
Command line apps in Rust

Rust is a statically compiled, fast language with great tooling and a rapidly growing

ecosystem. That makes it a great fit for writing command line applications: They should

be small, portable, and quick to run. Command line applications are also a great way to

get started with learning Rust; or to introduce Rust to your team!

Writing a program with a simple command line interface (CLI) is a great exercise for a

beginner who is new to the language and wants to get a feel for it. There are many

aspects to this topic, though, that often only reveal themselves later on.

This book is structured like this: We start with a quick tutorial, after which you’ll end up

with a working CLI tool. You’ll be exposed to a few of the core concepts of Rust as well as

the main aspects of CLI applications. What follows are chapters that go into more detail

on some of these aspects.

One last thing before we dive right into CLI applications: If you find an error in this book

or want to help us write more content for it, you can find its source in the CLI book

repository. We’d love to hear your feedback! Thank you!

Command Line Applications in Rust https://rust-cli.github.io/book/print.html

1 of 53 10/23/23, 09:39

https://rust-cli.github.io/book/print.html#command-line-apps-in-rust
https://rust-cli.github.io/book/print.html#command-line-apps-in-rust
https://github.com/rust-cli/book
https://github.com/rust-cli/book
https://github.com/rust-cli/book
https://github.com/rust-cli/book

Learning Rust by Writing a Command

Line App in 15 Minutes

This tutorial will guide you through writing a CLI (command line interface) application in

Rust. It will take you roughly fifteen minutes to get to a point where you have a running

program (around chapter 1.3). After that, we’ll continue to tweak our program until we

reach a point where we can ship our little tool.

You’ll learn all the essentials about how to get going, and where to find more information.

Feel free to skip parts you don’t need to know right now or jump in at any point.

Prerequisites: This tutorial does not replace a general introduction to programming,

and expects you to be familiar with a few common concepts. You should be

comfortable with using a command line/terminal. If you already know a few other

languages, this can be a good first contact with Rust.

Getting help: If you at any point feel overwhelmed or confused with the features

used, have a look at the extensive official documentation that comes with Rust, first

and foremost the book, The Rust Programming Language. It comes with most Rust

installations (rustup doc), and is available online on doc.rust-lang.org.

You are also very welcome to ask questions – the Rust community is known to be

friendly and helpful. Have a look at the community page to see a list of places where

people discuss Rust.

What kind of project do you want to write? How about we start with something simple:

Let’s write a small grep clone. That is a tool that we can give a string and a path and it’ll

print only the lines that contain the given string. Let’s call it grrs (pronounced “grass”).

In the end, we want to be able to run our tool like this:

Note: This book is written for Rust 2018. The code examples can also be used on

Rust 2015, but you might need to tweak them a bit; add extern crate foo;

invocations, for example.

Make sure you run Rust 1.31.0 (or later) and that you have edition = "2018" set in

$ cat test.txt
foo: 10
bar: 20
baz: 30
$ grrs foo test.txt
foo: 10
$ grrs --help
[some help text explaining the available options]

Command Line Applications in Rust https://rust-cli.github.io/book/print.html

2 of 53 10/23/23, 09:39

https://rust-cli.github.io/book/print.html#learning-rust-by-writing-a-command-line-app-in-15-minutes
https://rust-cli.github.io/book/print.html#learning-rust-by-writing-a-command-line-app-in-15-minutes
https://rust-cli.github.io/book/print.html#learning-rust-by-writing-a-command-line-app-in-15-minutes
https://rust-cli.github.io/book/print.html#learning-rust-by-writing-a-command-line-app-in-15-minutes
https://rust-lang.org/
https://rust-lang.org/
https://doc.rust-lang.org/
https://doc.rust-lang.org/
https://www.rust-lang.org/community
https://www.rust-lang.org/community
https://doc.rust-lang.org/edition-guide/index.html
https://doc.rust-lang.org/edition-guide/index.html

the [package] section of your Cargo.toml file.

Command Line Applications in Rust https://rust-cli.github.io/book/print.html

3 of 53 10/23/23, 09:39

Project setup

If you haven’t already, install Rust on your computer (it should only take a few minutes).

After that, open a terminal and navigate to the directory you want to put your application

code into.

Start by running cargo new grrs in the directory you store your programming projects

in. If you look at the newly created grrs directory, you’ll find a typical setup for a Rust

project:

• A Cargo.toml file that contains metadata for our project, incl. a list of

dependencies/external libraries we use.

• A src/main.rs file that is the entry point for our (main) binary.

If you can execute cargo run in the grrs directory and get a “Hello World”, you’re all set

up.

What it might look like

$ cargo new grrs
 Created binary (application) `grrs` package
$ cd grrs/
$ cargo run
 Compiling grrs v0.1.0 (/Users/pascal/code/grrs)
 Finished dev [unoptimized + debuginfo] target(s) in 0.70s
 Running `target/debug/grrs`
Hello, world!

Command Line Applications in Rust https://rust-cli.github.io/book/print.html

4 of 53 10/23/23, 09:39

https://rust-cli.github.io/book/print.html#project-setup
https://rust-cli.github.io/book/print.html#project-setup
https://www.rust-lang.org/tools/install
https://www.rust-lang.org/tools/install
https://rust-cli.github.io/book/print.html#what-it-might-look-like
https://rust-cli.github.io/book/print.html#what-it-might-look-like

Parsing command-line arguments

A typical invocation of our CLI tool will look like this:

We expect our program to look at test.txt and print out the lines that contain foobar .

But how do we get these two values?

The text after the name of the program is often called the “command-line arguments”, or

“command-line flags” (especially when they look like --this). Internally, the operating

system usually represents them as a list of strings – roughly speaking, they get separated

by spaces.

There are many ways to think about these arguments, and how to parse them into

something more easy to work with. You will also need to tell the users of your program

which arguments they need to give and in which format they are expected.

Getting the arguments

The standard library contains the function std::env::args() that gives you an iterator

of the given arguments. The first entry (at index 0) will be the name your program was

called as (e.g. grrs), the ones that follow are what the user wrote afterwards.

Getting the raw arguments this way is quite easy (in file src/main.rs , after fn main()

{):

CLI arguments as data type

Instead of thinking about them as a bunch of text, it often pays off to think of CLI

arguments as a custom data type that represents the inputs to your program.

Look at grrs foobar test.txt : There are two arguments, first the pattern (the string

to look for), and then the path (the file to look in).

What more can we say about them? Well, for a start, both are required. We haven’t talked

about any default values, so we expect our users to always provide two values.

Furthermore, we can say a bit about their types: The pattern is expected to be a string,

$ grrs foobar test.txt

let pattern = std::env::args().nth(1).expect("no pattern given");
let path = std::env::args().nth(2).expect("no path given");

Command Line Applications in Rust https://rust-cli.github.io/book/print.html

5 of 53 10/23/23, 09:39

https://rust-cli.github.io/book/print.html#parsing-command-line-arguments
https://rust-cli.github.io/book/print.html#parsing-command-line-arguments
https://rust-cli.github.io/book/print.html#getting-the-arguments
https://rust-cli.github.io/book/print.html#getting-the-arguments
https://doc.rust-lang.org/1.39.0/std/env/fn.args.html
https://doc.rust-lang.org/1.39.0/std/env/fn.args.html
https://doc.rust-lang.org/1.39.0/std/env/fn.args.html
https://doc.rust-lang.org/1.39.0/std/iter/index.html
https://doc.rust-lang.org/1.39.0/std/iter/index.html
https://rust-cli.github.io/book/print.html#cli-arguments-as-data-type
https://rust-cli.github.io/book/print.html#cli-arguments-as-data-type

while the second argument is expected to be a path to a file.

In Rust, it is common to structure programs around the data they handle, so this way of

looking at CLI arguments fits very well. Let’s start with this (in file src/main.rs , before

fn main() {):

This defines a new structure (a struct) that has two fields to store data in: pattern , and

path .

Note: PathBuf is like a String but for file system paths that work cross-platform.

Now, we still need to get the actual arguments our program got into this form. One

option would be to manually parse the list of strings we get from the operating system

and build the structure ourselves. It would look something like this:

This works, but it’s not very convenient. How would you deal with the requirement to

support --pattern="foo" or --pattern "foo" ? How would you implement --help ?

Parsing CLI arguments with Clap

A much nicer way is to use one of the many available libraries. The most popular library

for parsing command-line arguments is called clap . It has all the functionality you’d

expect, including support for sub-commands, shell completions, and great help

messages.

Let’s first import clap by adding clap = { version = "4.0", features = ["derive"]

} to the [dependencies] section of our Cargo.toml file.

Now, we can write use clap::Parser; in our code, and add #[derive(Parser)] right

above our struct Cli . Let’s also write some documentation comments along the way.

It’ll look like this (in file src/main.rs , before fn main() {):

struct Cli {
 pattern: String,
 path: std::path::PathBuf,
}

let pattern = std::env::args().nth(1).expect("no pattern given");
let path = std::env::args().nth(2).expect("no path given");
let args = Cli {
 pattern: pattern,
 path: std::path::PathBuf::from(path),
};

Command Line Applications in Rust https://rust-cli.github.io/book/print.html

6 of 53 10/23/23, 09:39

https://doc.rust-lang.org/1.39.0/book/ch05-00-structs.html
https://doc.rust-lang.org/1.39.0/book/ch05-00-structs.html
https://doc.rust-lang.org/1.39.0/book/ch05-00-structs.html
https://doc.rust-lang.org/1.39.0/std/path/struct.PathBuf.html
https://doc.rust-lang.org/1.39.0/std/path/struct.PathBuf.html
https://doc.rust-lang.org/1.39.0/std/path/struct.PathBuf.html
https://doc.rust-lang.org/1.39.0/std/string/struct.String.html
https://doc.rust-lang.org/1.39.0/std/string/struct.String.html
https://doc.rust-lang.org/1.39.0/std/string/struct.String.html
https://rust-cli.github.io/book/print.html#parsing-cli-arguments-with-clap
https://rust-cli.github.io/book/print.html#parsing-cli-arguments-with-clap
https://docs.rs/clap/
https://docs.rs/clap/
https://docs.rs/clap/
https://docs.rs/clap_complete/
https://docs.rs/clap_complete/

Note: There are a lot of custom attributes you can add to fields. For example, to say

you want to use this field for the argument after -o or --output , you’d add

#[arg(short = 'o', long = "output")] . For more information, see the clap

documentation.

Right below the Cli struct our template contains its main function. When the program

starts, it will call this function. The first line is:

This will try to parse the arguments into our Cli struct.

But what if that fails? That’s the beauty of this approach: Clap knows which fields to

expect, and what their expected format is. It can automatically generate a nice --help

message, as well as give some great errors to suggest you pass --output when you

wrote --putput .

Note: The parse method is meant to be used in your main function. When it fails, it

will print out an error or help message and immediately exit the program. Don’t use it

in other places!

Wrapping up

Your code should now look like:

use clap::Parser;

/// Search for a pattern in a file and display the lines that contain it.
#[derive(Parser)]
struct Cli {

/// The pattern to look for
 pattern: String,

/// The path to the file to read
 path: std::path::PathBuf,
}

fn main() {
let args = Cli::parse();

}

Command Line Applications in Rust https://rust-cli.github.io/book/print.html

7 of 53 10/23/23, 09:39

https://docs.rs/clap/
https://docs.rs/clap/
https://docs.rs/clap/
https://docs.rs/clap/
https://rust-cli.github.io/book/print.html#wrapping-up
https://rust-cli.github.io/book/print.html#wrapping-up

Running it without any arguments:

We can pass arguments when using cargo run directly by writing them after -- :

As you can see, there is no output. Which is good: That just means there is no error and

our program ended.

Exercise for the reader: Make this program output its arguments!

#![allow(unused)]

use clap::Parser;

/// Search for a pattern in a file and display the lines that contain it.
#[derive(Parser)]
struct Cli {

/// The pattern to look for
 pattern: String,

/// The path to the file to read
 path: std::path::PathBuf,
}

fn main() {
let args = Cli::parse();

}

$ cargo run
 Finished dev [unoptimized + debuginfo] target(s) in 10.16s
 Running `target/debug/grrs`
error: The following required arguments were not provided:
 <pattern>
 <path>

USAGE:
 grrs <pattern> <path>

For more information try --help

$ cargo run -- some-pattern some-file
 Finished dev [unoptimized + debuginfo] target(s) in 0.11s
 Running `target/debug/grrs some-pattern some-file`

Command Line Applications in Rust https://rust-cli.github.io/book/print.html

8 of 53 10/23/23, 09:39

First implementation of grrs

After the last chapter on command line arguments, we have our input data, and we can

start to write our actual tool. Our main function only contains this line right now:

Let’s start by opening the file we got.

Note: See that .expect method here? This is a shortcut function to quit that will

make the program exit immediately when the value (in this case the input file) could

not be read. It’s not very pretty, and in the next chapter on Nicer error reporting we

will look at how to improve this.

Now, let’s iterate over the lines and print each one that contains our pattern:

Wrapping up

Your code should now look like:

let args = Cli::parse();

let content = std::fs::read_to_string(&args.path).expect("could not read
file");

for line in content.lines() {
if line.contains(&args.pattern) {

println!("{}", line);
 }
 }

Command Line Applications in Rust https://rust-cli.github.io/book/print.html

9 of 53 10/23/23, 09:39

https://rust-cli.github.io/book/print.html#first-implementation-of-grrs
https://rust-cli.github.io/book/print.html#first-implementation-of-grrs
https://rust-cli.github.io/book/print.html#first-implementation-of-grrs
https://rust-cli.github.io/book/print.html#first-implementation-of-grrs
https://doc.rust-lang.org/1.39.0/std/result/enum.Result.html#method.expect
https://doc.rust-lang.org/1.39.0/std/result/enum.Result.html#method.expect
https://doc.rust-lang.org/1.39.0/std/result/enum.Result.html#method.expect
https://rust-cli.github.io/book/tutorial/errors.html
https://rust-cli.github.io/book/tutorial/errors.html
https://rust-cli.github.io/book/print.html#wrapping-up-1
https://rust-cli.github.io/book/print.html#wrapping-up-1

Give it a try: cargo run -- main src/main.rs should work now!

Exercise for the reader: This is not the best implementation: It will read the whole

file into memory – however large the file may be. Find a way to optimize it! (One idea

might be to use a BufReader instead of read_to_string() .)

#![allow(unused)]

use clap::Parser;

/// Search for a pattern in a file and display the lines that contain it.
#[derive(Parser)]
struct Cli {

/// The pattern to look for
 pattern: String,

/// The path to the file to read
 path: std::path::PathBuf,
}

fn main() {
let args = Cli::parse();
let content = std::fs::read_to_string(&args.path).expect("could not read

file");

for line in content.lines() {
if line.contains(&args.pattern) {

println!("{}", line);
 }
 }
}

Command Line Applications in Rust https://rust-cli.github.io/book/print.html

10 of 53 10/23/23, 09:39

https://doc.rust-lang.org/1.39.0/std/io/struct.BufReader.html
https://doc.rust-lang.org/1.39.0/std/io/struct.BufReader.html
https://doc.rust-lang.org/1.39.0/std/io/struct.BufReader.html

Nicer error reporting

We all can do nothing but accept the fact that errors will occur. And in contrast to many

other languages, it’s very hard not to notice and deal with this reality when using Rust: As

it doesn’t have exceptions, all possible error states are often encoded in the return types

of functions.

Results

A function like read_to_string doesn’t return a string. Instead, it returns a Result that

contains either a String or an error of some type (in this case std::io::Error).

How do you know which it is? Since Result is an enum , you can use match to check

which variant it is:

Note: Not sure what enums are or how they work in Rust? Check this chapter of the

Rust book to get up to speed.

Unwrapping

Now, we were able to access the content of the file, but we can’t really do anything with it

after the match block. For this, we’ll need to somehow deal with the error case. The

challenge is that all arms of a match block need to return something of the same type.

But there’s a neat trick to get around that:

We can use the String in content after the match block. If result were an error, the

String wouldn’t exist. But since the program would exit before it ever reached a point

let result = std::fs::read_to_string("test.txt");
match result {

Ok(content) => { println!("File content: {}", content); }
Err(error) => { println!("Oh noes: {}", error); }

}

let result = std::fs::read_to_string("test.txt");
let content = match result {

Ok(content) => { content },
Err(error) => { panic!("Can't deal with {}, just exit here", error); }

};
println!("file content: {}", content);

Command Line Applications in Rust https://rust-cli.github.io/book/print.html

11 of 53 10/23/23, 09:39

https://rust-cli.github.io/book/print.html#nicer-error-reporting
https://rust-cli.github.io/book/print.html#nicer-error-reporting
https://rust-cli.github.io/book/print.html#results
https://rust-cli.github.io/book/print.html#results
https://doc.rust-lang.org/1.39.0/std/fs/fn.read_to_string.html
https://doc.rust-lang.org/1.39.0/std/fs/fn.read_to_string.html
https://doc.rust-lang.org/1.39.0/std/fs/fn.read_to_string.html
https://doc.rust-lang.org/1.39.0/std/result/index.html
https://doc.rust-lang.org/1.39.0/std/result/index.html
https://doc.rust-lang.org/1.39.0/std/result/index.html
https://doc.rust-lang.org/1.39.0/std/io/type.Result.html
https://doc.rust-lang.org/1.39.0/std/io/type.Result.html
https://doc.rust-lang.org/1.39.0/std/io/type.Result.html
https://doc.rust-lang.org/1.39.0/book/ch06-00-enums.html
https://doc.rust-lang.org/1.39.0/book/ch06-00-enums.html
https://doc.rust-lang.org/1.39.0/book/ch06-00-enums.html
https://doc.rust-lang.org/1.39.0/book/ch06-00-enums.html
https://rust-cli.github.io/book/print.html#unwrapping
https://rust-cli.github.io/book/print.html#unwrapping

where we use content , it’s fine.

This may seem drastic, but it’s very convenient. If your program needs to read that file

and can’t do anything if the file doesn’t exist, exiting is a valid strategy. There’s even a

shortcut method on Result s, called unwrap :

No need to panic

Of course, aborting the program is not the only way to deal with errors. Instead of the

panic! , we can also easily write return :

This, however changes the return type our function needs. Indeed, there was something

hidden in our examples all this time: The function signature this code lives in. And in this

last example with return , it becomes important. Here’s the full example:

Our return type is a Result ! This is why we can write return Err(error); in the second

match arm. See how there is an Ok(()) at the bottom? It’s the default return value of the

function and means “Result is okay, and has no content”.

Note: Why is this not written as return Ok(()); ? It easily could be – this is totally

valid as well. The last expression of any block in Rust is its return value, and it is

customary to omit needless return s.

Question Mark

let content = std::fs::read_to_string("test.txt").unwrap();

let result = std::fs::read_to_string("test.txt");
let content = match result {

Ok(content) => { content },
Err(error) => { return Err(error.into()); }

};

fn main() -> Result<(), Box<dyn std::error::Error>> {
let result = std::fs::read_to_string("test.txt");
let content = match result {

Ok(content) => { content },
Err(error) => { return Err(error.into()); }

 };
println!("file content: {}", content);
Ok(())

}

Command Line Applications in Rust https://rust-cli.github.io/book/print.html

12 of 53 10/23/23, 09:39

https://rust-cli.github.io/book/print.html#no-need-to-panic
https://rust-cli.github.io/book/print.html#no-need-to-panic
https://rust-cli.github.io/book/print.html#question-mark
https://rust-cli.github.io/book/print.html#question-mark

Just like calling .unwrap() is a shortcut for the match with panic! in the error arm, we

have another shortcut for the match that return s in the error arm: ? .

That’s right, a question mark. You can append this operator to a value of type Result ,

and Rust will internally expand this to something very similar to the match we just wrote.

Give it a try:

Very concise!

Note: There are a few more things happening here that are not required to

understand to work with this. For example, the error type in our main function is

Box<dyn std::error::Error> . But we’ve seen above that read_to_string returns a

std::io::Error . This works because ? expands to code that converts error types.

Box<dyn std::error::Error> is also an interesting type. It’s a Box that can contain

any type that implements the standard Error trait. This means that basically all

errors can be put into this box, so we can use ? on all of the usual functions that

return Result s.

Providing Context

The errors you get when using ? in your main function are okay, but they are not great.

For example: When you run std::fs::read_to_string("test.txt")? but the file

test.txt doesn’t exist, you get this output:

In cases where your code doesn’t literally contain the file name, it would be very hard to

tell which file was NotFound . There are multiple ways to deal with this.

For example, we can create our own error type, and then use that to build a custom error

message:

fn main() -> Result<(), Box<dyn std::error::Error>> {
let content = std::fs::read_to_string("test.txt")?;
println!("file content: {}", content);
Ok(())

}

Error: Os { code: 2, kind: NotFound, message: "No such file or directory" }

Command Line Applications in Rust https://rust-cli.github.io/book/print.html

13 of 53 10/23/23, 09:39

https://doc.rust-lang.org/1.39.0/std/io/type.Result.html
https://doc.rust-lang.org/1.39.0/std/io/type.Result.html
https://doc.rust-lang.org/1.39.0/std/io/type.Result.html
https://doc.rust-lang.org/1.39.0/std/error/trait.Error.html
https://doc.rust-lang.org/1.39.0/std/error/trait.Error.html
https://doc.rust-lang.org/1.39.0/std/error/trait.Error.html
https://rust-cli.github.io/book/print.html#providing-context
https://rust-cli.github.io/book/print.html#providing-context

Now, running this we’ll get our custom error message:

Not very pretty, but we can easily adapt the debug output for our type later on.

This pattern is in fact very common. It has one problem, though: We don’t store the

original error, only its string representation. The often used anyhow library has a neat

solution for that: similar to our CustomError type, its Context trait can be used to add a

description. Additionally, it also keeps the original error, so we get a “chain” of error

messages pointing out the root cause.

Let’s first import the anyhow crate by adding anyhow = "1.0" to the [dependencies]

section of our Cargo.toml file.

The full example will then look like this:

This will print an error:

#[derive(Debug)]
struct CustomError(String);

fn main() -> Result<(), CustomError> {
let path = "test.txt";
let content = std::fs::read_to_string(path)

 .map_err(|err| CustomError(format!("Error reading `{}`: {}", path,
err)))?;

println!("file content: {}", content);
Ok(())

}

Error: CustomError("Error reading `test.txt`: No such file or directory (os
error 2)")

use anyhow::{Context, Result};

fn main() -> Result<()> {
let path = "test.txt";
let content = std::fs::read_to_string(path)

 .with_context(|| format!("could not read file `{}`", path))?;
println!("file content: {}", content);
Ok(())

}

Error: could not read file `test.txt`

Caused by:
 No such file or directory (os error 2)

Command Line Applications in Rust https://rust-cli.github.io/book/print.html

14 of 53 10/23/23, 09:39

https://docs.rs/anyhow
https://docs.rs/anyhow
https://docs.rs/anyhow
https://docs.rs/anyhow/1.0/anyhow/trait.Context.html
https://docs.rs/anyhow/1.0/anyhow/trait.Context.html
https://docs.rs/anyhow/1.0/anyhow/trait.Context.html

Output

Printing “Hello World”

Well, that was easy. Great, onto the next topic.

Using println!

You can pretty much print all the things you like with the println! macro. This macro

has some pretty amazing capabilities, but also a special syntax. It expects you to write a

string literal as the first parameter, that contains placeholders that will be filled in by the

values of the parameters that follow as further arguments.

For example:

will print

The curly braces ({}) in the string above is one of these placeholders. This is the default

placeholder type that tries to print the given value in a human readable way. For numbers

and strings this works very well, but not all types can do that. This is why there is also a

“debug representation”, that you can get by filling the braces of the placeholder like this:

{:?} .

For example,

will print

println!("Hello World");

let x = 42;
println!("My lucky number is {}.", x);

My lucky number is 42.

let xs = vec![1, 2, 3];
println!("The list is: {:?}", xs);

The list is: [1, 2, 3]

Command Line Applications in Rust https://rust-cli.github.io/book/print.html

15 of 53 10/23/23, 09:39

https://rust-cli.github.io/book/print.html#output
https://rust-cli.github.io/book/print.html#output
https://rust-cli.github.io/book/print.html#printing-hello-world
https://rust-cli.github.io/book/print.html#printing-hello-world
https://rust-cli.github.io/book/print.html#using-println
https://rust-cli.github.io/book/print.html#using-println
https://rust-cli.github.io/book/print.html#using-println
https://rust-cli.github.io/book/print.html#using-println

If you want your own data types to be printable for debugging and logging, you can in

most cases add a #[derive(Debug)] above their definition.

Note: “User-friendly” printing is done using the Display trait, debug output (human-

readable but targeted at developers) uses the Debug trait. You can find more

information about the syntax you can use in println! in the documentation for the

std::fmt module.

Printing errors

Printing errors should be done via stderr to make it easier for users and other tools to

pipe their outputs to files or more tools.

Note: On most operating systems, a program can write to two output streams,

stdout and stderr . stdout is for the program’s actual output, while stderr allows

errors and other messages to be kept separate from stdout . That way, output can

be stored to a file or piped to another program while errors are shown to the user.

In Rust this is achieved with println! and eprintln! , the former printing to stdout

and the latter to stderr .

Beware: Printing escape codes can be dangerous, putting the user’s terminal into a

weird state. Always be careful when manually printing them!

Ideally you should be using a crate like ansi_term when dealing with raw escape

codes to make your (and your user’s) life easier.

A note on printing performance

Printing to the terminal is surprisingly slow! If you call things like println! in a loop, it

can easily become a bottleneck in an otherwise fast program. To speed this up, there are

two things you can do.

First, you might want to reduce the number of writes that actually “flush” to the terminal.

println! tells the system to flush to the terminal every time, because it is common to

print each new line. If you don’t need that, you can wrap your stdout handle in a

println!("This is information");
eprintln!("This is an error! :(");

Command Line Applications in Rust https://rust-cli.github.io/book/print.html

16 of 53 10/23/23, 09:39

https://doc.rust-lang.org/1.39.0/std/fmt/trait.Display.html
https://doc.rust-lang.org/1.39.0/std/fmt/trait.Display.html
https://doc.rust-lang.org/1.39.0/std/fmt/trait.Display.html
https://doc.rust-lang.org/1.39.0/std/fmt/trait.Debug.html
https://doc.rust-lang.org/1.39.0/std/fmt/trait.Debug.html
https://doc.rust-lang.org/1.39.0/std/fmt/trait.Debug.html
https://doc.rust-lang.org/1.39.0/std/fmt/index.html
https://doc.rust-lang.org/1.39.0/std/fmt/index.html
https://doc.rust-lang.org/1.39.0/std/fmt/index.html
https://doc.rust-lang.org/1.39.0/std/fmt/index.html
https://doc.rust-lang.org/1.39.0/std/fmt/index.html
https://doc.rust-lang.org/1.39.0/std/fmt/index.html
https://rust-cli.github.io/book/print.html#printing-errors
https://rust-cli.github.io/book/print.html#printing-errors
https://en.wikipedia.org/wiki/ANSI_escape_code
https://en.wikipedia.org/wiki/ANSI_escape_code
https://rust-cli.github.io/book/print.html#a-note-on-printing-performance
https://rust-cli.github.io/book/print.html#a-note-on-printing-performance

BufWriter which by default buffers up to 8 kB. (You can still call .flush() on this

BufWriter when you want to print immediately.)

Second, it helps to acquire a lock on stdout (or stderr) and use writeln! to print to it

directly. This prevents the system from locking and unlocking stdout over and over

again.

You can also combine the two approaches.

Showing a progress bar

Some CLI applications run less than a second, others take minutes or hours. If you are

writing one of the latter types of programs, you might want to show the user that

something is happening. For this, you should try to print useful status updates, ideally in a

form that can be easily consumed.

Using the indicatif crate, you can add progress bars and little spinners to your program.

Here’s a quick example:

See the documentation and examples for more information.

use std::io::{self, Write};

let stdout = io::stdout(); // get the global stdout entity
let mut handle = io::BufWriter::new(stdout); // optional: wrap that handle in
a buffer
writeln!(handle, "foo: {}", 42); // add `?` if you care about errors here

use std::io::{self, Write};

let stdout = io::stdout(); // get the global stdout entity
let mut handle = stdout.lock(); // acquire a lock on it
writeln!(handle, "foo: {}", 42); // add `?` if you care about errors here

fn main() {
let pb = indicatif::ProgressBar::new(100);
for i in 0..100 {

 do_hard_work();
 pb.println(format!("[+] finished #{}", i));
 pb.inc(1);
 }
 pb.finish_with_message("done");
}

Command Line Applications in Rust https://rust-cli.github.io/book/print.html

17 of 53 10/23/23, 09:39

https://doc.rust-lang.org/1.39.0/std/io/struct.BufWriter.html
https://doc.rust-lang.org/1.39.0/std/io/struct.BufWriter.html
https://doc.rust-lang.org/1.39.0/std/io/struct.BufWriter.html
https://rust-cli.github.io/book/print.html#showing-a-progress-bar
https://rust-cli.github.io/book/print.html#showing-a-progress-bar
https://crates.io/crates/indicatif
https://crates.io/crates/indicatif
https://docs.rs/indicatif
https://docs.rs/indicatif
https://github.com/console-rs/indicatif/tree/main/examples
https://github.com/console-rs/indicatif/tree/main/examples

Logging

To make it easier to understand what is happening in our program, we might want to add

some log statements. This is usually easy while writing your application. But it will

become super helpful when running this program again in half a year. In some regard,

logging is the same as using println! , except that you can specify the importance of a

message. The levels you can usually use are error, warn, info, debug, and trace (error has

the highest priority, trace the lowest).

To add simple logging to your application, you’ll need two things: The log crate (this

contains macros named after the log level) and an adapter that actually writes the log

output somewhere useful. Having the ability to use log adapters is very flexible: You can,

for example, use them to write logs not only to the terminal but also to syslog, or to a

central log server.

Since we are right now only concerned with writing a CLI application, an easy adapter to

use is env_logger. It’s called “env” logger because you can use an environment variable to

specify which parts of your application you want to log (and at which level you want to log

them). It will prefix your log messages with a timestamp and the module where the log

messages come from. Since libraries can also use log , you easily configure their log

output, too.

Here’s a quick example:

Assuming you have this file as src/bin/output-log.rs , on Linux and macOS, you can

run it like this:

In Windows PowerShell, you can run it like this:

use log::{info, warn};

fn main() {
 env_logger::init();
 info!("starting up");
 warn!("oops, nothing implemented!");
}

$ env RUST_LOG=info cargo run --bin output-log
 Finished dev [unoptimized + debuginfo] target(s) in 0.17s
 Running `target/debug/output-log`
[2018-11-30T20:25:52Z INFO output_log] starting up
[2018-11-30T20:25:52Z WARN output_log] oops, nothing implemented!

Command Line Applications in Rust https://rust-cli.github.io/book/print.html

18 of 53 10/23/23, 09:39

https://rust-cli.github.io/book/print.html#logging
https://rust-cli.github.io/book/print.html#logging
https://crates.io/crates/log
https://crates.io/crates/log
https://en.wikipedia.org/wiki/Syslog
https://en.wikipedia.org/wiki/Syslog
https://crates.io/crates/env_logger
https://crates.io/crates/env_logger

In Windows CMD, you can run it like this:

RUST_LOG is the name of the environment variable you can use to set your log settings.

env_logger also contains a builder so you can programmatically adjust these settings,

and, for example, also show info level messages by default.

There are a lot of alternative logging adapters out there, and also alternatives or

extensions to log . If you know your application will have a lot to log, make sure to review

them, and make your users’ life easier.

Tip: Experience has shown that even mildly useful CLI programs can end up being

used for years to come. (Especially if they were meant as a temporary solution.) If

your application doesn’t work and someone (e.g., you, in the future) needs to figure

out why, being able to pass --verbose to get additional log output can make the

difference between minutes and hours of debugging. The clap-verbosity-flag crate

contains a quick way to add a --verbose to a project using clap .

$ $env:RUST_LOG="info"
$ cargo run --bin output-log
 Finished dev [unoptimized + debuginfo] target(s) in 0.17s
 Running `target/debug/output-log.exe`
[2018-11-30T20:25:52Z INFO output_log] starting up
[2018-11-30T20:25:52Z WARN output_log] oops, nothing implemented!

$ set RUST_LOG=info
$ cargo run --bin output-log
 Finished dev [unoptimized + debuginfo] target(s) in 0.17s
 Running `target/debug/output-log.exe`
[2018-11-30T20:25:52Z INFO output_log] starting up
[2018-11-30T20:25:52Z WARN output_log] oops, nothing implemented!

Command Line Applications in Rust https://rust-cli.github.io/book/print.html

19 of 53 10/23/23, 09:39

https://crates.io/crates/clap-verbosity-flag
https://crates.io/crates/clap-verbosity-flag

Testing

Over decades of software development, people have discovered one truth: Untested

software rarely works. (Many people would go as far as saying: “Most tested software

doesn’t work either.” But we are all optimists here, right?) So, to ensure that your program

does what you expect it to do, it is wise to test it.

One easy way to do that is to write a README file that describes what your program

should do. And when you feel ready to make a new release, go through the README and

ensure that the behavior is still as expected. You can make this a more rigorous exercise

by also writing down how your program should react to erroneous inputs.

Here’s another fancy idea: Write that README before you write the code.

Note: Have a look at test-driven development (TDD) if you haven’t heard of it.

Automated testing

Now, this is all fine and dandy, but doing all of this manually? That can take a lot of time.

At the same time, many people have come to enjoy telling computers to do things for

them. Let’s talk about how to automate these tests.

Rust has a built-in test framework, so let’s start by writing a first test:

You can put this snippet of code in pretty much any file and cargo test will find and run

it. The key here is the #[test] attribute. It allows the build system to discover such

functions and run them as tests, verifying that they don’t panic.

Exercise for the reader: Make this test work.

You should end up with output like the following:

Now that we’ve seen how we can write tests, we still need to figure out what to test. As

you’ve seen it’s fairly easy to write assertions for functions. But a CLI application is often

#[test]
fn check_answer_validity() {

assert_eq!(answer(), 42);
}

running 1 test
test check_answer_validity ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out

Command Line Applications in Rust https://rust-cli.github.io/book/print.html

20 of 53 10/23/23, 09:39

https://rust-cli.github.io/book/print.html#testing
https://rust-cli.github.io/book/print.html#testing
https://en.wikipedia.org/wiki/Test-driven_development
https://en.wikipedia.org/wiki/Test-driven_development
https://rust-cli.github.io/book/print.html#automated-testing
https://rust-cli.github.io/book/print.html#automated-testing

more than one function! Worse, it often deals with user input, reads files, and writes

output.

Making your code testable

There are two complementary approaches to testing functionality: Testing the small units

that you build your complete application from, these are called “unit tests”. There is also

testing the final application “from the outside” called “black box tests” or “integration

tests”. Let’s begin with the first one.

To figure out what we should test, let’s see what our program features are. Mainly, grrs

is supposed to print out the lines that match a given pattern. So, let’s write unit tests for

exactly this: We want to ensure that our most important piece of logic works, and we want

to do it in a way that is not dependent on any of the setup code we have around it (that

deals with CLI arguments, for example).

Going back to our first implementation of grrs , we added this block of code to the main

function:

Sadly, this is not very easy to test. First of all, it’s in the main function, so we can’t easily

call it. This is easily fixed by moving this piece of code into a function:

Now we can call this function in our test, and see what its output is:

Or… can we? Right now, find_matches prints directly to stdout , i.e., the terminal. We

// ...
for line in content.lines() {

if line.contains(&args.pattern) {
println!("{}", line);

 }
}

fn find_matches(content: &str, pattern: &str) {
for line in content.lines() {

if line.contains(pattern) {
println!("{}", line);

 }
 }
}

#[test]
fn find_a_match() {
 find_matches("lorem ipsum\ndolor sit amet", "lorem");

assert_eq!(// uhhhh

Command Line Applications in Rust https://rust-cli.github.io/book/print.html

21 of 53 10/23/23, 09:39

https://rust-cli.github.io/book/print.html#making-your-code-testable
https://rust-cli.github.io/book/print.html#making-your-code-testable
https://rust-cli.github.io/book/tutorial/impl-draft.html
https://rust-cli.github.io/book/tutorial/impl-draft.html

can’t easily capture this in a test! This is a problem that often comes up when writing tests

after the implementation: We have written a function that is firmly integrated in the

context it is used in.

Note: This is totally fine when writing small CLI applications. There’s no need to make

everything testable! It is important to think about which parts of your code you might

want to write unit tests for, however. While we’ll see that it’s easy to change this

function to be testable, this is not always the case.

Alright, how can we make this testable? We’ll need to capture the output somehow. Rust’s

standard library has some neat abstractions for dealing with I/O (input/output) and we’ll

make use of one called std::io::Write . This is a trait that abstracts over things we can

write to, which includes strings but also stdout .

If this is the first time you’ve heard “trait” in the context of Rust, you are in for a treat.

Traits are one of the most powerful features of Rust. You can think of them like interfaces

in Java, or type classes in Haskell (whatever you are more familiar with). They allow you to

abstract over behavior that can be shared by different types. Code that uses traits can

express ideas in very generic and flexible ways. This means it can also get difficult to read,

though. Don’t let that intimidate you: Even people who have used Rust for years don’t

always get what generic code does immediately. In that case, it helps to think of concrete

uses. For example, in our case, the behavior that we abstract over is “write to it”.

Examples for the types that implement (“impl”) it include: The terminal’s standard output,

files, a buffer in memory, or TCP network connections. (Scroll down in the documentation

for std::io::Write to see a list of “Implementors”.)

With that knowledge, let’s change our function to accept a third parameter. It should be

of any type that implements Write . This way, we can then supply a simple string in our

tests and make assertions on it. Here is how we can write this version of find_matches :

The new parameter is mut writer , i.e., a mutable thing we call “writer”. Its type is impl

std::io::Write , which you can read as “a placeholder for any type that implements the

Write trait”. Also note how we replaced the println!(…) we used earlier with writeln!

(writer, …) . println! works the same as writeln! but always uses standard output.

Now we can test for the output:

fn find_matches(content: &str, pattern: &str, mut writer: impl
std::io::Write) {

for line in content.lines() {
if line.contains(pattern) {

writeln!(writer, "{}", line);
 }
 }
}

Command Line Applications in Rust https://rust-cli.github.io/book/print.html

22 of 53 10/23/23, 09:39

https://doc.rust-lang.org/1.39.0/std/io/trait.Write.html
https://doc.rust-lang.org/1.39.0/std/io/trait.Write.html
https://doc.rust-lang.org/1.39.0/std/io/trait.Write.html
https://doc.rust-lang.org/book/ch10-02-traits.html
https://doc.rust-lang.org/book/ch10-02-traits.html
https://doc.rust-lang.org/1.39.0/std/io/trait.Write.html
https://doc.rust-lang.org/1.39.0/std/io/trait.Write.html
https://doc.rust-lang.org/1.39.0/std/io/trait.Write.html
https://doc.rust-lang.org/1.39.0/std/io/trait.Write.html
https://doc.rust-lang.org/1.39.0/std/io/trait.Write.html
https://doc.rust-lang.org/1.39.0/std/io/trait.Write.html

To now use this in our application code, we have to change the call to find_matches in

main by adding &mut std::io::stdout() as the third parameter. Here’s an example of a

main function that builds on what we’ve seen in the previous chapters and uses our

extracted find_matches function:

Note: Since stdout expects bytes (not strings), we use std::io::Write instead of

std::fmt::Write . As a result, we give an empty vector as “writer” in our tests (its

type will be inferred to Vec<u8>), in the assert_eq! we use a b"foo" . (The b prefix

makes this a byte string literal so its type is going to be &[u8] instead of &str).

Note: We could also make this function return a String , but that would change its

behavior. Instead of writing to the terminal directly, it would then collect everything

into a string, and dump all the results in one go at the end.

Exercise for the reader: writeln! returns an io::Result because writing can fail,

for example when the buffer is full and cannot be expanded. Add error handling to

find_matches .

We’ve just seen how to make this piece of code easily testable. We have

1. identified one of the core pieces of our application,

2. put it into its own function,

3. and made it more flexible.

Even though the goal was to make it testable, the result we ended up with is actually a

very idiomatic and reusable piece of Rust code. That’s awesome!

#[test]
fn find_a_match() {

let mut result = Vec::new();
 find_matches("lorem ipsum\ndolor sit amet", "lorem", &mut result);

assert_eq!(result, b"lorem ipsum\n");
}

fn main() -> Result<()> {
let args = Cli::parse();
let content = std::fs::read_to_string(&args.path)

 .with_context(|| format!("could not read file `{}`",
args.path.display()))?;

 find_matches(&content, &args.pattern, &mut std::io::stdout());

Ok(())
}

Command Line Applications in Rust https://rust-cli.github.io/book/print.html

23 of 53 10/23/23, 09:39

https://doc.rust-lang.org/1.39.0/std/io/fn.stdout.html
https://doc.rust-lang.org/1.39.0/std/io/fn.stdout.html
https://doc.rust-lang.org/1.39.0/std/io/fn.stdout.html
https://doc.rust-lang.org/1.39.0/std/macro.writeln.html
https://doc.rust-lang.org/1.39.0/std/macro.writeln.html
https://doc.rust-lang.org/1.39.0/std/macro.writeln.html
https://doc.rust-lang.org/1.39.0/std/io/type.Result.html
https://doc.rust-lang.org/1.39.0/std/io/type.Result.html
https://doc.rust-lang.org/1.39.0/std/io/type.Result.html

Splitting your code into library and binary targets

We can do one more thing here. So far we’ve put everything we wrote into the

src/main.rs file. This means our current project produces a single binary. But we can

also make our code available as a library, like this:

1. Put the find_matches function into a new src/lib.rs .

2. Add a pub in front of the fn (so it’s pub fn find_matches) to make it something

that users of our library can access.

3. Remove find_matches from src/main.rs .

4. In the fn main , prepend the call to find_matches with grrs:: , so it’s now

grrs::find_matches(…) . This means it uses the function from the library we just

wrote!

The way Rust deals with projects is quite flexible and it’s a good idea to think about what

to put into the library part of your crate early on. You can for example think about writing

a library for your application-specific logic first and then use it in your CLI just like any

other library. Or, if your project has multiple binaries, you can put the common

functionality into the library part of that crate.

Note: Speaking of putting everything into a src/main.rs : If we continue to do that,

it’ll become difficult to read. The module system can help you structure and organize

your code.

Testing CLI applications by running them

Thus far, we’ve gone out of our way to test the business logic of our application, which

turned out to be the find_matches function. This is very valuable and is a great first step

towards a well-tested code base. (Usually, these kinds of tests are called “unit tests”.)

There is a lot of code we aren’t testing, though: Everything that we wrote to deal with the

outside world! Imagine you wrote the main function, but accidentally left in a hard-coded

string instead of using the argument of the user-supplied path. We should write tests for

that, too! (This level of testing is often called “integration testing”, or “system testing”.)

At its core, we are still writing functions and annotating them with #[test] . It’s just a

matter of what we do inside these functions. For example, we’ll want to use the main

binary of our project, and run it like a regular program. We will also put these tests into a

new file in a new directory: tests/cli.rs .

Note: By convention, cargo will look for integration tests in the tests/ directory.

Similarly, it will look for benchmarks in benches/ , and examples in examples/ . These

Command Line Applications in Rust https://rust-cli.github.io/book/print.html

24 of 53 10/23/23, 09:39

https://rust-cli.github.io/book/print.html#splitting-your-code-into-library-and-binary-targets
https://rust-cli.github.io/book/print.html#splitting-your-code-into-library-and-binary-targets
https://doc.rust-lang.org/1.39.0/book/ch07-00-managing-growing-projects-with-packages-crates-and-modules.html
https://doc.rust-lang.org/1.39.0/book/ch07-00-managing-growing-projects-with-packages-crates-and-modules.html
https://rust-cli.github.io/book/print.html#testing-cli-applications-by-running-them
https://rust-cli.github.io/book/print.html#testing-cli-applications-by-running-them

conventions also extend to your main source code: libraries have a src/lib.rs file,

the main binary is src/main.rs , or, if there are multiple binaries, cargo expects them

to be in src/bin/<name>.rs . Following these conventions will make your code base

more discoverable by people used to reading Rust code.

To recall, grrs is a small tool that searches for a string in a file. We have previously

tested that we can find a match. Let’s think about what other functionality we can test.

Here is what I came up with.

• What happens when the file doesn’t exist?

• What is the output when there is no match?

• Does our program exit with an error when we forget one (or both) arguments?

These are all valid test cases. Additionally, we should also include one test case for the

“happy path”, i.e., we found at least one match and we print it.

To make these kinds of tests easier, we’re going to use the assert_cmd crate. It has a

bunch of neat helpers that allow us to run our main binary and see how it behaves.

Further, we’ll also add the predicates crate which helps us write assertions that

assert_cmd can test against (and that have great error messages). We’ll add those

dependencies not to the main list, but to a “dev dependencies” section in our

Cargo.toml . They are only required when developing the crate, not when using it.

This sounds like a lot of setup. Nevertheless – let’s dive right in and create our

tests/cli.rs file:

You can run this test with cargo test , just like the tests we wrote above. It might take a

little longer the first time, as Command::cargo_bin("grrs") needs to compile your main

[dev-dependencies]
assert_cmd = "2.0.12"
predicates = "3.0.4"

use assert_cmd::prelude::*; // Add methods on commands
use predicates::prelude::*; // Used for writing assertions
use std::process::Command; // Run programs

#[test]
fn file_doesnt_exist() -> Result<(), Box<dyn std::error::Error>> {

let mut cmd = Command::cargo_bin("grrs")?;

 cmd.arg("foobar").arg("test/file/doesnt/exist");
 cmd.assert()
 .failure()
 .stderr(predicate::str::contains("could not read file"));

Ok(())
}

Command Line Applications in Rust https://rust-cli.github.io/book/print.html

25 of 53 10/23/23, 09:39

https://docs.rs/assert_cmd
https://docs.rs/assert_cmd
https://docs.rs/assert_cmd
https://docs.rs/predicates
https://docs.rs/predicates
https://docs.rs/predicates

binary.

Generating test files

The test we’ve just seen only checks that our program writes an error message when the

input file doesn’t exist. That’s an important test to have, but maybe not the most

important one: Let’s now test that we will actually print the matches we found in a file!

We’ll need to have a file whose content we know, so that we can know what our program

should return and check this expectation in our code. One idea might be to add a file to

the project with custom content and use that in our tests. Another would be to create

temporary files in our tests. For this tutorial, we’ll have a look at the latter approach.

Mainly, because it is more flexible and will also work in other cases; for example, when

you are testing programs that change the files.

To create these temporary files, we’ll be using the assert_fs crate. Let’s add it to the

dev-dependencies in our Cargo.toml :

Here is a new test case (that you can write below the other one) that first creates a temp

file (a “named” one so we can get its path), fills it with some text, and then runs our

program to see if we get the correct output. When the file goes out of scope (at the end

of the function), the actual temporary file will automatically get deleted.

Exercise for the reader: Add integration tests for passing an empty string as pattern.

Adjust the program as needed.

assert_fs = "1.0.13"

use assert_fs::prelude::*;

#[test]
fn find_content_in_file() -> Result<(), Box<dyn std::error::Error>> {

let file = assert_fs::NamedTempFile::new("sample.txt")?;
 file.write_str("A test\nActual content\nMore content\nAnother test")?;

let mut cmd = Command::cargo_bin("grrs")?;
 cmd.arg("test").arg(file.path());
 cmd.assert()
 .success()
 .stdout(predicate::str::contains("A test\nAnother test"));

Ok(())
}

Command Line Applications in Rust https://rust-cli.github.io/book/print.html

26 of 53 10/23/23, 09:39

https://rust-cli.github.io/book/print.html#generating-test-files
https://rust-cli.github.io/book/print.html#generating-test-files
https://docs.rs/assert_fs
https://docs.rs/assert_fs
https://docs.rs/assert_fs

What to test?

While it can certainly be fun to write integration tests, it will also take some time to write

them, as well as to update them when your application’s behavior changes. To make sure

you use your time wisely, you should ask yourself what you should test.

In general it’s a good idea to write integration tests for all types of behavior that a user

can observe. That means that you don’t need to cover all edge cases: It usually suffices to

have examples for the different types and rely on unit tests to cover the edge cases.

It is also a good idea not to focus your tests on things you can’t actively control. It would

be a bad idea to test the exact layout of --help as it is generated for you. Instead, you

might just want to check that certain elements are present.

Depending on the nature of your program, you can also try to add more testing

techniques. For example, if you have extracted parts of your program and find yourself

writing a lot of example cases as unit tests while trying to come up with all the edge cases,

you should look into proptest . If you have a program which consumes arbitrary files and

parses them, try to write a fuzzer to find bugs in edge cases.

Note: You can find the full, runnable source code used in this chapter in this book’s

repository.

Command Line Applications in Rust https://rust-cli.github.io/book/print.html

27 of 53 10/23/23, 09:39

https://rust-cli.github.io/book/print.html#what-to-test
https://rust-cli.github.io/book/print.html#what-to-test
https://docs.rs/proptest
https://docs.rs/proptest
https://docs.rs/proptest
https://rust-fuzz.github.io/book/introduction.html
https://rust-fuzz.github.io/book/introduction.html
https://github.com/rust-cli/book/tree/master/src/tutorial/testing
https://github.com/rust-cli/book/tree/master/src/tutorial/testing
https://github.com/rust-cli/book/tree/master/src/tutorial/testing
https://github.com/rust-cli/book/tree/master/src/tutorial/testing

Packaging and distributing a Rust tool

If you feel confident that your program is ready for other people to use, it is time to

package and release it!

There are a few approaches, and we’ll look at three of them from “quickest to set up” to

“most convenient for users”.

Quickest: cargo publish

The easiest way to publish your app is with cargo. Do you remember how we added

external dependencies to our project? Cargo downloaded them from its default “crate

registry”, crates.io. With cargo publish , you too can publish crates to crates.io. And this

works for all crates, including those with binary targets.

Publishing a crate to crates.io is pretty straightforward: If you haven’t already, create an

account on crates.io. Currently, this is done via authorizing you on GitHub, so you’ll need

to have a GitHub account (and be logged in there). Next, you log in using cargo on your

local machine. For that, go to your crates.io account page, create a new token, and then

run cargo login <your-new-token> . You only need to do this once per computer. You

can learn more about this in cargo’s publishing guide.

Now that cargo as well as crates.io know you, you are ready to publish crates. Before you

hastily go ahead and publish a new crate (version), it’s a good idea to open your

Cargo.toml once more and make sure you added the necessary metadata. You can find

all the possible fields you can set in the documentation for cargo’s manifest format.

Here’s a quick overview of some common entries:

Note: This example includes the mandatory license field with a common choice for

Rust projects: The same license that is also used for the compiler itself. It also refers

to a README.md file. It should include a quick description of what your project is

about, and will be included not only on the crates.io page of your crate, but also what

[package]
name = "grrs"
version = "0.1.0"
authors = ["Your Name <your@email.com>"]
license = "MIT OR Apache-2.0"
description = "A tool to search files"
readme = "README.md"
homepage = "https://github.com/you/grrs"
repository = "https://github.com/you/grrs"
keywords = ["cli", "search", "demo"]
categories = ["command-line-utilities"]

Command Line Applications in Rust https://rust-cli.github.io/book/print.html

28 of 53 10/23/23, 09:39

https://rust-cli.github.io/book/print.html#packaging-and-distributing-a-rust-tool
https://rust-cli.github.io/book/print.html#packaging-and-distributing-a-rust-tool
https://rust-cli.github.io/book/print.html#quickest-cargo-publish
https://rust-cli.github.io/book/print.html#quickest-cargo-publish
https://rust-cli.github.io/book/print.html#quickest-cargo-publish
https://rust-cli.github.io/book/print.html#quickest-cargo-publish
https://crates.io/
https://crates.io/
https://crates.io/
https://crates.io/
https://crates.io/
https://crates.io/
https://crates.io/
https://crates.io/
https://crates.io/me
https://crates.io/me
https://doc.rust-lang.org/1.39.0/cargo/reference/publishing.html
https://doc.rust-lang.org/1.39.0/cargo/reference/publishing.html
https://doc.rust-lang.org/1.39.0/cargo/reference/manifest.html
https://doc.rust-lang.org/1.39.0/cargo/reference/manifest.html

GitHub shows by default on repository pages.

How to install a binary from crates.io

We’ve seen how to publish a crate to crates.io, and you might be wondering how to install

it. In contrast to libraries, which cargo will download and compile for you when you run

cargo build (or a similar command), you’ll need to tell it to explicitly install binaries.

This is done using cargo install <crate-name> . It will by default download the crate,

compile all the binary targets it contains (in “release” mode, so it might take a while) and

copy them into the ~/.cargo/bin/ directory. (Make sure that your shell knows to look

there for binaries!)

It’s also possible to install crates from git repositories, only install specific binaries of a

crate, and specify an alternative directory to install them to. Have a look at cargo

install --help for details.

When to use it

cargo install is a simple way to install a binary crate. It’s very convenient for Rust

developers to use, but has some significant downsides: Since it will always compile your

source from scratch, users of your tool will need to have Rust, cargo, and all other system

dependencies your project requires to be installed on their machine. Compiling large Rust

codebases can also take some time.

It’s best to use this for distributing tools that are targeted at other Rust developers. For

example: A lot of cargo subcommands like cargo-tree or cargo-outdated can be

installed with it.

Distributing binaries

Rust is a language that compiles to native code and by default statically links all

dependencies. When you run cargo build on your project that contains a binary called

grrs , you’ll end up with a binary file called grrs . Try it out: Using cargo build , it’ll be

target/debug/grrs , and when you run cargo build --release , it’ll be target/release

/grrs . Unless you use crates that explicitly need external libraries to be installed on the

target system (like using the system’s version of OpenSSL), this binary will only depend on

common system libraries. That means, you take that one file, send it to people running

the same operating system as you, and they’ll be able to run it.

Command Line Applications in Rust https://rust-cli.github.io/book/print.html

29 of 53 10/23/23, 09:39

https://rust-cli.github.io/book/print.html#how-to-install-a-binary-from-cratesio
https://rust-cli.github.io/book/print.html#how-to-install-a-binary-from-cratesio
https://rust-cli.github.io/book/print.html#when-to-use-it
https://rust-cli.github.io/book/print.html#when-to-use-it
https://rust-cli.github.io/book/print.html#distributing-binaries
https://rust-cli.github.io/book/print.html#distributing-binaries

This is already very powerful! It works around two of the downsides we just saw for

cargo install : There is no need to have Rust installed on the user’s machine, and

instead of it taking a minute to compile, they can instantly run the binary.

So, as we’ve seen, cargo build already builds binaries for us. The only issue is, those are

not guaranteed to work on all platforms. If you run cargo build on your Windows

machine, you won’t get a binary that works on a Mac by default. Is there a way to

generate these binaries for all the interesting platforms automatically?

Building binary releases on CI

If your tool is open sourced and hosted on GitHub, it’s quite easy to set up a free CI

(continuous integration) service like Travis CI. (There are other services that also work on

other platforms, but Travis is very popular.) This basically runs setup commands in a

virtual machine each time you push changes to your repository. What those commands

are, and the types of machines they run on, is configurable. For example: A good idea is

to run cargo test on a machine with Rust and some common build tools installed. If this

fails, you know there are issues in the most recent changes.

We can also use this to build binaries and upload them to GitHub! Indeed, if we run

cargo build --release and upload the binary somewhere, we should be all set, right?

Not quite. We still need to make sure the binaries we build are compatible with as many

systems as possible. For example, on Linux we can compile not for the current system,

but instead for the x86_64-unknown-linux-musl target, to not depend on default system

libraries. On macOS, we can set MACOSX_DEPLOYMENT_TARGET to 10.7 to only depend on

system features present in versions 10.7 and older.

You can see one example of building binaries using this approach here for Linux and

macOS and here for Windows (using AppVeyor).

Another way is to use pre-built (Docker) images that contain all the tools we need to build

binaries. This allows us to easily target more exotic platforms, too. The trust project

contains scripts that you can include in your project as well as instructions on how to set

this up. It also includes support for Windows using AppVeyor.

If you’d rather set this up locally and generate the release files on your own machine, still

have a look at trust. It uses cross internally, which works similar to cargo but forwards

commands to a cargo process inside a Docker container. The definitions of the images

are also available in cross’ repository.

How to install these binaries

You point your users to your release page that might look something like this one, and

Command Line Applications in Rust https://rust-cli.github.io/book/print.html

30 of 53 10/23/23, 09:39

https://rust-cli.github.io/book/print.html#building-binary-releases-on-ci
https://rust-cli.github.io/book/print.html#building-binary-releases-on-ci
https://travis-ci.com/
https://travis-ci.com/
https://github.com/rustwasm/wasm-pack/blob/51e6351c28fbd40745719e6d4a7bf26dadd30c85/.travis.yml#L74-L91
https://github.com/rustwasm/wasm-pack/blob/51e6351c28fbd40745719e6d4a7bf26dadd30c85/.travis.yml#L74-L91
https://github.com/rustwasm/wasm-pack/blob/51e6351c28fbd40745719e6d4a7bf26dadd30c85/.appveyor.yml
https://github.com/rustwasm/wasm-pack/blob/51e6351c28fbd40745719e6d4a7bf26dadd30c85/.appveyor.yml
https://github.com/japaric/trust
https://github.com/japaric/trust
https://github.com/rust-embedded/cross
https://github.com/rust-embedded/cross
https://github.com/rust-embedded/cross
https://github.com/rust-embedded/cross
https://rust-cli.github.io/book/print.html#how-to-install-these-binaries
https://rust-cli.github.io/book/print.html#how-to-install-these-binaries
https://github.com/rustwasm/wasm-pack/releases/tag/v0.5.1
https://github.com/rustwasm/wasm-pack/releases/tag/v0.5.1

they can download the artifacts we’ve just created. The release artifacts we’ve just

generated are nothing special: At the end, they are just archive files that contain our

binaries! This means that users of your tool can download them with their browser,

extract them (often happens automatically), and copy the binaries to a place they like.

This does require some experience with manually “installing” programs, so you want to

add a section to your README file on how to install this program.

Note: If you used trust to build your binaries and added them to GitHub releases,

you can also tell people to run curl -LSfs https://japaric.github.io/trust

/install.sh | sh -s -- --git your-name/repo-name if you think that makes it

easier.

When to use it

Having binary releases is a good idea in general, there’s hardly any downside to it. It does

not solve the problem of users having to manually install and update your tools, but they

can quickly get the latest releases version without the need to install Rust.

What to package in addition to your binaries

Right now, when a user downloads our release builds, they will get a .tar.gz file that

only contains binary files. So, in our example project, they will just get a single grrs file

they can run. But there are some more files we already have in our repository that they

might want to have. The README file that tells them how to use this tool, and the license

file(s), for example. Since we already have them, they are easy to add.

There are some more interesting files that make sense especially for command-line tools,

though: How about we also ship a man page in addition to that README file, and config

files that add completions of the possible flags to your shell? You can write these by hand,

but clap, the argument parsing library we use (which clap builds upon) has a way to

generate all these files for us. See this in-depth chapter for more details.

Getting your app into package repositories

Both approaches we’ve seen so far are not how you typically install software on your

machine. Especially command-line tools you install using global package managers on

most operating systems. The advantages for users are quite obvious: There is no need to

think about how to install your program, if it can be installed the same way as they install

the other tools. These package managers also allow users to update their programs when

Command Line Applications in Rust https://rust-cli.github.io/book/print.html

31 of 53 10/23/23, 09:39

https://github.com/japaric/trust
https://github.com/japaric/trust
https://rust-cli.github.io/book/print.html#when-to-use-it-1
https://rust-cli.github.io/book/print.html#when-to-use-it-1
https://rust-cli.github.io/book/print.html#what-to-package-in-addition-to-your-binaries
https://rust-cli.github.io/book/print.html#what-to-package-in-addition-to-your-binaries
https://rust-cli.github.io/book/in-depth/docs.html
https://rust-cli.github.io/book/in-depth/docs.html
https://rust-cli.github.io/book/print.html#getting-your-app-into-package-repositories
https://rust-cli.github.io/book/print.html#getting-your-app-into-package-repositories

a new version is available.

Sadly, supporting different systems means you’ll have to look at how these different

systems work. For some, it might be as easy as adding a file to your repository (e.g.

adding a Formula file like this for macOS’s brew), but for others you’ll often need to send

in patches yourself and add your tool to their repositories. There are helpful tools like

cargo-bundle, cargo-deb, and cargo-aur, but describing how they work and how to

correctly package your tool for those different systems is beyond the scope of this

chapter.

Instead, let’s have a look at a tool that is written in Rust and that is available in many

different package managers.

An example: ripgrep

ripgrep is an alternative to grep / ack / ag and is written in Rust. It’s quite successful and

is packaged for many operating systems: Just look at the “Installation” section of its

README!

Note that it lists a few different options how you can install it: It starts with a link to the

GitHub releases which contain the binaries so you can download them directly; then it

lists how to install it using a bunch of different package managers; finally, you can also

install it using cargo install .

This seems like a very good idea: Don’t pick and choose one of the approaches presented

here, but start with cargo install , add binary releases, and finally start distributing

your tool using system package managers.

Command Line Applications in Rust https://rust-cli.github.io/book/print.html

32 of 53 10/23/23, 09:39

https://github.com/BurntSushi/ripgrep/blob/31adff6f3c4bfefc9e77df40871f2989443e6827/pkg/brew/ripgrep-bin.rb
https://github.com/BurntSushi/ripgrep/blob/31adff6f3c4bfefc9e77df40871f2989443e6827/pkg/brew/ripgrep-bin.rb
https://crates.io/crates/cargo-bundle
https://crates.io/crates/cargo-bundle
https://crates.io/crates/cargo-deb
https://crates.io/crates/cargo-deb
https://crates.io/crates/cargo-aur
https://crates.io/crates/cargo-aur
https://rust-cli.github.io/book/print.html#an-example-ripgrep
https://rust-cli.github.io/book/print.html#an-example-ripgrep
https://github.com/BurntSushi/ripgrep
https://github.com/BurntSushi/ripgrep
https://github.com/BurntSushi/ripgrep/tree/31adff6f3c4bfefc9e77df40871f2989443e6827#installation
https://github.com/BurntSushi/ripgrep/tree/31adff6f3c4bfefc9e77df40871f2989443e6827#installation

In-depth topics

A small collection of chapters covering some more details that you might care about

when writing your command line application.

Command Line Applications in Rust https://rust-cli.github.io/book/print.html

33 of 53 10/23/23, 09:39

https://rust-cli.github.io/book/print.html#in-depth-topics
https://rust-cli.github.io/book/print.html#in-depth-topics

Signal handling

Processes like command line applications need to react to signals sent by the operating

system. The most common example is probably Ctrl+C, the signal that typically tells a

process to terminate. To handle signals in Rust programs you need to consider how you

can receive these signals as well as how you can react to them.

Note: If your applications does not need to gracefully shutdown, the default handling

is fine (i.e. exit immediately and let the OS cleanup resources like open file handles).

In that case: No need to do what this chapter tells you!

However, for applications that need to clean up after themselves, this chapter is very

relevant! For example, if your application needs to properly close network

connections (saying “good bye” to the processes at the other end), remove temporary

files, or reset system settings, read on.

Differences between operating systems

On Unix systems (like Linux, macOS, and FreeBSD) a process can receive signals. It can

either react to them in a default (OS-provided) way, catch the signal and handle them in a

program-defined way, or ignore the signal entirely.

Windows does not have signals. You can use Console Handlers to define callbacks that

get executed when an event occurs. There is also structured exception handling which

handles all the various types of system exceptions such as division by zero, invalid access

exceptions, stack overflow, and so on

First off: Handling Ctrl+C

The ctrlc crate does just what the name suggests: It allows you to react to the user

pressing Ctrl+C, in a cross-platform way. The main way to use the crate is this:

Command Line Applications in Rust https://rust-cli.github.io/book/print.html

34 of 53 10/23/23, 09:39

https://rust-cli.github.io/book/print.html#signal-handling
https://rust-cli.github.io/book/print.html#signal-handling
https://rust-cli.github.io/book/print.html#differences-between-operating-systems
https://rust-cli.github.io/book/print.html#differences-between-operating-systems
https://manpages.ubuntu.com/manpages/bionic/en/man7/signal.7.html
https://manpages.ubuntu.com/manpages/bionic/en/man7/signal.7.html
https://docs.microsoft.com/en-us/windows/console/console-control-handlers
https://docs.microsoft.com/en-us/windows/console/console-control-handlers
https://docs.microsoft.com/en-us/windows/desktop/debug/structured-exception-handling
https://docs.microsoft.com/en-us/windows/desktop/debug/structured-exception-handling
https://rust-cli.github.io/book/print.html#first-off-handling-ctrlc
https://rust-cli.github.io/book/print.html#first-off-handling-ctrlc
https://crates.io/crates/ctrlc
https://crates.io/crates/ctrlc

This is, of course, not that helpful: It only prints a message but otherwise doesn’t stop the

program.

In a real-world program, it’s a good idea to instead set a variable in the signal handler that

you then check in various places in your program. For example, you can set an

Arc<AtomicBool> (a boolean shareable between threads) in your signal handler, and in

hot loops, or when waiting for a thread, you periodically check its value and break when it

becomes true.

Handling other types of signals

The ctrlc crate only handles Ctrl+C, or, what on Unix systems would be called SIGINT

(the “interrupt” signal). To react to more Unix signals, you should have a look at signal-

hook. Its design is described in this blog post, and it is currently the library with the widest

community support.

Here’s a simple example:

use std::{thread, time::Duration};

fn main() {
 ctrlc::set_handler(move || {

println!("received Ctrl+C!");
 })
 .expect("Error setting Ctrl-C handler");

// Following code does the actual work, and can be interrupted by
pressing

// Ctrl-C. As an example: Let's wait a few seconds.
 thread::sleep(Duration::from_secs(2));
}

Command Line Applications in Rust https://rust-cli.github.io/book/print.html

35 of 53 10/23/23, 09:39

https://rust-cli.github.io/book/print.html#handling-other-types-of-signals
https://rust-cli.github.io/book/print.html#handling-other-types-of-signals
https://crates.io/crates/ctrlc
https://crates.io/crates/ctrlc
https://crates.io/crates/signal-hook
https://crates.io/crates/signal-hook
https://crates.io/crates/signal-hook
https://crates.io/crates/signal-hook
https://vorner.github.io/2018/06/28/signal-hook.html
https://vorner.github.io/2018/06/28/signal-hook.html

Using channels

Instead of setting a variable and having other parts of the program check it, you can use

channels: You create a channel into which the signal handler emits a value whenever the

signal is received. In your application code you use this and other channels as

synchronization points between threads. Using crossbeam-channel it would look

something like this:

use signal_hook::{consts::SIGINT, iterator::Signals};
use std::{error::Error, thread, time::Duration};

fn main() -> Result<(), Box<dyn Error>> {
let mut signals = Signals::new(&[SIGINT])?;

 thread::spawn(move || {
for sig in signals.forever() {

println!("Received signal {:?}", sig);
 }
 });

// Following code does the actual work, and can be interrupted by
pressing

// Ctrl-C. As an example: Let's wait a few seconds.
 thread::sleep(Duration::from_secs(2));

Ok(())
}

Command Line Applications in Rust https://rust-cli.github.io/book/print.html

36 of 53 10/23/23, 09:39

https://rust-cli.github.io/book/print.html#using-channels
https://rust-cli.github.io/book/print.html#using-channels
https://crates.io/crates/crossbeam-channel
https://crates.io/crates/crossbeam-channel

Using futures and streams

If you are using tokio, you are most likely already writing your application with

asynchronous patterns and an event-driven design. Instead of using crossbeam’s

channels directly, you can enable signal-hook’s tokio-support feature. This allows you to

call .into_async() on signal-hook’s Signals types to get a new type that implements

futures::Stream .

What to do when you receive another Ctrl+C while

you’re handling the first Ctrl+C

Most users will press Ctrl+C, and then give your program a few seconds to exit, or tell

them what’s going on. If that doesn’t happen, they will press Ctrl+C again. The typical

use std::time::Duration;
use crossbeam_channel::{bounded, tick, Receiver, select};
use anyhow::Result;

fn ctrl_channel() -> Result<Receiver<()>, ctrlc::Error> {
let (sender, receiver) = bounded(100);

 ctrlc::set_handler(move || {
let _ = sender.send(());

 })?;

Ok(receiver)
}

fn main() -> Result<()> {
let ctrl_c_events = ctrl_channel()?;
let ticks = tick(Duration::from_secs(1));

loop {
select! {

 recv(ticks) -> _ => {
println!("working!");

 }
 recv(ctrl_c_events) -> _ => {

println!();
println!("Goodbye!");
break;

 }
 }
 }

Ok(())
}

Command Line Applications in Rust https://rust-cli.github.io/book/print.html

37 of 53 10/23/23, 09:39

https://rust-cli.github.io/book/print.html#using-futures-and-streams
https://rust-cli.github.io/book/print.html#using-futures-and-streams
https://tokio.rs/
https://tokio.rs/
https://docs.rs/signal-hook/0.1.6/signal_hook/iterator/struct.Signals.html#method.into_async
https://docs.rs/signal-hook/0.1.6/signal_hook/iterator/struct.Signals.html#method.into_async
https://docs.rs/signal-hook/0.1.6/signal_hook/iterator/struct.Signals.html#method.into_async
https://rust-cli.github.io/book/print.html#what-to-do-when-you-receive-another-ctrlc-while-youre-handling-the-first-ctrlc
https://rust-cli.github.io/book/print.html#what-to-do-when-you-receive-another-ctrlc-while-youre-handling-the-first-ctrlc
https://rust-cli.github.io/book/print.html#what-to-do-when-you-receive-another-ctrlc-while-youre-handling-the-first-ctrlc
https://rust-cli.github.io/book/print.html#what-to-do-when-you-receive-another-ctrlc-while-youre-handling-the-first-ctrlc

behavior is to have the application quit immediately.

Command Line Applications in Rust https://rust-cli.github.io/book/print.html

38 of 53 10/23/23, 09:39

Using config files

Dealing with configurations can be annoying especially if you support multiple operating

systems which all have their own places for short- and long-term files.

There are multiple solutions to this, some being more low-level than others.

The easiest crate to use for this is confy . It asks you for the name of your application and

requires you to specify the config layout via a struct (that is Serialize , Deserialize)

and it will figure out the rest!

This is incredibly easy to use for which you of course surrender configurability. But if a

simple config is all you want, this crate might be for you!

Configuration environments

TODO

1. Evaluate crates that exist

2. Cli-args + multiple configs + env variables

3. Can configure do all this? Is there a nice wrapper around it?

#[derive(Debug, Serialize, Deserialize)]
struct MyConfig {
 name: String,
 comfy: bool,
 foo: i64,
}

fn main() -> Result<(), io::Error> {
let cfg: MyConfig = confy::load("my_app")?;
println!("{:#?}", cfg);
Ok(())

}

Command Line Applications in Rust https://rust-cli.github.io/book/print.html

39 of 53 10/23/23, 09:39

https://rust-cli.github.io/book/print.html#using-config-files
https://rust-cli.github.io/book/print.html#using-config-files
https://docs.rs/confy/0.3.1/confy/
https://docs.rs/confy/0.3.1/confy/
https://docs.rs/confy/0.3.1/confy/
https://rust-cli.github.io/book/print.html#configuration-environments
https://rust-cli.github.io/book/print.html#configuration-environments
https://docs.rs/configure/0.1.1/configure/
https://docs.rs/configure/0.1.1/configure/
https://docs.rs/configure/0.1.1/configure/

Exit codes

A program doesn’t always succeed. And when an error occurs, you should make sure to

emit the necessary information correctly. In addition to telling the user about errors, on

most systems, when a process exits, it also emits an exit code (an integer between 0 and

255 is compatible with most platforms). You should try to emit the correct code for your

program’s state. For example, in the ideal case when your program succeeds, it should

exit with 0 .

When an error occurs, it gets a bit more complicated, though. In the wild, many tools exit

with 1 when a common failure occurs. Currently, Rust sets an exit code of 101 when the

process panicked. Beyond that, people have done many things in their programs.

So, what to do? The BSD ecosystem has collected a common definition for their exit codes

(you can find them here). The Rust library exitcode provides these same codes, ready to

be used in your application. Please see its API documentation for the possible values to

use.

After you add the exitcode dependency to your Cargo.toml , you can use it like this:

fn main() {
// ...actual work...
match result {

Ok(_) => {
println!("Done!");

 std::process::exit(exitcode::OK);
 }

Err(CustomError::CantReadConfig(e)) => {
 eprintln!("Error: {}", e);
 std::process::exit(exitcode::CONFIG);
 }

Err(e) => {
 eprintln!("Error: {}", e);
 std::process::exit(exitcode::DATAERR);
 }
 }
}

Command Line Applications in Rust https://rust-cli.github.io/book/print.html

40 of 53 10/23/23, 09:39

https://rust-cli.github.io/book/print.html#exit-codes
https://rust-cli.github.io/book/print.html#exit-codes
https://rust-cli.github.io/book/in-depth/human-communication.html
https://rust-cli.github.io/book/in-depth/human-communication.html
https://www.freebsd.org/cgi/man.cgi?query=sysexits&apropos=0&sektion=0&manpath=FreeBSD+11.2-stable&arch=default&format=html
https://www.freebsd.org/cgi/man.cgi?query=sysexits&apropos=0&sektion=0&manpath=FreeBSD+11.2-stable&arch=default&format=html
https://crates.io/crates/exitcode
https://crates.io/crates/exitcode
https://crates.io/crates/exitcode

Communicating with humans

Make sure to read the chapter on CLI output in the tutorial first. It covers how to write

output to the terminal, while this chapter will talk about what to output.

When everything is fine

It is useful to report on the application’s progress even when everything is fine. Try to be

informative and concise in these messages. Don’t use overly technical terms in the logs.

Remember: the application is not crashing so there’s no reason for users to look up

errors.

Most importantly, be consistent in the style of communication. Use the same prefixes and

sentence structure to make the logs easily skimmable.

Try to let your application output tell a story about what it’s doing and how it impacts the

user. This can involve showing a timeline of steps involved or even a progress bar and

indicator for long-running actions. The user should at no point get the feeling that the

application is doing something mysterious that they cannot follow.

When it’s hard to tell what’s going on

When communicating non-nominal state it’s important to be consistent. A heavily logging

application that doesn’t follow strict logging levels provides the same amount, or even

less information than a non-logging application.

Because of this, it’s important to define the severity of events and messages that are

related to it; then use consistent log levels for them. This way users can select the amount

of logging themselves via --verbose flags or environment variables (like RUST_LOG).

The commonly used log crate defines the following levels (ordered by increasing

severity):

• trace

• debug

• info

• warning

• error

It’s a good idea to think of info as the default log level. Use it for, well, informative output.

(Some applications that lean towards a more quiet output style might only show warnings

Command Line Applications in Rust https://rust-cli.github.io/book/print.html

41 of 53 10/23/23, 09:39

https://rust-cli.github.io/book/print.html#communicating-with-humans
https://rust-cli.github.io/book/print.html#communicating-with-humans
https://rust-cli.github.io/book/tutorial/output.html
https://rust-cli.github.io/book/tutorial/output.html
https://rust-cli.github.io/book/print.html#when-everything-is-fine
https://rust-cli.github.io/book/print.html#when-everything-is-fine
https://rust-cli.github.io/book/print.html#when-its-hard-to-tell-whats-going-on
https://rust-cli.github.io/book/print.html#when-its-hard-to-tell-whats-going-on
https://docs.rs/log/0.4.4/log/enum.Level.html
https://docs.rs/log/0.4.4/log/enum.Level.html

and errors by default.)

Additionally, it’s always a good idea to use similar prefixes and sentence structure across

log messages, making it easy to use a tool like grep to filter for them. A message should

provide enough context by itself to be useful in a filtered log while not being too verbose

at the same time.

Example log statements

The following log output is taken from wasm-pack:

When panicking

One aspect often forgotten is that your program also outputs something when it crashes.

In Rust, “crashes” are most often “panics” (i.e., “controlled crashing” in contrast to “the

operating system killed the process”). By default, when a panic occurs, a “panic handler”

will print some information to the console.

For example, if you create a new binary project with cargo new --bin foo and replace

the content of fn main with panic!("Hello World") , you get this when you run your

program:

error: could not find `Cargo.toml` in `/home/you/project/`

=> Downloading repository index
=> Downloading packages...

 [1/7] Adding WASM target...
 [2/7] Compiling to WASM...
 [3/7] Creating a pkg directory...
 [4/7] Writing a package.json...
 > [WARN]: Field `description` is missing from Cargo.toml. It is not
necessary, but recommended
 > [WARN]: Field `repository` is missing from Cargo.toml. It is not
necessary, but recommended
 > [WARN]: Field `license` is missing from Cargo.toml. It is not necessary,
but recommended
 [5/7] Copying over your README...
 > [WARN]: origin crate has no README
 [6/7] Installing WASM-bindgen...
 > [INFO]: wasm-bindgen already installed
 [7/7] Running WASM-bindgen...
 Done in 1 second

Command Line Applications in Rust https://rust-cli.github.io/book/print.html

42 of 53 10/23/23, 09:39

https://rust-cli.github.io/book/print.html#example-log-statements
https://rust-cli.github.io/book/print.html#example-log-statements
https://crates.io/crates/wasm-pack
https://crates.io/crates/wasm-pack
https://rust-cli.github.io/book/print.html#when-panicking
https://rust-cli.github.io/book/print.html#when-panicking

This is useful information to you, the developer. (Surprise: the program crashed because

of line 2 in your main.rs file). But for a user who doesn’t even have access to the source

code, this is not very valuable. In fact, it most likely is just confusing. That’s why it’s a good

idea to add a custom panic handler, that provides a bit more end-user focused output.

One library that does just that is called human-panic. To add it to your CLI project, you

import it and call the setup_panic!() macro at the beginning of your main function:

This will now show a very friendly message, and tells the user what they can do:

thread 'main' panicked at 'Hello, world!', src/main.rs:2:5
note: Run with `RUST_BACKTRACE=1` for a backtrace.

use human_panic::setup_panic;

fn main() {
 setup_panic!();

panic!("Hello world")
}

Well, this is embarrassing.

foo had a problem and crashed. To help us diagnose the problem you can send
us a crash report.

We have generated a report file at "/var/folders
/n3/dkk459k908lcmkzwcmq0tcv00000gn/T/report-738e1bec-5585-47a4-8158-
f1f7227f0168.toml". Submit an issue or email with the subject of "foo Crash
Report" and include the report as an attachment.

- Authors: Your Name <your.name@example.com>

We take privacy seriously, and do not perform any automated error collection.
In order to improve the software, we rely on people to submit reports.

Thank you kindly!

Command Line Applications in Rust https://rust-cli.github.io/book/print.html

43 of 53 10/23/23, 09:39

https://crates.io/crates/human-panic
https://crates.io/crates/human-panic

Communicating with machines

The power of command-line tools really comes to shine when you are able to combine

them. This is not a new idea: In fact, this is a sentence from the Unix philosophy:

Expect the output of every program to become the input to another, as yet

unknown, program.

If our programs fulfill this expectation, our users will be happy. To make sure this works

well, we should provide not just pretty output for humans, but also a version tailored to

what other programs need. Let’s see how we can do this.

Note: Make sure to read the chapter on CLI output in the tutorial first. It covers how

to write output to the terminal.

Who’s reading this?

The first question to ask is: Is our output for a human in front of a colorful terminal, or for

another program? To answer this, we can use a crate like is-terminal:

Depending on who will read our output, we can then add extra information. Humans

tend to like colors, for example, if you run ls in a random Rust project, you might see

something like this:

Because this style is made for humans, in most configurations it’ll even print some of the

names (like src) in color to show that they are directories. If you instead pipe this to a

file, or a program like cat , ls will adapt its output. Instead of using columns that fit my

terminal window it will print every entry on its own line. It will also not emit any colors.

use is_terminal::IsTerminal as _;

if std::io::stdout().is_terminal() {
println!("I'm a terminal");

} else {
println!("I'm not");

}

$ ls
CODE_OF_CONDUCT.md LICENSE-APACHE examples
CONTRIBUTING.md LICENSE-MIT proptest-regressions
Cargo.lock README.md src
Cargo.toml convey_derive target

Command Line Applications in Rust https://rust-cli.github.io/book/print.html

44 of 53 10/23/23, 09:39

https://rust-cli.github.io/book/print.html#communicating-with-machines
https://rust-cli.github.io/book/print.html#communicating-with-machines
https://en.wikipedia.org/wiki/Unix_philosophy
https://en.wikipedia.org/wiki/Unix_philosophy
https://rust-cli.github.io/book/tutorial/output.html
https://rust-cli.github.io/book/tutorial/output.html
https://rust-cli.github.io/book/print.html#whos-reading-this
https://rust-cli.github.io/book/print.html#whos-reading-this
https://crates.io/crates/is-terminal
https://crates.io/crates/is-terminal

Easy output formats for machines

Historically, the only type of output command-line tools produced were strings. This is

usually fine for people in front of terminals, who are able to read text and reason about

its meaning. Other programs usually don’t have that ability, though: The only way for

them to understand the output of a tool like ls is if the author of the program included a

parser that happens to work for whatever ls outputs.

This often means that output was limited to what is easy to parse. Formats like TSV (tab-

separated values), where each record is on its own line, and each line contains tab-

separated content, are very popular. These simple formats based on lines of text allow

tools like grep to be used on the output of tools like ls . | grep Cargo doesn’t care if

your lines are from ls or file, it will just filter line by line.

The downside of this is that you can’t use an easy grep invocation to filter all the

directories that ls gave you. For that, each directory item would need to carry additional

data.

JSON output for machines

Tab-separated values is a simple way to output structured data but it requires the other

program to know which fields to expect (and in which order) and it’s difficult to output

messages of different types. For example, let’s say our program wanted to message the

consumer that it is currently waiting for a download, and afterwards output a message

describing the data it got. Those are very different kinds of messages and trying to unify

them in a TSV output would require us to invent a way to differentiate them. Same when

we wanted to print a message that contains two lists of items of varying lengths.

Still, it’s a good idea to choose a format that is easily parsable in most programming

$ ls | cat
CODE_OF_CONDUCT.md
CONTRIBUTING.md
Cargo.lock
Cargo.toml
LICENSE-APACHE
LICENSE-MIT
README.md
convey_derive
examples
proptest-regressions
src
target

Command Line Applications in Rust https://rust-cli.github.io/book/print.html

45 of 53 10/23/23, 09:39

https://rust-cli.github.io/book/print.html#easy-output-formats-for-machines
https://rust-cli.github.io/book/print.html#easy-output-formats-for-machines
https://rust-cli.github.io/book/print.html#json-output-for-machines
https://rust-cli.github.io/book/print.html#json-output-for-machines

languages/environments. Thus, over the last years a lot of applications gained the ability

to output their data in JSON. It’s simple enough that parsers exist in practically every

language yet powerful enough to be useful in a lot of cases. While its a text format that

can be read by humans, a lot of people have also worked on implementations that are

very fast at parsing JSON data and serializing data to JSON.

In the description above, we’ve talked about “messages” being written by our program.

This is a good way of thinking about the output: Your program doesn’t necessarily only

output one blob of data but may in fact emit a lot of different information while it is

running. One easy way to support this approach when outputting JSON is to write one

JSON document per message and to put each JSON document on new line (sometimes

called Line-delimited JSON). This can make implementations as simple as using a regular

println! .

Here’s a simple example, using the json! macro from serde_json to quickly write valid

JSON in your Rust source code:

And here is the output:

(Running cargo with -q suppresses its usual output. The arguments after -- are

use clap::Parser;
use serde_json::json;

/// Search for a pattern in a file and display the lines that contain it.
#[derive(Parser)]
struct Cli {

/// Output JSON instead of human readable messages
#[arg(long = "json")]

 json: bool,
}

fn main() {
let args = Cli::parse();
if args.json {

println!(
"{}",

 json!({
"type": "message",
"content": "Hello world",

 })
);
 } else {

println!("Hello world");
 }
}

$ cargo run -q
Hello world
$ cargo run -q -- --json
{"content":"Hello world","type":"message"}

Command Line Applications in Rust https://rust-cli.github.io/book/print.html

46 of 53 10/23/23, 09:39

https://www.json.org/
https://www.json.org/
https://en.wikipedia.org/wiki/JSON_streaming#Line-delimited_JSON
https://en.wikipedia.org/wiki/JSON_streaming#Line-delimited_JSON
https://crates.io/crates/serde_json
https://crates.io/crates/serde_json

passed to our program.)

Practical example: ripgrep

ripgrep is a replacement for grep or ag, written in Rust. By default it will produce output

like this:

But given --json it will print:

As you can see, each JSON document is an object (map) containing a type field. This

would allow us to write a simple frontend for rg that reads these documents as they

come in and show the matches (as well the files they are in) even while ripgrep is still

searching.

Note: This is how Visual Studio Code uses ripgrep for its code search.

How to deal with input piped into us

Let’s say we have a program that reads the number of words in a file:

$ rg default
src/lib.rs
37: Output::default()

src/components/span.rs
6: Span::default()

$ rg default --json
{"type":"begin","data":{"path":{"text":"src/lib.rs"}}}
{"type":"match","data":{"path":{"text":"src/lib.rs"},"lines":{"text":"
Output::default()\n"},"line_number":37,"absolute_offset":761,"submatches":
[{"match":{"text":"default"},"start":12,"end":19}]}}
{"type":"end","data":{"path":
{"text":"src/lib.rs"},"binary_offset":null,"stats":{"elapsed":
{"secs":0,"nanos":137622,"human":"0.000138s"},"searches":1,"searches_with_match":1,"bytes_search
{"type":"begin","data":{"path":{"text":"src/components/span.rs"}}}
{"type":"match","data":{"path":{"text":"src/components/span.rs"},"lines":
{"text":"
Span::default()\n"},"line_number":6,"absolute_offset":117,"submatches":
[{"match":{"text":"default"},"start":10,"end":17}]}}
{"type":"end","data":{"path":{"text":"src/components
/span.rs"},"binary_offset":null,"stats":{"elapsed":
{"secs":0,"nanos":22025,"human":"0.000022s"},"searches":1,"searches_with_match":1,"bytes_searche
{"data":{"elapsed_total":
{"human":"0.006995s","nanos":6994920,"secs":0},"stats":
{"bytes_printed":533,"bytes_searched":11285,"elapsed":
{"human":"0.000160s","nanos":159647,"secs":0},"matched_lines":2,"matches":2,"searches":2,"search

Command Line Applications in Rust https://rust-cli.github.io/book/print.html

47 of 53 10/23/23, 09:39

https://rust-cli.github.io/book/print.html#practical-example-ripgrep
https://rust-cli.github.io/book/print.html#practical-example-ripgrep
https://github.com/BurntSushi/ripgrep
https://github.com/BurntSushi/ripgrep
https://rust-cli.github.io/book/print.html#how-to-deal-with-input-piped-into-us
https://rust-cli.github.io/book/print.html#how-to-deal-with-input-piped-into-us

It takes the path to a file, reads it line by line, and counts the number of words separated

by a space.

When you run it, it outputs the total words in the file:

But what if we wanted to count the number of words piped into the program? Rust

programs can read data passed in via stdin with the Stdin struct which you can obtain via

the stdin function from the standard library. Similar to reading the lines of a file, it can

read the lines from stdin.

Here’s a program that counts the words of what’s piped in via stdin

use clap::Parser;
use std::path::PathBuf;

/// Count the number of lines in a file
#[derive(Parser)]
#[command(arg_required_else_help = true)]
struct Cli {

/// The path to the file to read
 file: PathBuf,
}

fn main() {
let args = Cli::parse();
let mut word_count = 0;
let file = args.file;

for line in std::fs::read_to_string(&file).unwrap().lines() {
 word_count += line.split(' ').count();
 }

println!("Words in {}: {}", file.to_str().unwrap(), word_count)
}

$ cargo run README.md
Words in README.md: 47

Command Line Applications in Rust https://rust-cli.github.io/book/print.html

48 of 53 10/23/23, 09:39

https://doc.rust-lang.org/std/io/struct.Stdin.html
https://doc.rust-lang.org/std/io/struct.Stdin.html
https://doc.rust-lang.org/std/io/fn.stdin.html
https://doc.rust-lang.org/std/io/fn.stdin.html

If you run that program with text piped in, with - representing the intent to read from

stdin , it’ll output the word count:

It requires that stdin is not interactive because we’re expecting input that’s piped through

use clap::{CommandFactory, Parser};
use is_terminal::IsTerminal as _;
use std::{
 fs::File,
 io::{stdin, BufRead, BufReader},
 path::PathBuf,
};

/// Count the number of lines in a file or stdin
#[derive(Parser)]
#[command(arg_required_else_help = true)]
struct Cli {

/// The path to the file to read, use - to read from stdin (must not be a
tty)
 file: PathBuf,
}

fn main() {
let args = Cli::parse();

let word_count;
let mut file = args.file;

if file == PathBuf::from("-") {
if stdin().is_terminal() {

 Cli::command().print_help().unwrap();
 ::std::process::exit(2);
 }

 file = PathBuf::from("<stdin>");
 word_count = words_in_buf_reader(BufReader::new(stdin().lock()));
 } else {
 word_count =
words_in_buf_reader(BufReader::new(File::open(&file).unwrap()));
 }

println!("Words from {}: {}", file.to_string_lossy(), word_count)
}

fn words_in_buf_reader<R: BufRead>(buf_reader: R) -> usize {
let mut count = 0;
for line in buf_reader.lines() {

 count += line.unwrap().split(' ').count()
 }
 count
}

$ echo "hi there friend" | cargo run -- -
Words from stdin: 3

Command Line Applications in Rust https://rust-cli.github.io/book/print.html

49 of 53 10/23/23, 09:39

to the program, not text that’s typed in at runtime. If stdin is a tty, it outputs the help docs

so that it’s clear why it doesn’t work.

Command Line Applications in Rust https://rust-cli.github.io/book/print.html

50 of 53 10/23/23, 09:39

Rendering documentation for your CLI

apps

Documentation for CLIs usually consists of a --help section in the command and a

manual (man) page.

Both can be automatically generated when using clap , via clap_mangen crate.

Secondly, you need to use a build.rs to generate the manual file at compile time from

the definition of your app in code.

There are a few things to keep in mind (such as how you want to package your binary) but

for now we simply put the man file next to our src folder.

When you now compile your application there will be a head.1 file in your project

directory.

If you open that in man you’ll be able to admire your free documentation.

#[derive(Parser)]
pub struct Head {

/// file to load
pub file: PathBuf,
/// how many lines to print
#[arg(short = "n", default_value = "5")]
pub count: usize,

}

use clap::CommandFactory;

#[path="src/cli.rs"]
mod cli;

fn main() -> std::io::Result<()> {
let out_dir =

std::path::PathBuf::from(std::env::var_os("OUT_DIR").ok_or_else(||
std::io::ErrorKind::NotFound)?);

let cmd = cli::Head::command();

let man = clap_mangen::Man::new(cmd);
let mut buffer: Vec<u8> = Default::default();

 man.render(&mut buffer)?;

 std::fs::write(out_dir.join("head.1"), buffer)?;

Ok(())
}

Command Line Applications in Rust https://rust-cli.github.io/book/print.html

51 of 53 10/23/23, 09:39

https://rust-cli.github.io/book/print.html#rendering-documentation-for-your-cli-apps
https://rust-cli.github.io/book/print.html#rendering-documentation-for-your-cli-apps
https://rust-cli.github.io/book/print.html#rendering-documentation-for-your-cli-apps
https://rust-cli.github.io/book/print.html#rendering-documentation-for-your-cli-apps
https://crates.io/crates/clap
https://crates.io/crates/clap
https://crates.io/crates/clap
https://crates.io/crates/clap_mangen
https://crates.io/crates/clap_mangen
https://crates.io/crates/clap_mangen

Resources

Collaboration / help

• cli-and-tui Discord Channel

Crates referenced in this book

• anyhow - provides anyhow::Error for easy error handling

• assert_cmd - simplifies integration testing of CLIs

• assert_fs - Setup input files and test output files

• clap-verbosity-flag - adds a --verbose flag to clap CLIs

• clap - command line argument parser

• confy - boilerplate-free configuration management

• crossbeam-channel - provides multi-producer multi-consumer channels for

message passing

• ctrlc - easy ctrl-c handler

• env_logger - implements a logger configurable via environment variables

• exitcode - system exit code constants

• human-panic - panic message handler

• indicatif - progress bars and spinners

• is-terminal - detected whether application is running in a tty

• log - provides logging abstracted over implementation

• predicates - implements boolean-valued predicate functions

• proptest - property testing framework

• serde_json - serialize/deserialize to JSON

• signal-hook - handles UNIX signals

• tokio - asynchronous runtime

• wasm-pack - tool for building WebAssembly

Other crates

Due to the constantly-changing landscape of Rust crates, a good place to find crates is the

lib.rs crate index, including:

• Command-line interface

• Configuration

• Database interfaces

• Encoding

Command Line Applications in Rust https://rust-cli.github.io/book/print.html

52 of 53 10/23/23, 09:39

https://rust-cli.github.io/book/print.html#resources
https://rust-cli.github.io/book/print.html#resources
https://discord.com/channels/273534239310479360/943315667430563862
https://discord.com/channels/273534239310479360/943315667430563862
https://rust-cli.github.io/book/print.html#crates-referenced-in-this-book
https://rust-cli.github.io/book/print.html#crates-referenced-in-this-book
https://crates.io/crates/anyhow
https://crates.io/crates/anyhow
https://crates.io/crates/assert_cmd
https://crates.io/crates/assert_cmd
https://crates.io/crates/assert_fs
https://crates.io/crates/assert_fs
https://crates.io/crates/clap-verbosity-flag
https://crates.io/crates/clap-verbosity-flag
https://crates.io/crates/clap
https://crates.io/crates/clap
https://crates.io/crates/confy
https://crates.io/crates/confy
https://crates.io/crates/crossbeam-channel
https://crates.io/crates/crossbeam-channel
https://crates.io/crates/ctrlc
https://crates.io/crates/ctrlc
https://crates.io/crates/env_logger
https://crates.io/crates/env_logger
https://crates.io/crates/exitcode
https://crates.io/crates/exitcode
https://crates.io/crates/human-panic
https://crates.io/crates/human-panic
https://crates.io/crates/indicatif
https://crates.io/crates/indicatif
https://crates.io/crates/is-terminal
https://crates.io/crates/is-terminal
https://crates.io/crates/log
https://crates.io/crates/log
https://crates.io/crates/predicates
https://crates.io/crates/predicates
https://crates.io/crates/proptest
https://crates.io/crates/proptest
https://crates.io/crates/serde_json
https://crates.io/crates/serde_json
https://crates.io/crates/signal-hook
https://crates.io/crates/signal-hook
https://crates.io/crates/tokio
https://crates.io/crates/tokio
https://crates.io/crates/wasm-pack
https://crates.io/crates/wasm-pack
https://rust-cli.github.io/book/print.html#other-crates
https://rust-cli.github.io/book/print.html#other-crates
https://lib.rs/
https://lib.rs/
https://lib.rs/command-line-interface
https://lib.rs/command-line-interface
https://lib.rs/config
https://lib.rs/config
https://lib.rs/database
https://lib.rs/database
https://lib.rs/encoding
https://lib.rs/encoding

• Filesystem

• HTTP Client

• Operating systems

Other resources:

• Rust Cookbook

• rosetta-rs

Command Line Applications in Rust https://rust-cli.github.io/book/print.html

53 of 53 10/23/23, 09:39

https://lib.rs/filesystem
https://lib.rs/filesystem
https://lib.rs/web-programming/http-client
https://lib.rs/web-programming/http-client
https://lib.rs/os
https://lib.rs/os
https://rust-lang-nursery.github.io/rust-cookbook/
https://rust-lang-nursery.github.io/rust-cookbook/
https://github.com/rosetta-rs
https://github.com/rosetta-rs

