
Rust Atomics
and Locks
Low-Level Concurrency in Practice

Mara Bos

M
a

ra
 B

os

RUST / PROGR AMMING L ANGUAGES

“This book is incredible!
It’s exactly what I wanted
The Rustonomicon to
cover on concurrency,
but far better than I
dared dream. Thorough
in all the right places.
Mara deserves a big
rest after this.”

—Aria Beingessner
Author of The Rustonomicon

Rust Atomics and Locks

US $55.99 CAN $69.99
ISBN: 978-1-098-11944-7

Twitter: @oreillymedia
linkedin.com/company/oreilly-media
youtube.com/oreillymedia

The Rust programming language is extremely well suited
for concurrency, and its ecosystem has many libraries that
include lots of concurrent data structures, locks, and more.
But implementing those structures correctly can be difficult.
Even in the most well-used libraries, memory ordering bugs
are not uncommon.

In this practical book, Mara Bos, team lead of the Rust
library team, helps Rust programmers of all levels gain a
clear understanding of low-level concurrency. You’ll learn
everything about atomics and memory ordering and how
they’re combined with basic operating system APIs to build
common primitives like mutexes and condition variables.
Once you’re done, you’ll have a firm grasp of how Rust’s
memory model, the processor, and the role of the operating
system all fit together.

With this guide, you’ll learn:

• How Rust’s type system works exceptionally well for
programming concurrency correctly

• All about mutexes, condition variables, atomics, and
memory ordering

• What happens in practice with atomic operations on Intel
and ARM processors

• How locks are implemented with support from the
operating system

• How to write correct code that includes concurrency,
atomics, and locks

• How to build your own locking and synchronization
primitives correctly

Mara Bos maintains the Rust standard
library and builds real-time control
systems in Rust. As team lead of the
Rust library team, she knows all the
ins and outs of the language and the
standard library. In addition, she’s been
working with concurrent real-time
systems for years as founder and CTO
at Fusion Engineering. Maintaining the
most used library in the Rust ecosystem
and working daily on safety critical
systems has given her the hands-on
experience to both understand the
theory and bring it into practice. M

a
ra

 B
os

R
ust A

tom
ics a

nd
 Locks

R
ust A

tom
ics a

nd
 Locks

Mara Bos

Rust Atomics and Locks
Low-Level Concurrency in Practice

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-098-11944-7

[LSI]

Rust Atomics and Locks
by Mara Bos

Copyright © 2023 Mara Bos. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (https://oreilly.com). For more information, contact our corporate/institu‐
tional sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Suzanne McQuade
Development Editor: Shira Evans
Production Editor: Elizabeth Faerm
Copyeditor: Liz Wheeler
Proofreader: Penelope Perkins

Indexer: Ellen Troutman-Zaig
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Kate Dullea

December 2022: First Edition

Revision History for the First Edition
2022-12-14: First Release

See https://oreilly.com/catalog/errata.csp?isbn=9781098119447 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Rust Atomics and Locks, the cover
image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author, and do not represent the publisher’s views.
While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use
of or reliance on this work. Use of the information and instructions contained in this work is at your
own risk. If any code samples or other technology this work contains or describes is subject to open
source licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

https://oreilly.com
https://oreilly.com/catalog/errata.csp?isbn=9781098119447

To all the Rust contributors who were waiting for me to
review their code while I was busy writing this book.

And to my loved ones, too, of course. ♥

In loving memory of

Amélia Ada Louise, 1994–2021

Table of Contents

Foreword. xi

Preface. xiii

1. Basics of Rust Concurrency. 1
Threads in Rust 2
Scoped Threads 5
Shared Ownership and Reference Counting 7

Statics 7
Leaking 8
Reference Counting 8

Borrowing and Data Races 11
Interior Mutability 13

Cell 14
RefCell 14
Mutex and RwLock 15
Atomics 15
UnsafeCell 16

Thread Safety: Send and Sync 16
Locking: Mutexes and RwLocks 18

Rust’s Mutex 18
Lock Poisoning 21
Reader-Writer Lock 22

Waiting: Parking and Condition Variables 24
Thread Parking 24
Condition Variables 26

Summary 29

vii

2. Atomics. 31
Atomic Load and Store Operations 32

Example: Stop Flag 32
Example: Progress Reporting 33
Example: Lazy Initialization 35

Fetch-and-Modify Operations 36
Example: Progress Reporting from Multiple Threads 38
Example: Statistics 39
Example: ID Allocation 41

Compare-and-Exchange Operations 42
Example: ID Allocation Without Overflow 44
Example: Lazy One-Time Initialization 45

Summary 47

3. Memory Ordering. 49
Reordering and Optimizations 49
The Memory Model 51
Happens-Before Relationship 51

Spawning and Joining 53
Relaxed Ordering 54
Release and Acquire Ordering 57

Example: Locking 60
Example: Lazy Initialization with Indirection 62

Consume Ordering 65
Sequentially Consistent Ordering 66
Fences 67
Common Misconceptions 71
Summary 73

4. Building Our Own Spin Lock. 75
A Minimal Implementation 75
An Unsafe Spin Lock 78
A Safe Interface Using a Lock Guard 80
Summary 83

5. Building Our Own Channels. 85
A Simple Mutex-Based Channel 85
An Unsafe One-Shot Channel 87
Safety Through Runtime Checks 90
Safety Through Types 94
Borrowing to Avoid Allocation 98

viii | Table of Contents

Blocking 101
Summary 104

6. Building Our Own “Arc”. 105
Basic Reference Counting 105

Testing It 109
Mutation 110

Weak Pointers 111
Testing It 117

Optimizing 118
Summary 125

7. Understanding the Processor. 127
Processor Instructions 128

Load and Store 132
Read-Modify-Write Operations 133
Load-Linked and Store-Conditional Instructions 137

Caching 141
Cache Coherence 142
Impact on Performance 144

Reordering 149
Memory Ordering 150

x86-64: Strongly Ordered 151
ARM64: Weakly Ordered 153
An Experiment 155
Memory Fences 158

Summary 159

8. Operating System Primitives. 161
Interfacing with the Kernel 161
POSIX 163

Wrapping in Rust 164
Linux 166

Futex 167
Futex Operations 169
Priority Inheritance Futex Operations 173

macOS 174
os_unfair_lock 175

Windows 175
Heavyweight Kernel Objects 175
Lighter-Weight Objects 176

Table of Contents | ix

Address-Based Waiting 177
Summary 179

9. Building Our Own Locks. 181
Mutex 183

Avoiding Syscalls 186
Optimizing Further 188
Benchmarking 191

Condition Variable 193
Avoiding Syscalls 198
Avoiding Spurious Wake-ups 200

Reader-Writer Lock 203
Avoiding Busy-Looping Writers 206
Avoiding Writer Starvation 208

Summary 211

10. Ideas and Inspiration. 213
Semaphore 213
RCU 214
Lock-Free Linked List 215
Queue-Based Locks 217
Parking Lot–Based Locks 218
Sequence Lock 218
Teaching Materials 219

Index. 221

x | Table of Contents

Foreword

This book provides an excellent overview of low-level concurrency in the Rust
language, including threads, locks, reference counts, atomics, mailboxes/channels,
and much else besides. It digs into issues with CPUs and operating systems, the
latter summarizing challenges inherent in making concurrent code work correctly on
Linux, macOS, and Windows. I was particularly happy to see that Mara illustrates
these topics with working Rust code. It wraps up by discussing semaphores, lock-free
linked lists, queued locks, sequence locks, and even RCU.

So what does this book offer someone like myself, who has been slinging C code for
almost 40 years, most recently in the nether depths of the Linux kernel?

I first learned of Rust from any number of enthusiasts and Linux-related conferences.
Nevertheless, I was happily minding my own business until I was called out by name
in a Rust-related LWN article, “Using Rust for Kernel Development”. Thus prodded, I
wrote a blog series entitled “So You Want to Rust the Linux Kernel?”. This blog series
sparked a number of spirited discussions, a few of which are visible in the series’
comments.

In one such discussion, a long-time Linux-kernel developer who has also written a
lot of Rust code told me that when writing concurrent code in Rust, you should write
it the way Rust wants you to. I have since learned that although this is great advice,
it leaves open the question of exactly what Rust wants. This book gives excellent
answers to this question, and is thus valuable both to Rust developers wishing to learn
concurrency and to developers of concurrent code in other languages who would like
to learn how best to do so in Rust.

I of course fall into this latter category. However, I must confess that many of the
spirited discussions about Rust concurrency remind me of my parents’ and grand‐
parents’ long-ago complaints about the inconvenient safety features that were being
added to power tools such as saws and drills. Some of those safety features are now
ubiquitous, but hammers, chisels, and chainsaws have not changed all that much. It
was not at all easy to work out which mechanical safety features would stand the

xi

https://oreil.ly/OnlX8
https://oreil.ly/eiedc

test of time, so I recommend approaching software safety features with an attitude
of profound humility. And please understand that I am addressing the proponents of
such features as well as their detractors.

Which brings us to another group of potential readers, the Rust skeptics. While I
do believe that most Rust skeptics are doing the community a valuable service by
pointing out opportunities for improvement, all but the most Rust-savvy of skeptics
would benefit from reading this book. If nothing else, doing so would enable them to
provide sharper and better-targeted criticisms.

Then there are those dyed-in-the-wool non-Rust developers who would prefer to
implement Rust’s concurrency-related safety mechanisms in their own favorite lan‐
guage. This book will give them a deeper understanding of the Rust mechanisms that
they would like to replicate, or, better yet, improve upon.

Finally, any number of Linux-kernel developers are noting the progress that Rust
is making toward being included in the Linux kernel; for example, see Jonathan
Corbet’s article, “Next Steps for Rust in the Kernel”. As of October 2022, this is still
an experiment, but one that is being taken increasingly seriously. In fact, seriously
enough that Linus Torvalds has accepted the first bits of Rust-language support into
version 6.1 of the Linux kernel.

Whether you are reading this book to expand your Rust repertoire to include con‐
currency, to expand your concurrency repertoire to include Rust, to improve your
existing non-Rust environment, or just to look at concurrency from a different
viewpoint, I wish you the very best on your journey!

— Paul E. McKenney
Meta Platforms Kernel Team

Meta
October 2022

xii | Foreword

https://oreil.ly/MLrT5

Preface

Rust has played, and keeps playing, a significant role in making systems program‐
ming more accessible. However, low-level concurrency topics such as atomics and
memory ordering are still often thought of as somewhat mystical subjects that are
best left to a very small group of experts.

While working on Rust-based real-time control systems and the Rust standard library
over the past few years, I found that many of the available resources on atomics
and related topics only cover a small part of the information I was looking for.
Many resources focus entirely on C and C++, which can make it hard to form the
connection with Rust’s concept of (memory and thread) safety and type system. The
resources that cover the details of the abstract theory, like C++’s memory model,
often only vaguely explain how it relates to actual hardware, if at all. There are many
resources that cover every detail of the actual hardware, such as processor instruc‐
tions and cache coherency, but forming a holistic understanding often requires col‐
lecting bits and pieces of information from many different places.

This book is an attempt to put relevant information in one place, connecting it all
together, providing everything you need to build your own correct, safe, and ergo‐
nomic concurrency primitives, while understanding enough about the underlying
hardware and the role of the operating system to be able to make design decisions
and basic optimization trade-offs.

Who This Book Is For
The primary audience for this book is Rust developers who want to learn more about
low-level concurrency. Additionally, this book can also be suitable for those who are
not very familiar with Rust yet, but would like to know what low-level concurrency
looks like from a Rust perspective.

It is assumed you know the basics of Rust, have a recent Rust compiler installed, and
know how to compile and run Rust code using cargo. Rust concepts that are impor‐
tant for concurrency are briefly explained when relevant, so no prior knowledge
about Rust concurrency is necessary.

xiii

Overview of the Chapters
This book consists of ten chapters. Here’s what to expect from each chapter, and what
to look forward to:

Chapter 1 — Basics of Rust Concurrency
This chapter introduces all the tools and concepts we need for basic concurrency
in Rust, such as threads, mutexes, thread safety, shared and exclusive references,
interior mutability, and so on, which are foundational to the rest of the book.

For experienced Rust programmers who are familiar with these concepts, this
chapter can serve as a quick refresher. For those who know these concepts from
other languages but aren’t very familiar with Rust yet, this chapter will quickly fill
you in on any Rust-specific knowledge you might need for the rest of the book.

Chapter 2 — Atomics
In the second chapter we’ll learn about Rust’s atomic types and all their opera‐
tions. We start with simple load and store operations, and build our way up to
more advanced compare-and-exchange loops, exploring each new concept with
several real-world use cases as usable examples.

While memory ordering is relevant for every atomic operation, that topic is left
for the next chapter. This chapter only covers situations where relaxed memory
ordering suffices, which is the case more often than one might expect.

Chapter 3 — Memory Ordering
After learning about the various atomic operations and how to use them, the
third chapter introduces the most complicated topic of the book: memory
ordering.

We’ll explore how the memory model works, what happens-before relationships
are and how to create them, what all the different memory orderings mean, and
why sequentially consistent ordering might not be the answer to everything.

Chapter 4 — Building Our Own Spin Lock
After learning the theory, we put it to practice in the next three chapters by
building our own versions of several common concurrency primitives. The first
of these chapters is a short one, in which we implement a spin lock.

We’ll start with a very minimal version to put release and acquire memory order‐
ing to practice, and then we’ll explore Rust’s concept of safety to turn it into an
ergonomic and hard-to-misuse Rust data type.

Chapter 5 — Building Our Own Channels
In Chapter 5, we’ll implement from scratch a handful of variations of a one-shot
channel, a primitive that can be used to send data from one thread to another.

xiv | Preface

Starting with a very minimal but entirely unsafe version, we’ll work our way
through several ways to design a safe interface, while considering design deci‐
sions and their consequences.

Chapter 6 — Building Our Own “Arc”
For the sixth chapter, we’ll take on a more challenging memory ordering puzzle.
We’re going to implement our own version of atomic reference counting from
scratch.

After adding support for weak pointers and optimizing it for performance, our
final version will be practically identical to Rust’s standard std::sync::Arc type.

Chapter 7 — Understanding the Processor
The seventh chapter is a deep dive into all the low-level details. We’ll explore
what happens at the processor level, what the assembly instructions behind the
atomic operations look like on the two most popular processor architectures,
what caching is and how it affects the performance of our code, and we’ll find out
what remains of the memory model at the hardware level.

Chapter 8 — Operating System Primitives
In Chapter 8 we acknowledge that there are things we can’t do without the help
of the operating system’s kernel and learn what functionality is available on Linux,
macOS, and Windows.

We’ll discuss the concurrency primitives that are available through pthreads on
POSIX systems, find out what we can do with the Windows API, and learn what
the Linux futex syscall does.

Chapter 9 — Building Our Own Locks
Using what we’ve learned in the previous chapters, in Chapter 9 we’re going to
build several implementations of a mutex, condition variable, and reader-writer
lock from scratch.

For each of these, we’ll start with a minimal but complete version, which we’ll
then attempt to optimize in various ways. Using some simple benchmark tests,
we’ll find out that our attempts at optimization don’t always increase perfor‐
mance, while we discuss various design trade-offs.

Chapter 10 — Ideas and Inspiration
The final chapter makes sure you don’t fall into a void after finishing the book,
but are instead left with ideas and inspiration for things to build and explore with
your new knowledge and skills, perhaps kicking off an exciting journey further
into the depths of low-level concurrency.

Preface | xv

Code Examples
All code in this book is written for and tested using Rust 1.66.0, which was released
on December 15, 2022. Earlier versions do not include all features used in this book.
Later versions, however, should work just fine.

For brevity, the code examples do not include use statements, except for the first time
a new item from the standard library is introduced. As a convenience, the following
prelude can be used to import everything necessary to compile any of the code
examples in this book:

#[allow(unused)]
use std::{
 cell::{Cell, RefCell, UnsafeCell},
 collections::VecDeque,
 marker::PhantomData,
 mem::{ManuallyDrop, MaybeUninit},
 ops::{Deref, DerefMut},
 ptr::NonNull,
 rc::Rc,
 sync::{*, atomic::{*, Ordering::*}},
 thread::{self, Thread},
};

Supplemental material, including complete versions of all code examples, is available
at https://marabos.nl/atomics/.

You may use all example code offered with this book for any purpose.

Attribution is appreciated, but not required. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Rust Atomics and Locks by Mara Bos
(O’Reilly). Copyright 2023 Mara Bos, 978-1-098-11944-7.”

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Used for new terms, URLs, and emphasis.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, data types, statements, and keywords.

xvi | Preface

https://marabos.nl/atomics/

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Contact Information
O’Reilly has a web page for this book, where errata, examples, and any additional
information are listed. It is available at https://oreil.ly/rust-atomics-and-locks.

Email bookquestions@oreilly.com to comment or ask technical questions about this
book. If you wish to reuse content from this book, and you feel your reuse falls
outside fair use or the permission given in this Preface, feel free to contact O’Reilly at
permissions@oreilly.com.

For news and information about O’Reilly, visit https://oreilly.com.

Follow O’Reilly on Twitter: https://twitter.com/oreillymedia.

Follow the author on Twitter: https://twitter.com/m_ou_se.

Acknowledgments
I’d like to thank everyone who had a part in the creation this book. Many people
provided support and useful input, which has been incredibly helpful. In particular,
I’d like to thank Amanieu d’Antras, Aria Beingessner, Paul McKenney, Carol Nichols,
and Miguel Raz Guzmán Macedo for their invaluable and thoughtful feedback on the
early drafts. I’d also like to thank everyone at O’Reilly, and in particular my editors,
Shira Evans and Zan McQuade, for their inexhaustible enthusiasm and support.

Preface | xvii

https://oreil.ly/rust-atomics-and-locks
mailto:bookquestions@oreilly.com
mailto:permissions@oreilly.com
https://oreilly.com
https://twitter.com/oreillymedia
https://twitter.com/m_ou_se

CHAPTER 1

Basics of Rust Concurrency

Long before multi-core processors were commonplace, operating systems allowed for
a single computer to run many programs concurrently. This is achieved by rapidly
switching between processes, allowing each to repeatedly make a little bit of progress,
one by one. Nowadays, virtually all our computers and even our phones and watches
have processors with multiple cores, which can truly execute multiple processes
in parallel.

Operating systems isolate processes from each other as much as possible, allowing
a program to do its thing while completely unaware of what any other processes
are doing. For example, a process cannot normally access the memory of another
process, or communicate with it in any way, without asking the operating system’s
kernel first.

However, a program can spawn extra threads of execution, as part of the same process.
Threads within the same process are not isolated from each other. Threads share
memory and can interact with each other through that memory.

This chapter will explain how threads are spawned in Rust, and all the basic concepts
around them, such as how to safely share data between multiple threads. The con‐
cepts explained in this chapter are foundational to the rest of the book.

If you’re already familiar with these parts of Rust, feel free to skip
ahead. However, before you continue to the next chapters, make
sure you have a good understanding of threads, interior mutability,
Send and Sync, and know what a mutex, a condition variable, and
thread parking are.

1

Threads in Rust
Every program starts with exactly one thread: the main thread. This thread will
execute your main function and can be used to spawn more threads if necessary.

In Rust, new threads are spawned using the std::thread::spawn function from the
standard library. It takes a single argument: the function the new thread will execute.
The thread stops once this function returns.

Let’s take a look at an example:

use std::thread;

fn main() {
 thread::spawn(f);
 thread::spawn(f);

 println!("Hello from the main thread.");
}

fn f() {
 println!("Hello from another thread!");

 let id = thread::current().id();
 println!("This is my thread id: {id:?}");
}

We spawn two threads that will both execute f as their main function. Both of these
threads will print a message and show their thread id, while the main thread will also
print its own message.

Thread ID
The Rust standard library assigns every thread a unique identifier. This identifier is
accessible through Thread::id() and is of the type ThreadId. There’s not much you
can do with a ThreadId other than copying it around and checking for equality. There
is no guarantee that these IDs will be assigned consecutively, only that they will be
different for each thread.

If you run our example program above several times, you might notice the out‐
put varies between runs. This is the output I got on my machine during one
particular run:

Hello from the main thread.
Hello from another thread!
This is my thread id:

Surprisingly, part of the output seems to be missing.

2 | Chapter 1: Basics of Rust Concurrency

What happened here is that the main thread finished executing the main function
before the newly spawned threads finished executing their functions.

Returning from main will exit the entire program, even if other threads are still
running.

In this particular example, one of the newly spawned threads had just enough time to
get to halfway through the second message, before the program was shut down by the
main thread.

If we want to make sure the threads are finished before we return from main, we can
wait for them by joining them. To do so, we have to use the JoinHandle returned by
the spawn function:

fn main() {
 let t1 = thread::spawn(f);
 let t2 = thread::spawn(f);

 println!("Hello from the main thread.");

 t1.join().unwrap();
 t2.join().unwrap();
}

The .join() method waits until the thread has finished executing and returns a
std::thread::Result. If the thread did not successfully finish its function because
it panicked, this will contain the panic message. We could attempt to handle that
situation, or just call .unwrap() to panic when joining a panicked thread.

Running this version of our program will no longer result in truncated output:

Hello from the main thread.
Hello from another thread!
This is my thread id: ThreadId(3)
Hello from another thread!
This is my thread id: ThreadId(2)

The only thing that still changes between runs is the order in which the messages
are printed:

Hello from the main thread.
Hello from another thread!
Hello from another thread!
This is my thread id: ThreadId(2)
This is my thread id: ThreadId(3)

Threads in Rust | 3

Output Locking
The println macro uses std::io::Stdout::lock() to make sure its output does not
get interrupted. A println!() expression will wait until any concurrently running
one is finished before writing any output. If this was not the case, we could’ve gotten
more interleaved output such as:

Hello fromHello from another thread!
 another This is my threthreadHello fromthread id: ThreadId!
(the main thread.
2)This is my thread
id: ThreadId(3)

Rather than passing the name of a function to std::thread::spawn, as in our exam‐
ple above, it’s far more common to pass it a closure. This allows us to capture values to
move into the new thread:

let numbers = vec![1, 2, 3];

thread::spawn(move || {
 for n in numbers {
 println!("{n}");
 }
}).join().unwrap();

Here, ownership of numbers is transferred to the newly spawned thread, since we
used a move closure. If we had not used the move keyword, the closure would have
captured numbers by reference. This would have resulted in a compiler error, since
the new thread might outlive that variable.

Since a thread might run until the very end of the program’s execution, the spawn
function has a 'static lifetime bound on its argument type. In other words, it
only accepts functions that may be kept around forever. A closure capturing a local
variable by reference may not be kept around forever, since that reference would
become invalid the moment the local variable ceases to exist.

Getting a value back out of the thread is done by returning it from the closure. This
return value can be obtained from the Result returned by the join method:

let numbers = Vec::from_iter(0..=1000);

let t = thread::spawn(move || {
 let len = numbers.len();
 let sum = numbers.into_iter().sum::<usize>();
 sum / len
});

let average = t.join().unwrap();

4 | Chapter 1: Basics of Rust Concurrency

println!("average: {average}");

Here, the value returned by the thread’s closure () is sent back to the main thread
through the join method ().

If numbers had been empty, the thread would’ve panicked while trying to divide by
zero (), and join would’ve returned that panic message instead, causing the main
thread to panic too because of unwrap ().

Thread Builder
The std::thread::spawn function is actually just a convenient shorthand for
std::thread::Builder::new().spawn().unwrap().

A std::thread::Builder allows you to set some settings for the new thread before
spawning it. You can use it to configure the stack size for the new thread and to give
the new thread a name. The name of a thread is available through std::thread::cur
rent().name(), will be used in panic messages, and will be visible in monitoring and
debugging tools on most platforms.

Additionally, Builder’s spawn function returns an std::io::Result, allowing you
to handle situations where spawning a new thread fails. This might happen if the
operating system runs out of memory, or if resource limits have been applied to your
program. The std::thread::spawn function simply panics if it is unable to spawn a
new thread.

Scoped Threads
If we know for sure that a spawned thread will definitely not outlive a certain scope,
that thread could safely borrow things that do not live forever, such as local variables,
as long as they outlive that scope.

The Rust standard library provides the std::thread::scope function to spawn such
scoped threads. It allows us to spawn threads that cannot outlive the scope of the
closure we pass to that function, making it possible to safely borrow local variables.

How it works is best shown with an example:

let numbers = vec![1, 2, 3];

thread::scope(|s| {
 s.spawn(|| {
 println!("length: {}", numbers.len());
 });
 s.spawn(|| {
 for n in &numbers {

Scoped Threads | 5

 println!("{n}");
 }
 });
});

We call the std::thread::scope function with a closure. Our closure is directly
executed and gets an argument, s, representing the scope.

We use s to spawn threads. The closures can borrow local variables like numbers.

When the scope ends, all threads that haven’t been joined yet are automatically
joined.

This pattern guarantees that none of the threads spawned in the scope can outlive the
scope. Because of that, this scoped spawn method does not have a 'static bound on
its argument type, allowing us to reference anything as long as it outlives the scope,
such as numbers.

In the example above, both of the new threads are concurrently accessing numbers.
This is fine, because neither of them (nor the main thread) modifies it. If we were
to change the first thread to modify numbers, as shown below, the compiler wouldn’t
allow us to spawn another thread that also uses numbers:

let mut numbers = vec![1, 2, 3];

thread::scope(|s| {
 s.spawn(|| {
 numbers.push(1);
 });
 s.spawn(|| {
 numbers.push(2); // Error!
 });
});

The exact error message depends on the version of the Rust compiler, since it’s often
improved to produce better diagnostics, but attempting to compile the code above
will result in something like this:

error[E0499]: cannot borrow `numbers` as mutable more than once at a time
 --> example.rs:7:13
 |
4 | s.spawn(|| {
 | -- first mutable borrow occurs here
5 | numbers.push(1);
 | ------- first borrow occurs due to use of `numbers` in closure
 |
7 | s.spawn(|| {
 | ^^ second mutable borrow occurs here
8 | numbers.push(2);
 | ------- second borrow occurs due to use of `numbers` in closure

6 | Chapter 1: Basics of Rust Concurrency

The Leakpocalypse
Before Rust 1.0, the standard library had a function named std::thread::scoped
that would directly spawn a thread, just like std::thread::spawn. It allowed
non-'static captures, because instead of a JoinHandle, it returned a JoinGuard
which joined the thread when dropped. Any borrowed data only needed to outlive
this JoinGuard. This seemed safe, as long as the JoinGuard got dropped at some
point.

Just before the release of Rust 1.0, it slowly became clear that it’s not possible to
guarantee that something will be dropped. There are many ways, such as creating a
cycle of reference-counted nodes, that make it possible to forget about something, or
leak it, without dropping it.

Eventually, in what some people refer to as “The Leakpocalypse,” the conclusion
was made that the design of a (safe) interface cannot rely on the assumption that
objects will always be dropped at the end of their lifetime. Leaking an object might
reasonably result in leaking more objects (e.g., leaking a Vec will also leak its ele‐
ments), but it may not result in undefined behavior. Because of this conclusion,
std::thread::scoped was no longer deemed safe and was removed from the stan‐
dard library. Additionally, std::mem::forget was upgraded from an unsafe function
to a safe function, to emphasize that forgetting (or leaking) is always a possibility.

Only much later, in Rust 1.63, a new std::thread::scoped function was added with
a new design that does not rely on Drop for correctness.

Shared Ownership and Reference Counting
So far we’ve looked at transferring ownership of a value to a thread using a move
closure (“Threads in Rust” on page 2) and borrowing data from longer-living parent
threads (“Scoped Threads” on page 5). When sharing data between two threads
where neither thread is guaranteed to outlive the other, neither of them can be the
owner of that data. Any data shared between them will need to live as long as the
longest living thread.

Statics
There are several ways to create something that’s not owned by a single thread. The
simplest one is a static value, which is “owned” by the entire program, instead of an
individual thread. In the following example, both threads can access X, but neither of
them owns it:

static X: [i32; 3] = [1, 2, 3];

Shared Ownership and Reference Counting | 7

thread::spawn(|| dbg!(&X));
thread::spawn(|| dbg!(&X));

A static item has a constant initializer, is never dropped, and already exists before
the main function of the program even starts. Every thread can borrow it, since it’s
guaranteed to always exist.

Leaking
Another way to share ownership is by leaking an allocation. Using Box::leak, one
can release ownership of a Box, promising to never drop it. From that point on, the
Box will live forever, without an owner, allowing it to be borrowed by any thread for
as long as the program runs.

let x: &'static [i32; 3] = Box::leak(Box::new([1, 2, 3]));

thread::spawn(move || dbg!(x));
thread::spawn(move || dbg!(x));

The move closure might make it look like we’re moving ownership into the threads,
but a closer look at the type of x reveals that we’re only giving the threads a reference
to the data.

References are Copy, meaning that when you “move” them, the
original still exists, just like with an integer or boolean.

Note how the 'static lifetime doesn’t mean that the value lived since the start of
the program, but only that it lives to the end of the program. The past is simply not
relevant.

The downside of leaking a Box is that we’re leaking memory. We allocate something,
but never drop and deallocate it. This can be fine if it happens only a limited number
of times. But if we keep doing this, the program will slowly run out of memory.

Reference Counting
To make sure that shared data gets dropped and deallocated, we can’t completely give
up its ownership. Instead, we can share ownership. By keeping track of the number of
owners, we can make sure the value is dropped only when there are no owners left.

The Rust standard library provides this functionality through the std::rc::Rc type,
short for “reference counted.” It is very similar to a Box, except cloning it will not
allocate anything new, but instead increment a counter stored next to the contained

8 | Chapter 1: Basics of Rust Concurrency

value. Both the original and cloned Rc will refer to the same allocation; they share
ownership.

use std::rc::Rc;

let a = Rc::new([1, 2, 3]);
let b = a.clone();

assert_eq!(a.as_ptr(), b.as_ptr()); // Same allocation!

Dropping an Rc will decrement the counter. Only the last Rc, which will see the
counter drop to zero, will be the one dropping and deallocating the contained data.

If we were to try to send an Rc to another thread, however, we would run into the
following compiler error:

error[E0277]: `Rc` cannot be sent between threads safely
 |
8 | thread::spawn(move || dbg!(b));
 | ^^^^^^^^^^^^^^^

As it turns out, Rc is not thread safe (more on that in “Thread Safety: Send and Sync”
on page 16). If multiple threads had an Rc to the same allocation, they might try to
modify the reference counter at the same time, which can give unpredictable results.

Instead, we can use std::sync::Arc, which stands for “atomically reference counted.”
It’s identical to Rc, except it guarantees that modifications to the reference counter are
indivisible atomic operations, making it safe to use it with multiple threads. (More on
that in Chapter 2.)

use std::sync::Arc;

let a = Arc::new([1, 2, 3]);
let b = a.clone();

thread::spawn(move || dbg!(a));
thread::spawn(move || dbg!(b));

We put an array in a new allocation together with a reference counter, which
starts at one.

Cloning the Arc increments the reference count to two and provides us with a
second Arc to the same allocation.

Both threads get their own Arc through which they can access the shared array.
Both decrement the reference counter when they drop their Arc. The last thread
to drop its Arc will see the counter drop to zero and will be the one to drop and
deallocate the array.

Shared Ownership and Reference Counting | 9

Naming Clones
Having to give every clone of an Arc a different name can quickly make the code quite
cluttered and hard to follow. While every clone of an Arc is a separate object, each
clone represents the same shared value, which is not well reflected by naming each
one differently.

Rust allows (and encourages) you to shadow variables by defining a new variable with
the same name. If you do that in the same scope, the original variable cannot be
named anymore. But by opening a new scope, a statement like let a = a.clone();
can be used to reuse the same name within that scope, while leaving the original
variable available outside the scope.

By wrapping a closure in a new scope (with {}), we can clone variables before moving
them into the closure, without having to rename them.

let a = Arc::new([1, 2, 3]);

let b = a.clone();

thread::spawn(move || {
 dbg!(b);
});

dbg!(a);

The clone of the Arc lives in the same scope. Each
thread gets its own clone with a different name.

let a = Arc::new([1, 2, 3]);

thread::spawn({
 let a = a.clone();
 move || {
 dbg!(a);
 }
});

dbg!(a);

The clone of the Arc lives in a different scope. We
can use the same name in each thread.

Because ownership is shared, reference counting pointers (Rc<T> and Arc<T>) have
the same restrictions as shared references (&T). They do not give you mutable access
to their contained value, since the value might be borrowed by other code at the
same time.

For example, if we were to try to sort the slice of integers in an Arc<[i32]>, the
compiler would stop us from doing so, telling us that we’re not allowed to mutate
the data:

error[E0596]: cannot borrow data in an `Arc` as mutable
 |
6 | a.sort();
 | ^^^^^^^^

10 | Chapter 1: Basics of Rust Concurrency

Borrowing and Data Races
In Rust, values can be borrowed in two ways:

Immutable borrowing
Borrowing something with & gives an immutable reference. Such a reference can
be copied. Access to the data it references is shared between all copies of such
a reference. As the name implies, the compiler doesn’t normally allow you to
mutate something through such a reference, since that might affect other code
that’s currently borrowing the same data.

Mutable borrowing
Borrowing something with &mut gives a mutable reference. A mutable borrow
guarantees it’s the only active borrow of that data. This ensures that mutating the
data will not change anything that other code is currently looking at.

These two concepts together fully prevent data races: situations where one thread
is mutating data while another is concurrently accessing it. Data races are generally
undefined behavior, which means the compiler does not need to take these situations
into account. It will simply assume they do not happen.

To clarify what that means, let’s take a look at an example where the compiler can
make a useful assumption using the borrowing rules:

fn f(a: &i32, b: &mut i32) {
 let before = *a;
 *b += 1;
 let after = *a;
 if before != after {
 x(); // never happens
 }
}

Here, we get an immutable reference to an integer, and store the value of the integer
both before and after incrementing the integer that b refers to. The compiler is free
to assume that the fundamental rules about borrowing and data races are upheld,
which means that b can’t possibly refer to the same integer as a does. In fact, nothing
in the entire program can mutably borrow the integer that a refers to as long as a is
borrowing it. Therefore, the compiler can easily conclude that *a will not change and
the condition of the if statement will never be true, and can completely remove the
call to x from the program as an optimization.

It’s impossible to write a Rust program that breaks the compiler’s assumptions, other
than by using an unsafe block to disable some of the compiler’s safety checks.

Borrowing and Data Races | 11

Undefined Behavior
Languages like C, C++, and Rust have a set of rules that need to be followed to avoid
something called undefined behavior. For example, one of Rust’s rules is that there
may never be more than one mutable reference to any object.

In Rust, it’s only possible to break any of these rules when using unsafe code.
“Unsafe” doesn’t mean that the code is incorrect or never safe to use, but rather that
the compiler is not validating for you that the code is safe. If the code does violate
these rules, it is called unsound.

The compiler is allowed to assume, without checking, that these rules are never
broken. When broken, this results in something called undefined behavior, which we
need to avoid at all costs. If we allow the compiler to make an assumption that is not
actually true, it can easily result in more wrong conclusions about different parts of
your code, affecting your whole program.

As a concrete example, let’s take a look at a small snippet that uses the get_unchecked
method on a slice:

let a = [123, 456, 789];
let b = unsafe { a.get_unchecked(index) };

The get_unchecked method gives us an element of the slice given its index, just
like a[index], but allows the compiler to assume the index is always within bounds,
without any checks.

This mean that in this code snippet, because a is of length 3, the compiler may assume
that index is less than three. It’s up to us to make sure its assumption holds.

If we break this assumption, for example if we run this with index equal to 3,
anything might happen. It might result in reading from memory whatever was stored
in the bytes right after a. It might cause the program to crash. It might end up
executing some entirely unrelated part of the program. It can cause all kinds of havoc.

Perhaps surprisingly, undefined behavior can even “travel back in time,” causing
problems in code that precedes it. To understand how that can happen, imagine we
had a match statement before our previous snippet, as follows:

match index {
 0 => x(),
 1 => y(),
 _ => z(index),
}

let a = [123, 456, 789];
let b = unsafe { a.get_unchecked(index) };

Because of the unsafe code, the compiler is allowed to assume index is only ever 0,
1, or 2. It may logically conclude that the last arm of our match statement will only

12 | Chapter 1: Basics of Rust Concurrency

ever match a 2, and thus that z is only ever called as z(2). That conclusion might be
used not only to optimize the match, but also to optimize z itself. This can include
throwing out unused parts of the code.

If we execute this with an index of 3, our program might attempt to execute parts
that have been optimized away, resulting in completely unpredictable behavior, long
before we get to the unsafe block on the last line. Just like that, undefined behavior
can propagate through a whole program, both backwards and forwards, in often very
unexpected ways.

When calling any unsafe function, read its documentation carefully and make sure
you fully understand its safety requirements: the assumptions you need to uphold, as
the caller, to avoid undefined behavior.

Interior Mutability
The borrowing rules as introduced in the previous section are simple, but can be
quite limiting—especially when multiple threads are involved. Following these rules
makes communication between threads extremely limited and almost impossible,
since no data that’s accessible by multiple threads can be mutated.

Luckily, there is an escape hatch: interior mutability. A data type with interior muta‐
bility slightly bends the borrowing rules. Under certain conditions, those types can
allow mutation through an “immutable” reference.

In “Reference Counting” on page 8, we’ve already seen one subtle example involving
interior mutability. Both Rc and Arc mutate a reference counter, even though there
might be multiple clones all using the same reference counter.

As soon as interior mutable types are involved, calling a reference “immutable” or
“mutable” becomes confusing and inaccurate, since some things can be mutated
through both. The more accurate terms are “shared” and “exclusive”: a shared refer‐
ence (&T) can be copied and shared with others, while an exclusive reference (&mut T)
guarantees it’s the only exclusive borrowing of that T. For most types, shared references
do not allow mutation, but there are exceptions. Since in this book we will mostly be
working with these exceptions, we’ll use the more accurate terms in the rest of this
book.

Keep in mind that interior mutability only bends the rules of
shared borrowing to allow mutation when shared. It does not
change anything about exclusive borrowing. Exclusive borrowing
still guarantees that there are no other active borrows. Unsafe code
that results in more than one active exclusive reference to some‐
thing always invokes undefined behavior, regardless of interior
mutability.

Interior Mutability | 13

Let’s take a look at a few types with interior mutability and how they can allow
mutation through shared references without causing undefined behavior.

Cell
A std::cell::Cell<T> simply wraps a T, but allows mutations through a shared
reference. To avoid undefined behavior, it only allows you to copy the value out (if T
is Copy), or replace it with another value as a whole. In addition, it can only be used
within a single thread.

Let’s take a look at an example similar to the one in the previous section, but this time
using Cell<i32> instead of i32:

use std::cell::Cell;

fn f(a: &Cell<i32>, b: &Cell<i32>) {
 let before = a.get();
 b.set(b.get() + 1);
 let after = a.get();
 if before != after {
 x(); // might happen
 }
}

Unlike last time, it is now possible for the if condition to be true. Because a
Cell<i32> has interior mutability, the compiler can no longer assume its value won’t
change as long as we have a shared reference to it. Both a and b might refer to the
same value, such that mutating through b might affect a as well. It may still assume,
however, that no other threads are accessing the cells concurrently.

The restrictions on a Cell are not always easy to work with. Since it can’t directly let
us borrow the value it holds, we need to move a value out (leaving something in its
place), modify it, then put it back, to mutate its contents:

fn f(v: &Cell<Vec<i32>>) {
 let mut v2 = v.take(); // Replaces the contents of the Cell with an empty Vec
 v2.push(1);
 v.set(v2); // Put the modified Vec back
}

RefCell
Unlike a regular Cell, a std::cell::RefCell does allow you to borrow its contents,
at a small runtime cost. A RefCell<T> does not only hold a T, but also holds a counter
that keeps track of any outstanding borrows. If you try to borrow it while it is already
mutably borrowed (or vice-versa), it will panic, which avoids undefined behavior. Just
like a Cell, a RefCell can only be used within a single thread.

14 | Chapter 1: Basics of Rust Concurrency

Borrowing the contents of RefCell is done by calling borrow or borrow_mut:

use std::cell::RefCell;

fn f(v: &RefCell<Vec<i32>>) {
 v.borrow_mut().push(1); // We can modify the `Vec` directly.
}

While Cell and RefCell can be very useful, they become rather useless when we
need to do something with multiple threads. So let’s move on to the types that are
relevant for concurrency.

Mutex and RwLock
An RwLock or reader-writer lock is the concurrent version of a RefCell. An RwLock<T>
holds a T and tracks any outstanding borrows. However, unlike a RefCell, it does
not panic on conflicting borrows. Instead, it blocks the current thread—putting it to
sleep—while waiting for conflicting borrows to disappear. We’ll just have to patiently
wait for our turn with the data, after the other threads are done with it.

Borrowing the contents of an RwLock is called locking. By locking it we temporarily
block concurrent conflicting borrows, allowing us to borrow it without causing data
races.

A Mutex is very similar, but conceptually slightly simpler. Instead of keeping track of
the number of shared and exclusive borrows like an RwLock, it only allows exclusive
borrows.

We’ll go more into detail on these types in “Locking: Mutexes and RwLocks” on page
18.

Atomics
The atomic types represent the concurrent version of a Cell, and are the main topic
of Chapters 2 and 3. Like a Cell, they avoid undefined behavior by making us copy
values in and out as a whole, without letting us borrow the contents directly.

Unlike a Cell, though, they cannot be of arbitrary size. Because of this, there is no
generic Atomic<T> type for any T, but there are only specific atomic types such as
AtomicU32 and AtomicPtr<T>. Which ones are available depends on the platform,
since they require support from the processor to avoid data races. (We’ll dive into that
in Chapter 7.)

Since they are so limited in size, atomics often don’t directly contain the information
that needs to be shared between threads. Instead, they are often used as a tool
to make it possible to share other—often bigger—things between threads. When

Interior Mutability | 15

atomics are used to say something about other data, things can get surprisingly
complicated.

UnsafeCell
An UnsafeCell is the primitive building block for interior mutability.

An UnsafeCell<T> wraps a T, but does not come with any conditions or restrictions
to avoid undefined behavior. Instead, its get() method just gives a raw pointer to the
value it wraps, which can only be meaningfully used in unsafe blocks. It leaves it up
to the user to use it in a way that does not cause any undefined behavior.

Most commonly, an UnsafeCell is not used directly, but wrapped in another type
that provides safety through a limited interface, such as Cell or Mutex. All types
with interior mutability—including all types discussed above—are built on top of
UnsafeCell.

Thread Safety: Send and Sync
In this chapter, we’ve seen several types that are not thread safe, types that can only be
used on a single thread, such as Rc, Cell, and others. Since that restriction is needed
to avoid undefined behavior, it’s something the compiler needs to understand and
check for you, so you can use these types without having to use unsafe blocks.

The language uses two special traits to keep track of which types can be safely used
across threads:

Send
A type is Send if it can be sent to another thread. In other words, if ownership of
a value of that type can be transferred to another thread. For example, Arc<i32>
is Send, but Rc<i32> is not.

Sync
A type is Sync if it can be shared with another thread. In other words, a type T
is Sync if and only if a shared reference to that type, &T, is Send. For example, an
i32 is Sync, but a Cell<i32> is not. (A Cell<i32> is Send, however.)

All primitive types such as i32, bool, and str are both Send and Sync.

Both of these traits are auto traits, which means that they are automatically imple‐
mented for your types based on their fields. A struct with fields that are all Send and
Sync, is itself also Send and Sync.

The way to opt out of either of these is to add a field to your type that does not
implement the trait. For that purpose, the special std::marker::PhantomData<T>

16 | Chapter 1: Basics of Rust Concurrency

type often comes in handy. That type is treated by the compiler as a T, except it
doesn’t actually exist at runtime. It’s a zero-sized type, taking no space.

Let’s take a look at the following struct:

use std::marker::PhantomData;

struct X {
 handle: i32,
 _not_sync: PhantomData<Cell<()>>,
}

In this example, X would be both Send and Sync if handle was its only field. However,
we added a zero-sized PhantomData<Cell<()>> field, which is treated as if it were a
Cell<()>. Since a Cell<()> is not Sync, neither is X. It is still Send, however, since all
its fields implement Send.

Raw pointers (*const T and *mut T) are neither Send nor Sync, since the compiler
doesn’t know much about what they represent.

The way to opt in to either of the traits is the same as with any other trait; use an impl
block to implement the trait for your type:

struct X {
 p: *mut i32,
}

unsafe impl Send for X {}
unsafe impl Sync for X {}

Note how implementing these traits requires the unsafe keyword, since the compiler
cannot check for you if it’s correct. It’s a promise you make to the compiler, which it
will just have to trust.

If you try to move something into another thread which is not Send, the compiler will
politely stop you from doing that. Here is a small example to demonstrate that:

fn main() {
 let a = Rc::new(123);
 thread::spawn(move || { // Error!
 dbg!(a);
 });
}

Here, we try to send an Rc<i32> to a new thread, but Rc<i32>, unlike Arc<i32>, does
not implement Send.

Thread Safety: Send and Sync | 17

If we try to compile the example above, we’re faced with an error that looks some‐
thing like this:

error[E0277]: `Rc<i32>` cannot be sent between threads safely
 --> src/main.rs:3:5
 |
3 | thread::spawn(move || {
 | ^^^^^^^^^^^^^ `Rc<i32>` cannot be sent between threads safely
 |
 = help: within `[closure]`, the trait `Send` is not implemented for `Rc<i32>`
note: required because it's used within this closure
 --> src/main.rs:3:19
 |
3 | thread::spawn(move || {
 | ^^^^^^^
note: required by a bound in `spawn`

The thread::spawn function requires its argument to be Send, and a closure is only
Send if all of its captures are. If we try to capture something that’s not Send, our
mistake is caught, protecting us from undefined behavior.

Locking: Mutexes and RwLocks
The most commonly used tool for sharing (mutable) data between threads is a mutex,
which is short for “mutual exclusion.” The job of a mutex is to ensure threads have
exclusive access to some data by temporarily blocking other threads that try to access
it at the same time.

Conceptually, a mutex has only two states: locked and unlocked. When a thread locks
an unlocked mutex, the mutex is marked as locked and the thread can immediately
continue. When a thread then attempts to lock an already locked mutex, that opera‐
tion will block. The thread is put to sleep while it waits for the mutex to be unlocked.
Unlocking is only possible on a locked mutex, and should be done by the same thread
that locked it. If other threads are waiting to lock the mutex, unlocking will cause one
of those threads to be woken up, so it can try to lock the mutex again and continue its
course.

Protecting data with a mutex is simply the agreement between all threads that they
will only access the data when they have the mutex locked. That way, no two threads
can ever access that data concurrently and cause a data race.

Rust’s Mutex
The Rust standard library provides this functionality through std::sync::Mutex<T>.
It is generic over a type T, which is the type of the data the mutex is protecting. By
making this T part of the mutex, the data can only be accessed through the mutex,
allowing for a safe interface that can guarantee all threads will uphold the agreement.

18 | Chapter 1: Basics of Rust Concurrency

To ensure a locked mutex can only be unlocked by the thread that locked it, it does
not have an unlock() method. Instead, its lock() method returns a special type
called a MutexGuard. This guard represents the guarantee that we have locked the
mutex. It behaves like an exclusive reference through the DerefMut trait, giving us
exclusive access to the data the mutex protects. Unlocking the mutex is done by
dropping the guard. When we drop the guard, we give up our ability to access the
data, and the Drop implementation of the guard will unlock the mutex.

Let’s take a look at an example to see a mutex in practice:

use std::sync::Mutex;

fn main() {
 let n = Mutex::new(0);
 thread::scope(|s| {
 for _ in 0..10 {
 s.spawn(|| {
 let mut guard = n.lock().unwrap();
 for _ in 0..100 {
 *guard += 1;
 }
 });
 }
 });
 assert_eq!(n.into_inner().unwrap(), 1000);
}

Here, we have a Mutex<i32>, a mutex protecting an integer, and we spawn ten threads
to each increment the integer one hundred times. Each thread will first lock the
mutex to obtain a MutexGuard, and then use that guard to access the integer and
modify it. The guard is implicitly dropped right after, when that variable goes out of
scope.

After the threads are done, we can safely remove the protection from the integer
through into_inner(). The into_inner method takes ownership of the mutex,
which guarantees that nothing else can have a reference to the mutex anymore,
making locking unnecessary.

Even though the increments happen in steps of one, a thread observing the integer
would only ever see multiples of 100, since it can only look at the integer when the
mutex is unlocked. Effectively, thanks to the mutex, the one hundred increments
together are now a single indivisable—atomic—operation.

Locking: Mutexes and RwLocks | 19

To clearly see the effect of the mutex, we can make each thread wait a second before
unlocking the mutex:

use std::time::Duration;

fn main() {
 let n = Mutex::new(0);
 thread::scope(|s| {
 for _ in 0..10 {
 s.spawn(|| {
 let mut guard = n.lock().unwrap();
 for _ in 0..100 {
 *guard += 1;
 }
 thread::sleep(Duration::from_secs(1)); // New!
 });
 }
 });
 assert_eq!(n.into_inner().unwrap(), 1000);
}

When you run the program now, you will see that it takes about 10 seconds to
complete. Each thread only waits for one second, but the mutex ensures that only one
thread at a time can do so.

If we drop the guard—and therefore unlock the mutex—before sleeping one second,
we will see it happen in parallel instead:

fn main() {
 let n = Mutex::new(0);
 thread::scope(|s| {
 for _ in 0..10 {
 s.spawn(|| {
 let mut guard = n.lock().unwrap();
 for _ in 0..100 {
 *guard += 1;
 }
 drop(guard); // New: drop the guard before sleeping!
 thread::sleep(Duration::from_secs(1));
 });
 }
 });
 assert_eq!(n.into_inner().unwrap(), 1000);
}

With this change, this program takes only about one second, since now the 10
threads can execute their one-second sleep at the same time. This shows the impor‐
tance of keeping the amount of time a mutex is locked as short as possible. Keeping
a mutex locked longer than necessary can completely nullify any benefits of parallel‐
ism, effectively forcing everything to happen serially instead.

20 | Chapter 1: Basics of Rust Concurrency

Lock Poisoning
The unwrap() calls in the examples above relate to lock poisoning.

A Mutex in Rust gets marked as poisoned when a thread panics while holding the lock.
When that happens, the Mutex will no longer be locked, but calling its lock method
will result in an Err to indicate it has been poisoned.

This is a mechanism to protect against leaving the data that’s protected by a mutex
in an inconsistent state. In our example above, if a thread would panic after incre‐
menting the integer fewer than 100 times, the mutex would unlock and the integer
would be left in an unexpected state where it is no longer a multiple of 100, possibly
breaking assumptions made by other threads. Automatically marking the mutex as
poisoned in that case forces the user to handle this possibility.

Calling lock() on a poisoned mutex still locks the mutex. The Err returned by
lock() contains the MutexGuard, allowing us to correct an inconsistent state if
necessary.

While lock poisoning might seem like a powerful mechanism, recovering from a
potentially inconsistent state is not often done in practice. Most code either disre‐
gards poison or uses unwrap() to panic if the lock was poisoned, effectively propagat‐
ing panics to all users of the mutex.

Lifetime of the MutexGuard
While it’s convenient that implicitly dropping a guard unlocks the mutex, it can
sometimes lead to subtle surprises. If we assign the guard a name with a let state‐
ment (as in our examples above), it’s relatively straightforward to see when it will be
dropped, since local variables are dropped at the end of the scope they are defined
in. Still, not explicitly dropping a guard might lead to keeping the mutex locked for
longer than necessary, as demonstrated in the examples above.

Using a guard without assigning it a name is also possible, and can be very convenient
at times. Since a MutexGuard behaves like an exclusive reference to the protected data,
we can directly use it without assigning a name to the guard first. For example, if
you have a Mutex<Vec<i32>>, you can lock the mutex, push an item into the Vec, and
unlock the mutex again, in a single statement:

list.lock().unwrap().push(1);

Any temporaries produced within a larger expression, such as the guard returned by
lock(), will be dropped at the end of the statement. While this might seem obvious
and reasonable, it leads to a common pitfall that usually involves a match, if let, or
while let statement. Here is an example that runs into this pitfall:

Locking: Mutexes and RwLocks | 21

if let Some(item) = list.lock().unwrap().pop() {
 process_item(item);
}

If our intention was to lock the list, pop an item, unlock the list, and then process
the item after the list is unlocked, we made a subtle but important mistake here.
The temporary guard is not dropped until the end of the entire if let statement,
meaning we needlessly hold on to the lock while processing the item.

Perhaps surprisingly, this does not happen for a similar if statement, such as in this
example:

if list.lock().unwrap().pop() == Some(1) {
 do_something();
}

Here, the temporary guard does get dropped before the body of the if statement is
executed. The reason is that the condition of a regular if statement is always a plain
boolean, which cannot borrow anything. There is no reason to extend the lifetime of
temporaries from the condition to the end of the statement. For an if let statement,
however, that might not be the case. If we had used front() rather than pop(), for
example, item would be borrowing from the list, making it necessary to keep the
guard around. Since the borrow checker is only really a check and does not influence
when or in what order things are dropped, the same happens when we use pop(),
even though that wouldn’t have been necessary.

We can avoid this by moving the pop operation to a separate let statement. Then the
guard is dropped at the end of that statement, before the if let:

let item = list.lock().unwrap().pop();
if let Some(item) = item {
 process_item(item);
}

Reader-Writer Lock
A mutex is only concerned with exclusive access. The MutexGuard will provide us an
exclusive reference (&mut T) to the protected data, even if we only wanted to look at
the data and a shared reference (&T) would have sufficed.

A reader-writer lock is a slightly more complicated version of a mutex that under‐
stands the difference between exclusive and shared access, and can provide either. It
has three states: unlocked, locked by a single writer (for exclusive access), and locked
by any number of readers (for shared access). It is commonly used for data that is
often read by multiple threads, but only updated once in a while.

The Rust standard library provides this lock through the std::sync::RwLock<T>
type. It works similarly to the standard Mutex, except its interface is mostly split in

22 | Chapter 1: Basics of Rust Concurrency

two parts. Instead of a single lock() method, it has a read() and write() method
for locking as either a reader or a writer. It comes with two guard types, one for
readers and one for writers: RwLockReadGuard and RwLockWriteGuard. The former
only implements Deref to behave like a shared reference to the protected data, while
the latter also implements DerefMut to behave like an exclusive reference.

It is effectively the multi-threaded version of RefCell, dynamically tracking the
number of references to ensure the borrow rules are upheld.

Both Mutex<T> and RwLock<T> require T to be Send, because they can be used to send
a T to another thread. An RwLock<T> additionally requires T to also implement Sync,
because it allows multiple threads to hold a shared reference (&T) to the protected
data. (Strictly speaking, you can create a lock for a T that doesn’t fulfill these require‐
ments, but you wouldn’t be able to share it between threads as the lock itself won’t
implement Sync.)

The Rust standard library provides only one general purpose RwLock type, but its
implementation depends on the operating system. There are many subtle variations
between reader-writer lock implementations. Most implementations will block new
readers when there is a writer waiting, even when the lock is already read-locked.
This is done to prevent writer starvation, a situation where many readers collectively
keep the lock from ever unlocking, never allowing any writer to update the data.

Mutexes in Other Languages
Rust’s standard Mutex and RwLock types look a bit different than those you find in
other languages like C or C++.

The biggest difference is that Rust’s Mutex<T> contains the data it is protecting. In
C++, for example, std::mutex does not contain the data it protects, nor does it even
know what it is protecting. This means that it is the responsibility of the user to
remember which data is protected and by which mutex, and ensure the right mutex
is locked every time “protected” data is accessed. This is useful to keep in mind when
reading code involving mutexes in other languages, or when communicating with
programmers who are not familiar with Rust. A Rust programmer might talk about
“the data inside the mutex,” or say things like “wrap it in a mutex,” which can be
confusing to those only familiar with mutexes in other languages.

If you really need a stand-alone mutex that doesn’t contain anything, for example to
protect some external hardware, you can use Mutex<()>. But even in a case like that,
you are probably better off defining a (possibly zero-sized) type to interface with that
hardware and wrapping that in a Mutex instead. That way, you are still forced to lock
the mutex before you can interact with the hardware.

Locking: Mutexes and RwLocks | 23

Waiting: Parking and Condition Variables
When data is mutated by multiple threads, there are many situations where they
would need to wait for some event, for some condition about the data to become
true. For example, if we have a mutex protecting a Vec, we might want to wait until it
contains anything.

While a mutex does allow threads to wait until it becomes unlocked, it does not
provide functionality for waiting for any other conditions. If a mutex was all we had,
we’d have to keep locking the mutex to repeatedly check if there’s anything in the
Vec yet.

Thread Parking
One way to wait for a notification from another thread is called thread parking. A
thread can park itself, which puts it to sleep, stopping it from consuming any CPU
cycles. Another thread can then unpark the parked thread, waking it up from its nap.

Thread parking is available through the std::thread::park() function. For unpark‐
ing, you call the unpark() method on a Thread object representing the thread that
you want to unpark. Such an object can be obtained from the join handle returned by
spawn, or by the thread itself through std::thread::current().

Let’s dive into an example that uses a mutex to share a queue between two threads. In
the following example, a newly spawned thread will consume items from the queue,
while the main thread will insert a new item into the queue every second. Thread
parking is used to make the consuming thread wait when the queue is empty.

use std::collections::VecDeque;

fn main() {
 let queue = Mutex::new(VecDeque::new());

 thread::scope(|s| {
 // Consuming thread
 let t = s.spawn(|| loop {
 let item = queue.lock().unwrap().pop_front();
 if let Some(item) = item {
 dbg!(item);
 } else {
 thread::park();
 }
 });

 // Producing thread
 for i in 0.. {
 queue.lock().unwrap().push_back(i);
 t.thread().unpark();
 thread::sleep(Duration::from_secs(1));

24 | Chapter 1: Basics of Rust Concurrency

 }
 });
}

The consuming thread runs an infinite loop in which it pops items out of the queue
to display them using the dbg macro. When the queue is empty, it stops and goes to
sleep using the park() function. If it gets unparked, the park() call returns, and the
loop continues, popping items from the queue again until it is empty. And so on.

The producing thread produces a new number every second by pushing it into the
queue. Every time it adds an item, it uses the unpark() method on the Thread object
that refers to the consuming thread to unpark it. That way, the consuming thread gets
woken up to process the new element.

An important observation to make here is that this program would still be theoreti‐
cally correct, although inefficient, if we remove parking. This is important, because
park() does not guarantee that it will only return because of a matching unpark().
While somewhat rare, it might have spurious wake-ups. Our example deals with that
just fine, because the consuming thread will lock the queue, see that it is empty, and
directly unlock it and park itself again.

An important property of thread parking is that a call to unpark() before the thread
parks itself does not get lost. The request to unpark is still recorded, and the next time
the thread tries to park itself, it clears that request and directly continues without
actually going to sleep. To see why that is critical for correct operation, let’s go
through a possible ordering of the steps executed by both threads:

1. The consuming thread—let’s call it C—locks the queue.1.
2. C tries to pop an item from the queue, but it is empty, resulting in None.2.
3. C unlocks the queue.3.
4. The producing thread, which we’ll call P, locks the queue.4.
5. P pushes a new item onto the queue.5.
6. P unlocks the queue again.6.
7. P calls unpark() to notify C that there are new items.7.
8. C calls park() to go to sleep, to wait for more items.8.

While there is most likely only a very brief moment between releasing the queue
in step 3 and parking in step 8, steps 4 through 7 could potentially happen in that
moment before the thread parks itself. If unpark() would do nothing if the thread
wasn’t parked, the notification would be lost. The consuming thread would still be
waiting, even if there were an item in the queue. Thanks to unpark requests getting
saved for a future call to park(), we don’t have to worry about this.

Waiting: Parking and Condition Variables | 25

However, unpark requests don’t stack up. Calling unpark() two times and then
calling park() two times afterwards still results in the thread going to sleep. The first
park() clears the request and returns directly, but the second one goes to sleep as
usual.

This means that in our example above it’s important that we only park the thread if
we’ve seen the queue is empty, rather than park it after every processed item. While
it’s extremely unlikely to happen in this example because of the huge (one second)
sleep, it’s possible for multiple unpark() calls to wake up only a single park() call.

Unfortunately, this does mean that if unpark() is called right after park() returns, but
before the queue gets locked and emptied out, the unpark() call was unnecessary but
still causes the next park() call to instantly return. This results in the (empty) queue
getting locked and unlocked an extra time. While this doesn’t affect the correctness of
the program, it does affect its efficiency and performance.

This mechanism works well for simple situations like in our example, but quickly
breaks down when things get more complicated. For example, if we had multiple
consumer threads taking items from the same queue, the producer thread would have
no way of knowing which of the consumers is actually waiting and should be woken
up. The producer will have to know exactly when a consumer is waiting, and what
condition it is waiting for.

Condition Variables
Condition variables are a more commonly used option for waiting for something to
happen to data protected by a mutex. They have two basic operations: wait and notify.
Threads can wait on a condition variable, after which they can be woken up when
another thread notifies that same condition variable. Multiple threads can wait on the
same condition variable, and notifications can either be sent to one waiting thread, or
to all of them.

This means that we can create a condition variable for specific events or conditions
we’re interested in, such as the queue being non-empty, and wait on that condition.
Any thread that causes that event or condition to happen then notifies the condition
variable, without having to know which or how many threads are interested in that
notification.

To avoid the issue of missing notifications in the brief moment between unlocking
a mutex and waiting for a condition variable, condition variables provide a way to
atomically unlock the mutex and start waiting. This means there is simply no possible
moment for notifications to get lost.

The Rust standard library provides a condition variable as std::sync::Condvar. Its
wait method takes a MutexGuard that proves we’ve locked the mutex. It first unlocks

26 | Chapter 1: Basics of Rust Concurrency

the mutex and goes to sleep. Later, when woken up, it relocks the mutex and returns a
new MutexGuard (which proves that the mutex is locked again).

It has two notify functions: notify_one to wake up just one waiting thread (if any),
and notify_all to wake them all up.

Let’s modify the example we used for thread parking to use Condvar instead:

use std::sync::Condvar;

let queue = Mutex::new(VecDeque::new());
let not_empty = Condvar::new();

thread::scope(|s| {
 s.spawn(|| {
 loop {
 let mut q = queue.lock().unwrap();
 let item = loop {
 if let Some(item) = q.pop_front() {
 break item;
 } else {
 q = not_empty.wait(q).unwrap();
 }
 };
 drop(q);
 dbg!(item);
 }
 });

 for i in 0.. {
 queue.lock().unwrap().push_back(i);
 not_empty.notify_one();
 thread::sleep(Duration::from_secs(1));
 }
});

We had to change a few things:

• We now not only have a Mutex containing the queue, but also a Condvar to•
communicate the “not empty” condition.

• We no longer need to know which thread to wake up, so we don’t store the•
return value from spawn anymore. Instead, we notify the consumer through the
condition variable with the notify_one method.

• Unlocking, waiting, and relocking is all done by the wait method. We had to•
restructure the control flow a bit to be able to pass the guard to the wait method,
while still dropping it before processing an item.

Waiting: Parking and Condition Variables | 27

Now we can spawn as many consuming threads as we like, and even spawn more
later, without having to change anything. The condition variable takes care of deliver‐
ing the notifications to whichever thread is interested.

If we had a more complicated system with threads that are interested in different
conditions, we could define a Condvar for each condition. For example, we could
define one to indicate the queue is non-empty and another one to indicate it is empty.
Then each thread would wait for whichever condition is relevant to what they are
doing.

Normally, a Condvar is only ever used together with a single Mutex. If two threads try
to concurrently wait on a condition variable using two different mutexes, it might
cause a panic.

A downside of a Condvar is that it only works when used together with a Mutex, but
for most use cases that is perfectly fine, as that’s exactly what’s already used to protect
the data anyway.

Both thread::park() and Condvar::wait() also have a variant with a time limit:
thread::park_timeout() and Condvar::wait_timeout(). These take a Duration as
an extra argument, which is the time after which it should give up waiting for a
notification and unconditionally wake up.

28 | Chapter 1: Basics of Rust Concurrency

Summary
• Multiple threads can run concurrently within the same program and can be•

spawned at any time.
• When the main thread ends, the entire program ends.•
• Data races are undefined behavior, which is fully prevented (in safe code) by•

Rust’s type system.
• Data that is Send can be sent to other threads, and data that is Sync can be shared•

between threads.
• Regular threads might run as long as the program does, and thus can only•

borrow 'static data such as statics and leaked allocations.
• Reference counting (Arc) can be used to share ownership to make sure data lives•

as long as at least one thread is using it.
• Scoped threads are useful to limit the lifetime of a thread to alllow it to borrow•

non-'static data, such as local variables.
• &T is a shared reference. &mut T is an exclusive reference. Regular types do not•

allow mutation through a shared reference.
• Some types have interior mutability, thanks to UnsafeCell, which allows for•

mutation through shared references.
• Cell and RefCell are the standard types for single-threaded interior mutability.•

Atomics, Mutex, and RwLock are their multi-threaded equivalents.
• Cell and atomics only allow replacing the value as a whole, while RefCell,•
Mutex, and RwLock allow you to mutate the value directly by dynamically
enforcing access rules.

• Thread parking can be a convenient way to wait for some condition.•
• When a condition is about data protected by a Mutex, using a Condvar is more•

convenient, and can be more efficient, than thread parking.

Summary | 29

CHAPTER 2

Atomics

The word atomic comes from the Greek word ἄτομος, meaning indivisible, something
that cannot be cut into smaller pieces. In computer science, it is used to describe an
operation that is indivisible: it is either fully completed, or it didn’t happen yet.

As mentioned in “Borrowing and Data Races” on page 11, multiple threads con‐
currently reading and modifying the same variable normally results in undefined
behavior. However, atomic operations do allow for different threads to safely read and
modify the same variable. Since such an operation is indivisible, it either happens
completely before or completely after another operation, avoiding undefined behav‐
ior. Later, in Chapter 7, we’ll see how this works at the hardware level.

Atomic operations are the main building block for anything involving multiple
threads. All the other concurrency primitives, such as mutexes and condition vari‐
ables, are implemented using atomic operations.

In Rust, atomic operations are available as methods on the standard atomic types
that live in std::sync::atomic. They all have names starting with Atomic, such
as AtomicI32 or AtomicUsize. Which ones are available depends on the hardware
architecture and sometimes operating system, but almost all platforms provide at
least all atomic types up to the size of a pointer.

Unlike most types, they allow modification through a shared reference (e.g., &Atom
icU8). This is possible thanks to interior mutability, as discussed in “Interior Mutabil‐
ity” on page 13.

Each of the available atomic types has the same interface with methods for storing
and loading, methods for atomic “fetch-and-modify” operations, and some more
advanced “compare-and-exchange” methods. We’ll discuss them in detail in the rest
of this chapter.

31

But, before we can dive into the different atomic operations, we briefly need to touch
upon a concept called memory ordering:

Every atomic operation takes an argument of type std::sync::atomic::Ordering,
which determines what guarantees we get about the relative ordering of operations.
The simplest variant with the fewest guarantees is Relaxed. Relaxed still guarantees
consistency on a single atomic variable, but does not promise anything about the
relative order of operations between different variables.

What this means is that two threads might see operations on different variables
happen in a different order. For example, if one thread writes to one variable first
and then to a second variable very quickly afterwards, another thread might see that
happen in the opposite order.

In this chapter we’ll only look at use cases where this is not a problem and simply
use Relaxed everywhere without going more into detail. We’ll discuss all the details of
memory ordering and the other available memory orderings in Chapter 3.

Atomic Load and Store Operations
The first two atomic operations we’ll look at are the most basic ones: load and store.
Their function signatures are as follows, using AtomicI32 as an example:

impl AtomicI32 {
 pub fn load(&self, ordering: Ordering) -> i32;
 pub fn store(&self, value: i32, ordering: Ordering);
}

The load method atomically loads the value stored in the atomic variable, and the
store method atomically stores a new value in it. Note how the store method takes
a shared reference (&T) rather than an exclusive reference (&mut T), even though it
modifies the value.

Let’s take a look at some realistic use cases for these two methods.

Example: Stop Flag
The first example uses an AtomicBool for a stop flag. Such a flag is used to inform
other threads to stop running.

use std::sync::atomic::AtomicBool;
use std::sync::atomic::Ordering::Relaxed;

fn main() {
 static STOP: AtomicBool = AtomicBool::new(false);

 // Spawn a thread to do the work.
 let background_thread = thread::spawn(|| {

32 | Chapter 2: Atomics

 while !STOP.load(Relaxed) {
 some_work();
 }
 });

 // Use the main thread to listen for user input.
 for line in std::io::stdin().lines() {
 match line.unwrap().as_str() {
 "help" => println!("commands: help, stop"),
 "stop" => break,
 cmd => println!("unknown command: {cmd:?}"),
 }
 }

 // Inform the background thread it needs to stop.
 STOP.store(true, Relaxed);

 // Wait until the background thread finishes.
 background_thread.join().unwrap();
}

In this example, the background thread is repeatedly running some_work(), while the
main thread allows the user to enter some commands to interact with the program.
In this simple example, the only useful command is stop to make the program stop.

To make the background thread stop, the atomic STOP boolean is used to communi‐
cate this condition to the background thread. When the foreground thread reads the
stop command, it sets the flag to true, which is checked by the background thread
before each new iteration. The main thread waits until the background thread is
finished with its current iteration using the join method.

This simple solution works great as long as the flag is regularly checked by the
background thread. If it gets stuck in some_work() for a long time, that can result in
an unacceptable delay between the stop command and the program quitting.

Example: Progress Reporting
In our next example, we process 100 items one by one on a background thread, while
the main thread gives the user regular updates on the progress:

use std::sync::atomic::AtomicUsize;

fn main() {
 let num_done = AtomicUsize::new(0);

 thread::scope(|s| {
 // A background thread to process all 100 items.
 s.spawn(|| {
 for i in 0..100 {
 process_item(i); // Assuming this takes some time.

Atomic Load and Store Operations | 33

 num_done.store(i + 1, Relaxed);
 }
 });

 // The main thread shows status updates, every second.
 loop {
 let n = num_done.load(Relaxed);
 if n == 100 { break; }
 println!("Working.. {n}/100 done");
 thread::sleep(Duration::from_secs(1));
 }
 });

 println!("Done!");
}

This time, we use a scoped thread (“Scoped Threads” on page 5), which will automat‐
ically handle the joining of the thread for us, and also allow us to borrow local
variables.

Every time the background thread finishes processing an item, it stores the number
of processed items in an AtomicUsize. Meanwhile, the main thread shows that num‐
ber to the user to inform them of the progress, about once per second. Once the main
thread sees that all 100 items have been processed, it exits the scope, which implicitly
joins the background thread, and informs the user that everything is done.

Synchronization
Once the last item is processed, it might take up to one whole second for the main
thread to know, introducing an unnecessary delay at the end. To solve this, we can use
thread parking (“Thread Parking” on page 24) to wake the main thread from its sleep
whenever there is new information it might be interested in.

Here’s the same example, but now using thread::park_timeout rather than
thread::sleep:

fn main() {
 let num_done = AtomicUsize::new(0);

 let main_thread = thread::current();

 thread::scope(|s| {
 // A background thread to process all 100 items.
 s.spawn(|| {
 for i in 0..100 {
 process_item(i); // Assuming this takes some time.
 num_done.store(i + 1, Relaxed);
 main_thread.unpark(); // Wake up the main thread.
 }
 });

34 | Chapter 2: Atomics

 // The main thread shows status updates.
 loop {
 let n = num_done.load(Relaxed);
 if n == 100 { break; }
 println!("Working.. {n}/100 done");
 thread::park_timeout(Duration::from_secs(1));
 }
 });

 println!("Done!");
}

Not much has changed. We’ve obtained a handle to the main thread through
thread::current(), which is now used by the background thread to unpark the
main thread after every status update. The main thread now uses park_timeout
rather than sleep, such that it can be interrupted.

Now, any status updates are immediately reported to the user, while still repeating the
last update every second to show that the program is still running.

Example: Lazy Initialization
The last example before we move on to more advanced atomic operations is about
lazy initialization.

Imagine there is a value x, which we are reading from a file, obtaining from the
operating system, or calculating in some other way, that we expect to be constant
during a run of the program. Maybe x is the version of the operating system, or the
total amount of memory, or the 400th digit of tau. It doesn’t really matter for this
example.

Since we don’t expect it to change, we can request or calculate it only the first time we
need it, and remember the result. The first thread that needs it will have to calculate
the value, but it can store it in an atomic static to make it available for all threads,
including itself if it needs it again later.

Let’s take a look at an example of this. To keep things simple, we’ll assume x is never
zero, so that we can use zero as a placeholder before it has been calculated.

use std::sync::atomic::AtomicU64;

fn get_x() -> u64 {
 static X: AtomicU64 = AtomicU64::new(0);
 let mut x = X.load(Relaxed);
 if x == 0 {
 x = calculate_x();
 X.store(x, Relaxed);
 }
 x
}

Atomic Load and Store Operations | 35

The first thread to call get_x() will check the static X and see it is still zero, calculate
its value, and store the result back in the static to make it available for future use.
Later, any call to get_x() will see that the value in the static is nonzero, and return it
immediately without calculating it again.

However, if a second thread calls get_x() while the first one is still calculating x, the
second thread will also see a zero and also calculate x in parallel. One of the threads
will end up overwriting the result of the other, depending on which one finishes first.
This is called a race. Not a data race, which is undefined behavior and impossible in
Rust without using unsafe, but still a race with an unpredictable winner.

Since we expect x to be constant, it doesn’t matter who wins the race, as the result will
be the same regardless. Depending on how much time we expect calculate_x() to
take, this might be a very good or very bad strategy.

If calculate_x() is expected to take a long time, it’s better if threads wait while the
first thread is still initializing X, to avoid unnecessarily wasting processor time. You
could implement this using a condition variable or thread parking (“Waiting: Parking
and Condition Variables” on page 24), but that quickly gets too complicated for a
small example. The Rust standard library provides exactly this functionality through
std::sync::Once and std::sync::OnceLock, so there’s usually no need to implement
these yourself.

Fetch-and-Modify Operations
Now that we’ve seen a few use cases for the basic load and store operations, let’s
move on to more interesting operations: the fetch-and-modify operations. These
operations modify the atomic variable, but also load (fetch) the original value, as a
single atomic operation.

The most commonly used ones are fetch_add and fetch_sub, which perform
addition and subtraction, respectively. Some of the other available operations are
fetch_or and fetch_and for bitwise operations, and fetch_max and fetch_min
which can be used to keep a running maximum or minimum.

36 | Chapter 2: Atomics

Their function signatures are as follows, using AtomicI32 as an example:

impl AtomicI32 {
 pub fn fetch_add(&self, v: i32, ordering: Ordering) -> i32;
 pub fn fetch_sub(&self, v: i32, ordering: Ordering) -> i32;
 pub fn fetch_or(&self, v: i32, ordering: Ordering) -> i32;
 pub fn fetch_and(&self, v: i32, ordering: Ordering) -> i32;
 pub fn fetch_nand(&self, v: i32, ordering: Ordering) -> i32;
 pub fn fetch_xor(&self, v: i32, ordering: Ordering) -> i32;
 pub fn fetch_max(&self, v: i32, ordering: Ordering) -> i32;
 pub fn fetch_min(&self, v: i32, ordering: Ordering) -> i32;
 pub fn swap(&self, v: i32, ordering: Ordering) -> i32; // "fetch_store"
}

The one outlier is the operation that simply stores a new value, regardless of the old
value. Instead of fetch_store, it has been called swap.

Here’s a quick demonstration showing how fetch_add returns the value before the
operation:

use std::sync::atomic::AtomicI32;

let a = AtomicI32::new(100);
let b = a.fetch_add(23, Relaxed);
let c = a.load(Relaxed);

assert_eq!(b, 100);
assert_eq!(c, 123);

The fetch_add operation incremented a from 100 to 123, but returned to us the old
value of 100. Any next operation will see the value of 123.

The return value from these operations is not always relevant. If you only need the
operation to be applied to the atomic value, but are not interested in the value itself,
it’s perfectly fine to simply ignore the return value.

An important thing to keep in mind is that fetch_add and fetch_sub implement
wrapping behavior for overflows. Incrementing a value past the maximum represent‐
able value will wrap around and result in the minimum representable value. This
is different than the behavior of the plus and minus operators on regular integers,
which will panic in debug mode on overflow.

In “Compare-and-Exchange Operations” on page 42, we’ll see how to do atomic
addition with overflow checking.

But first, let’s see some real-world use cases of these methods.

Fetch-and-Modify Operations | 37

Example: Progress Reporting from Multiple Threads
In “Example: Progress Reporting” on page 33, we used an AtomicUsize to report the
progress of a background thread. If we had split the work over, for example, four
threads with each processing 25 items, we’d need to know the progress from all four
threads.

We could use a separate AtomicUsize for each thread and load them all in the main
thread and sum them up, but an easier solution is to use a single AtomicUsize to
track the total number of processed items over all threads.

To make that work, we can no longer use the store method, as that would overwrite
the progress from other threads. Instead, we can use an atomic add operation to
increment the counter after every processed item.

Let’s update the example from “Example: Progress Reporting” on page 33 to split the
work over four threads:

fn main() {
 let num_done = &AtomicUsize::new(0);

 thread::scope(|s| {
 // Four background threads to process all 100 items, 25 each.
 for t in 0..4 {
 s.spawn(move || {
 for i in 0..25 {
 process_item(t * 25 + i); // Assuming this takes some time.
 num_done.fetch_add(1, Relaxed);
 }
 });
 }

 // The main thread shows status updates, every second.
 loop {
 let n = num_done.load(Relaxed);
 if n == 100 { break; }
 println!("Working.. {n}/100 done");
 thread::sleep(Duration::from_secs(1));
 }
 });

 println!("Done!");
}

A few things have changed. Most importantly, we now spawn four background
threads rather than one, and use fetch_add instead of store to modify the num_done
atomic variable.

More subtly, we now use a move closure for the background threads, and num_done
is now a reference. This is not related to our use of fetch_add, but rather to how

38 | Chapter 2: Atomics

we spawn four threads in a loop. This closure captures t to know which of the four
threads it is, and thus whether to start at item 0, 25, 50, or 75. Without the move
keyword, the closure would try to capture t by reference. That isn’t allowed, as it only
exists briefly during the loop.

As a move closure, it moves (or copies) its captures rather than borrowing them,
giving it a copy of t. Because it also captures num_done, we’ve changed that variable
to be a reference, since we still want to borrow that same AtomicUsize. Note that the
atomic types do not implement the Copy trait, so we’d have gotten an error if we had
tried to move one into more than one thread.

Closure capture subtleties aside, the change to use fetch_add here is very simple. We
don’t know in which order the threads will increment num_done, but as the addition is
atomic, we don’t have to worry about anything and can be sure it will be exactly 100
when all threads are done.

Example: Statistics
Continuing with this concept of reporting what other threads are doing through
atomics, let’s extend our example to also collect and report some statistics on the time
it takes to process an item.

Next to num_done, we’re adding two atomic variables, total_time and max_time, to
keep track of the amount of time spent processing items. We’ll use these to report the
average and peak processing times.

fn main() {
 let num_done = &AtomicUsize::new(0);
 let total_time = &AtomicU64::new(0);
 let max_time = &AtomicU64::new(0);

 thread::scope(|s| {
 // Four background threads to process all 100 items, 25 each.
 for t in 0..4 {
 s.spawn(move || {
 for i in 0..25 {
 let start = Instant::now();
 process_item(t * 25 + i); // Assuming this takes some time.
 let time_taken = start.elapsed().as_micros() as u64;
 num_done.fetch_add(1, Relaxed);
 total_time.fetch_add(time_taken, Relaxed);
 max_time.fetch_max(time_taken, Relaxed);
 }
 });
 }

 // The main thread shows status updates, every second.
 loop {
 let total_time = Duration::from_micros(total_time.load(Relaxed));

Fetch-and-Modify Operations | 39

 let max_time = Duration::from_micros(max_time.load(Relaxed));
 let n = num_done.load(Relaxed);
 if n == 100 { break; }
 if n == 0 {
 println!("Working.. nothing done yet.");
 } else {
 println!(
 "Working.. {n}/100 done, {:?} average, {:?} peak",
 total_time / n as u32,
 max_time,
);
 }
 thread::sleep(Duration::from_secs(1));
 }
 });

 println!("Done!");
}

The background threads now use Instant::now() and Instant::elapsed() to mea‐
sure the time they spend in process_item(). An atomic add operation is used to add
the number of microseconds to total_time, and an atomic max operation is used to
keep track of the highest measurement in max_time.

The main thread divides the total time by the number of processed items to obtain
the average processing time, which it then reports together with the peak time from
max_time.

Since the three atomic variables are updated separately, it is possible for the main
thread to load the values after a thread has incremented num_done, but before it
has updated total_time, resulting in an underestimate of the average. More subtly,
because the Relaxed memory ordering gives no guarantees about the relative order
of operations as seen from another thread, it might even briefly see a new updated
value of total_time, while still seeing an old value of num_done, resulting in an
overestimate of the average.

Neither of this is a big issue in our example. The worst that can happen is that an
inaccurate average is briefly reported to the user.

If we want to avoid this, we can put the three statistics inside a Mutex. Then we’d
briefly lock the mutex while updating the three numbers, which no longer have to
be atomic by themselves. This effectively turns the three updates into a single atomic
operation, at the cost of locking and unlocking a mutex, and potentially temporarily
blocking threads.

40 | Chapter 2: Atomics

Example: ID Allocation
Let’s move on to a use case where we actually need the return value from fetch_add.

Suppose we need some function, allocate_new_id(), that gives a new unique num‐
ber every time it is called. We might use these numbers to identify tasks or other
things in our program; things that need to be uniquely identified by something small
that can be easily stored and passed around between threads, such as an integer.

Implementing this function turns out to be trivial using fetch_add:

use std::sync::atomic::AtomicU32;

fn allocate_new_id() -> u32 {
 static NEXT_ID: AtomicU32 = AtomicU32::new(0);
 NEXT_ID.fetch_add(1, Relaxed)
}

We simply keep track of the next number to give out, and increment it every time we
load it. The first caller will get a 0, the second a 1, and so on.

The only problem here is the wrapping behavior on overflow. The 4,294,967,296th
call will overflow the 32-bit integer, such that the next call will return 0 again.

Whether this is a problem depends on the use case: how likely is it to be called this
often, and what’s the worst that can happen if the numbers are not unique? While this
might seeem like a huge number, modern computers can easily execute our function
that many times within seconds. If memory safety is dependent on these numbers
being unique, our implementation above is not acceptable.

To solve this, we can attempt to make the function panic if it is called too many times,
like this:

// This version is problematic.
fn allocate_new_id() -> u32 {
 static NEXT_ID: AtomicU32 = AtomicU32::new(0);
 let id = NEXT_ID.fetch_add(1, Relaxed);
 assert!(id < 1000, "too many IDs!");
 id
}

Now, the assert statement will panic after a thousand calls. However, this happens
after the atomic add operation already happened, meaning that NEXT_ID has already
been incremented to 1001 when we panic. If another thread then calls the function,
it’ll increment it to 1002 before panicking, and so on. Although it might take sig‐
nificantly longer, we’ll run into the same problem after 4,294,966,296 panics when
NEXT_ID will overflow to zero again.

Fetch-and-Modify Operations | 41

There are three common solutions to this problem. The first one is to not panic but
instead completely abort the process on overflow. The std::process::abort func‐
tion will abort the entire process, ruling out the possibility of anything continuing to
call our function. While aborting the process might take a brief moment in which the
function can still be called by other threads, the chance of that happening billions of
times before the program is truly aborted is negligible.

This is, in fact, how the overflow check in Arc::clone() in the standard library is
implemented, in case you somehow manage to clone it isize::MAX times. That’d take
hundreds of years on a 64-bit computer, but is achieveable in seconds if isize is only
32 bits.

A second way to deal with the overflow is to use fetch_sub to decrement the counter
again before panicking, like this:

fn allocate_new_id() -> u32 {
 static NEXT_ID: AtomicU32 = AtomicU32::new(0);
 let id = NEXT_ID.fetch_add(1, Relaxed);
 if id >= 1000 {
 NEXT_ID.fetch_sub(1, Relaxed);
 panic!("too many IDs!");
 }
 id
}

It’s still possible for the counter to very briefly be incremented beyond 1000 when
multiple threads execute this function at the same time, but it is limited by the
number of active threads. It’s reasonable to assume there will never be billions of
active threads at once, especially not all simultaneously executing the same function
in the brief moment between fetch_add and fetch_sub.

This is how overflows are handled for the number of running threads in the standard
library’s thread::scope implementation.

The third way of handling overflows is arguably the only truly correct one, as it
prevents the addition from happening at all if it would overflow. However, we cannot
implement that with the atomic operations we’ve seen so far. For this, we’ll need
compare-and-exchange operations, which we’ll explore next.

Compare-and-Exchange Operations
The most advanced and flexible atomic operation is the compare-and-exchange opera‐
tion. This operation checks if the atomic value is equal to a given value, and only if
that is the case does it replace it with a new value, all atomically as a single operation.
It will return the previous value and tell us whether it replaced it or not.

42 | Chapter 2: Atomics

Its signature is a bit more complicated than the ones we’ve seen so far. Using Atom
icI32 as an example, it looks like this:

impl AtomicI32 {
 pub fn compare_exchange(
 &self,
 expected: i32,
 new: i32,
 success_order: Ordering,
 failure_order: Ordering
) -> Result<i32, i32>;
}

Ignoring memory ordering for a moment, it is basically identical to the following
implementation, except it all happens as a single, indivisible atomic operation:

impl AtomicI32 {
 pub fn compare_exchange(&self, expected: i32, new: i32) -> Result<i32, i32> {
 // In reality, the load, comparison and store,
 // all happen as a single atomic operation.
 let v = self.load();
 if v == expected {
 // Value is as expected.
 // Replace it and report success.
 self.store(new);
 Ok(v)
 } else {
 // The value was not as expected.
 // Leave it untouched and report failure.
 Err(v)
 }
 }
}

Using this, we can load a value from an atomic variable, perform any calculation
we like, and then only store the newly calculated value if the atomic variable didn’t
change in the meantime. If we put this in a loop to retry if it did change, we could use
this to implement all the other atomic operations, making this the most general one.

To demonstrate, let’s increment an AtomicU32 by one without using fetch_add, just
to see how compare_exchange is used in practice:

fn increment(a: &AtomicU32) {
 let mut current = a.load(Relaxed);
 loop {
 let new = current + 1;
 match a.compare_exchange(current, new, Relaxed, Relaxed) {
 Ok(_) => return,
 Err(v) => current = v,
 }
 }
}

Compare-and-Exchange Operations | 43

First, we load the current value of a.

We calculate the new value we want to store in a, not taking into account
potential concurrent modifications of a by other threads.

We use compare_exchange to update the value of a, but only if its value is still the
same value we loaded before.

If a was indeed still the same as before, it is now replaced by our new value and
we are done.

If a was not the same as before, another thread must’ve changed it in the
brief moment since we loaded it. The compare_exchange operation gives us the
changed value that a had, and we’ll try again using that value instead. The brief
moment between loading and updating is so short that it’s unlikely for this to
loop more than a few iterations.

If the atomic variable changes from some value A to B and
then back to A after the load operation, but before the com
pare_exchange operation, it would still succeed, even though the
atomic variable was changed (and changed back) in the meantime.
In many cases, as with our increment example, this is not a prob‐
lem. However, there are certain algorithms, often involving atomic
pointers, for which this can be a problem. This is known as the
ABA problem.

Next to compare_exchange, there is a similar method named com

pare_exchange_weak. The difference is that the weak version may still sometimes
leave the value untouched and return an Err, even though the atomic value matched
the expected value. On some platforms, this method can be implemented more
efficiently and should be preferred in cases where the consequence of a spurious
compare-and-exchange failure are insignificant, such as in our increment function
above. In Chapter 7, we’ll dive into the low-level details to find out why the weak
version can be more efficient.

Example: ID Allocation Without Overflow
Now, back to our overflow problem in allocate_new_id() from “Example: ID Allo‐
cation” on page 41.

To stop incrementing NEXT_ID beyond a certain limit to prevent overflows, we can
use compare_exchange to implement atomic addition with an upper bound. Using

44 | Chapter 2: Atomics

that idea, let’s make a version of allocate_new_id that always handles overflow
correctly, even in practically impossible situations:

fn allocate_new_id() -> u32 {
 static NEXT_ID: AtomicU32 = AtomicU32::new(0);
 let mut id = NEXT_ID.load(Relaxed);
 loop {
 assert!(id < 1000, "too many IDs!");
 match NEXT_ID.compare_exchange_weak(id, id + 1, Relaxed, Relaxed) {
 Ok(_) => return id,
 Err(v) => id = v,
 }
 }
}

Now we check and panic before modifying NEXT_ID, guaranteeing it will never be
incremented beyond 1000, making overflow impossible. We can now raise the upper
limit from 1000 to u32::MAX if we want, without having to worry about edge cases in
which it might get incremented beyond the limit.

Fetch-Update
The atomic types have a convenience method called fetch_update for the compare-
and-exchange loop pattern. It’s equivalent to a load operation followed by a loop that
repeats a calculation and compare_exchange_weak, just like what we did above.

Using it, we could implement our allocate_new_id function with a one-liner:

 NEXT_ID.fetch_update(Relaxed, Relaxed,
 |n| n.checked_add(1)).expect("too many IDs!")

Check out the method’s documentation for details.

We’ll not use the fetch_update method in this book, so we can focus on the individ‐
ual atomic operations.

Example: Lazy One-Time Initialization
In “Example: Lazy Initialization” on page 35, we looked at an example of lazy initiali‐
zation of a constant value. We made a function that lazily initializes a value on the
first call, but reuses it on later calls. When multiple threads run the function concur‐
rently during the first call, more than one thread might execute the initialization, and
they will overwrite each others’ result in an unpredictable order.

This is fine for values that we expect to be constant, or when we don’t care about
changing values. However, there are also use cases where such a value gets initialized
to a different value each time, even though we need every invocation of the function
within a single run of the program to return the same value.

Compare-and-Exchange Operations | 45

For example, imagine a function get_key() that returns a randomly generated key
that’s only generated once per run of the program. It might be an encryption key
used for communication with the program, which needs to be unique every time the
program is run, but stays constant within a process.

This means we cannot simply use a store operation after generating a key, since that
might overwrite a key generated by another thread just moments ago, resulting in
two threads using different keys. Instead, we can use compare_exchange to make sure
we only store the key if no other thread has already done so, and otherwise throw our
key away and use the stored key instead.

Here’s an implementation of this idea:

fn get_key() -> u64 {
 static KEY: AtomicU64 = AtomicU64::new(0);
 let key = KEY.load(Relaxed);
 if key == 0 {
 let new_key = generate_random_key();
 match KEY.compare_exchange(0, new_key, Relaxed, Relaxed) {
 Ok(_) => new_key,
 Err(k) => k,
 }
 } else {
 key
 }
}

We only generate a new key if KEY was not yet initialized.

We replace KEY with our newly generated key, but only if it is still zero.

If we swapped the zero for our new key, we return our newly generated key. New
invocations of get_key() will return the same new key that’s now stored in KEY.

If we lost the race to another thread that initialized KEY before we could, we
forget our newly generated key and use the key from KEY instead.

This is a good example of a situation where compare_exchange is more appropriate
than its weak variant. We don’t run our compare-and-exchange operation in a loop,
and we don’t want to return zero if the operation spuriously fails.

As mentioned in “Example: Lazy Initialization” on page 35, if generate_ran
dom_key() takes a lot of time, it might make more sense to block threads during
initialization, to avoid potentially spending time generating keys that will not be used.
The Rust standard library provides such functionality through std::sync::Once and
std::sync::OnceLock.

46 | Chapter 2: Atomics

Summary
• Atomic operations are indivisable; they have either fully completed, or they•

haven’t happened yet.
• Atomic operations in Rust are done through the atomic types in•
std::sync::atomic, such as AtomicI32.

• Not all atomic types are available on all platforms.•
• The relative ordering of atomic operations is tricky when multiple variables are•

involved. More in Chapter 3.
• Simple loads and stores are nice for very basic inter-thread communication, like•

stop flags and status reporting.
• Lazy initialization can be done as a race, without causing a data race.•
• Fetch-and-modify operations allow for a small set of basic atomic modifications•

that are especially useful when multiple threads are modifying the same atomic
variable.

• Atomic addition and subtraction silently wrap around on overflow.•
• Compare-and-exchange operations are the most flexible and general, and a•

building block for making any other atomic operation.
• A weak compare-and-exchange operation can be slightly more efficient.•

Summary | 47

CHAPTER 3

Memory Ordering

In Chapter 2, we briefly touched upon the concept of memory ordering. In this
chapter, we’ll dive into this topic and explore all the available memory ordering
options, and, most importantly, when to use which one.

Reordering and Optimizations
Processors and compilers perform all sorts of tricks to make your programs run
as fast as possible. A processor might determine that two particular consecutive
instructions in your program will not affect each other, and execute them out of order,
if that is faster, for example. While one instruction is briefly blocked on fetching some
data from main memory, several of the following instructions might be executed
and finished before the first instruction finishes, as long as that wouldn’t change the
behavior of your program. Similarly, a compiler might decide to reorder or rewrite
parts of your program if it has reason to believe it might result in faster execution.
But, again, only if that wouldn’t change the behavior of your program.

Let’s take a look at the following function as an example:

fn f(a: &mut i32, b: &mut i32) {
 *a += 1;
 *b += 1;
 *a += 1;
}

Here, the compiler will most certainly understand that the order of these operations
does not matter, since nothing happens between these three addition operations that
depends on the value of *a or *b. (Assuming overflow checking is disabled.) Because
of that, it might reorder the second and third operations, and then merge the first two
into a single addition:

49

fn f(a: &mut i32, b: &mut i32) {
 *a += 2;
 *b += 1;
}

Later, while executing this function of the optimized compiled program, a processor
might for a variety of reasons end up executing the second addition before the first
addition, possibly because *b was available in a cache, while *a had to be fetched
from the main memory.

Regardless of these optimizations, the result stays the same: *a is incremented by two
and *b is incremented by one. The order in which they were incremented is entirely
invisible to the rest of your program.

The logic for verifying that a specific reordering or other optimization won’t affect
the behavior of your program does not take other threads into account. In our
example above, that’s perfectly fine, as the unique references (&mut i32) guarantee
that nothing else can possibly access the values, making other threads irrelevant. The
only situation where this is a problem is when mutating data that’s shared between
threads. Or, in other words, when working with atomics. This is why we have to
explicitly tell the compiler and processor what they can and can’t do with our atomic
operations, since their usual logic ignores interactions between threads and might
allow for optimizations that do change the result of your program.

The interesting question is how we tell them. If we wanted to precisely spell out
exactly what is and isn’t acceptable, concurrent programming might become exceed‐
ingly verbose and error prone, and maybe even architecture-specific:

let x = a.fetch_add(1,
 Dear compiler and processor,
 Feel free to reorder this with operations on b,
 but if there's another thread concurrently executing f,
 please don't reorder this with operations on c!
 Also, processor, don't forget to flush your store buffer!
 If b is zero, though, it doesn't matter.
 In that case, feel free to do whatever is fastest.
 Thanks~ <3
);

Instead, we can only pick from a small set of options, represented by the
std::sync::atomic::Ordering enum, which every atomic operation takes as an
argument. The set of available options is very limited, but has been carefully picked to
fit most use cases well. The orderings are very abstract and do not directly reflect the
actual compiler and processor mechanisms involved, such as instruction reordering.
This makes it possible for your concurrent code to be architecture-independent and
future-proof. It allows for verification without knowing the details of every single
current and future processor and compiler version.

50 | Chapter 3: Memory Ordering

The available orderings in Rust are:

• Relaxed ordering: Ordering::Relaxed•
• Release and acquire ordering: Ordering::{Release, Acquire, AcqRel}•
• Sequentially consistent ordering: Ordering::SeqCst•

In C++, there is also something called consume ordering, which has been purposely
omitted from Rust, but is nonetheless interesting to discuss as well.

The Memory Model
The different memory ordering options have a strict formal definition to make
sure we know exactly what we’re allowed to assume, and for compiler writers to
know exactly what guarantees they need to provide to us. To decouple this from the
details of specific processor architectures, memory ordering is defined in terms of an
abstract memory model.

Rust’s memory model, which is mostly copied from C++, doesn’t match any existing
processor architecture, but instead is an abstract model with a strict set of rules that
attempt to represent the greatest common denominator of all current and future
architectures, while also giving the compiler enough freedom to make useful assump‐
tions while analyzing and optimizing programs.

We’ve already seen a part of the memory model in action in “Borrowing and Data
Races” on page 11, where we talked about how data races result in undefined
behavior. Rust’s memory model allows for concurrent atomic stores, but considers
concurrent non-atomic stores to the same variable to be a data race, resulting in
undefined behavior.

On most processor architectures, however, there is actually no difference between an
atomic store and a regular non-atomic store, as we’ll see in Chapter 7. One could
argue that the memory model is more restrictive than necessary, but these strict rules
make it easier to reason about a program, both for the compiler and the programmer,
and they leave space for future developments.

Happens-Before Relationship
The memory model defines the order in which operations happen in terms of
happens-before relationships. This means that as an abstract model, it doesn’t talk
about machine instructions, caches, buffers, timing, instruction reordering, compiler
optimizations, and so on, but instead only defines situations where one thing is
guaranteed to happen before another thing, and leaves the order of everything
else undefined.

The Memory Model | 51

The basic happens-before rule is that everything that happens within the same thread
happens in order. If a thread is executing f(); g();, then f() happens-before g().

Between threads, however, happens-before relationships only occur in a few specific
cases, such as when spawning and joining a thread, unlocking and locking a mutex,
and through atomic operations that use non-relaxed memory ordering. Relaxed
memory ordering is the most basic (and most performant) memory ordering that, by
itself, never results in any cross-thread happens-before relationships.

To explore what that means, let’s take a look the following example where we assume
a and b are concurrently executed by different threads:

static X: AtomicI32 = AtomicI32::new(0);
static Y: AtomicI32 = AtomicI32::new(0);

fn a() {
 X.store(10, Relaxed);
 Y.store(20, Relaxed);
}

fn b() {
 let y = Y.load(Relaxed);
 let x = X.load(Relaxed);
 println!("{x} {y}");
}

As mentioned above, the basic happens-before rule is that everything that happens
within the same thread happens in order. In this case: happens-before , and
happens-before , as shown in Figure 3-1. Since we use relaxed memory ordering,
there are no other happens-before relationships in our example.

Figure 3-1. The happens-before relationships between atomic operations in the
example code

If either of a or b completes before the other starts, the output will be 0 0 or 10 20.
If a and b run concurrently, it’s easy to see how the output can be 10 0. One way this
can happen is if the operations run in this order: .

52 | Chapter 3: Memory Ordering

https://marabos.nl/atomics/alt/3-1.html

More interestingly, the output can also be 0 20, even though there is no possible
globally consistent order of the four operations that would result in this outcome.
When is executed, there is no happens-before relationship with , which means
it could load either 0 or 20. When is executed, there is no happens-before relation‐
ship with , which means it could load either 0 or 10. Given this, the output 0 20 is a
valid outcome.

The important and counter-intuitive thing to understand is that operation loading
the value 20 does not result in a happens-before relationship with , even though that
value is the one stored by . Our intuitive understanding of the concept of “before”
breaks down when things don’t necessarily happen in a globally consistent order, such
as when instruction reordering is involved.

A more practical and intuitive, but less formal, understanding is that from the
perspective of the thread executing b, operations and might appear to happen in
the opposite order.

Spawning and Joining
Spawning a thread creates a happens-before relationship between what happened
before the spawn() call, and the new thread. Similarly, joining a thread creates a
happens-before relationship between the joined thread and what happens after the
join() call.

To demonstrate, the assertion in the following example cannot fail:

static X: AtomicI32 = AtomicI32::new(0);

fn main() {
 X.store(1, Relaxed);
 let t = thread::spawn(f);
 X.store(2, Relaxed);
 t.join().unwrap();
 X.store(3, Relaxed);
}

fn f() {
 let x = X.load(Relaxed);
 assert!(x == 1 || x == 2);
}

Because of the happens-before relationships formed by the join and spawn opera‐
tions, we know for sure that the load from X happens after the first store, but before
the last store, as visualized in Figure 3-2. However, whether it observes the value
before or after the second store is unpredictable. In other words, it could load either 1
or 2, but not 0 or 3.

Happens-Before Relationship | 53

Figure 3-2. The happens-before relationships between the spawn, join, store, and load
operations in the example code

static X: AtomicI32 = AtomicI32::new(0);

fn main() {
 X.store(1, Relaxed);
 let t = thread::spawn(f);
 X.store(2, Relaxed);
 t.join().unwrap();
 X.store(3, Relaxed);
}

fn f() {
 let x = X.load(Relaxed);
 assert!(x == 1 || x == 2);
}

Relaxed Ordering
While atomic operations using relaxed memory ordering do not provide any
happens-before relationship, they do guarantee a total modification order of each
individual atomic variable. This means that all modifications of the same atomic
variable happen in an order that is the same from the perspective of every single
thread.

To demonstrate what that means, consider the following example where we assume a
and b are concurrently executed by different threads:

54 | Chapter 3: Memory Ordering

https://marabos.nl/atomics/alt/3-2.html

static X: AtomicI32 = AtomicI32::new(0);

fn a() {
 X.fetch_add(5, Relaxed);
 X.fetch_add(10, Relaxed);
}

fn b() {
 let a = X.load(Relaxed);
 let b = X.load(Relaxed);
 let c = X.load(Relaxed);
 let d = X.load(Relaxed);
 println!("{a} {b} {c} {d}");
}

In this example, only one thread modifies X, which makes it easy to see that there’s
only one possible order of modification of X: 0→5→15. It starts at zero, then becomes
five, and is finally changed to fifteen. Threads cannot observe any values from X that
are inconsistent with this total modification order. This means that 0 0 0 0, 0 0 5
15, and 0 15 15 15 are some of the possible results from the print statement in the
other thread, while an output of 0 5 0 15 or 0 0 10 15 is impossible.

Even if there’s more than one possible order of modification for an atomic variable,
all threads will agree on a single order.

Let’s replace a by two separate functions, a1 and a2, which we assume are each
executed by a separate thread:

fn a1() {
 X.fetch_add(5, Relaxed);
}

fn a2() {
 X.fetch_add(10, Relaxed);
}

Assuming these are the only threads modifying X, there are now two possible modifi‐
cation orders: either 0→5→15, or 0→10→15, depending on which fetch_add opera‐
tion executes first. Whichever happens, all threads observe the same order. So, even if
we have hundreds of additional threads all running our b() function, we know that if
one of them prints a 10, the order must be 0→10→15 and none of them can possibly
print a 5. And vice versa.

In Chapter 2, we saw several examples of use cases where this total modification
order guarantee for individual variables is enough, making relaxed memory ordering
sufficient. However, if we try anything more advanced beyond those examples, we’ll
quickly see we need something stronger than relaxed memory ordering.

Relaxed Ordering | 55

Out-of-Thin-Air Values
The lack of ordering guarantees around relaxed memory ordering can lead to some
theoretical complications when operations depend on each other in a cyclic way.

To demonstrate, here’s a contrived example where two threads load a value from one
atomic and store it in the other:

static X: AtomicI32 = AtomicI32::new(0);
static Y: AtomicI32 = AtomicI32::new(0);

fn main() {
 let a = thread::spawn(|| {
 let x = X.load(Relaxed);
 Y.store(x, Relaxed);
 });
 let b = thread::spawn(|| {
 let y = Y.load(Relaxed);
 X.store(y, Relaxed);
 });
 a.join().unwrap();
 b.join().unwrap();
 assert_eq!(X.load(Relaxed), 0); // Might fail?
 assert_eq!(Y.load(Relaxed), 0); // Might fail?
}

It seems easy to conclude that the values of X and Y will never be anything other than
zero, since the store operations only store values that were loaded from these same
atomics, which are only ever zero.

If we strictly follow the theoretical memory model, however, we have to come to
terms with our cyclic reasoning, and come to the scary conclusion that we might be
wrong. In fact, the memory model technically allows for an outcome where both X
and Y are 37 in the end, or any other value, making the assertions fail.

Due to the lack of ordering guarantees, the load operations of these two threads might
both see the result of the store operation of the other thread, allowing for a cycle in
the order of operations: we store 37 in Y because we loaded 37 from X, which was
stored to X because we loaded 37 from Y, which is the value we stored in Y.

Fortunately, the possibility of such out-of-thin-air values is universally considered to
be a bug in the theoretical model, and not something you need to take into account
in practice. The theoretical problem of how to formalize relaxed memory ordering
without the model allowing for such anomalies is an unsolved one. While this is an
eyesore for formal verification that keeps many theoreticians up at night, the rest of
us can relax in blissful ignorance knowing that this does not happen in practice.

56 | Chapter 3: Memory Ordering

Release and Acquire Ordering
Release and acquire memory ordering are used in a pair to form a happens-before
relationship between threads. Release memory ordering applies to store operations,
while Acquire memory ordering applies to load operations.

A happens-before relationship is formed when an acquire-load operation observes
the result of a release-store operation. In this case, the store and everything before it,
happened before the load and everything after it.

When using Acquire for a fetch-and-modify or compare-and-exchange operation,
it applies only to the part of the operation that loads the value. Similarly, Release
applies only to the store part of an operation. AcqRel is used to represent the combi‐
nation of Acquire and Release, which causes both the load to use acquire ordering,
and the store to use release ordering.

Let’s go over an example to see how that’s used in practice. In the following example,
we send an 64-bit integer from a spawned thread to the main thread. We use an extra
atomic boolean to indicate to the main thread that the integer has been stored and is
ready to be read.

use std::sync::atomic::Ordering::{Acquire, Release};

static DATA: AtomicU64 = AtomicU64::new(0);
static READY: AtomicBool = AtomicBool::new(false);

fn main() {
 thread::spawn(|| {
 DATA.store(123, Relaxed);
 READY.store(true, Release); // Everything from before this store ..
 });
 while !READY.load(Acquire) { // .. is visible after this loads `true`.
 thread::sleep(Duration::from_millis(100));
 println!("waiting...");
 }
 println!("{}", DATA.load(Relaxed));
}

When the spawned thread is done storing the data, it uses a release-store to set the
READY flag to true. When the main thread observes this through its acquire-load
operation, a happens-before relationship is established between those two operations,
as shown in Figure 3-3. At that point, we know for sure that everything that happened
before the release-store to READY is visible to everything that happens after the
acquire-load. Specifically, when the main thread loads from DATA, we know for sure
it will load the value stored by the background thread. There’s only one possible
outcome this program can print on its last line: 123.

Release and Acquire Ordering | 57

Figure 3-3. The happens-before relationships between atomic operations in the example
code, showing the cross-thread relationship formed by the acquire and release operations

If we had used relaxed memory ordering for all operations in this example, the
main thread could have seen READY flip to true, while still loading a zero from DATA
afterwards.

The names “release” and “acquire” are based on their most basic
use case: one thread releases data by atomically storing some value
to an atomic variable, and another thread acquires it by atomi‐
cally loading that value. This is exactly what happens when we
unlock (release) a mutex and subsequently lock (acquire) it on
another thread.

In our example, the happens-before relationship from the READY flag guarantees that
the store and load operations of DATA cannot happen concurrently. This means that
we don’t actually need those operations to be atomic.

However, if we simply try to use a regular non-atomic type for our data variable, the
compiler will refuse our program, since Rust’s type system doesn’t allow us to mutate
those from one thread when another thread is also borrowing them. The type system
does not magically understand the happens-before relationship we’ve created here.
Some unsafe code is necessary to promise to the compiler that we’ve thought about
this carefully and we’re sure we’re not breaking any rules, as follows:

58 | Chapter 3: Memory Ordering

https://marabos.nl/atomics/alt/3-3.html

static mut DATA: u64 = 0;
static READY: AtomicBool = AtomicBool::new(false);

fn main() {
 thread::spawn(|| {
 // Safety: Nothing else is accessing DATA,
 // because we haven't set the READY flag yet.
 unsafe { DATA = 123 };
 READY.store(true, Release); // Everything from before this store ..
 });
 while !READY.load(Acquire) { // .. is visible after this loads `true`.
 thread::sleep(Duration::from_millis(100));
 println!("waiting...");
 }
 // Safety: Nothing is mutating DATA, because READY is set.
 println!("{}", unsafe { DATA });
}

More Formally
A happens-before relationship is formed when an acquire-load operation observes
the result of a release-store operation. But what does that mean?

Imagine that two threads both release-store a seven into the same atomic variable,
and a third thread loads a seven from that variable. Does the third thread now have
a happens-before relationship with the first thread or the second one? That depends
on “which seven” it loaded: the one from thread one or the one from thread two. (Or
perhaps an unrelated seven.) This leads us to the conclusion that even though seven
equals seven, there is something different about the two sevens from the two threads.

The way to think about this is in terms of the total modification order that we talked
about in “Relaxed Ordering” on page 54: the ordered list of all modifications that
happen to an atomic variable. Even if the same value is written to the same variable
more than once, each of these operations represents a separate event in the total
modification order of that variable. When we load a value, the value loaded matches a
specific point on this per-variable “timeline,” which tells us which operation we might
be synchronizing with.

For example, if the total modification order of the atomic is

1. Initialized at 01.
2. Release-store 7 (from thread two)2.
3. Relaxed-store 63.
4. Release-store 7 (from thread one)4.

then acquire-loading a 7 would synchronize with either the release-store from the
second event, or the release-store from the last event. However, if we have previously

Release and Acquire Ordering | 59

(in terms of happens-before relationships) seen a 6, we know we’re seeing the last 7,
not the first one, meaning we now have a happens-before relationship with thread
one, and not with thread two.

There is one extra detail, which is that a release-stored value may be modified by
any number of fetch-and-modify and compare-and-exchange operations, while still
resulting in a happens-before relationship with an acquire-load that reads the final
result.

For example, imagine an atomic variable with the following total modification order:

1. Initialized at 01.
2. Release-store 72.
3. Relaxed-fetch-and-add 1, changing 7 to 83.
4. Release-fetch-and-add 1, changing 8 to 94.
5. Release-store 75.
6. Relaxed-swap 10, changing 7 to 106.

Now, if we acquire-load a 9 from this variable, we not only establish a happens-before
relationship with the fourth operation (that stored this value), but also with the
second operation (which stored a 7), even though the third operation used relaxed
memory ordering.

Similarly, if we acquire-load a 10 from this variable, which was written by a relaxed
operation, we still establish a happens-before relationship with the fifth operation
(which stored a 7). Because that was just a regular store operation (not a fetch-and-
modify or compare-and-exchange operation), it breaks the chain: we don’t establish a
happens-before relationship with any of the other operations.

Example: Locking
Mutexes are the most common use case for release and acquire ordering (see “Lock‐
ing: Mutexes and RwLocks” on page 18). When locking, they use an atomic operation
to check if it was unlocked, using acquire ordering, while also (atomically) changing
the state to “locked.” When unlocking, they set the state back to “unlocked” using
release ordering. This means that there will be a happens-before relationship between
unlocking a mutex and subsequently locking it.

60 | Chapter 3: Memory Ordering

Here’s a demonstration of this pattern:

static mut DATA: String = String::new();
static LOCKED: AtomicBool = AtomicBool::new(false);

fn f() {
 if LOCKED.compare_exchange(false, true, Acquire, Relaxed).is_ok() {
 // Safety: We hold the exclusive lock, so nothing else is accessing DATA.
 unsafe { DATA.push('!') };
 LOCKED.store(false, Release);
 }
}

fn main() {
 thread::scope(|s| {
 for _ in 0..100 {
 s.spawn(f);
 }
 });
}

As we’ve briefly seen in “Compare-and-Exchange Operations” on page 42, compare-
and-exchange operations take two memory ordering arguments: one for the case
where the comparison succeeded and the store happened, and one for the case where
the comparison failed and the store did not happen. In f, we attempt to change
LOCKED from false to true, and only access DATA if that succeeds. So, we only care
about the success memory ordering. If the compare_exchange operation fails, that
must be because LOCKED was already set to true, in which case f doesn’t do anything.
This matches the try_lock operation on a regular mutex.

An observant reader might have already noticed that the compare-
and-exchange operation could also have been a swap operation,
since swapping true for true when already locked doesn’t change
the correctness of the code:

// This also works.
if LOCKED.swap(true, Acquire) == false {
 …
}

Thanks to the acquire and release memory ordering, we know for sure that no two
threads can concurrently access DATA. As visualized in Figure 3-4, any previous access
to DATA happened-before the subsequent release-store of false to LOCKED, which
in turn happened-before the next acquire-compare-and-exchange (or acquire-swap)
operation that changed that false to true, which happened-before the next access
to DATA.

Release and Acquire Ordering | 61

Figure 3-4. The happens-before relationships between atomic operations in the locking
example, showing two threads locking and unlocking in sequence

In Chapter 4 we’ll turn this concept into a reusable type: a spin lock.

Example: Lazy Initialization with Indirection
In “Example: Lazy One-Time Initialization” on page 45, we implemented lazy initi‐
alization of a global variable, using a compare-and-exchange operation to handle
situations where multiple threads race to initialize the value concurrently. Because the
value was a nonzero 64-bit integer, we were able to use an AtomicU64 to store it, using
zero as the placeholder before initializing it.

To do the same for a much larger data type that does not fit in a single atomic
variable, we need to look for an alternative.

For this example, let’s say we want to maintain the non-blocking behavior, so that
threads never wait for another thread, but instead race and take the value from the
first thread to complete initialization. This means we still need to be able to go from
“uninitalized” to “fully initialized” in a single atomic operation.

As the fundamental theorem of software engineering tells us, every problem in com‐
puter science can be solved by adding another layer of indirection, and this problem
is no different. Since we can’t fit the data into a single atomic variable, we can instead
use an atomic variable to store a pointer to the data.

62 | Chapter 3: Memory Ordering

https://marabos.nl/atomics/alt/3-4.html

An AtomicPtr<T> is the atomic version of a *mut T: a pointer to T. We can use a
null pointer as the placeholder for the initial state, and use a compare-and-exchange
operation to atomically replace it with a pointer to a newly allocated, fully initialized
T, which can then be read by the other threads.

Since we’re not only sharing the atomic variable containing the pointer, but also the
data it points to, we can no longer use relaxed memory ordering like in Chapter 2. We
need to make sure that allocating and initializing the data does not race with reading
it. In other words, we need to use release and acquire ordering on the store and load
operations, to make sure the compiler and processor won’t break our code by—for
example—reordering the store of the pointer and the initialization of the data itself.

This leads us to the following implementation, for some arbitrary data type called
Data:

use std::sync::atomic::AtomicPtr;

fn get_data() -> &'static Data {
 static PTR: AtomicPtr<Data> = AtomicPtr::new(std::ptr::null_mut());

 let mut p = PTR.load(Acquire);

 if p.is_null() {
 p = Box::into_raw(Box::new(generate_data()));
 if let Err(e) = PTR.compare_exchange(
 std::ptr::null_mut(), p, Release, Acquire
) {
 // Safety: p comes from Box::into_raw right above,
 // and wasn't shared with any other thread.
 drop(unsafe { Box::from_raw(p) });
 p = e;
 }
 }

 // Safety: p is not null and points to a properly initialized value.
 unsafe { &*p }
}

If the pointer we acquire-load from PTR is non-null, we assume it points to the
already initialized data, and construct a reference to that data.

If it’s still null, however, we generate new data and store it in a new allocation using
Box::new. We then turn this Box into a raw pointer using Box::into_raw, so we
can attempt to store it into PTR using a compare-and-exchange operation. If another
thread wins the initialization race, compare_exchange fails as PTR is no longer null.
If that happens, we turn our raw pointer back into a Box to deallocate it using drop,
avoiding a memory leak, and continue with the pointer that the other thread stored
in PTR.

Release and Acquire Ordering | 63

The safety comment on the final unsafe block states our assumption that the data it
points to has already been initialized. Note how this includes an assumption about
the order in which things happened. To make sure our assumption holds, we use
release and acquire memory ordering to make sure initializing the data has actually
happened-before creating a reference to it.

We load a potentially non-null (i.e., initialized) pointer in two places: through the
load operation and through the compare_exchange operation when it fails. So, as
explained above, we need to use Acquire for both the load memory ordering and
the compare_exchange failure memory ordering, to be able to synchronize with the
operation that stores the pointer. This store happens when the compare_exchange
operation succeeds, so we must use Release as its success ordering.

Figure 3-5 shows a visualization of the operations and happens-before relationships
for a situation in which three threads call get_data(). In this situation, thread A
and B both observe a null pointer and both attempt to initialize the atomic pointer.
Thread A wins that race, causing thread B’s compare_exchange operation to fail.
Thread C only observes the atomic pointer after it has been initialized by thread A.
The end result is that all three threads end up using the box that was allocated by
thread A.

Figure 3-5. The operations and happens-before relationships among three threads calling
get_data()

64 | Chapter 3: Memory Ordering

https://marabos.nl/atomics/alt/3-5.html

Consume Ordering
Let’s take a closer look at the memory ordering in our last example. If we leave the
strict memory model aside and think of it in more practical terms, we could say that
the release ordering prevents the initialization of the data from being reordered with
the store operation that shares the pointer with the other threads. This is important,
since otherwise other threads might be able to see the data before it’s fully initialized.

Similarly, we could explain the acquire ordering as preventing reordering that would
cause the data to be accessed before the pointer is loaded. One might reasonably
wonder, however, if that makes any sense in practice. How could the data be accessed
before its address is known? We might conclude that something weaker than acquire
ordering might suffice. And we would be right: this weaker ordering is called consume
ordering.

Consume ordering is basically a lightweight—more efficient—variant of acquire
ordering, whose synchronizing effects are limited to things that depend on the loaded
value.

What that means is that if you consume-load a release-stored value x from an atomic
variable, then, basically, that store happened before the evaluation of dependent
expressions like *x, array[x] or table.lookup(x + 1), but not necessarily before
independent operations, like reading another variable that we don’t need the value of
x for.

Now there’s good news and bad news.

The good news is that—on all modern processor architectures—consume ordering
is achieved with the exact same instructions as relaxed ordering. In other words,
consume ordering can be “free,” which—at least on some platforms—is not the case
for acquire ordering.

The bad news is that no compiler actually implements consume ordering.

As it turns out, not only is this concept of a “dependent” evaluation hard to define,
it’s even harder to keep such dependencies intact while transforming and optimizing
a program. For example, a compiler might be able to optimize x + 2 - x to just
2, effectively dropping the dependency on x. More subtle variations of this issue can
happen with more realistic expressions like array[x], if the compiler is able to make
any logical deductions about the possible values of x or the array’s elements. The issue
gets even more complicated when taking control flow into account, like if statements
or function calls.

Because of this, compilers upgrade consume ordering to acquire ordering, just to be
safe. The C++20 standard even explicitly discourages the use of consume ordering,

Consume Ordering | 65

noting that an implementation other than just acquire ordering turned out to be
infeasible.

It’s possible that a workable definition and implementation of consume ordering
might be found in the future. Until that time arrives, however, Rust does not expose
Ordering::Consume.

Sequentially Consistent Ordering
The strongest memory ordering is sequentially consistent ordering: Order

ing::SeqCst. It includes all the guarantees of acquire ordering (for loads) and release
ordering (for stores), and also guarantees a globally consistent order of operations.

This means that every single operation using SeqCst ordering within a program is
part of a single total order that all threads agree on. This total order is consistent with
the total modification order of each individual variable.

Since it is strictly stronger than acquire and release memory ordering, a sequentially
consistent load or store can take the place of an acquire-load or release-store in
a release-acquire pair to form a happens-before relationship. In other words, an
acquire-load can not only form a happens-before relationship with a release-store,
but also with a sequentially consistent store, and similarly the other way around.

Only when both sides of a happens-before relationship use SeqCst
ordering is it guaranteed to be consistent with the single total order
of SeqCst operations.

While it might seem like the easiest memory ordering to reason about, SeqCst
ordering is almost never necessary in practice. In nearly all cases, regular acquire and
release ordering suffice.

Here’s an example that depends on sequentially consistent ordered operations:

use std::sync::atomic::Ordering::SeqCst;

static A: AtomicBool = AtomicBool::new(false);
static B: AtomicBool = AtomicBool::new(false);

static mut S: String = String::new();

fn main() {
 let a = thread::spawn(|| {
 A.store(true, SeqCst);
 if !B.load(SeqCst) {
 unsafe { S.push('!') };
 }

66 | Chapter 3: Memory Ordering

 });

 let b = thread::spawn(|| {
 B.store(true, SeqCst);
 if !A.load(SeqCst) {
 unsafe { S.push('!') };
 }
 });

 a.join().unwrap();
 b.join().unwrap();
}

Both threads first set their own atomic boolean to true to warn the other thread that
they are about to access S, and then check the other’s atomic boolean to see if they can
safely access S without causing a data race.

If both store operations happen before either of the load operations, it’s possible that
neither thread ends up accessing S. However, it’s impossible for both threads to access
S and cause undefined behavior, since the sequentially consistent ordering guarantees
only one of them can win the race. In every possible single total order, the first
operation will be a store operation, which prevents the other thread from accessing S.

Virtually all real-world uses of SeqCst involve a similar pattern of a store that must
be globally visible before a subsequent load on the same thread. For these situations, a
potentially more efficient alternative is to instead use relaxed operations in combina‐
tion with a SeqCst fence, which we’ll explore next.

Fences
In addition to operations on atomic variables, there is one more thing that we can
apply a memory ordering to: atomic fences.

The std::sync::atomic::fence function represents an atomic fence and is either a
release fence (Release), an acquire fence (Acquire), or both (AcqRel or SeqCst). A
SeqCst fence additionally also takes part in the sequentially consistent total order.

An atomic fence allows you to separate the memory ordering from the atomic
operation. This can be useful if you want to apply a memory ordering to multiple
operations, or if you only want to apply it conditionally.

Fences | 67

In essence, a release-store can be split into a release fence followed by a (relaxed)
store, and an acquire-load can be split into a (relaxed) load followed by an
acquire fence:

The store of a release-acquire relationship,
 a.store(1, Release);

can be substituted by a release fence followed by a relaxed
store:
 fence(Release);
 a.store(1, Relaxed);

The load of a release-acquire relationship,
 a.load(Acquire);

can be substituted by a relaxed load followed by an
acquire fence:
 a.load(Relaxed);
 fence(Acquire);

Using a separate fence can result in an extra processor instruction, though, which can
be slightly less efficient.

More importantly, unlike a release-store or an acquire-load, a fence is not tied to
any single atomic variable. This means that a single fence can be used for multiple
variables at once.

Formally, a release fence can take the place of a release operation in a happens-before
relationship if that release fence is followed (on the same thread) by any atomic
operation that stores a value observed by the acquire operation we’re synchronizing
with. Similarly, an acquire fence can take the place of any acquire operation if that
acquire fence is preceded (on the same thread) by any atomic operation that loads a
value stored by the release operation.

Putting this together, it means that a happens-before relationship is created between
a release fence and an acquire fence if any store after the release fence is observed by
any load before the acquire fence.

For example, suppose we have one thread executing a release fence followed by three
atomic store operations to different variables, and another thread executing three
load operations from those same variables followed by an acquire fence, as follows:

Thread 1:
fence(Release);
A.store(1, Relaxed);
B.store(2, Relaxed);
C.store(3, Relaxed);

Thread 2:
A.load(Relaxed);
B.load(Relaxed);
C.load(Relaxed);
fence(Acquire);

In this situation, if any of the load operations on thread 2 loads the value from
the corresponding store operation of thread 1, the acquire fence on thread 2 happens-
before the release fence on thread 1.

A fence does not have to directly precede or follow the atomic operations. Anything
else can happen in between, including control flow. This can be used to make the

68 | Chapter 3: Memory Ordering

fence conditional, similar to how compare-and-swap operations have both a success
and a failure ordering.

For example, if we load a pointer from an atomic variable using acquire memory
ordering, we could use a fence to apply the acquire ordering only when the pointer is
not null:

Using an acquire-load:
let p = PTR.load(Acquire);
if p.is_null() {
 println!("no data");
} else {
 println!("data = {}", unsafe { *p });
}

Using a conditional acquire fence:
let p = PTR.load(Relaxed);
if p.is_null() {
 println!("no data");
} else {
 fence(Acquire);
 println!("data = {}", unsafe { *p });
}

This can be beneficial if the pointer is often expected to be null, to avoid acquire
memory ordering when not necessary.

Let’s take a look at a more complicated use case of release and acquire fences:

use std::sync::atomic::fence;

static mut DATA: [u64; 10] = [0; 10];

const ATOMIC_FALSE: AtomicBool = AtomicBool::new(false);
static READY: [AtomicBool; 10] = [ATOMIC_FALSE; 10];

fn main() {
 for i in 0..10 {
 thread::spawn(move || {
 let data = some_calculation(i);
 unsafe { DATA[i] = data };
 READY[i].store(true, Release);
 });
 }
 thread::sleep(Duration::from_millis(500));
 let ready: [bool; 10] = std::array::from_fn(|i| READY[i].load(Relaxed));
 if ready.contains(&true) {
 fence(Acquire);
 for i in 0..10 {
 if ready[i] {
 println!("data{i} = {}", unsafe { DATA[i] });
 }
 }
 }
}

Fences | 69

std::array::from_fn is an easy way to execute something a cer‐
tain number of times and collect the results into an array.

In this example, 10 threads do some calculations and store their results in a (non-
atomic) shared variable. Each thread sets an atomic boolean to indicate that the data
is ready to be read by the main thread, using a normal release-store. The main thread
waits for half a second, checks all 10 booleans to see which threads are done, and
prints whichever results are ready.

Instead of using 10 acquire-load operations to read the booleans, the main thread
uses relaxed operations and a single acquire fence. It executes the fence before
reading the data, but only if there is data to be read.

While in this particular example it might be completely unnecessary to put any
effort into such optimization, this pattern for saving the overhead of additional
acquire operations can be important when building highly efficient concurrent data
structures.

A SeqCst fence is both a release fence and an acquire fence (just like AcqRel), but
also part of the single total order of sequentially consistent operations. However,
only the fence is part of the total order, but not necessarily the atomic operations
before or after it. This means that unlike a release or acquire operation, a sequentially
consistent operation cannot be split into a relaxed operation and a memory fence.

Compiler Fences
In addition to a regular atomic fence, the Rust standard library also provides a
compiler fence: std::sync::atomic::compiler_fence. Its signature is identical to
that of the regular fence() we discussed above, but its effects are restricted to just
the compiler. Unlike a regular atomic fence, it does not prevent the processor from,
for example, reordering instructions. In the vast majority of use cases for fences, a
compiler fence does not suffice.

A potential use case might arise when implementing a Unix signal handler, or an
interrupt on embedded systems. These are mechanisms that can suddenly interrupt
a thread to temporarily execute an unrelated function on the same processor core.
Because it happens on the same processor core, the usual ways in which the processor
might affect memory ordering don’t apply. (More on that in Chapter 7.) In this
case, a compiler fence might suffice, potentially saving an instruction and hopefully
increasing performance.

Another use case involves process-wide memory barriers. This technique falls out‐
side the scope of Rust’s memory model and is only supported on some operating

70 | Chapter 3: Memory Ordering

systems: on Linux through the the membarrier syscall, and on Windows using the
FlushProcessWriteBuffers function. It effectively allows a thread to forcefully inject
a (sequentially consistent) atomic fence into all concurrently running threads. This
allows us to replace two matching fences with a lightweight compiler fence on one
side and a heavyweight process-wide barrier on the other side. If the code on the
side of the lightweight fence is executed much more often, this can improve overall
performance. (See the documentation of the membarrier crate on crates.io for more
details and a cross-platform way to use such barriers in Rust.)

A compiler fence can also be an interesting tool for exploring the effect of the
processor on memory ordering. In “An Experiment” on page 155, we’ll break our
code on purpose by replacing a regular fence with a compiler fence. This will let us
experience the subtle but potentially disastrous effects of the processor when using
the wrong memory ordering.

Common Misconceptions
There are a lot of misconceptions around memory ordering. Before we end this
chapter, let’s go over the most common ones.

Myth: I need strong memory ordering to make sure changes are “immediately”
visible.

A common misunderstanding is that using a weak memory ordering like Relaxed
means that changes to an atomic variable might never arrive at another thread, or
only after a significant delay. The name “relaxed” might make it sound like nothing
happens until something forces some part of the hardware to wake up and do what it
should’ve done instead of relaxing.

The truth is that the memory model doesn’t say anything about timing at all. It only
defines in which order certain things happen; not how long you might have to wait
for them. A hypothetical computer in which it takes years to get data from one thread
to another is quite unusable, but can perfectly satisfy the memory model.

In real life, memory ordering is about things like reordering instructions, which
usually happen at nanosecond scale. Stronger memory ordering does not make your
data travel faster; it might even slow your program down.

Myth: Disabling optimization means I don’t need to care about memory ordering.

Both the compiler and the processor play a role in making things happen in
a different order than we might expect. Disabling compiler optimization does
not disable every possible transformation in the compiler, and does not disable
the processor features that result in instruction reordering and similar potentially
problematic behavior.

Common Misconceptions | 71

Myth: Using a processor that doesn’t reorder instructions means I don’t need to care
about memory ordering.

Some simple processors, such as those in small microcontrollers, have only one core
and only ever execute one instruction at a time, all in order. However, while it’s true
that on such devices there’s a significantly lower chance of an incorrect memory
ordering resulting in actual issues, it’s still possible for the compiler to make invalid
assumptions based on incorrect memory ordering, breaking your code. Besides that,
it’s also important to realize that even when a processor does not execute instructions
out of order, it might still have other features that can be relevant for memory
ordering.

Myth: Relaxed operations are free.

Whether this is true depends on your definition of “free.” It’s true that Relaxed is the
most efficient memory ordering and that it can be significantly faster than the others.
It’s even true that on all modern platforms, relaxed load and store operations compile
down to the same processor instructions as non-atomic reads and writes.

If an atomic variable is only used by a single thread, any difference in speed with a
non-atomic variable will most likely be because of the compiler having more freedom
and being more effective at optimizing non-atomic operations. (Compilers tend to
avoid most types of optimizations for atomic variables.)

However, accessing the same memory from multiple threads is usually significantly
slower than accessing it from a single thread. A thread that continuously writes to an
atomic variable will likely experience a noticeable slowdown when other threads start
repeatedly reading the variable, since the processor cores and their caches now have
to start collaborating.

We’ll explore this effect in Chapter 7.

Myth: Sequentially consistent memory ordering is a great default and is always
correct.

Putting aside performance concerns, sequentially consistent memory ordering is
often seen as the perfect type of memory ordering to default to, because of its
strong guarantees. It’s true that if any other memory ordering is correct, SeqCst
is also correct. This might make it sound like SeqCst is always correct. However,
it’s entirely possible that a concurrent algorithm is simply incorrect, regardless of
memory ordering.

More importantly, when reading code, SeqCst basically tells the reader: “this opera‐
tion depends on the total order of every single SeqCst operation in the program,”
which is an incredibly far-reaching claim. The same code would likely be easier to
review and verify if it used weaker memory ordering instead, if possible. For example,
Release effectively tells the reader: “this relates to an acquire operation on the same

72 | Chapter 3: Memory Ordering

variable,” which involves far fewer considerations when forming an understanding of
the code.

It is advisable to see SeqCst as a warning sign. Seeing it in the wild often means
that either something complicated is going on, or simply that the author did not take
the time to analyze their memory ordering related assumptions, both of which are
reasons for extra scrutiny.

Myth: Sequentially consistent memory ordering can be used for a “release-load” or
an “acquire-store.”

While SeqCst can stand in for Acquire or Release, it is not a way to somehow create
an acquire-store or release-load. Those remain nonexistent. Release only applies to
store operations, and acquire only to load operations.

For example, a Release-store does not form any release-acquire relationship with
a SeqCst-store. If you need them to be part of a globally consistent order, both
operations will have to use SeqCst.

Summary
• There might not be a global consistent order of all atomic operations, as things•

can appear to happen in a different order from different threads.
• However, each individual atomic variable has its own total modification order,•

regardless of memory ordering, which all threads agree on.
• The order of operations is formally defined through happens-before relationships.•
• Within a single thread, there is a happens-before relationship between every•

single operation.
• Spawning a thread happens-before everything the spawned thread does.•
• Everything a thread does happens-before joining that thread.•
• Unlocking a mutex happens-before locking that mutex again.•
• Acquire-loading the value from a release-store establishes a happens-before rela‐•

tionship. This value may be modified by any number of fetch-and-modify and
compare-and-exchange operations.

• A consume-load would be a lightweight version of an acquire-load, if it existed.•
• Sequentially consistent ordering results in a globally consistent order of opera‐•

tions, but is almost never necessary and can make code review more complicated.
• Fences allow you to combine the memory ordering of multiple operations or•

apply a memory ordering conditionally.

Summary | 73

CHAPTER 4

Building Our Own Spin Lock

Locking a regular mutex (see “Locking: Mutexes and RwLocks” on page 18) will put
your thread to sleep when the mutex is already locked. This avoids wasting resources
while waiting for the lock to be released. If a lock is only ever held for very brief
moments and the threads locking it can run in parallel on different processor cores,
it might be better for the threads to repeatedly try to lock it without actually going
to sleep.

A spin lock is a mutex that does exactly that. Attempting to lock an already locked
mutex will result in busy-looping or spinning: repeatedly trying over and over again
until it finally succeeds. This can waste processor cycles, but can sometimes result in
lower latency when locking.

Many real-world implementations of mutexes, including
std::sync::Mutex on some platforms, briefly behave like a spin
lock before asking the operating system to put a thread to sleep.
This is an attempt to combine the best of both worlds, although it
depends entirely on the specific use case whether this behavior is
beneficial or not.

In this chapter, we’ll build our own SpinLock type, applying what we’ve learned in
Chapters 2 and 3, and see how we can use Rust’s type system to provide a safe and
useful interface to the user of our SpinLock.

A Minimal Implementation
Let’s implement such a spin lock from scratch.

The most minimal version is pretty simple, as follows:

75

pub struct SpinLock {
 locked: AtomicBool,
}

All we need is a single boolean that indicates whether it is locked or not. We use an
atomic boolean, since we want more than one thread to be able to interact with it
simultaneously.

Then all we need is a constructor function, and the lock and unlock methods:

impl SpinLock {
 pub const fn new() -> Self {
 Self { locked: AtomicBool::new(false) }
 }

 pub fn lock(&self) {
 while self.locked.swap(true, Acquire) {
 std::hint::spin_loop();
 }
 }

 pub fn unlock(&self) {
 self.locked.store(false, Release);
 }
}

The locked boolean starts at false, the lock swaps that for true and keeps trying if it
was already true, and the unlock method just sets it back to false.

Instead of using a swap operation, we could also have used
a compare-and-exchange operation to atomically check if the
boolean is false and set it to true if that’s the case:

 self.locked.compare_exchange_weak(
 false, true, Acquire, Relaxed).is_ok()

It’s a bit more verbose, but depending on your tastes this might
be easier to follow, as it more clearly captures the concept of an
operation that can fail or succeed. It might also result in slightly
different instructions, however, as we’ll see in Chapter 7.

Within the while loop, we use a spin loop hint, which tells the processor that we’re
spinning while waiting for something to change. On most major platforms, this hint
results in a special instruction that causes the processor core to optimize its behavior
for such a situation. For example, it might temporarily slow down or prioritize
other useful things it can do. Unlike blocking operations such as thread::sleep or
thread::park, however, a spin loop hint does not cause the operating system to be
called to put your thread to sleep in favor of another thread.

76 | Chapter 4: Building Our Own Spin Lock

In general, it’s good idea to include such a hint in a spin loop.
Depending on the situation, it might even be good to execute this
hint several times before attempting to access the atomic variable
again. If you care about the last few nanoseconds of performance
and want to find the optimal strategy, you’ll have to benchmark
your specific use case. Unfortunately, the conclusions of such
benchmarks can be highly dependent on the hardware, as we’ll
see in Chapter 7.

We use acquire and release memory ordering to make sure that every unlock()
call establishes a happens-before relationship with the lock() calls that follow. In
other words, to make sure that after locking it, we can safely assume that whatever
happened during the last time it was locked has already happened. This is the most
classic use case of acquire and release ordering: acquiring and releasing a lock.

Figure 4-1 visualizes a situation where our SpinLock is used to protect access to some
shared data, with two threads concurrently attempting to acquire the lock. Note how
the unlock operation on the first thread forms a happens-before relationship with the
lock operation on the second thread, which makes sure the threads cannot access the
data concurrently.

Figure 4-1. The happens-before relationships between two threads using our SpinLock to
protect access to some shared data

A Minimal Implementation | 77

https://marabos.nl/atomics/alt/4-1.html

An Unsafe Spin Lock
Our SpinLock type above has a fully safe interface since, by itself, it doesn’t cause
any undefined behavior when misused. In most use cases, however, it will be used
to protect mutations to a shared variable, which means the user will still have to use
unsafe, unchecked code.

To provide an easier interface, we can change the lock method to give us an exclusive
reference (&mut T) to the data protected by the lock, since in most use cases, it’s the
lock operation that guarantees that it’s safe to assume exclusive access.

To be able to do that, we have to change the type to be generic over the type of
data it protects and add a field to hold that data. Since this data can be mutated
(or accessed exclusively) even though the spin lock itself is shared, we need to use
interior mutability (see “Interior Mutability” on page 13), for which we’ll use an
UnsafeCell:

use std::cell::UnsafeCell;

pub struct SpinLock<T> {
 locked: AtomicBool,
 value: UnsafeCell<T>,
}

As a precaution, UnsafeCell does not implement Sync, which means that our type
is now no longer shareable between threads, making it rather useless. To fix that,
we need to promise to the compiler that it is actually safe for our type to be shared
between threads. However, since the lock can be used to send values of type T from
one thread to another, we must limit this promise to types that are safe to send
between threads. So, we (unsafely) implement Sync for SpinLock<T> for all T that
implement Send, like this:

unsafe impl<T> Sync for SpinLock<T> where T: Send {}

Note that we don’t need to require that T is Sync, because our SpinLock<T> will
only allow one thread at a time to access the T it protects. Only if we were to give
multiple threads access at once, like a reader-writer lock does for readers, would we
(additionally) need to require T: Sync.

78 | Chapter 4: Building Our Own Spin Lock

Next, our new function now needs to take a value of type T to initialize that Unsafe
Cell with:

impl<T> SpinLock<T> {
 pub const fn new(value: T) -> Self {
 Self {
 locked: AtomicBool::new(false),
 value: UnsafeCell::new(value),
 }
 }

 …
}

And then we get to the interesting part: lock and unlock. The reason we are doing all
this, is to be able to return a &mut T from lock(), such that the user isn’t required to
write unsafe, unchecked code when using our lock to protect their data. This means
that we now have to use unsafe code on our side, within the implementation of lock.
An UnsafeCell can give us a raw pointer to its contents (*mut T) through its get()
method, which we can convert to a reference within an unsafe block, as follows:

 pub fn lock(&self) -> &mut T {
 while self.locked.swap(true, Acquire) {
 std::hint::spin_loop();
 }
 unsafe { &mut *self.value.get() }
 }

Since the function signature of lock contains a reference both in its input and
output, the lifetimes of the &self and &mut T have been elided and assumed to be
identical. (See “Lifetime Elision” in “Chapter 10: Generic Types, Traits, and Lifetimes”
of the Rust Book.) We can make the lifetimes explicit by writing them out manually,
like this:

 pub fn lock<'a>(&'a self) -> &'a mut T { … }

This clearly shows that the lifetime of the returned reference is the same as that of
&self. This means that we have claimed that the returned reference is valid as long as
the lock itself exists.

If we pretend unlock() doesn’t exist, this would be a perfectly safe and sound
interface. A SpinLock can be locked, resulting in a &mut T, and can then never be
locked again, which guarantees this exclusive reference is indeed exclusive.

If we try to add the unlock() method back, however, we would need a way to limit
the lifetime of the returned reference until the next call to unlock(). If the compiler
understood English, perhaps this would work:

An Unsafe Spin Lock | 79

 pub fn lock<'a>(&self) -> &'a mut T
 where
 'a ends at the next call to unlock() on self,
 even if that's done by another thread.
 Oh, and it also ends when self is dropped, of course.
 (Thanks!)
 { … }

Unfortunately, that’s not valid Rust. Instead of trying to explain this limitation to the
compiler, we’ll have to explain it to the user. To shift the responsibility to the user, we
mark the unlock function as unsafe, and leave a note for them explaining what they
need to do to keep things sound:

 /// Safety: The &mut T from lock() must be gone!
 /// (And no cheating by keeping reference to fields of that T around!)
 pub unsafe fn unlock(&self) {
 self.locked.store(false, Release);
 }

A Safe Interface Using a Lock Guard
To be able to provide a fully safe interface, we need to tie the unlocking operation to
the end of the &mut T. We can do that by wrapping this reference in our own type that
behaves like a reference, but also implements the Drop trait to do something when it
is dropped.

Such a type is often called a guard, as it effectively guards the state of the lock, and
stays responsible for that state until it is dropped.

Our Guard type will simply contain a reference to the SpinLock, so that it can both
access its UnsafeCell and reset the AtomicBool later:

pub struct Guard<T> {
 lock: &SpinLock<T>,
}

If we try to compile this, however, the compiler tells us:

error[E0106]: missing lifetime specifier
 --> src/lib.rs
 |
 | lock: &SpinLock<T>,
 | ^ expected named lifetime parameter
 |
help: consider introducing a named lifetime parameter
 |
 ~ pub struct Guard<'a, T> {
 | ^^^
 ~ lock: &'a SpinLock<T>,
 | ^^
 |

80 | Chapter 4: Building Our Own Spin Lock

Apparently, this is not a place where lifetimes can be elided. We have to make explicit
that the reference has a limited lifetime, exactly as the compiler suggests:

pub struct Guard<'a, T> {
 lock: &'a SpinLock<T>,
}

This guarantees the Guard cannot outlive the SpinLock.

Next, we change the lock method on our SpinLock to return a Guard:

 pub fn lock(&self) -> Guard<T> {
 while self.locked.swap(true, Acquire) {
 std::hint::spin_loop();
 }
 Guard { lock: self }
 }

Our Guard type has no constructor and its field is private, so this is the only way the
user can obtain a Guard. Therefore, we can safely assume that the existence of a Guard
means that the SpinLock has been locked.

To make Guard<T> behave like an (exclusive) reference, transparently giving access to
the T, we have to implement the special Deref and DerefMut traits as follows:

use std::ops::{Deref, DerefMut};

impl<T> Deref for Guard<'_, T> {
 type Target = T;
 fn deref(&self) -> &T {
 // Safety: The very existence of this Guard
 // guarantees we've exclusively locked the lock.
 unsafe { &*self.lock.value.get() }
 }
}

impl<T> DerefMut for Guard<'_, T> {
 fn deref_mut(&mut self) -> &mut T {
 // Safety: The very existence of this Guard
 // guarantees we've exclusively locked the lock.
 unsafe { &mut *self.lock.value.get() }
 }
}

As the final step, we implement Drop for Guard, allowing us to completely remove the
unsafe unlock method:

impl<T> Drop for Guard<'_, T> {
 fn drop(&mut self) {
 self.lock.locked.store(false, Release);
 }
}

A Safe Interface Using a Lock Guard | 81

And just like that, through the magic of Drop and Rust’s type system, we gave our
SpinLock type a fully safe (and useful) interface.

Let’s try it out:

fn main() {
 let x = SpinLock::new(Vec::new());
 thread::scope(|s| {
 s.spawn(|| x.lock().push(1));
 s.spawn(|| {
 let mut g = x.lock();
 g.push(2);
 g.push(2);
 });
 });
 let g = x.lock();
 assert!(g.as_slice() == [1, 2, 2] || g.as_slice() == [2, 2, 1]);
}

The program above demonstrates how easy our SpinLock is to use. Thanks to Deref
and DerefMut, we can directly call the Vec::push method on the guard. And thanks
to Drop, we don’t need to worry about unlocking.

Explicitly unlocking is also possible, by calling drop(g) to drop the guard. If you try
to unlock too early, you’ll see the guard doing its job through a compiler error. For
example, if you insert drop(g); between the two push(2) lines, the second push will
not compile, since you’ve already dropped g at that point:

error[E0382]: borrow of moved value: `g`
 --> src/lib.rs
 |
 | drop(g);
 | - value moved here
 | g.push(2);
 | ^^^^^^^^^ value borrowed here after move

Thanks to Rust’s type system, we can rest assured that mistakes like this are caught
before we can even run our program.

82 | Chapter 4: Building Our Own Spin Lock

Summary
• A spin lock is a mutex that busy-loops, or spins, while waiting.•
• Spinning can reduce latency, but can also be a waste of clockcycles and reduce•

performance.
• A spin loop hint, std::hint::spin_loop(), can be used to inform the processor•

of a spin loop, which might increase its efficiency.
• A SpinLock<T> can be implement with just an AtomicBool and an Unsafe•
Cell<T>, the latter of which is necessary for interior mutability (see “Interior
Mutability” on page 13).

• A happens-before relationship between unlock and lock operations is necessary to•
prevent a data race, which would result in undefined behavior.

• Acquire and release memory ordering are a perfect fit for this use case.•
• When making unchecked assumptions necessary to avoid undefined behavior,•

the responsibility can be shifted to the caller by making the function unsafe.
• The Deref and DerefMut traits can be used to make a type behave like a refer‐•

ence, transparently providing access to another object.
• The Drop trait can be used to do something when an object is dropped, such as•

when it goes out of scope, or when it is passed to drop().
• A lock guard is a useful design pattern of a special type that’s used to represent•

(safe) access to a locked lock. Such a type usually behaves similarly to a reference,
thanks to the Deref traits, and implements automatic unlocking through the
Drop trait.

Summary | 83

CHAPTER 5

Building Our Own Channels

Channels can be used to send data between threads, and they come in many variants.
Some channels can only be used between exactly one sender and one receiver, while
others can send from any number of threads, or even allow multiple receivers. Some
channels are blocking, meaning that receiving (and sometimes sending) is a blocking
operation, making your thread sleep until the operation can be completed. Some
channels are optimized for throughput, while others are optimized for low latency.

The variations are endless, and there is no one-size-fits-all version that fits all use
cases.

In this chapter, we’ll implement a few relatively simple channels to not only explore
some more applications of atomics, but also to learn more about how our require‐
ments and assumptions can be captured in Rust’s type system.

A Simple Mutex-Based Channel
A basic channel implementation does not require any knowledge of atomics. We can
take a VecDeque, which is basically a Vec that allows for efficient adding and remov‐
ing of elements on both ends, and protect it with a Mutex to allow multiple threads
to access it. We then use the VecDeque as a queue of data, often called messages, that’s
been sent but not yet received. Any thread that wants to send a message can simply
add it to the back of the queue, and any thread that wants to receive a message just
has to remove one from the front of the queue.

There’s just one more thing to add, which is used to make the receive operation
blocking: a Condvar (see “Condition Variables” on page 26) to notify waiting receivers
of a new messsage.

85

An implementation of this can be quite short and relatively straightforward, as
shown below:

pub struct Channel<T> {
 queue: Mutex<VecDeque<T>>,
 item_ready: Condvar,
}

impl<T> Channel<T> {
 pub fn new() -> Self {
 Self {
 queue: Mutex::new(VecDeque::new()),
 item_ready: Condvar::new(),
 }
 }

 pub fn send(&self, message: T) {
 self.queue.lock().unwrap().push_back(message);
 self.item_ready.notify_one();
 }

 pub fn receive(&self) -> T {
 let mut b = self.queue.lock().unwrap();
 loop {
 if let Some(message) = b.pop_front() {
 return message;
 }
 b = self.item_ready.wait(b).unwrap();
 }
 }
}

Note how we didn’t have to use any atomics or unsafe code and didn’t have to
think about the Send or Sync traits. The compiler understands the interface of Mutex
and what guarantees that type provides, and will implicitly understand that if both
Mutex<T> and Condvar can safely be shared between threads, so can our Channel<T>.

Our send function locks the mutex to push the new message to the back of the queue,
and directly notifies one potentially waiting receiver after unlocking the queue, by
using the condition variable.

The receive function also locks the mutex to pop the next message from the
front of the queue, but will use the condition variable to wait if there’s no message
available yet.

Remember that the Condvar::wait method will unlock the Mutex
while waiting and relock it before returning. So, our receive func‐
tion will not keep the mutex locked while waiting.

86 | Chapter 5: Building Our Own Channels

While this channel is very flexible in usage, as it allows any number of sending and
receiving threads, its implementation can be far from optimal in many situations.
Even if there are plenty of messages ready to be received, any send or receive oper‐
ation will briefly block any other send or receive operation, since they all have to
lock the same mutex. If VecDeque::push has to grow the capacity of the VecDeque,
all sending and receiving threads will have to wait for that one thread to finish the
reallocation, which might be unacceptable in some situations.

Another property which might be undesirable is that this channel’s queue might
grow without bounds. Nothing is stopping senders from continuously sending new
messages at a higher rate than receivers are processing them.

An Unsafe One-Shot Channel
The variety of use cases for channels is virtually endless. However, in the rest of
this chapter, we’ll focus on a specific type of use case: sending exactly one message
from one thread to another. A channel designed for such a use case is often called a
one-shot channel.

We could take our Mutex<VecDeque> based implementation from above and substi‐
tute the VecDeque for an Option, effectively reducing the capacity of the queue to
exactly one message. It would avoid allocation, but would still have some of the same
downsides of using a Mutex. We can avoid this by building our own one-shot channel
from scratch using atomics.

First, let’s build a minimal implementation of a one-shot channel without putting
much thought into its interface. Later in this chapter, we’ll explore ways to improve its
interface, and how to team up with Rust’s type system to provide users of our channel
a pleasant experience.

The tools we need to start with are basically the same as we used for our SpinLock<T>
(from Chapter 4): an UnsafeCell for storage and an AtomicBool to indicate its state.
In this case, we use the atomic boolean to indicate whether the message is ready for
consumption.

Before a message is sent, the channel is “empty” and does not contain any message
of type T yet. We could use an Option<T> inside the cell to allow for the absence
of a T. However, that could waste valuable space in memory, since our atomic
boolean already tells us whether there is a message or not. Instead, we can use
a std::mem::MaybeUninit<T>, which is essentially the bare bones unsafe version
of Option<T>: it requires its user to manually keep track of whether it has been
initialized or not, and almost its entire interface is unsafe, as it can’t perform its
own checks.

An Unsafe One-Shot Channel | 87

Putting that all together, we start our first attempt with this struct definition:

use std::mem::MaybeUninit;

pub struct Channel<T> {
 message: UnsafeCell<MaybeUninit<T>>,
 ready: AtomicBool,
}

Just like for our SpinLock<T>, we need to tell the compiler that our channel is safe to
share between threads, or at least as long as T is Send:

unsafe impl<T> Sync for Channel<T> where T: Send {}

A new channel is empty, with ready set to false, and message left uninitialized:

impl<T> Channel<T> {
 pub const fn new() -> Self {
 Self {
 message: UnsafeCell::new(MaybeUninit::uninit()),
 ready: AtomicBool::new(false),
 }
 }

 …
}

To send a message, it first needs to be stored in the cell, after which we can release
it to the receiver by setting the ready flag to true. Attempting to do this more than
once would be dangerous, since after setting the ready flag, the receiver might read
the message at any point, which could race with a second attempt to send a message.
For now, we make this the responsibility of the user by making the method unsafe
and leaving a note for them:

 /// Safety: Only call this once!
 pub unsafe fn send(&self, message: T) {
 (*self.message.get()).write(message);
 self.ready.store(true, Release);
 }

In the snippet above, we use the UnsafeCell::get method to obtain a pointer to
the MaybeUninit<T>, and unsafely dereference that to call MaybeUninit::write to
initialize it. This could result in undefined behavior when misused, but we’ve punted
that responsibility over to the caller.

For the memory ordering, we need to use release ordering, since the atomic store
effectively releases the message to the receiver. This makes sure the initialization of
the message will be finished from the perspective of the receiving thread if it loads
true from self.ready with acquire ordering.

88 | Chapter 5: Building Our Own Channels

For receiving, we’ll not bother with providing a blocking interface for now. Instead,
we’ll provide two methods: one to check whether a message is available, and another
to receive it. We’ll leave it to the user of our channel to use something like thread
parking (“Thread Parking” on page 24) if they want to block.

These are the last two methods to complete this version of our channel:

 pub fn is_ready(&self) -> bool {
 self.ready.load(Acquire)
 }

 /// Safety: Only call this once,
 /// and only after is_ready() returns true!
 pub unsafe fn receive(&self) -> T {
 (*self.message.get()).assume_init_read()
 }

While the is_ready method can always be called safely, the receive method uses
MaybeUninit::assume_init_read(), which unsafely assumes it has already been
initialized and that it isn’t being used to produce multiple copies of non-Copy objects.
Just like for send, we simply make that our user’s problem by making the function
itself unsafe.

The result is a technically usable channel, but one that is unwieldy and generally
disappointing. If held right, it does exactly what it is supposed to do, but there are
many subtle ways to misuse it.

Calling send more than once might result in a data race, since the second sender
will be overwriting the data while the receiver might be trying to read the first
message. Even if receiving was properly synchronized, calling send from multiple
threads might result in two threads attempting to concurrently write to the cell, again
resulting in a data race. Also, calling receive more than once results in two copies of
the message, even if T does not implement Copy and thus cannot safely be copied.

A more subtle issue is the lack of a Drop implementation for our channel. The
MaybeUninit type does not track whether it has been initialized or not, and will
therefore not automatically drop its contents when dropped. This means that if a
message is sent but never received, the message will never be dropped. This is not
unsound, but it’s still something to avoid. While leaking is universally considered safe
in Rust, it’s generally only acceptable as a consequence of another leak. For example,
leaking a Vec also leaks its contents, but regular usage of a Vec does not result in any
leaks.

Since we made the user responsible for everything, it’s only a matter of time before
this results in an unfortunate accident.

An Unsafe One-Shot Channel | 89

Safety Through Runtime Checks
To allow for a safer interface, we can add some checks to make misuse result in a
panic with a clear message, which is much preferable to undefined behavior.

Let’s start with the issue of calling receive before a message is ready. This one is
simple to handle, as all we have to do is make the receive method validate the ready
flag before attempting to read a message:

 /// Panics if no message is available yet.
 ///
 /// Tip: Use `is_ready` to check first.
 ///
 /// Safety: Only call this once!
 pub unsafe fn receive(&self) -> T {
 if !self.ready.load(Acquire) {
 panic!("no message available!");
 }
 (*self.message.get()).assume_init_read()
 }

The function is still unsafe, as the user is still responsible for not calling this function
more than once, but failing to check is_ready() first no longer results in undefined
behavior.

Since we now have an acquire-load of the ready flag inside the receive method
providing the necessary synchronization, we can lower the memory ordering of the
load in is_ready to Relaxed, since that one is now only used for indicative purposes:

 pub fn is_ready(&self) -> bool {
 self.ready.load(Relaxed)
 }

Remember that the total modification order (see “Relaxed Order‐
ing” on page 54) on ready guarantees that after is_ready loads
true from it, receive will also see true. There is no possibility of
is_ready returning true and receive() still panicking, regardless
of the memory ordering used in is_ready.

The next issue to address is what happens when calling receive more than once. We
can easily make that result in a panic as well by setting the ready flag back to false in
our receive method, like this:

 /// Panics if no message is available yet,
 /// or if the message was already consumed.
 ///
 /// Tip: Use `is_ready` to check first.
 pub fn receive(&self) -> T {
 if !self.ready.swap(false, Acquire) {

90 | Chapter 5: Building Our Own Channels

 panic!("no message available!");
 }
 // Safety: We've just checked (and reset) the ready flag.
 unsafe { (*self.message.get()).assume_init_read() }
 }

We’ve simply changed the load for a swap to false, and suddenly the receive
method is fully safe to call in any condition. The function is no longer marked as
unsafe. Instead of making the user responsible for everything, we now take responsi‐
bility for the unsafe code, resulting in less stress for our user.

For send, things are slightly more complicated. To prevent multiple send calls from
accessing the cell at the same time, we need to know whether another send call has
already started. The ready flag only tells us whether another send call has already
finished, so that won’t suffice.

Let’s add a second flag, named in_use, to indicate whether the channel has been
taken in use:

pub struct Channel<T> {
 message: UnsafeCell<MaybeUninit<T>>,
 in_use: AtomicBool, // New!
 ready: AtomicBool,
}

impl<T> Channel<T> {
 pub const fn new() -> Self {
 Self {
 message: UnsafeCell::new(MaybeUninit::uninit()),
 in_use: AtomicBool::new(false), // New!
 ready: AtomicBool::new(false),
 }
 }

 …
}

Now all we need to do is set in_use to true in the send method before accessing the
cell and panic if it was already set by another call:

 /// Panics when trying to send more than one message.
 pub fn send(&self, message: T) {
 if self.in_use.swap(true, Relaxed) {
 panic!("can't send more than one message!");
 }
 unsafe { (*self.message.get()).write(message) };
 self.ready.store(true, Release);
 }

We can use relaxed memory ordering for the atomic swap operation, because the total
modification order (see “Relaxed Ordering” on page 54) of in_use guarantees that

Safety Through Runtime Checks | 91

there will only be a single swap operation on in_use that will return false, which is
the only case in which send will attempt to access the cell.

We now have a fully safe interface, though there is still one problem left. The last
remaining issue occurs when sending a message that’s never received: it will never
be dropped. While this does not result in undefined behavior and is allowed in safe
code, it’s definitely something to avoid.

Since we reset the ready flag in the receive method, fixing this is easy: the ready
flag indicates whether there’s a not-yet-received message in the cell that needs to be
dropped.

In the Drop implementation of our Channel, we don’t need to use an atomic operation
to check the atomic ready flag, because an object can only be dropped if it is fully
owned by whichever thread is dropping it, with no outstanding borrows. This means
we can use the AtomicBool::get_mut method, which takes an exclusive reference
(&mut self), proving that atomic access is unnecessary. The same holds for Unsafe
Cell, through UnsafeCell::get_mut.

Using that, here’s the final piece of our fully safe and non-leaking channel:

impl<T> Drop for Channel<T> {
 fn drop(&mut self) {
 if *self.ready.get_mut() {
 unsafe { self.message.get_mut().assume_init_drop() }
 }
 }
}

Let’s try it out!

Since our Channel doesn’t provide a blocking interface (yet), we’ll manually use
thread parking to wait on a message. The receiving thread will park() itself as long
as there’s no message ready, and the sending thread will unpark() the receiver once it
has sent something.

Here’s a complete test program, sending the string literal "hello world!" through
our Channel from a second thread back to the main thread:

fn main() {
 let channel = Channel::new();
 let t = thread::current();
 thread::scope(|s| {
 s.spawn(|| {
 channel.send("hello world!");
 t.unpark();
 });
 while !channel.is_ready() {
 thread::park();
 }

92 | Chapter 5: Building Our Own Channels

 assert_eq!(channel.receive(), "hello world!");
 });
}

This program compiles, runs, and exits cleanly, showing that our Channel works as it
should.

If we duplicate the send line, we can also see one of our safety checks in action,
producing the following panic message when the program is run:

thread '<unnamed>' panicked at 'can't send more than one message!', src/main.rs

While a panicking program isn’t great, it’s far better for a program to reliably panic
than to get anywhere near the potential horrors of undefined behavior.

Using a Single Atomic for the Channel State
In case you can’t get enough of implementing channels, here’s a subtle variation that
can save one byte of memory.

Instead of using two separate atomic booleans to represent the state of the channel,
we instead use a single AtomicU8 to represent all four states. Rather than atomically
swapping booleans, we’ll have to use compare_exchange to atomically check if the
channel is in the expected state and change it to another state.

const EMPTY: u8 = 0;
const WRITING: u8 = 1;
const READY: u8 = 2;
const READING: u8 = 3;

pub struct Channel<T> {
 message: UnsafeCell<MaybeUninit<T>>,
 state: AtomicU8,
}

unsafe impl<T: Send> Sync for Channel<T> {}

impl<T> Channel<T> {
 pub const fn new() -> Self {
 Self {
 message: UnsafeCell::new(MaybeUninit::uninit()),
 state: AtomicU8::new(EMPTY),
 }
 }

 pub fn send(&self, message: T) {
 if self.state.compare_exchange(
 EMPTY, WRITING, Relaxed, Relaxed
).is_err() {
 panic!("can't send more than one message!");
 }

Safety Through Runtime Checks | 93

 unsafe { (*self.message.get()).write(message) };
 self.state.store(READY, Release);
 }

 pub fn is_ready(&self) -> bool {
 self.state.load(Relaxed) == READY
 }

 pub fn receive(&self) -> T {
 if self.state.compare_exchange(
 READY, READING, Acquire, Relaxed
).is_err() {
 panic!("no message available!");
 }
 unsafe { (*self.message.get()).assume_init_read() }
 }
}

impl<T> Drop for Channel<T> {
 fn drop(&mut self) {
 if *self.state.get_mut() == READY {
 unsafe { self.message.get_mut().assume_init_drop() }
 }
 }
}

Safety Through Types
While we’ve successfully protected users of our Channel from undefined behavior,
they still risk a panic if they accidentally use it incorrectly. Ideally, the compiler would
check correct usage and point out misuse before the program is even run.

Let’s take a look at the issue of calling send or receive more than once.

To prevent a function from being called more than once, we can let it take an
argument by value, which—for non-Copy types—will consume the object. After an
object is consumed, or moved, it’s gone from the caller, preventing it from being used
another time.

By representing the ability to call send or receive each as a separate (non-Copy) type,
and consuming that object when performing the operation, we can make sure each
can only happen once.

This brings us to the following interface design, where instead of a single Channel
type, a channel is represented by a pair of a Sender and a Receiver, which each have
a method that takes self by value:

94 | Chapter 5: Building Our Own Channels

pub fn channel<T>() -> (Sender<T>, Receiver<T>) { … }

pub struct Sender<T> { … }
pub struct Receiver<T> { … }

impl<T> Sender<T> {
 pub fn send(self, message: T) { … }
}

impl<T> Receiver<T> {
 pub fn is_ready(&self) -> bool { … }
 pub fn receive(self) -> T { … }
}

The user can create a channel by calling channel(), which will give them one Sender
and one Receiver. They can freely pass each of these objects around, move them
to another thread, and so on. However, they cannot end up with multiple copies of
either of them, guaranteeing that send and receive can each only be called once.

To implement this, we need to find a place for our UnsafeCell and AtomicBool.
Previously, we just had a single struct with those fields, but now we have two separate
structs, each of which could outlive the other.

Since the sender and receiver will need to share the ownership of those variables, we’ll
use an Arc (“Reference Counting” on page 8) to provide us with a reference-counted
shared allocation, in which we store the shared Channel object. As shown below, the
Channel type does not have to be public, as its existence is just an implementation
detail irrelevant to the user.

pub struct Sender<T> {
 channel: Arc<Channel<T>>,
}

pub struct Receiver<T> {
 channel: Arc<Channel<T>>,
}

struct Channel<T> { // no longer `pub`
 message: UnsafeCell<MaybeUninit<T>>,
 ready: AtomicBool,
}

unsafe impl<T> Sync for Channel<T> where T: Send {}

Just like before, we implement Sync for Channel<T> on the condition that T is Send, to
allow it to be used across threads.

Note how we no longer need the in_use atomic boolean like we did in our previous
channel implementation. It was only used by send to check that it hadn’t been called
more than once, which is now statically guaranteed through the type system.

Safety Through Types | 95

The channel function to create a channel and sender-receiver pair looks similar to
the Channel::new function we had previously, except it wraps the Channel in an Arc,
and wraps that Arc and a clone of it in the Sender and Receiver types:

pub fn channel<T>() -> (Sender<T>, Receiver<T>) {
 let a = Arc::new(Channel {
 message: UnsafeCell::new(MaybeUninit::uninit()),
 ready: AtomicBool::new(false),
 });
 (Sender { channel: a.clone() }, Receiver { channel: a })
}

The send, is_ready, and receive methods are basically identical to the ones we
implemented before, with a few differences:

• They are now moved to their respective type, such that only the (one single)•
sender can send, and only the (one single) receiver can receive.

• send and receive now take self by value rather than by reference, to make sure•
they can each only be called once.

• send can no longer panic, as its precondition (only being called once) is now•
statically guaranteed.

So, they now look like this:

impl<T> Sender<T> {
 /// This never panics. :)
 pub fn send(self, message: T) {
 unsafe { (*self.channel.message.get()).write(message) };
 self.channel.ready.store(true, Release);
 }
}

impl<T> Receiver<T> {
 pub fn is_ready(&self) -> bool {
 self.channel.ready.load(Relaxed)
 }

 pub fn receive(self) -> T {
 if !self.channel.ready.swap(false, Acquire) {
 panic!("no message available!");
 }
 unsafe { (*self.channel.message.get()).assume_init_read() }
 }
}

The receive function can still panic, since the user might still call it before
is_ready() returns true. It also still uses swap to set the ready flag back to false
(instead of just load), so that the Drop implementation of Channel knows whether
there’s an unread message that needs to be dropped.

96 | Chapter 5: Building Our Own Channels

That Drop implementation is exactly the same as the one we implemented before:

impl<T> Drop for Channel<T> {
 fn drop(&mut self) {
 if *self.ready.get_mut() {
 unsafe { self.message.get_mut().assume_init_drop() }
 }
 }
}

The Drop implementation of Arc<Channel<T>> will decrement the reference counter
of the allocation when either the Sender<T> or Receiver<T> is dropped. When
dropping the second one, that counter reaches zero, and the Channel<T> itself is
dropped. That will invoke our Drop implementation above, where we get to drop the
message if one was sent but not received.

Let’s try it out:

fn main() {
 thread::scope(|s| {
 let (sender, receiver) = channel();
 let t = thread::current();
 s.spawn(move || {
 sender.send("hello world!");
 t.unpark();
 });
 while !receiver.is_ready() {
 thread::park();
 }
 assert_eq!(receiver.receive(), "hello world!");
 });
}

It’s a bit inconvenient that we still have to manually use thread parking to wait on a
message, but we’ll deal with that problem later.

Our goal, for now, was to make at least one form of misuse impossible at compile
time. Unlike last time, attempting to send twice does not result in a program that
panics, but instead does not result in a valid program at all. If we add another send
call to the working program above, the compiler now catches the issue and patiently
informs us of our mistake:

error[E0382]: use of moved value: `sender`
 --> src/main.rs
 |
sender.send("hello world!");
`sender` moved due to this method call
sender.send("second message");
^^^^^^ value used here after move

Safety Through Types | 97

note: this function takes ownership of the receiver `self`, which moves `sender`
 --> src/lib.rs
 |
 | pub fn send(self, message: T) {
 | ^^^^
 = note: move occurs because `sender` has type `Sender<&str>`,
 which does not implement the `Copy` trait

Depending on the situation, it can be extremely tricky to design an interface that
catches mistakes at compile time. If the situation does lend itself to such an interface,
it can result not only in more convenience for the user, but also in a reduced number
of runtime checks for things that are now statically guaranteed. We no longer needed
the in_use flag, and removed the swap and check from the send method, for example.

Unfortunately, new problems may arise that could lead to more runtime overhead. In
this case, the problem was the split ownership, for which we had to reach for an Arc
and pay the cost of an allocation.

Having to make trade-offs between safety, convenience, flexibility, simplicity, and
performance is unfortunate, but sometimes unavoidable. Rust generally strives to
make it easy to excel at all of these, but sometimes makes you trade a bit of one to
maximize another.

Borrowing to Avoid Allocation
The Arc-based channel implementation we just designed is very convenient to use—
at the cost of some performance, since it has to allocate memory. If we want to
optimize for efficiency, we can trade some convenience for performance by making
the user responsible for the shared Channel object. Instead of taking care of the
allocation and ownership of the Channel behind the scenes, we can force the user to
create a Channel that can be borrowed by the Sender and Receiver. That way, they
can choose to simply put that Channel in a local variable, avoiding the overhead of
allocating memory.

We will also have to trade in some simplicity, since we will now have to deal with
borrowing and lifetimes.

So, the three types will now look as follows, with Channel public again, and Sender
and Receiver borrowing it for a certain lifetime.

pub struct Channel<T> {
 message: UnsafeCell<MaybeUninit<T>>,
 ready: AtomicBool,
}

unsafe impl<T> Sync for Channel<T> where T: Send {}

pub struct Sender<'a, T> {

98 | Chapter 5: Building Our Own Channels

 channel: &'a Channel<T>,
}

pub struct Receiver<'a, T> {
 channel: &'a Channel<T>,
}

Instead of a channel() function to create a (Sender, Receiver) pair, we move back
to the Channel::new we had earlier in this chapter, allowing the user to create such an
object as a local variable.

In addition, we need a way for the user to create a Sender and Receiver object that
will borrow the Channel. This will need to be an exclusive borrow (&mut Channel),
to make sure there can’t be multiple senders or receivers for the same channel. By
providing both the Sender and the Receiver at the same time, we can split the
exclusive borrow into two shared borrows, such that both the sender and receiver can
reference the channel, while preventing anything else from touching the channel.

This leads us to the following implementation:

impl<T> Channel<T> {
 pub const fn new() -> Self {
 Self {
 message: UnsafeCell::new(MaybeUninit::uninit()),
 ready: AtomicBool::new(false),
 }
 }

 pub fn split<'a>(&'a mut self) -> (Sender<'a, T>, Receiver<'a, T>) {
 *self = Self::new();
 (Sender { channel: self }, Receiver { channel: self })
 }
}

The split method, with its somewhat complicated signature, warrants a closer look.
It exclusively borrows self through an exclusive reference, but it splits that into two
shared references, wrapped in the Sender and Receiver types. The 'a lifetime makes
it clear that both of those objects borrow something with a limited lifetime; in this
case, the Channel itself. Since the Channel is exclusively borrowed, the caller will not
be able to borrow or move it as long as the Sender or Receiver object exists.

Once those objects both cease to exist, however, the mutable borrow expires and
the compiler happily lets the Channel object be borrowed again by a second call to
split(). While we can assume split() cannot be called again while the Sender and
Receiver still exist, we cannot prevent a second call to split() after those objects
are dropped or forgotten. We need to make sure we don’t accidentally create a new
Sender or Receiver object for a channel that already has its ready flag set, since that
would break the assumptions that prevent undefined behavior.

Borrowing to Avoid Allocation | 99

By overwriting *self with a new empty channel in split(), we make sure it’s in the
expected state when creating the Sender and Receiver states. This also invokes the
Drop implementation on the old *self, which will take care of dropping a message
that was previously sent but not received.

Since the lifetime in the signature of split comes from self, it can
be elided. The signature of split in the snippet above is identical
to this less verbose version:

pub fn split(&mut self) -> (Sender<T>, Receiver<T>) { … }

While this version doesn’t explicitly show that the returned objects
borrow self, the compiler still checks correct usage of the lifetime
exactly the same as it does with the more verbose version.

The remaining methods and Drop implementation are the same as in our Arc-based
implementation, except for an additional '_ lifetime argument to the Sender and
Receiver types. (If you forget those, the compiler will helpfully suggest adding them.)

For completeness, here’s the remaining code:

impl<T> Sender<'_, T> {
 pub fn send(self, message: T) {
 unsafe { (*self.channel.message.get()).write(message) };
 self.channel.ready.store(true, Release);
 }
}

impl<T> Receiver<'_, T> {
 pub fn is_ready(&self) -> bool {
 self.channel.ready.load(Relaxed)
 }

 pub fn receive(self) -> T {
 if !self.channel.ready.swap(false, Acquire) {
 panic!("no message available!");
 }
 unsafe { (*self.channel.message.get()).assume_init_read() }
 }
}

impl<T> Drop for Channel<T> {
 fn drop(&mut self) {
 if *self.ready.get_mut() {
 unsafe { self.message.get_mut().assume_init_drop() }
 }
 }
}

100 | Chapter 5: Building Our Own Channels

Let’s test it!

fn main() {
 let mut channel = Channel::new();
 thread::scope(|s| {
 let (sender, receiver) = channel.split();
 let t = thread::current();
 s.spawn(move || {
 sender.send("hello world!");
 t.unpark();
 });
 while !receiver.is_ready() {
 thread::park();
 }
 assert_eq!(receiver.receive(), "hello world!");
 });
}

The reduction in convenience compared to the Arc-based version is quite minimal:
we only needed one more line to manually create a Channel object. Note, however,
how the channel has to be created before the scope, to prove to the compiler that its
existence will outlast both the sender and receiver.

To see the compiler’s borrow checker in action, try adding a second call to chan
nel.split() in various places. You’ll see that calling it a second time within the
thread scope results in an error, while calling it after the scope is acceptable. Even
calling split() before the scope is fine, as long as you stop using the returned Sender
and Receiver before the scope starts.

Blocking
Let’s finally deal with the last remaining major inconvenience of our Channel, the
lack of a blocking interface. We’ve already used thread parking every time we tested a
new variant of our channel. It shouldn’t be too hard to integrate that pattern into the
channel itself.

To be able to unpark the receiver, the sender needs to know which thread to unpark.
The std::thread::Thread type represents a handle to a thread and is exactly what
we need for calling unpark(). We’ll store the handle to the receiving thread inside the
Sender object, as follows:

use std::thread::Thread;

pub struct Sender<'a, T> {
 channel: &'a Channel<T>,
 receiving_thread: Thread, // New!
}

Blocking | 101

This handle would refer to the wrong thread, however, if the Receiver object is sent
between threads. The Sender would be unaware of that and would still refer to the
thread that originally held the Receiver.

We can handle that problem by making the Receiver a bit more restrictive, by not
allowing it to be sent between threads anymore. As discussed in “Thread Safety:
Send and Sync” on page 16, we can use the special PhantomData marker type to add
this restriction to our struct. A PhantomData<*const ()> does the job, since a raw
pointer, such as *const (), does not implement Send:

pub struct Receiver<'a, T> {
 channel: &'a Channel<T>,
 _no_send: PhantomData<*const ()>, // New!
}

Next, we’ll have to modify the Channel::split method to fill in the new fields, like
this:

 pub fn split<'a>(&'a mut self) -> (Sender<'a, T>, Receiver<'a, T>) {
 *self = Self::new();
 (
 Sender {
 channel: self,
 receiving_thread: thread::current(), // New!
 },
 Receiver {
 channel: self,
 _no_send: PhantomData, // New!
 }
)
 }

We use the handle to the current thread for the receiving_thread field, since the
Receiver object we return will stay on the current thread.

The send method doesn’t change much, as shown below. We only have to call
unpark() on the receiving_thread to wake up the receiver in case it is waiting:

impl<T> Sender<'_, T> {
 pub fn send(self, message: T) {
 unsafe { (*self.channel.message.get()).write(message) };
 self.channel.ready.store(true, Release);
 self.receiving_thread.unpark(); // New!
 }
}

The receive function undergoes a slightly larger change. The new version won’t
panic if there’s no message yet, but will instead patiently wait for a message using
thread::park() and try again, as many times as necessary.

102 | Chapter 5: Building Our Own Channels

impl<T> Receiver<'_, T> {
 pub fn receive(self) -> T {
 while !self.channel.ready.swap(false, Acquire) {
 thread::park();
 }
 unsafe { (*self.channel.message.get()).assume_init_read() }
 }
}

Remember that thread::park() might return spuriously. (Or
because something other than our send method called unpark().)
This means that we cannot assume that the ready flag has been set
when park() returns. So, we need to use a loop to check the flag
again after getting unparked.

The Channel<T> struct, its Sync implementation, its new function, and its Drop imple‐
mentation remain unchanged.

Let’s try it out!

fn main() {
 let mut channel = Channel::new();
 thread::scope(|s| {
 let (sender, receiver) = channel.split();
 s.spawn(move || {
 sender.send("hello world!");
 });
 assert_eq!(receiver.receive(), "hello world!");
 });
}

Clearly, this Channel is more convenient to use than the last one, at least in this
simple test program. We’ve had to pay for this convenience by trading in some
flexibility: only the thread that calls split() may call receive(). If you swap the
send and receive lines, this program will no longer compile. Depending on the use
case, that might be entirely fine, useful, or very inconvenient.

There are a number of ways to address that issue, many of which will cost us some
additional complexity and affect performance. In general, the number of variations
and trade-offs we can continue to explore are virtually endless.

We could easily spend an unhealthy number of hours implementing another twenty
variants of a one-shot channel, each with slightly different properties, for every
imaginable use case and more. While that might sound like lots of fun, we should
probably avoid that rabbit hole and end this chapter before things get out of hand.

Blocking | 103

Summary
• A channel is used to send messages between threads.•
• A simple and flexible, but potentially inefficient, channel is relatively easy to•

implement with just a Mutex and a Condvar.
• A one-shot channel is a channel designed to send only one message.•
• The MaybeUninit<T> type can be used to represent a potentially not-yet-•

initialized T. Its interface is mostly unsafe, making its user responsible for track‐
ing whether it has been initialized, not duplicating Copy data, and dropping its
contents if necessary.

• Not dropping objects (also called leaking or forgetting) is safe, but frowned upon•
when done without good reason.

• Panicking is an important tool for creating a safe interface.•
• Taking a non-Copy object by value can be used to prevent something to be done•

more than once.
• Exclusively borrowing and splitting borrows can be a powerful tool for forcing•

correctness.
• We can make sure an object stays on the same thread by making sure its•

type does not implement Send, which can be achieved with the PhantomData
marker type.

• Every design and implementation decision involves a trade-off and can best be•
made with a specific use case in mind.

• Designing something without a use case can be fun and educational, but can turn•
out to be an endless task.

104 | Chapter 5: Building Our Own Channels

CHAPTER 6

Building Our Own “Arc”

In “Reference Counting” on page 8, we saw the std::sync::Arc<T> type that allows
for shared ownership through reference counting. The Arc::new function creates a
new allocation, just like Box::new. However, unlike a Box, a cloned Arc will share the
original allocation, without creating a new one. The shared allocation will only be
dropped once the Arc and all its clones are dropped.

The memory ordering considerations involved in an implementation of this type
can get quite interesting. In this chapter, we’ll put more of the theory to practice
by implementing our own Arc<T>. We’ll start with a basic version, then extend it to
support weak pointers for cyclic structures, and finish the chapter with an optimized
version that’s nearly identical to the implementation in the standard library.

Basic Reference Counting
Our first version will use a single AtomicUsize to count the number of Arc objects
that share an allocation. Let’s start with a struct that holds this counter and the
T object:

struct ArcData<T> {
 ref_count: AtomicUsize,
 data: T,
}

Note that this struct is not public. It’s an internal implementation detail of our Arc
implementation.

Next is the Arc<T> struct itself, which is effectively just a pointer to a (shared)
ArcData<T> object.

105

It might be tempting to make it a wrapper for a Box<ArcData<T>>, using a standard
Box to handle the allocation of the ArcData<T>. However, a Box represents exclusive
ownership, not shared ownership. We can’t use a reference either, because we’re not
just borrowing the data owned by something else, and its lifetime (“until the last
clone of this Arc is dropped”) is not directly representable with a Rust lifetime.

Instead, we’ll have to resort to using a pointer and handle allocation and the
concept of ownership manually. Instead of a *mut T or *const T, we’ll use a
std::ptr::NonNull<T>, which represents a pointer to T that is never null. That
way, an Option<Arc<T>> will be the same size as an Arc<T>, using the null pointer
representation for None.

use std::ptr::NonNull;

pub struct Arc<T> {
 ptr: NonNull<ArcData<T>>,
}

With a reference or a Box, the compiler automatically understands for which T
it should make your struct Send or Sync. When using a raw pointer or NonNull,
however, it’ll conservatively assume it’s never Send or Sync unless we explicitly tell it
otherwise.

Sending an Arc<T> across threads results in a T object being shared, requiring T to
be Sync. Similarly, sending an Arc<T> across threads could result in another thread
dropping that T, effectively transferring it to the other thread, requiring T to be Send.
In other words, Arc<T> should be Send if and only if T is both Send and Sync. The
exact same holds for Sync, since a shared &Arc<T> can be cloned into a new Arc<T>.

unsafe impl<T: Send + Sync> Send for Arc<T> {}
unsafe impl<T: Send + Sync> Sync for Arc<T> {}

For Arc<T>::new, we’ll have to create a new allocation with an ArcData<T> with a
reference count of one. We’ll use Box::new to create a new allocation, Box::leak to
give up our exclusive ownership of this allocation, and NonNull::from to turn it into
a pointer:

impl<T> Arc<T> {
 pub fn new(data: T) -> Arc<T> {
 Arc {
 ptr: NonNull::from(Box::leak(Box::new(ArcData {
 ref_count: AtomicUsize::new(1),
 data,
 }))),
 }
 }

 …
}

106 | Chapter 6: Building Our Own “Arc”

We know the pointer will always point to a valid ArcData<T> as long as the Arc
object exists. However, this is not something the compiler knows or checks for us, so
accessing the ArcData through the pointer requires unsafe code. We’ll add a private
helper function to get from the Arc to the ArcData, since this is something we’ll have
to do several times:

 fn data(&self) -> &ArcData<T> {
 unsafe { self.ptr.as_ref() }
 }

Using that, we can now implement the Deref trait to make our Arc<T> transparently
behave like a reference to a T:

impl<T> Deref for Arc<T> {
 type Target = T;

 fn deref(&self) -> &T {
 &self.data().data
 }
}

Note that we don’t implement DerefMut. Since an Arc<T> represents shared owner‐
ship, we can’t unconditionally provide a &mut T.

Next: the Clone implementation. The cloned Arc will use the same pointer, after
incrementing the reference counter:

impl<T> Clone for Arc<T> {
 fn clone(&self) -> Self {
 // TODO: Handle overflows.
 self.data().ref_count.fetch_add(1, Relaxed);
 Arc {
 ptr: self.ptr,
 }
 }
}

We can use Relaxed memory ordering to increment the reference counter, since there
are no operations on other variables that need to strictly happen before or after this
atomic operation. We already had access to the contained T before this operation
(through the original Arc), and that remains unchanged afterwards (but now through
at least two Arc objects).

An Arc would need to be cloned many times before the counter has any chance of
overflowing, but running std::mem::forget(arc.clone()) in a loop can make it
happen. We can use any of the techniques discussed in “Example: ID Allocation”
on page 41 and “Example: ID Allocation Without Overflow” on page 44 to handle
this issue.

Basic Reference Counting | 107

To keep things as efficient as possible in the normal (non-overflowing) case, we’ll
keep the original fetch_add and simply abort the whole process if we get uncomfort‐
ably close to overflowing:

 if self.data().ref_count.fetch_add(1, Relaxed) > usize::MAX / 2 {
 std::process::abort();
 }

Aborting the process is not instant, leaving for some time during
which another thread can also call Arc::clone, incrementing the
reference counter further. Therefore, just checking for usize::MAX
- 1 would not suffice. However, using usize::MAX / 2 as the limit
works fine: assuming every thread takes at least a few bytes of space
in memory, it’s impossible for usize::MAX / 2 threads to exist
concurrently.

Just like we increment the counter when cloning, we need to decrement it when drop‐
ping an Arc. The thread that sees the counter go from one to zero knows it dropped
the last Arc<T>, and is responsible for dropping and deallocating the ArcData<T>.

We’ll use Box::from_raw to reclaim exclusive ownership of the allocation, and then
drop it right away using drop():

impl<T> Drop for Arc<T> {
 fn drop(&mut self) {
 // TODO: Memory ordering.
 if self.data().ref_count.fetch_sub(1, …) == 1 {
 unsafe {
 drop(Box::from_raw(self.ptr.as_ptr()));
 }
 }
 }
}

For this operation, we can’t use Relaxed ordering, since we need to make sure that
nothing is still accessing the data when we drop it. In other words, every single
drop of one of the former Arc clones must have happened before the final drop.
So, the final fetch_sub must establish a happens-before relationship with every
previous fetch_sub operation, which we can do using release and acquire ordering:
decrementing it from, for example, two to one effectively “releases” the data, while
decrementing it from one to zero “acquires” ownership of it.

We could use AcqRel memory ordering to cover both cases, but only the final
decrement to zero needs Acquire, while the others only need Release. For efficiency,
we’ll use only Release for the fetch_sub operation and a separate Acquire fence only
when necessary:

108 | Chapter 6: Building Our Own “Arc”

 if self.data().ref_count.fetch_sub(1, Release) == 1 {
 fence(Acquire);
 unsafe {
 drop(Box::from_raw(self.ptr.as_ptr()));
 }
 }

Testing It
To test that our Arc is behaving as intended, we can write a unit test that creates an
Arc containing a special object that lets us know when it gets dropped:

#[test]
fn test() {
 static NUM_DROPS: AtomicUsize = AtomicUsize::new(0);

 struct DetectDrop;

 impl Drop for DetectDrop {
 fn drop(&mut self) {
 NUM_DROPS.fetch_add(1, Relaxed);
 }
 }

 // Create two Arcs sharing an object containing a string
 // and a DetectDrop, to detect when it's dropped.
 let x = Arc::new(("hello", DetectDrop));
 let y = x.clone();

 // Send x to another thread, and use it there.
 let t = std::thread::spawn(move || {
 assert_eq!(x.0, "hello");
 });

 // In parallel, y should still be usable here.
 assert_eq!(y.0, "hello");

 // Wait for the thread to finish.
 t.join().unwrap();

 // One Arc, x, should be dropped by now.
 // We still have y, so the object shouldn't have been dropped yet.
 assert_eq!(NUM_DROPS.load(Relaxed), 0);

 // Drop the remaining `Arc`.
 drop(y);

 // Now that `y` is dropped too,
 // the object should've been dropped.
 assert_eq!(NUM_DROPS.load(Relaxed), 1);
}

Basic Reference Counting | 109

This compiles and runs fine, so it seems our Arc is behaving as intended! While this is
encouraging, it doesn’t prove that the implementation is fully correct. It’s advisable to
use a long stress test involving many threads to gain more confidence.

Miri
It can also be very useful to run tests using Miri. Miri is an experimental but very use‐
ful and powerful tool to check unsafe code for various forms of undefined behavior.

Miri is an interpreter for the Rust compiler’s mid-level intermediate representation.
This means that it runs your code not by compiling it to native processor instruc‐
tions, but instead by interpreting it at a point when information like types and
lifetimes are still available. Because of this, Miri runs programs significantly slower
than when they are compiled and run normally, but is able to detect many mistakes
that would result in undefined behavior.

It includes experimental support for detecting data races, which allows it to detect
memory ordering problems.

For more details and a guide on how to use Miri, see its GitHub page.

Mutation
As mentioned before, we can’t implement DerefMut for our Arc. We can’t uncondi‐
tionally promise exclusive access (&mut T) to the data, because it might be accessed
through other Arc objects.

However, what we can do is to allow it conditionally. We can make a method that
only gives out a &mut T if the reference counter is one, proving that there’s no other
Arc object that could be used to access the same data.

This function, which we’ll call get_mut, will have to take a &mut Self to make sure
nothing else can use this same Arc to access the T. Knowing that there’s only one Arc
would be meaningless if that one Arc can still be shared.

We’ll need to use acquire memory ordering to make sure that threads that previously
owned a clone of the Arc are no longer accessing the data. We need to establish a
happens-before relationship with every single drop that led to the reference counter
being one.

This only matters when the reference counter is actually one; if it’s higher, we’ll not
provide a &mut T, and the memory ordering is irrelevant. So, we can use a relaxed
load, followed by a conditional acquire fence, as follows:

110 | Chapter 6: Building Our Own “Arc”

https://oreil.ly/4V0Ra

 pub fn get_mut(arc: &mut Self) -> Option<&mut T> {
 if arc.data().ref_count.load(Relaxed) == 1 {
 fence(Acquire);
 // Safety: Nothing else can access the data, since
 // there's only one Arc, to which we have exclusive access.
 unsafe { Some(&mut arc.ptr.as_mut().data) }
 } else {
 None
 }
 }

This function does not take a self argument, but takes a regular argument (named
arc) instead. This means it can only be called as Arc::get_mut(&mut a), and not as
a.get_mut(). This is advisable for types that implement Deref, to avoid ambiguity
with a similarly named method on the underlying T.

The returned mutable reference implicitly borrows the lifetime from the argument,
meaning that nothing can use the original Arc as long as the returned &mut T is still
around, allowing for safe mutation.

When the lifetime of the &mut T expires, the Arc can be used and shared with
other threads again. One might wonder whether we need to worry about memory
ordering for threads accessing the data afterwards. However, that’s the responsibility
of whatever mechanism is used for sharing the Arc (or a new clone of it) with another
thread. (For example, a mutex, a channel, or spawning a new thread.)

Weak Pointers
Reference counting can be very useful when representing structures in memory
consisting of multiple objects. For example, every node in a tree structure could
contain an Arc to each of its child nodes. That way, when a node is dropped, its child
nodes that are no longer in use are all (recursively) dropped as well.

This breaks down for cyclic structures, however. If a child node also contains an Arc to
its parent node, neither will be dropped since there’s always at least one Arc that still
refers to it.

The standard library’s Arc comes with a solution for that problem: Weak<T>. A
Weak<T>, also called a weak pointer, behaves a bit like an Arc<T>, but does not prevent
an object from getting dropped. A T can be shared between several Arc<T> and
Weak<T> objects, but when all Arc<T> objects are gone, the T is dropped, regardless of
whether there are any Weak<T> objects left.

This means that a Weak<T> can exist without a T, and thus cannot provide a &T
unconditionally, like an Arc<T> can. However, to access the T given a Weak<T>, it can

Weak Pointers | 111

be upgraded to an Arc<T> through its upgrade() method. This method returns an
Option<Arc<T>>, returning None if the T has already been dropped.

In an Arc-based structure, Weak can be used to break cycles. For example, child
nodes in a tree structure could use Weak rather than Arc for their parent node. Then,
dropping of a parent node is not prevented through the existence of its child nodes.

Let’s implement this.

Just like before, when the number of Arc objects reaches zero, we can drop the
contained T object. However, we can’t drop and deallocate the ArcData yet, since
there might still be weak pointers referencing it. Only once the last Weak pointer is
also gone can we drop and deallocate the ArcData.

So, we’ll use two counters: one for “the number of things that reference the T,” and
another for “the number of things that reference the ArcData<T>.” In other words, the
first counter is the same as before: it counts Arc objects, while the second counter
counts both Arc and Weak objects.

We also need something that allows us to drop the contained object (T) while the
ArcData<T> is still in use by the weak pointers. We’ll use an Option<T> so we can
use None for when the data is dropped, and wrap that in an UnsafeCell for interior
mutability (“Interior Mutability” on page 13), to allow that to happen when the
ArcData<T> isn’t exclusively owned:

struct ArcData<T> {
 /// Number of `Arc`s.
 data_ref_count: AtomicUsize,
 /// Number of `Arc`s and `Weak`s combined.
 alloc_ref_count: AtomicUsize,
 /// The data. `None` if there's only weak pointers left.
 data: UnsafeCell<Option<T>>,
}

If we think of a Weak<T> as an object responsible for keeping an ArcData<T> alive,
it can make sense to implement Arc<T> as a struct containing a Weak<T>, since an
Arc<T> needs to do the same, and more.

pub struct Arc<T> {
 weak: Weak<T>,
}

pub struct Weak<T> {
 ptr: NonNull<ArcData<T>>,
}

unsafe impl<T: Sync + Send> Send for Weak<T> {}
unsafe impl<T: Sync + Send> Sync for Weak<T> {}

112 | Chapter 6: Building Our Own “Arc”

The new function is mostly the same as before, except it now has two counters to
initialize at once:

impl<T> Arc<T> {
 pub fn new(data: T) -> Arc<T> {
 Arc {
 weak: Weak {
 ptr: NonNull::from(Box::leak(Box::new(ArcData {
 alloc_ref_count: AtomicUsize::new(1),
 data_ref_count: AtomicUsize::new(1),
 data: UnsafeCell::new(Some(data)),
 }))),
 },
 }
 }

 …
}

Just like before, we assume that the ptr field always points at a valid ArcData<T>. This
time, we’ll encode that assumption as a private data() helper method on Weak<T>:

impl<T> Weak<T> {
 fn data(&self) -> &ArcData<T> {
 unsafe { self.ptr.as_ref() }
 }

 …
}

In the Deref implementation for Arc<T>, we now have to use UnsafeCell::get() to
get a pointer to the contents of the cell, and use unsafe code to promise it can safely
be shared at this point. We also need as_ref().unwrap() to get a reference into the
Option<T>. We don’t have to worry about this panicking, since the Option will only
be None when there are no Arc objects left.

impl<T> Deref for Arc<T> {
 type Target = T;

 fn deref(&self) -> &T {
 let ptr = self.weak.data().data.get();
 // Safety: Since there's an Arc to the data,
 // the data exists and may be shared.
 unsafe { (*ptr).as_ref().unwrap() }
 }
}

Weak Pointers | 113

The Clone implementation for Weak<T> is quite straightforward; it’s pretty much
identical to our previous Clone implementation for Arc<T>:

impl<T> Clone for Weak<T> {
 fn clone(&self) -> Self {
 if self.data().alloc_ref_count.fetch_add(1, Relaxed) > usize::MAX / 2 {
 std::process::abort();
 }
 Weak { ptr: self.ptr }
 }
}

In the Clone implementation for our new Arc<T>, we need to increment both
counters. We’ll simply use self.weak.clone() to reuse the code above for the first
counter, so we only have to manually increment the second counter:

impl<T> Clone for Arc<T> {
 fn clone(&self) -> Self {
 let weak = self.weak.clone();
 if weak.data().data_ref_count.fetch_add(1, Relaxed) > usize::MAX / 2 {
 std::process::abort();
 }
 Arc { weak }
 }
}

Dropping a Weak should decrement its counter and drop and deallocate the ArcData
when the counter goes from one to zero. This is identical to what the Drop implemen‐
tation of our previous Arc did.

impl<T> Drop for Weak<T> {
 fn drop(&mut self) {
 if self.data().alloc_ref_count.fetch_sub(1, Release) == 1 {
 fence(Acquire);
 unsafe {
 drop(Box::from_raw(self.ptr.as_ptr()));
 }
 }
 }
}

Dropping an Arc should decrement both counters. Note that one of these is already
automatically taken care of, since every Arc contains a Weak, such that dropping an
Arc will also result in dropping a Weak. We only have to take care of the other counter:

114 | Chapter 6: Building Our Own “Arc”

impl<T> Drop for Arc<T> {
 fn drop(&mut self) {
 if self.weak.data().data_ref_count.fetch_sub(1, Release) == 1 {
 fence(Acquire);
 let ptr = self.weak.data().data.get();
 // Safety: The data reference counter is zero,
 // so nothing will access it.
 unsafe {
 (*ptr) = None;
 }
 }
 }
}

Dropping an object in Rust will first run its Drop::drop function
(if it implements Drop), and then drop all of its fields, one by
one, recursively.

The check in the get_mut method remains mostly unchanged, except it now needs
to take weak pointers into account. It might seem like it could ignore weak pointers
when checking for exclusivity, but a Weak<T> can be upgraded to an Arc<T> at any
time. So, get_mut will have to check that there are no other Arc<T> or Weak<T>
pointers before it can give out a &mut T:

impl<T> Arc<T> {
 …

 pub fn get_mut(arc: &mut Self) -> Option<&mut T> {
 if arc.weak.data().alloc_ref_count.load(Relaxed) == 1 {
 fence(Acquire);
 // Safety: Nothing else can access the data, since
 // there's only one Arc, to which we have exclusive access,
 // and no Weak pointers.
 let arcdata = unsafe { arc.weak.ptr.as_mut() };
 let option = arcdata.data.get_mut();
 // We know the data is still available since we
 // have an Arc to it, so this won't panic.
 let data = option.as_mut().unwrap();
 Some(data)
 } else {
 None
 }
 }

 …
}

Weak Pointers | 115

Next up: upgrading a weak pointer. Upgrading a Weak to an Arc is only possible when
the data still exists. If there are only weak pointers left, there’s no data left that can
be shared through an Arc. So, we’ll have to increase the Arc counter, but can only
do so if it isn’t already zero. We’ll use a compare-and-exchange loop (“Compare-and-
Exchange Operations” on page 42) to do this.

Just like before, relaxed memory ordering is fine for incrementing a reference
counter. There are no operations on other variables that need to strictly happen
before or after this atomic operation.

impl<T> Weak<T> {
 …

 pub fn upgrade(&self) -> Option<Arc<T>> {
 let mut n = self.data().data_ref_count.load(Relaxed);
 loop {
 if n == 0 {
 return None;
 }
 assert!(n < usize::MAX);
 if let Err(e) =
 self.data()
 .data_ref_count
 .compare_exchange_weak(n, n + 1, Relaxed, Relaxed)
 {
 n = e;
 continue;
 }
 return Some(Arc { weak: self.clone() });
 }
 }
}

Note how this time we can check for n < usize::MAX, since that
assertion would panic before we modify data_ref_count.

The opposite, getting a Weak<T> from an Arc<T>, is much simpler:

impl<T> Arc<T> {
 …

 pub fn downgrade(arc: &Self) -> Weak<T> {
 arc.weak.clone()
 }
}

116 | Chapter 6: Building Our Own “Arc”

Testing It
To quickly test our creation, we’ll modify our previous unit test to use weak pointers
and verify that they can be upgraded when expected:

#[test]
fn test() {
 static NUM_DROPS: AtomicUsize = AtomicUsize::new(0);

 struct DetectDrop;

 impl Drop for DetectDrop {
 fn drop(&mut self) {
 NUM_DROPS.fetch_add(1, Relaxed);
 }
 }

 // Create an Arc with two weak pointers.
 let x = Arc::new(("hello", DetectDrop));
 let y = Arc::downgrade(&x);
 let z = Arc::downgrade(&x);

 let t = std::thread::spawn(move || {
 // Weak pointer should be upgradable at this point.
 let y = y.upgrade().unwrap();
 assert_eq!(y.0, "hello");
 });
 assert_eq!(x.0, "hello");
 t.join().unwrap();

 // The data shouldn't be dropped yet,
 // and the weak pointer should be upgradable.
 assert_eq!(NUM_DROPS.load(Relaxed), 0);
 assert!(z.upgrade().is_some());

 drop(x);

 // Now, the data should be dropped, and the
 // weak pointer should no longer be upgradable.
 assert_eq!(NUM_DROPS.load(Relaxed), 1);
 assert!(z.upgrade().is_none());
}

This also compiles and runs without problems, which leaves us with a very usable
handmade Arc implementation.

Weak Pointers | 117

Optimizing
While weak pointers can be useful, the Arc type is often used without any weak
pointers. A downside of our last implementation is that cloning and dropping an Arc
now both take two atomic operations each, as they have to increment or decrement
both counters. This makes all Arc users “pay” for the cost of weak pointers, even
when they are not using them.

It might seem like the solution is to count Arc<T> and Weak<T> pointers separately,
but then we wouldn’t be able to atomically check that both counters are zero. To
understand how that’s a problem, imagine we have a thread executing the following
annoying function:

fn annoying(mut arc: Arc<Something>) {
 loop {
 let weak = Arc::downgrade(&arc);
 drop(arc);
 println!("I have no Arc!");
 arc = weak.upgrade().unwrap();
 drop(weak);
 println!("I have no Weak!");
 }
}

This thread continuously downgrades and upgrades an Arc, such that it repeatedly
cycles through moments where it holds no Arc (), and moments where it holds
no Weak (). If we check both counters to see if there are any threads still using
the allocation, this thread might be able to hide its existence if we are unlucky and
check the Arc counter during its first print statement (), but check the Weak counter
during its second print statement ().

In our last implementation, we solved this by counting every Arc also as a Weak. A
more subtle way of solving this is to count all Arc pointers combined as one single
Weak pointer. That way, the weak pointer counter (alloc_ref_count) never reaches
zero as long as there is still at least one Arc object around, just like in our last
implementation, but cloning an Arc doesn’t need to touch that counter at all. Only
dropping the very last Arc will decrement the weak pointer counter too.

Let’s try that.

This time, we can’t just implement Arc<T> as a wrapper around Weak<T>, so both will
wrap a non-null pointer to the allocation:

pub struct Arc<T> {
 ptr: NonNull<ArcData<T>>,
}

unsafe impl<T: Sync + Send> Send for Arc<T> {}

118 | Chapter 6: Building Our Own “Arc”

unsafe impl<T: Sync + Send> Sync for Arc<T> {}

pub struct Weak<T> {
 ptr: NonNull<ArcData<T>>,
}

unsafe impl<T: Sync + Send> Send for Weak<T> {}
unsafe impl<T: Sync + Send> Sync for Weak<T> {}

Since we’re optimizing our implementation, we might as well make ArcData<T>
slightly smaller by using a std::mem::ManuallyDrop<T> instead of an Option<T>. We
used an Option<T> to be able to replace a Some(T) by None when dropping the data,
but we don’t actually need a separate None state to tell us the data is gone, since the
existence or absence of Arc<T> already tells us that. A ManuallyDrop<T> takes the
exact same amount of space as a T, but allows us to manually drop it at any point by
using an unsafe call to ManuallyDrop::drop():

use std::mem::ManuallyDrop;

struct ArcData<T> {
 /// Number of `Arc`s.
 data_ref_count: AtomicUsize,
 /// Number of `Weak`s, plus one if there are any `Arc`s.
 alloc_ref_count: AtomicUsize,
 /// The data. Dropped if there are only weak pointers left.
 data: UnsafeCell<ManuallyDrop<T>>,
}

The Arc::new function remains almost unchanged, initializing both counters at one
like before, but now using ManuallyDrop::new() instead of Some():

impl<T> Arc<T> {
 pub fn new(data: T) -> Arc<T> {
 Arc {
 ptr: NonNull::from(Box::leak(Box::new(ArcData {
 alloc_ref_count: AtomicUsize::new(1),
 data_ref_count: AtomicUsize::new(1),
 data: UnsafeCell::new(ManuallyDrop::new(data)),
 }))),
 }
 }

 …
}

The Deref implementation can no longer make use of the private data method on the
Weak type, so we’ll add the same private helper function on Arc<T>:

Optimizing | 119

impl<T> Arc<T> {
 …

 fn data(&self) -> &ArcData<T> {
 unsafe { self.ptr.as_ref() }
 }

 …
}

impl<T> Deref for Arc<T> {
 type Target = T;

 fn deref(&self) -> &T {
 // Safety: Since there's an Arc to the data,
 // the data exists and may be shared.
 unsafe { &*self.data().data.get() }
 }
}

The Clone and Drop implementations for Weak<T> remain exactly the same as for
our last implementation. Here they are for completeness, including the private
Weak::data helper function:

impl<T> Weak<T> {
 fn data(&self) -> &ArcData<T> {
 unsafe { self.ptr.as_ref() }
 }

 …
}

impl<T> Clone for Weak<T> {
 fn clone(&self) -> Self {
 if self.data().alloc_ref_count.fetch_add(1, Relaxed) > usize::MAX / 2 {
 std::process::abort();
 }
 Weak { ptr: self.ptr }
 }
}

impl<T> Drop for Weak<T> {
 fn drop(&mut self) {
 if self.data().alloc_ref_count.fetch_sub(1, Release) == 1 {
 fence(Acquire);
 unsafe {
 drop(Box::from_raw(self.ptr.as_ptr()));
 }
 }
 }
}

120 | Chapter 6: Building Our Own “Arc”

And now we get to the part that this new optimized implementation was all about—
cloning an Arc<T> now needs to touch only one counter:

impl<T> Clone for Arc<T> {
 fn clone(&self) -> Self {
 if self.data().data_ref_count.fetch_add(1, Relaxed) > usize::MAX / 2 {
 std::process::abort();
 }
 Arc { ptr: self.ptr }
 }
}

Similarly, dropping an Arc<T> now needs to decrement only one counter, except for
the last drop that sees that counter go from one to zero. In that case, the weak pointer
counter also needs to be decremented, such that it can reach zero once there are
no weak pointers left. We do this by simply creating a Weak<T> out of thin air and
immediately dropping it:

impl<T> Drop for Arc<T> {
 fn drop(&mut self) {
 if self.data().data_ref_count.fetch_sub(1, Release) == 1 {
 fence(Acquire);
 // Safety: The data reference counter is zero,
 // so nothing will access the data anymore.
 unsafe {
 ManuallyDrop::drop(&mut *self.data().data.get());
 }
 // Now that there's no `Arc<T>`s left,
 // drop the implicit weak pointer that represented all `Arc<T>`s.
 drop(Weak { ptr: self.ptr });
 }
 }
}

The upgrade method on Weak<T> remains mostly the same, except it no longer clones
a weak pointer, since it doesn’t need to increment the weak pointer counter anymore.
Upgrading only succeeds if there is already at least one Arc<T> to the allocation,
which means that Arcs are already accounted for in the weak pointer counter.

impl<T> Weak<T> {
 …

 pub fn upgrade(&self) -> Option<Arc<T>> {
 let mut n = self.data().data_ref_count.load(Relaxed);
 loop {
 if n == 0 {
 return None;
 }
 assert!(n < usize::MAX);
 if let Err(e) =
 self.data()

Optimizing | 121

 .data_ref_count
 .compare_exchange_weak(n, n + 1, Relaxed, Relaxed)
 {
 n = e;
 continue;
 }
 return Some(Arc { ptr: self.ptr });
 }
 }
}

So far the differences between this and our previous implementation are very mini‐
mal. Where things get tricky, though, is with the last two methods we still need to
implement: downgrade and get_mut.

Unlike before, the get_mut method now needs to check if both counters are set to one
to be able to determine whether there’s only one Arc<T> and no Weak<T> left, since
a weak pointer counter of one can now represent multiple Arc<T> pointers. Reading
the counters are two separate operations that happen at (slightly) different times, so
we have to be very careful to not miss any concurrent downgrades, such as in the
example case we saw at the start of “Optimizing” on page 118.

If we first check that data_ref_count is one, then we could miss a subse‐
quent upgrade() before we check the other counter. But, if we first check that
alloc_ref_count is one, then we could miss a subsequent downgrade() before we
check the other counter.

A way out of this dilemma is to briefly block the downgrade() operation by “locking”
the weak pointer counter. To do that, we don’t need anything like a mutex. We can
use a special value, like usize::MAX, to represent a special “locked” state of the weak
pointer counter. It’ll only be locked very briefly, only to load the other counter, so the
downgrade method could just spin until it’s unlocked, in the unlikely situation it runs
at the exact same moment as get_mut.

So, in get_mut we’ll first have to check if alloc_ref_count is one and at the
same time replace it by usize::MAX, if it was indeed one. That’s a job for com
pare_exchange.

Then we’ll have to check if the other counter is also one, after which we can immedi‐
ately unlock the weak pointer counter. If the second counter is also one, we know we
have exclusive access to the allocation and the data, such that we can return a &mut T.

 pub fn get_mut(arc: &mut Self) -> Option<&mut T> {
 // Acquire matches Weak::drop's Release decrement, to make sure any
 // upgraded pointers are visible in the next data_ref_count.load.
 if arc.data().alloc_ref_count.compare_exchange(
 1, usize::MAX, Acquire, Relaxed
).is_err() {

122 | Chapter 6: Building Our Own “Arc”

 return None;
 }
 let is_unique = arc.data().data_ref_count.load(Relaxed) == 1;
 // Release matches Acquire increment in `downgrade`, to make sure any
 // changes to the data_ref_count that come after `downgrade` don't
 // change the is_unique result above.
 arc.data().alloc_ref_count.store(1, Release);
 if !is_unique {
 return None;
 }
 // Acquire to match Arc::drop's Release decrement, to make sure nothing
 // else is accessing the data.
 fence(Acquire);
 unsafe { Some(&mut *arc.data().data.get()) }
 }

As you might have expected, the locking operation (the compare_exchange) will have
to use Acquire memory ordering, and the unlocking operation (the store) will have
to use Release memory ordering.

If we had used Relaxed for the compare_exchange instead, it would have been
possible for the subsequent load from data_ref_count to not see the new value of
a freshly upgraded Weak pointer, even though the compare_exchange had already
confirmed that every Weak pointer had been dropped.

If we had used Relaxed for the store, it would have been possible for the preced‐
ing load to observe the result of a future Arc::drop for an Arc that can still be
downgraded.

The acquire fence is the same as before: it synchronizes with the release-decrement
operation in Arc::Drop to make sure every access through former Arc clones has
happened before the new exclusive access.

The last piece of the puzzle is the downgrade method, which will have to check for
the special usize::MAX value to see if the weak pointer counter is locked, and spin
until it is unlocked. Just like in the upgrade implementation, we’ll use a compare-
and-exchange loop to check for the special value and overflow before incrementing
the counter:

 pub fn downgrade(arc: &Self) -> Weak<T> {
 let mut n = arc.data().alloc_ref_count.load(Relaxed);
 loop {
 if n == usize::MAX {
 std::hint::spin_loop();
 n = arc.data().alloc_ref_count.load(Relaxed);
 continue;
 }
 assert!(n < usize::MAX - 1);
 // Acquire synchronises with get_mut's release-store.
 if let Err(e) =

Optimizing | 123

 arc.data()
 .alloc_ref_count
 .compare_exchange_weak(n, n + 1, Acquire, Relaxed)
 {
 n = e;
 continue;
 }
 return Weak { ptr: arc.ptr };
 }
 }

We use acquire memory ordering for compare_exchange_weak, which synchronizes
with the release-store in the get_mut function. Otherwise, it would be possible for the
effect of a subsequent Arc::drop to be visible to a thread running get_mut before it
unlocks the counter.

In other words, the acquire compare-and-exchange operation here effectively “locks”
get_mut, preventing it from succeeding. It can be “unlocked” again by a later
Weak::drop that decrements the counter back to one, using release memory ordering.

The optimized implementation of Arc<T> and Weak<T> that we
just made is nearly identical to the one included in the Rust
standard library.

If we run the exact same test as before (“Testing It” on page 117), we see that this
optimized implementation also compiles and passes our tests.

If you feel that getting the memory ordering decisions right for this
optimized implementation was difficult, don’t worry. Many concur‐
rent data structures are simpler to implement correctly than this
one. This Arc implementation is included in this chapter specifi‐
cally because of its tricky subtleties around memory ordering.

124 | Chapter 6: Building Our Own “Arc”

Summary
• Arc<T> provides shared ownership of a reference-counted allocation.•
• By checking if the reference counter is exactly one, an Arc<T> can conditionally•

provide exclusive access (&mut T).
• Incrementing the atomic reference counter can be done using a relaxed opera‐•

tion, but the final decrement must synchronize with all previous decrements.
• A weak pointer (Weak<T>) can be used to avoid cycles.•
• The NonNull<T> type represents a pointer to T that is never null.•
• The ManuallyDrop<T> type can be used to manually decide, using unsafe code,•

when to drop a T.
• As soon as more than one atomic variable is involved, things get more•

complicated.
• Implementing an ad hoc (spin) lock can sometimes be a valid strategy for operat‐•

ing on multiple atomic variables at once.

Summary | 125

CHAPTER 7

Understanding the Processor

While the theory from Chapters 2 and 3 is all we need to write correct concurrent
code, it can additionally be very useful to develop an approximate understanding
of what goes on in practice at the processor level. In this chapter, we’ll explore
the machine instructions that atomic operations compile down to, how different
processor architectures differ, why a weak version of compare_exchange exists, what
memory ordering means at the lowest level of individual instructions, and how
caching relates to it all.

The goal of this chapter is not to understand every relevant detail of every single
processor architecture. That would take many bookshelves full of books, many of
which have probably not been written or are not publicly available. Instead, the goal
of this chapter is to develop a general idea of how atomics work at the processor level,
to be able to make more informed decisions when implementing and optimizing
code involving atomics. And, of course, to simply satisfy our curiosity about what
goes on behind the scenes—taking a break from all the abstract theory.

To make things as concrete as possible, we’ll focus on two specific processor
architectures:

x86-64:
The 64-bit version of the x86 architecture implemented by Intel and AMD
processors used in the majority of laptops, desktops, servers, and some game
consoles. While the originally 16-bit x86 architecture and its very popular 32-bit
extension were developed by Intel, the 64-bit version that we now call x86-64
was initially an extension developed by AMD, often referred to as AMD64. Intel
also developed its own 64-bit architecture, IA-64, but ended up adopting AMD’s
more popular x86 extension instead (under the names IA-32e, EM64T, and later
Intel 64).

127

ARM64:
The 64-bit version of the ARM architecture used by nearly all modern mobile
devices, high performance embedded systems, and also increasingly in recent
laptops and desktops. It is also known as AArch64 and was introduced as part of
ARMv8. Earlier (32-bit) versions of ARM, which are similar in many ways, are
used in an even wider variety of applications. Many popular microcontrollers in
every kind of embedded system imaginable, from cars to electronic COVID tests,
are based on ARMv6 and ARMv7.

These two architectures are unalike in many ways. Most importantly, they take
different approaches to atomics. Understanding how atomics work on both of them
provides us with a more general understanding that is transferable to many other
architectures.

Processor Instructions
We can develop an approximate understanding of how things work at the processor
level by taking a close look at the output of the compiler, the exact instructions that
the processor will execute.

Brief Introduction to Assembly
When compiling software written in any compiled language like Rust or C, your
code gets translated into machine instructions that can be executed by the processor
that will eventually run your program. These instructions are highly specific to the
processor architecture you’re compiling your program for.

These instructions, also called machine code, are encoded in binary form, which is
quite unreadable to us humans. Assembly is the human-readable representation of
these instructions. Every instruction is represented by one line of text, usually starting
with a single word or acronym to identify the instruction, followed by its arguments
or operands. An assembler converts the text representation to binary representation,
and a disassembler does the opposite.

After compiling from a language like Rust, most of the structure of the original source
code is gone. Depending on optimization level, functions and function calls might
still be recognizable. However, types such as structs or enums have been reduced to
bytes and addresses, and loops and conditionals have been reduced to a flat structure
with basic jump or branch instructions.

128 | Chapter 7: Understanding the Processor

Here’s an example of what a snippet of assembly for a small part of a program might
look like, for some made-up architecture:

ldr x, 1234 // load from memory address 1234 into x
li y, 0 // set y to zero
inc x // increment x
add y, x // add x to y
mul x, 3 // multiply x by 3
cmp y, 10 // compare y to 10
jne -5 // jump five instructions back if not equal
str 1234, x // store x to memory address 1234

In this example, x and y are names of registers. Registers are part of the processor, not
of the main memory, and usually hold a single integer or memory address. On 64-bit
architectures, they are generally 64 bits in size. The number of registers varies per
architecture, but is usually very limited. Registers are basically used as a temporary
scratchpad in calculations, a place to keep intermediary results before storing things
back to memory.

Constants that refer to specific memory addresses, such as 1234 and -5 in the exam‐
ple above, are often replaced with more human-readable labels. The assembler will
automatically replace them with the actual address when converting assembly to
binary machine code.

Using labels, the previous example might look like this instead:

 ldr x, SOME_VAR
 li y, 0
my_loop: inc x
 add y, x
 mul x, 3
 cmp y, 10
 jne my_loop
 str SOME_VAR, x

Since the names of the labels are only part of the assembly, but not of the binary
machine code, a disassembler will not know what labels were originally used and will
most likely just use meaningless generated names like label1 and var2.

A full course on assembly for all the different architectures falls outside the scope
of this book, but is not a prerequisite for reading this chapter. A very general under‐
standing is more than enough to understand the examples, as we’ll only be reading
assembly, not writing it. The relevant instructions in each example will be explained
in enough detail to be able to follow along with no prior experience with assembly.

Processor Instructions | 129

To look at the exact machine code that the Rust compiler produces, we have several
options. We could compile our code as usual, and then use a disassembler (such
as objdump) to turn the produced binary file back into assembly. Using the debug
information the compiler produces as part of the compilation process, the disassem‐
bler can produce labels that correspond to the original function names of the Rust
source code. A downside of this method is that you need a disassembler that supports
the specific processor architecture you’re compiling for. While the Rust compiler
supports many architectures, many disassemblers only support the one architecture
that they were compiled for.

A more direct option is to ask the compiler to produce assembly instead a binary by
using the --emit=asm flag to rustc. A downside of this method is that the produced
output contains a lot of irrelevant lines, containing information for the assembler and
debug tools that we don’t need.

There are great tools such as cargo-show-asm that integrate with cargo and automate
the process of compiling your crate with the right flags, finding the relevant assembly
for the function you’re interested in, and highlighting the relevant lines containing
the actual instructions.

For relatively small snippets, the easiest and most recommended way is to use a
web service like the excellent Compiler Explorer by Matt Godbolt. This website
allows you to write code in a number of languages, including Rust, and directly see
corresponding compiled assembly using the selected compiler version. It even uses
coloring to show which lines of Rust correspond to which lines of assembly, as far as
such a correspondence still exists after optimization.

Since we want to look at the assembly for different architectures, we’ll need to specify
an exact target for the Rust compiler to compile to. We’ll use x86_64-unknown-linux-
musl for x86-64 and aarch64-unknown-linux-musl for ARM64. These are already
supported directly in Compiler Explorer. If you’re compiling locally, for example
using cargo-show-asm or the other methods mentioned above, you’ll need to make
sure you’ve installed the Rust standard library for these targets, which is usually done
using rustup target add.

In all cases, the target to compile for is selected using the --target compiler flag. For
example, --target=aarch64-unknown-linux-musl. If you don’t specify any target,
it’ll automatically pick the platform you’re currently on. (Or, in the case of Com‐
piler Explorer, the platform that it is hosted on, which is currently x86_64-unknown-
linux-gnu.)

In addition, it’s advisable to enable the -O flag to enable optimization (or --release
when using Cargo), as that will enable optimization and disable overflow checking,
which can significantly reduce the amount of produced assembly for the small func‐
tions we’ll be looking at.

130 | Chapter 7: Understanding the Processor

https://oreil.ly/ePDzj
https://godbolt.org/

To try it out, let’s look at the assembly for x86-64 and ARM64 for the following
function:

pub fn add_ten(num: &mut i32) {
 *num += 10;
}

Using -O --target=aarch64-unknown-linux-musl as the compiler flags with any of
the methods described above, we’ll get something like the following assembly output
for ARM64:

add_ten:
 ldr w8, [x0]
 add w8, w8, #10
 str w8, [x0]
 ret

The x0 register contains the argument to our function, num, the address of the i32 to
increment by ten. First, the ldr instruction loads the 32-bit value from that memory
address into the w8 register. Then, the add instruction adds ten to w8 and stores the
result back into w8. And afterwards, the str instruction stores the w8 register back
into the same memory address. Finally, the ret instruction marks the end of the
function and causes the processor to jump back and continue with the function that
called add_ten.

If we compile the exact same code for x86_64-unknown-linux-musl, we’ll get some‐
thing like this instead:

add_ten:
 add dword ptr [rdi], 10
 ret

This time, a register called rdi is used for the num argument. More interestingly, on
x86-64, a single add instruction can do what takes three instructions on ARM64:
loading, incrementing, and storing a value.

This is usually the case on a complex instruction set computer (CISC) architecture,
such as x86. Instructions on such an architecture often have many variants, for
example to operate on a register or to directly operate on memory of certain size.
(The dword in the assembly specifies a 32-bit operation.)

In contrast, a reduced instruction set computer (RISC) architecture, like ARM, usually
has a simpler set of instructions with very few variants. Most instructions can only
operate on registers, and loading and storing to memory takes a separate instruction.
This allows for a simpler processor, which can result in a reduction in cost or
sometimes higher performance.

This difference is especially relevant for atomic fetch-and-modify instructions, as
we’ll see momentarily.

Processor Instructions | 131

While compilers are generally pretty smart, they don’t always gen‐
erate the most optimal assembly, especially when atomic operations
are involved. If you’re experimenting and find cases where you
feel confused by a seemingly needless complexity in the assembly,
that often just means there’s more optimization opportunities for a
future version of the compiler.

Load and Store
Before we dive into anything more advanced, let’s first look at the instructions used
for the most basic atomic operations: load and store.

A regular non-atomic store through a &mut i32 takes just a single instruction on both
x86-64 and ARM64, as shown below:

Rust source Compiled x86-64 Compiled ARM64

pub fn a(x: &mut i32) {
 *x = 0;
}

a:
 mov dword ptr [rdi], 0
 ret

a:
 str wzr, [x0]
 ret

On x86-64, the very versatile mov instruction is used to copy (“move”) data from one
place to another; in this case, from a zero constant to memory. On ARM64, the str
(store register) instruction is used to store a 32-bit register into memory. In this case,
the special wzr register is used, which always contains zero.

If we change the code to instead use a relaxed atomic store to an AtomicI32, we get:

Rust source Compiled x86-64 Compiled ARM64

pub fn a(x: &AtomicI32) {
 x.store(0, Relaxed);
}

a:
 mov dword ptr [rdi], 0
 ret

a:
 str wzr, [x0]
 ret

Perhaps somewhat surprisingly, the assembly is identical to the non-atomic version.
As it turns out, the mov and str instructions were already atomic. They either
happened, or they didn’t happen at all. Apparently, any difference between &mut i32
and &AtomicI32 here is only relevant for the compiler checks and optimizations, but
is meaningless for the processor—at least for relaxed store operations on these two
architectures.

132 | Chapter 7: Understanding the Processor

The same thing happens when we look at relaxed load operations:

Rust source Compiled x86-64 Compiled ARM64

pub fn a(x: &i32) -> i32 {
 *x
}

a:
 mov eax, dword ptr [rdi]
 ret

a:
 ldr w0, [x0]
 ret

pub fn a(x: &AtomicI32) -> i32 {
 x.load(Relaxed)
}

a:
 mov eax, dword ptr [rdi]
 ret

a:
 ldr w0, [x0]
 ret

On x86-64 the mov instruction is used again, this time to copy from memory into the
32-bit eax register. On ARM64, the ldr (load register) instruction is used to load the
value from memory into the w0 register.

The 32-bit eax and w0 registers are used for passing back a 32-bit
return value of a function. (For 64-bit values, the 64-bit rax and x0
registers are used.)

While the processor apparently does not differentiate between atomic and non-
atomic stores and loads, we cannot safely ignore the difference in our Rust code.
If we use a &mut i32, the Rust compiler may assume that no other thread can
concurrently access the same i32, and might decide to transform or optimize the
code in such a way that a store operation no longer results in a single corresponding
store instruction. For example, it would be perfectly correct, although somewhat
unusual, for a non-atomic 32-bit load or store to happen with two separate 16-bit
instructions.

Read-Modify-Write Operations
Things get far more interesting for read-modify-write operations such as addition. As
discussed earlier in this chapter, a non-atomic read-modify-write operation usually
compiles to three separate instructions (read, modify, and write) on a RISC architec‐
ture like ARM64, but can often be done in a single instruction on a CISC architecture
like x86-64. This short example demonstrates that:

Rust source Compiled x86-64 Compiled ARM64

pub fn a(x: &mut i32) {
 *x += 10;
}

a:
 add dword ptr [rdi], 10
 ret

a:
 ldr w8, [x0]
 add w8, w8, #10
 str w8, [x0]
 ret

Processor Instructions | 133

Before we even look at the corresponding atomic operation, we can reasonably
assume that this time we will see a difference between the non-atomic and atomic
versions. The ARM64 version here is clearly not atomic, as loading and storing
happens in separate steps.

While not directly obvious from the assembly itself, the x86-64 version is not
atomic. The add instruction will be split by the processor into several microinstruc‐
tions behind the scenes, with separate steps for loading the value and storing the
result. This would be irrelevant on a single-core computer, as switching a processor
core between threads generally only happens between instructions. However, when
multiple cores are executing instructions in parallel, we can no longer assume
instructions all happen atomically without considering the multiple steps involved
in executing a single instruction.

x86 lock prefix

To support multi-core systems, Intel introduced an instruction prefix called lock. It is
used as a modifier to instructions like add to make their operation atomic.

The lock prefix originally caused the processor to temporarily block all other cores
from accessing memory for the duration of the instruction. While this is a simple
and effective way to make something appear as atomic to the other cores, it can be
quite inefficient to stop the world for every atomic operation. Newer processors have
a much more advanced implementation of the lock prefix, which doesn’t stop other
cores from operating on unrelated memory, and allows cores to do useful things
while waiting for a certain piece of memory to become available.

The lock prefix can only be applied to a very limited number of instructions, includ‐
ing add, sub, and, not, or, and xor, which are all very useful operations to be able
to do atomically. The xchg (exchange) instruction, which corresponds to the atomic
swap operation, has an implicit lock prefix: it behaves like lock xchg regardless of the
lock prefix.

Let’s see lock add in action by changing our last example to operate on an
AtomicI32:

Rust source Compiled x86-64

pub fn a(x: &AtomicI32) {
 x.fetch_add(10, Relaxed);
}

a:
 lock add dword ptr [rdi], 10
 ret

As expected, the only difference with the non-atomic version is the lock prefix.

134 | Chapter 7: Understanding the Processor

In the example above, we ignore the return value from fetch_add, the value of x
before the operation. However, if we use that value, the add instruction no longer
suffices. The add instruction can provide a little bit of useful information to next
instructions, such as whether the updated value was zero or negative, but it does not
provide the full (original or updated) value. Instead, another instruction can be used:
xadd (“exchange and add”), which puts the originally loaded value into a register.

We can see it in action by making a small modification to our code to return the value
that fetch_add returns:

Rust source Compiled x86-64

pub fn a(x: &AtomicI32) -> i32 {
 x.fetch_add(10, Relaxed)
}

a:
 mov eax, 10
 lock xadd dword ptr [rdi], eax
 ret

Instead of a constant 10, a register containing the value 10 is now used instead. The
xadd instruction will reuse that register to store the old value.

Unfortunately, other than xadd and xchg, none of the other lock-prefixable instruc‐
tions, like sub, and, and or, have such a variant. For example, there is no xsub
instruction. For subtraction that’s no issue, as xadd can be used with a negative value.
For and and or, however, there’s no such alternative.

For and, or, and xor operations that affect only a single bit, such as fetch_or(1)
or fetch_and(!1), it’s be possible to use the bts (bit test and set), btr (bit test and
reset), and btc (bit test and complement) instructions. These instructions also allow
a lock prefix, change only a single bit, and make the previous value of that one bit
available for an instruction that follows, such as a conditional jump.

When these operations affect more than one bit, they cannot be represented by a
single x86-64 instruction. Similarly, the fetch_max and fetch_min operations also
have no corresponding x86-64 instruction. For these operations, we need a different
strategy than a simple lock prefix.

x86 compare-and-exchange instruction
In “Compare-and-Exchange Operations” on page 42, we saw how any atomic fetch-
and-modify operation can be implemented as a compare-and-exchange loop. This
is exactly what the compiler will use for operations that cannot be represented by
a single x86-64 instruction, since this architecture does include a (lock-prefixable)
cmpxchg (compare and exchange) instruction.

Processor Instructions | 135

We can see this in action by changing our last example from fetch_add to fetch_or:

Rust source Compiled x86-64

pub fn a(x: &AtomicI32) -> i32 {
 x.fetch_or(10, Relaxed)
}

a:
 mov eax, dword ptr [rdi]
.L1:
 mov ecx, eax
 or ecx, 10
 lock cmpxchg dword ptr [rdi], ecx
 jne .L1
 ret

The first mov instruction loads the value from the atomic variable into the eax
register. The following mov and or instructions copy that value into ecx and apply the
binary or operation, such that eax contains the old value and ecx the new value. The
cmpxchg instruction afterwards behaves exactly like the compare_exchange method
in Rust. Its first argument is the memory address on which to operate (the atomic
variable), the second argument (ecx) is the new value, the expected value is implicitly
taken from eax, and the return value is implicitly stored in eax. It also sets a status
flag that a subsequent instruction can use to conditionally branch based on whether
the operation succeeded or not. In this case, a jne (jump if not equal) instruction is
used to jump back to the .L1 label to try again on failure.

Here’s what the equivalent compare-and-exchange loop looks like in Rust, just like we
saw in “Compare-and-Exchange Operations” on page 42:

pub fn a(x: &AtomicI32) -> i32 {
 let mut current = x.load(Relaxed);
 loop {
 let new = current | 10;
 match x.compare_exchange(current, new, Relaxed, Relaxed) {
 Ok(v) => return v,
 Err(v) => current = v,
 }
 }
}

Compiling this code results in the exact same assembly as the fetch_or version. This
shows that, at least on x86-64, they are indeed equivalent in every way.

On x86-64, there is no difference between compare_exchange and
compare_exchange_weak. Both compile down to a lock cmpxchg
instruction.

136 | Chapter 7: Understanding the Processor

Load-Linked and Store-Conditional Instructions
The closest thing to a compare-and-exchange loop on a RISC architecture is a
load-linked/store-conditional (LL/SC) loop. It involves two special instructions that
come in a pair: a load-linked instruction, which mostly behaves like a regular load
instruction, and a store-conditional instruction, which mostly behaves like a regular
store instruction. They are used in a pair, with both instructions targeting the same
memory address. The key difference to the regular load and store instructions is
that the store is conditional: it refuses to store to memory if any other thread has
overwritten that memory since the load-linked instruction.

These two instructions allow us to load a value from memory, modify it, and store the
new value back only if nobody has overwritten the value since we loaded it. If that
fails, we can simply retry. Once it succeeds, we can safely pretend the whole operation
was atomic, since it didn’t get disrupted.

The key to making these instructions feasible and efficient to implement is twofold:
(1) only one memory address (per core) can be tracked at a time, and (2) the
store-conditional is allowed to have false negatives, meaning that it may fail to store
even though nothing has changed that particular piece of memory.

This makes it possible to be less precise when tracking changes to memory, at the
cost of perhaps a few extra cycles through an LL/SC loop. Access to memory could
be tracked not per byte, but per chunk of 64 bytes, or per kilobyte, or even the entire
memory as a whole. Less accurate memory tracking results in more unnecessary
cycles through LL/SC loops, significantly reducing performance, but also reducing
implementation complexity.

Taking things to the extreme, a basic, hypothetical single-core system could use a
strategy where it does not track writes to memory at all. Instead, it could track
interrupts or context switches, the events that can cause the processor to switch to
another thread. If, in a system without any parallelism, no such event happened, it
could safely assume no other thread could have touched the memory. If any such
event happened, it could just assume the worst, refuse the store, and hope for better
luck in the next iteration of the loop.

ARM load-exclusive and store-exclusive
On ARM64, or at least in the first version of ARMv8, no atomic fetch-and-modify
or compare-and-exchange operation can be represented by a single instruction. True
to its RISC nature, the load and store steps are separate from the calculation and
comparison.

Processor Instructions | 137

ARM64’s load-linked and store-conditional instructions are called ldxr (load exclu‐
sive register) and stxr (store exclusive register). In addition, the clrex (clear exclu‐
sive) instruction can be used as an alternative to stxr to stop tracking writes to
memory without storing anything.

To see them in action, let’s see what happens when we do an atomic addition on
ARM64:

Rust source Compiled ARM64

pub fn a(x: &AtomicI32) {
 x.fetch_add(10, Relaxed);
}

a:
.L1:
 ldxr w8, [x0]
 add w9, w8, #10
 stxr w10, w9, [x0]
 cbnz w10, .L1
 ret

We get something that looks quite similar to the non-atomic version we got before
(in “Read-Modify-Write Operations” on page 133): a load instruction, an add instruc‐
tion, and a store instruction. The load and store instructions have been replaced by
their “exclusive” LL/SC version, and a new cbnz (compare and branch on nonzero)
instruction appeared. The stxr instruction stores a zero in w10 if it succeeded, or
a one if it didn’t. The cbnz instruction uses this to restart the whole operation if it
failed.

Note that unlike with lock add on x86-64, we don’t need to do anything special to
retrieve the old value. In the example above, the old value will still be available in reg‐
ister w8 after the operation succeeds, so there’s no need for a specialized instruction
like xadd.

This LL/SC pattern is quite flexible: it doesn’t just work for a limited set of operations
like add and or, but for virtually any operation. We can just as easily implement
an atomic fetch_divide or fetch_shift_left by putting the corresponding instruc‐
tion(s) between the ldxr and stxr instructions. However, if there are too many
instructions between them, there’s an increasingly high chance of disruption resulting
in extra cycles. Generally, the compiler will attempt to keep the number of instruc‐
tions in an LL/SC pattern as small as possible, to avoid LL/SC loops that would
rarely—or even never—succeed and thus could spin forever.

138 | Chapter 7: Understanding the Processor

ARMv8.1 Atomic Instructions
A later version of ARM64, part of ARMv8.1, also includes new CISC style instruc‐
tions for common atomic operations. For example, the new ldadd (load and add)
instruction is equivalent to an atomic fetch_add operation, without the need for an
LL/SC loop. It even includes instructions for operations like fetch_max, which don’t
exist on x86-64.

It also includes a cas (compare and swap) instruction corresponding to compare_
exchange. When this instruction is used, there’s no difference between com

pare_exchange and compare_exchange_weak, just like on x86-64.

While the LL/SC pattern is quite flexible and nicely fits the general RISC pattern,
these new instructions can be more performant, as they can be easier to optimize for
with specialized hardware.

Compare-and-exchange on ARM

The compare_exchange operation maps quite nicely onto this LL/SC pattern by using
a conditional branch instruction to skip the store instruction if the comparison failed.
Let’s look at the generated assembly:

Rust source Compiled ARM64

pub fn a(x: &AtomicI32) {
 x.compare_exchange_weak(5, 6, Relaxed, Relaxed);
}

a:
 ldxr w8, [x0]
 cmp w8, #5
 b.ne .L1
 mov w8, #6
 stxr w9, w8, [x0]
 ret
.L1:
 clrex
 ret

Note that a compare_exchange_weak operation is normally used
in a loop that repeats if the comparison fails. For this example,
however, we only call it once and ignore its return value, which
shows us the relevant assembly without distractions.

Processor Instructions | 139

The ldxr instruction loads the value, which is then immediately compared with the
cmp (compare) instruction to the expected value of 5. The b.ne (branch if not equal)
instruction will cause a jump to the .L1 label if the value was not as expected, at
which point the clrex instruction is used to abort the LL/SC pattern. If the value was
five, the flow continues through the mov and stxr instructions to store the new value
of six in memory, but only if nothing has overwritten the five in the meantime.

Remember that stxr is allowed to have false negatives; it might fail here even if
the five wasn’t overwritten. That’s okay, because we’re using compare_exchange_weak,
which is allowed to have false negatives too. In fact, this is the reason why a weak
version of compare_exchange exists.

If we replace compare_exchange_weak with compare_exchange, we get nearly identi‐
cal assembly, except for an extra branch to restart the operation if it failed:

Rust source Compiled ARM64

pub fn a(x: &AtomicI32) {
 x.compare_exchange(5, 6, Relaxed, Relaxed);
}

a:
 mov w8, #6
.L1:
 ldxr w9, [x0]
 cmp w9, #5
 b.ne .L2
 stxr w9, w8, [x0]
 cbnz w9, .L1
 ret
.L2:
 clrex
 ret

As expected, there’s now an extra cbnz (compare and branch on nonzero) instruction
to restart the LL/SC loop on failure. Additionally, the mov instruction has been moved
out of the loop, to keep the loop as short as possible.

Optimization of Compare-and-Exchange Loops
As we saw in “x86 compare-and-exchange instruction” on page 135, a fetch_or oper‐
ation and the equivalent compare_exchange loop compile down to the exact same
instructions on x86-64. One might expect the same to happen on ARM, at least with
compare_exchange_weak, as the load and weak compare-and-exchange operations
could directly be mapped to the LL/SC instructions.

Unfortunately, this is currently (as of Rust 1.66.0) not what happens.

While this might change in the future as the compiler is always improving, it’s quite
hard for a compiler to safely turn a manually written compare-and-exchange loop
into the corresponding LL/SC loop. One of the reasons is that there’s a limit on

140 | Chapter 7: Understanding the Processor

the number and type of instructions that can be put between the stxr and ldxr
instructions, which is not something that the compiler is designed to keep in mind
while applying other optimizations. At the time where patterns like a compare-and-
exchange loop are still recognizable, the exact instructions that an expression will
compile down to are not known yet, making this a very tricky optimization to
implement for the general case.

So, at least until we get even smarter compilers, it’s advisable to use the dedicated
fetch-and-modify methods rather than a compare-and-exchange loop, if possible.

Caching
Reading and writing memory is slow, and can easily cost as much time as executing
tens or hundreds of instructions. This is why all performant processors implement
caching, to avoid interacting with the relatively slow memory as much as possible.
The exact implementation details of memory caches in modern processors are
complex, partially proprietary, and, most importantly, mostly irrelevant to us when
writing software. After all, the name cache comes from the French word caché,
meaning hidden. Nevertheless, understanding the basic principles behind how most
processors implement caching can be extremely useful when optimizing software for
performance. (Not that we need an excuse to learn more about an interesting topic, of
course.)

Except for very small microcontrollers, virtually all modern processors use caching.
Such a processor never interacts directly with main memory, but instead routes
every single read and write request through its cache. If an instruction needs to read
something from memory, the processor will ask its cache for that data. If it is already
cached, the cache will quickly respond with the cached data, avoiding interacting with
main memory. Otherwise, it’ll have to take the slow path, where the cache might have
to ask the main memory for a copy of the relevant data. Once the main memory
responds, not only will the cache finally respond to the original read request, but it
will also remember the data, such that it can respond more quickly the next time this
data is requested. If the cache becomes full, it makes space by dropping some old data
it deems least likely to be useful.

When an instruction wants to write something to memory, the cache could decide
to hold on to the modified data without writing it to main memory. Any subsequent
read requests for the same memory address will then get a copy of the modified data,
ignoring the outdated data in main memory. It would only actually write the data
back to main memory when the modified data needs to be dropped from the cache to
make space.

Caching | 141

In most processor architectures, the cache reads and writes memory in blocks of 64
bytes, even if only a single byte was requested. These blocks are often called cache
lines. By caching the entire 64-byte block that surrounds the requested byte, any
subsequent instructions that need to access any of the other bytes in that block will
not have to wait for main memory.

Cache Coherence
In modern processors, there is usually more than one layer of caching. The first
cache, or level one (L1) cache is the smallest and fastest. Instead of talking to the main
memory, it talks to the level two (L2) cache, which is much larger, but slower. The L2
cache might be the one to talk to main memory, or there might be yet another, larger
and slower, L3 cache—perhaps even an L4 cache.

Adding extra layers doesn’t change much about how they work; each layer can
operate independently. Where things get interesting, however, is when there are
multiple processor cores that each have their own cache. In a multi-core system, each
processor core usually has its own L1 cache, while the L2 or L3 caches are often
shared with some or all of the other cores.

A naive caching implementation would break down under these conditions, as the
cache can no longer assume it controls all interactions with the next layer. If one
cache would accept a write and mark some cache line as modified without informing
the other caches, the state of the caches could become inconsistent. Not only would
the modified data not be available to the other cores until the cache writes the data
down to the next level(s), it could end up conflicting with different modifications
cached in other caches.

To solve this problem, a cache coherence protocol is used. Such a protocol defines how
exactly the caches operate and communicate with each other to keep everything in
a consistent state. The exact protocol used varies per architecture, processor model,
and even per cache level.

We’ll discuss two basic cache coherence protocols. Modern processors use many
variations of these.

The write-through protocol
In caches that implement the write-through cache coherence protocol, writes are not
cached but immediately sent through to the next layer. The other caches are connec‐
ted to the next layer through the same shared communication channel, which means
that they can observe the other caches’ communications to the next layer. When a
cache observes a write for an address it currently has cached, it immediately either
drops or updates its own cache line to keep everything consistent.

142 | Chapter 7: Understanding the Processor

Using this protocol, caches never contain any cache lines in a modified state. While
this simplifies things significantly, it nullifies any benefits of caching for writes. When
optimizing just for reading, this can be a great choice.

The MESI protocol
The MESI cache coherence protocol is named after the four possible states it defines
for cache line: modified, exclusive, shared and invalid. Modified (M) is used for cache
lines that contain data that has been modified but not yet written to memory (or
the next level cache). Exclusive (E) is used for cache lines that contain unmodified
data that’s not cached in any other cache (at the same level). Shared (S) is used for
unmodified cache lines that might also appear in one or more of the other (same
level) caches. Invalid (I) is used for unused (empty or dropped) cache lines, which do
not contain any useful data.

Caches that use this protocol communicate with all the other caches at the same
level. They send each other updates and requests to make it possible for them to stay
consistent with each other.

When a cache gets a request for an address it has not yet cached, also called a cache
miss, it does not immediately request it from the next layer. Instead, it first asks the
other caches (at the same level) if any of them have this cache line available. If none
of them have it, the cache will continue to request the address from the (slower) next
layer, and mark the resulting new cache line as exclusive (E). When this cache line is
then modified by a write operation, the cache can change the state to modified (M)
without informing the others, since it knows none of the others have the same cache
line cached.

When requesting a cache line that’s already available in any of the other caches, the
result is a shared (S) cache line, obtained directly from the other cache(s). If the cache
line was in the modified (M) state, it’ll first be written (or flushed) to the next layer,
before changing it to shared (S) and sharing it. If it was in the exclusive (E) state, it’ll
be changed to shared (S) immediately.

If the cache wants exclusive rather than shared access (for example, because it is going
to modify the data right after), the other cache(s) will not keep the cache line in
shared (S) state, but instead drop it entirely by changing it to invalid (I). In this case,
the result is an exclusive (E) cache line.

If a cache needs exclusive access to a cache line it already has available in the shared
(S) state, it simply tells the others to drop the cache line before upgrading it to
exclusive (E).

There are several variations of this protocol. For example, the MOESI protcol adds
an extra state to allow sharing of modified data without immediately writing it to the
next layer, and the MESIF protcol uses an extra state to decide which cache responds

Caching | 143

to a request for a shared cache line that’s available in multiple caches. Modern
processors often use more elaborate and proprietary cache coherence protocols.

Impact on Performance
While caching is mostly hidden from us, caching behavior can have significant effects
on the performance of our atomic operations. Let’s try to measure some of those
effects.

Measuring the speed of a single atomic operation is very tricky, since they are
extremely fast. To be able to get some useful numbers, we’ll have to repeat an
operation, say, a billion times, and measure how long that takes in total. For example,
we could try to measure the time it takes for a billion load operations like this:

static A: AtomicU64 = AtomicU64::new(0);

fn main() {
 let start = Instant::now();
 for _ in 0..1_000_000_000 {
 A.load(Relaxed);
 }
 println!("{:?}", start.elapsed());
}

Unfortunately, this does not work as expected.

When running this with optimizations turned on (e.g., with cargo run --release or
rustc -O), we’ll see an unreasonably low measured time. What happened is that the
compiler was smart enough to understand that we’re not using the loaded values, so it
decided to completely optimize the “unnecessary” loop away.

To avoid this, we can use the special std::hint::black_box function. This function
takes an argument of any type, which it just returns without doing anything. What
makes this function special is that the compiler will try its best not to assume
anything about what the function does; it treats it like a “black box” that could do
anything.

We can use this to avoid certain optimizations that would render a benchmark
useless. In this case, we can pass the result of the load operation to black_box() to
stop any optimizations that assume we don’t actually need the loaded values. That’s
not enough, though, since the compiler could still assume that A is always zero,
making the load operations unnecessary. To avoid that, we can pass a reference to A
to black_box() at the start, such that the compiler may no longer assume there’s only
one thread that accesses A. After all, it must assume that black_box(&A) might have
spawned an extra thread that interacts with A.

Let’s try that out:

144 | Chapter 7: Understanding the Processor

use std::hint::black_box;

static A: AtomicU64 = AtomicU64::new(0);

fn main() {
 black_box(&A); // New!
 let start = Instant::now();
 for _ in 0..1_000_000_000 {
 black_box(A.load(Relaxed)); // New!
 }
 println!("{:?}", start.elapsed());
}

The output fluctuates a bit when running this multiple times, but on a not-so-recent
x86-64 computer, it seems to give a result of about 300 milliseconds.

To see any caching effects, we’ll spawn a background thread that interacts with the
atomic variable. That way, we can see if it affects the load operations of the main
thread or not.

First, let’s try that with just load operations on the background thread, as follows:

static A: AtomicU64 = AtomicU64::new(0);

fn main() {
 black_box(&A);

 thread::spawn(|| { // New!
 loop {
 black_box(A.load(Relaxed));
 }
 });

 let start = Instant::now();
 for _ in 0..1_000_000_000 {
 black_box(A.load(Relaxed));
 }
 println!("{:?}", start.elapsed());
}

Note that we’re not measuring the performance of the operations on the background
thread. We’re still only measuring how long it takes for the main thread to perform a
billion load operations.

Running this program results in similar measurements as before: it fluctuates a bit
around 300 milliseconds when tested on the same x86-64 computer. The background
thread has no significant effect on the main thread. They presumably each run on a
separate processor core, but the caches of both cores contain a copy of A, allowing for
very fast access.

Caching | 145

Now let’s change the background thread to perform store operations instead:

static A: AtomicU64 = AtomicU64::new(0);

fn main() {
 black_box(&A);
 thread::spawn(|| {
 loop {
 A.store(0, Relaxed); // New!
 }
 });
 let start = Instant::now();
 for _ in 0..1_000_000_000 {
 black_box(A.load(Relaxed));
 }
 println!("{:?}", start.elapsed());
}

This time, we do see a significant difference. Running this program on the same
x86-64 machine now results in an output that fluctuates around three whole seconds,
almost ten times as much as before. More recent computers will show a less signifi‐
cant but still very measurable difference. For example, it went from 350 milliseconds
to 500 milliseconds on a recent Apple M1 processor, and from 250 milliseconds to
650 milliseconds on a very recent x86-64 AMD processor.

This behavior matches our understanding of cache coherence protocols: a store
operation requires exclusive access to a cache line, which slows down subsequent load
operations on other cores that no longer share the cache line.

Failing Compare-and-Exchange Operations
Interestingly, on most processor architectures, the same effect we saw with store
operations also happens when the background thread performs only compare-and-
exchange operations, even if they all fail.

To try that out, we can replace the store operation (of the background thread) with a
call to compare_exchange that will never succeed:

 …
 loop {
 // Never succeeds, because A is never 10.
 black_box(A.compare_exchange(10, 20, Relaxed, Relaxed).is_ok());
 }
 …

Because A is always zero, this compare_exchange operation will never succeed. It’ll
load the current value of A, but never update it to a new value.

146 | Chapter 7: Understanding the Processor

One might reasonably expect this to behave the same as a load operation, since it
does not modify the atomic variable. However, on most processor architectures, the
instruction(s) of compare_exchange will claim exclusive access of the relevant cache
line regardless of whether the comparison succeeds or not.

This means that it can be beneficial to not use compare_exchange (or swap) in a spin
loop like we did for our SpinLock in Chapter 4, but instead use a load operation first
to check if the lock has been unlocked. That way, we avoid unnecessarily claiming
exclusive access to the relevant cache line.

Since caching happens per cache line, not per individual byte or variable, we should
be able to see the same effect using adjacent variables rather than the same one. To
try this out, let’s use three atomic variables instead of one, have the main thread use
only the middle variable, and make the background thread use only the other two,
as follows:

static A: [AtomicU64; 3] = [
 AtomicU64::new(0),
 AtomicU64::new(0),
 AtomicU64::new(0),
];

fn main() {
 black_box(&A);
 thread::spawn(|| {
 loop {
 A[0].store(0, Relaxed);
 A[2].store(0, Relaxed);
 }
 });
 let start = Instant::now();
 for _ in 0..1_000_000_000 {
 black_box(A[1].load(Relaxed));
 }
 println!("{:?}", start.elapsed());
}

Running this produces similar results as before: it takes several seconds on that same
x86-64 computer. Even though A[0], A[1], and A[2] are each used by only one
thread, we still see the same effects as if we’re using the same variable on both threads.
The reason is that A[1] shares a cache line with either or both of the others. The
processor core running the background thread repeatedly claims exclusive access to
the cache line(s) containing A[0] and A[2], which also contains A[1], slowing down
“unrelated” operations on A[1]. This effect is called false sharing.

We can avoid this by spacing the atomic variables further apart, so they each get their
own cache line. As mentioned before, 64 bytes is a reasonable guess for the size of a
cache line, so let’s try wrapping our atomics in a 64-byte aligned struct, as follows:

Caching | 147

#[repr(align(64))] // This struct must be 64-byte aligned.
struct Aligned(AtomicU64);

static A: [Aligned; 3] = [
 Aligned(AtomicU64::new(0)),
 Aligned(AtomicU64::new(0)),
 Aligned(AtomicU64::new(0)),
];

fn main() {
 black_box(&A);
 thread::spawn(|| {
 loop {
 A[0].0.store(1, Relaxed);
 A[2].0.store(1, Relaxed);
 }
 });
 let start = Instant::now();
 for _ in 0..1_000_000_000 {
 black_box(A[1].0.load(Relaxed));
 }
 println!("{:?}", start.elapsed());
}

The #[repr(align)] attribute enables us to tell the compiler the (minimal) align‐
ment of our type, in bytes. Since an AtomicU64 is only 8 bytes, this will add 56 bytes of
padding to our Aligned struct.

Running this program no longer gives slow results. Instead, we get the same results as
when we had no background thread at all: about 300 milliseconds when run on the
same x86-64 computer as before.

Depending on the type of processor you’re trying this on, you
might need to use 128-byte alignment to see the same effect.

The experiment above shows that it can be advisable not to put unrelated atomic
variables close to each other. For example, a dense array of small mutexes might not
always perform as well as an alternative structure that keeps the mutexes are spaced
further apart.

On the other hand, when multiple (atomic) variables are related and often accessed
in quick succession, it can be good to put them close together. For example, our
SpinLock<T> from Chapter 4 stores the T right next to the AtomicBool, which means
it’s likely that the cache line containing the AtomicBool will also contain the T, such
that a claim for (exclusive) access to one also includes the other. Whether this is
beneficial depends entirely on the situation.

148 | Chapter 7: Understanding the Processor

Reordering
Consistent caching, for example through the MESI protocol we explored earlier in
this chapter, generally does not affect correctness of a program, even when multiple
threads are involved. The only observable differences caused by consistent caching
come down to differences in timing. However, modern processors implement many
more optimizations that can have a big impact on correctness, at least when multiple
threads are involved.

At the start of Chapter 3, we briefly discussed instruction reordering, how both the
compiler and the processor can change the order of instructions. Focusing just on
the processor, here are some examples of various ways in which instructions, or their
effects, might happen out of order:

Store buffers
Since writes can be slow, even with caching, processor cores often include a store
buffer. Write operations to memory can be stored in this store buffer, which is
very quick, to allow the processor to immediately continue with the instructions
that follow. Then, in the background, the write operation is completed by writing
to the (L1) cache, which can be significantly slower. This way, the processor does
not have to wait while the cache coherence protocol jumps into action to get
exclusive access to the relevant cache line.

As long as special care is taken to handle subsequent read operations from
the same memory address, this is entirely invisible for instructions running
as part of the same thread, on the same processor core. However, for a brief
moment, the write operation is not yet visible to the other cores, resulting in an
inconsistent view of what the memory looks like from different threads running
on different cores.

Invalidation queues
Regardless of the exact coherency protocol, caches that operate in parallel need
to process invalidation requests: instructions to drop a specific cache line because
it’s about to be modified and become invalid. As a performance optimization, it’s
common for such requests not to be processed immediately, but to be queued for
(slightly) later processing instead. When such invalidation queues are in use, the
caches are no longer always consistent, as cache lines might be briefly outdated
before they are dropped. However, this has no impact on a single threaded
program, other than speeding it up. The only impact is the visibility of write
operations from other cores, which might now appear as (very slightly) delayed.

Pipelining
Another very common processor feature that significantly improves performance
is pipelining: executing consecutive instructions in parallel, if possible. Before
an instruction finishes executing, the processor might already start executing

Reordering | 149

the next one. Modern processors can often start the execution of quite a few
instructions in series while the first one is still in progress.

If each instruction operates on the result from the previous one, this doesn’t
help much; they each still need to wait on the result of the one before it. But
when an instruction can be executed independently of the previous one, it might
even finish first. For example, an instruction that just increments a register might
finish very quickly, while a previously started instruction might still be waiting
on reading something from memory, or some other slow operation.

While this doesn’t affect a single threaded program (other than speed), inter‐
action with other cores might happen out of order when an instruction that
operates on memory finishes executing before a preceding one does.

There are many ways in which a modern processor might end up executing instruc‐
tions in an entirely different order than expected. There are many proprietary tech‐
niques involved, some of which become public only when a subtle mistake is found
that can be exploited by malicious software. When they work as expected, however,
they all have one thing in common: they do not affect single threaded programs,
other than timing, but can cause interaction with other cores to appear to happen in
an inconsistent order.

Processor architectures that allow for memory operations to be reordered also pro‐
vide a way to prevent this through special instructions. These instructions might,
for example, force the processor to flush its store buffer, or to finish any pipelined
instructions, before continuing. Sometimes, these instructions only prevent a certain
type of reordering. For example, there might be an instruction to prevent store
operations from being reordered with respect to each other, while still allowing load
operations to be reordered. Which types of reordering might happen, and how they
can be prevented, depends on the processor architecture.

Memory Ordering
When performing any atomic operation in a language like Rust or C, we specify
a memory ordering to inform the compiler of our ordering requirements. The
compiler will generate the right instructions for the processor to prevent it from
reordering instructions in ways that would break the rules.

Which types of instruction reordering are allowed depends on the kind of memory
operation. For non-atomic and relaxed atomic operations, any type of reordering
is acceptable. At the other extreme, sequentially consistent atomic operations don’t
allow for any type of reordering at all.

150 | Chapter 7: Understanding the Processor

An acquire operation may not get reordered with any memory operations that follow,
while a release operation may not be reordered with any memory operations that pre‐
cede it. Otherwise, some mutex-protected data might be accessed before acquiring—
or after releasing—its mutex, resulting in a data race.

Other-Multi-Copy Atomicity
The ways in which the order of memory operations is affected on some processor
architectures, such as those one might find in graphics cards, cannot always be
explained by instruction reordering. The effect of two consecutive store operations on
one core might become visible in the same order on a second core, but in opposite
order on a third core. This could happen, for example, because of inconsistent
caching or shared store buffers. This effect can’t be explained by the instructions on
the first core being reordered, as that doesn’t explain the inconsistency between the
second and third core’s observations.

The theoretical memory model we discussed in Chapter 3 leaves space for such
processor architectures by not requiring a globally consistent order for anything but
sequentially consistent atomic operations.

The architectures we’re focusing on in this chapter, x86-64 and ARM64, are other-
multi-copy atomic, which means that write operations, once they are visible to any
core, become visible to all cores at the same time. For other-multi-copy atomic
architectures, memory ordering is only a matter of instruction reordering.

Some architectures, such as ARM64, are called weakly ordered, as they allow the pro‐
cessor to freely reorder any memory operation. On the other hand, strongly ordered
architectures, such as x86-64, are very restrictive about which memory operations
may be reordered.

x86-64: Strongly Ordered
On an x86-64 processor, a load operation will never appear to have happened after
a memory operation that follows. Similarly, this architecture doesn’t allow for a store
operation to appear to have happened before a preceding memory operation. The
only kind of reordering you might see on x86-64 is a store operation getting delayed
until after a later load operation.

Because of the reordering restrictions of the x86-64 architecture, it
is often described as a strongly ordered architecture, although some
prefer to reserve this term for architectures that preserve the order
of all memory operations.

Memory Ordering | 151

These restrictions satisfy all the needs of acquire-loads (because a load is never
reordered with a later operation), and of release-stores (because a store is never
reordered with an earlier operation). This means that on x86-64, we get release and
acquire semantics “for free”: release and acquire operations are identical to relaxed
operations.

We can verify this by seeing what happens to a few of the snippets from “Load and
Store” on page 132 and “x86 lock prefix” on page 134 when we change Relaxed to
Release, Acquire, or AcqRel:

Rust source Compiled x86-64

pub fn a(x: &AtomicI32) {
 x.store(0, Release);
}

a:
 mov dword ptr [rdi], 0
 ret

pub fn a(x: &AtomicI32) -> i32 {
 x.load(Acquire)
}

a:
 mov eax, dword ptr [rdi]
 ret

pub fn a(x: &AtomicI32) {
 x.fetch_add(10, AcqRel);
}

a:
 lock add dword ptr [rdi], 10
 ret

As expected, the assembly is identical, even though we specified a stronger
memory ordering.

We can conclude that on x86-64, ignoring potential compiler optimizations, acquire
and release operations are just as cheap as relaxed operations. Or, perhaps more accu‐
rately, that relaxed operations are just as expensive as acquire and release operations.

Let’s check out what happens for SeqCst:

Rust source Compiled x86-64

pub fn a(x: &AtomicI32) {
 x.store(0, SeqCst);
}

a:
 xor eax, eax
 xchg dword ptr [rdi], eax
 ret

pub fn a(x: &AtomicI32) -> i32 {
 x.load(SeqCst)
}

a:
 mov eax, dword ptr [rdi]
 ret

pub fn a(x: &AtomicI32) {
 x.fetch_add(10, SeqCst);
}

a:
 lock add dword ptr [rdi], 10
 ret

152 | Chapter 7: Understanding the Processor

The load and fetch_add operations still result in the same assembly as before, but
assembly for store changed completely. The xor instruction looks a bit out of place,
but is just a common way to set the eax register to zero by xor‘ing it with itself, which
always results in zero. A mov eax, 0 instruction would’ve worked as well, but takes a
bit more space.

The interesting part is the xchg instruction, which is normally used for a swap
operation: a store operation that also retrieves the old value.

A regular mov instruction like before wouldn’t suffice for a SeqCst store, because it
would allow reordering it with a later load operation, breaking the globally consistent
order. By changing it to an operation that also performs a load, even though we don’t
care about the value it loads, we get the additional guarantee of our instruction not
getting reordered with later memory operations, solving the issue.

A SeqCst load operation can still be a regular mov, exactly because
SeqCst stores are upgraded to xchg. SeqCst operations guarantee
a globally consistent order only with other SeqCst operations. The
mov from a SeqCst load might still be reordered with the mov of an
earlier non-SeqCst store operation, but that’s perfectly fine.

On x86-64, a store operation is the only atomic operation for which there’s a differ‐
ence between SeqCst and weaker memory ordering. In other words, x86-64 SeqCst
operations other than stores are just as cheap as Release, Acquire, AcqRel, and even
Relaxed operations. Or, if you prefer, x86-64 makes Relaxed operations other than
stores as expensive as SeqCst operations.

ARM64: Weakly Ordered
On a weakly ordered architecture such as ARM64, all memory operations can poten‐
tially be reordered with each other. This means that unlike x86-64, acquire and
release operations will not be identical to relaxed operations.

Let’s take a look at what happens on ARM64 for Release, Acquire, and AcqRel:

Rust source Compiled ARM64

pub fn a(x: &AtomicI32) {
 x.store(0, Release);
}

a:

 stlr wzr, [x0]
 ret

pub fn a(x: &AtomicI32) -> i32 {
 x.load(Acquire)
}

a:

 ldar w0, [x0]
 ret

Memory Ordering | 153

Rust source Compiled ARM64

pub fn a(x: &AtomicI32) {
 x.fetch_add(10, AcqRel);
}

a:
.L1:

 ldaxr w8, [x0]
 add w9, w8, #10

 stlxr w10, w9, [x0]
 cbnz w10, .L1
 ret

The changes, compared to the Relaxed versions we saw earlier, are very subtle:

 str (store register) is now stlr (store-release register).

 ldr (load register) is now ldar (load-acquire register).

 ldxr (load exclusive register) is now ldaxr (load-acquire exclusive register).

 stxr (store exclusive register) is now stlxr (store-release exclusive register).

As this shows, ARM64 has special versions of its load and store instructions for
acquire and release ordering. Unlike an ldr or ldxr instruction, an ldar or ldxar
instruction will never be reordered with any later memory operation. Similarly,
unlike an str or stxr instruction, an stlr or stxlr instruction will never be reor‐
dered with any earlier memory operation.

A fetch-and-modify operation using only Release or Acquire
ordering instead of AcqRel uses only one of the stlxr and
ldxar instructions, respectively, paired with a regular ldxr or
stxr instruction.

In addition to the restrictions required for release and acquire semantics, none of
the special acquire and release instructions is ever reordered with any other of these
special instructions, making them also suitable for SeqCst.

As demonstrated below, upgrading to SeqCst results in the exact same assembly
as before:

Rust source Compiled ARM64

pub fn a(x: &AtomicI32) {
 x.store(0, SeqCst);
}

a:
 stlr wzr, [x0]
 ret

pub fn a(x: &AtomicI32) -> i32 {
 x.load(SeqCst)
}

a:
 ldar w0, [x0]
 ret

154 | Chapter 7: Understanding the Processor

Rust source Compiled ARM64

pub fn a(x: &AtomicI32) {
 x.fetch_add(10, SeqCst);
}

a:
.L1:
 ldaxr w8, [x0]
 add w9, w8, #10
 stlxr w10, w9, [x0]
 cbnz w10, .L1
 ret

This means that on ARM64, sequentially consistent operations are exactly as cheap
as acquire and release operations. Or, rather, that ARM64 Acquire, Release, and
AcqRel operations are as expensive as SeqCst. Unlike x86-64, however, Relaxed
operations are relatively cheap, as they don’t result in stronger ordering guarantees
than necessary.

ARMv8.1 Atomic Release and Acquire Instructions
As discussed in “ARMv8.1 Atomic Instructions” on page 139, the ARMv8.1 version
of ARM64 includes CISC style instructions for atomic operations such as ldadd (load
and add) as an alternative to an ldxr/stxr loop.

Just like the load and store operations have special versions with acquire and
release semantics, these instructions also have variants for stronger memory ordering.
Because these instructions involve both a load and a store, they each have three
additional variants: one for release (-l), one for acquire (-a), and one for combined
release and acquire (-al) semantics.

For example, for ldadd, there is also ldaddl, ldadda, and ldaddal. Similarly, the cas
instruction comes with the casl, casa, and casal variants.

Just like for the load and store instructions, the combined release and acquire (-al)
variants also suffice for SeqCst operations.

An Experiment
An unfortunate consequence of the popularity of strongly ordered architectures is
that certain classes of memory ordering bugs can easily stay undiscovered. Using
Relaxed where Acquire or Release is necessary is incorrect, but could accidentally
end up working just fine in practice on x86-64, assuming the compiler doesn’t
reorder your atomic operations.

Memory Ordering | 155

Remember that it’s not only the processor that can cause things to
happen out of order. The compiler is also allowed to reorder the
instructions it produces, as long as it takes the memory ordering
constraints into account.
In practice, compilers tend to be very conservative about optimiza‐
tions involving atomic operations, but that might very well change
in the future.

This means one can easily write incorrect concurrent code that (accidentally) works
perfectly fine on x86-64, but might break down when compiled for and run on an
ARM64 processor.

Let’s try to do exactly that.

We’ll create a spin lock–protected counter, but change all the memory orderings to
Relaxed. Let’s not bother with creating a custom type or unsafe code. Instead, let’s
just use an AtomicBool for the lock and an AtomicUsize for the counter.

To be sure the compiler won’t be the one to reorder our operations, we’ll use the
std::sync::compiler_fence() function to inform the compiler of the operations
that should have been Acquire or Release, without telling the processor.

We’ll make four threads repeatedly lock, increment the counter, and unlock—a mil‐
lion times each. Putting that all together, we end up with the following code:

fn main() {
 let locked = AtomicBool::new(false);
 let counter = AtomicUsize::new(0);

 thread::scope(|s| {
 // Spawn four threads, that each iterate a million times.
 for _ in 0..4 {
 s.spawn(|| for _ in 0..1_000_000 {
 // Acquire the lock, using the wrong memory ordering.
 while locked.swap(true, Relaxed) {}
 compiler_fence(Acquire);

 // Non-atomically increment the counter, while holding the lock.
 let old = counter.load(Relaxed);
 let new = old + 1;
 counter.store(new, Relaxed);

 // Release the lock, using the wrong memory ordering.
 compiler_fence(Release);
 locked.store(false, Relaxed);
 });
 }
 });

156 | Chapter 7: Understanding the Processor

 println!("{}", counter.into_inner());
}

If the lock works properly, we’d expect the final value of the counter to be exactly
four million. Note how incrementing the counter happens in a non-atomic way, with
a separate load and store rather than a single fetch_add, to make sure that any
problems with the spin lock could result in missed increments and thus a lower total
value of the counter.

Running this program a few times on a computer with an x86-64 processor gives:

4000000
4000000
4000000

As expected, we get release and acquire semantics for “free,” and our mistake does not
cause any issues.

Trying this on an Android phone from 2021 and a Raspberry Pi 3 model B, which
both use an ARM64 processor, results in the same output:

4000000
4000000
4000000

This suggests that not all ARM64 processors make use of all forms of their instruc‐
tion reordering, although we can’t assume much based on this experiment.

When trying this out on an 2021 Apple iMac, which contains an ARM64-based Apple
M1 processor, we get something different:

3988255
3982153
3984205

Our previously hidden mistake suddenly turned into an actual issue—an issue that
is only visible on a weakly ordered system. The counter is only off by about 0.4%,
showing how subtle such an issue can be. In a real-life scenario, an issue like this
might stay undiscovered for a very long time.

Don’t forget to enable optimization (with cargo run --release or
rustc -O) when trying to replicate the results above. Without opti‐
mization, the same code often results in many more instructions,
which can hide the subtle effects of instruction reordering.

Memory Ordering | 157

Memory Fences
There is one type of memory ordering related instruction we haven’t seen yet: mem‐
ory fences. A memory fence or memory barrier instruction is used to represent a
std::sync::atomic::fence, which we discussed in “Fences” on page 67.

As we’ve seen before, memory ordering on x86-64 and ARM64 is all about instruc‐
tion reordering. A fence instruction prevents certain types of instructions from being
reordered past it.

An acquire fence must prevent preceding load operations from getting reordered
with any memory operations that follow. Similarly, a release fence must prevent
subsequent store operations from getting reordered with any preceding memory
operations. A sequentially consistent fence must prevent all memory operations that
precede it from being reordered with memory operations after the fence.

On x86-64, the basic memory ordering semantics already satisfy the needs of acquire
and release fences. This architecture doesn’t allow the types of reordering that these
fences prevent, regardless.

Let’s dive right in and see what instructions the four different fences compile to on
both x86-64 and ARM64:

Rust source Compiled x86-64 Compiled ARM64

pub fn a() {
 fence(Acquire);
}

a:
 ret

a:
 dmb ishld
 ret

pub fn a() {
 fence(Release);
}

a:
 ret

a:
 dmb ish
 ret

pub fn a() {
 fence(AcqRel);
}

a:
 ret

a:
 dmb ish
 ret

pub fn a() {
 fence(SeqCst);
}

a:
 mfence
 ret

a:
 dmb ish
 ret

Unsurprisingly, release and acquire fences on x86-64 do not result in any instruction.
We get release and acquire semantics “for free” on this architecture. Only a SeqCst
fence results in an mfence (memory fence) instruction. This instruction makes sure
that all memory operations before it have been completed before continuing.

On ARM64, the equivalent instruction is dmb ish (data memory barrier, inner shared
domain). Unlike on x86-64, it is used for Release and AcqRel as well, since this
architecture doesn’t implicitly provide acquire and release semantics. For Acquire,

158 | Chapter 7: Understanding the Processor

a slightly less impactful variant is used: dmb ishld. This variant only waits for load
operations to complete, but freely allows preceding store operations to be reordered
past it.

Similar to what we saw before with the atomic operations, we see that x86-64 gives us
release and acquire fences “for free,” while on ARM64, sequentially consistent fences
come at the same cost as release fences.

Summary
• On x86-64 and ARM64, relaxed load and store operations are identical to their•

non-atomic equivalents.
• The common atomic fetch-and-modify and compare-and-exchange operations•

on x86-64 (and ARM64 since ARMv8.1) have their own instructions.
• On x86-64, an atomic operation for which there is no equivalent instruction•

compiles down to a compare-and-exchange loop.
• On ARM64, any atomic operation can be represented by a load-linked/store-•

conditional loop: a loop that automatically restarts if the attempted memory
operation was disrupted.

• Caches operate on cache lines, which are often 64 bytes in size.•
• Caches are kept consistent with a cache coherence protocol, such as write-•

through or MESI.
• Padding, for example through #[repr(align(64)], can be useful for improving•

performance by preventing false sharing.
• A load operation can be significantly cheaper than a failed compare-and-•

exchange operation, in part because the latter often demands exclusive access
to a cache line.

• Instruction reordering is invisible within a single threaded program.•
• On most architectures, including x86-64 and ARM64, memory ordering is about•

preventing certain types of instruction reordering.
• On x86-64, every memory operation has acquire and release semantics, making it•

exactly as cheap or expensive as a relaxed operation. Everything other than stores
and fences also has sequentially consistent semantics at no extra cost.

• On ARM64, acquire and release semantics are not as cheap as relaxed operations,•
but do include sequentially consistent semantics at no extra cost.

A summary of the assembly instructions we’ve seen in this chapter can be found in
Figure 7-1.

Summary | 159

Figure 7-1. An overview of the instructions that the various atomic operations compile
down to on ARM64 and x86-64 for each memory ordering

160 | Chapter 7: Understanding the Processor

https://marabos.nl/atomics/alt/7-1.html

CHAPTER 8

Operating System Primitives

So far, we’ve mostly focused on non-blocking operations. If we want to implement
something like a mutex or condition variable, something that can wait for another
thread to unlock or notify it, we need a way to efficiently block the current thread.

As we saw in Chapter 4, we can do this ourselves without the help of the operating
system by spinning, repeatedly trying something over and over again, which can easily
waste a lot of processor time. If we want to block efficiently, however, we need the
help of the operating system’s kernel.

The kernel, or more specifically the scheduler part of it, is responsible for deciding
which process or thread gets to run when, for how long, and on which processor
core. While a thread is waiting for something to happen, the kernel can stop giving it
any processor time, prioritizing other threads that can make better use of this scarce
resource.

We’ll need a way to inform the kernel that we’re waiting for something and ask it to
put our thread to sleep until something relevant happens.

Interfacing with the Kernel
The way things are communicated with the kernel depends heavily on the operating
system, and often even its version. Usually, the details of how this works are hidden
behind one or more libraries that handle this for us. For example, using the Rust
standard library, we can just call File::open() to open a file, without having to
know any details about the operating system’s kernel interface. Similarly, using the
C standard library, libc, one can call the standard fopen() function to open a file.
Calling such a function will eventually result in a call into the operating system’s
kernel, also known as a syscall, which is usually done through a specialized processor
instruction. (On some architectures, that instruction is literally called syscall.)

161

Programs are generally expected, sometimes even required, to not make any syscalls
directly, but to make use of higher level libraries that shipped with the operating
system. On Unix systems, such as those based on Linux, libc takes this special role of
providing the standard interface to the kernel.

The “Portable Operating System Interface” standard, more commonly known as the
POSIX standard, includes additional requirements for libc on Unix systems. For
example, next to the fopen() function from the C standard, POSIX additionally
requires the existence of the lower-level open() and openat() functions for opening
files, which often correspond directly with a syscall. Because of the special status of
libc on Unix systems, programs written in languages other than C usually still use
libc for all their interactions with the kernel.

Rust software, including the standard library, often makes use of libc through the
identically named libc crate.

For Linux specifically, the syscall interface is guaranteed to be stable, allowing us to
make syscalls directly, without using libc. While that’s not the most common or
most advised route, it is slowly becoming more popular.

However, on macOS, also a Unix operating system that follows the POSIX standard,
the syscall interface of the kernel is not stable, and we’re not supposed to use it
directly. The only stable interfaces that programs are allowed to use are provided
through the libraries that ship with the system, such as libc, libc++, and various
other libraries for C, C++, Objective-C, and Swift, Apple’s programming languages of
choice.

Windows does not follow the POSIX standard. It does not ship with an extended
libc that serves as the main interface to the kernel, but instead ships with a separate
set of libraries, such as kernel32.dll, that provide Windows-specific functions, such
as CreateFileW for opening files. Just like on macOS, we’re not supposed to make use
of undocumented lower-level functions or make syscalls directly.

Through their libraries, operating systems provide us with synchronization primi‐
tives that need to interact with the kernel, such as mutexes and condition variables.
Which part of their implementation is part of such a library or part of the kernel
varies heavily per operating system. For example, sometimes the mutex lock and
unlock operations correspond directly with a kernel syscall, whereas on other sys‐
tems, the library handles most of the operations and will only perform a syscall when
a thread needs to be blocked or woken up. (The latter tends to be more efficient, as
making a syscall can be slow.)

162 | Chapter 8: Operating System Primitives

POSIX
As part of the POSIX Threads extensions, better known as pthreads, POSIX specifies
data types and functions for concurrency. While technically specified as part of a
separate system library, libpthread, this functionality is nowadays often included in
libc directly.

Next to functionality like spawning and joining threads (pthread_create and
pthread_join), pthread provides the most common synchronization primitives:
mutexes (pthread_mutex_t), reader-writer locks (pthread_rwlock_t), and condition
variables (pthread_cond_t).

pthread_mutex_t

Pthread’s mutex must be initialized by calling pthread_mutex_init() and
destroyed with pthread_mutex_destroy(). The initialization function takes an
argument of type pthread_mutexattr_t that can be used to configure some of
the properties of the mutex.

One of those properties is its behavior on recursive locking, which happens when
the same thread that already holds a lock, attempts to lock it again. This results
in undefined behavior when using the default setting (PTHREAD_MUTEX_DEFAULT),
but it can also be configured to result in an error (PTHREAD_MUTEX_ERRORCH
ECK), in a deadlock (PTHREAD_MUTEX_NORMAL), or in a successful second lock
(PTHREAD_MUTEX_RECURSIVE).

These mutexes are locked through pthread_mutex_lock() or
pthread_mutex_trylock(), and unlocked through pthread_mutex_unlock().
Additionally, unlike Rust’s standard mutex, they also support locking with a time
limit, through pthread_mutex_timedlock().

A pthread_mutex_t can be statically initialized without a call to
pthread_mutex_init() by assigning it the value PTHREAD_MUTEX_INITIALIZER.
However, this is only possible for a mutex with default settings.

pthread_rwlock_t

Pthread’s reader-writer lock is initialized and destroyed through
pthread_rwlock_init() and pthread_rwlock_destroy(). Similar to a
mutex, a default pthread_rwlock_t can also be initialized statically with
PTHREAD_RWLOCK_INITIALIZER.

A pthread reader-writer lock has significantly fewer properties that can be con‐
figured through its initialization function, compared to a pthread mutex. Most
notably, attempting to recursively write-lock it will always result in a deadlock.

POSIX | 163

Attempts to recursively acquire additional read locks, however, are guaranteed to
succeed, even if there are writers waiting. This effectively rules out any efficient
implementation that prioritizes writers over readers, which is why most pthread
implementations prioritize readers.

Its interface is nearly identical to that of pthread_mutex_t, including support for
time limits, except each locking function comes in two variants: one for readers
(pthread_rwlock_rdlock), and one for writers (pthread_rwlock_wrlock). Per‐
haps surprisingly, there is only one unlock function (pthread_rwlock_unlock)
that’s used for unlocking a lock of either kind.

pthread_cond_t

A pthread condition variable is used together with a pthread mutex. It is initial‐
ized and destroyed through pthread_cond_init and pthread_cond_destroy,
and has a few attributes that can be configured. Most notably, we can config‐
ure whether time limits will use a monotonic clock (like Rust’s Instant) or
real-time clock (like Rust’s SystemTime, somtimes called “wall-clock time”). A
condition variable with default settings, such as one statically initialized by
PTHREAD_COND_INITIALIZER, uses the real-time clock.

Waiting for such a condition variable, optionally with a time limit, is done
through pthread_cond_timedwait(). Waking up a waiting thread is done
by calling pthread_cond_signal(), or, to wake all waiting threads at once,
pthread_cond_broadcast().

The remaining synchronization primitives provided by pthread are barriers
(pthread_barrier_t), spin locks (pthread_spinlock_t), and one-time initialization
(pthread_once_t), which we will not discuss.

Wrapping in Rust
It might seem like we could easily expose these pthread synchronization primitives to
Rust by conveniently wrapping their C type (through the libc crate) in a Rust struct,
like this:

pub struct Mutex {
 m: libc::pthread_mutex_t,
}

However, there are a few issues with that, as this pthread type was designed for C, not
for Rust.

First of all, Rust has rules about mutability and borrowing, which normally
don’t allow for mutations to something when shared. Since functions like
pthread_mutex_lock will most likely mutate the mutex, we’ll need interior mutability
to make sure that’s acceptable. So, we’ll have to wrap it in an UnsafeCell:

164 | Chapter 8: Operating System Primitives

pub struct Mutex {
 m: UnsafeCell<libc::pthread_mutex_t>,
}

A much bigger problem is related to moving.

In Rust, we move objects around all the time. For example, by returning an object
from a function, passing it as an argument, or simply assigning it to a new place.
Everything that we own (and that isn’t borrowed by anything else), we can freely
move into a new place.

In C, however, that’s not universally true. It’s quite common for a type in C to depend
on its memory address staying constant. For example, it might contain a pointer that
points into itself, or store a pointer to itself in some global data structure. In that case,
moving it to a new place could result in undefined behavior.

The pthread types we discussed do not guarantee they are movable, which becomes
quite a problem in Rust. Even a simple idiomatic Mutex::new() function is a
problem: it would return a mutex object, which would move it into a new place
in memory.

Since a user could always move around any mutex object they own, we either need to
make them promise they won’t do that, by making the interface unsafe; or we need
to take away their ownership and hide everything behind a wrapper (something that
std::pin::Pin can be used for). Neither of these are good solutions, as they impact
the interface of our mutex type, making it very error-prone and/or inconvenient
to use.

A solution to this problem is to wrap the mutex in a Box. By putting the pthread
mutex in its own allocation, it stays in the same location in memory, even if its owner
is moved around.

pub struct Mutex {
 m: Box<UnsafeCell<libc::pthread_mutex_t>>,
}

This is how std::sync::Mutex was implemented on all Unix plat‐
forms before Rust 1.62.

The downside of this approach is the overhead: every mutex now gets its own
allocation, adding significant overhead to creating, destroying, and using the mutex.
Another downside is that it prevents the new function from being const, which gets
in the way of having a static mutex.

POSIX | 165

Even if pthread_mutex_t was movable, a const fn new could only initialize it with
default settings, which results in undefined behavior when locking recursively. There
is no way to design a safe interface that prevents locking recursively, so this means
we’d need to make the lock function unsafe to make the user promise they won’t
do that.

A problem that remains with our Box approach occurs when dropping a locked
mutex. It might seem that, with the right design, it would not be possible to drop
a Mutex while locked, since it’s impossible to drop it while it’s still borrowed by a
MutexGuard. The MutexGuard would have to be dropped first, unlocking the Mutex.
However, in Rust, it’s safe to forget (or leak) an object, without dropping it. This
means one could write something like this:

fn main() {
 let m = Mutex::new(..);

 let guard = m.lock(); // Lock it ..
 std::mem::forget(guard); // .. but don't unlock it.
}

In the example above, m will be dropped at the end of the scope while it is still locked.
This is fine, according to the Rust compiler, because the guard has been leaked and
can’t be used anymore.

However, pthread specifies that calling pthread_mutex_destroy() on a locked mutex
is not guaranteed to work and might result in undefined behavior. One work-around
is to first attempt to lock (and unlock) the pthread mutex when dropping our
Mutex, and panic (or leak the Box) when it is already locked, but that adds even
more overhead.

These issues don’t just apply to pthread_mutex_t, but to the other types we discussed
as well. Overall, the design of the pthread synchronization primitives is fine for C, but
just not a great fit for Rust.

Linux
On Linux systems, the pthread synchronization primitives are all implemented using
the futex syscall. Its name comes from “fast user-space mutex,” as the original motiva‐
tion for adding this syscall was to allow libraries (like pthread implementations) to
include a fast and efficient mutex implementation. It’s much more flexible than that
though and can be used to build many different synchronization tools.

The futex syscall was added to the Linux kernel in 2003 and has seen several improve‐
ments and extensions since then. Some other operating systems have since also
added similar functionality, most notably Windows 8 in 2012 with the addition of
WaitOnAddress (which we’ll discuss a bit later, in “Windows” on page 175). In 2020,

166 | Chapter 8: Operating System Primitives

the C++ language even added support for basic futex-like operations to its standard
library, with the addition of the atomic_wait and atomic_notify functions.

Futex
On Linux, SYS_futex is a syscall that implements various operations that all operate
on a 32-bit atomic integer. The main two operations are FUTEX_WAIT and FUTEX_WAKE.
The wait operation puts a thread to sleep, and a wake operation on the same atomic
variable wakes the thread up again.

These operations don’t store anything in the atomic integer. Instead, the kernel
remembers which threads are waiting on which memory address to allow a wake
operation to wake up the right threads.

In “Waiting: Parking and Condition Variables” on page 24, we saw how other mech‐
anisms for blocking and waking up threads need a way to make sure that wake
operations don’t get lost in a race. For thread parking, that issue is solved by making
the unpark() operation also apply to future park() operations as well. And for
condition variables, that’s taken care of by the mutex that is used together with the
condition variable.

For the futex wait and wake operations, another mechanism is used. The wait oper‐
ation takes an argument which specifies the value we expect the atomic variable
to have and will refuse to block if it doesn’t match. The wait operation behaves
atomically with respect to the wake operation, meaning that no wake signal can get
lost between the check of the expected value and the moment it actually goes to sleep.

If we make sure that the value of the atomic variable is changed right before a wake
operation, we can be sure that a thread that’s about to start waiting will not go to
sleep, such that potentially missing the futex wake operation no longer matters.

Let’s go over a minimal example to see this in practice.

First, we need to be able to invoke these syscalls. We can use the syscall function
from the libc crate to do so, and wrap each of them in a convenient Rust function,
as follows:

#[cfg(not(target_os = "linux"))]
compile_error!("Linux only. Sorry!");

pub fn wait(a: &AtomicU32, expected: u32) {
 // Refer to the futex (2) man page for the syscall signature.
 unsafe {
 libc::syscall(
 libc::SYS_futex, // The futex syscall.
 a as *const AtomicU32, // The atomic to operate on.
 libc::FUTEX_WAIT, // The futex operation.
 expected, // The expected value.

Linux | 167

 std::ptr::null::<libc::timespec>(), // No timeout.
);
 }
}

pub fn wake_one(a: &AtomicU32) {
 // Refer to the futex (2) man page for the syscall signature.
 unsafe {
 libc::syscall(
 libc::SYS_futex, // The futex syscall.
 a as *const AtomicU32, // The atomic to operate on.
 libc::FUTEX_WAKE, // The futex operation.
 1, // The number of threads to wake up.
);
 }
}

Now, as a usage example, let’s use these to make a thread wait for another. We’ll use
an atomic variable that we initialize at zero, which the main thread will futex-wait on.
A second thread will change the variable to one, and then run a futex wake operation
on it to wake up the main thread.

Just like thread parking and waiting on a condition variable, a futex wait operation
can spuriously wake up, even when nothing happened. Therefore, it is most com‐
monly used in a loop, repeating it if the condition we’re waiting for isn’t met yet.

Let’s take a look at the example below:

fn main() {
 let a = AtomicU32::new(0);

 thread::scope(|s| {
 s.spawn(|| {
 thread::sleep(Duration::from_secs(3));
 a.store(1, Relaxed);
 wake_one(&a);
 });

 println!("Waiting...");
 while a.load(Relaxed) == 0 {
 wait(&a, 0);
 }
 println!("Done!");
 });
}

The spawned thread will set the atomic variable to one after a few seconds.

It then executes a futex wake operation to wake up the main thread, in case it was
sleeping, so it can see that the variable has changed.

168 | Chapter 8: Operating System Primitives

The main thread waits as long as the variable is zero, before continuing to print
its final message.

The futex wait operation is used to put the thread to sleep. Very importantly, this
operation will check whether a is still zero before going to sleep, which is the
reason that the signal from the spawned thread cannot get lost between and

. Either (and therefore) did not happen yet and it goes to sleep, or (and
maybe) already happened, and it immediately continues.

An important observation to make here is that the wait call is avoided entirely if a
was already set to one before the while loop. In a similar fashion, if the main thread
had also stored in the atomic variable whether it started waiting for the signal (by
setting it to a value other than zero or one), the signaling thread could skip the futex
wake operation if the main thread hadn’t started waiting yet. This is what makes
futex-based synchronization primitives so fast: since we manage the state ourselves,
we don’t need to rely on the kernel, except when we actually need to block.

Since Rust 1.48, the standard library’s thread parking functions on
Linux are implemented like this. They use one atomic variable per
thread, with three possible states: zero for the idle and initial state,
one for “unparked but not yet parked,” and minus one for “parked
but not yet unparked.”

In Chapter 9, we’ll implement mutexes, condition variables, and reader-writer locks
using these operations.

Futex Operations
Next to the wait and wake operations, the futex syscall supports several other opera‐
tions. In this section, we’ll briefly discuss every operation supported by this syscall.

The first argument to the futex is always a pointer to the 32-bit atomic variable to
operate on. The second argument is a constant representing the operation, such as
FUTEX_WAIT, to which up to two flags can be added: FUTEX_PRIVATE_FLAG and/or
FUTEX_CLOCK_REALTIME, which we will discuss below. The remaining arguments
depend on the operation and are described for each of the operations below.

FUTEX_WAIT

This operation takes two additional arguments: the value the atomic variable is
expected to have and a pointer to a timespec representing the maximum time
to wait.

If the value of the atomic variable matches the expected value, the wait operation
blocks until woken up by one of the wake operations, or until the duration

Linux | 169

specified by the timespec has passed. If the pointer to the timespec is null, there
is no time limit. Additionally, the wait operation might spuriously wake up and
return without a corresponding wake operation, before the time limit is reached.

The check and blocking operation happens as a single atomic operation with
respect to other futex operations, meaning that no wake signals can get lost
between them.

The duration specified by the timespec represents a duration on the monotonic
clock (like Rust’s Instant) by default. By adding the FUTEX_CLOCK_REALTIME flag,
the real-time clock (like Rust’s SystemTime) is used instead.

The return value indicates whether the expected value matched and whether the
timeout was reached or not.

FUTEX_WAKE

This operation takes one additional argument: the number of threads to wake up,
as an i32.

This wakes up as many threads as specified that are blocked in a wait operation
on the same atomic variable. (Or fewer if there are not that many waiting
threads.) Most commonly, this argument is either one to wake up just one thread,
or i32::MAX to wake up all threads.

The number of awoken threads is returned.

FUTEX_WAIT_BITSET

This operation takes four additional arguments: the value the atomic variable is
expected to have, a pointer to a timespec representing the maximum time to
wait, a pointer that’s ignored, and a 32-bit “bitset” (a u32).

This operation behaves the same as FUTEX_WAIT, with two differences.

The first difference is that it takes a bitset argument that can be used to wait
for only specific wake operations, rather than all wake operations on the same
atomic variable. A FUTEX_WAKE operation is never ignored, but a signal from a
FUTEX_WAKE_BITSET operation is ignored if the wait bitset and the wake bitset do
not have any 1-bit in common.

For example, a FUTEX_WAKE_BITSET operation with a bitset of 0b0101 will wake
up a FUTEX_WAIT_BITSET operation with a bitset of 0b1100, but not one with a
bitset of 0b0010.

This might be useful when implementing something like a reader-writer lock, to
wake up a writer without waking up any readers. However, note that using two
separate atomic variables can be more efficient than using a single one for two

170 | Chapter 8: Operating System Primitives

different kinds of waiters, since the kernel will keep a single list of waiters per
atomic variable.

The other difference with FUTEX_WAIT is that the timespec is used as an absolute
timestamp, rather than a duration. Because of this, FUTEX_WAIT_BITSET is often
used with a bitset of u32::MAX (all bits set), effectively turning it into a regular
FUTEX_WAIT operation, but with an absolute timestamp for the time limit.

FUTEX_WAKE_BITSET

This operation takes four additional arguments: the number of threads to wake
up, two pointers that are ignored, and a 32-bit “bitset” (a u32).

This operation is identical to FUTEX_WAKE, except it does not wake up
FUTEX_WAIT_BITSET operations with a bitset that does not overlap. (See
FUTEX_WAIT_BITSET above.)

With a bitset of u32::MAX (all bits set), this is identical to FUTEX_WAKE.

FUTEX_REQUEUE

This operation takes three additional arguments: the number of threads to wake
up (an i32), the number of threads to requeue (an i32), and the address of a
secondary atomic variable.

This operation wakes up a given number of waiting threads, and then requeues
a given number of remaining waiting threads to instead wait on another atomic
variable.

Waiting threads that are requeued continue to wait, but are no longer affected by
wake operations on the primary atomic variable. Instead, they are now woken up
by wake operations on the secondary atomic variable.

This can be useful for implementing something like the “notify all” operation of a
condition variable. Instead of waking up all threads, which will subsequently try
to lock a mutex, most likely making all but one thread wait for that mutex right
afterwards, we could only wake up a single thread and requeue all the others to
directly wait for the mutex without waking them up first.

Just like with the FUTEX_WAKE operation, the value of i32::MAX can be used to
requeue all waiting threads. (Specifying a value of i32::MAX for the number
of threads to wake up is not very useful, since that will make this operation
equivalent to FUTEX_WAKE.)

The number of awoken threads is returned.

Linux | 171

FUTEX_CMP_REQUEUE

This operation takes four additional arguments: the number of threads to wake
up (an i32), the number of threads to requeue (an i32), the address of a
secondary atomic variable, and the value the primary atomic variable is expected
to have.

This operation is nearly identical to FUTEX_REQUEUE, except it refuses to operate if
the value of the primary atomic variable does not match the expected value. The
check of the value and the requeueing operation happens atomically with respect
to other futex operations.

Unlike FUTEX_REQUEUE, this returns the sum of the number of awoken and
requeued threads.

FUTEX_WAKE_OP

This operation takes four additional arguments: the number of threads to wake
up on the primary atomic variable (an i32), the number of threads to potentially
wake up on the second atomic variable (an i32), the address of a secondary
atomic variable, and a 32-bit value encoding both an operation and a comparison
to be made.

This is a very specialized operation that modifies the secondary atomic variable,
wakes a number of threads waiting on the primary atomic variable, checks if the
previous value of the atomic variable matches a given condition, and if so, also
wakes a number of threads on a secondary atomic variable.

In other words, it is identical to the following code, except the entire operation
behaves atomically with respect to other futex operations:

let old = atomic2.fetch_update(Relaxed, Relaxed, some_operation);
wake(atomic1, N);
if some_condition(old) {
 wake(atomic2, M);
}

The modifying operation to perform and the condition to check are both speci‐
fied by the last argument to the syscall, encoded in its 32 bits. The operation can
be one of the following: assignment, addition, binary or, binary and-not, and
binary xor, with either a 12-bit argument or a 32-bit argument that’s a power of
two. The comparison can be chosen from ==, !=, <, <=, >, and >=, with a 12-bit
argument.

See the futex(2) Linux man page for details on the encoding of this argument,
or use the linux-futex crate on crates.io, which includes a convenient way to
construct this argument.

172 | Chapter 8: Operating System Primitives

This operation returns the total number of awoken threads.

At first glance this may seem like a flexible operation with many use cases.
However, it was designed for just one specific use case in GNU libc where two
threads had to be woken up from two separate atomic variables. That specific
case has been replaced by a different implementation that no longer makes use of
FUTEX_WAKE_OP.

The FUTEX_PRIVATE_FLAG can be added to any of these operations to enable a possible
optimization if all relevant futex operations on the same atomic variable(s) come
from threads of the same process, which is usually the case. To make use of it,
every relevant futex operation must include this same flag. By allowing the kernel to
assume there will be no interactions with other processes, it can skip some otherwise
potentially expensive steps in performing futex operations, improving performance.

In addition to Linux, NetBSD also supports all the futex operations described above.
OpenBSD also has a futex syscall, but only supports the FUTEX_WAIT, FUTEX_WAKE, and
FUTEX_REQUEUE operations. FreeBSD does not have a native futex syscall, but does
include a syscall called _umtx_op, which includes functionality nearly identical to
FUTEX_WAIT and FUTEX_WAKE: UMTX_OP_WAIT (for 64-bit atomics), UMTX_OP_WAIT_UINT
(for 32-bit atomics), and UMTX_OP_WAKE. Windows also includes functions that behave
very similarly to the futex wait and wake operations, which we will discuss later in
this chapter.

New Futex Operations
As of Linux 5.16, released in 2022, there is an additional futex syscall: futex_waitv.
This new syscall allows waiting for more than one futex at once, by providing it a
list of atomic variables (and their expected values) to wait on. A thread blocked on
futex_waitv can be woken up by a wake operation on any of the specified variables.

This new syscall also leaves space for future extensions. For example, it’s possible to
specify the size of the atomic variable to wait on. While the initial implementation
only supports 32-bit atomics, just like the original futex syscall, this might be exten‐
ded in the future to include 8-bit, 16-bit, and 64-bit atomics.

Priority Inheritance Futex Operations
Priority inversion is a problem that occurs when a high priority thread is blocked
on a lock held by a low priority thread. The high priority thread effectively has its
priority “inverted,” since it now has to wait for the low priority thread to release the
lock before it can make progress.

Linux | 173

A solution to this problem is priority inheritance, in which the blocking thread
inherits the priority of the highest priority thread that is waiting for it, temporarily
increasing the priority of the low priority thread while it holds the lock.

In addition to the seven futex operations we discussed before, there are six priority
inheriting futex operations specifically designed for implementing priority inheriting
locks.

The general futex operations we discussed before do not have any requirements for
the exact contents of the atomic variable. We got to choose ourselves what the 32 bits
represent. However, for a priority inheriting mutex, the kernel needs to be able to
understand whether the mutex is locked, and if so, which thread has locked it.

To avoid having to make a syscall on every state change, the priority inheritance futex
operations specify the exact contents of the 32-bit atomic variable, so the kernel can
understand it: the highest bit represents whether there are any threads waiting to lock
the mutex, and the lowest 30 bits contain the thread ID (the Linux tid, not the Rust
ThreadId) of the thread that holds the lock, or zero when unlocked.

As an extra feature, the kernel will set the second highest bit if the thread that holds
the lock terminates without unlocking it, but only if there are any waiters. This allows
for the mutex to be robust: a term used to describe a mutex that can gracefully handle
a situation where its “owning” thread unexpectedly terminates.

The priority inheriting futex operations have a one to one correspondence to
the standard mutex operations: FUTEX_LOCK_PI for locking, FUTEX_UNLOCK_PI for
unlocking, and FUTEX_TRYLOCK_PI for locking without blocking. Additionally, the
FUTEX_CMP_REQUEUE_PI and FUTEX_WAIT_REQUEUE_PI operations can be used to
implement a condition variable that pairs with a priority inheriting mutex.

We’ll not discuss these operations in detail. See the futex(2) Linux man page or the
linux-futex crate on crates.io for their details.

macOS
The kernel that’s part of macOS supports various useful low-level concurrency related
syscalls. However, just like most operating systems, the kernel interface is not consid‐
ered stable, and we’re not supposed to use it directly.

The only way software should interact with the macOS kernel is through the libraries
that ship with the system. These libraries include its standard library implementa‐
tions for C (libc), C++ (libc++), Objective-C, and Swift.

As a POSIX-compliant Unix system, the macOS C library includes a full pthread
implementation. The standard locks in other languages tend to use pthread’s primi‐
tives under the hood.

174 | Chapter 8: Operating System Primitives

Pthread’s locks tend to be relatively slow on macOS compared to the equivalent on
other operating systems. One of the reasons is that the locks on macOS behave as
fair locks by default. This means that when several threads attempt to lock the same
mutex, they are served in order of arrival, like a perfect queue. While fairness can be
a desirable property, it can significantly reduce performance, especially under high
contention.

os_unfair_lock
Next to the pthread primitives, macOS 10.12 introduced a new lightweight platform-
specific mutex, which is not fair: os_unfair_lock. It is just 32 bits in size, initialized
statically with the OS_UNFAIR_LOCK_INIT constant, and does not require destruction.
It can be locked through os_unfair_lock_lock() (blocking) or os_unfair_lock_try
lock() (non-blocking), and is unlocked through os_unfair_lock_unlock().

Unfortunately, it does not come with a condition variable, nor does it have a reader-
writer variant.

Windows
The Windows operating system ships with a set of libraries that together form the
Windows API, often called the “Win32 API” (even on 64-bit systems). This forms a
layer on top of the “Native API”: the largely undocumented interface with the kernel,
which we’re not supposed to use directly.

The Windows API is made available to Rust programs through Microsoft’s official
windows and windows-sys crates, which are available on crates.io.

Heavyweight Kernel Objects
Many of the older synchronization primitives available on Windows are managed
fully by the kernel, making them quite heavyweight, and giving them similar proper‐
ties as other kernel-managed objects, such as files. They can be used by multiple pro‐
cesses, they can be named and located by their name, and they support fine-grained
permissions, similar to files. For example, it’s possible to allow a process to wait on
some object, without allowing it to send signals through it to wake others.

These heavyweight kernel-managed synchronization objects include Mutex (which
can be locked and unlocked), Event (which can be signalled and waited for), and
WaitableTimer (which can be automatically signalled after a chosen time, or periodi‐
cally). Creating such an object results in a HANDLE, just like opening a file, that can be
easily passed around and used with the regular HANDLE functions; most notably the
family of wait functions. These functions allow us to wait for one or more objects

Windows | 175

of various types, including the heavyweight synchronization primitives, processes,
threads, and various forms of I/O.

Lighter-Weight Objects
A lighter-weight synchronization primitive included in the Windows API is the
“critical section.”

The term critical section refers to a part of a program, a “section” of code, that may
not be entered concurrently by more than one thread. The mechanism for protecting
a critical section is often called a mutex. In this case, however, Microsoft used the
name “critical section” for the mechanism, quite possibly because the name “mutex”
was already taken by the heavyweight Mutex object discussed above.

A Windows CRITICAL_SECTION is effectively a recursive mutex, except it uses the
terms “enter” and “leave” rather than “lock” and “unlock.” As a recursive mutex, it
is designed to only protect against other threads. It allows the same thread to lock
(or “enter”) it more than once, requiring it to also unlock (leave) it the same number
of times.

This is something to keep in mind when wrapping this type in Rust. Successfully
locking (entering) a CRITICAL_SECTION shouldn’t result in an exclusive reference
(&mut T) to data protected by it. Otherwise, a thread could use this to create
two exclusive references to the same data, which immediately results in undefined
behavior.

A CRITICAL_SECTION is initialized using the InitializeCriticalSection() func‐
tion, destroyed with DeleteCriticalSection(), and may not be moved. It is locked
through EnterCriticalSection() or TryEnterCriticalSection(), and unlocked
with LeaveCriticalSection().

Until Rust 1.51, std::sync::Mutex on Windows XP was based
on a (Box-allocated) CRITICAL_SECTION object. (Rust 1.51 dropped
support for Windows XP.)

Slim reader-writer locks
As of Windows Vista (and Windows Server 2008), the Windows API includes a much
nicer locking primitive that’s very lightweight: the slim reader-writer lock, or SRW lock
for short.

176 | Chapter 8: Operating System Primitives

The SRWLOCK type is just one pointer in size, can be statically initialized with
SRWLOCK_INIT, and does not require destruction. While not in use (borrowed), we’re
even allowed to move it, making it an excellent candidate for being wrapped in a
Rust type.

It provides exclusive (writer) locking and unlocking through AcquireSRWLockEx
clusive(), TryAcquireSRWLockExclusive(), and ReleaseSRWLockExclusive(), and
provides shared (reader) locking and unlocking through AcquireSRWLockShared(),
TryAcquireSRWLockShared(), and ReleaseSRWLockShared(). It is often used as a
regular mutex, simply by ignoring the shared (reader) locking functions.

An SRW lock prioritizes neither writers nor readers. While not guaranteed, it
attempts to serve all lock requests in order, as far as possible without reducing
performance. One must not attempt to acquire a second shared (reader) lock on a
thread that already holds one. Doing so could lead to a permanent deadlock if the
operation gets queued behind an exclusive (writer) lock operation of another thread,
which would be blocked because of the first shared (reader) lock that the first thread
already holds.

The SRW lock was introduced to the Windows API together with the condition
variable. Similar to an SRW lock, a CONDITION_VARIABLE is just one pointer in size,
can be initialized statically with CONDITION_VARIABLE_INIT, and does not require
destruction. We’re also allowed to move it, as long as it isn’t in use (borrowed).

This condition variable can not only be used together with an SRW lock, through
SleepConditionVariableSRW, but also with a critical section, through SleepCondi
tionVariableCS.

Waking up waiting threads is done either through WakeConditionVariable to wake a
single thread, or WakeAllConditionVariable to wake all waiting threads.

Originally, Windows SRW locks and condition variables used in
the standard library were wrapped in a Box to avoid moving
the objects. Microsoft didn’t document the movability guarantees
until we requested that in 2020. Since then, as of Rust 1.49,
std::sync::Mutex, std::sync::RwLock, and std::sync::Condvar
on Windows Vista and later directly wrap an SRWLOCK or CONDI
TION_VARIABLE, without any allocations.

Address-Based Waiting
Windows 8 (and Windows Server 2012) introduced a new, more flexible, type of
synchronization functionality that is very similar to the Linux FUTEX_WAIT and
FUTEX_WAKE operations we discussed earlier in this chapter.

Windows | 177

The WaitOnAddress function can operate on an 8-bit, 16-bit, 32-bit, or 64-bit atomic
variable. It takes four arguments: the address of the atomic variable, the address of a
variable that holds the expected value, the size of the atomic variable (in bytes), and
the maximum number of milliseconds to wait before giving up (or u32::MAX for an
infinite timeout).

Just like the FUTEX_WAIT operation, it compares the value of the atomic variable with
the expected value, and goes to sleep if they match, waiting for a corresponding wake
operation. The check and sleep operation happens atomically with respect to wake
operations, meaning no wake signal can get lost in between.

Waking a thread that’s waiting on WaitOnAddress is done through either WakeByAd
dressSingle to wake a single thread, or WakeByAddressAll to wake all waiting
threads. These two functions take just a single argument: the address of the atomic
variable, which was also passed to WaitOnAddress.

Some, but not all, of the synchronization primitives of the Windows API are imple‐
mented using these functions. More importantly, they are a great building block for
building our own primitives, which we will do in Chapter 9.

178 | Chapter 8: Operating System Primitives

Summary
• A syscall is a call into the operating system’s kernel and is relatively slow com‐•

pared to a regular function call.
• Usually, programs don’t make syscalls directly, but instead go through the operat‐•

ing system’s libraries (e.g., libc) to interface with the kernel. On many operating
systems, this is the only supported way of interfacing with the kernel.

• The libc crate gives Rust code access to libc.•
• On POSIX systems, libc includes more than what’s required by the C standard•

to comply with the POSIX standard.
• The POSIX standard includes pthreads, a library with concurrency primitives•

such as pthread_mutex_t.
• Pthread types are designed for C, not for Rust. For example, they are not mova‐•

ble, which can be a problem.
• Linux has a futex syscall supporting several waiting and waking operations on an•
AtomicU32. The wait operation verifies the expected value of the atomic, which is
used to avoid missing notifications.

• In addition to pthread, macOS also provides os_unfair_lock as a lightweight•
locking primitive.

• Windows heavyweight concurrency primitives always require interacting with•
the kernel, but can be passed between processes and used with the standard
Windows waiting functions.

• Windows lightweight concurrency primitives include a “slim” reader-writer lock•
(SRW lock) and a condition variable. These are easily wrapped in Rust, as they
are movable.

• Windows also provides basic futex-like functionality, through WaitOnAddress•
and WakeByAddress.

Summary | 179

CHAPTER 9

Building Our Own Locks

In this chapter, we’ll build our own mutex, condition variable, and reader-writer lock.
For each of them, we’ll start with a very basic version, and then extend it to make it
more efficient.

Since we’re not going to use the lock types from the standard libary (which would
be cheating), we’re going to have to use the tools from Chapter 8 to be able to make
threads wait without busy-looping. However, as we saw in that chapter, the available
tools the operating system provides vary a lot per platform, making it hard to build
something that works cross-platform.

Fortunately, most modern operating systems support futex-like functionality, or at
least the wake and wait operations. As we saw in Chapter 8, Linux has supported
them since 2003 with the futex syscall, Windows since 2012 with the WaitOnAddress
family of functions, FreeBSD since 2016 as part of the _umtx_op syscall, and so on.

The most notable exception is macOS. While its kernel does support these opera‐
tions, it is not exposed through any stable, publicly usable, C function that we can
use. However, macOS does ship with a recent version of libc++, an implementation
of the C++ standard library. This library includes support for C++20, which is the
version of C++ that comes with built-in support for very basic atomic wait and wake
operations (like std::atomic<T>::wait()). While it’s somewhat tricky to make use
of that from Rust for a variety of reasons, it is certainly possible, giving us access to
basic futex-like wait and wake functionality on macOS as well.

181

We’ll not dive into the dirty details, but instead make use of the atomic-wait crate
from crates.io to provide us with the building blocks for our locking primitives.
This crate provides just three functions: wait(), wake_one(), and wake_all(). It
implements these for all the major platforms, using the various platform-specific
implementations we’ve discussed above. This means we no longer have to think about
any platform-specific details, as long as we stick to these three functions.

These functions behave like the identically named ones we implemented in “Futex”
on page 167 for Linux, but let’s quickly recall how they work:

wait(&AtomicU32, u32)

This function is used to wait until the atomic variable no longer contains the
given value. It blocks if the value stored in the atomic variable is equal to the
given value. When another thread modifies the value of the atomic variable,
that thread needs to call one of the wake functions below, on the same atomic
variable, to wake up the waiting thread from its sleep.

This function might return spuriously, without a corresponding wake operation.
So make sure to check the value of the atomic variable after it returns, and repeat
the wait() call if necessary.

wake_one(&AtomicU32)

This wakes up a single thread that’s currently blocked on wait() on the same
atomic variable. Use this right after modifying the atomic variable, to inform one
waiting thread of the change.

wake_all(&AtomicU32)

This wakes up all threads that are currently blocked on wait() on the same
atomic variable. Use this right after modifying the atomic variable, to inform the
waiting threads of the change.

Only 32-bit atomics are supported, because that’s the only size that’s supported on all
major platforms.

In “Futex” on page 167, we discussed a very minimal example that
shows how these functions are used in practice. If you’ve forgotten,
make sure you check out that example before continuing.

To use the atomic-wait crate, add atomic-wait = "1" to the [dependencies]
section in your Cargo.toml; or run cargo add atomic-wait@1, which will do that for
you. The three functions are defined in the root of the crate and can be imported with
use atomic_wait::{wait, wake_one, wake_all};.

182 | Chapter 9: Building Our Own Locks

There might be later versions of this crate available by the time
you’re reading this, but only major version 1 is made for this
chapter. Later versions might not have a compatible interface.

Now that we have our basic building blocks ready, let’s get started.

Mutex
We’ll take our SpinLock<T> type from Chapter 4 as our reference while building our
Mutex<T>. The parts not involved in blocking, such as the design of the guard type,
will remain unchanged.

Let’s start with the type definition. We’ll have to make one change compared to the
spin lock: instead of an AtomicBool set to false or true, we’ll use an AtomicU32 set to
zero or one, so we can use it with the atomic wait and wake functions.

pub struct Mutex<T> {
 /// 0: unlocked
 /// 1: locked
 state: AtomicU32,
 value: UnsafeCell<T>,
}

Just like for the spin lock, we need to promise that a Mutex<T> can be shared between
threads, even though it contains a scary UnsafeCell:

unsafe impl<T> Sync for Mutex<T> where T: Send {}

We’ll also add a MutexGuard type that implements the Deref traits to provide a fully
safe locking interface, like we did in “A Safe Interface Using a Lock Guard” on page
80:

pub struct MutexGuard<'a, T> {
 mutex: &'a Mutex<T>,
}

impl<T> Deref for MutexGuard<'_, T> {
 type Target = T;
 fn deref(&self) -> &T {
 unsafe { &*self.mutex.value.get() }
 }
}

impl<T> DerefMut for MutexGuard<'_, T> {
 fn deref_mut(&mut self) -> &mut T {
 unsafe { &mut *self.mutex.value.get() }
 }
}

Mutex | 183

For the design and operation of a lock guard type, see “A Safe
Interface Using a Lock Guard” on page 80.

Let’s also get the Mutex::new function out of the way before we move on to the
interesting part.

impl<T> Mutex<T> {
 pub const fn new(value: T) -> Self {
 Self {
 state: AtomicU32::new(0), // unlocked state
 value: UnsafeCell::new(value),
 }
 }

 …
}

Now that we have all that out of the way, there are two remaining pieces left: locking
(Mutex::lock()) and unlocking (Drop for MutexGuard<T>).

The lock function we implemented for our spin lock uses an atomic swap operation
to attempt to obtain the lock, returning if it succesfully changed the state from
“unlocked” to “locked.” If unsuccesful, it immediately tries again.

To lock our mutex we’ll do almost the same, except we use wait() to wait before
trying again:

 pub fn lock(&self) -> MutexGuard<T> {
 // Set the state to 1: locked.
 while self.state.swap(1, Acquire) == 1 {
 // If it was already locked..
 // .. wait, unless the state is no longer 1.
 wait(&self.state, 1);
 }
 MutexGuard { mutex: self }
 }

For the memory ordering, the same reasoning applies as with our
spin lock. Refer back to Chapter 4 for the details.

184 | Chapter 9: Building Our Own Locks

Note how the wait() function will only block if the state is still set to 1 (locked) at
the time we call it, such that we don’t have to worry about the possibility of missing a
wake-up call between the swap and the wait calls.

The Drop implementation of the guard type is responsible for unlocking the mutex.
Unlocking our spin lock was easy: just set the state back to false (unlocked). For
our mutex, however, that won’t suffice. If there’s a thread waiting to lock the mutex,
it won’t know that the mutex has been unlocked unless we notify it using a wake
operation. If we don’t wake it up, it will most likely stay asleep forever. (Maybe it is
lucky and is spuriously woken up at the right time, but let’s not count on that.)

So, we’ll not only set the state back to 0 (unlocked), but also call wake_one() right
afterwards:

impl<T> Drop for MutexGuard<'_, T> {
 fn drop(&mut self) {
 // Set the state back to 0: unlocked.
 self.mutex.state.store(0, Release);
 // Wake up one of the waiting threads, if any.
 wake_one(&self.mutex.state);
 }
}

Waking one thread is enough, because even if there are multiple threads waiting, only
one of them will be able to claim the lock. The next thread to lock it will wake up
another thread when it’s done with the lock, and so on. Waking up more than one
thread at once will just set those threads up for disappointment, wasting valuable
processor time when all but one of them realize their chance at locking has been
snatched away by another lucky thread, before they go back to sleep again.

Note that there is no guarantee that the one thread that we wake up will be able to
grab the lock. Another thread might still grab the lock right before it gets the chance.

An important observation to make here is how this mutex implementation would
still be technically correct (that is, memory safe) without the wait and wake func‐
tions. Because the wait() operation can spuriously wake up, we can’t make any
assumptions about when it returns. We still have to manage the state of our locking
primitives ourselves. If we were to remove the wait and wake function calls, our
mutex would be basically identical to our spin lock.

In general, the atomic wait and wake functions never play a factor in correctness,
from a memory safety perspective. They are only a (very serious) optimization to
avoid busy-looping. This doesn’t mean that an unusably inefficient lock would be
considered “correct” by any practical standards, but this insight can be helpful when
trying to reason about unsafe Rust code.

Mutex | 185

Lock API
If you’re planning to take on implementing Rust locks as a new hobby, you might
quickly get bored with the boilerplate code involved in providing a safe interface.
That is, the UnsafeCell, the Sync implementation, the guard type, the Deref imple‐
mentations, and so on.

The lock_api crate on crates.io can be used to automatically take care of all these
things. You’ll only have to make a type that represents the lock state, and provide
(unsafe) lock and unlock functions through the (unsafe) lock_api::RawMutex trait.
In return, the lock_api::Mutex type will provide you with a fully safe and ergonomic
mutex type, including a mutex guard, based on your lock implementation.

Avoiding Syscalls
By far the slowest part of our mutex are the wait and wake, since those (can) result in
a syscall, a call into the operating system’s kernel. Talking with the kernel like that is
quite an involved process that tends to be quite slow, especially compared to atomic
operations. So, for a performant mutex implementation, we should try to avoid wait
and wake calls as much as possible.

Luckily, we’re already halfway there. Because the while loop in our locking function
checks the state before the wait() call, the wait operation is skipped entirely in
the situation where we don’t need to wait, when the mutex wasn’t locked. We do,
however, unconditionally call the wake_one() function when unlocking.

We can skip the wake_one() if we know there are no other threads waiting. To
know whether there are waiting threads, we need to keep track of this information
ourselves.

We can do this by splitting the “locked” state into two separate states: “locked without
waiters” and “locked with waiter(s).” We’ll use the values 1 and 2 for that, and update
our documentation comment of the state field in the struct definition:

pub struct Mutex<T> {
 /// 0: unlocked
 /// 1: locked, no other threads waiting
 /// 2: locked, other threads waiting
 state: AtomicU32,
 value: UnsafeCell<T>,
}

Now, for an unlocked mutex, our lock function still needs to set the state to 1 to lock
it. However, if it was already locked, our lock function now needs to set the state to 2
before going to sleep, so that the unlock function can tell there’s a waiting thread.

186 | Chapter 9: Building Our Own Locks

To do this, we’ll first use a compare-and-exchange function to attempt to change the
state from 0 to 1. If that succeeds, we’ve locked the mutex, and we know there are no
other waiters, since the mutex wasn’t locked before. If it fails, that must be because
the mutex is currently locked (in state 1 or 2). In that case, we’ll use an atomic swap
operation to set it to 2. If that swap operation returns an old value of 1 or 2, that
means the mutex was indeed still locked, and only then do we use wait() to block
until it changes. If the swap operation returns 0, that means we’ve succesfully locked
the mutex by changing its state from 0 to 2.

 pub fn lock(&self) -> MutexGuard<T> {
 if self.state.compare_exchange(0, 1, Acquire, Relaxed).is_err() {
 while self.state.swap(2, Acquire) != 0 {
 wait(&self.state, 2);
 }
 }
 MutexGuard { mutex: self }
 }

Now, our unlock function can make use of the new information by skipping the
wake_one() call when it’s unnecessary. Instead of just storing a 0 to unlock the mutex,
we’ll now use a swap operation so we can check out its previous value. Only if that
value was 2, will we continue to wake up a thread:

impl<T> Drop for MutexGuard<'_, T> {
 fn drop(&mut self) {
 if self.mutex.state.swap(0, Release) == 2 {
 wake_one(&self.mutex.state);
 }
 }
}

Note that after setting the state back to zero, it no longer indicates whether there are
any waiting threads. The thread that’s woken up is responsible for setting the state
back to 2, to make sure any other waiting threads are not forgotten. This is why the
compare-and-exchange operation is not part of the while loop in our lock function.

This does mean that for every time a thread had to wait() while locking, it will also
call wake_one() when unlocking, even when that’s not necessary. However, what’s
most important is that in the uncontended case, the ideal situation where threads are
not attempting to acquire the lock simultaneously, both the wait() and wake_one()
calls are entirely avoided.

Figure 9-1 visualizes the operations and happens-before relationships in a situation
where two threads concurrently attempt to lock our Mutex. The first thread locks the
mutex by changing the state from 0 to 1. At that point, the second thread will not be
able to acquire the lock and therefore goes to sleep after changing the state from 1 to
2. When the first thread unlocks the Mutex, it swaps the state back to 0. Because it was
2, indicating a waiting thread, it calls wake_one() to wake up the second thread. Note

Mutex | 187

how we do not depend on any happens-before relationship between the wake and
wait operations. While it’s likely that the wake operation is the one responsible for
waking up the waiting thread, the happens-before relationship is established through
the acquire swap operation observing the value stored by the release swap operation.

Figure 9-1. The happens-before relationships between two threads concurrently
attempting to lock our Mutex

Optimizing Further
At this point, it might seem like there’s not much else we could optimize further. In
the uncontended case, we perform zero syscalls, and all that’s left are just two very
simple atomic operations.

188 | Chapter 9: Building Our Own Locks

https://marabos.nl/atomics/alt/9-1.html

The only way to avoid the wait and wake operations is to go back to our spin lock
implementation. While spinning is usually very inefficient, it at least does avoid
the potential overhead of a syscall. The only situation where spinning can be more
efficient is when waiting for only a very short time.

For locking a mutex, that happens only in situations where the thread that currently
holds the lock is running in parallel on a different processor core and will keep the
lock only very briefly. This is, however, a very common case.

We can try to combine the best of both approaches by spinning for a very short
amount of time before resorting to calling wait(). That way, if the lock is released
very quickly, we don’t need to call wait() at all, but we still avoid consuming an
unreasonable amount of processor time that other threads could make better use of.

Implementing this only requires changes to our lock function.

To keep things as performant as possible in the uncontended case, we’ll keep the
original compare-and-exchange operation at the start of the lock function. We’ll leave
spinning waiting to a separate function.

impl<T> Mutex<T> {
 …

 pub fn lock(&self) -> MutexGuard<T> {
 if self.state.compare_exchange(0, 1, Acquire, Relaxed).is_err() {
 // The lock was already locked. :(
 lock_contended(&self.state);
 }
 MutexGuard { mutex: self }
 }
}

fn lock_contended(state: &AtomicU32) {
 …
}

In lock_contended, we could simply repeat the same compare-and-exchange opera‐
tion a few hundred times before continuing to the wait loop. However, a compare-
and-exchange operation generally attempts to get exclusive access to the relevant
cache line (see “The MESI protocol” on page 143), which can be more expensive than
a simple load operation when executed repeatedly.

With that in mind, we come to the following lock_contended implementation:

fn lock_contended(state: &AtomicU32) {
 let mut spin_count = 0;

 while state.load(Relaxed) == 1 && spin_count < 100 {
 spin_count += 1;
 std::hint::spin_loop();

Mutex | 189

 }

 if state.compare_exchange(0, 1, Acquire, Relaxed).is_ok() {
 return;
 }

 while state.swap(2, Acquire) != 0 {
 wait(state, 2);
 }
}

First, we spin up to 100 times, making use of a spin loop hint like we did in Chapter 4.
We only spin as long as the mutex is locked and has no waiters. If another thread is
already waiting, it means it gave up spinning because it took too long, which can be
an indication that spinning will likely not be very useful for this thread either.

The spin duration of a hundred cycles is chosen mostly arbitrarily.
The time an iteration takes and the duration of a syscall (which
we’re trying to avoid) depend heavily on the platform. Extensive
benchmarking can help with choosing the right number, but
unfortunately there’s not a single correct answer.
The Linux implementation of std::sync::Mutex in the Rust stan‐
dard library, at least the one in Rust 1.66.0, uses a spin count of 100.

After the lock state has changed, we try once more to lock it by setting it to 1, before
we give up and start waiting. As we discussed before, after we call wait() we can no
longer lock the mutex by setting its state to 1, since that might result in other waiters
being forgotten.

Cold and Inline Attributes
You could add the #[cold] attribute to the lock_contended function definition to
help the compiler understand that this function is not called in the common (uncon‐
tended) case, which can help with optimizations for the lock method.

Additionally, you could add the #[inline] attribute to the Mutex and MutexGuard
methods to inform the compiler that it might be a good idea to inline them: to put
the resulting instructions directly at the place where the method is called. Whether
that increases performance is hard to say in general, but for very small functions like
these, it usually does.

190 | Chapter 9: Building Our Own Locks

Benchmarking
Testing the performance of a mutex implementation is hard. It’s easy to write a
benchmark test and get some numbers, but it’s very hard to get any meaningful
numbers.

Optimizing a mutex implementation to perform very well in a specific benchmark
test is relatively easy, but not very useful. After all, the point is to make something
that performs well in real-world programs, not just in test programs.

We’ll attempt to write two simple benchmark tests showing that our optimizations
at least had some positive effect on some use cases, but keep in mind that any
conclusions won’t necessarily hold up in different scenarios.

For our first test, we’ll create a Mutex and lock and unlock it a few million times,
all on the same thread, measuring the total time it takes. This is a test for the trivial
uncontended scenario, where there are never any threads that need to be woken up.
Hopefully, this will show us a significant difference between our 2-state and 3-state
versions.

fn main() {
 let m = Mutex::new(0);
 std::hint::black_box(&m);
 let start = Instant::now();
 for _ in 0..5_000_000 {
 *m.lock() += 1;
 }
 let duration = start.elapsed();
 println!("locked {} times in {:?}", *m.lock(), duration);
}

We use std::hint::black_box (like we did in “Impact on Perfor‐
mance” on page 144) to force the compiler to assume there might
be more code that accesses the mutex, preventing it from optimiz‐
ing away the loop or locking operations.

Results will vary heavily depending on hardware and operating system. Trying this on
one particular Linux computer with a recent AMD processor results in a total time of
about 400 milliseconds for our unoptimized 2-state mutex, and about 40 milliseconds
for our more optimized 3-state mutex. A factor ten improvement! On another Linux
computer with an older Intel processor, the difference is even bigger: about 1800
milliseconds versus 60 milliseconds. This confirms that the addition of the third state
can indeed be a very significant optimization.

Running this on a computer that runs macOS, however, produces completely dif‐
ferent results: about 50 milliseconds for both versions, showing that it’s all highly
platform-dependent.

Mutex | 191

As it turns out, the implementation of libc++’s std::atomic<T>::wake(), which
we use on macOS, already performs its own bookkeeping, independent from the
kernel, to avoid unnecessary syscalls. The same holds for WakeByAddressSingle() on
Windows.

Avoiding a call to those functions can still result in slightly better performance,
since their implementation is far from trivial, especially because they can’t store any
information in the atomic variable itself. However, if we’d only be targeting only these
operating systems, we should question whether adding a third state to our mutex was
really worth the effort.

To see if our spinning optimization made any positive difference, we need a different
benchmark test: one with lots of contention, with multiple threads repeatedly trying
to lock an already locked mutex.

Let’s try a scenario where four threads all concurrently attempt to lock and unlock the
mutex a few million times:

fn main() {
 let m = Mutex::new(0);
 std::hint::black_box(&m);
 let start = Instant::now();
 thread::scope(|s| {
 for _ in 0..4 {
 s.spawn(|| {
 for _ in 0..5_000_000 {
 *m.lock() += 1;
 }
 });
 }
 });
 let duration = start.elapsed();
 println!("locked {} times in {:?}", *m.lock(), duration);
}

Note that this is an extreme and unrealistic scenario. The mutex is only kept for an
extremely short time (only to increment an integer), and the threads will immediately
attempt to lock the mutex again after unlocking. A different scenario will most likely
result in very different results.

Let’s run this benchmark on the same two Linux computers as before. On the one
with the older Intel processor, this results in about 900 milliseconds for the version
of our mutex that doesn’t spin, and about 750 milliseconds when using the spinning
version. An improvement! On the computer with the newer AMD processor, how‐
ever, we get opposite results: about 650 milliseconds without spinning and about 800
milliseconds with.

In conclusion, the answer as to whether spinning actually increases performance is,
unfortunately, “it depends,” even when looking at just one scenario.

192 | Chapter 9: Building Our Own Locks

Condition Variable
Let’s move on to something more fun: implementing a condition variable.

As we saw in “Condition Variables” on page 26, a condition variable is used together
with a mutex to wait until the mutex-protected data matches some condition. It has a
wait method that unlocks a mutex, waits for a signal, and locks the same mutex again.
Signals are sent by other threads, usually right after modifying the mutex-protected
data, to either one waiting thread (often called “notify one” or “signal”) or all waiting
threads (often called “notify all” or “broadcast”).

While a condition variable attempts to keep a waiting thread asleep until it is
signalled, it is possible for a waiting thread to be woken up spuriously, without a
corresponding signal. The condition variable’s wait operation will still relock the
mutex before returning, though.

Notice how this interface is nearly identical to our futex-like wait(), wake_one(),
and wake_all() functions. The main difference is the mechanism used to prevent
lost signals. A condition variable will start “listening” to signals before unlocking the
mutex to not miss any signals right after, while our futex-style wait() function relies
on a check of the state of the atomic variable to make sure waiting is still a good idea.

This leads to the following minimal implementation idea for a condition variable:
if we make sure that every notification changes an atomic variable (like a counter),
then all our Condvar::wait() method needs to do is check the value of that variable
before unlocking the mutex, and pass it to the futex-style wait() function after
unlocking it. That way, it will not go to sleep if any notification signal arrived since
unlocking the mutex.

Let’s try that out!

We start with a Condvar struct that just contains a single AtomicU32, which we
initialize at zero:

pub struct Condvar {
 counter: AtomicU32,
}

impl Condvar {
 pub const fn new() -> Self {
 Self { counter: AtomicU32::new(0) }
 }

 …
}

Condition Variable | 193

The notify methods are simple. They just need to change the counter and use the
corresponding wake operation to notify any waiting thread(s):

 pub fn notify_one(&self) {
 self.counter.fetch_add(1, Relaxed);
 wake_one(&self.counter);
 }

 pub fn notify_all(&self) {
 self.counter.fetch_add(1, Relaxed);
 wake_all(&self.counter);
 }

(We’ll discuss the memory ordering in a moment.)

The wait method will take a MutexGuard, since that represents proof of a locked
mutex. It will also return a MutexGuard, since it’ll make sure the mutex is locked again
before returning.

As we sketched out above, the method will first check the current value of the counter
before unlocking the mutex. After unlocking the mutex, it should only wait if the
counter hasn’t changed, to make sure we didn’t miss any signals. Here’s what that
looks like as code:

 pub fn wait<'a, T>(&self, guard: MutexGuard<'a, T>) -> MutexGuard<'a, T> {
 let counter_value = self.counter.load(Relaxed);

 // Unlock the mutex by dropping the guard,
 // but remember the mutex so we can lock it again later.
 let mutex = guard.mutex;
 drop(guard);

 // Wait, but only if the counter hasn't changed since unlocking.
 wait(&self.counter, counter_value);

 mutex.lock()
 }

This makes use of the private mutex field of the MutexGuard. Pri‐
vacy in Rust is based on modules, so if you’re defining this in a
different module than the MutexGuard, you’ll need to mark the
mutex field of the MutexGuard as, for example, pub(crate) to make
it available to other modules in the crate.

194 | Chapter 9: Building Our Own Locks

Before we celebrate our success in finishing our condition variable, let’s think for a
second about memory ordering.

While the mutex is locked, no other thread can change the mutex-protected data.
Therefore, we don’t need to worry about notifications from before we unlock the
mutex, since, as long as we hold the mutex locked, nothing can happen to the data
that would make us change our mind about wanting to go to sleep and wait.

The only situation we’re interested in is when, after we release the mutex, another
thread comes along and locks the mutex, changes the protected data, and signals us
(hopefully after unlocking the mutex).

In this situation, there’s a happens-before relationship between unlocking the mutex
in Condvar::wait() and locking the mutex in the notifying thread. This happens-
before relationship is what guarantees that our relaxed load, which happens before
unlocking, will observe the value before the notification’s relaxed increment opera‐
tion, which happens after locking.

We don’t know whether the wait() operation will see the value before or after incre‐
menting, since there’s nothing that guarantees any ordering at that point. However,
that doesn’t matter, since wait() behaves atomically with respect to corresponding
wake operations. Either it sees the new value, in which case it does not go to sleep at
all, or it sees the old value, in which case it goes to sleep and will be woken up by the
corresponding wake_one() or wake_all() call from the notification.

Figure 9-2 shows the operations and happens-before relationships for a situation
in which one thread uses Condvar::wait() to wait for some mutex-protected data
to change and gets woken up by a second thread that modifies the data and calls
Condvar::wake_one(). Note how the first load operation is guaranteed to observe the
value before it gets incremented, thanks to the unlock and lock operations.

We should also consider what happens if the counter overflows.

The actual value of the counter doesn’t matter as long as it is different after each noti‐
fication. Unfortunately, after a bit more than four billion notifications, the counter
will overflow and restart at zero, going back to values that have been used before.
Technically, it is possible for our Condvar::wait() implementation to go to sleep
when it shouldn’t: if it misses exactly 4,294,967,296 notifications (or any multiple of
that), it will overflow the counter all the way around to the value it had before.

Condition Variable | 195

Figure 9-2. The operations and happens-before relationships of one thead using Con
dvar::wait() that’s woken up by another thread using Condvar::notify_one()

196 | Chapter 9: Building Our Own Locks

https://marabos.nl/atomics/alt/9-2.html

It’s entirely reasonable to consider the chance of that happening to be negligible. In
contrtast to what we did in our mutex locking method, we don’t recheck the state
and repeat the wait() call after waking up here, so we only need to worry about
an overflow round-trip happening in the moment between the relaxed load of the
counter and the wait() call. If a thread can be interrupted for so long that it allows
for (exactly) that many notifications to happen, something has probably already gone
terribly wrong, and the program has already turned unresponsive. At that point, one
might reasonably argue, a microscopic additional risk of a thread staying asleep no
longer matters.

On platforms that support futex-style waiting with a time limit, the
risk of overflowing can be mitigated by using a timeout for the wait
operation of a few seconds. Sending four billion notifications will
take significantly longer, at which point the risk of a few additional
seconds will have very little impact. This completely removes any
risk of the program locking up due to a waiting thread wrongly
staying asleep forever.

Let’s see if it works!

#[test]
fn test_condvar() {
 let mutex = Mutex::new(0);
 let condvar = Condvar::new();

 let mut wakeups = 0;

 thread::scope(|s| {
 s.spawn(|| {
 thread::sleep(Duration::from_secs(1));
 *mutex.lock() = 123;
 condvar.notify_one();
 });

 let mut m = mutex.lock();
 while *m < 100 {
 m = condvar.wait(m);
 wakeups += 1;
 }

 assert_eq!(*m, 123);
 });

 // Check that the main thread actually did wait (not busy-loop),
 // while still allowing for a few spurious wake ups.
 assert!(wakeups < 10);
}

Condition Variable | 197

We count the number of times the condition variable returns from its wait method,
to make sure it actually goes to sleep. If that number would be very high, it would
indicate that we are accidentally spin-looping instead. It’s important to test this, since
a condition variable that never sleeps still results in “correct” behavior, but would
effectively turn the waiting loop into a spin loop.

If we run this test, we see that it compiles and passes just fine, confirming that our
condition variable did actually put the main thread to sleep. Of course, this doesn’t
prove that its implementation is correct. A long stress test that involves many threads,
ideally run on a computer with a weakly ordered processor architecture, can be used
to gain more confidence if necessary.

Avoiding Syscalls
As we realized in “Avoiding Syscalls” on page 186, optimizing a locking primitive is
mainly about avoiding unnecessary wait and wake operations.

In the case of our condition variable, there is not much use in trying to avoid the
wait() call in our Condvar::wait() implementation. By the time a thread decides
to wait on a condition variable, it has already checked that the thing it’s waiting
for hasn’t happened yet, and it needs to go to sleep. If the wait wasn’t necessary, it
wouldn’t have called Condvar::wait() at all.

We can, however, avoid the wake_one() and wake_all() calls if there are no waiting
threads, similar to what we did for our Mutex.

A simple way to do this is to keep track of the number of waiting threads. Our wait
method will need to increment it before waiting, and decrement it when it’s done.
Then our notify methods can skip sending their signal if that number is zero.

So, we add a new field to our Condvar struct to track the number of active waiters:

pub struct Condvar {
 counter: AtomicU32,
 num_waiters: AtomicUsize, // New!
}

impl Condvar {
 pub const fn new() -> Self {
 Self {
 counter: AtomicU32::new(0),
 num_waiters: AtomicUsize::new(0), // New!
 }
 }

 …
}

198 | Chapter 9: Building Our Own Locks

By using an AtomicUsize for num_waiters, we don’t have to worry about it overflow‐
ing. A usize is big enough to count every byte in memory, so if we assume that every
active thread takes up at least a single byte of memory, it’s definitely big enough to
count any number of concurrently existing threads.

Next, we update our notification functions to not do anything if there are no waiters:

 pub fn notify_one(&self) {
 if self.num_waiters.load(Relaxed) > 0 { // New!
 self.counter.fetch_add(1, Relaxed);
 wake_one(&self.counter);
 }
 }

 pub fn notify_all(&self) {
 if self.num_waiters.load(Relaxed) > 0 { // New!
 self.counter.fetch_add(1, Relaxed);
 wake_all(&self.counter);
 }
 }

(We’ll discuss the memory ordering in a moment.)

And finally, most importantly, we increment it at the start of our wait method and
decrement as soon as it wakes up:

 pub fn wait<'a, T>(&self, guard: MutexGuard<'a, T>) -> MutexGuard<'a, T> {
 self.num_waiters.fetch_add(1, Relaxed); // New!

 let counter_value = self.counter.load(Relaxed);

 let mutex = guard.mutex;
 drop(guard);

 wait(&self.counter, counter_value);

 self.num_waiters.fetch_sub(1, Relaxed); // New!

 mutex.lock()
 }

We should again ask ourselves carefully if relaxed memory ordering is enough for all
these atomic operations.

A new potential risk we’ve introduced, is one of the notify methods observing a zero
in num_waiters, skipping its wake operation, while there was actually a thread to
wake up. This can happen when a notify method observes the value either before the
increment operation or after the decrement operation.

Just as with the relaxed load from the counter, the fact that the waiter still holds
the mutex locked while incrementing num_waiters makes sure that any load of

Condition Variable | 199

num_waiters that happens after unlocking the mutex will not see a value from before
it was incremented.

We also don’t need to worry about the notifying thread observing the decremented
value “too soon,” because once the decrementing operation is executed, perhaps after
a spurious wake-up, the waiting thread no longer needs to be woken up anyway.

In other words, the happens-before relationship that the mutex establishes still pro‐
vides all the guarantees we need.

Avoiding Spurious Wake-ups
Another way in which we could optimize our condition variable is by avoiding spuri‐
ously waking up. Every time a thread is woken up, it’ll try to lock the mutex, poten‐
tially competing with other threads, which can have a big impact on performance.

It’s quite uncommon for the underlying wait() operation to spuriously wake up, but
our condition variable implementation easily allows for notify_one() to cause more
than one thread to stop waiting. If a thread is in the process of going to sleep, has
just loaded the counter value, but hasn’t gone to sleep yet, a call to notify_one() will
prevent that thread from going to sleep due to the updated counter, but it’ll also cause
a second thread to wake up because of the wake_one() operation that follows. Both of
those threads will then compete to lock the mutex, wasting valuable processor time.

This might sound like a rarely occurring situation, but this can actually happen quite
easily, due to how the mutex ends up synchronizing the threads. A thread that will
call notify_one() on the condition variable will most likely lock and unlock the
mutex right before, to change something about the data that the waiting thread is
waiting for. This means that as soon as the Condvar::wait() method unlocks the
mutex, that might immediately unblock a notifying thread that was waiting for the
mutex. At that point the two threads are racing: the waiting thread to go to sleep, and
the notifying thread to lock and unlock the mutex and notify the condition variable.
If the notifying thread wins that race, the waiting thread will not go to sleep because
of the incremented counter, but the notifying thread will still call wake_one(). This is
exactly the problematic situation described above, where it might unnecessarily wake
up an extra waiting thread.

A relatively straightforward solution would be to keep track of the number of threads
that are allowed to wake up (that is, return from Condvar::wait()). The notify_one
method would increase it by one, and the wait method would attempt to decrease it
by one if it’s not zero. If the counter is at zero, it could go (back) to sleep, instead of
attempting to relock the mutex and returning. (Notifying all threads could be done by
adding another counter specifically for notify_all that is never decremented.)

200 | Chapter 9: Building Our Own Locks

This approach works, but comes with a new and more subtle issue: a notification
might wake up a thread that hasn’t even called Condvar::wait() yet, including
itself. A call to Condvar::notify_one() would increment the number of threads
that should be woken up and use wake_one() to wake up one waiting thread. Then,
if another (or even the same) thread calls Condvar::wait() afterwards, before the
thread that was already waiting has a chance to wake up, the newly waiting thread
could see that there’s one notification pending and claim it by decrementing the
counter to zero, returning immediately. The first thread that was waiting would then
go back to sleep, since another thread already took the notification.

Depending on the use case, this might be perfectly fine, or it might be a big problem,
causing some threads to never make progress.

GNU libc’s pthread_cond_t implementation used to suffer from
this issue. After much discussion on whether or not this was
allowed by the POSIX specification, the issue was eventually
resolved with the release of GNU libc 2.25 in 2017, which included
a completely new condition variable implementation.

In many situations where a condition variable is used, it’s perfectly fine for a waiter
to snatch away an earlier notification. However, when implementing a condition
variable for general use rather than a specific kind of use case, this behavior might be
unacceptable.

Again, we must come to the conclusion that the answer to whether we should use an
optimized aproach is, unsurprisingly, “it depends.”

There are ways to avoid this problem while still avoiding spurious
wake-ups, but those are significantly more complicated than other
approaches.
The solution used by GNU libc’s new condition variable involves
categorizing waiters into two groups, only allowing the first group
to consume notifications and swapping the groups around when
the first one has no waiters left.
A downside of this approach is not only the complexity of the
algorithm, but also that it significantly increases the size of the
condition variable type, since it now needs to keep track of much
more information.

Condition Variable | 201

Thundering Herd Problem
Another performance problem that one might encounter when using a condition
variable occurs when using notify_all() to wake up many threads waiting for the
same thing.

The problem is that, after waking up, all those threads will immediately try to lock the
same mutex. Most likely, only one thread will succeed, and all the others will have to
go back to sleep. This resource-wasting problem of many threads all rushing to claim
the same resource is referred to as the thundering herd problem.

It’s not unreasonable to argue that Condvar::notify_all() is fundamentally an
anti-pattern not worth optimizing for. A condition variable’s purpose is to unlock a
mutex and relock it when notified, so perhaps notifying more than one thread at once
will never lead to anything good.

Even so, if we want to optimize for this situation, we can do so on operating systems
that support a futex-like requeuing operation, like FUTEX_REQUEUE on Linux. (See
“Futex Operations” on page 169.)

Instead of waking up many threads of which all but one will immediately go back to
sleep once they realize the lock has already been taken, we can requeue all but one
thread such that their futex wait operations no longer wait for the condition variable’s
counter, but start waiting for the mutex state instead.

Requeueing a waiting thread doesn’t wake it up. In fact, the thread won’t even know
that it has been requeued. Unfortunately, this can lead to some very subtle pitfalls.

For example, remember how a three-state mutex always must be locked to the right
state (“locked with waiters”) after waking up, to make sure other waiters aren’t forgot‐
ten about? This means we should no longer use the regular mutex lock method in our
Condvar::wait() implementation, which might set the mutex to the wrong state.

A requeueing condition variable implementation would need to store a pointer to
the mutex used by the waiting threads. Otherwise, the notify methods wouldn’t know
which atomic variable (the mutex state) to requeue the waiting threads to. This is
why a condition variable generally does not allow two threads to wait for different
mutexes. Even though many condition variable implementations do not make use of
requeueing, it can be useful to keep open the possibility for a future version to do so.

202 | Chapter 9: Building Our Own Locks

Reader-Writer Lock
It’s time to implement a reader-writer lock!

Recall how, unlike a mutex, a reader-writer lock supports two types of locking: read-
locking and write-locking, sometimes called shared locking and exclusive locking.
Write-locking behaves identically to locking a mutex, only allowing one lock at a
time, while read-locking allows for multiple readers to hold a lock at once. In other
words, it closely matches how exclusive references (&mut T) and shared references
(&T) work in Rust, allowing only one exclusive reference, or any number of shared
references, to be active at the same time.

For our mutex, we needed to track only whether it was locked or not. For our reader-
writer lock, however, we also need to know how many (reader) locks are currently
held, to make sure write-locking only happens after all readers have released their
locks.

Let’s start with a RwLock struct that uses a single AtomicU32 as its state. We’ll use it
to represent the number of currently acquired read locks, such that a value of zero
means it’s unlocked. To represent the write-locked state, let’s use a special value of
u32::MAX.

pub struct RwLock<T> {
 /// The number of readers, or u32::MAX if write-locked.
 state: AtomicU32,
 value: UnsafeCell<T>,
}

For our Mutex<T>, we had to restrict its Sync implementation to types T that imple‐
ment Send, to make sure it can’t be used to send, for example, an Rc to another
thread. For our new RwLock<T>, we additionally need to require that T also imple‐
ments Sync, because multiple readers will be able to access the data at once:

unsafe impl<T> Sync for RwLock<T> where T: Send + Sync {}

Because our RwLock can be locked in two different ways, we’ll have two separate lock
functions, each with its own type of guard:

impl<T> RwLock<T> {
 pub const fn new(value: T) -> Self {
 Self {
 state: AtomicU32::new(0), // Unlocked.
 value: UnsafeCell::new(value),
 }
 }

 pub fn read(&self) -> ReadGuard<T> {
 …
 }

Reader-Writer Lock | 203

 pub fn write(&self) -> WriteGuard<T> {
 …
 }
}

pub struct ReadGuard<'a, T> {
 rwlock: &'a RwLock<T>,
}

pub struct WriteGuard<'a, T> {
 rwlock: &'a RwLock<T>,
}

The write guard should behave like an exclusive reference (&mut T), which we do by
implementing both Deref and DerefMut for it:

impl<T> Deref for WriteGuard<'_, T> {
 type Target = T;
 fn deref(&self) -> &T {
 unsafe { &*self.rwlock.value.get() }
 }
}

impl<T> DerefMut for WriteGuard<'_, T> {
 fn deref_mut(&mut self) -> &mut T {
 unsafe { &mut *self.rwlock.value.get() }
 }
}

However, the read guard should only implement Deref, not DerefMut, because
it doesn’t have exclusive access to the data, making it behave like a shared
reference (&T):

impl<T> Deref for ReadGuard<'_, T> {
 type Target = T;
 fn deref(&self) -> &T {
 unsafe { &*self.rwlock.value.get() }
 }
}

Now that we got all that boilerplate code out of the way, let’s get to the interesting
parts: locking and unlocking.

204 | Chapter 9: Building Our Own Locks

To read-lock our RwLock, we must increment the state by one, but only if it
wasn’t already write-locked. We’ll use a compare-and-exchange loop (“Compare-and-
Exchange Operations” on page 42) to do so. In case the state is u32::MAX, meaning
the RwLock is write-locked, we’ll use a wait() operation to sleep and retry later.

 pub fn read(&self) -> ReadGuard<T> {
 let mut s = self.state.load(Relaxed);
 loop {
 if s < u32::MAX {
 assert!(s != u32::MAX - 1, "too many readers");
 match self.state.compare_exchange_weak(
 s, s + 1, Acquire, Relaxed
) {
 Ok(_) => return ReadGuard { rwlock: self },
 Err(e) => s = e,
 }
 }
 if s == u32::MAX {
 wait(&self.state, u32::MAX);
 s = self.state.load(Relaxed);
 }
 }
 }

Write-locking is easier; we just need to change the state from zero to u32::MAX, or
wait() if it was already locked:

 pub fn write(&self) -> WriteGuard<T> {
 while let Err(s) = self.state.compare_exchange(
 0, u32::MAX, Acquire, Relaxed
) {
 // Wait while already locked.
 wait(&self.state, s);
 }
 WriteGuard { rwlock: self }
 }

Note how the exact state value of a locked RwLock varies, but the wait() operation
expects us to give it an exact value to compare the state with. This is why we use the
return value from the compare-and-exchange operation for the wait() operation.

Unlocking a reader involves decrementing the state by one. The reader that ends up
unlocking the RwLock, the one that changes the state from one to zero, is responsible
for waking up a waiting writer, if any.

Reader-Writer Lock | 205

Waking up just one thread is enough, because we know there cannot be any waiting
readers at this point. There would simply be no reason for a reader to be waiting on a
read-locked RwLock.

impl<T> Drop for ReadGuard<'_, T> {
 fn drop(&mut self) {
 if self.rwlock.state.fetch_sub(1, Release) == 1 {
 // Wake up a waiting writer, if any.
 wake_one(&self.rwlock.state);
 }
 }
}

A writer must reset the state to zero to unlock, after which it should wake either one
waiting writer or all waiting readers.

We don’t know whether readers or writers are waiting, nor do we have a way to wake
up only a writer or only the readers. So, we’ll just wake all threads:

impl<T> Drop for WriteGuard<'_, T> {
 fn drop(&mut self) {
 self.rwlock.state.store(0, Release);
 // Wake up all waiting readers and writers.
 wake_all(&self.rwlock.state);
 }
}

And that’s it! We’ve built a very simple but perfectly usable reader-writer lock.

Time to fix some issues.

Avoiding Busy-Looping Writers
One issue with our implementation is that write-locking might result in an accidental
busy-loop.

If we have an RwLock with a lot of readers repeatedly locking and unlocking it,
the lock state might be continuously in flux, rapidly going up and down. For our
write method, this results in a high chance of the lock state changing between the
compare-and-exchange operation and the subsequent wait() operation, especially if
the wait() operation is directly implemented as a (relatively slow) syscall. This means
that the wait() operation will often return immediately, even though the lock was
never unlocked; it just had a different number of readers than expected.

A solution can be to use a different AtomicU32 for the writers to wait on, and only
change the value of that atomic when we actually want to wake up a writer.

Let’s try that, by adding a new writer_wake_counter field to our RwLock:

206 | Chapter 9: Building Our Own Locks

pub struct RwLock<T> {
 /// The number of readers, or u32::MAX if write-locked.
 state: AtomicU32,
 /// Incremented to wake up writers.
 writer_wake_counter: AtomicU32, // New!
 value: UnsafeCell<T>,
}

impl<T> RwLock<T> {
 pub const fn new(value: T) -> Self {
 Self {
 state: AtomicU32::new(0),
 writer_wake_counter: AtomicU32::new(0), // New!
 value: UnsafeCell::new(value),
 }
 }

 …
}

The read method remains unchanged, but the write method now needs to wait
for the new atomic variable instead. To make sure we don’t miss any notifications
between seeing that the RwLock is read-locked and actually going to sleep, we’ll use a
pattern similar to the one we used for implementing our condition variable: check the
writer_wake_counter before checking if we still want to sleep:

 pub fn write(&self) -> WriteGuard<T> {
 while self.state.compare_exchange(
 0, u32::MAX, Acquire, Relaxed
).is_err() {
 let w = self.writer_wake_counter.load(Acquire);
 if self.state.load(Relaxed) != 0 {
 // Wait if the RwLock is still locked, but only if
 // there have been no wake signals since we checked.
 wait(&self.writer_wake_counter, w);
 }
 }
 WriteGuard { rwlock: self }
 }

The acquire-load operation of writer_wake_counter will form a happens-before
relationship with a release-increment operation that’s executed right after unlocking
the state, before waking up a waiting writer:

impl<T> Drop for ReadGuard<'_, T> {
 fn drop(&mut self) {
 if self.rwlock.state.fetch_sub(1, Release) == 1 {
 self.rwlock.writer_wake_counter.fetch_add(1, Release); // New!
 wake_one(&self.rwlock.writer_wake_counter); // Changed!
 }
 }
}

Reader-Writer Lock | 207

The happens-before relationship makes sure that the write method cannot
observe the incremented writer_wake_counter value while still seeing the not-yet-
decremented state value afterwards. Otherwise, the write-locking thread might con‐
clude the RwLock is still locked while having missed the wake-up call.

As before, write-unlocking should wake either one waiting writer or all waiting
readers. Since we still don’t know whether there are writers or readers waiting, we
have to wake both one waiting writer (through wake_one) and all waiting readers
(using wake_all):

impl<T> Drop for WriteGuard<'_, T> {
 fn drop(&mut self) {
 self.rwlock.state.store(0, Release);
 self.rwlock.writer_wake_counter.fetch_add(1, Release); // New!
 wake_one(&self.rwlock.writer_wake_counter); // New!
 wake_all(&self.rwlock.state);
 }
}

On some operating systems, the operation behind the wake opera‐
tions returns the number of threads it woke up. It might indicate a
lower number than the actual number of awoken threads (due to
spuriously awoken threads), but its return value can still be useful
as an optimization.
In the drop implementation above, for example, we could skip
the wake_all() call if the wake_one() operation would indicate it
actually woke up a thread.

Avoiding Writer Starvation
A common use case for an RwLock is a situation with many frequent readers, but very
few, often only one, infrequent writer. For example, one thread might be responsible
for reading out some sensor input or periodically downloading some new data that
many other threads need to use.

In such a situation, we can quickly run into an issue called writer starvation: a
situation where the writer(s) never get a chance to lock the RwLock because there are
always readers around to keep the RwLock read-locked.

One solution to this problem is to prevent any new readers from acquiring a lock
when there is a writer waiting, even when the RwLock is still read-locked. That way,
all new readers will have to wait until the writer has had its turn, making sure that
readers will get access to the latest data that the writer wanted to share.

Let’s implement this.

208 | Chapter 9: Building Our Own Locks

To do this, we need to keep track of whether there are any waiting writers. To make
space for this information in the state variable, we can multiply the reader count by 2,
and add 1 for situations where there is a writer waiting. This means that a state of 6
or 7 both represent a situation with three active read locks: 6 without a waiting writer,
and 7 with a waiting writer.

If we keep u32::MAX, which is an odd number, as the write-locked state, then readers
will have to wait if the state is odd, but are free to acquire a read lock by incrementing
it by two if the state is even.

pub struct RwLock<T> {
 /// The number of read locks times two, plus one if there's a writer waiting.
 /// u32::MAX if write locked.
 ///
 /// This means that readers may acquire the lock when
 /// the state is even, but need to block when odd.
 state: AtomicU32,
 /// Incremented to wake up writers.
 writer_wake_counter: AtomicU32,
 value: UnsafeCell<T>,
}

We’ll have to change the two if statements in our read method to no longer compare
the state against u32::MAX, but instead check whether the state is even or odd. We also
need to change the upper bound in the assert statement and make sure we lock by
incrementing by two instead of one.

 pub fn read(&self) -> ReadGuard<T> {
 let mut s = self.state.load(Relaxed);
 loop {
 if s % 2 == 0 { // Even.
 assert!(s != u32::MAX - 2, "too many readers");
 match self.state.compare_exchange_weak(
 s, s + 2, Acquire, Relaxed
) {
 Ok(_) => return ReadGuard { rwlock: self },
 Err(e) => s = e,
 }
 }
 if s % 2 == 1 { // Odd.
 wait(&self.state, s);
 s = self.state.load(Relaxed);
 }
 }
 }

Our write method has to undergo bigger changes. We’ll use a compare-and-
exchange loop, just like our read method above. If the state is 0 or 1, which means
the RwLock is unlocked, we’ll attempt to change the state to u32::MAX to write-lock
it. Otherwise, we’ll have to wait. Before doing so, however, we need to make sure the

Reader-Writer Lock | 209

state is odd, to stop new readers from acquiring the lock. After making sure the state
is odd, we wait for the writer_wake_counter variable, while making sure that the
lock hasn’t been unlocked in the meantime.

In code, that looks like this:

 pub fn write(&self) -> WriteGuard<T> {
 let mut s = self.state.load(Relaxed);
 loop {
 // Try to lock if unlocked.
 if s <= 1 {
 match self.state.compare_exchange(
 s, u32::MAX, Acquire, Relaxed
) {
 Ok(_) => return WriteGuard { rwlock: self },
 Err(e) => { s = e; continue; }
 }
 }
 // Block new readers, by making sure the state is odd.
 if s % 2 == 0 {
 match self.state.compare_exchange(
 s, s + 1, Relaxed, Relaxed
) {
 Ok(_) => {}
 Err(e) => { s = e; continue; }
 }
 }
 // Wait, if it's still locked
 let w = self.writer_wake_counter.load(Acquire);
 s = self.state.load(Relaxed);
 if s >= 2 {
 wait(&self.writer_wake_counter, w);
 s = self.state.load(Relaxed);
 }
 }
 }

Since we now track whether there are any waiting writers, read-unlocking can now
skip the wake_one() call when unnecessary:

impl<T> Drop for ReadGuard<'_, T> {
 fn drop(&mut self) {
 // Decrement the state by 2 to remove one read-lock.
 if self.rwlock.state.fetch_sub(2, Release) == 3 {
 // If we decremented from 3 to 1, that means
 // the RwLock is now unlocked _and_ there is
 // a waiting writer, which we wake up.
 self.rwlock.writer_wake_counter.fetch_add(1, Release);
 wake_one(&self.rwlock.writer_wake_counter);
 }
 }
}

210 | Chapter 9: Building Our Own Locks

While write-locked (a state of u32::MAX), we do not track any information on
whether any thread is waiting. So, we have no new information to use for write-
unlocking, which will remain identical:

impl<T> Drop for WriteGuard<'_, T> {
 fn drop(&mut self) {
 self.rwlock.state.store(0, Release);
 self.rwlock.writer_wake_counter.fetch_add(1, Release);
 wake_one(&self.rwlock.writer_wake_counter);
 wake_all(&self.rwlock.state);
 }
}

For a reader-writer lock that’s optimized for the “frequent reading and infrequent
writing” use case, this would be quite acceptable, since write-locking (and therefore
write-unlocking) happens infrequently.

For a more general purpose reader-writer lock, however, it is definitely worth opti‐
mizing further, to bring the performance of write-locking and -unlocking near the
performance of an efficient 3-state mutex. This is left as a fun exercise for the reader.

Summary
• The atomic-wait crate provides basic futex-like functionality that works on•

(recent versions of) all major operating systems.
• A minimal mutex implementation only needs two states, like our SpinLock from•

Chapter 4.
• A more efficient mutex tracks whether there are any waiting threads, so it can•

avoid an unnecessary wake operation.
• Spinning before going to sleep might in some cases be beneficial, but it depends•

heavily on the situation, operating system, and hardware.
• A minimal condition variable only needs a notification counter, which Con•
dvar::wait will have to check both before and after unlocking the mutex.

• A condition variable could track the number of waiting threads to avoid unnec‐•
essary wake operations.

• Avoiding spuriously waking up from Condvar::wait can be tricky, requiring•
extra bookkeeping.

• A minimal reader-writer lock requires only an atomic counter as its state.•
• An additional atomic variable can be used to wake writers independently•

from readers.
• To avoid writer starvation, extra state is required to prioritize a waiting writer•

over new readers.

Summary | 211

CHAPTER 10

Ideas and Inspiration

There are an infinite number of concurrency related topics, algorithms, data struc‐
tures, anecdotes, and other potential chapters that could be part of this book. How‐
ever, we’ve arrived at the final chapter and it’s almost time for us to part ways,
hopefully leaving you with an excited feeling of new possibilities and ready to apply
new knowledge and skills in practice.

This final chapter’s purpose is to provide inspiration for your own creations and
future work by showing you some ideas that you can study, explore, and build on
your own.

Semaphore
A semaphore is effectively just a counter with two operations: signal (also called up
or V) and wait (also called down or P). The signal operation increments the counter
up to a certain maximum, while a wait operation decrements the counter. If the
counter is zero, a wait operation will block and wait for a matching signal operation,
preventing the counter from ever becoming negative. It is a flexible tool that can be
used to implement other synchronization primitives.

A semaphore can be implemented as a combination of a Mutex<u32> for the counter
and a Condvar for wait operations to wait for. However, there are several ways to
implement it more efficiently. Most notably, on platforms that support futex-like

213

operations (“Futex” on page 167), it can be implemented more efficiently as a single
AtomicU32 (or even AtomicU8).

A semaphore with a maximum value of one is sometimes called a binary semaphore,
and can be used as a building block with which to build other primitives. For
example, it can be used as a mutex by initializing the counter at one, using the wait
operation for locking, and the signal operation for unlocking. By initializing it at zero,
it can also be used for signaling, like a condition variable. For example, the standard
park() and unpark() functions in std::thread can be implemented as wait and
signal operations on a binary semaphore associated with the thread.

Note how a mutex can be implemented using a semaphore, while
a semaphore can be implemented using a mutex (and a condition
variable). It’s advisable to avoid using a mutex-based semaphore to
implement a semaphore-based mutex, and the other way around.

Further reading:

• Wikipedia article on semaphores•
• Stanford University course notes on semaphores•

RCU
If you want to allow multiple threads to (mostly) read and (sometimes) mutate some
data, you can use an RwLock. When this data is just a single integer, you can use
an atomic variable (such as AtomicU32) to avoid locking, which is more efficient.
However, for larger chunks of data, like a struct with many fields, there’s no available
atomic type that allows for lock-free atomic operations on the entire object.

Just like every other problem in computer science, this problem can be solved by
adding a layer of indirection. Instead of the struct itself, you can use an atomic
variable to store a pointer to it. This still doesn’t allow you to modify the struct as a
whole atomically, but it does allow you to replace the entire struct atomically, which is
nearly as good.

This pattern is often called RCU, which stands for “read, copy, update,” the steps
necessary to replace the data. After reading the pointer, the struct can be copied into
a new allocation that can be modified without worrying about other threads. When
ready, the atomic pointer can be updated using a compare-and-exchange operation
(“Compare-and-Exchange Operations” on page 42), which will only succeed if no
other thread has replaced the data in the meantime.

214 | Chapter 10: Ideas and Inspiration

https://oreil.ly/_rSRZ
https://oreil.ly/ZVaei

The most interesting part about the RCU pattern is the last step, which does not
have a letter in the acronym: deallocating the old data. After a successful update,
other threads might still be reading the old copy, if they read the pointer before the
update. You’ll have to wait for all those threads to be done before the old copy can be
deallocated.

There are many possible solutions for this issue, including reference counting (like
Arc), leaking memory (ignoring the problem), garbage collection, hazard pointers
(a way for threads to tell the others what pointers they are currently using), and
quiescent state tracking (waiting for each thread to reach a point at which it is
definitely not using any pointers). The last one can be extremely efficient in certain
conditions.

Many data structures in the Linux kernel are RCU based, and there are many interest‐
ing talks and articles about their implementation details that can provide a great deal
of inspiration.

Further reading:

• Wikipedia article on the read-copy-update pattern•
• LWN article “What is RCU, Fundamentally?”•

Lock-Free Linked List
Expanding on the basic RCU pattern, you can add an atomic pointer to the struct
to point to the next one, to turn it into a linked list. This allows for threads to
atomically add or remove elements on this list, without having to copy the entire list
for every update.

Lock-Free Linked List | 215

https://oreil.ly/egIIi
https://oreil.ly/GQZ6r

To insert a new element at the start of the list, you only have to allocate that element
and point its pointer at the first element in the list, and then atomically update the
initial pointer to point to your newly allocated element.

Similarly, removing an element can be done by atomically updating the pointer
before it to point to the element after it. However, when multiple writers are involved,
care must be taken to handle concurrent insertion or removal operations on neigh‐
boring elements. Otherwise, you might accidentally also remove a concurrently newly
inserted element, or undo the removal of a concurrently removed element.

To keep things simple, you can use a regular mutex to avoid con‐
current mutations. That way, reading is still a lock-free operation,
but you don’t have to worry about handling concurrent mutation.

After detaching an element from the linked list, you’ll run into the same issue as
before: waiting until you can deallocate it (or otherwise claim ownership). The same
solutions we discussed for the basic RCU pattern can work in this case as well.

In general, you can build a wide variety of elaborate lock-free data structures based
on compare-and-exchange operations on atomic pointers, but you’ll always need a
good strategy for deallocating or otherwise reclaiming ownership of the allocations.

Further reading:

• Wikipedia article on non-blocking linked lists•
• LWN article “Using RCU for Linked Lists—A Case Study”•

216 | Chapter 10: Ideas and Inspiration

https://oreil.ly/kVQ1O
https://oreil.ly/H0lt4

Queue-Based Locks
For most standard locking primitives, the operating system’s kernel keeps track of the
threads that are blocked on it, and is responsible for picking one to wake up when
asked to do so. An interesting alternative is to implement a mutex (or other locking
primitive), by manually keeping track of the queue of waiting threads.

Such a mutex could be implemented as a single AtomicPtr that can point to a (list of)
waiting threads.

Each element in this list needs to contain something that can be used to wake up the
corresponding thread, such as a std::thread::Thread object. Some unused bits of
the atomic pointer can be used to store the state of the mutex itself, and whatever is
necessary for managing the state of the queue.

There are many variations possible. The queue could be protected by its own lock
bit or it could be implemented as a (partially) lock-free structure. The elements don’t
have to be allocated on the heap, but could be local variables of the threads that
are waiting. The queue could be a doubly-linked list with not only pointers to the
next element, but also to the previous element. The first element could also include a
pointer to the last element to allow efficiently appending an element at the end.

This pattern allows for implementing efficient locking primitives using only some‐
thing that can be used to block and wake up a single thread, such as thread parking.

Windows SRW locks (“Slim reader-writer locks” on page 176) are implemented using
this pattern.

Further reading:

• Notes on the implementation of Windows SRW locks•
• A Rust implementation of queue-based locks•

Queue-Based Locks | 217

https://oreil.ly/El8GA
https://oreil.ly/aFyg1

Parking Lot–Based Locks
To make a highly efficient mutex that’s as small as possible, you can build upon the
queue-based locks idea by moving the queue into a global data structure, leaving
only one or two bits inside the mutex itself. This way, the mutex only needs to be a
single byte. You could even put it in some unused bits of a pointer, allowing for very
fine-grained locking at almost no extra cost.

The global data structure can be a HashMap that maps memory addresses to a queue of
threads waiting on the mutex at that address. This global data structure is often called
a parking lot, since it’s a collection of parked threads.

The pattern can be generalized by not only tracking queues for mutexes, but also for
condition variables and other primitives. By tracking a queue for any atomic variable,
this effectively provides a way to implement futex-like functionality on platforms that
don’t natively support that.

This pattern is most well known from its 2015 implementation in WebKit, where it
was used for locking JavaScript objects. Its implementation inspired other implemen‐
tations, such as the popular parking_lot Rust crate.

Further reading:

• WebKit blog post, “Locking in WebKit”•
• Documentation of the parking_lot crate•

Sequence Lock
A sequence lock is another solution to the problem of atomically updating (larger)
data without using traditional (blocking) locks. It uses an atomic counter that is odd
while the data is being updated, and even when the data is ready to be read.

The writing thread will have to increment the counter from even to odd before
mutating the data, after which it has to increment the counter again to leave it at a
(different) even value.

218 | Chapter 10: Ideas and Inspiration

https://oreil.ly/6dPim
https://oreil.ly/UPcXu

Any reading thread can, at any point and without blocking, read the data by reading
the counter both before and after. If the two values from the counter are equal and
even, there was no concurrent mutation, meaning you read a valid copy of the data.
Otherwise, you might have read data that was concurrently being modified, in which
case you should just try again.

This is a great pattern for making data available to other threads, without the possibil‐
ity of the reading threads blocking the writing thread. It is often used in operating
systems kernels and many embedded systems. Since the readers need only read access
to the memory and no pointers are involved, this can be a great data structure to
safely use in shared memory, between processes, without needing to trust the readers.
For example, the Linux kernel uses this pattern to very efficiently provide timestamps
to processes by providing them with read-only access to (shared) memory.

An interesting question is how this fits into the memory model. Concurrent non-
atomic reads and writes to the same data result in undefined behavior, even if the
read data is ignored. This means that, technically speaking, both reading and writing
the data should be done using only atomic operations, even though the entire read or
write does not have to be a single atomic operation.

Further reading:

• Wikipedia article on Linux’s Seqlock•
• Rust RFC 3301, AtomicPerByte•
• Documentation of the seqlock crate•

Teaching Materials
It can be great fun to spend many hours—or years—inventing new concurrent data
structures and designing ergonomic Rust implementations of them. If you’re looking
for something else to do with your knowledge on Rust, atomics, locks, concurrent
data structures, and concurrency in general, it can also be very fulfilling to create new
teaching materials to share your knowledge with others.

Teaching Materials | 219

https://oreil.ly/T28bW
https://oreil.ly/Qavc7
https://oreil.ly/yHd_7

There is a great lack of accessible resources aimed at those new to these topics. Rust
has played a significant role in making systems programming more accessible to
everyone, but many programmers still shy away from low-level concurrency. Atomics
are often thought of as a somewhat mystical topic that’s best left to a very small group
of experts, which is a shame.

I hope this very book makes a significant difference, but there is so much space for
more books, blog posts, articles, video courses, conference talks, and other materials
about Rust concurrency.

~

I’m excited to see what you create.

Good luck. ♥

220 | Chapter 10: Ideas and Inspiration

Index

A
AArch64 (see ARM64)
ABA problem, 44
aborting the process, 42
AcqRel, 57

(see also release and acquire memory order‐
ing)

acquire memory ordering (see release and
acquire memory ordering)

add instruction (ARM), 131
add instruction (x86), 131
address-based waiting (Windows), 177

(see also futex)
air, out of thin, 56
alignment, 148
allocating IDs (see ID allocation)
AMD processors, 127
and instruction (x86), 135
Arc, 9

building our own, 105-125
cyclic structures, 111
get_mut, 110
memory ordering, 108, 110, 123, 124
naming clones, 10
using for channel state, 95
weak pointers, 111

performance cost, 118
arguments, consuming, 94
ARM64 (processor architecture), 128

aarch64-unknown-linux-musl target, 130
other-multi-copy atomic, 151
weakly ordered, 153-155

ARM64 instructions
add, 131

ARMv8.1 atomic instructions, 139, 155
b.ne (branch if not equal), 140
cbnz (compare and branch on nonzero),

138
clrex (clear exclusive), 138
cmp (compare), 140
dmb (data memory barrier), 158
ldar (load-acquire register), 154
ldaxr (load-acquire exclusive register), 154
ldr (load register), 131
ldxr (load exclusive register), 138
load-linked and store-conditional instruc‐

tions, 138
mov (move), 140
overview, 159
ret (return), 131
stlr (store-release register), 154
stlxr (store-release exclusive register), 154
str (store register), 131
stxr (store exclusive register), 138

ARMv8 (see ARM64)
ARMv8.1 atomic instructions, 139, 155

overview, 159
array::from_fn, 70
assembler, 128
assembly, 128

inspecting compiler output, 130
atomic, 31-47

compare-and-exchange operations, 42-46
caching, effect on, 146
compiler optimization, 140
example, ID allocation, 44
example, lazy initialization, 45, 62-64
memory ordering, 61

221

using for channel state, 93
using for mutex state, 187
using for reader-writer lock state, 205
using on AtomicPtr, 63
using to lock reference counter, 122
weak, 44

fetch-and-modify operations, 36-42
example, ID allocation, 41-42
example, progress reporting, 38-39
example, statistics, 39-40
wrapping behavior (add and sub), 37

(see also overflows)
load and store operations, 32-36

compared to non-atomic operations, 51,
132

example, lazy initialization, 35
example, progress reporting, 33-35
example, stop flag, 32-33

memory ordering (see memory ordering)
reference counting (see Arc)

atomic barriers (see fences)
atomic fences (see fences)
atomic types, 15, 31

compare_exchange, 43
compare_exchange_weak, 44
fetch_add, 37

wrapping behavior, 37
(see also overflows)

fetch_and, 37
fetch_max, 37
fetch_min, 37
fetch_nand, 37
fetch_or, 37
fetch_store (see swap)
fetch_sub, 37

wrapping behavior, 37
(see also overflows)

fetch_update, 45
fetch_xor, 37
get_mut, 92
load, 32
store, 32
swap, 37

ἄτομος, 31
atomic-wait crate, 182
AtomicBool, 31

(see also atomic types)
locking using, 60, 76

AtomicI8 (see atomic types)

AtomicI16 (see atomic types)
AtomicI32 (see atomic types)
AtomicI64 (see atomic types)
AtomicIsize (see atomic types)
AtomicPtr, 31

(see also atomic types)
compare-and-exchange, 63
lazy initialization, 63

AtomicU8 (see atomic types)
AtomicU16 (see atomic types)
AtomicU32 (see atomic types)
AtomicU64 (see atomic types)
AtomicUsize (see atomic types)
auto traits, 16

B
b.ne (branch if not equal) instruction (ARM),

140
barriers (see fences)
basics, 1-29
benchmarking, 144, 191-192

black_box, avoiding optimizations with,
144, 191

binary semaphore, 214
black_box, 144, 191
blocking, 161

channel, 101-103
condition variables, 26
futex wait operation, 167

(see also futex)
mutexes, 18
Once and OnceLock, 36, 46
semaphores, 213
spin loop, 76
thread parking (see thread parking)

boolean (atomic) (see AtomicBool)
borrowing, 11

bending the rules, 13
error, 6
exclusive, 13
from multiple threads (Sync), 16
immutable, 11

(see also shared)
local variables in a thread, 5
mutable, 11

(see also exclusive)
shared, 13
splitting, 99
undefined behavior, 13

222 | Index

Box
from_raw, 63, 108
into_raw, 63
leak, 8, 106
unmovable type, wrapping in, 165

btc (bit test and complement) instruction (x86),
135

btr (bit test and reset) instruction (x86), 135
bts (bit test and set) instruction (x86), 135
building our own

Arc, 105-125
channels, 85-104
condition variables, 193-202
mutexes, 183-192
reader-writer locks, 203-211
spin locks, 75-83

busy-looping, 75
(see also spinning)

C
C standard library, 161

(see also libc)
cache coherence, 142-144

protocol, 142
MESI, 143
MESIF, 143
MOESI, 143
write-through, 142

cache lines, 142
performance experiment, 147-148

cache miss, 143
caching (processors), 141-148

(see also cache coherence)
compare-and-exchange operations, effect of,

146
per core, 142
performance experiment, 144-148

cargo-show-asm, 130
cas (compare and swap) instruction (ARM),

139
casa (compare and swap, acquire) instruction

(ARM), 155
casal (compare and swap, acquire and release)

instruction (ARM), 155
casl (compare and swap, release) instruction

(ARM), 155
cbnz (compare and branch on nonzero)

instruction (ARM), 138
Cell, 14

unsafe (see UnsafeCell)
channels

blocking, 101-103
borrowing, 98
building our own, 85-104
dropping, 89
one-shot, 87
safe interface, 90
Sender and Receiver types, 94, 98
storing in Arc, 95

avoiding, 98
unsafe interface, 88

Clone trait, 8, 10, 96, 107, 114
closures

captured values
moving, 4
naming, 10

spawning scoped threads using, 6
spawning threads using, 4

clrex (clear exclusive) instruction (ARM), 138
cmp (compare) instruction (ARM), 140
cmpxchg (compare and exchange) instruction

(x86), 135-136
cmpxchg (compare-and-exchange) instruction

(x86)
#[cold], 190
compare-and-exchange operations (atomic),

42-46
on ARM64, 139-141
caching, effect on, 146
compiler optimization, 140
example, ID allocation, 44
example, lazy initialization, 45, 62-64
memory ordering, 61
using for channel state, 93
using for mutex state, 187
using for reader-writer lock state, 205
using on AtomicPtr, 63
using to lock reference counter, 122
weak, 44

on ARM64, 140
on x86-64, 135-136

Compiler Explorer, 130
compiler fence, 70, 156
compiler optimization

black_box, avoiding with, 144, 191
#[cold], 190
of compare-and-exchange loops, 140
enabling, 130, 144

Index | 223

#[inline], 190
reordering, 49

complex instruction set computer (CISC), 131
concurrency, basics, 1-29
condition variables, 26-28

building our own, 193-202
example, 27
memory ordering, 195
pthread_cond_t, 164
thundering herd problem, 202
timeout, 28
using to build a channel, 85-87
Windows, 177

Condvar, 26
(see also condition variables)

consume memory ordering, 65
consuming arguments by value, 94
contention (mutexes), 187, 189

benchmarking, 192
Copy trait, 89, 89

atomic types, not implementing, 39
moving, 8

critical section (Windows), 176
current thread, 2, 5, 24
cyclic structures (Arc), 111

D
data races, 11

avoiding using atomics, 31, 51
Deref trait, 23, 81, 107
DerefMut trait, 19, 23, 81, 110
disassembler, 128, 130
dmb (data memory barrier) instruction (ARM),

158
drop function, 20, 82, 115
Drop trait, 19, 81, 82, 89, 92, 97, 108, 109, 114,

115, 121, 185
dword, 131

E
--emit=asm (rustc), 130
exclusive references, 13

F
fair locks, 175
false sharing, 147
fences, 67-71, 108, 123

on ARM64, 158

compiler fence, 70, 156
instructions, 158-159
process-wide memory barriers, 70
on x86-64, 158

fetch-and-modify operations (atomic), 36-42
on ARM64, 137-139
example, ID allocation, 41-42
example, progress reporting, 38-39
example, statistics, 39-40
wrapping behavior (add and sub), 37

(see also overflows)
on x86-64, 134-135

fetch_store operation (atomic) (see swap opera‐
tion)

fetch_update (atomic), 45
FlushProcessWriteBuffers (Windows), 70
forgetting (see leaking)
FreeBSD, umtx_op syscall, 173

(see also futex)
from_fn (array), 70
futex, 166-174

cross-platform futex-like functionality, 181
example, 168
memory safety, 185
on other platforms, 173
operations (Linux), 169-174

FUTEX_CLOCK_REALTIME, 170
FUTEX_CMP_REQUEUE, 172
FUTEX_PRIVATE_FLAG, 173
FUTEX_REQUEUE, 171
FUTEX_WAIT, 169
futex_waitv syscall, 173
FUTEX_WAIT_BITSET, 170
FUTEX_WAKE, 170
FUTEX_WAKE_BITSET, 171
FUTEX_WAKE_OP, 172
priority inheritance, 173

requeueing, 171, 202
spurious wake-ups, 168
timeout, 169, 197
wait operation, 167
wake operation, 167

G
globally consistent order, 66

(see also sequentially consistent memory
ordering)

Godbolt, 130
good luck, 220

224 | Index

guards
dropping, 20
join guard, 7
mutex guard, 19, 183
read guard, 23, 203
spin lock guard, 80
write guard, 23, 203

H
hand, things getting out of, 103
happens-before relationships, 51-54

in Arc, 108, 110
between threads, 52
locking and unlocking, 60, 77
spawning and joining threads, 53
through a release-acquire pair, 57, 59

chaining, 60
within the same thread, 52

hint::black_box, 144, 191
hint::spin_loop, 76

I
ID allocation

using compare_exchange_weak, 44
using fetch_add, 41-42
using fetch_update, 45

ideas and inspiration, 213-220
if let statement

lifetime of temporaries, 22
ignorance, blissful, 56
immutable references, 11

(see also shared references)
indivisible, 31
#[inline], 190
inspiration, 213-220
Instant, 40
instruction reordering (see reordering)
instructions, 128-141

(see also ARM64 instructions; x86-64
instructions)

compare-and-exchange operations,
135-136, 139-141

fences, 158-159
load and store operations, 132-133
load-linked/store-conditional (LL/SC)

instructions, 137-137
memory ordering, 150-159
overview, 159
read-modify-write operations, 133-139

Intel processors, 127
interior mutability, 13-16, 78, 112
invalidation queues, 149

J
jne (jump if not equal) instruction (x86), 136
join method, 3
JoinGuard, 7
JoinHandle, 3
joining threads, 3

happens-before relationship, 53

K
kernel, 1, 161

interfacing with, 161-162
kernel-managed objects (Windows), 175

L
L1/L2/L3/L4 cache, 142
label (assembly), 129
lazy initialization

using compare_exchange, 45
using compare_exchange and allocation,

62-64
using load and store, 35

ldadd (load and add) instruction (ARM), 139
ldadda (load and add, acquire) instruction

(ARM), 155
ldaddal (load and add, acquire and release)

instruction (ARM), 155
ldaddl (load and add, release) instruction

(ARM), 155
ldar (load-acquire register) instruction (ARM),

154
ldaxr (load-acquire exclusive register) instruc‐

tion (ARM), 154
ldr (load register) instruction (ARM), 131
ldxr (load exclusive register) instruction

(ARM), 138
leaking, 7, 8

by mistake, 89
a MutexGuard, 166

“Leakpocalypse”, 7
libc, 161

pthreads functionality in, 163
libpthread, 163

(see also pthreads)
lifetime

Index | 225

elision, 79, 100
in a struct, 80
of mutex guard, 21
specifying using plain English, 79
static, 4

linked list, 215
Linux

futex syscall, 167-174
(see also futex)
arguments, 169

futex_waitv syscall, 173
interfacing with the kernel, 162
libc, role of, 162
membarrier syscall, 70
process-wide memory barrier, 70
RCU, 215

load and store operations (atomic), 32-36
on ARM64 and x86-64, 132-133
compared to non-atomic operations, 51, 132
example, lazy initialization, 35
example, progress reporting, 33-35
example, stop flag, 32-33

load-linked/store-conditional (LL/SC) loop,
137-137
on ARM64, 137-138
compiler optimization, 140

lock poisoning, 21
lock prefix (x86), 134-135
lock_api crate, 186
luck, good, 220

M
machine code, 128
machine instructions (see instructions)
macOS

futex-like functionality on, 181
interfacing with the kernel, 162, 174
os_unfair_lock, 175

main thread, 2
ManuallyDrop, 119
MaybeUninit, 87, 88, 89
mem::forget, 7
membarrier syscall, 70
memory barriers (see fences)
memory fences (see fences)
memory model, 51
memory ordering, 32, 49-73

on ARM64, 153-155
compiler fence, 70, 156

consume, 65
experiment, using relaxed instead of release

and acquire, 155-157
fences, 67-71, 108, 123
happens-before relationship, 51-54, 57
Miri, detecting problems with, 110
misconceptons about, 71-73
out-of-thin-air values, 56
at processor level, 150-159
reference counting, 107, 108, 110, 123, 124
relaxed, 32, 54-56

(see also relaxed memory ordering)
release and acquire, 57-64

(see also release and acquire memory
ordering)

locking and unlocking, 77
sequentially consistent, 66

(see also sequentially consistent memory
ordering)

specifying using plain English, 50
total modification order, 54, 59, 90, 91
on x86-64, 151-153

MESI cache coherence protocol, 143
MESIF cache coherence protocol, 143
mfence (memory fence) instruction (x86), 158
microinstructions, 134
Miri, 110
MOESI cache coherence protocol, 143
mov (move) instruction (ARM), 140
mov (move) instruction (x86), 132
movable, not

critical section (Windows), 176
Pin, 165
pthread types, 165
wrapping in Box, 165

move closure, 4
multi-copy atomicity, 151
mutability, interior (see interior mutability)
mutable references, 11

(see also exclusive references)
Mutex, 15, 18

(see also mutexes)
mutexes, 18-23

building our own, 183-192
as container, 23
contention, 187, 189
example, 19
fair, 175
happens-before relationship, 60

226 | Index

into_inner, 19
lifetime of mutex guard, 21
memory ordering, 60
Mutex type in Rust, 18
os_unfair_lock (macOS), 175
in other languages, 23
poisoning, 21
pthread

wrapping in Rust, 164
pthread_mutex_t, 163
recursive, 176
robust, 174
Send requirement, 23
spin locks, 75

(see also spin locks)
spinning, 75, 189
using to build a channel, 85-87

MutexGuard, 19
dropping, 20
lifetime of, 21

mutual exclusion (see mutexes)

N
name of a thread, 5
NetBSD, futex support, 173

(see also futex)
NonNull, 106

O
-O flag (rustc), 130, 144
Once and OnceLock, 36, 46
one-shot channels, 87
OpenBSD, limited futex support, 173

(see also futex)
operating systems, 161

(see also Linux; macOS; Windows)
libraries shipped with, 162
synchronization primitives, 162

optimization (see compiler optimization)
or instruction (x86), 135, 136
Ordering, 32, 50

(see also memory ordering)
AcqRel, 57

(see also release and acquire memory
ordering)

Acquire, 57
(see also release and acquire memory

ordering)
Consume, 66

Relaxed, 32, 54
(see also relaxed memory ordering)

Release, 57
(see also release and acquire memory

ordering)
SeqCst, 66

(see also sequentially consistent memory
ordering)

os_unfair_lock (macOS), 175
other-multi-copy atomicity, 151
out of order execution (see reordering)
out-of-thin-air values, 56
output locking, 4
overflows (atomic), 41

(see also wrapping behavior)
aborting on, 42
notification counter, 195
panicking on, 41
preventing (compare-and-exchange), 44
reference counter, 107
usize, big enough, 199

overview of atomic instructions, 159
ownership

moving, 4, 94
sharing, 7
transferring to another thread (Send), 16

P
panicking

poisoned mutexes, 21
RefCell, borrowing, 14
thread name in panic messages, 5
using a Condvar with multiple mutexes, 28
when joining a thread, 3, 5
when spawning a thread, 5

parking (see thread parking)
parking lot-based locks, 218
parking_lot crate, 218
PhantomData, 16, 102
Pin, 165
pipelining, 149
pointers

atomic (see AtomicPtr)
neither Send nor Sync, 17
NonNull, 106

poisoning, lock, 21
POSIX, 162

pthreads, 163-166
println, use of output locking, 4

Index | 227

priority inheritance, 174
priority inversion, 173
privacy (modules), 194
process-wide memory barriers, 70
processes, 1
processor architecture, 127

(see also ARM64; x86-64)
strongly ordered, 151
weakly ordered, 153

processor caching (see caching)
processor instructions (see instructions)
processor registers, 129

return value, 133
pthreads, 163-166

pthread_cond_t, 164, 201
pthread_mutex_t, 163

dropping while locked, 166
pthread_rwlock_t, 163
wrapping in Rust, 164

Q
queue-based locks, 217

R
racing, 36
Rc, 8
RCU (read, copy, update), 214, 215
reader-writer locks, 22-23

avoiding accidental spinning, 206
building our own, 203-211
pthread_rwlock_t, 163
Send requirement, 23
SRW locks (Windows), 176
Sync requirement, 23
writer starvation, 23, 208

recursive locking, 163, 176
reduced instruction set computer (RISC), 131
RefCell, 14

RwLock compared to, 23
reference counting, 8-10

(see also Arc)
references

exclusive, 13
immutable, 11

(see also shared)
mutable, 11

(see also exclusive)
shared, 13

registers, 129

return value, 133
relaxed memory ordering, 32, 52, 54-56

counter-intuitive results, 53
misconceptions about, 71, 72
out-of-thin-air values, 56
reference counting, 107
total modification order, 54, 59, 90, 91

release and acquire memory ordering, 57-64
acquire fence, 67, 69, 108, 110, 123
on ARM64, 153-155
example, lazy initialization, 62-64
experiment, using relaxed instead, 155-157
happens-before relationship, 57, 59

chaining, 60
locking and unlocking, 60, 77
reference counting, 108, 110, 123, 124
release fence, 67
on x86-64, 152

--release flag (cargo), 130, 144
reordering (instructions), 49-51, 149-150

memory ordering, 150
#[repr(align)], 148
requeuing waiting threads, 171, 202
ret (return) instruction (ARM), 131
ret (return) instruction (x86), 131
robust mutexes, 174
rustup, 130
RwLock, 15, 22

(see also reader-writer locks)
RwLockReadGuard, 23
RwLockWriteGuard, 23

S
safe interface, 80, 90, 91
safety requirements of unsafe functions, 13
scheduler, 161
scoped threads, 5-7
semaphores, 213
Send trait, 16, 86, 102

error, 18
implementing for Arc, 106
requirement by Mutex and RwLock, 23

SeqCst (see sequentially consistent memory
ordering)

sequence locks, 218
sequentially consistent memory ordering, 66

on ARM64, 154
fence, 70
misconceptions about, 72, 73

228 | Index

on x86-64, 153
shadowing, 10
shared ownership, 7-10

leaking, 8
reference counting, 8
statics, 7

shared references, 13
mutating atomics through, 31

slim reader-writer locks (Windows), 176, 217
spawning threads, 2

failing to, 5
happens-before relationship, 53
scoped, 5

spin locks
building our own, 75-83
cache lines, effect of, 148
compare-and-exchange, (not) using, 147
experiment, using wrong memory ordering,

155-157
guard, 80
memory ordering, 77

spin loop hint, 76, 190
spinning, 75, 123, 161

avoiding accidental (reader-writer lock), 206
splitting (borrowing), 99
spurious wake-ups, 25, 168, 200
SRW locks (Windows), 176, 217
stack size, 5
starvation, 23, 208
static lifetime, 4
statics, 7
stlr (store-release register) instruction (ARM),

154
stlxr (store-release exclusive register) instruc‐

tion (ARM), 154
stop flag, 32
store buffers, 149
store operations (atomic) (see load and store

operations)
store-conditional (see load-linked/store-

conditional)
str (store register) instruction (ARM), 131
stress, reducing, 91
strongly ordered architecture, 151
stxr (store exclusive register) instruction

(ARM), 138
sub (subtract) instruction (x86), 135
swap operation (atomic), 37

locking using, 76

Sync trait, 16, 86
implementing for Arc, 106
implementing for channel, 88
implementing for mutex, 183
implementing for reader-writer lock, 203
implementing for spin lock, 78
requirement by RwLock, 23

syscalls, 161
avoiding, 186, 198

SYS_futex (Linux), 167
(see also futex)
arguments, 169

T
--target (rustc), 130
teaching, 219
thin air, out of, 56
thread builder, 5
thread name, 5
Thread object, 101

id, 2
unpark, 24, 101

thread parking, 24-26, 92, 101, 167
spurious wake-ups, 25
timeout, 28

example, 34
thread safety, 9, 16-18

(see also Send and Sync traits)
keeping objects on one thread, 102

ThreadId, 2
threads, 1

joining, 3
panicking, 3, 5
returning a value, 4
scoped, 5-7
spawning, 2

thundering herd problem, 202
time travel, 12
timeout

condition variables, 28
futex, 169, 197
thread parking, 28

example, 34
total modification order, 54, 59, 90, 91

U
uncontended (mutexes), 187, 189

benchmarking, 191
undefined behavior, 12

Index | 229

borrowing, 13
data races, 11
Miri, detecting with, 110
time travel, 12

uninitialized memory, 87
Unix systems

interfacing with the kernel, 162
libc, role of, 162

unmovable
critical section (Windows), 176
Pin, 165
pthread types, 165
wrapping in Box, 165

unpark (Thread), 101
unparking (see thread parking)
unsafe code, 12
unsafe functions, 13
unsafe trait implementation, 17
UnsafeCell, 16, 78, 112

get_mut, 92
unsound, 12

V
VecDeque, 85

W
waiting (see blocking)
WaitOnAddress (Windows), 178
WakeByAddressAll (Windows), 178
WakeByAddressSingle (Windows), 178
Weak (see Arc; weak pointers)
weakly ordered architecture, 153

experiment, using relaxed instead of release
and acquire, 155-157

Windows, 175-178
condition variables, 177
critical section, 176
FlushProcessWriteBuffers, 70
interfacing with the kernel, 162
kernel-managed objects, 175
Native API, 175

process-wide memory barrier, 70
SRW locks, 176, 217
WaitOnAddress, 178
WakeByAddressAll, 178
WakeByAddressSingle, 178
Win32 API, 175

windows crate, 175
windows-sys crate, 175
wrapping behavior (fetch_add and fetch_sub),

37
(see also overflows (atomic))

wrapping unmovable object in Box, 165
write-through cache coherence protocol, 142
writer starvation, 23, 208

X
x86-64 (processor architecture), 127

other-multi-copy atomic, 151
strongly ordered, 151-153
x86_64-unknown-linux-musl target, 130

x86-64 instructions
add, 131
and, 135
btc (bit test and complement), 135
btr (bit test and reset), 135
bts (bit test and set), 135
cmpxchg (compare and exchange), 135-136
jne (jump if not equal), 136
lock prefix, 134-135
mfence (memory fence), 158
mov (move), 132
or, 135, 136
overview, 159
ret (return), 131
sub (subtract), 135
xadd (exchange and add), 135
xchg (exchange), 134, 153
xor, 135

xadd (exchange and add) instruction (x86), 135
xchg (exchange) instruction (x86), 134, 153
xor instruction (x86), 135

230 | Index

About the Author
Mara Bos maintains the Rust standard library and builds real-time control systems
in Rust. As team lead of the Rust library team, she knows all the ins and outs of the
language and the standard library. In addition, she has been working with concurrent
real-time systems for years at the company she founded. Maintaining the most-used
library in the Rust ecosystem and working daily on safety critical systems has given
her the hands-on experience to both understand the theory and bring it to practice.

Colophon
The animal on the cover of Rust Atomics and Locks is a Kodiak bear (Ursus arctos
middendorffi). This species of brown bear is endemic to the Kodiak Archipelago of
Alaska. They have been isolated from other bears for roughly 12,000 years.

Kodiak bears are one of the largest bears in the world. A male can stand 10 feet tall
on his hind legs and 5 feet tall on all four. Males can weigh up to 1,500 pounds while
females are 20% to 30% smaller. They are larger than black bears, showcasing a more
prominent shoulder hump, less prominent ears, and longer, straighter claws. While
they are a type of brown bear, they cannot be easily identified by the color of their fur,
which can range from dark brown to light blonde.

The Kodiak Archipelago hosts a pristine landscape for the bears. Its temperate forests
are full of lush greenery that flourishes due to ample amounts of rain. Winters on the
archipelago are long and cold, followed by mild summers. The bears take advantage
of the climate by optimizing their diet for whatever is in season. During spring and
early summer they feed on rapidly growing grasses. Berries are consumed during
late summer and early fall. Salmon runs last from May through September, and
the bears feast on Pacific salmon that spawn in nearby lakes and streams. They are
easily adaptable and can be drawn to improperly stored garbage and food at human
campsites and homes.

Kodiak bears were once actively hunted to protect livestock, but hunting is now regu‐
lated to keep the population thriving. As a result, Kodiak bears have a conservation
status of Least Concern. Many of the animals on O’Reilly covers are endangered; all
of them are important to the world.

The cover illustration is by Karen Montgomery, based on a black-and-white engrav‐
ing from Zoology. The cover fonts are Gilroy Semibold and Guardian Sans. The text
font is Adobe Minion Pro; the heading font is Adobe Myriad Condensed; and the
code font is Dalton Maag’s Ubuntu Mono.

Learn from experts.
Become one yourself.
Books | Live online courses
Instant Answers | Virtual events
Videos | Interactive learning

Get started at oreilly.com.

©
20

22
 O

’R
ei

lly
 M

ed
ia

, I
nc

. O
’R

ei
lly

 is
 a

 re
gi

st
er

ed
 tr

ad
em

ar
k

of
 O

’R
ei

lly
 M

ed
ia

, I
nc

. |
 17

5

https://oreilly.com

	Cover
	Copyright
	Table of Contents
	Foreword
	Preface
	Who This Book Is For
	Overview of the Chapters
	Code Examples
	Conventions Used in This Book
	Contact Information
	Acknowledgments

	Chapter 1. Basics of Rust Concurrency
	Threads in Rust
	Scoped Threads
	Shared Ownership and Reference Counting
	Statics
	Leaking
	Reference Counting

	Borrowing and Data Races
	Interior Mutability
	Cell
	RefCell
	Mutex and RwLock
	Atomics
	UnsafeCell

	Thread Safety: Send and Sync
	Locking: Mutexes and RwLocks
	Rust’s Mutex
	Lock Poisoning
	Reader-Writer Lock

	Waiting: Parking and Condition Variables
	Thread Parking
	Condition Variables

	Summary

	Chapter 2. Atomics
	Atomic Load and Store Operations
	Example: Stop Flag
	Example: Progress Reporting
	Example: Lazy Initialization

	Fetch-and-Modify Operations
	Example: Progress Reporting from Multiple Threads
	Example: Statistics
	Example: ID Allocation

	Compare-and-Exchange Operations
	Example: ID Allocation Without Overflow
	Example: Lazy One-Time Initialization

	Summary

	Chapter 3. Memory Ordering
	Reordering and Optimizations
	The Memory Model
	Happens-Before Relationship
	Spawning and Joining

	Relaxed Ordering
	Release and Acquire Ordering
	Example: Locking
	Example: Lazy Initialization with Indirection

	Consume Ordering
	Sequentially Consistent Ordering
	Fences
	Common Misconceptions
	Summary

	Chapter 4. Building Our Own Spin Lock
	A Minimal Implementation
	An Unsafe Spin Lock
	A Safe Interface Using a Lock Guard
	Summary

	Chapter 5. Building Our Own Channels
	A Simple Mutex-Based Channel
	An Unsafe One-Shot Channel
	Safety Through Runtime Checks
	Safety Through Types
	Borrowing to Avoid Allocation
	Blocking
	Summary

	Chapter 6. Building Our Own “Arc”
	Basic Reference Counting
	Testing It
	Mutation

	Weak Pointers
	Testing It

	Optimizing
	Summary

	Chapter 7. Understanding the Processor
	Processor Instructions
	Load and Store
	Read-Modify-Write Operations
	Load-Linked and Store-Conditional Instructions

	Caching
	Cache Coherence
	Impact on Performance

	Reordering
	Memory Ordering
	x86-64: Strongly Ordered
	ARM64: Weakly Ordered
	An Experiment
	Memory Fences

	Summary

	Chapter 8. Operating System Primitives
	Interfacing with the Kernel
	POSIX
	Wrapping in Rust

	Linux
	Futex
	Futex Operations
	Priority Inheritance Futex Operations

	macOS
	os_unfair_lock

	Windows
	Heavyweight Kernel Objects
	Lighter-Weight Objects
	Address-Based Waiting

	Summary

	Chapter 9. Building Our Own Locks
	Mutex
	Avoiding Syscalls
	Optimizing Further
	Benchmarking

	Condition Variable
	Avoiding Syscalls
	Avoiding Spurious Wake-ups

	Reader-Writer Lock
	Avoiding Busy-Looping Writers
	Avoiding Writer Starvation

	Summary

	Chapter 10. Ideas and Inspiration
	Semaphore
	RCU
	Lock-Free Linked List
	Queue-Based Locks
	Parking Lot–Based Locks
	Sequence Lock
	Teaching Materials

	Index
	About the Author
	Colophon

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

