nil as needed
// If want_nret==0, there is no need to process it, and it

will not enter the if{} branch.
let want_nret = want_nret as usize;
if nret < want_nret {

self.fill_stack(nret, want_nret - nret);
 }
 }

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

248 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#syntax-analysis-of-scenarios
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#syntax-analysis-of-scenarios
https://wubingzheng.github.io/build-lua-in-rust/en/ch08-02.arguments.html#scenario-1-all-variable-arguments
https://wubingzheng.github.io/build-lua-in-rust/en/ch08-02.arguments.html#scenario-1-all-variable-arguments

In Lua, when the number of values cannot be determined during the syntax analysis

stage, there are only variable arguments and function calls. So these two functions are

now complete. If there are other similar statements, we can also add statements to this

function without modifying the specific application scenario.

Next, look at the third scenario, which only takes the first return value. The same as the

variable arguments statement in the previous section, the loading of the ExpDesc::Call

expression is also completed in the discharge() function. Unlike the variable arguments

statement, the first associated parameter of the VarArgs bytecode generated by the

variable arguments is the target address, and the three parameters associated with the

Call bytecode here have no target address of. It is introduced above that when the

virtual machine is executed, the return value is placed at the entry address of the

function, but the discharge() function is to load the value of the expression to the

specified address. Therefore, the loading of the ExpDesc::Call expression may require 2

bytecodes: first generate the Call bytecode to call the function and put the return value

at the function entry position, and then generate the Move bytecode to put the first A

return value is assigned to the target address. code show as below:

fn discharge_expand(&mut self, desc: ExpDesc) -> bool {
let code = match desc {

 ExpDesc::Call(ifunc, narg_plus) => { // Add function call
expression
 ByteCode::Call(ifunc as u8, narg_plus as u8, 0)
 }
 ExpDesc::VarArgs => {
 ByteCode::VarArgs(self.sp as u8, 0)
 }
 _ => {

self.discharge(self.sp, desc);
return false

 }
 };

self.fp.byte_codes.push(code);
true

 }

fn discharge(&mut self, dst: usize, desc: ExpDesc) {
let code = match desc {

 ExpDesc::Call(ifunc, narg_plus) => {
// Generate Call, keep only 1 return value, and put it in

ifunc position
self.fp.byte_codes.push(ByteCode::Call(ifunc as u8,

narg_plus as u8, 1));

// Generate Move, copy return value from ifunc to dst
position

self.fp.byte_codes.push(ByteCode::Move(dst as u8, ifunc as
u8));
 }

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

249 of 314 10/23/23, 08:47

For example, the following sample code:

Its stack layout is as follows:

• The picture on the left is the stack layout before the foo() function returns,

assuming 100 at the top of the stack is the return value of the function;

• The picture in the middle shows that after the Call bytecode is executed, the

return value is moved to the function entry position, which is the function

completed above in this section;

• The figure on the right is the Move bytecode assigning the return value to the target

address, that is, the local variable x .

It can be seen that 2 bytecodes are generated in this scenario, and the return value is also

moved 2 times. There is room for optimization here. The reason why 2 bytecodes are

needed is because the Call bytecode has no parameters associated with the target

address, so it cannot be directly assigned. The reason why there is no associated target

address parameter is because the Call bytecode has already stuffed 3 parameters, and

there is no space to stuff it into the target address.

Once the problem is identified, the optimization solution becomes obvious. Since only

one return value is always required in this scenario, the third associated parameter (the

number of required return values) in Call bytecode is meaningless. So you can add a

bytecode dedicated to this scenario, delete the third parameter in the Call bytecode,

and make room for the parameter of the target address. For this, we add CallSet

bytecode:

local x, y
x = foo()

| | | | | |
+-------+ +-------+ +-------+
| x | | x | /---->| x |
+-------+ +-------+ | +-------+
| y | | y | | | y |
+-------+ +-------+ | +-------+
| foo | /---->| 100 |----/ | |
+-------+ | +-------+ Move bytecode assigns the return value to the
target address
: : | | |
+-------+ |
| 100 |----/ `Call` bytecode moves the returns value 100 to `foo` position
+-------+
| |

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

250 of 314 10/23/23, 08:47

In this way, in the discharge() function, the function call statement only needs one

bytecode:

The virtual machine execution of CallSet bytecode is as follows:

The call_function() method in the above is a function that extracts the execution flow

of Call bytecode. After calling the function, if there is no return value, set the target

address to nil , otherwise assign the first return value to the target address. The last line

cleans up the stack space occupied by function calls, and there are 2 cases in cleaning:

• If the target address is a local variable, then the cleanup location is from the

function entry;

• If the target address is a temporary variable, set the target address of the function

return value as the function entry position in discharge_any() , so the cleaning

position starts from one position behind the function entry.

In summary, always start cleaning from a position behind the function entry position,

which can satisfy the above two conditions. Only in the case of local variables, one more

function entry will be reserved.

pub enum ByteCode {
 Call(u8, u8, u8), // Associated parameters: function entry, number of
arguments, number of expected return values
 CallSet(u8, u8, u8), // Associated parameters: target address, function
entry, number of arguments

fn discharge(&mut self, dst: usize, desc: ExpDesc) {
let code = match desc {

 ExpDesc::Call(ifunc, narg) => {
 ByteCode::CallSet(dst as u8, ifunc as u8, narg as u8)
 }

 ByteCode::CallSet(dst, func, narg) => {
// Call functions
let nret = self. call_function(func, narg);

if nret == 0 { // no return value, set nil
self. set_stack(dst, Value::Nil);

 } else {
// use swap() to avoid clone()
let iret = self.stack.len() - nret as usize;
self.stack.swap(self.base+dst as usize, iret);

 }

// Clean up the stack space occupied by the function call
self.stack.truncate(self.base + func as usize + 1);

 }

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

251 of 314 10/23/23, 08:47

Variable Number of Return Values

The syntax analysis and virtual machine execution of the return value are introduced

above, but one place is still missing. Among the three application scenarios of variable

parameters listed in the previous section, the first scenario includes three statements:

table construction, function argument, and function return value. At that time, only the

first two statements were introduced. Now that the return value statement is supported,

the last statement is added.

This section above introduces the syntax analysis of the return statement, but at that

time, all expressions of the return value were loaded onto the stack in sequence, that is,

only a fixed number of return values was supported. When the last expression of the

function return value statement is a variable parameter or a function call statement, then

all variable parameters or all return values of the function when the virtual machine is

executed will be used as the return value of this function, that is to say, the number of

return values cannot be determined during the parsing phase, that is, a variable number

of return values.

Variable number of return values, syntax analysis can refer to the previous section table

construction or function arguments, that is, use the modified explist() function ,

special treatment is given to the last expression. The specific code is omitted here.

What needs to be explained is how to represent "variable number" in bytecode. In this

section, two new return value-related bytecodes are added, Return0 and Return .

Among them, Return0 is used when there is no return value, so the parameter of the

number of return values associated in Return bytecode will not be 0 , then 0 can be

used as a special value to indicate variable number.

Summary of Variable Number Statements and Scenario

Here is a summary of statements and scenarios related to variable quantities. Statements

that directly result in variable numbers include:

• Variable argument statement ... , there are 3 application scenarios;

• Function call statement, in addition to the 3 application scenarios of variable

parameters, there is also a scenario of ignoring the return value.

Among the several application scenarios of these two statements, the first scenario is to

take all the actual parameters or return values when the virtual machine is executed. This

scenario includes 3 statements:

• Table construction, corresponding to SetList bytecode;

• Function arguments, corresponding to Call/CallSet bytecode;

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

252 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#variable-number-of-return-values
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#variable-number-of-return-values
https://wubingzheng.github.io/build-lua-in-rust/en/ch08-03.results.html#syntax-analysis-of-return-statement
https://wubingzheng.github.io/build-lua-in-rust/en/ch08-03.results.html#syntax-analysis-of-return-statement
https://wubingzheng.github.io/build-lua-in-rust/en/ch08-02.arguments.html#scenario-1-all-variable-arguments
https://wubingzheng.github.io/build-lua-in-rust/en/ch08-02.arguments.html#scenario-1-all-variable-arguments
https://wubingzheng.github.io/build-lua-in-rust/en/ch08-02.arguments.html#scenario-1-all-variable-arguments
https://wubingzheng.github.io/build-lua-in-rust/en/ch08-02.arguments.html#scenario-1-all-variable-arguments
https://wubingzheng.github.io/build-lua-in-rust/en/ch08-02.arguments.html#scenario-1-all-variable-arguments-continued
https://wubingzheng.github.io/build-lua-in-rust/en/ch08-02.arguments.html#scenario-1-all-variable-arguments-continued
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#summary-of-variable-number-statements-and-scenario
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#summary-of-variable-number-statements-and-scenario
https://wubingzheng.github.io/build-lua-in-rust/en/ch08-02.arguments.html#expdescvarargs-and-application-scenarios
https://wubingzheng.github.io/build-lua-in-rust/en/ch08-02.arguments.html#expdescvarargs-and-application-scenarios

• The return value of the function corresponds to the Return bytecode of the called

function and the Call/CallSet bytecode of the calling function.

In the above bytecodes, in order to represent the state of "actually all expressions when

the virtual machine is executed", 0 is used as a special value, among which:

• The second parameter of Call/CallSet bytecode represents the number of actual

parameters. Because the function call originally supports no parameters, in order to

use 0 as a special value, we have to correcte the number with adding by 1 for fixed

number case, that is, N fixed parameters are encoded into N+1 in the bytecode;

• The third parameter of Call/CallSet bytecode represents the number of expected

return values. The function call also supports the situation that the return value is

not required, but we understand "no need" as "ignore", then it is no problem to read

all the return values, so 0 can be used as a special value;

• The second parameter of SetList and Return bytecodes both represent the

number. However, when these two bytecodes are used for fixed numbers, no

expressions are supported, so 0 can be directly used as a special value.

In addition, it needs to be emphasized again that when 0 is used to represent a special

value in the above bytecode, the number of specific expressions is calculated from the

top of the stack, which must ensure that there is no temporary variable on the top of the

stack, so the virtual machine must explicitly clean up temporary variables when executing

variable parameter and function call statements.

Summary

This section begins by introducing fixed number return values. The called function puts

the return value on the top of the stack through the Return/Return0 bytecode, and then

the calling function reads the return value in the Call/CallSet bytecode.

The variable number of return values was introduced later, which is similar to the variable

parameters in the previous section.

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

253 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#summary-5
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#summary-5

Rust Function and APIs

The previous three sections of this chapter introduce the functions defined in Lua, and

this section introduces the functions defined in Rust. For the sake of simplicity, these two

types of functions are called "Lua functions" and "Rust functions" respectively.

In fact, we have already been exposed to Rust functions. The print() that was

supported in the hello, world! version of the first chapter is the Rust function. The

interpreter at that time realized the definition and calling process of Rust functions. which

is defined as follows:

Here is an example of the implementation code of print() function:

The calling method of the Rust function is also similar to the Lua function, and the Rust

function is also called in the Call bytecode:

The codes listed above are the functions of the implemented Rust functions, but they are

only the most basic definitions and calls, and still lack parameters and return values. This

section adds these two features to Rust functions.

One thing that needs to be explained is that in Lua code, the function call statement does

not distinguish between Lua functions and Rust functions. In other words, the two types

are not distinguished during the parsing phase. It is only in the virtual machine execution

stage that the two types need to be treated differently. Therefore, what is described

below in this section is all about the virtual machine stage.

Argument

The arguments of Rust functions are also passed through the stack.

pub enum Value {
 RustFunction(fn (&mut ExeState) -> i32),

fn lib_print(state: &mut ExeState) -> i32 {
println!("{}", state.stack[state.base + 1]);
0

}

 ByteCode::Call(func, _) => {
let func = &self. stack[func as usize];
if let Value::Function(f) = func {

 f(self);

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

254 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#rust-function-and-apis
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#rust-function-and-apis
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#argument
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#argument

You can see that the implementation of the current print() function only supports one

parameter, which is by directly reading the data on the stack: state.stack[state.base +

1]) , where self.base is the function entry address , +1 is the address immediately

following, that is, the first parameter.

Now to support multiple parameters, it is necessary to inform the Rust function of the

specific number of parameters. There are two options:

• Modify the Rust function prototype definition, add a parameter to express the

number of parameters. This solution is simple to implement, but it is inconsistent

with Lua's official C function prototype;

• Adopt the variable parameter mechanism in the previous Lua function, that is,

determine the number of parameters by the position of the top of the stack.

We take the latter approach. This requires cleaning up possible temporary variables on

the top of the stack before calling the function Rust:

After cleaning up the possible temporary variables at the top of the stack, in the Rust

function, the specific number of parameters can be judged through the top of the stack:

state.stack.len() - state.base ; we can also directly read any argument, such as the

Nth parameter: state.stack[state.base + N]) . So modify the print() function as

follows:

 ByteCode::Call(func, narg_plus) => {
let func = &self. stack[func as usize];
if let Value::Function(f) = func {

// narg_plus!=0, fixed parameters, need to clean up possible
// temporary variables on the top of the stack;
// narg_plus==0, variable parameters, no need to clean up.
if narg_plus != 0 {

self.stack.truncate(self.base + narg_plus as usize - 1);
 }

 f(self);

fn lib_print(state: &mut ExeState) -> i32 {
let narg = state.stack.len() - state.base; // number of arguments
for i in 0 .. narg {

if i != 0 {
print!("\t");

 }
print!("{}", state.stack[state.base + i]); // print the i-th

argument
 }

println!("");
0

}

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

255 of 314 10/23/23, 08:47

Return Value

The return value of the Rust function is also passed through the stack. The Rust function

puts the return value on the top of the stack before exiting, and returns the number,

which is the function of the i32 type return value of the Lua function prototype. This is

the same mechanism as the Lua function introduced in the previous section. We only

need to process the return value of the Rust function according to the return value of the

Lua function introduced in the previous section when the Call bytecode is executed:

Convert the return value of the Rust function f() from i32 to usize type and return,

indicating the number of return values. Here the type conversion from i32 to usize

feels bad, because the C function in the official Lua implementation returns a negative

number to indicate failure. We have directly panicked on all errors so far. Subsequent

chapters will deal with errors uniformly. When Option<usize> is used instead of i32 ,

this garish conversion will be removed.

The previous print() function had no return value and returned 0 , so it did not reflect

the feature of return value. Let's take another Lua standard library function type() with

a return value as an example. The function of this function is to return the type of the first

parameter, and the type of the return value is a string, such as "nil", "string", "number"

and so on.

Among them, the ty() function is a new method for the Value type, which returns a

description of the type, and the specific code is omitted here.

Rust API

 ByteCode::Call(func, narg_plus) => {
let func = &self. stack[func as usize];
if let Value::Function(f) = func {

if narg_plus != 0 {
self.stack.truncate(self.base + narg_plus as usize - 1);

 }

// Return the number of return values of the Rust function,
// which is consistent with the Lua function

 f(self) as usize

fn lib_type(state: &mut ExeState) -> i32 {
let ty = state.stack[state.base + 1].ty(); // the type of the first

parameter
 state.stack.push(ty); // Push the result onto the stack

1 // Only 1 return value
}

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

256 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#return-value-1
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#return-value-1
https://www.lua.org/manual/5.4/manual.html#pdf-type
https://www.lua.org/manual/5.4/manual.html#pdf-type
https://www.lua.org/manual/5.4/manual.html#pdf-type
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#rust-api
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#rust-api

So far, the characteristics of the parameters and return values of Rust functions have

been realized. However, the access and processing of arguments and return values above

are too direct, and the ability of Rust functions is too strong, not only can access the

parameters of the current function, but also can access the entire stack space, and even

the entire state state. This is irrational and dangerous. It is necessary to restrict the

access of Rust functions to state , including the entire stack, which requires the limited

ability of Rust functions to access state through the API. We have come to a new world:

the Rust API, of course called the C API in the official Lua implementation.

The Rust API is an API provided by the Lua interpreter for Rust functions (the Lua library

implemented by Rust). Its roles are as follows:

There are 3 functional requirements in the Rust function in the above section, all of which

should be fulfilled by the API:

• Read the actual number of arguments;

• read specified argument;

• create return value

These three requirements are described in turn below. The first is the function of reading

the actual number of arguments, which corresponds to the lua_gettop() API in the

official implementation of Lua. For this we provide get_top() API:

Although the get_top() function is also a method of the ExeState structure, it is

provided as an API for external calls. The methods before ExeState (such as execute() ,

get_stack() , etc.) are all internal methods for virtual machine execution calls. In order

to distinguish these two types of methods, we add an impl block to the ExeState

structure to implement the API alone to increase readability. It's just that Rust does not

 +------------------+
 | Lua code |
 +---+----------+---+
 | |
 | +-------V----------+
 | | Standard Library |
 | | (Rust) |
 | +-------+----------+
 | |Rust API
 | |
+--------V----------V--------+
| Lua Virtual Machine (Rust) |
+----------------------------+

impl<'a> ExeState {
// Return to the top of the stack, that is, the number of parameters
pub fn get_top(&self) -> usize {

self.stack.len() - self.base
 }

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

257 of 314 10/23/23, 08:47

https://www.lua.org/manual/5.4/manual.html#4
https://www.lua.org/manual/5.4/manual.html#4
https://www.lua.org/manual/5.4/manual.html#lua_gettop
https://www.lua.org/manual/5.4/manual.html#lua_gettop
https://www.lua.org/manual/5.4/manual.html#lua_gettop

allow the method of implementing the structure in different files, so it cannot be split into

another file.

Then, the function of reading the specified parameters does not correspond to a function

in the official Lua implementation, but a series of functions, such as lua_toboolean() ,

lua_tolstring() , etc., for different types. With the generic capabilities of the Rust

language, we can provide only one API:

You can see that this API also supports negative indexes, which means counting down

from the top of the stack, which is the behavior of Lua's official API, and it is also a very

common method of use. This also reflects the advantages of the API over direct access to

the stack.

However, there is also a behavior that is inconsistent with the official API: when the index

exceeds the stack range, the official will return nil , but here we panic directly. We will

discuss this in detail later when we introduce error handling.

Based on the above two APIs, you can redo the print() function:

Finally, let's look at the last function, creating the return value. Like the above API for

pub fn get<T>(&'a self, i: isize) -> T where T: From<&'a Value> {
let narg = self. get_top();
if i > 0 { // positive index, counting from self.base

let i = i as usize;
if i > narg {

panic!("invalid index: {i} {narg}");
 }
 (&self. stack[self. base + i - 1]). into()
 } else if i < 0 { // Negative index, counting from the top of the
stack

let i = -i as usize;
if i > narg {

panic!("invalid index: -{i} {narg}");
 }
 (&self.stack[self.stack.len() - i]).into()
 } else {

panic!("invalid 0 index");
 }
 }

fn lib_print(state: &mut ExeState) -> i32 {
for i in 1 ..= state. get_top() {

if i != 1 {
print!("\t");

 }
print!("{}", state.get::<&Value>(i).to_string());

 }
println!("");
0

}

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

258 of 314 10/23/23, 08:47

reading arguments, there are also a series of functions in the official Lua implementation,

such as lua_pushboolean() , lua_pushlstring() , etc. And here you can also add only

one API with the help of generics:

Based on this API, self.stack.push() in the last line of type() function above can be

changed to self.push() .

Although the implementation of the print() and type() functions has not changed

significantly after replacing the API, the API provides a encapsulation for ExeState , which

will gradually reflect the convenience in the process of gradually adding library functions

safety.

pub fn push(&mut self, v: impl Into<Value>) {
self.stack.push(v.into());

 }

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

259 of 314 10/23/23, 08:47

Tail Call

The Lua language supports tail call elimination. This section describes and supports tail

calls.

First we introduce the concept of tail calls. A tail call is formed when the last action of a

function is to call another function without doing any other work. For example, the

following sample code:

The last action of the foo() function (and in this case the only action) is to call the bar()

function. Let's take a look at the execution process of the foo() function without

introducing a tail call, as shown in the following figure:

• The first picture on the far left is the stack layout before calling the bar() function

inside the foo() function. That is, before calling Call(bar) bytecode.

• The second figure is the stack layout immediately after the bar() function call has

completed. That is, after the Return bytecode of the bar() function is executed,

but before returning to the Call(bar) bytecode of the foo() function. Suppose

this function has two return values ret1 and ret2 , which are currently on the top

of the stack.

• The third figure is the stack layout after the bar() function returns. That is, the

Call(bar) bytecode of foo() is executed. That is, move the two return values to

function foo(a, b)
return bar(a + b)

end

| | | | | | | |
+-------+ +-------+ +-------+ +-------+
| foo() | | foo() | | foo() | / | ret1 |
+-------<< +-------+ +-------<< /-+ +-------+
| a | | a | | a | | \ | ret2 |
+-------+ +-------+ +-------+ | +-------+
| b | | b | | b | | | |
+-------+ +-------+ +-------+ |
| bar() | | bar() | / | ret1 | \ |
+-------+ +-------<< /-+ +-------+ >-/return values
| a+b | | a+b | | \ | ret2 | /
+-------+ +-------+ | +-------+
| | : : | | |
 +-------+ |
 | ret1 | \ |
 +-------+ >-/return values
 | ret2 | /
 +-------+
 | |

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

260 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#tail-call
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#tail-call

the entry function position of bar() .

• The fourth figure is the stack layout after the foo() function returns. That is, after

the Call(foo) bytecode of the outer caller is executed. That is, move the two

return values to the entry function position of foo() .

The next three graphs are executed consecutively. Observe the optimization space in it:

• An obvious optimization idea is that the copying of the last two return values can be

completed in one step. But this is difficult to optimize, and it doesn't optimize much

performance;

• Another not-so-obvious point is that the stack space of the foo() function is no

longer used after the bar() function in the first leftmost figure is ready to be called.

Therefore, we can clean up the stack space occupied by the foo() function before

calling the bar() function. According to this idea, the following redraws the calling

process:

• The first picture on the left remains unchanged, and it is still the state before the

bar() function call;

• In the second picture, before calling bar() , the stack space of the foo() function is

cleared;

• The third picture, corresponding to the second picture above, is after calling bar()

function.

• The fourth picture corresponds to the last picture above. Since the stack space of

the foo() function has been cleaned up just now, the third figure above is skipped.

Compared with the above ordinary process, although the operation steps of this new

process have been changed, they have not been reduced, so the performance is not

optimized. However, there are optimizations in the use of stack space! The stack space of

foo() has been freed before the bar() function is executed. 2 layers of function calls,

| | | | | | | |
+-------+ +-------+ +-------+ +-------+
| foo() | / | bar() | | bar() | / | ret1 |
+-------<< /-+ +-------<< +-------<< /-+ +-------+
| a | | \ | a+b | | a+b | | \ | ret2 |
+-------+ | +-------+ +-------+ | +-------+
| b | | | | : : | | |
+-------+ | +-------+ |
| bar() | \ | | ret1 | \ |
+-------+ >-/ +-------+ >-/
| a+b | / | ret2 | /
+-------+ +-------+
| | | |

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

261 of 314 10/23/23, 08:47

but only takes up 1 layer of space. The advantage brought by this is not obvious in this

example, but it is obvious in recursive calls, because there are usually many layers of

recursive calls. If the last item of the recursive call satisfies the above tail call, then after

applying the new process, it can support unlimited recursive calls without causing stack

overflow! The stack overflow here refers to the stack of the Lua virtual machine drawn in

the above figure, not the stack overflow of the Rust program.

Compared with the normal process above, this new process has a small difference. The

<< on the stack in each figure above represents the current self.base position. It can

be seen that in the above ordinary process, self.base has changed; but in the new

process, the whole process has not changed.

After introducing the concept of tail call, the specific implementation is introduced below.

Syntax Analysis

Before starting the syntax analysis, clarify the rules of the next tail call again: when the

last action of a function is to call another function without doing other work, it forms a tail

call. Here are some counterexamples from the book "Lua Programming":

In the Lua language, only calls of the form return func(args) are tail calls. Of course,

func and args here can be very complicated, such as return t.k(a+b.f()) is also a

tail call.

After the rules are clarified, it is relatively simple to judge tail calls during syntax analysis.

When parsing the return statement, add a judgment on the tail call:

function f1(x)
 g(x) -- discard the return value of g(x) before f1() returns
end
function f2(x)

return g(x) + 1 -- also execute +1
end
function f3(x)

return x or g(x) -- also limit the return value of g(x) to 1
end
function f4(x)

return (g(x)) -- also limit the return value of g(x) to 1
end

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

262 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#syntax-analysis-10
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#syntax-analysis-10

There are 4 cases in the above code. The second case is a newly added tail call, and the

other three cases are already supported in the previous sections of this chapter, so they

will not be introduced here.

The newly added bytecode TailCall is similar to the function call bytecode Call , but

since the return value of the tail call must be a function call, the number of return values

must be unknown, so the third associated parameter is omitted. So far, there are three

bytecodes related to function calls:

Virtual Machine Execution

Next, look at the virtual machine execution part of the tail call. From the tail call process

introduced at the beginning of this section, it can be concluded that compared with

ordinary function calls, there are three differences in the execution of tail calls:

• Before calling the inner function, the stack space of the outer function should be

cleared in advance, which is also the meaning of tail call;

• After the inner function returns, since the outer function has been cleaned up, there

is no need to return to the outer function, but directly return to the outer calling

let iret = self.sp;
let (nexp, last_exp) = self.explist();

if let (0, &ExpDesc::Local(i)) = (nexp, &last_exp) {
// There is only 1 return value and it is a local variable

 ByteCode::Return(i as u8, 1)

 } else if let (0, &ExpDesc::Call(func, narg_plus)) = (nexp, &last_exp) {
// New tail call: only one return value, and it is a function call

 ByteCode::TailCall(func as u8, narg_plus as u8)

 } else if self. discharge_expand(last_exp) {
// The last return value is a variable type, such as variable

arguements or function calls,
// then the number of return values cannot be known during the

syntax analysis phase
 ByteCode::Return(iret as u8, 0)

 } else {
// The last return value is fixed

 ByteCode::Return(iret as u8, nexp as u8 + 1)
 }

pub enum ByteCode {
 Call(u8, u8, u8),
 CallSet(u8, u8, u8),
 TailCall(u8, u8), // add tail call

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

263 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#virtual-machine-execution-9
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#virtual-machine-execution-9

function.

• There is no need to adjust self.base throughout.

Thus, the execution flow of TailCall bytecode can be realized as follows:

Very simple, just two lines of code:

Line 1, through self.stack.drain() to clean up the stack space of the outer function.

Line 2 returns directly from the current execute() through the return statement, that

is to say, after the inner function is executed, it does not need to return to the current

function, but directly returns to the outer caller. In addition, according to the rules of tail

calls listed above, this line of Rust code itself is also a tail call. So as long as the Rust

language also supports tail call elimination, then our Lua interpreter will not increase its

own stack during execution.

In addition, the newly added do_call_function() method in line 2 executes the function

call, which is extracted from the call_function() method called by the Call and

CallSet bytecodes in the previous section, except that the update to self.base is

removed. And the call_function() method is modified to wrap this new method:

Test

So far, we have completed the tail call. Verify with the following Lua code:

But I get a stack overflow error when executing:

 ByteCode::TailCall(func, narg_plus) => {
self.stack.drain(self.base-1 .. self.base+func as usize);
return self. do_call_function(narg_plus);

 }

fn call_function(&mut self, func: u8, narg_plus: u8) -> usize {
self.base += func as usize + 1; // get into new world
let nret = self. do_call_function(narg_plus);
self.base -= func as usize + 1; // come back

 nret
 }

function f(n)
if n > 10000 then return n end
return f(n+1)

end
print(f(0))

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

264 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#test-9
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#test-9

At first I thought that the debug version of Rust did not perform tail call optimization, but

after adding --release , it can only support a greater recursion depth, which delays the

stack overflow, but eventually the stack overflow will still occur. This goes back to what I

just said: "So as long as the Rust language also supports tail call elimination, then...", the

assumption in front of this sentence may not be true, that is, the Rust language may not

support tail call elimination. Here is an article that introduces the discussion of tail calls in

the Rust language. The conclusion is probably due to the implementation too

complicated (may involve resource drop), and the benefits are limited (programmers can

manually change recursion to loop if necessary), so in the end Rust language does not

support tail call elimination. In this way, in order to make the tail call elimination of Lua

completed in this section meaningful, we can only change the recursive call to the

execute() function into a loop. This change itself is not difficult, but there are still two

places to modify the function call process in the future, one is the calling method of the

entry function of the entire program, and the other is to support the state preservation of

the function in the coroutine. So we will make this change after completing the final

function call process.

$ cargo r --test_lua/tailcall.lua

thread 'main' has overflowed its stack
fatal runtime error: stack overflow
[1] 85084 abort cargo r -- test_lua/tailcall.lua

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

265 of 314 10/23/23, 08:47

https://dev.to/seanchen1991/the-story-of-tail-call-optimizations-in-rust-35hf
https://dev.to/seanchen1991/the-story-of-tail-call-optimizations-in-rust-35hf

Closure

The previous chapter introduced functions, and all functions in the Lua language are

actually closures. This chapter introduces closures.

The so-called closure is the function prototype associated with some variables. In Lua,

these associated variables are called Upvalue. If you understand closures in Rust, then

according to "Rust Programming Language" it is "capturing environment" means the

same thing as "associated variable". So Upvalue is fundamental to understanding and

implementing closures.

The section 1 of this chapter introduces the most basic concept of Upvalue; the following

sections 2 and 3 introduce the important feature of Upvalue, escape, which is what

makes the closure really powerful; Section 4 introduces the Rust closure corresponding to

the Rust function. The following sections 5 and 6 are the two application scenarios of

closure and Upvalue respectively.

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

266 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#closure
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#closure
https://doc.rust-lang.org/stable/book/ch13-01-closures.html
https://doc.rust-lang.org/stable/book/ch13-01-closures.html

Upvalue

Before introducing closures, this section first introduces an important part of closures:

upvalue.

This section mainly introduces the concept of upvalue, and introduces the changes

needed to support upvalue in the syntax analysis and virtual machine execution stages. It

is very complicated to realize the complete features of upvalue, so in order to focus on

the change of the overall structure and process, this section only supports the most basic

upvalue features, and leave it to the next section to introduce the difficult part: escape.

The sample code below shows the most basic scenario of upvalue:

The entire code can be seen as a top-level function, which defines two local variables: a

and the function foo . The reference a in print(a) inside the foo() function refers to

a local variable defined outside the function, so what kind of variable is the a inside the

function? First, it is not defined inside the foo() function, so it is not a local variable;

second, it is a local variable defined in the outer function, so it is not a global variable.

Local variables that refer to outer functions like this are called upvalue in Lua. There is

also the concept of closure in the Rust language, and local variables in the outer function

can also be referenced, which is called "capture environment", which should be the same

concept with upvalue.

upvalues are very common in Lua. In addition to the above-mentioned obvious cases,

there is also the fact that calling local functions at the same level is also an upvalue, such

as the following code:

The foo() function called in the bar() function is upvalue. In addition, recursive calls to

local functions are also upvalue.

After introducing the concept of upvalue, the syntax analysis process of upvalue is as

follows.

local a = 1
local function foo()

print(a) -- What type of variable is `a`? Local variable, or global
variable?
end

local function foo()
print "hello, world"

end
local function bar()
 foo() -- upvalue
end

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

267 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#upvalue
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#upvalue

Variable Resolution Process

The previous interpreter only supports two variable types: local variables and global

variables. The variable parsing process is as follows:

1. Match in the local variable list of the current function, if found, it is a local variable;

2. Otherwise, it is a global variable.

Now to add support for the upvalue type, the parsing process of the variable needs to be

added one step, which is changed to:

1. Match in the local variable list of the current function, if found, it is a local variable;

2. Match in the local variables list of upper layer functions, if found, it will be upvalue;

(NEW STEP)

3. Otherwise it is a global variable.

The newly added step 2 looks simple, but the specific implementation is very complicated,

and the description here is not accurate, which will be described in detail in the next

section. This section focuses on the overall process, that is, how to deal with it after

parsing the upvalue.

Similar to local variables and global variables, a new type of ExpDesc is also added for

upvalue:

To review, the associated parameter of the local variable ExpDesc::Local represents the

index on the stack, and the associated parameter of the global variable ExpDesc::Global

represents the index of the variable name in the constant table. What parameters do

upvalue need to be associated with? Take the following sample code that contains

multiple upvalues as an example:

In the above code, there are two upvalues in the foo() function, c and b , which

correspond to the index 2 and 1 of the local variable in the upper function respectively

(the index starts counting from 0), so naturally, they can be represented by

ExpDesc::upvalue(2) and ExpDesc::upvalue(1) . In this way, when the virtual machine

is executing, it can also conveniently index to the local variables on the stack of the upper

layer function. Simple and natural. But when the escape of upvalue is introduced in the

enum ExpDesc {
 Local(usize), // local variables or temporary variables on the stack
 upvalue(usize), // upvalue
 Global(usize), // global variable

local a, b, c = 100, 200, 300
local function foo()

print (c, b)
end

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

268 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#variable-resolution-process
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#variable-resolution-process

next section, this solution cannot meet the requirements. But for the sake of simplicity,

this section will be used for the time being.

Parsing Context

The new step 2 in the above variable resolution process requires access to local variables

of the outer functions. In the last chapter Analysis Function, recursion is used to support

multi-layer function definition. This is not only simple to implement, but also provides a

certain degree of encapsulation, that is, only the information of the current function can

be accessed. This is originally an advantage, but now in order to support upvalue, we

need to access the local variables of the outer function, so this encapsulation becomes a

disadvantage that needs to be overcome. Programs are becoming more and more

complex and confusing in such ever-increasing demands.

When recursively parsing multi-layer functions before, there is one member throughout,

that is, lex: Lex<R> in ParseProto , which needs to be accessed when parsing all

functions. Now in order to be able to access the local variables of the outer function, a

similar member is needed throughout to store the local variables of each function. To do

this, we create a new data structure containing the original lex and the new list of local

variables:

The all_locals member represents the local variable list of each layer function. Each

time a function of a new layer is parsed, a new member is pushed into it; after parsing is

complete, it is popped. So the last member in the list is the list of local variables for the

current function.

Then in ParseProto , replace the original lex with ctx , and delete the original locals:

And all places where the locals field is used in the syntax analysis code must also be

modified to the last member of ctx.all_locals, which is the local variable list of the current

function. The specific code is omitted here.

So far, there are three data structures related to syntax analysis:

struct ParseContext<R: Read> {
 all_locals: Vec<Vec<String>>, // Local variables of each layer function
 lex: Lex<R>,
}

struct ParseProto<'a, R: Read> {
// delete: locals: Vec<String>,

 ctx: &'a mut ParseContext<R>, // add ctx to replace the original lex
 ...

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

269 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#parsing-context
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#parsing-context
https://wubingzheng.github.io/build-lua-in-rust/en/ch08-01.define_and_call.html#transform-parseproto
https://wubingzheng.github.io/build-lua-in-rust/en/ch08-01.define_and_call.html#transform-parseproto

• FuncProto , which defines the function prototype, is the output of the syntax

analysis stage and the input of the virtual machine execution stage, so all fields are

pub ;

• ParseProto , used internally in the parsing phase, and only in the current function;

• ParseContext , the global state used internally by the parsing phase and accessible

at all function levels.

After the transformation of ParseProto , with the ability to access the outer function, the

upvalue can be parsed. But here is just saying that it has the ability to analyze, and the

specific analysis process will be introduced in the next section.

Bytecode

After parsing the upvalue, for its processing, you can refer to the previous discussion of

global variables, the conclusion is as follows:

• read, first loaded on the stack, converted to a temporary variable;

• Assignment, only supports assignment from local/temporary variables and

constants. For other types of expressions, it is first loaded into a temporary variable

on the stack and then assigned.

To this end, compared with global variables, add 3 upvalue-related bytecodes:

The generation of these three new bytecodes can also be completed by referring to

global variables. The specific code is omitted here.

Virtual Machine Execution

The analysis process of upvalue is introduced above, and the corresponding bytecode has

completed the syntax analysis stage. The rest is the virtual machine execution phase.

According to the above processing scheme for upvalue, that is, the associated parameter

pub enum ByteCode {
// global variable

 GetGlobal(u8, u8),
 SetGlobal(u8, u8),
 SetGlobalConst(u8, u8),

//upvalue
 Getupvalue(u8, u8), // Load upvalue onto the stack
 Setupvalue(u8, u8), // Assign value from the stack
 SetupvalueConst(u8, u8), // assign value from constant

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

270 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#bytecode-5
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#bytecode-5
https://wubingzheng.github.io/build-lua-in-rust/en/ch04-05.table_rw_and_bnf.html#execute-the-assignment
https://wubingzheng.github.io/build-lua-in-rust/en/ch04-05.table_rw_and_bnf.html#execute-the-assignment
https://wubingzheng.github.io/build-lua-in-rust/en/ch04-05.table_rw_and_bnf.html#execute-the-assignment
https://wubingzheng.github.io/build-lua-in-rust/en/ch04-05.table_rw_and_bnf.html#execute-the-assignment
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#virtual-machine-execution-10
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#virtual-machine-execution-10

of ExpDesc::upvalue represents the local variable index of the upper-level function.

When the virtual machine is executed, it will also encounter the same problem as the

syntax analysis: the current function needs to access the upper-level functions' local

variables. Therefore, in order to complete the virtual machine execution phase, big

changes must be made to the current code structure.

However, the above-mentioned upvalue processing scheme is only a temporary scheme

in this section. In the next section, in order to support the escape of upvalue, there will be

a completely different scheme and a completely different virtual machine execution

process. Therefore, in order to avoid useless work, the execution of the virtual machine

under this scheme will not be implemented for the time being. Interested friends can try

to change it.

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

271 of 314 10/23/23, 08:47

Upvalue Escape and Closure

The previous section introduced the concept of upvalue, and took the most basic usage

of upvalue as an example to introduce the modification of syntax analysis to support

upvalue. This section introduces the complete features of upvalue, mainly the escape of

upvalue.

The following refers to the sample code in the book "Lua Programming":

newCounter() in the above code is a typical factory function, which creates and returns

an anonymous function. What needs to be explained here is that the returned

anonymous function refers to the local variable i in newCounter() , which is upvalue.

The second half of the code calls the newCounter() function and assigns the returned

anonymous function to c1 and calls it. At this time, the newCounter() function has

ended, and it seems that the local variable i defined in it has also exceeded the scope.

At this time, calling c1 to refer to the local variable i will cause problems (if you are C

Language programmers should understand this). However, in Lua, the closure

mechanism ensures that calling c1 here is no problem. That is, the escape of upvalue.

The book "Lua Programming" is for Lua programmers, and it is enough to introduce the

concept of upvalue escape. But our purpose is to implement an interpreter (not just use an

interpreter), so we must not only know that this is no problem, but also know how to do

it, that is, how to realize the escape of upvalue.

Unfeasible Static Storage Solution

The easiest way is to refer to the static variable inside the function in C language. For the

local variable referenced by upvalue (such as i in the newCounter() function here), it is

not placed on the stack, but placed in a static area. But this solution is not feasible,

because the static variable in C language is globally unique, and the upvalue in Lua will

generate a new copy every time it is called. For example, following the above code,

continue with the following code:

local function newCounter()
local i = 0
return function ()

 i = i + 1 -- upvalue
print(i)

end
end

local c1 = newCounter()
c1() -- output: 1
c1() -- output: 2

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

272 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#upvalue-escape-and-closure
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#upvalue-escape-and-closure
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#unfeasible-static-storage-solution
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#unfeasible-static-storage-solution

Calling newCounter() again will generate a new counter, in which the local variable i will

be re-initialized to 0 and start counting again. At this point, there are two counters: c1

and c2 , each of which has an independent local variable i . So when c2() is called, it

will start counting again from 1; if interspersed with c1() before calling, it will continue

the previous counting. How interesting!

The left figure above shows that i is placed in the globally unique static storage, then all

counter functions point to the unique i. This does not meet our needs. What we need is a

separate i for each counter function as shown on the right.

Storage Scheme on the Heap

Since it cannot be placed on the stack, nor can it be placed in the global static area, it can

only be placed on the heap. The next question is, when to put it on the heap? There are

several possible scenarios:

1. When entering the function, put all local variables referenced by upvalue on the

heap;

2. When a local variable is referenced by upvalue, it is moved from the stack to the

heap;

3. When the function exits, move all local variables referenced by upvalue to the heap;

The first solution does not work, because a local variable may have been used as a local

variable before it is referenced by upvalue, and related bytecodes have been generated.

The second solution should be feasible, but after the local variable is referenced by

upvalue, it may be used as a local variable in the current function. It is not necessary to

move it to the heap in advance. After all, access to the stack is faster and more

convenient. So we choose option 3.

This operation of moving local variables from the stack to the heap, we follow the code

local c2 = newCounter()
c2() -- output: `1`. A new count starts.
c1() -- output: `3`. Continue with the output of c1 above.

 --+---+-- +---+ +---+
 | i | | i | | i |
 --+-^-+-- +-^-+ +-^-+
 | | |
 /---+---\ | |
 | | | |
+----+ +----+ +----+ +----+
| c1 | | c2 | | c1 | | c2 |
+----+ +----+ +----+ +----+

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

273 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#storage-scheme-on-the-heap
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#storage-scheme-on-the-heap

implemented by Lua official, is also called "close".

Next, in order to demonstrate that an upvalue is accessed before and after escaping, we

modify the sample code based on the counter sample above. The inner function is called

once inside the newCounter() function before returned. To do this, we assign this

anonymous function to a local variable retf :

This example is introduced in two parts. First, retf() is called inside the factory function,

and then the upvalue escape caused by the factory function returning retf .

First of all, when retf() is called inside the factory function, i to be operated by retf

is still on the stack. The schematic diagram is as follows.

In the figure, the stack is on the left, where newCounter is the entry of the function call

and the base position of the current function. The i and the first retf are local

variables, and the second retf is the entry on the stack of the function call. The two

retf s point to same function prototype. In the bytecode sequence in the retf function

prototype, the first bytecode Getupvalue is to load upvalue i onto the stack to perform

addition. This bytecode has two associated parameters. The first is the target address

loaded onto the stack, which is ignored here; the second is the source address of upvalue,

refer to the syntax analysis of upvalue in the previous section, the meaning of this

parameter is: the stack of local variables of the upper function index. In this example, it is

the index of i in the newCounter() function, which is 0 . So far, it is still the content of

the previous section, and escape has not been involved.

Now consider the escape of upvalue. After the newCounter() function exits, the three

local function newCounter()
local i = 0
local function retf()

 i = i + 1 -- upvalue
print(i)

end
 retf() -- called inside newCounter()

return retf -- return retf
end

 | |
 +----------+
base |newCounter|
 +----------+
 0 | i |<- - - - - - - - - - \
 +----------+ |
 1 | retf +--+->+-FuncProto-----+--+
 +----------+ | |byte_codes: | |
 2 | retf +--/ | GetUpvalue(0, 0) |
 +----------+ | ... |
 | | +------------------+

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

274 of 314 10/23/23, 08:47

spaces on the left stack will be destroyed, and i will no longer exist. In order for the retf

function to continue to access i , before the newCounter() function exits, it is necessary

to close the local variable i and move i from the stack to the heap. The schematic

diagram is as follows:

Although this ensures that i can continue to be accessed, there is a very obvious

problem: the second parameter associated with the bytecode Getupvalue cannot locate

i on the heap (the continuous ? in the figure Wire). This is also mentioned in the

previous section, it is not feasible to directly use the index of the local variable on the

stack to represent the upvalue scheme. Improvements need to be made on the basis of

this scheme.

Improvement: Upvalue Intermediary

In order to still be able to be accessed by upvalue after closing the local variable, we need

an upvalue intermediary. At the beginning, the index on the stack is used to represent the

upvalue, and when the local variable of the outer function is closed, it is moved to this

intermediary.

The following two figures show the situation after adding the upvalue intermediary.

The figure above is a schematic diagram of calling the retf() function inside the

 | |
 +----------+
base |newCounter| +===+
 +----------+ close | i |<- - - \
 0 | i +-------->+===+ ?
 +----------+ ?
 1 | retf +---->+-FuncProto-----?--+
 +----------+ |byte_codes: ? |
 | | | GetUpvalue(0, 0) |
 | ... |
 +------------------+

 | | - - - - - - \
 +----------+ | |
base |newCounter| | *-----+-+---
 +----------+ | |Open(0)|
 0 | i |<- - - - - - *-^-----+---
 +----------+ |
 1 | retf +--+->+-FuncProto-----+--+
 +----------+ | |byte_codes: | |
 2 | retf +--/ | GetUpvalue(0, 0) |
 +----------+ | ... |
 | | +------------------+

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

275 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/ch09-01.upvalue.html#variable-resolution-process
https://wubingzheng.github.io/build-lua-in-rust/en/ch09-01.upvalue.html#variable-resolution-process
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#improvement-upvalue-intermediary
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#improvement-upvalue-intermediary

newCounter() function. Compared with the previous version, the upvalue intermediary

list (the list with * as the corner in the figure) is added, and there is only one member:

Open(0) , which means that this local variable has not been closed and is on the stack

The relative index is 0. In the function prototype of retf , although the second parameter

associated with the bytecode Getupvalue has not changed, its meaning has changed,

and it has become the index of the intermediary list. It just happens to be 0 in this

example.

The figure above is a schematic diagram after the local variable i is closed before the

newCounter() function returns. The members of the upvalue intermediary list added in

the figure above become Closed(i) , that is, the local variable i is moved to this

intermediary list. In this way, Getupvalue can still locate the 0th upvalue intermediary

and access the closed i .

Improvement: Shared Upvalue

The above scheme can support the current simple escape scenario, but it does not

support the scenario where multiple closures share the same local variable. For example,

the following sample code:

The two internal functions returned by the above foo() function both refer to the local

 | | /----------------\
 +----------+ | |
base |newCounter| | *-------V-+---
 +----------+ close | |Closed(i)|
 0 | i +----------/ *-^-------+---
 +----------+ |
 1 | retf +---->+-FuncProto-----+--+
 +----------+ |byte_codes: | |
 | | | GetUpvalue(0, 0) |
 | ... |
 +------------------+

local function foo()
local i, ip, ic = 0, 0, 0
local function producer()

 i = i + 1
 ip = ip + 1

end
local function consumer()

 i = i - 1
 ic = ic + 1

end
return produce, consume

end

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

276 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#improvement-shared-upvalue
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#improvement-shared-upvalue

variable i , and it is obvious that the two functions share i and operate on the same i

instead of being independent i . Then when the foo() function finishes closing i , two

functions are needed to share the closed i . Since these two functions have different

upvalue lists, namely i, ip and i, ic , the two functions do not need to share the same

upvalue list. Then it can only be shared separately for each upvalue.

The following figure shows the scheme of sharing each upvalue separately:

The picture above is slightly more complicated, but most of it is the same as the previous

scheme. The leftmost is still the stack. Then see that the content pointed to by the

producer() function is still the function prototype and the corresponding upvalue list.

Since this function uses two upvalues, two bytecodes are listed. Then there is a

difference: in the upvalue list, it is not directly the upvalue, but the address of the

upvalue. The real upvalue is allocated on the heap alone, which is Open(0) , Open(1) and

Open(2) in the figure. These 3 upvalues can access local variables on the stack through

indexes. The last consumer() function is similar, the difference is that different upvalues

are referenced.

When the foo() function ends and all local variables referenced by upvalue are closed,

Open(0) , Open(1) and Open(2) in the above figure are replaced by Closed(i) ,

Closed(ip) and Closed(ic) . At this time, the i in the upvalue lists corresponding to

producer() and consumer() functions point to the same Closed(i) . In this way, after

the outer foo() function exits, these two functions can still access the same i . Only 3

 | |
 +----------+ +=======+
base | foo | |Open(0)|<===============+------------\
 +----------+ +=======+ | |
 0 | i |<- -/ +=======+ | |
 +----------+ |Open(1)|<-------------|---\ |
 1 | ip |<- - - +=======+ | | |
 +----------+ +=======+ | | |
 2 | ic |<- - - - |Open(2)|<-----------|---|--------|---\
 +----------+ +=======+ *-+-+-+-+-- | |
 3 | producer +---->+-FuncProto--------+ | i |ip | | |
 +----------+ |byte_codes: | *-^-+-^-+-- | |
 4 | consumer +--\ | GetUpvalue(0, 0)-+----/ | | |
 +----------+ | | ... | | | |
 | | | | GetUpvalue(0, 1)-+---------/ | |
 | | ... | | |
 | +------------------+ | |
 | *-+-+-+-+--
 \-------------->+-FuncProto-------+ | i |ic |
 |byte_codes: | *-^-+-^-+--
 | GetUpvalue(0, 0)-+-----/ |
 | ... | |
 | GetUpvalue(0, 1)-+----------/
 | ... |
 +------------------+

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

277 of 314 10/23/23, 08:47

upvalues are replaced, the changes are relatively small, and the closed picture is omitted

here.

Definition of Closure

Before continuing to introduce more upvalue usage scenarios, we first introduce the

concept of closure based on the above scheme.

According to the above scheme, the returned retf is not only a function prototype, but

also includes the corresponding upvalue list. And the function prototype plus upvalue is

closure! Add Lua closure type in Value :

In this way, although the different closures returned by multiple calls to the

newCounter() function share the same function prototype, each has an independent

upvalue. This is also the reason why the two counters c1 and c2 at the beginning of this

section can count independently.

The following figure shows a schematic diagram of two counters:

pub enum upvalue { // upvalue intermediary in the above figure
 Open(usize),
 Closed(Value),
}
pub struct LuaClosure {
 proto: Rc<FuncProto>,
 upvalues: Vec<Rc<RefCell<upvalue>>>,
}
pub enum Value {
 LuaFunction(Rc<FuncProto>), // Lua function
 LuaClosure(Rc<LuaClosure>), // Lua closure

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

278 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#definition-of-closure
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#definition-of-closure

Similarly, we also modify the schematic diagram in the shared upvalue example above.

For clarity, delete the specific content of FuncProto ; then merge the function prototype

and upvalue list into LuaClosure . As shown below.

It can be seen from the figure that compared with the Lua function LuaFunction defined

in the previous chapter, although the closure LuaClosure can have an independent

upvalue list, it has one more memory allocation and pointer jump. Here we are faced with

a choice: to completely replace the function with the closure, or to coexist? The official

implementation of Lua is the former, which is also the source of the phrase "all functions

in Lua are closures". The advantage of substitution is that there is one less type, and the

code is a little simpler; the advantage of coexistence is that the function type allocates

 +-LuaClosure--+
| | | proto-+----------------------+-->+-FuncProto--------+
+------+ | upvalues-+--->+---+-- | |byte_codes: |
| c1 +---->+-------------+ | i | | | GetUpvalue(0, 0) |
+------+ +-+-+-- | | ... |
| c2 +-\ | | +------------------+
+------+ | V=========+ |
| | | |Closed(i)| |
 | +=========+ |
 \-->+-LuaClosure--+ |
 | proto-+----------------------/
 | upvalues-+--->+---+--
 +-------------+ | i |
 +-+-+--
 |
 V=========+
 |Closed(i)|
 +=========+

 | |
 +----------+ +=======+
base | foo | |Open(0)|<========+----------\
 +----------+ +=======+ | |
 0 | i |<- -/ +=======+ | |
 +----------+ |Open(1)|<------|---\ |
 1 | ip |<- - - +=======+ | | |
 +----------+ +=======+ | | |
 2 | ic |<- - - - |Open(2)|<----|---|------|---\
 +----------+ +=======+ | | | |
 3 | producer +---->+-LuaClosure--+ | | | |
 +----------+ | proto | | | | |
 4 | consumer +--\ | upvalues -+>*-+-+-+-+-- | |
 +----------+ | +-------------+ | i |ip | | |
 | | | *---+---+-- | |
 | | |
 \------------>+-LuaClosure--+ | |
 | proto | | |
 | upvalues -+>*-+-+-+-+--
 +-------------+ | i |ic |
 *---+---+--

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

279 of 314 10/23/23, 08:47

less memory and one pointer jump after all. In addition to these two advantages and

disadvantages, there is a larger difference that affects behavior. For example, the

following sample code:

Here the anonymous function returned by calling foo() does not include the upvalue. So

the question is, are the two return values of the two calls to foo() equal?

• If the LuaFunction type is reserved, then the return value is LuaFunction type, and

f1 and f2 only involve the function prototype and are equal. Validation can be

performed with the code from the previous chapter.

• If the LuaFunction type is not reserved, the returned function is of the LuaClosure

type. Although it does not contain upvalue, it is also two different closures, f1 and

f2 are not equal.

So which of the above behaviors meets the requirements of Lua language? The answer is:

both can. The description of function comparison in the Lua manual is as follows:

Functions created at different times but with no detectable differences may be

classified as equal or not (depending on internal caching details).

That is, it doesn't matter, and there is no guarantee on it. Then we can choose whatever

we want. In this project, we initially chose closures instead of functions, and later added

function types back. I don't feel much difference.

Syntax Snalysis of Closure

When there was no closure before and it was still LuaFunction, the processing of function

definition was very intuitive:

• Parse the function definition and generate the function prototype FuncProto;

• Wrap FuncProto with Value::LuaFunction and put it in the constant table;

• Generate bytecodes such as LoadConst to read the constant table.

Function definitions are treated in a similar way to other types of constants. Recall that

the relevant code is as follows:

local function foo()
return function () print "hello, world!" end

end
local f1 = foo()
local f2 = foo()
print(f1 == f2) -- true or false?

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

280 of 314 10/23/23, 08:47

https://www.lua.org/manual/5.4/manual.html#3.4.4
https://www.lua.org/manual/5.4/manual.html#3.4.4
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#syntax-snalysis-of-closure
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#syntax-snalysis-of-closure

Now in order to support closures, the following improvements need to be made:

• The relevant Value type definition has been changed to

LuaClosure(Rc<LuaClosure>) , so the parsed function prototype FuncProto cannot

be directly put into the constant table. Although it can be placed indirectly, it is not

intuitive. It is better to add a new table in the function prototype FuncProto to save

the prototype list of the inner function.

• When the virtual machine executes the function definition, an upvalue is generated

in addition to the function prototype. Then the bytecode that directly reads the

constant table like LoadConst does not meet the demand. A special bytecode needs

to be added to aggregate the function prototype and the generated upvalue into a

closure.

• In addition, when generating upvalue, we need to know which local variables of the

upper function are used by this function. Therefore, the function prototype also

needs to add a list of upvalue references to upper-level local indexes.

In summary, the newly added bytecode for creating a closure is as follows:

The two parameters associated with this bytecode are similar to the LoadConst

bytecode, which are the target address on the stack and the index of the internal function

prototype list inner_funcs .

In addition, two new members need to be added to the function prototype as follows:

fn funcbody(&mut self, with_self: bool) -> ExpDesc {
// omit preparation

// The proto returned by the chunk() function is the FuncProto type
let proto = chunk(self. lex, has_varargs, params, Token::End);

 ExpDesc::Function(Value::LuaFunction(Rc::new(proto)))
 }

fn discharge(&mut self, dst: usize, desc: ExpDesc) {
let code = match desc {

// omit other types

// Add the function reason to the constant table and generate
LoadConst bytecode
 ExpDesc::Function(f) => ByteCode::LoadConst(dst as u8, self.
add_const(f) as u16),

pub enum ByteCode {
 Closure(u8, u16),

pub struct FuncProto {
pub upindexes: Vec<usize>,
pub inner_funcs: Vec<Rc<FuncProto>>,

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

281 of 314 10/23/23, 08:47

where inner_funcs is a list of prototypes of the inner functions defined inside the

function. upindexes is the index of the local variable that the current function refers to

the upper function, and this member needs to be modified later. It should be noted that

inner_funcs is used when the current function acts as an outer function, and

upindexes is used when the current function acts as a inner function.

After we introduce the complete features of upvalue later, we will introduce the analysis

of the upvalue index upindexes .

Now, after introducing the definition and syntax analysis of closures, let's look at other

scenarios of upvalue.

Improvement: References to Upvalue

The upvalues introduced before are all references to the local variables of the upper-level

functions. Now let’s look at the references to the upvalues of the upper-level functions.

Make a modification to the counting closure example at the beginning of this section, and

put the incremental code i = i + 1 into a layer of functions:

In this example, the i in the first line of the print statement of the anonymous function

returned by the newCounter() function is the ordinary upvalue introduced before,

pointing to the local variable of the upper-level function. And what is i in the internal

function increase() function? Also upvalue. Who is this upvalue a reference to?

Can it be regarded as a cross-layer reference to the local variable i in the outermost

newCounter() function? No, because it cannot be realized when the virtual machine is

executed. When the anonymous function returns, the internal increase() function has

not been created; only when the anonymous function is called outside, the internal

increase() function will be created and executed; at this time the outermost

newCounter() has ended, and the local variable i no longer exists, so it cannot be

referenced.

local function newCounter()
local i = 0
return function ()

print(i) -- upvalue
local function increase()

 i = i + 1 -- where does `i` refer?
end

 increase()
end

end

local c1 = newCounter()
c1()

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

282 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#improvement-references-to-upvalue
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#improvement-references-to-upvalue

Since it cannot be a cross-layer reference to the local variable i in the outermost

newCounter() function, it can only be a reference to the upvalue i in the anonymous

function of the outer layer.

In order to support references to upvalue, first, modify the definition of the upvalue list in

FuncProto just now, from only supporting local variables to also supporting upvalue:

Then, look at the schematic diagram of calling the internal increase() function when

executing the returned anonymous function counter c1 in the above example:

On the left is the stack. Among them, c1 is the function call entry, and the corresponding

closureThe upvalue i contained in the package is referenced in the print statement.

The first increase below the stack is a local variable in c1 . The second increase is the

function call entry, and the upvalue i contained in the corresponding closure is

referenced in the statement that performs the increment operation. In the function

prototype, this upvalue should correspond to the 0th upvalue of the upper-level function,

namely UpIndex::upvalue(0) , so when the virtual machine executes and generates this

closure, this upvalue points to the 0th of c1 upvalue, which is Closed(i) in the figure. In

this way, the increment operation of i in this function will also be reflected in the print

statement of c1 function.

pub enum UpIndex {
 Local(usize), // index of local variables in upper functions
 Upvalue(usize), // index of upvalues in upper functions
}

pub struct FuncProto {
pub upindexes: Vec<UpIndex>, // change from usize to UpIndex
pub inner_funcs: Vec<Rc<FuncProto>>,

| |
+----------+
| c1 +-------------------->+-LuaClosure--+
+----------+ | proto |
| increase | | upvalues +--->+---+--
+----------+ +-------------+ | i |
| increase +-->+-LuaClosure--+ +-+-+--
+----------+ | proto | |
| | | upvalues +--->+---+-- |
 +-------------+ | i | |
 +-+-+-- V=========+
 \---------------->|Closed(i)|
 +=========+

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

283 of 314 10/23/23, 08:47

Improvement: References Across Multiple Layer

Functions

Let's look at another scenario: cross-layer references. Slightly modifying the above use

case to put the print statement after the increment operation, we get the following

sample code:

The difference between this example and the above example is that when the

increase() function is parsed, the upvalue i has not been generated in the anonymous

function to be returned, so i in the increase() function points to who? Summarize the

previous upvalue types: either it refers to the local variable of the upper-level function, or

the upvalue of the upper-level function, and analyzes that it cannot be referenced across

multiple layers of functions. Therefore, there is only one solution: create an upvalue in

the middle layer function. This upvalue is not used in the current function (by now), it is

only used to reference the inner function.

The current function does not use the created upvalue "by now". But in the subsequent

analysis process, it may still be used. For example, after the above example, the following

print statement uses this upvalue.

In this example, the prototypes and schematic diagrams of the two functions are the

same as the above example. omitted here.

At this point, all the upvalue features are finally introduced, and the final solution is given.

During this period, syntax analysis and virtual machine execution are also involved. Next,

according to the final plan, we will briefly organize syntax analysis and virtual machine

execution.

Syntax Analysis of Upvalue Index

When introducing Syntax Analysis of Closures, it is pointed out that in the function

prototype FuncProto , a new member upindexes needs to be added to represent the

upvalue index of the current function.

local function newCounter()
local i = 0
return function ()

local function increase()
 i = i + 1 -- upvalue of upper-upper local

end
 increase()

print(i) -- upvalue
end

end

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

284 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#improvement-references-across-multiple-layer-functions
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#improvement-references-across-multiple-layer-functions
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#improvement-references-across-multiple-layer-functions
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#improvement-references-across-multiple-layer-functions
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#syntax-analysis-of-upvalue-index
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#syntax-analysis-of-upvalue-index
https://wubingzheng.github.io/build-lua-in-rust/en/ch09-02.escape_and_closure.html#syntax-snalysis-of-closure
https://wubingzheng.github.io/build-lua-in-rust/en/ch09-02.escape_and_closure.html#syntax-snalysis-of-closure

In the previous section, the variable parsing process is listed:

1. Match in the local variable list of the current function, if found, it is a local variable;

2. Match in the local variable list of upper-level functions, if found, it will be upvalue;

3. Otherwise it is a global variable.

According to the introduction of the complete features of upvalue earlier in this section,

the above-mentioned step 2 is extended to the more detailed analysis steps of the

upvalue index. The final process of variable analysis is as follows:

1. Match in the local variable list of the current function, if found, it is a local variable;

2. Match in the upvalue list of the current function, if found, the upvalue already exists;

(reuse upvalue)

3. Match in the local variable list of outer functions, if found, add an upvalue; (ordinary

upvalue)

4. Match in the upvalue list of the outer function, if found, add an upvalue; (reference

to the upvalue in the upper function)

5. Match in the local variable list of the outer functions, if found, create an upvalue in

all intermediate layer functions, and add an upvalue; (references across multi-layer

functions)

6. Match in the upvalue list of the outer functions, if found, create an upvalue in all

intermediate layer functions, and add an upvalue; (a reference to an upvalue across

multi-layer functions)

7. Repeat steps 5 and 6 above, if the outermost function is still not matched, it is a

global variable.

There is obviously a lot of duplication in this process. The most obvious is that steps 3

and 4 are special cases of steps 5 and 6, that is, there is no intermediate layer function, so

steps 3 and 4 can be removed. In addition, when the code is implemented, steps 1 and 2

can also be omitted as special cases. Since there is too much content in this section, the

specific code will not be posted here.

In the syntax analysis in the previous section, in order to support upvalue, it is necessary

to access the local variable list of the upper-level function, so the new context

ParseContext data structure is added, which contains the local variable list of functions

at all levels. This section introduces that upvalue can also refer to the upvalue of upper-

level functions, so it is also necessary to add the upvalue list of functions at all levels in

ParseContext .

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

285 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/ch09-01.upvalue.html#variable-resolution-process
https://wubingzheng.github.io/build-lua-in-rust/en/ch09-01.upvalue.html#variable-resolution-process

In the above code, ParseContext is the parsing context, which is the internal data

structure of parsing. The member type of its upvalue list all_upvalues is (String,

UpIndex) , where String is the name of the upvalue variable, which is used for the

matching in step 4 and step 6; UpIndex is the index of upvalue.

FuncProto is the output of the syntax analysis stage, which is used by the virtual

machine execution stage. At this time, the upvalue variable name is not needed, and only

the UpIndex index is needed.

Virtual Machine Execution

In the front part of this section, when introducing the upvalue design scheme, it was

basically introduced according to the execution phase of the virtual machine, so we will

go through it again here.

First, the closure is created, that is, the function is defined. To this end, a new bytecode

ByteCode::Closure is introduced, whose responsibility is to generate upvalue, package it

together with the function prototype as a closure, and load it on the stack.

What needs to be explained here is that in the syntax analysis phase, in order to access

the local variables of the upper-level function, the ParseContext context needs to be

introduced; however, in the virtual machine execution phase, although upvalue also

needs to access the stack space of the upper-level function, it does not need for a similar

context. This is because when the closure is created, the upvalue list is generated by the

outer function and passed into the closure, and the inner function can indirectly access

the stack space of the outer function through the upvalue list.

Besides, in addition to passing the closure into the generated upvalue list, the outer

function itself also needs to maintain the list for two purposes:

• As mentioned in the Shared upvalue section above, if a function contains multiple

closures, the upvalue of these closures must share local variables. Therefore, when

creating an upvalue, first check whether the upvalue associated with this local

variable has been created. If so, share; otherwise, create a new one.

There is a small problem here, the check of whether this has been created is carried

struct ParseContext<R: Read> {
 all_locals: Vec<Vec<String>>,
 all_upvalues: Vec<Vec<(String, UpIndex)>>, // new
 lex: Lex<R>,
}

pub struct FuncProto {
pub upindexes: Vec<UpIndex>,

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

286 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#virtual-machine-execution-11
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#virtual-machine-execution-11
https://wubingzheng.github.io/build-lua-in-rust/en/ch09-02.escape_and_closure.html#improvement-shared-upvalue
https://wubingzheng.github.io/build-lua-in-rust/en/ch09-02.escape_and_closure.html#improvement-shared-upvalue

out during the virtual machine execution phase. There are generally not many

upvalue lists, so it is not necessary to use a hash table. If Vec is used, the time

complexity of this matching check is O(n). When there are many upvalues, this may

affect performance. Can this matching check be placed in the syntax analysis stage?

This issue will be addressed in detail in the next section.

• When the outer function exits, upvalue needs to be closed.

It should be noted that, theoretically speaking, only escaped upvalues need to be

closed; there is no need to close unescaped upvalues. However, it is very difficult to

determine whether an upvalue escapes or not at the syntax stage. Because except

for the obvious escape case where the internal function is used as the return value

in the above example, there are also situations such as assigning the internal

function to an external table. It is also very troublesome to judge whether to escape

in the virtual machine stage. So for the sake of simplicity, we refer to the official

implementation of Lua here, and close all upvalues at the end of the function,

regardless of whether they escape.

The timing of closing upvalue is where all functions exit, including Return , Return0 and

TailCall bytecodes. The specific closing code is omitted here.

Summary

This section introduces the escape of upvalue and adds closure types. But it mainly

introduces how to design and manage upvalue, but does not talk about specific

operations, including how to create, read, write, and close upvalue. However, after the

design plan is explained clearly, these specific operations are relatively simple. This

section is already very long, so the introduction and code of this part will be omitted.

Rust DST

Now introduce a feature of the Rust language, DST.

The definition of the closure data structure LuaClosure earlier in this section is as

follows:

The function prototype proto field is ignored here, and only the upvalue list upvalues

pub struct LuaClosure {
 proto: Rc<FuncProto>,
 upvalues: Vec<Rc<RefCell<upvalue>>>,
}

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

287 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#summary-6
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#summary-6
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#rust-dst
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#rust-dst

field is concerned. In order to store any upvalue, the upvalues here are defined as a list

Vec. This requires an additional allocation of memory. The memory layout of the entire

closure is as follows:

In the figure above, the closure LuaClosure is on the left, and the extra memory on the

right pointed to by ptr is the actual storage space of the upvalue list Vec. There are three

disadvantages of allocating an additional memory in this way:

• Waste of memory, each segment of memory requires additional management space

and waste due to alignment;

• When applying for memory, one more allocation needs to be performed, which

affects performance;

• When accessing upvalue, one more pointer jump is required, which also affects

performance.

For the requirement of this variable-length array, the classic approach in C language is:

define a zero-length array in the data structure, and then specify the actual length as

needed when actually allocating memory. The sample code is as follows:

The corresponding memory layout is as follows:

+-LuaClosure--+
| proto |
| upvalues: | upvalue list
| ptr --+--->+------+------+-
| capacity | | | |
| length | +------+------+-
+-------------+

// define the data structure
struct lua_closure {

struct func_proto *proto;
int n_upavlue; // actual number
struct upvalue upvalues[0]; // zero-length array

}

// request memory
struct lua_closure *c = malloc(sizeof(struct lua_closure) // basic space
 + sizeof(struct upvalue) * n_upvalue); // extra space

// initialization
c->n_upvalue = n_upvalue;
for (int i = 0; i < n_upvalue; i++) {
 c->upvalues[i] = ...
}

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

288 of 314 10/23/23, 08:47

This approach can avoid the above three disadvantages. Can this be done in Rust? For

example, the following definition:

In this definition, the type of upvalues has changed from list Vec to slice [] . The good

news is that Rust supports the DST type (that is, the slice here) as the last field of the data

structure, which means that the above definition is legal. The bad news is that such data

structures cannot be initialized. A data structure that cannot be initialized, is of course

useless. To quote The Rustonomicon: custom DSTs are a largely half-baked feature for

now.

We can think about why it cannot be initialized? For example, Rc has

Rc::new_uninit_slice() API to create slices, so can a similar API be added to create this

data structure containing slices? In addition, you can also refer to dyn_struct.

However, even if it can be initialized, and the definition of the above data structure can be

used, but there will be another problem: since the upvalues field is DST, then the entire

LuaClosure will also become DST, so the pointer will become a fat pointer, including the

actual length of the slice, Rc<LuaClosure> becomes 2 words, which in turn causes enum

Value to change from 2 words to 3 words. This does not meet our requirements, just like

Rc<str> cannot be used to define the string type before.

Since slice cannot be used, is there any other solution? Fixed-length arrays can be used.

For example, modify the definition as follows:

+-------------+
| proto |
| n_upvalue |
: : \

: : + Upvalue列表

: : /
+-------------+

pub struct LuaClosure {
 proto: Rc<FuncProto>,
 upvalues: [Rc<RefCell<upvalue>>], // slice
}

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

289 of 314 10/23/23, 08:47

https://doc.rust-lang.org/nomicon/exotic-sizes.html
https://doc.rust-lang.org/nomicon/exotic-sizes.html
https://docs.rs/dyn_struct/latest/dyn_struct/struct.DynStruct.html
https://docs.rs/dyn_struct/latest/dyn_struct/struct.DynStruct.html

In this way, for closures with no more than 4 upvalues, additional memory allocation can

be avoided. This should satisfy most cases. In the case of more upvalues, the waste of

allocating another piece of memory is relatively not that great. Another advantage of this

solution is that it does not involve unsafe. Of course, the problem with this solution is that

it will bring coding complexity. Since the creation of LuaClosure is only generated once

when the closure is created, it is not a high-frequency operation, so there is no need to

make it so complicated. Therefore, in the end, we still use the original Vec solution.

enum Varupvalues {
 One(Rc<RefCell<upvalue>>), // 1 upvalue
 Two([Rc<RefCell<upvalue>>; 2]), // 2 upvalues
 Three([Rc<RefCell<upvalue>>; 3]), // 3 upvalues
 Four([Rc<RefCell<upvalue>>; 4]), // 4 upvalues
 More(Vec<Rc<RefCell<upvalue>>>), // more upvalue
}

pub struct LuaClosure {
 proto: Rc<FuncProto>,
 upvalues: Varupvalues,
}

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

290 of 314 10/23/23, 08:47

Escape from Block and goto

The previous section covered upvalue escapes from functions. But in fact, the scope of

local variables is the block, so whenever the block ends, upvalue escape may occur. And a

function can also be regarded as a kind of block, so the escape from a function

introduced in the previous section can be regarded as a special case of escape from a

block.

In addition, there is another escape scenario, that is, the goto statement jumps

backwards and skips the definition of local variables, and the local variables will also

become invalid at this time.

In the previous section, there was too much content, so in order not to add extra details,

these two escape scenes are introduced separately in this section.

Escape from block

First look at a sample code that escapes from the block:

In this example, the anonymous function defined in do .. end block refers to the local

variable i defined in it as upvalue. When the block ends, the local variable i will be

invalid, but because it is still referenced by the anonymous function, it needs to escape.

Although a function can be regarded as a special case of a block, a special case is a special

case after all, and the more general escape from a block is still very different. When the

function ends in the previous section, close all upvalues in relevant bytecodes such as

Return/Return0/TailCall , because each function will have one of these bytecodes at

the end. However, there is no similar fixed bytecode at the end of the block, so a new

bytecode Close is added for this purpose. This bytecode closes the local variable

referenced by upvalue in the current block.

The easiest way is to generate a Close bytecode at the end of each block, but since the

escape from the block is very rare, it's not worth to add a bytecode to all blocks.

Therefore, it is necessary to judge whether there is an escape in this block during the

syntax analysis stage. If not, there is no need to generate Close bytecode.

do
local i = 0

 c1 = function()
 i = i + 1 -- upvalue

print(i)
end

end -- the end of the block, the local variable `i` becomes invalid

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

291 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#escape-from-block-and-goto
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#escape-from-block-and-goto
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#escape-from-block-and-goto
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#escape-from-block-and-goto
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#escape-from-block
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#escape-from-block

The next step is how to judge whether there are local variables escaping in a block. There

are several possible implementations. For example, refer to the multi-level function

nesting method in the previous section, and also maintain a block nesting relationship.

However, there is a lighter approach, which is to add a flag bit to each local variable, and

set this flag bit if it is referenced by upvalue. Then at the end of the block, judge whether

the local variables defined in this block have been marked, and then you can know

whether you need to generate Close bytecode.

The specific definition and execution flow of Close bytecode is omitted here.

Escape from goto

I really can't think of an example of a reasonable escape from goto . But it is still possible

to construct an unreasonable example:

In the above code, if is judged to be false at the first execution, the call to c1 is

skipped; after assigning a value to c1 below, c1 is a closure that includes an upvalue; then

goto jumps back to the beginning, and at this time we can call c1; but at this time the local

variable i is also invalid, so it needs to be closed.

In the above code, from the definition of again label at the beginning to the last goto

statement can also be regarded as a block, then the method of escaping from the block

just introduced can be used to process the goto statement. But the goto statement has a

special place. We introduced goto statement before, there are two ways to match label

and goto statement:

• Match while parsing. That is, when the label is parsed, the goto statement that has

already appeared is matched; when the goto statement is parsed, the label that has

already appeared is matched;

• After the block ends (that is, when the label defined in it becomes invalid), match the

existing label and goto statement at one time.

::again::
if c1 then -- false when the first execution reaches here

 c1() -- after assigning a value to c1 below, c1 is a closure that
includes an upvalue

end

local i = 0
 c1 = function()
 i = i + 1 -- upvalue

print(i)
end

 go to again

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

292 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#escape-from-goto
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#escape-from-goto
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#escape-from-goto
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#escape-from-goto
https://wubingzheng.github.io/build-lua-in-rust/en/ch06-06.goto.html
https://wubingzheng.github.io/build-lua-in-rust/en/ch06-06.goto.html

The implementation difficulty of these two methods is similar, but due to another feature

of the goto statement, that is, the goto statement that jumps forward needs to ignore the

void statement. In order to process the void statement more conveniently, the second

solution above was adopted. However, now to support escapes, when a goto statement is

parsed (precisely before the generated Jump bytecode), may generate a Close bytecode.

Whether it will be generated or not depends on whether the definition of escaped local

variables is skipped when goto jumps backwards. That is, only by matching the label and

goto statement can we know whether the Close bytecode is required. If we still follow

the second scheme to do the matching after the end of the block, even if you we that

Close needs to be generated at the end of the block, it can no longer be inserted into the

bytecode sequence. Therefore, it can only be changed to the first solution of matching

while parsing, and judge whether it is necessary to generate Close bytecode in time

during matching.

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

293 of 314 10/23/23, 08:47

Rust Closure

The previous sections introduced closures defined in Lua. In addition, the official

implementation of the Lua language also supports C language closures. Our interpreter is

implemented by Rust, so it will naturally be changed to Rust closures. This section

introduces Rust closures.

C Closures in the Official Implementation of Lua

Let's first look at the C closures in the official implementation of Lua. The C language itself

does not support closures, so it must rely on the cooperation of Lua to realize closures.

Specifically, the upvalue is stored on the Lua stack, and then bound to the C function

prototype to form a C closure. Lua provides a way for C functions to access upvalue on

the stack through API.

Here is the C closure version of the counter example code:

Let's look at the second function new_counter() first, which is also a factory function for

creating closures. First call lua_pushinteger() to push the upvalue count to the top of

the stack; then call lua_pushcclosure() to create a closure. To review, a closure consists

of a function prototype and some upvalues, which are specified by the last two

parameters of the lua_pushcclosure() function. The first parameter specifies the

function prototype counter , and the second parameter 1 means that the 1 value at the

// counter function prototype
static int counter(Lua_State *L) {

int i = lua_tointeger(L, lua_upvalueindex(1)); // read upvalue count
 lua_pushinteger(L, ++i); // add 1 and push it to the top of the stack
 lua_copy(L, -1, lua_upvalueindex(1)); // Update the upvalue count with
the new value at the top of the stack

return 1; // return the count at the top of the stack
}

// factory function, create closure
int new_counter(Lua_State *L) {
 lua_pushinteger(L, 0); // push onto the stack

// Create a C closure, the function prototype is counter, and also
// includes 1 upvalue, which is 0 pushed in the previous line.

 lua_pushcclosure(L, &counter, 1);

// The created C closure is pressed on the top of the stack, and the
// following return 1 means return to the C closure on the top of the

stack
return 1;

}

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

294 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#rust-closure
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#rust-closure
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#c-closures-in-the-official-implementation-of-lua
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#c-closures-in-the-official-implementation-of-lua

top of the stack is an upvalue, that is, the 0 just pushed. The following figure is a

schematic diagram of the stack before and after calling this function to create a C closure:

The far left of the above figure is to push the count i=0 to the top of the stack. In the

middle is the created C closure, including the function prototype and upvalue. On the far

right is the stack layout after the closure is created, and the closure is pushed onto the

stack.

Look at the first function counter() in the above code, which is the function prototype of

the closure created. This function is relatively simple, the most critical of which is the

lua_upvalueindex() API, which generates an index representing the upvalue, which can

be used to read and write the upvalue encapsulated in the closure.

Through the call flow of the code in the above example to the relevant API, we can

basically guess the specific implementation of the C closure. Our Rust closures can also

refer to this approach. However, Rust natively supports closures! So we can use this

feature to implement Rust closures in Lua more simply.

Rust Closure Definition

To implement the "Rust closure" type in Lua with the closure of the Rust language, it is to

create a new Value type including the closure of the Rust language.

"Rust Programming Language" has introduced Rust's closures in detail, so I won't say

more here. We just need to know that Rust closures are a trait. Specifically, the Rust

closure type in Lua is FnMut (&mut ExeState) -> i32 . Then you can try to define the

Rust closure type of Value in Lua as follows:

However, this definition is illegal, and the compiler will report the following error:

| | | |
+-----+ +---------+
| i +--\ +-C_closure------+<----+ closure |
+-----+ | | proto: counter | +---------+
| | | | upvalues: | | |
 \--+--> i |
 +----------------+

pub enum Value {
 RustFunction(fn (&mut ExeState) -> i32), // normal function
 RustClosure(FnMut (&mut ExeState) -> i32), // Closure

error 782| trait objects must include the `dyn` keyword

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

295 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#rust-closure-definition
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#rust-closure-definition
https://doc.rust-lang.org/stable/book/ch13-01-closures.html
https://doc.rust-lang.org/stable/book/ch13-01-closures.html

This involves the static dispatch and dynamic dispatch of traits in Rust. "Rust Programming

Language" also has a detailed introduction for this, so I won’t say more here.

Then, we add dyn according to the compiler's prompt:

The compiler still reports an error, but with a different one:

That is to say, the trait object is a DST. This was introduced in Introduction to String

Definition before, but what I encountered at that time was slice, and now it is trait, which

are also the two most important DSTs in Rust. "Rust Programming Language" also has a

detailed introduction for this. The solution is to encapsulate a layer of pointers outside.

Since Value supports Clone, Box cannot be used, only Rc can be used. And because it is

FnMut instead of Fn , it will change the captured environment when it is called, so

another layer of RefCell is needed to provide internal variability. So the following

definition is obtained:

Finally compiled this time! However, think about why Rc<str> was not used when

introducing various definitions of strings? Because for the DST type, the actual length

needs to be stored in the external pointer or reference, then the pointer will become a

"fat pointer", which needs to occupy 2 words. This will further cause the size of the entire

Value to become larger. In order to avoid this situation, we can only add another layer of

Box , let the Box contain a specific length and become a fat pointer, so that Rc can

restore 1 word. It is defined as follows:

After defining the type of Rust closure, I also encountered the same problem as Lua

closure: should I keep the type of Rust function? It doesn't make much difference whether

to keep it or not. We chose to keep it here.

Virtual Machine Execution

The virtual machine implementation of Rust closures is very simple. Because closures and

pub enum Value {
 RustClosure(dyn FnMut (&mut ExeState) -> i32),

error 277| the size for values of type `(dyn for<'a> FnMut(&'a mut ExeState)
-> i32 + 'static)` cannot be known at compilation time

pub enum Value {
 RustClosure(Rc<RefCell<dyn FnMut (&mut ExeState) -> i32>>),

pub enum Value {
 RustClosure(Rc<RefCell<Box<dyn FnMut (&mut ExeState) -> i32>>>),

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

296 of 314 10/23/23, 08:47

https://doc.rust-lang.org/stable/book/ch17-02-trait-objects.html#trait-objects-perform-dynamic-dispatch
https://doc.rust-lang.org/stable/book/ch17-02-trait-objects.html#trait-objects-perform-dynamic-dispatch
https://doc.rust-lang.org/stable/book/ch17-02-trait-objects.html#trait-objects-perform-dynamic-dispatch
https://doc.rust-lang.org/stable/book/ch17-02-trait-objects.html#trait-objects-perform-dynamic-dispatch
https://wubingzheng.github.io/build-lua-in-rust/en/ch03-00.optimize_string.html
https://wubingzheng.github.io/build-lua-in-rust/en/ch03-00.optimize_string.html
https://wubingzheng.github.io/build-lua-in-rust/en/ch03-00.optimize_string.html
https://wubingzheng.github.io/build-lua-in-rust/en/ch03-00.optimize_string.html
https://doc.rust-lang.org/stable/book/ch19-04-advanced-types.html#dynamically-sized-types-and-the-sized-trait
https://doc.rust-lang.org/stable/book/ch19-04-advanced-types.html#dynamically-sized-types-and-the-sized-trait
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#virtual-machine-execution-12
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#virtual-machine-execution-12

functions are called in the same way in the Rust language, the invocation of Rust closures

is the same as the invocation of previous Rust functions:

Test

This completes the Rust closure type. After borrowing the closure of the Rust language

itself, this implementation is very simple. There is no need to use the Lua stack to

cooperate like the official Lua implementation, and there is no need to introduce some

special APIs.

The following code shows how the counter example at the beginning of this section can

be implemented using Rust closures:

Compared with the C closure at the beginning of this section, this version is clearer

except for the last statement to create a closure, which is very verbose. The last

statement will also be optimized when the interpreter API is sorted out later.

Limitations of Rust Closures

As you can see from the sample code above, the captured environment (or upvalue) i

needs to be moved into the closure. This also leads to the fact that upvalues cannot be

shared among multiple closures. Lua's official C closure does not support sharing, so

fn do_call_function(&mut self, narg_plus: u8) -> usize {
match self.stack[self.base - 1].clone() {

 Value::RustFunction(f) => { // Rust normal function
// omit the preparation of parameters

 f(self) as usize
 }
 Value::RustClosure(c) => { // Rust closure

// Omit the same parameter preparation process
 c.borrow_mut()(self) as usize
 }

fn test_new_counter(state: &mut ExeState) -> i32 {
let mut i = 0_i32;
let c = move |_: &mut ExeState| {

 i += 1;
println!("counter: {i}");
0

 };
 state.push(Value::RustClosure(Rc::new(RefCell::new(Box::new(c)))));

1
}

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

297 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#test-10
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#test-10
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#limitations-of-rust-closures
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#limitations-of-rust-closures

there is no problem.

Another point that needs to be explained is that Lua's official C closure uses Lua's stack to

store upvalue, which leads to the type of upvalue being Lua's Value type. And we use the

closure of Rust language, then upvalue can be "more" types, not limited to the Value type.

However, the two should be functionally equivalent:

• The "more" types supported by Rust closures can be implemented in Lua with

LightUserData, that is, pointers; although this is very unsafe for Rust.

• The internal types supported in Lua, such as Table, can also be obtained through the

API get() in our interpreter (and In Lua's official implementation, the table type is

internal and not external).

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

298 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/ch08-04.rust_functions_and_api.html#rust-api
https://wubingzheng.github.io/build-lua-in-rust/en/ch08-04.rust_functions_and_api.html#rust-api
https://wubingzheng.github.io/build-lua-in-rust/en/ch08-04.rust_functions_and_api.html#rust-api

generic-for Statement

Closures were introduced in the previous sections of this chapter. The most typical

application scenario of a closure is an iterator, and the most common place for an

iterator is a for statement. So much so that "Lua Programming" and "Rust Programming

Language" both put Closures, iterators, and the for statement introduced together. The

for statement in the Lua language has two formats, numeric and generic. Previously has

introduced the numerical-for statement, this section introduces the generic-for statement

using iterators.

After introducing closures, the concept of an iterator itself is straightforward. The counter

closure that has been used as an example in the previous sections of this chapter can be

regarded as an iterator, which generates an incremented number each time. Let's look at

a slightly more complex iterator to traverse the array part of a table. This is also the

function of the ipairs() function that comes with the Lua language:

In the above code, ipairs() is a factory function that creates and returns a closure as an

iterator. This iterator has 2 upvalues, one is the fixed table t , and the other is the

traversed position i . We can call these two upvalues as "iteration environments". During

the traversal process, the iterator returns the index and value of the array; when the

traversal ends, it does not return a value, and it can also be considered as returning nil .

This iterator can be called directly, but is more commonly used in a generic-for statement:

function ipairs(t)
local i = 0
return function ()

 i = i + 1
local v = t[i]
if v then

return i, v
end

end
end

-- call the iterator directly
local iter = ipairs(t)
while true do

local i, v = iter()
if not i then break end

 block -- do something
end

-- used in a generic-for statement
for i, v in ipairs(t) do
 block -- do something
end

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

299 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#generic-for-statement
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#generic-for-statement
https://doc.rust-lang.org/stable/book/ch13-00-functional-features.html
https://doc.rust-lang.org/stable/book/ch13-00-functional-features.html
https://doc.rust-lang.org/stable/book/ch13-00-functional-features.html
https://doc.rust-lang.org/stable/book/ch13-00-functional-features.html
https://wubingzheng.github.io/build-lua-in-rust/en/ch06-05.numerical-for.html
https://wubingzheng.github.io/build-lua-in-rust/en/ch06-05.numerical-for.html

The use of iterators is certainly very convenient, but the previous sections also introduced

that creating a closure requires additional overhead compared to creating a normal

function, that is, both Lua closures and Rust closures require 2 extra times Memory

allocation and 2 pointer jumps. Therefore, the generic for statement in the Lua language

is specially optimized for this purpose, that is, the generic for statement itself replaces the

closure to save the "iteration environment" (that is, 2 upvalues). Since there is no need for

upvalue, the iterator does not need to use closures, but only ordinary functions.

Specifically, the grammar of the generic for statement is as follows:

Its execution process is as follows:

• At the beginning of the loop, explist is evaluated to get 3 values: the iteration

function, the immutable state, and the control variable. In most cases, explist is a

function call statement, so the evaluation follows the evaluation rules of the

function return value, that is, if there are less than 3, it will be filled with nil, and if it

exceeds 3, the excess will be discarded. Of course, instead of using a function call,

you can directly list 3 values.

• Then, before each execution of the loop, use the latter two values (immutable state

and control variables) as parameters to call the iteration function, and judge the first

return value: if it is nil, terminate the loop; otherwise, assign the return value to

namelist , and additionally assign the first return value to the control variable as a

parameter for subsequent calls to the iteration function.

It can be seen that the three values returned by explist are put together to form a

closure function: the iteration function is the function prototype, and the latter two are

upvalues. It's just that the generic-for statement helps maintain these two upvalues.

Using this feature of the generic-for statement, reimplement the above iterator for

traversing the array as follows:

stat ::= for namelist in explist do block end
namelist ::= Name {‘,’ Name}

local function iter(t, i) -- both t and i are changed from upvalue to
parameter
 i = i + 1

local v = t[i]
if v then

return i, v
end

end

function ipairs(t)
return iter, t, 0

end

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

300 of 314 10/23/23, 08:47

https://www.lua.org/manual/5.4/manual.html#3.3.5
https://www.lua.org/manual/5.4/manual.html#3.3.5

Compared with the closure version above, here both t and i have changed from

upvalue to parameters, and iter has become an ordinary function.

From this point of view, the generic-for statement can be completed without the need for

a closure (such as after the function was introduced in the previous chapter). But after all,

this is an optimization based on closures. Only by mastering closures can we understand

why we do this. That's why we implement the generic-for statement after introducing

closures.

In addition, the function call statement ipairs(t) here only returns 3 variables, and

these 3 variables can also be listed directly in the generic for statement:

The following direct list method omits a function call, but it is inconvenient. So the first

one is more common.

After introducing the characteristics of the generic-for statement in Lua, let's start to

implement it.

Accomplish

According to the above introduction, the generic-for statement saves and maintains the

iteration environment by itself. Where is that saved? Naturally, it is still on the stack. Just

like the numerical-for statement will automatically create 3 variables (1 count variable

and 2 anonymous variables) on the stack, the generic-for statement also needs to

automatically create 3 anonymous variables, corresponding to the above iteration

environment: iteration function, immutable state, control variables. These 3 variables are

obtained after evaluating explist , as shown in the stack diagram shown in the left figure

below:

for i, v in ipairs(t) do ... end
for i, v in iter, t, 0 do ... end -- directly list 3 variables

| | | | | |
+-----------+ +-----------+ +-----------+
| iter func |entry | iter func | | iter func |
+-----------+ +-----------+ +-----------+
| state |\ | state | | state |
+-----------+ 2args +-----------+ +-----------+
| ctrl var |/ | ctrl var | | ctrl var |<--first return value
+-----------+ +-----------+ ->+-----------+
| | : : / | name- | i
 +-----------+ / | list | v
 | return- |- | |
 | values |
 | |

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

301 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#accomplish
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#accomplish

Next, the loop is executed, including three steps: calling the iterative function, judging

whether to continue the loop, and controlling variable assignment.

First, the iteration function iter func is called with the immutable state state and the

control variable ctrl var as two parameters. Look at the stack diagram in the left figure,

it has just been arranged into a function call formation, so the function can be called

directly;

Secondly, after calling the function (the middle picture above), judge whether the first

return value is nil, if so, exit the loop; if there is no return value, also exit the loop;

otherwise, continue to execute the loop. Before executing the loop body, the return value

needs to be processed (right picture above):

• Assign the first return value to the control variable (ctrl-var in the above figure) as

the parameter for the next call to the iterative function;

• Assign the return value to the variable list, which is namelist in the above BNF. For

example, in the above example of traversing the array, it is i, v . If the number of

return values is less than the variable list, it will be filled with nil. This padding

operation is consistent with ordinary function calls. The inconsistency is that the

return value of an ordinary function call will be moved to the function entry, which is

the position of iter func in the above figure; but here it is shifted down by 3

positions.

One thing that needs to be explained here is that the control variable ctrl-var is the

first name of namelist . So in fact, there is no need to reserve a place for ctrl-var on

the stack; after calling the iterative function each time, just move all the return values

directly to the place of ctrl-var in the figure, so that the first return value happens to be

where ctrl-var is. The figure below is a comparison of the two schemes. The left picture

is the original plan, which specially reserved the position for ctrl-var ; the right picture is

the new plan, which only needs 2 anonymous variables to save the iteration environment,

and ctrl-var overlaps with the first name:

The solution on the right is simpler, with one less variable assignment. And under normal

circumstances, the functions of the two programs are the same. But in one case, the

 | | | |
 +-----------+ +-----------+
 | iter func | | iter func |
 +-----------+ +-----------+
 | state | | state |
 +-----------+ +-----------+
 | ctrl var | i| name- | <--ctrl var
 +-----------+ v| list |
i| name- | | |
v| list |
 | |

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

302 of 314 10/23/23, 08:47

function will be different, that is, when the control variable is modified in the loop body.

For example, the following sample code:

According to the scheme in the left figure above, the i modified here is a variable

exposed to programmers, and the control variable ctrl var is a hidden anonymous

variable, and these two variables are independent. So modifications to i do not affect

the control variable ctrl var . So this loop can still traverse the entire array.

According to the scheme on the right, i and ctrl var are the same value, and

modifying i means modifying ctrl var , which affects the next iteration function call,

and eventually leads to the failure to traverse the entire array normally.

Which behavior is more reasonable? Lua Manual explains: You should not change the

value of the control variable during the loop. In other words, there is no clear definition of

this behavior, so any solution is fine. However, the official implementation of Lua is based

on the behavior in the left picture. In order to maintain consistency, we also choose the

left picture here.

Bytecode

The above describes the operation of the generic-for statement in the loop. These

operations require a new bytecode ForCallLoop to complete.

Before defining this bytecode, let's see where this bytecode should be placed? Is it the

beginning of the loop, or the end of the loop? If you follow the Lua code, it should be

placed at the beginning of the loop, and then generate a Jump bytecode at the end of the

loop to jump back and continue the loop, like this:

But in this case, 2 bytecodes are executed for each loop, ForCallLoop at the beginning

and Jump at the end. To reduce the bytecode once, we can put ForCallLoop at the end

of the loop, so that only 2 bytecodes need to be executed in the first loop, and only 1

bytecode needs to be executed in each subsequent loop:

for i, v in ipairs(t) do
 i = i + 1 -- modify the control variable `i`

print(i)
end

ForCallLoop # If calling the iteration function returns nil, jump to the end
... block ...
Jump (back-to-ForCallLoop)

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

303 of 314 10/23/23, 08:47

https://www.lua.org/manual/5.4/manual.html#3.3.5
https://www.lua.org/manual/5.4/manual.html#3.3.5
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#bytecode-6
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#bytecode-6

After determining the bytecode location, let's look at the definition. This bytecode needs

to be associated with 3 parameters:

• the stack index of the iteration function iter func ;

• The number of variables used for the assignment of the return value. If the number

of return values is less than the number of variables, you need to fill in nil;

• Jump distance.

Both the first two parameters can be represented by 1 byte, so there is only 1 byte left for

the final jump distance, which can only represent a distance of 255, which is not enough.

For this reason, we can only add a Jump bytecode to complete this function. However, in

most cases, the loop body is not large, and the distance does not exceed 255. It is a bit

wasteful to add another bytecode for a small number of large loop bodies. The best thing

to do in this situation is to:

• For the small loop body, the jump distance can be programmed into ForCallLoop

bytecode, only this 1 bytecode is used;

• For the large loop body, set the jump distance of the third parameter in the

ForCallLoop bytecode to 0, and add a Jump bytecode to cooperate.

In this way, when the virtual machine is executed:

• In the case where the loop needs to jump backwards: for a small loop body, jump

directly according to the third parameter; for a large loop body, the third parameter

is 0, actually jump to the next Jump bytecode, and then Execute the jump of the loop

body again.

• In the case where the loop needs to continue to execute forward: for small loop

bodies, no special processing is required; for large loop bodies, the next Jump

bytecode needs to be skipped.

In summary, the bytecode ForCallLoop is defined as follows:

The specific syntax analysis and virtual machine execution code are omitted here.

At this point, the generic-for statement is completed. We also finished all the syntax of

Lua! (Applause please!)

Jump (forward-to-ForCallLoop)
... block ...
ForCallLoop # If the return of calling the iteration function is not nil,
then jump to the above block

pub enum ByteCode {
 ForCallLoop(u8, u8, u8),

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

304 of 314 10/23/23, 08:47

https://www.lua.org/manual/5.4/manual.html#9
https://www.lua.org/manual/5.4/manual.html#9
https://www.lua.org/manual/5.4/manual.html#9
https://www.lua.org/manual/5.4/manual.html#9

Environment _ENV

Go back to the first "hello, world!" example in Chapter 1. In the output of luac -l

displayed at that time, the bytecode for reading the global variable print is as follows:

Looking at the complex name of the bytecode and the strange _ENV comment behind it,

it is not simple. At that time, this bytecode was not introduced, but the more intuitive

bytecode GetGlobal was redefined to read global variables. In this section, let’s

supplement the introduction of _ENV .

Current Global Variables

Our current handling of global variables is straightforward:

• In the syntax analysis stage, variables that are not local variables and upvalues are

considered as global variables, and corresponding bytecodes are generated,

including GetGlobal , SetGlobal and SetGlobalConst ;

• In the execution phase of the virtual machine, define global: HashMap<String,

Value> in the execution state ExeState data structure to represent the global

variable table. Subsequent reads and writes to global variables operate on this

table.

This approach is intuitive and has no downsides. However, there is another way to bring

more powerful features, which is the environment _ENV introduced in Lua version 5.2.

"Lua Programming" has a very detailed description of _ENV , including why _ENV should

be used instead of global variables and application scenarios. We will not go into details

here, but directly introduce its design and implementation.

How _ENV Works

The principle of _ENV :

• In the parsing phase, convert all global variables into indexes of table "_ENV", such

as g1 = g2 to _ENV.g1 = _ENV.g2 ;

• So what is _ENV itself? Since all Lua code segments can be considered as a function,

_ENV can be considered as a local variable outside the code segment, which is

2 [1] GETTABUP 0 0 0 ; _ENV "print"

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

305 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#environment-_env
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#environment-_env
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#current-global-variables
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#current-global-variables
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#how-_env-works
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#how-_env-works

upvalue. For example, for the above code segment g1 = g2 , a more complete

conversion result is as follows:

All "global variables" have become indexes of _ENV , and _ENV itself is also an upvalue, so

there are no global variables! In addition, the key point is that _ENV itself has nothing

special except that it is preset in advance, it is just an ordinary variable. This means that it

can be manipulated like ordinary variables, which brings a lot of flexibility, such as a

sandbox can be easily implemented. The specific usage scenarios will not be expanded

here. If you are interested, you can refer to "Lua Programming".

Implementation of _ENV

According to the above introduction, use _ENV to transform global variables.

First, in the syntax analysis stage, the global variable is transformed into an index to

_ENV . The relevant code is as follows:

In the above code, first try to match the variable name from local variables and upvalue.

This part was introduced in detail in upvalue and is omitted here. Here we only look at the

case where the matching fails. In this case, name was previously considered to be a global

variable, and ExpDesc::Global(name) was returned. Now to transform it into _ENV.name ,

it is necessary to locate _ENV first. Since _ENV is also an ordinary variable, the

simple_name() function is called recursively with _ENV as an argument. In order to

ensure that this call does not recurse infinitely, it is necessary to pre-set _ENV in the

preparation phase of syntax analysis. So in this recursive call, _ENV will definitely be

matched as a local variable or upvalue, and will not be called recursively again.

local _ENV = XXX -- predefined global variable table
return function (...)

_ENV.g1 = _ENV.g2
end

fn simple_name(&mut self, name: String) -> ExpDesc {
// Omit the matching of local variables and upvalue, and return directly

if they match.

// If there is no match,
// - Previously considered to be a global variable, return

ExpDesc::Global(name)
// - Now transformed into _ENV.name, the code is as follows:
let env = self.simple_name("_ENV".into()); // call recursively, look for

_ENV
let ienv = self. discharge_any(env);

 ExpDesc::IndexField(ienv, self. add_const(name))
}

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

306 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#implementation-of-_env
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#implementation-of-_env
https://wubingzheng.github.io/build-lua-in-rust/en/ch09-02.escape_and_closure.html
https://wubingzheng.github.io/build-lua-in-rust/en/ch09-02.escape_and_closure.html

So how to pre-set _ENV ? In the above introduction, _ENV is the upvalue as the whole

code block. But for the sake of convenience, we can use _ENV as a parameter in the

load() function to achieve the same effect:

In this way, when parsing the outermost code of the code block, when the

simple_name() function is called, a local variable of _ENV will be matched; and an

upvalue of _ENV will be matched for the code inside the function.

This is just a promise that there must be a _ENV variable. And the fulfillment of this

promise needs to be performed in the virtual machine execution stage. When creating an

execution state ExeState , immediately after the function entry, _ENV must be pushed

onto the stack as the first parameter. In fact, the previous initialization of the global

member in ExeState is transferred to the stack. code show as below:

In this way, the transformation of _ENV is basically completed. This transformation is very

simple, but the function it brings is very powerful, so _ENV is a very beautiful design.

In addition, since there is no concept of global variables, the previous codes related to

global variables, such as ExpDesc::Global and the generation and execution of 3

bytecodes related to global variables, can be deleted. Note that no new ExpDesc or

bytecode is introduced to implement _ENV . But just not yet.

pub fn load(input: impl Read) -> FuncProto {
let mut ctx = ParseContext { /* omitted */ };

// _ENV as the first and only parameter
 chunk(&mut ctx, false, vec!["_ENV".into()], Token::Eos)
}

impl ExeState {
pub fn new() -> Self {

// global variable table
let mut env = Table::new(0, 0);

 env.map.insert("print".into(), Value::RustFunction(lib_print));
 env.map.insert("type".into(), Value::RustFunction(lib_type));
 env.map.insert("ipairs".into(), Value::RustFunction(ipairs));
 env.map.insert("new_counter".into(),
Value::RustFunction(test_new_counter));

 ExeState {
// Push 2 values on the stack: the virtual function entry, and

the global variable table _ENV
 stack: vec![Value::Nil,
Value::Table(Rc::new(RefCell::new(env)))],
 base: 1, // for entry function
 }
 }

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

307 of 314 10/23/23, 08:47

Optimization

Although the above transformation is fully functional, there is a performance problem.

Since _ENV is upvalue in most cases, for global variables, two bytecodes will be generated

in the above simple_name() function:

In the original scheme that does not use _ENV , only one bytecode GetGlobal is needed.

This new solution obviously reduces performance. To make up for the performance loss

here, it is only necessary to provide bytecodes that can directly index the upvalue table.

To do this, add 3 bytecodes:

Correspondingly, the expression of the upvalue table index should also be increased:

The index to the upvalue table here only supports string constants, which is also the

scenario for global variables. Although this IndexUpField is added for global variable

optimization, it can also be applied to ordinary upvalue table indexes. Therefore, in the

function of parsing table indexes, IndexUpField optimization can also be added. The

specific code is omitted here.

After defining IndexUpField , the original variable parsing function can be modified:

Getupvalue ($tmp_table, _ENV) # first load _ENV onto the stack
GetField ($dst, $tmp_table, $key) # before indexing

pub enum ByteCode {
// Deleted 3 old bytecodes that directly manipulate the global variable

table
// GetGlobal(u8, u8),
// SetGlobal(u8, u8),
// SetGlobalConst(u8, u8),

// Add 3 corresponding bytecodes for operating the upvalue table
 GetUpField(u8, u8, u8),
 SetUpField(u8, u8, u8),
 SetUpFieldConst(u8, u8, u8),

enum ExpDesc {
// deleted global variable
// Global(usize),

// Added index to upvalue table
 IndexUpField(usize, usize),

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

308 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#optimization
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#optimization

As before, after a variable fails to match both the local variable and the upvalue, it still

uses _ENV as a parameter to recursively call the simple_name() function. But here we

know that the result returned by _ENV must be a local variable or an upvalue. In these

two cases, ExpDesc::IndexField and ExpDesc::IndexUpField are generated

respectively. Then generate the 3 new bytecodes above when reading and writing

ExpDesc::IndexUpField .

In this way, it is equivalent to replacing ExpDesc::Global with ExpDesc::IndexUpField .

The processing of ExpDesc::Global was deleted before, and now it is added back from

ExpDesc::IndexUpField .

fn simple_name(&mut self, name: String) -> ExpDesc {
// Omit the matching of local variables and upvalue, and return directly

if they match.

// If there is no match,
// - Previously considered to be a global variable, return

ExpDesc::Global(name)
// - Now transformed into _ENV.name, the code is as follows:
let iname = self. add_const(name);
match self. simple_name("_ENV".into()) {

 ExpDesc::Local(i) => ExpDesc::IndexField(i, iname),
 ExpDesc::upvalue(i) => ExpDesc::IndexUpField(i, iname), // new
IndexUpField
 _ => panic!("no here"), // because "_ENV" must exist!
 }
}

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

309 of 314 10/23/23, 08:47

To Be Continued

We have implemented the core features of the Lua interpreter. Still, we're far from our

original goal - a complete, performant, production-grade interpreter. I will continue to

improve this interpreter, but due to busy work and insufficient spare time, I will suspend

this series of articles. Writing articles is more tiring than writing code. Combined with my

experience of reading Yu Yuan's "Handwriting Operating System by Yourself" when I was

in school, I only followed the first half of the book and practiced it. After mastering the

basic development methods and getting started with writing an operating system, the

rest is to write it by myself. I think the parts of this series of articles that have been

completed so far should also provide an introductory knowledge of implementing a Lua

interpreter, and interested readers can implement the remaining parts independently.

Here is a partial list of some unfinished features:

• Metatable is a very important feature of Lua language, providing flexible and

powerful features. However, its implementation principle is very simple. It only

needs to make an extra layer of judgment when the virtual machine executes the

relevant bytecode, and it does not even need to modify the part of syntax analysis.

Here is an implementation detail: the garbage collection of our interpreter uses RC,

which may cause circular references and lead to memory leaks. A table setting itself

as its own metatable is a common circular reference. To avoid circular references in

this common scenario, special handling is required for this case.

• UserData, is one of the basic types of Lua. However, we have not yet encountered

the need to use UserData. We can implement this type later when we encounter this

requirement when implementing the standard library. In the official implementation

of Lua, creating a new UserData is to allocate for memory in Lua, and then hand it

over to the C function to initialize. However, uninitialized memory is not allowed in

Rust, so we have to think about how to create a UserData value.

• LightUserData, also one of the basic types of Lua. It's just a raw pointer, and doesn't

need to do anything special about it.

• Error handling. Our current way of handling all errors is to panic, which is not

feasible. At least we need to distinguish between expected errors and program

bugs. The former may also need to subdivide lexical analysis, syntax analysis, virtual

machine execution, Rust API and other types. Error handling is also a feature of the

Rust language. It's also a great opportunity to experience Rust's error handling.

• Performance optimization. High performance is one of our initial goals, and some

optimizations have been made during the implementation, such as the design of the

string type, but the final result is not yet known, and we still need to test to know.

There are some benchmark examples codes of Lua performance tests on the

Internet, we can follow the Lua official Implement a comparative test. This also

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

310 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#to-be-continued
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#to-be-continued
https://doc.rust-lang.org/stable/book/ch09-00-error-handling.html
https://doc.rust-lang.org/stable/book/ch09-00-error-handling.html
https://github.com/gligneul/Lua-Benchmarks
https://github.com/gligneul/Lua-Benchmarks
https://programming-language-benchmarks.vercel.app/lua
https://programming-language-benchmarks.vercel.app/lua

verifies correctness by the way.

• Optimized table construction. For the table construction with all constant elements,

there is no need to load it on the stack, and even the table can be created directly in

the syntax analysis stage.

• Rust API. The more usage scenarios of the Lua language are glue languages, so the

external API is very important. Our interpreter is mainly used for programs written

in Rust language, so it should provide a set of APIs that conform to the Rust calling

method. This is inconsistent with the C API provided by the official Lua

implementation. We have already implemented some basic APIs, such as reading

values on the stack, etc., using generics, which simplifies the API and calling

methods, which is inconsistent with the C API. Here has a comparative survey of the

calling methods of the scripting language implemented by Rust.

• Library. The current interpreter is a stand-alone program, but the most common

usage scenario for Lua is a library that is called by other programs. So we need to

transform our project into a library.

• Support parameter passing and return value of the entire code segment.

• The standard library, which is a feature other than the core of the interpreter,

involves more aspects. In addition to the packages listed below, there are some

basic functions in the standard library, such as type() and ipairs() , which we

have already implemented, and most of the rest are not difficult. The only trouble is

pairs() function. The efficient implementation of the pairs() function in the

official Lua implementation depends on the implementation of the table. And we

use Rust's HashMap to implement the dictionary part of the table, there may be no

simple way to implement it.

• The math library, most functions have corresponding implementations in the Rust

standard library, the only thing that needs to be manually implemented is the

function to generate random numbers. Since this function is not provided in the C

language standard, Lua's official implementation makes this function itself. Although

we can also use the random crate, it is better to refer to the official Lua

implementation and implement this random number generation function by

ourselves. In addition, generating random numbers requires maintaining a global

state. In the official implementation of Lua, this state is a UserData type and is

added to Lua's Register. And we can use the characteristics of Rust closures to put

this state in closures, which is more convenient and efficient.

• The string library, the trouble is regular matching. For convenience, Lua language

defines and implements a set of regular matching rules. So we can only follow its

definition and reimplement it in Rust. It should be very complicated here, but after

completion, we will have a deeper understanding of regular matching.

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

311 of 314 10/23/23, 08:47

https://www.boringcactus.com/2020/09/16/survey-of-rust-embeddable-scripting-languages.html
https://www.boringcactus.com/2020/09/16/survey-of-rust-embeddable-scripting-languages.html

• The io library, the trouble is the representation of the file. The FILE type is provided

in the C language standard, which can represent all file types, including standard

input and output, ordinary files, etc., and can also represent multiple modes such as

read-only, write-only, and read-write. But in the Rust language these seem to be

independent. If we want to provide an API consistent with the io library, we need to

do encapsulation.

• The coroutine library, requires a thorough understanding of Lua's coroutines, and

will also make great adjustments to the existing function call process.

• The debug library, I have not used this library, I don't know much, but I feel that if to

implement this library I will either need a lot of unsafe code, or make a lot of

changes to the existing process. So in the end one may choose not to implement

this library.

In addition to the above list of unfinished functions, there are some small improvements

to the current code, such as refining the comments, applying the let..else syntax

supported in the new version of Rust, and some small code optimizations, etc. For this

reason, we add to_be_continued, which can also be seen as the final version of the code

corresponding to this series of articles.

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

312 of 314 10/23/23, 08:47

https://github.com/WuBingzheng/build-lua-in-rust/tree/main/listing/to_be_continued
https://github.com/WuBingzheng/build-lua-in-rust/tree/main/listing/to_be_continued

References

• Lua 5.4 Reference Manual, which is also the requirements document for this project.

• "Lua Programming (4th Edition)", the official Lua tutorial. Although it is based on the

Lua 5.3 version, it has little impact due to the not many changes of the 5.4 version.

• Why is there no continue statement?, an explanation of why there is no continue

statement in Lua.

• 《Rust Programming Language》, the official Rust tutorial.

• Official Rust Documentation, mainly refer to the standard library part.

• Designing a GC in Rust, introduces the design idea of implementing GC in Rust.

• gc-crate, an implementation based on the above design ideas.

• A Tour of Safe Tracing GC Designs in Rust , introducing a GC design implemented in

Rust. I just remember one thing: implementing GC in Rust is hard.

• Implementing a safe garbage collector in Rust, another project that uses Rust to

implement GC.

• When Zig is safer and faster than Rust, starting from Roc language using Zig instead

of Rust to implement the GC part, to illustrate the use It is difficult to implement

certain functions in unsafe Rust.

• Luster, a Lua interpreter implemented in Rust, also uses GC instead of RC, but the

project is not completed.

• The Story of Tail Call Optimizations in Rust, a discussion of tail call support in the

Rust language.

• Lua bindings: lua, hlua or rlua?, there are three existing Lua crates on Reddit: lua,

hlua and A simple comparison of rlua.

• A Survey of Rust Embeddable Scripting Languages, for several that can be used in

Rust A comparison of the usage of different scripting languages (including Lua).

• Implement TryFrom for float to integer types.

• Floating Point Arcade, an introduction to converting integer random numbers to

floating point numbers.

• The Rust Performance Book.

• 《Lua设计与实现》, it feels like a source code reading note of Lua's official

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

313 of 314 10/23/23, 08:47

https://wubingzheng.github.io/build-lua-in-rust/en/print.html#references
https://wubingzheng.github.io/build-lua-in-rust/en/print.html#references
https://www.lua.org/manual/5.4/
https://www.lua.org/manual/5.4/
http://www.lua.org/manual/5.4/readme.html#changes
http://www.lua.org/manual/5.4/readme.html#changes
https://www.luafaq.org/#T1.26
https://www.luafaq.org/#T1.26
https://doc.rust-lang.org/stable/book/title-page.html
https://doc.rust-lang.org/stable/book/title-page.html
https://doc.rust-lang.org/
https://doc.rust-lang.org/
https://manishearth.github.io/blog/2015/09/01/designing-a-gc-in-rust/
https://manishearth.github.io/blog/2015/09/01/designing-a-gc-in-rust/
https://crates.io/crates/gc
https://crates.io/crates/gc
https://manishearth.github.io/blog/2021/04/05/a-tour-of-safe-tracing-gc-designs-in-rust/
https://manishearth.github.io/blog/2021/04/05/a-tour-of-safe-tracing-gc-designs-in-rust/
https://coredumped.dev/2022/04/11/implementing-a-safe-garbage-collector-in-rust/
https://coredumped.dev/2022/04/11/implementing-a-safe-garbage-collector-in-rust/
https://zackoverflow.dev/writing/unsafe-rust-vs-zig/
https://zackoverflow.dev/writing/unsafe-rust-vs-zig/
https://github.com/kyren/luster
https://github.com/kyren/luster
https://dev.to/seanchen1991/the-story-of-tail-call-optimizations-in-rust-35hf
https://dev.to/seanchen1991/the-story-of-tail-call-optimizations-in-rust-35hf
https://www.reddit.com/r/rust/comments/8coe49/lua_bindings_lua_hlua_or_rlua/
https://www.reddit.com/r/rust/comments/8coe49/lua_bindings_lua_hlua_or_rlua/
https://www.boringcactus.com/2020/09/16/survey-of-rust-embeddable-scripting-languages.html
https://www.boringcactus.com/2020/09/16/survey-of-rust-embeddable-scripting-languages.html
https://github.com/rust-lang/rust/pull/47857
https://github.com/rust-lang/rust/pull/47857
https://gist.github.com/CrockAgile/09065649ae5a52629599ebc5645922d6
https://gist.github.com/CrockAgile/09065649ae5a52629599ebc5645922d6
https://nnethercote.github.io/perf-book/title-page.html
https://nnethercote.github.io/perf-book/title-page.html

implementation. It directly talks about the details of the code implementation, and it

is very difficult to read when you first get started.

• 《⾃⼰动⼿实现Lua》, which is very similar to this series of articles, also implements

a Lua interpreter from scratch. But this book is based on the bytecode definition in

the official implementation of Lua as the starting point. First implement the virtual

machine to execute the bytecode, and then implement the compiler to generate the

bytecode. And our series of articles is based on the Lua language manual, designing

and implementing the compilation process, virtual machine, bytecode definition,

etc.

Build a Lua Interpreter in Rust https://wubingzheng.github.io/build-lua-in-rust/en/prin...

314 of 314 10/23/23, 08:47

