Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

Introduction

Participation

If you are interested in contributing to this book, chu

Design patterns

In software development, we often come across prc
regardless of the environment they appear in. Altho
crucial to solve the task at hand, we may abstract fr«
common practices that are generically applicable.

Design patterns are a collection of reusable and tes:
engineering. They make our software more modula
Moreover, these patterns provide a common languc
excellent tool for effective communication when prc

Design patterns in Rust

Rust is not object-oriented, and the combination of
functional elements, a strong type system, and the |
Because of this, Rust design patterns vary with resp
oriented programming languages. That's why we de
enjoy reading it! The book is divided in three main ¢

e |dioms: guidelines to follow when coding. They
community. You should break them only if yot
e Design patterns: methods to solve common pr
e Anti-patterns: methods to solve common prob
design patterns give us benefits, anti-patterns

1 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#introduction
https://rust-unofficial.github.io/patterns/print.html#introduction
https://rust-unofficial.github.io/patterns/print.html#participation
https://rust-unofficial.github.io/patterns/print.html#participation
https://rust-unofficial.github.io/patterns/print.html#design-patterns
https://rust-unofficial.github.io/patterns/print.html#design-patterns
https://rust-unofficial.github.io/patterns/print.html#design-patterns-in-rust
https://rust-unofficial.github.io/patterns/print.html#design-patterns-in-rust
https://rust-unofficial.github.io/patterns/idioms/index.html
https://rust-unofficial.github.io/patterns/idioms/index.html
https://rust-unofficial.github.io/patterns/patterns/index.html
https://rust-unofficial.github.io/patterns/patterns/index.html
https://rust-unofficial.github.io/patterns/anti_patterns/index.html
https://rust-unofficial.github.io/patterns/anti_patterns/index.html

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

Translations

We are utilizing mdbook-i18n-helper. Please read uj
translations in their repository

External translations
o AT

If you want to add a translation, please open an isst

2 0f 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#translations
https://rust-unofficial.github.io/patterns/print.html#translations
https://github.com/google/mdbook-i18n-helpers
https://github.com/google/mdbook-i18n-helpers
https://github.com/google/mdbook-i18n-helpers#creating-and-updating-translations
https://github.com/google/mdbook-i18n-helpers#creating-and-updating-translations
https://rust-unofficial.github.io/patterns/print.html#external-translations
https://rust-unofficial.github.io/patterns/print.html#external-translations
https://fomalhauthmj.github.io/patterns/
https://fomalhauthmj.github.io/patterns/

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

Idioms

ldioms are commonly used styles, guidelines and pe
community. Writing idiomatic code allows other dev
happening.

After all, the computer only cares about the machin
compiler. Instead, the source code is mainly benefic
this abstraction layer, why not make it more readab

Remember the KISS principle: “Keep It Simple, Stupi
best if they are kept simple rather than made comp
a key goal in design, and unnecessary complexity st

Code is there for humans, not computers, to und

3 0f136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#idioms
https://rust-unofficial.github.io/patterns/print.html#idioms
https://en.wikipedia.org/wiki/Programming_idiom
https://en.wikipedia.org/wiki/Programming_idiom
https://en.wikipedia.org/wiki/KISS_principle
https://en.wikipedia.org/wiki/KISS_principle

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

Use borrowed types for .

Description

Using a target of a deref coercion can increase the f
deciding which argument type to use for a function
will accept more input types.

This is not limited to slice-able or fat pointer types. |
the borrowed type over borrowing the owned tyg
over &Vec<T>, Or &T Over &Box<T>.

Using borrowed types you can avoid layers of indire
owned type already provides a layer of indirection. |
indirection, so a &string will have two layers of ind
&str instead, and letting &String coerceto a &sti

Example

For this example, we will illustrate some differences
argument versus using a &str, but the ideas apply
a &[T] orusing a &Box<T> versusa &T.

Consider an example where we wish to determine i
vowels. We don't need to own the string to determir

The code might look something like this:

4 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#use-borrowed-types-for-arguments
https://rust-unofficial.github.io/patterns/print.html#use-borrowed-types-for-arguments
https://rust-unofficial.github.io/patterns/print.html#description
https://rust-unofficial.github.io/patterns/print.html#description
https://rust-unofficial.github.io/patterns/print.html#example
https://rust-unofficial.github.io/patterns/print.html#example

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

fn three_vowels(word: &String) -> bool {
let mut vowel_count = 0;
for ¢ in word.chars() {
match c {
Ial | lel | I-il | lol | Iul :> {
vowel_count += 1;
if vowel_count >= 3 {
return true

}
}
_ => vowel_count = 0
}
}
false
}
fn main() {
let ferris = "Ferris".to_string();
let curious = "Curious".to_string();
println! ("{}: {}", ferris, three_vowels(¢
println! ("{}: {}", curious, three_vowels|
// This works fine, but the following twc
// println! ("Ferris: {}", three_vowels("I
// println! ("Curious: {}", three_vowels("
}

This works fine because we are passing a &String 1
comments on the last two lines, the example will fai
coerce to a &String type. We can fix this by simply

For instance, if we change our function declaration t

fn three_vowels(word: &str) -> bool {

then both versions will compile and print the same «

Ferris: false
Curious: true

But wait, that's not all! There is more to this story. It
that doesn't matter, | will never be using a &'stat-ic
when we used "Ferris"). Even ignoring this specia
using &str will give you more flexibility than using .

Let's now take an example where someone gives us
determine if any of the words in the sentence conta
probably should make use of the function we have «
each word from the sentence.

50f136 10/25/23, 12:58

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

An example of this could look like this:

fn three_vowels(word: &str) -> bool {
let mut vowel_count = 0;
for ¢ in word.chars() {
match ¢ {
lal I lel | l-il I lol | lul :> {
vowel_count += 1;
if vowel_count >= 3 {
return true

}
}
_ => vowel_count = 0
}
}
false
}
fn main() {

let sentence_string =
"Once upon a time, there was a frienc
Ferris".to_string();
for word in sentence_string.split(' ') {
if three_vowels(word) {
println! ("{} has three consecuti\

}

Running this example using our function declared w
curious has three consecutive vowels!

However, this example will not run when our functic
&String . This is because string slices are a &str ar
require an allocation to be converted to &String w
converting from String to &str is cheap and impl

See also

e Rust Language Reference on Type Coercions
e For more discussion on how to handle String
by Herman J. Radtke Il

6 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#see-also
https://rust-unofficial.github.io/patterns/print.html#see-also
https://doc.rust-lang.org/reference/type-coercions.html
https://doc.rust-lang.org/reference/type-coercions.html

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

Concatenating strings w

Description

It is possible to build up strings using the push and
String, Or using its + operator. However, it is ofte
especially where there is a mix of literal and non-lite

Example

fn say_hello(name: &str) -> String {
// We could construct the result string n
// let mut result = "Hello ".to_owned();
// result.push_str(name);
// result.push('!");
// result

// But using format! is better.
format! ("Hello {}!", name)

Advantages

Using format! is usually the most succinct and reat

Disadvantages

It is usually not the most efficient way to combine st
a mutable string is usually the most efficient (especi
allocated to the expected size).

7 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#concatenating-strings-with-format
https://rust-unofficial.github.io/patterns/print.html#concatenating-strings-with-format
https://rust-unofficial.github.io/patterns/print.html#description-1
https://rust-unofficial.github.io/patterns/print.html#description-1
https://rust-unofficial.github.io/patterns/print.html#example-1
https://rust-unofficial.github.io/patterns/print.html#example-1
https://rust-unofficial.github.io/patterns/print.html#advantages
https://rust-unofficial.github.io/patterns/print.html#advantages
https://rust-unofficial.github.io/patterns/print.html#disadvantages
https://rust-unofficial.github.io/patterns/print.html#disadvantages

Rust Design Patterns

https://rust-unofficial.github.io/patterns/print.html

Constructors

Description

Rust does not have constructors as a language cons
use an associated function new to create an object:

/1]
/17
/17
/17
/1]
/17
/17
/17
pub

}

Time in seconds.

Example

DNEENEN

let s = Second::new(42);
assert_eq! (42, s.value());

struct Second {
value: u64

impl Second {

// Constructs a new instance of [Second’
// Note this is an associated function -
pub fn new(value: u64) -> Self {

Self { value }
}

/// Returns the value in seconds.
pub fn value(&self) -> u64 {
self.value

}

Default Constructors

Rust supports default constructors with the befaul

8 of 136

10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#constructors
https://rust-unofficial.github.io/patterns/print.html#constructors
https://rust-unofficial.github.io/patterns/print.html#description-2
https://rust-unofficial.github.io/patterns/print.html#description-2
https://doc.rust-lang.org/stable/book/ch05-03-method-syntax.html#associated-functions
https://doc.rust-lang.org/stable/book/ch05-03-method-syntax.html#associated-functions
https://rust-unofficial.github.io/patterns/print.html#default-constructors
https://rust-unofficial.github.io/patterns/print.html#default-constructors
https://doc.rust-lang.org/stable/std/default/trait.Default.html
https://doc.rust-lang.org/stable/std/default/trait.Default.html
https://doc.rust-lang.org/stable/std/default/trait.Default.html

Rust Design Patterns

9 0of 136

https://rust-unofficial.github.io/patterns/print.html

/// Time in seconds.

/1]

/// # Example
/1]

/1]

/// let s = Second::default();
/// assert_eq! (0, s.value());
/1]
pub struct Second {

value: u64

}

impl Second {
/// Returns the value in seconds.
pub fn value(&self) -> u64 {
self.value
}
}

impl Default for Second {
fn default() -> Self {
Self { value: 0 }
}

Default can also be derived if all types of all fields

Second :

/// Time in seconds.

/17

/// # Example
/1]

/11"

/// let s = Second::default();
/// assert_eq! (0, s.value());
/1]
#[derive(Default)]
pub struct Second {

value: u64

}

impl Second {
/// Returns the value in seconds.
pub fn value(&self) -> u64 {
self.value

}

Note: It is common and expected for types to imple

new constructor. new is the constructor conventior

so if it is reasonable for the basic constructor to tak
it is functionally identical to default.

10/25/23, 12:58

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

Hint: The advantage of implementing or deriving D
used where a pefault implementation is required,
xor_default functions in the standard library.

See also

e The default idiom for a more in-depth descript

e The builder pattern for constructing objects wil
configurations.

e API Guidelines/C-COMMON-TRAITS for implerr

10 of 136 10/25/23, 12:58

https://doc.rust-lang.org/stable/std/?search=or_default
https://doc.rust-lang.org/stable/std/?search=or_default
https://doc.rust-lang.org/stable/std/?search=or_default
https://doc.rust-lang.org/stable/std/?search=or_default
https://rust-unofficial.github.io/patterns/print.html#see-also-1
https://rust-unofficial.github.io/patterns/print.html#see-also-1
https://rust-unofficial.github.io/patterns/idioms/default.html
https://rust-unofficial.github.io/patterns/idioms/default.html
https://rust-unofficial.github.io/patterns/patterns/creational/builder.html
https://rust-unofficial.github.io/patterns/patterns/creational/builder.html
https://rust-lang.github.io/api-guidelines/interoperability.html#types-eagerly-implement-common-traits-c-common-traits
https://rust-lang.github.io/api-guidelines/interoperability.html#types-eagerly-implement-common-traits-c-common-traits

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

The Default Trait

Description

Many types in Rust have a constructor. However, th
abstract over “everything that has a new() method’
conceived, which can be used with containers and o
Option::unwrap_or_default()). Notably, some cor
applicable.

Not only do one-element containers like Cow, Box
contained Default types, one can automatically #[
fields all implement it, so the more types implemen
becomes.

On the other hand, constructors can take multiple a
method does not. There can even be multiple const
there can only be one Default implementation per

Example

11 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#the-default-trait
https://rust-unofficial.github.io/patterns/print.html#the-default-trait
https://rust-unofficial.github.io/patterns/print.html#the-default-trait
https://rust-unofficial.github.io/patterns/print.html#the-default-trait
https://rust-unofficial.github.io/patterns/print.html#the-default-trait
https://rust-unofficial.github.io/patterns/print.html#description-3
https://rust-unofficial.github.io/patterns/print.html#description-3
https://rust-unofficial.github.io/patterns/idioms/ctor.html
https://rust-unofficial.github.io/patterns/idioms/ctor.html
https://doc.rust-lang.org/stable/std/option/enum.Option.html#method.unwrap_or_default
https://doc.rust-lang.org/stable/std/option/enum.Option.html#method.unwrap_or_default
https://doc.rust-lang.org/stable/std/option/enum.Option.html#method.unwrap_or_default
https://rust-unofficial.github.io/patterns/print.html#example-2
https://rust-unofficial.github.io/patterns/print.html#example-2

Rust Design Patterns

12 of 136

https://rust-unofficial.github.io/patterns/print.html

use std::{path::PathBuf, time::Duration};

// note that we can simply auto-derive Defaul
#[derive(Default, Debug, PartialEq)]
struct MyConfiguration {

}

// Option defaults to None
output: Option<PathBuf>,

// Vecs default to empty vector
search_path: Vec<PathBuf>,

// Duration defaults to zero time
timeout: Duration,

// bool defaults to false

check: bool,

impl MyConfiguration {

}

// add setters here

fn main() {

// construct a new instance with default
let mut conf = MyConfiguration::default(
// do something with conf here
conf.check = true;

println! ("conf = {:#?}", conf);

// partial initialization with default ve
let confl = MyConfiguration {

check: true,

..Default::default()
}s

assert_eq! (conf, confl);

See also

e The constructor idiom is another way to gener

“default”

e The pefault documentation (scroll down for f
e Option::unwrap_or_default()

e derive(new)

10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#see-also-2
https://rust-unofficial.github.io/patterns/print.html#see-also-2
https://rust-unofficial.github.io/patterns/idioms/ctor.html
https://rust-unofficial.github.io/patterns/idioms/ctor.html
https://doc.rust-lang.org/stable/std/default/trait.Default.html
https://doc.rust-lang.org/stable/std/default/trait.Default.html
https://doc.rust-lang.org/stable/std/default/trait.Default.html
https://doc.rust-lang.org/stable/std/option/enum.Option.html#method.unwrap_or_default
https://doc.rust-lang.org/stable/std/option/enum.Option.html#method.unwrap_or_default
https://doc.rust-lang.org/stable/std/option/enum.Option.html#method.unwrap_or_default
https://crates.io/crates/derive-new/
https://crates.io/crates/derive-new/
https://crates.io/crates/derive-new/

Rust Design Patterns

13 of 136

https://rust-unofficial.github.io/patterns/print.html

Collections are smart po

Description

Use the Deref trait to treat collections like smart pc
views of data.

Example

use std::ops::Deref;

struct Vec<T> {
data: RawVec<T>,

/1]
}

impl<T> Deref for Vec<T> {
type Target = [T];

fn deref(&self) -> &[T] {

/]
}

A Vec<T> is an owning collection of T s, while a slic
T s. Implementing Deref for vec allows implicit de
and includes the relationship in auto-derefencing se
expect to be implemented for vec s are instead img

Also string and &str have a similar relation.

Motivation

Ownership and borrowing are key aspects of the Ru
account for these semantics properly to give a good
a data structure that owns its data, offering a borro
flexible APIs.

10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#collections-are-smart-pointers
https://rust-unofficial.github.io/patterns/print.html#collections-are-smart-pointers
https://rust-unofficial.github.io/patterns/print.html#description-4
https://rust-unofficial.github.io/patterns/print.html#description-4
https://doc.rust-lang.org/std/ops/trait.Deref.html
https://doc.rust-lang.org/std/ops/trait.Deref.html
https://doc.rust-lang.org/std/ops/trait.Deref.html
https://rust-unofficial.github.io/patterns/print.html#example-3
https://rust-unofficial.github.io/patterns/print.html#example-3
https://rust-unofficial.github.io/patterns/print.html#motivation
https://rust-unofficial.github.io/patterns/print.html#motivation

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

Advantages

Most methods can be implemented only for the bor
available for the owning view.

Gives clients a choice between borrowing or taking «

Disadvantages

Methods and traits only available via dereferencing
bounds checking, so generic programming with dat:
complex (see the Borrow and AsRef traits, etc.).

Discussion

Smart pointers and collections are analogous: a sm:
whereas a collection points to many objects. From t
there is little difference between the two. A collectio
access each datum is via the collection and the colle
data (even in cases of shared ownership, some kind
appropriate). If a collection owns its data, it is usuall
as borrowed so that it can be referenced multiple ti

Most smart pointers (e.g., Foo<T>)implement Dere
will usually dereference to a custom type. [T] and
but in the general case, this is not necessary. Foo<T
Deref<Target=Bar<T>> where Bar is a dynamically
borrowed view of the data in Foo<T>.

Commonly, ordered collections will implement Inde
syntax. The target will be the borrowed view.

See also

e Deref polymorphism anti-pattern.
e Documentation for Deref trait.

14 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#advantages-1
https://rust-unofficial.github.io/patterns/print.html#advantages-1
https://rust-unofficial.github.io/patterns/print.html#disadvantages-1
https://rust-unofficial.github.io/patterns/print.html#disadvantages-1
https://rust-unofficial.github.io/patterns/print.html#discussion
https://rust-unofficial.github.io/patterns/print.html#discussion
https://rust-unofficial.github.io/patterns/print.html#see-also-3
https://rust-unofficial.github.io/patterns/print.html#see-also-3
https://rust-unofficial.github.io/patterns/anti_patterns/deref.html
https://rust-unofficial.github.io/patterns/anti_patterns/deref.html
https://doc.rust-lang.org/std/ops/trait.Deref.html
https://doc.rust-lang.org/std/ops/trait.Deref.html
https://doc.rust-lang.org/std/ops/trait.Deref.html
https://doc.rust-lang.org/std/ops/trait.Deref.html
https://doc.rust-lang.org/std/ops/trait.Deref.html

Rust Design Patterns

15 0of 136

https://rust-unofficial.github.io/patterns/print.html

Finalisation in destructac

Description

Rust does not provide the equivalentto finally bl
matter how a function is exited. Instead, an object’s
that must be run before exit.

Example

fn bar() -> Result<(), ()> {
// These don't need to be defined -inside
struct Foo;

// Implement a destructor for Foo.
impl Drop for Foo {
fn drop(&mut self) {
println! ("exit");
}
}

// The dtor of _exit will run however the
let _exit = Foo;
// Implicit return with “?° operator.

baz()?;
// Normal return.
Ok (())
}
Motivation

If a function has muiltiple return points, then execut
repetitive (and thus bug-prone). This is especially th
a macro. A common case is the ? operator which re
continues if itis ok . ? is used as an exception hanc
(which has finally), there is no way to schedule cc
exceptional cases. Panicking will also exit a function

10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#finalisation-in-destructors
https://rust-unofficial.github.io/patterns/print.html#finalisation-in-destructors
https://rust-unofficial.github.io/patterns/print.html#description-5
https://rust-unofficial.github.io/patterns/print.html#description-5
https://rust-unofficial.github.io/patterns/print.html#example-4
https://rust-unofficial.github.io/patterns/print.html#example-4
https://rust-unofficial.github.io/patterns/print.html#motivation-1
https://rust-unofficial.github.io/patterns/print.html#motivation-1

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

Advantages

Code in destructors will (nearly) always be run - cop

Disadvantages

It is not guaranteed that destructors will run. For ex.
function or if running a function crashes before exit
case of a panic in an already panicking thread. Ther:
as finalizers where it is absolutely essential that fina

This pattern introduces some hard to notice, implici
clear indication of destructors to be run on exit. Thi

Requiring an object and Drop impl just for finalisati

Discussion

There is some subtlety about how exactly to store tt
be kept alive until the end of the function and must
always be a value or uniquely owned pointer (e.g., ¢
Rc) is used, then the finalizer can be kept alive beyc
similar reasons, the finalizer should not be moved o

The finalizer must be assigned into a variable, other
rather than when it goes out of scope. The variable
variable is only used as a finalizer, otherwise the cor
never used. However, do not call the variable _ wit
destroyed immediately.

In Rust, destructors are run when an object goes ou
reach the end of block, there is an early return, or tf
Rust unwinds the stack running destructors for eact
destructors get called even if the panic happens in ¢

If a destructor panics while unwinding, thereisno g
thread immediately, without running further destru
not absolutely guaranteed to run. It also means that
destructors not to panic, since it could leave resourc

16 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#advantages-2
https://rust-unofficial.github.io/patterns/print.html#advantages-2
https://rust-unofficial.github.io/patterns/print.html#disadvantages-2
https://rust-unofficial.github.io/patterns/print.html#disadvantages-2
https://rust-unofficial.github.io/patterns/print.html#discussion-1
https://rust-unofficial.github.io/patterns/print.html#discussion-1

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

See also

RAIl guards.

17 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#see-also-4
https://rust-unofficial.github.io/patterns/print.html#see-also-4
https://rust-unofficial.github.io/patterns/patterns/behavioural/RAII.html
https://rust-unofficial.github.io/patterns/patterns/behavioural/RAII.html

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

mem: : {take(_), repl:
owned values in change

Description

Say we have a &mut MyEnum which has (at least) twc
} and B { name: String }.Now we want to chang
while keeping MyEnum::B intact.

We can do this without cloning the name .

Example

use std::mem;

enum MyEnum {
A { name: String, x: u8 },
B { name: String }

}

fn a_to_b(e: &mut MyEnum) {
if let MyEnum::A { name, x: 0 } = e {
// This takes out our “name’ and puts
// (note that empty strings don't all
// Then, construct the new enum vari:
// be assigned to “xe’).
*e = MyEnum::B { name: mem: :take (name

This also works with more variants:

18 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#memtake_-replace_-to-keep-owned-values-in-changed-enums
https://rust-unofficial.github.io/patterns/print.html#memtake_-replace_-to-keep-owned-values-in-changed-enums
https://rust-unofficial.github.io/patterns/print.html#memtake_-replace_-to-keep-owned-values-in-changed-enums
https://rust-unofficial.github.io/patterns/print.html#memtake_-replace_-to-keep-owned-values-in-changed-enums
https://rust-unofficial.github.io/patterns/print.html#memtake_-replace_-to-keep-owned-values-in-changed-enums
https://rust-unofficial.github.io/patterns/print.html#description-6
https://rust-unofficial.github.io/patterns/print.html#description-6
https://rust-unofficial.github.io/patterns/print.html#example-5
https://rust-unofficial.github.io/patterns/print.html#example-5

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

use std::mem;

enum MultiVariateEnum {
A { name: String },
B { name: String },
c,
D

}

fn swizzle(e: &mut MultiVariateEnum) {
use MultiVariateEnum: :x*;
*e = match e {
// Ownership rules do not allow takir
// take the value out of a mutable re
A { name } => B { name: mem::take(narn
B { name } => A { name: mem: :take(nan

Cc => D,
D =>C
}
}
Motivation

When working with enums, we may want to change
another variant. This is usually done in two phases t
the first phase, we observe the existing value and lo
next. In the second phase we may conditionally cha
above).

The borrow checker won't allow us to take out name
must be there.) We could of course .clone() name
MyEnum: :B, but that would be an instance of the Cl¢
pattern. Anyway, we can avoid the extra allocation t
borrow.

mem: : take lets us swap out the value, replacing it w

the previous value. For string, the default value is
need to allocate. As a result, we get the original nam
wrap this in another enum.

NOTE: mem: :replace is very similar, but allows ust
with. An equivalent to our mem::take line would be
String::new()) .

Note, however, that if we are using an oOption and
Option’s take() method provides a shorter and

19 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#motivation-2
https://rust-unofficial.github.io/patterns/print.html#motivation-2
https://rust-unofficial.github.io/patterns/anti_patterns/borrow_clone.html
https://rust-unofficial.github.io/patterns/anti_patterns/borrow_clone.html

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

Advantages

Look ma, no allocation! Also you may feel like Indiar

Disadvantages

This gets a bit wordy. Getting it wrong repeatedly wi
The compiler may fail to optimize away the double ¢
performance as opposed to what you'd do in unsafe

Furthermore, the type you are taking needs to imple
the type you're working with doesn’t implement this

Discussion

This pattern is only of interest in Rust. In GC'd langu
value by default (and the GC would keep track of ref
like C you'd simply alias the pointer and fix things la

However, in Rust, we have to do a little more work t
have one owner, so to take it out, we need to put so
replacing the artifact with a bag of sand.

See also

This gets rid of the Clone to satisfy the borrow checl

20 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#advantages-3
https://rust-unofficial.github.io/patterns/print.html#advantages-3
https://rust-unofficial.github.io/patterns/print.html#disadvantages-3
https://rust-unofficial.github.io/patterns/print.html#disadvantages-3
https://rust-unofficial.github.io/patterns/print.html#discussion-2
https://rust-unofficial.github.io/patterns/print.html#discussion-2
https://rust-unofficial.github.io/patterns/print.html#see-also-5
https://rust-unofficial.github.io/patterns/print.html#see-also-5
https://rust-unofficial.github.io/patterns/anti_patterns/borrow_clone.html
https://rust-unofficial.github.io/patterns/anti_patterns/borrow_clone.html

Rust Design Patterns

21 of 136

https://rust-unofficial.github.io/patterns/print.html

On-Stack Dynamic Dispa

Description

We can dynamically dispatch over multiple values, h
multiple variables to bind differently-typed objects.
we can use deferred conditional initialization, as see

Example

use std::i0;
use std::fs;

// These must live longer than “readable’, ar
let (mut stdin_read, mut file_read);

// We need to ascribe the type to get dynamic
let readable: &mut dyn io::Read = if arg == "
stdin_read = 1do::stdin();
&mut stdin_read
} else {
file_read = fs::File::open(arg)?;
&mut file_read
}s

// Read from 'readable’ here.

Motivation

Rust monomorphises code by default. This means a
for each type it is used with and optimized indepenc
code on the hot path, it also bloats the code in place
essence, thus costing compile time and cache usage

Luckily, Rust allows us to use dynamic dispatch, but

Advantages

10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#on-stack-dynamic-dispatch
https://rust-unofficial.github.io/patterns/print.html#on-stack-dynamic-dispatch
https://rust-unofficial.github.io/patterns/print.html#description-7
https://rust-unofficial.github.io/patterns/print.html#description-7
https://rust-unofficial.github.io/patterns/print.html#example-6
https://rust-unofficial.github.io/patterns/print.html#example-6
https://rust-unofficial.github.io/patterns/print.html#motivation-3
https://rust-unofficial.github.io/patterns/print.html#motivation-3
https://rust-unofficial.github.io/patterns/print.html#advantages-4
https://rust-unofficial.github.io/patterns/print.html#advantages-4

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

We do not need to allocate anything on the heap. N
something we won't use later, nor do we need to m
follows to work with both File or stdin.

Disadvantages
The code needs more moving parts than the Box -b

// We still need to ascribe the type for dyn:
let readable: Box<dyn 1io::Read> = 1if arg =="
Box::new(io::stdin())
} else {
Box::new(fs::File::open(arg)?)
}s

// Read from ‘readable’ here.

Discussion

Rust newcomers will usually learn that Rust require:
use, so it's easy to overlook the fact that unused vari
works quite hard to ensure that this works out fine .
dropped at the end of their scope.

The example meets all the constraints Rust places o

e All variables are initialized before using (in this
e Each variable only holds values of a single type

Stdin, file isoftype File and readable is
e Each borrowed value outlives all the reference

See also

e Finalisation in destructors and RAIl guards can
lifetimes.

e For conditionally filled option<&T> s of (mutab
Option<T> directly and useits .as_ref() me

22 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#disadvantages-4
https://rust-unofficial.github.io/patterns/print.html#disadvantages-4
https://rust-unofficial.github.io/patterns/print.html#discussion-3
https://rust-unofficial.github.io/patterns/print.html#discussion-3
https://rust-unofficial.github.io/patterns/print.html#see-also-6
https://rust-unofficial.github.io/patterns/print.html#see-also-6
https://rust-unofficial.github.io/patterns/idioms/dtor-finally.html
https://rust-unofficial.github.io/patterns/idioms/dtor-finally.html
https://rust-unofficial.github.io/patterns/patterns/behavioural/RAII.html
https://rust-unofficial.github.io/patterns/patterns/behavioural/RAII.html
https://doc.rust-lang.org/std/option/enum.Option.html#method.as_ref
https://doc.rust-lang.org/std/option/enum.Option.html#method.as_ref
https://doc.rust-lang.org/std/option/enum.Option.html#method.as_ref

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

FFI Idioms

Writing FFI code is an entire course in itself. Howeve
can act as pointers, and avoid traps for inexperience

This section contains idioms that may be useful whe

1. Idiomatic Errors - Error handling with integer c
as NULL pointers)

2. Accepting Strings with minimal unsafe code

3. Passing Strings to FFI functions

23 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#ffi-idioms
https://rust-unofficial.github.io/patterns/print.html#ffi-idioms
https://rust-unofficial.github.io/patterns/idioms/ffi/errors.html
https://rust-unofficial.github.io/patterns/idioms/ffi/errors.html
https://rust-unofficial.github.io/patterns/idioms/ffi/accepting-strings.html
https://rust-unofficial.github.io/patterns/idioms/ffi/accepting-strings.html
https://rust-unofficial.github.io/patterns/idioms/ffi/passing-strings.html
https://rust-unofficial.github.io/patterns/idioms/ffi/passing-strings.html

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

Error Handling in FFI

Description

In foreign languages like C, errors are represented t
system allows much more rich error information to
a full type.

This best practice shows different kinds of error coc
usable way:

1. Flat Enums should be converted to integers an

2. Structured Enums should be converted to an il
message for detail.

3. Custom Error Types should become “transpare

Code Example

Flat Enums

enum DatabaseError {
IsReadOnly = 1, // user attempted a write
IOError = 2, // user should read the C e
FileCorrupted = 3, // user should run a 1

}

impl From<DatabaseError> for libc::c_int {
fn from(e: DatabaseError) -> libc::c_int
(e as 1i8).1into()
}

Structured Enums

24 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#error-handling-in-ffi
https://rust-unofficial.github.io/patterns/print.html#error-handling-in-ffi
https://rust-unofficial.github.io/patterns/print.html#description-8
https://rust-unofficial.github.io/patterns/print.html#description-8
https://rust-unofficial.github.io/patterns/print.html#code-example
https://rust-unofficial.github.io/patterns/print.html#code-example
https://rust-unofficial.github.io/patterns/print.html#flat-enums
https://rust-unofficial.github.io/patterns/print.html#flat-enums
https://rust-unofficial.github.io/patterns/print.html#structured-enums
https://rust-unofficial.github.io/patterns/print.html#structured-enums

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

pub mod errors {
enum DatabaseError {
IsReadOnly,
IOError(std::io::Error),
FileCorrupted(String), // message des
}

impl From<DatabaseError> for libc::c_int
fn from(e: DatabaseError) -> libc::c_
match e {
DatabaseError::IsReadOnly =>
DatabaseError::I0OError(_) =>
DatabaseError::FileCorruptedi

}

pub mod c_api {
use super::errors::DatabaseError;

#[no_mangle]

pub extern "C" fn db_error_description(
e: *const DatabaseError
) => xmut libc::c_char {

let error: &DatabaseError = unsafe {
// SAFETY: pointer lifetime s gi
frame
&xe

}s

let error_str: String = match error {
DatabaseError::IsReadOnly => {
format! ("cannot write to reac
}
DatabaseError::I0Error(e) => {
format! ("I/0 Error: {}", e);
}
DatabaseError::FileCorrupted(s) =
format! ("File corrupted, run
}
}s

let c_error = unsafe {
// SAFETY: copying error_str to ¢
// character at the end
let mut malloc: *mut u8 = libc::n
mut _;

if malloc.is_null() {
return std::ptr::null_mut();
}

let src = error_str.as_bytes().as

25 of 136 10/25/23, 12:58

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

std::ptr::copy_nonoverlapping(src
std::ptr::write(malloc.add(error_

malloc as *mut libc::c_char

}s

c_error

Custom Error Types

struct ParseError {
expected: char,
line: u32,
ch: ule

}

impl ParseError { /x ... x/ }

/* Create a second version which is exposed ¢
#[repr(C)]
pub struct parse_error {
pub expected: 1libc::c_char,
pub line: u32,
pub ch: ulé6
}

impl From<ParseError> for parse_error {
fn from(e: ParseError) -> parse_error {
let ParseError { expected, line, ch]
parse_error { expected, line, ch }

Advantages

This ensures that the foreign language has clear acc
compromising the Rust code’s API at all.

Disadvantages

It's a lot of typing, and some types may not be able

26 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#custom-error-types
https://rust-unofficial.github.io/patterns/print.html#custom-error-types
https://rust-unofficial.github.io/patterns/print.html#advantages-5
https://rust-unofficial.github.io/patterns/print.html#advantages-5
https://rust-unofficial.github.io/patterns/print.html#disadvantages-5
https://rust-unofficial.github.io/patterns/print.html#disadvantages-5

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

Accepting Strings

Description

When accepting strings via FFI through pointers, the
followed:

1. Keep foreign strings “borrowed”, rather than ¢
2. Minimize the amount of complexity and unsaf
C-style string to native Rust strings.

Motivation

The strings used in C have different behaviours to tt

e Cstrings are null-terminated while Rust strings
e Cstrings can contain any arbitrary non-zero by
e Cstrings are accessed and manipulated using

interactions with Rust strings go through safe |

The Rust standard library comes with C equivalents
CString and &cstr, that allow us to avoid a lot of 1
involved in converting between C strings and Rust s

The &cstr type also allows us to work with borrowt
between Rust and C is a zero-cost operation.

Code Example

27 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#accepting-strings
https://rust-unofficial.github.io/patterns/print.html#accepting-strings
https://rust-unofficial.github.io/patterns/print.html#description-9
https://rust-unofficial.github.io/patterns/print.html#description-9
https://rust-unofficial.github.io/patterns/print.html#motivation-4
https://rust-unofficial.github.io/patterns/print.html#motivation-4
https://rust-unofficial.github.io/patterns/print.html#code-example-1
https://rust-unofficial.github.io/patterns/print.html#code-example-1

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

pub mod unsafe_module {
// other module content

/// Log a message at the specified level.

/17

/// # Safety

/17

/// It is the caller's guarantee to ensut
/17

/// - is not a null pointer
/// - points to valid, 1initialized data
/// - points to memory ending in a null I
/// - won't be mutated for the duration ¢
#[no_mangle]
pub unsafe extern "C" fn mylib_Tlog(

msg: *const libc::c_char,

level: libc::c_int

) {
let level: crate::LoglLevel = match 1
// SAFETY: The caller has already gu:
// “# Safety’ section of the doc-comr
let msg_str: &str = match std::ffi::(

Ok(s) => s,

Err(e) => {
crate::log_error("FFI string
return;

}

}s
crate::log(msg_str, level);
}
}
Advantages

The example is is written to ensure that:

1. The unsafe block is as small as possible.
2. The pointer with an “untracked” lifetime becon

Consider an alternative, where the string is actually

28 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#advantages-6
https://rust-unofficial.github.io/patterns/print.html#advantages-6

Rust Design Patterns

29 of 136

https://rust-unofficial.github.io/patterns/print.html

pub mod unsafe_module {
// other module content

pub extern "C" fn mylib_log(msg: *const T

{

// DO NOT USE THIS CODE.

// IT IS UGLY, VERBOSE, AND CONTAINS

let level: crate::LoglLevel = match e

let msg_len = unsafe { /* SAFETY: sti
libc::strlen(msg)

}s

let mut msg_data = Vec::with_capacit)

let msg_cstr: std::ffi::CString = uns
// SAFETY: copying from a foreigr
// for the entire stack frame 1ini
std: :ptr::copy_nonoverlapping(msg
msg_data.set_len(msg_len + 1);
std::ffi::CString::from_vec_with_

}

let msg_str: String = unsafe {
match msg_cstr.into_string() {

Ok(s) => s,

Err(e) => {
crate::log_error("FFI sti
return;

}

}
}s
crate::log(&msg_str, level);
}
}

This code in inferior to the original in two respects:

1. There is much more unsafe code, and more il
uphold.

2. Due to the extensive arithmetic required, thert
Rust undefined behaviour.

The bug here is a simple mistake in pointer arithme
bytes of it. However, the NUL terminator at the end

The Vector then had its size set to the length of the ;
to it, which could have added a zero at the end. As ¢

10/25/23, 12:58

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

uninitialized memory. When the cstring is created
the Vector will cause undefined behaviour !

Like many such issues, this would be difficult issue t
panic because the string was not UTF-8, sometime:
end of the string, sometimes it would just complete!

Disadvantages

None?

30 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#disadvantages-6
https://rust-unofficial.github.io/patterns/print.html#disadvantages-6

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

Passing Strings

Description

When passing strings to FFI functions, there are foul

1. Make the lifetime of owned strings as long as |

2. Minimize unsafe code during the conversion.

3. If the C code can modify the string data, use v

4. Unless the Foreign Function API requires it, the
transfer to the callee.

Motivation

Rust has built-in support for C-style strings with its
there are different approaches one can take with sti
function call from a Rust function.

The best practice is simple: use cString insuchav
However, a secondary caveat is that the object must
should be maximized. In addition, the documentatic
CcString after modification is UB, so additional wor

Code Example

31 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#passing-strings
https://rust-unofficial.github.io/patterns/print.html#passing-strings
https://rust-unofficial.github.io/patterns/print.html#description-10
https://rust-unofficial.github.io/patterns/print.html#description-10
https://rust-unofficial.github.io/patterns/print.html#motivation-5
https://rust-unofficial.github.io/patterns/print.html#motivation-5
https://rust-unofficial.github.io/patterns/print.html#code-example-2
https://rust-unofficial.github.io/patterns/print.html#code-example-2

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

pub mod unsafe_module {
// other module content

extern "C" {
fn seterr(message: *const libc::c_chs
fn geterr(buffer: *mut libc::c_char,
libc::c_int;

}

fn report_error_to_ffi<S: Into<String>>(
err: S

) —> Result<(), std::ffi::NulError>{
let c_err = std::ffi::CString::new(et

unsafe {
// SAFETY: calling an FFI whose ¢
// const, so no modification shot
seterr(c_err.as_ptr());

}
0k(())

// The lifetime of c_err continues ur

}

fn get_error_from_ffi() -> Result<String.
let mut buffer = vec![0Qu8; 1024];
unsafe {
// SAFETY: calling an FFI whose ¢
// that the -input need only live
let written: usize = geterr(buffe

buffer.truncate(written + 1);

}
std::ffi::CString: :new(buffer).unwraj
}
}
Advantages

The example is written in a way to ensure that:

1. The unsafe block is as small as possible.
2.The cstring lives long enough.
3. Errors with typecasts are always propagated w

A common mistake (so common it's in the documen
first block:

32 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#advantages-7
https://rust-unofficial.github.io/patterns/print.html#advantages-7

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

pub mod unsafe_module {
// other module content

fn report_error<S: Into<String>>(err: S)
std::ffi::NulError> {
unsafe {
// SAFETY: whoops, this contains
seterr(std::ffi::CString::new(ert
}
Ok (())

This code will result in a dangling pointer, because t
extended by the pointer creation, unlike if a referen

Another issue frequently raised is that the initializat
However, recent versions of Rust actually optimize t
zmalloc , meaning it is as fast as the operating syst«
(which is quite fast).

Disadvantages

None?

33 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#disadvantages-7
https://rust-unofficial.github.io/patterns/print.html#disadvantages-7

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

Iterating over an Optior

Description

Option can be viewed as a container that contains
particular, it implements the IntoIterator trait, ar
code that needs such a type.

Examples
Since option implements IntoIterator, it can be

let turing = Some("Turing");
let mut logicians = vec!["Curry", "Kleene", '

logicians.extend(turing);

// equivalent to
if let Some(turing_inner) = turing {
logicians.push(turing_inner);

}

If you need to tack an option to the end of an exist

.chain() :

let turing = Some("Turing");
let logicians = vec!["Curry", "Kleene", "Marl

for logician in logicians.iter().chain(turing

println! ("{} is a logician", logician);

}

Note that if the option is always Some, thenitism
std::iter::once on the elementinstead.

Also, since Option implements IntoIterator, it'sy
loop. This is equivalent to matching it with if let ¢
should prefer the latter.

See also

34 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#iterating-over-an-option
https://rust-unofficial.github.io/patterns/print.html#iterating-over-an-option
https://rust-unofficial.github.io/patterns/print.html#iterating-over-an-option
https://rust-unofficial.github.io/patterns/print.html#iterating-over-an-option
https://rust-unofficial.github.io/patterns/print.html#description-11
https://rust-unofficial.github.io/patterns/print.html#description-11
https://rust-unofficial.github.io/patterns/print.html#examples
https://rust-unofficial.github.io/patterns/print.html#examples
https://doc.rust-lang.org/std/iter/trait.Iterator.html#method.chain
https://doc.rust-lang.org/std/iter/trait.Iterator.html#method.chain
https://doc.rust-lang.org/std/iter/trait.Iterator.html#method.chain
https://doc.rust-lang.org/std/iter/fn.once.html
https://doc.rust-lang.org/std/iter/fn.once.html
https://doc.rust-lang.org/std/iter/fn.once.html
https://rust-unofficial.github.io/patterns/print.html#see-also-7
https://rust-unofficial.github.io/patterns/print.html#see-also-7

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

e std::iter::once isan iterator which yields e:
readable alternative to Some (foo).into_iter(

e ITterator::filter_map iSaversion of Iterat
functions which return option.

e The ref_slice crate provides functions for cc
element slice.

e Documentation for option<T>

35 of 136 10/25/23, 12:58

https://doc.rust-lang.org/std/iter/fn.once.html
https://doc.rust-lang.org/std/iter/fn.once.html
https://doc.rust-lang.org/std/iter/fn.once.html
https://doc.rust-lang.org/std/iter/trait.Iterator.html#method.filter_map
https://doc.rust-lang.org/std/iter/trait.Iterator.html#method.filter_map
https://doc.rust-lang.org/std/iter/trait.Iterator.html#method.filter_map
https://doc.rust-lang.org/std/iter/trait.Iterator.html#method.map
https://doc.rust-lang.org/std/iter/trait.Iterator.html#method.map
https://doc.rust-lang.org/std/iter/trait.Iterator.html#method.map
https://crates.io/crates/ref_slice
https://crates.io/crates/ref_slice
https://crates.io/crates/ref_slice
https://doc.rust-lang.org/std/option/enum.Option.html
https://doc.rust-lang.org/std/option/enum.Option.html
https://doc.rust-lang.org/std/option/enum.Option.html
https://doc.rust-lang.org/std/option/enum.Option.html

Rust Design Patterns

https://rust-unofficial.github.io/patterns/print.html

Pass variables to closure

Description

By default, closures capture their environment by b
closure to move whole environment. However, oftel
variables to closure, give it copy of some data, pass
other transformation.

Use variable rebinding in separate scope for that.

Example

Use
use std::rc::Rc;
let numl = Rc::new(1);
let num2 = Rc::new(2);
let num3 = Rc::new(3);
let closure = {

}s

// ‘numl’ dis moved
let num2 = num2.clone(); // “num2’ 1dis cl
let num3 = num3.as_ref(); // "num3’ Hds L

move

}

instead of

use
let
let
let
let

let
let

}s

36 of 136

std:

numl
num2
num3

num2_
num3_

I £

*numl + *num2 + *num3;

:rc::Rc;

Rc::new(1);
Rc::new(2);
Rc::new(3);

cloned = num2.clone();
borrowed = num3.as_ref();

closure = move || {
*numl + *num2_cloned + *num3_borrowed;

10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#pass-variables-to-closure
https://rust-unofficial.github.io/patterns/print.html#pass-variables-to-closure
https://rust-unofficial.github.io/patterns/print.html#description-12
https://rust-unofficial.github.io/patterns/print.html#description-12
https://rust-unofficial.github.io/patterns/print.html#example-7
https://rust-unofficial.github.io/patterns/print.html#example-7

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

Advantages

Copied data are grouped together with closure defii
and they will be dropped immediately even if they a

Closure uses same variable names as surrounding ¢
moved.

Disadvantages

Additional indentation of closure body.

37 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#advantages-8
https://rust-unofficial.github.io/patterns/print.html#advantages-8
https://rust-unofficial.github.io/patterns/print.html#disadvantages-8
https://rust-unofficial.github.io/patterns/print.html#disadvantages-8

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

#[non_exhaustive] an
for extensibility

Description

A small set of scenarios exist where a library author
public struct or new variants to an enum without br

Rust offers two solutions to this problem:

e Use #[non_exhaustive] ON structsS, enums,
documentation on all the places where #[non_
docs.

e You may add a private field to a struct to preve
or matched against (see Alternative)

Example

38 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#non_exhaustive-and-private-fields-for-extensibility
https://rust-unofficial.github.io/patterns/print.html#non_exhaustive-and-private-fields-for-extensibility
https://rust-unofficial.github.io/patterns/print.html#non_exhaustive-and-private-fields-for-extensibility
https://rust-unofficial.github.io/patterns/print.html#non_exhaustive-and-private-fields-for-extensibility
https://rust-unofficial.github.io/patterns/print.html#non_exhaustive-and-private-fields-for-extensibility
https://rust-unofficial.github.io/patterns/print.html#non_exhaustive-and-private-fields-for-extensibility
https://rust-unofficial.github.io/patterns/print.html#description-13
https://rust-unofficial.github.io/patterns/print.html#description-13
https://doc.rust-lang.org/reference/attributes/type_system.html#the-non_exhaustive-attribute
https://doc.rust-lang.org/reference/attributes/type_system.html#the-non_exhaustive-attribute
https://rust-unofficial.github.io/patterns/print.html#example-8
https://rust-unofficial.github.io/patterns/print.html#example-8

Rust Design Patterns

39 of 136

https://rust-unofficial.github.io/patterns/print.html

mod a {
// Public struct.
#[non_exhaustive]
pub struct S {
pub foo: 1132,
}

#[non_exhaustive]

pub enum AdmitMoreVariants {
VariantA,
VariantB,
#[non_exhaustive]
VariantC { a: String }

}

fn print_matched_variants(s: a::S) {
// Because S s “#[non_exhaustive] , it «
// we must use '..' in the pattern.
let a::S { foo: _, ..} = s;

let some_enum = a::AdmitMoreVariants::Vat

match some_enum {
a::AdmitMoreVariants::VariantA => pr-
a::AdmitMoreVariants::VariantB => pr-

// .. required because this variant -
a::AdmitMoreVariants::VariantC { a,

// The wildcard match is required bec
// added in the future
_ => println!("it's a new variant")

Alternative: Private fields fa

#[non_exhaustive] only works across crate bound
method may be used.

Adding a field to a struct is a mostly backwards com
uses a pattern to deconstruct a struct instance, they
and adding a new one would break that pattern. Th:
use .. inthe pattern, in which case adding anothel
Making at least one of the struct's fields private forc
patterns, ensuring that the struct is future-proof.

The downside of this approach is that you might ne
field to the struct. You can use the () type so thatt

10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#alternative-private-fields-for-structs
https://rust-unofficial.github.io/patterns/print.html#alternative-private-fields-for-structs
https://rust-unofficial.github.io/patterns/print.html#alternative-private-fields-for-structs
https://rust-unofficial.github.io/patterns/print.html#alternative-private-fields-for-structs
https://rust-unofficial.github.io/patterns/print.html#alternative-private-fields-for-structs

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

prepend _ to the field name to avoid the unused fi

pub struct S {
pub a: i32,
// Because ‘b’ is private, you cannot maf

‘g
// cannot be directly 1instantiated or m:
_b: (O

}

Discussion

On structs, #[non_exhaustive] allows adding ad«
compatible way. It will also prevent clients from usir
the fields are public. This may be helpful, but it's wo
additional field to be found by clients as a compiler
be silently undiscovered.

#[non_exhaustive] can be applied to enum variani
variant behaves in the same way as a #[non_exhaus

Use this deliberately and with caution: incrementing
or variants is often a better option. #[non_exhausti
where you're modeling an external resource that m.
library, but is not a general purpose tool.

Disadvantages

#[non_exhaustive] can make your code much less
forced to handle unknown enum variants. It should
evolutions are required without incrementing the r

When #[non_exhaustive] is applied to enums, it fo
variant. If there is no sensible action to take in this c
and code paths that are only executed in extremely
to panic! () inthis scenario, it may have been bett:
time. In fact, #[non_exhaustive] forces clientsto h
is rarely a sensible action to take in this scenario.

See also

40 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#discussion-4
https://rust-unofficial.github.io/patterns/print.html#discussion-4
https://rust-unofficial.github.io/patterns/print.html#disadvantages-9
https://rust-unofficial.github.io/patterns/print.html#disadvantages-9
https://rust-unofficial.github.io/patterns/print.html#see-also-8
https://rust-unofficial.github.io/patterns/print.html#see-also-8

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

e RFC introducing #[non_exhaustive] attribute fc

41 of 136 10/25/23, 12:58

https://github.com/rust-lang/rfcs/blob/master/text/2008-non-exhaustive.md
https://github.com/rust-lang/rfcs/blob/master/text/2008-non-exhaustive.md

Rust Design Patterns

42 of 136

https://rust-unofficial.github.io/patterns/print.html

Easy doc initialization

Description

If a struct takes significant effort to initialize when w
your example with a helper function which takes the

Motivation

Sometimes there is a struct with multiple or complic
methods. Each of these methods should have exam

For example:

struct Connection {

name: String,
stream: TcpStream,

impl Connection {

/// Sends a request over the connection.
/1]

/// # Example

/// " “no_run

/// # // Boilerplate are required to get
/// # let stream = TcpStream::connect("1:
/// # let connection = Connection { name:
/// # let request = Request::new('"Requesi

"payload");

/// let response = connection.send_reques

/// assert! (response.is_ok());

/1]

fn send_request(&self, request: Request)
/] ...

}

/// Oh no, all that boilerplate needs to
fn check_status(&self) -> Status {

/] ...
}

Example

10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#easy-doc-initialization
https://rust-unofficial.github.io/patterns/print.html#easy-doc-initialization
https://rust-unofficial.github.io/patterns/print.html#description-14
https://rust-unofficial.github.io/patterns/print.html#description-14
https://rust-unofficial.github.io/patterns/print.html#motivation-6
https://rust-unofficial.github.io/patterns/print.html#motivation-6
https://rust-unofficial.github.io/patterns/print.html#example-9
https://rust-unofficial.github.io/patterns/print.html#example-9

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

Instead of typing all of this boilerplate to create a c
just create a wrapping helper function which takes t

struct Connection {
name: String,
stream: TcpStream,

}

impl Connection {
/// Sends a request over the connection.

/17
/// # Example
/11"

/// # fn call_send(connection: Connectior
/// let response = connection.send_reques
/// assert! (response.is_ok());

/1] #}

TR

fn send_request(&self, request: Request)

/e
}

Note in the above example the line assert! (respor
while testing because it is inside a function which is

Advantages

This is much more concise and avoids repetitive coc

Disadvantages

As example is in a function, the code will not be test
make sure it compiles when running a cargo test.
you need no_run . With this, you do not need to adc

Discussion

If assertions are not required this pattern works we|

If they are, an alternative can be to create a publicn
which is annotated with #[doc(hidden)] (so that u

43 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#advantages-9
https://rust-unofficial.github.io/patterns/print.html#advantages-9
https://rust-unofficial.github.io/patterns/print.html#disadvantages-10
https://rust-unofficial.github.io/patterns/print.html#disadvantages-10
https://rust-unofficial.github.io/patterns/print.html#discussion-5
https://rust-unofficial.github.io/patterns/print.html#discussion-5

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

can be called inside of rustdoc because it is part of t

44 of 136 10/25/23, 12:58

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

Temporary mutability

Description

Often it is necessary to prepare and process some ¢
inspected and never modified. The intention can be
mutable variable as immutable.

It can be done either by processing data within a ne
variable.

Example

Say, vector must be sorted before usage.

Using nested block:

let data = {
let mut data = get_vec();
data.sort();
data

}s

// Here ‘data’ is immutable.
Using variable rebinding:

let mut data = get_vec();
data.sort();
let data = data;

// Here ‘data’ is immutable.

Advantages

Compiler ensures that you don't accidentally mutate

Disadvantages

45 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#temporary-mutability
https://rust-unofficial.github.io/patterns/print.html#temporary-mutability
https://rust-unofficial.github.io/patterns/print.html#description-15
https://rust-unofficial.github.io/patterns/print.html#description-15
https://rust-unofficial.github.io/patterns/print.html#example-10
https://rust-unofficial.github.io/patterns/print.html#example-10
https://rust-unofficial.github.io/patterns/print.html#advantages-10
https://rust-unofficial.github.io/patterns/print.html#advantages-10
https://rust-unofficial.github.io/patterns/print.html#disadvantages-11
https://rust-unofficial.github.io/patterns/print.html#disadvantages-11

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

Nested block requires additional indentation of bloc
from block or redefine variable.

46 of 136 10/25/23, 12:58

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

Return consumed argun

Description

If a fallible function consumes (moves) an argument
error.

Example

pub fn send(value: String) -> Result<(), Senc
println! ("using {value} in a meaningful v
// Simulate non-deterministic fallible ac
use std::time::SystemTime;

let period =
SystemTime: :now().duration_since(SystemTime::
if period.subsec_nanos() % 2 == 1 {
Ok (())
} else {

Err(SendError (value))

}
}

pub struct SendError(String);

fn main() {
let mut value = "imagine this is very lor
let success = 's: {

// Try to send value two times.
for _ in 0..2 {
value = match send(value) {
Ok(()) => break 's true,
Err(SendError(value)) => valt

}
}
false
}s
println! ("success: {}", success);
}
Motivation

47 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#return-consumed-argument-on-error
https://rust-unofficial.github.io/patterns/print.html#return-consumed-argument-on-error
https://rust-unofficial.github.io/patterns/print.html#description-16
https://rust-unofficial.github.io/patterns/print.html#description-16
https://rust-unofficial.github.io/patterns/print.html#example-11
https://rust-unofficial.github.io/patterns/print.html#example-11
https://rust-unofficial.github.io/patterns/print.html#motivation-7
https://rust-unofficial.github.io/patterns/print.html#motivation-7

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

In case of error you may want to try some alternativ
non-deterministic function. But if the argument is al
clone it on every call, which is not very efficient.

The standard library uses this approach in e.g. stri
a vector that doesn’t contain valid UTF-8, a Fromutf
original vector back using FromUtf8Error::into_by

Advantages

Better performance because of moving arguments

Disadvantages

Slightly more complex error types.

48 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#advantages-11
https://rust-unofficial.github.io/patterns/print.html#advantages-11
https://rust-unofficial.github.io/patterns/print.html#disadvantages-12
https://rust-unofficial.github.io/patterns/print.html#disadvantages-12

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

Design Patterns

Design patterns are “general reusable solutions to a
a given context in software design”. Design patterns
culture of a programming language. Design pattern:
pattern in one language may be unnecessary in ano
impossible to express due to a missing feature.

If overused, design patterns can add unnecessary cc
are a great way to share intermediate and advancec
programming language.

Design patterns in Rust

Rust has many unique features. These features give
classes of problems. Some of them are also pattern

YAGNI

YAGNI is an acronym that stands for You Aren't Gc
design principle to apply as you write code.

The best code | ever wrote was code | never wrot

If we apply YAGNI to design patterns, we see that th
out many patterns. For instance, there is no need fo
we can just use traits.

49 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#design-patterns-1
https://rust-unofficial.github.io/patterns/print.html#design-patterns-1
https://en.wikipedia.org/wiki/Software_design_pattern
https://en.wikipedia.org/wiki/Software_design_pattern
https://rust-unofficial.github.io/patterns/print.html#design-patterns-in-rust-1
https://rust-unofficial.github.io/patterns/print.html#design-patterns-in-rust-1
https://rust-unofficial.github.io/patterns/print.html#yagni
https://rust-unofficial.github.io/patterns/print.html#yagni
https://doc.rust-lang.org/book/traits.html
https://doc.rust-lang.org/book/traits.html

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

Behavioural Patterns

From Wikipedia:

Design patterns that identify common communic
doing so, these patterns increase flexibility in car

50 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#behavioural-patterns
https://rust-unofficial.github.io/patterns/print.html#behavioural-patterns
https://en.wikipedia.org/wiki/Behavioral_pattern
https://en.wikipedia.org/wiki/Behavioral_pattern

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

Command

Description

The basic idea of the Command pattern is to separa
pass them as parameters.

Motivation

Suppose we have a sequence of actions or transacti
these actions or commands to be executed or invok
time. These commands may also be triggered as ar
when a user pushes a button, or on arrival of a data
might be undoable. This may come in useful for ope
to store logs of executed commands so that we cou
system crashes.

Example

Define two database operations create table and
is a command which knows how to undo the comm
field . When a user invokes a database migration o
executed in the defined order, and when the user ir
whole set of commands is invoked in reverse order.

Approach: Using trait objects

We define a common trait which encapsulates our ¢
execute and rollback.All command structs mt

51 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#command
https://rust-unofficial.github.io/patterns/print.html#command
https://rust-unofficial.github.io/patterns/print.html#description-17
https://rust-unofficial.github.io/patterns/print.html#description-17
https://rust-unofficial.github.io/patterns/print.html#motivation-8
https://rust-unofficial.github.io/patterns/print.html#motivation-8
https://rust-unofficial.github.io/patterns/print.html#example-12
https://rust-unofficial.github.io/patterns/print.html#example-12
https://rust-unofficial.github.io/patterns/print.html#approach-using-trait-objects
https://rust-unofficial.github.io/patterns/print.html#approach-using-trait-objects

Rust Design Patterns

52 of 136

https://rust-unofficial.github.io/patterns/print.html

pub trait Migration {
fn execute(&self) -> &str;
fn rollback(&self) -> &str;

}

pub struct CreateTable;
impl Migration for CreateTable {
fn execute(&self) -> &str {
"create table"

}

fn rollback(&self) -> &str {
"drop table"

}

}

pub struct AddField;
impl Migration for AddField {
fn execute(&self) -> &str {
"add field"
}
fn rollback(&self) -> &str {
"remove field"
}
}

struct Schema {
commands: Vec<Box<dyn Migration>>,

}

impl Schema {
fn new() -> Self {
Self { commands: vec![] }

}

fn add_migration(&mut self, cmd: Box<dyn
self.commands.push(cmd) ;

}

fn execute(&self) -> Vec<&str> {
self.commands.iter().map(|cmd| cmd.e>
}
fn rollback(&self) -> Vec<&str> {
self.commands
Jdter ()
.rev() // reverse +iterator's dire
.map(|cmd| cmd.rollback())
.collect()

}

fn main() {
let mut schema = Schema::new();

let cmd = Box::new(CreateTable);
schema.add_migration(cmd) ;
let cmd = Box::new(AddField);

10/25/23, 12:58

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

schema.add_migration(cmd) ;

assert_eq! (vec!["create table'", "add fiel
assert_eq! (vec!["remove field", "drop tal

Approach: Using function pointe

We could follow another approach by creating each
function and store function pointers to invoke these
Since function pointers implement all three traits Fi
well pass and store closures instead of function poil

53 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#approach-using-function-pointers
https://rust-unofficial.github.io/patterns/print.html#approach-using-function-pointers

Rust Design Patterns

54 of 136

https://rust-unofficial.github.io/patterns/print.html

type FnPtr = fn() -> String;
struct Command {
execute: FnPtr,
rollback: FnPtr,

}

struct Schema {
commands: Vec<Command>,

}

impl Schema {
fn new() -> Self {
Self { commands: vec![] }
}
fn add_migration(&mut self, execute: FnP1
self.commands.push(Command { execute,
}
fn execute(&self) -> Vec<String> {
self.commands.iter().map(|cmd| (cmd.e¢
}
fn rollback(&self) -> Vec<String> {
self.commands
Jdter ()
.rev()
.map(|cmd| (cmd.rollback) ())
.collect()

}

fn add_field() -> String {
"add field".to_string()
}

fn remove_field() -> String {
"remove field".to_string()

}

fn main() {
let mut schema = Schema::new();
schema.add_migration(|| "create table".tc

table'".to_string());
schema.add_migration(add_field, remove_f-
assert_eq! (vec!["create table'", "add fiel
assert_eq! (vec!["remove field", "drop tal

Approach: Using Fn trait objects

Finally, instead of defining a common command tra
implementing the Fn trait separately in vectors.

10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#approach-using-fn-trait-objects
https://rust-unofficial.github.io/patterns/print.html#approach-using-fn-trait-objects
https://rust-unofficial.github.io/patterns/print.html#approach-using-fn-trait-objects
https://rust-unofficial.github.io/patterns/print.html#approach-using-fn-trait-objects
https://rust-unofficial.github.io/patterns/print.html#approach-using-fn-trait-objects

Rust Design Patterns

55 of 136

https://rust-unofficial.github.io/patterns/print.html

type Migration<'a> = Box<dyn Fn() -> &'a str:

struct Schema<'a> {
executes: Vec<Migration<'a>>,
rollbacks: Vec<Migration<'a>>,

}

impl<'a> Schema<'a> {
fn new() -> Self {
Self {
executes: vec![],
rollbacks: vec![],

}
}
fn add_migration<E, R>(&mut self, execute
where
E: Fn() -> &'a str + 'static,
R: Fn() -> &'a str + 'static,
{
self.executes.push(Box: :new(execute),
self.rollbacks.push(Box::new(rollbacl
}

fn execute(&self) -> Vec<&str> {
self.executes.iter().map(|cmd| cmd();

}
fn rollback(&self) -> Vec<&str> {

self.rollbacks.iter().rev().map(|cmd|
}
}

fn add_field() -> &'static str {
"add field"

}

fn remove_field() -> &'static str {
"remove field"

}

fn main() {
let mut schema = Schema::new();
schema.add_migration(]|| "create table", |
schema.add_migration(add_field, remove_f-
assert_eq! (vec!["create table'", "add fiel
assert_eq! (vec!["remove field", "drop tal

}

Discussion

If our commands are small and may be defined as f
using function pointers might be preferable since it
But if our command is a whole struct with a bunch ¢

10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#discussion-6
https://rust-unofficial.github.io/patterns/print.html#discussion-6

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

seperated module then using trait objects would be
can be found in actix, which uses trait objects whe
routes. In case of using Fn trait objects we can crea
way as we used in case of function pointers.

As performance, there is always a trade-off betweer
and organisation. Static dispatch gives faster perfor
provides flexibility when we structure our applicatio

See also

e Command pattern

» Another example for the command pattern

56 of 136 10/25/23, 12:58

https://actix.rs/
https://actix.rs/
https://actix.rs/
https://rust-unofficial.github.io/patterns/print.html#see-also-9
https://rust-unofficial.github.io/patterns/print.html#see-also-9
https://en.wikipedia.org/wiki/Command_pattern
https://en.wikipedia.org/wiki/Command_pattern
https://web.archive.org/web/20210223131236/https://chercher.tech/rust/command-design-pattern-rust
https://web.archive.org/web/20210223131236/https://chercher.tech/rust/command-design-pattern-rust
https://web.archive.org/web/20210223131236/https://chercher.tech/rust/command-design-pattern-rust
https://web.archive.org/web/20210223131236/https://chercher.tech/rust/command-design-pattern-rust
https://web.archive.org/web/20210223131236/https://chercher.tech/rust/command-design-pattern-rust

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

Interpreter

Description

If a problem occurs very often and requires long ant
problem instances might be expressed in a simple I
could solve it by interpreting the sentences written i

Basically, for any kind of problems we define:

¢ A domain specific language,
e A grammar for this language,
e An interpreter that solves the problem instanc

Motivation

Our goal is to translate simple mathematical expres
Reverse Polish notation) For simplicity, our expressi
two operations +, -. For example, the expression

Context Free Grammar for our p

Our task is translating infix expressions into postfix
grammar for a set of infix expressions over o, ..., 9

e Terminal symbols: o, ..., 9, +, -

e Non-terminal symbols: exp, term

e Start symbolis exp

e And the following are production rules

exp —> exp + term

exp —-> exp - term

exp -> term

term -> 0 | 1| 2| 3|4]|5]|6]| 7] 8]:¢

NOTE: This grammar should be further transformec

do with it. For example, we might need to remove le
see Compilers: Principles,Techniques, and Tools (ak;

57 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#interpreter
https://rust-unofficial.github.io/patterns/print.html#interpreter
https://rust-unofficial.github.io/patterns/print.html#description-18
https://rust-unofficial.github.io/patterns/print.html#description-18
https://en.wikipedia.org/wiki/Domain-specific_language
https://en.wikipedia.org/wiki/Domain-specific_language
https://rust-unofficial.github.io/patterns/print.html#motivation-9
https://rust-unofficial.github.io/patterns/print.html#motivation-9
https://en.wikipedia.org/wiki/Reverse_Polish_notation
https://en.wikipedia.org/wiki/Reverse_Polish_notation
https://rust-unofficial.github.io/patterns/print.html#context-free-grammar-for-our-problem
https://rust-unofficial.github.io/patterns/print.html#context-free-grammar-for-our-problem
https://en.wikipedia.org/wiki/Compilers:_Principles,_Techniques,_and_Tools
https://en.wikipedia.org/wiki/Compilers:_Principles,_Techniques,_and_Tools

Rust Design Patterns

58 of 136

https://rust-unofficial.github.io/patterns/print.html

Solution

We simply implement a recursive descent parser. Fc
when an expression is syntactically wrong (for exanr
according to the grammar definition).

pub struct Interpreter<'a> {

}

it: std::str::Chars<'a>,

impl<'a> Interpreter<'a> {

pub

pub fn new(infix: &'a str) -> Self {

}

Self { it: 1dinfix.chars() }

fn next_char(&mut self) -> Option<char> {

}

self.it.next()

pub fn dinterpret(&mut self, out: &mut Sti

self.term(out);

while let Some(op) = self.next_char(]

}

if op == "+' || op == '"-' {
self.term(out);
out.push(op);

} else {
panic! ("Unexpected symbol '{]

}

fn term(&mut self, out: &mut String) {

match self.next_char() {

Some(ch) if ch.is_digit(10) => ot
Some(ch) => panic! ("Unexpected s\
None => panic! ("Unexpected end o1

fn main() {
let mut 1intr = Interpreter::new("2+3");
let mut postfix = String::new();

intr.

interpret(&mut postfix);

assert_eq! (postfix, "23+");

intr

= Interpreter::new("1-2+3-4");

postfix.clear();

intr.

interpret(&mut postfix);

assert_eq! (postfix, "12-3+4-");

10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#solution
https://rust-unofficial.github.io/patterns/print.html#solution

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

Discussion

There may be a wrong perception that the Interpret
grammars for formal languages and implementatiol
fact, this pattern is about expressing problem instar
implementing functions/classes/structs that solve tt
language has macro_rules! that allow us to define
expand this syntax into source code.

In the following example we create a simple macro_
length of n dimensional vectors. Writing norm! (x,1
more efficient than packing x,1,2 intoa vec and«
length.

macro_rules! norm {
($($element:expr),*) => {

{
let mut n = 0.0;
$(
n += ($element as f64)x*(Selern
) *
n.sqrt()
}
}s
}
fn main() {
let x = -3f64;
let y = 4f64;
assert_eq! (3f64, norm!(x));
assert_eq! (5f64, norm!(x, y));
assert_eq! (0f64, norm! (0, 0, 0));
assert_eq!(1f64, norm! (0.5, -0.5, 0.5, —¢
}
See also

e Interpreter pattern
o Context free grammar
e macro_rules!

59 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#discussion-7
https://rust-unofficial.github.io/patterns/print.html#discussion-7
https://en.wikipedia.org/wiki/Euclidean_distance
https://en.wikipedia.org/wiki/Euclidean_distance
https://rust-unofficial.github.io/patterns/print.html#see-also-10
https://rust-unofficial.github.io/patterns/print.html#see-also-10
https://en.wikipedia.org/wiki/Interpreter_pattern
https://en.wikipedia.org/wiki/Interpreter_pattern
https://en.wikipedia.org/wiki/Context-free_grammar
https://en.wikipedia.org/wiki/Context-free_grammar
https://doc.rust-lang.org/rust-by-example/macros.html
https://doc.rust-lang.org/rust-by-example/macros.html

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

Newtype

What if in some cases we want a type to behave sim
behaviour at compile time when using only type alic

For example, if we want to create a custom Display
security considerations (e.g. passwords).

For such cases we could use the Newtype pattern tc
encapsulation.

Description

Use a tuple struct with a single field to make an opa
new type, rather than an alias to a type (type items

Example

use std::fmt::Display;

// Create Newtype Password to override the D-
struct Password(String);

impl Display for Password {
fn fmt(&self, f: &mut std::fmt::Formattet
write! (f, "xkxkkkxkkkkkkkkkx')

}
}
fn main() {
let unsecured_password: String = "ThisIs)
let secured_password: Password = Passwor¢
println! ("unsecured_password: {unsecured.
println! ("secured_password: {secured_pas:
}

unsecured_password: ThisIsMyPassword
secu red_passwor‘d: *khkkkkkkkkkhkkkkkkxk

Motivation

60 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#newtype
https://rust-unofficial.github.io/patterns/print.html#newtype
https://rust-unofficial.github.io/patterns/print.html#description-19
https://rust-unofficial.github.io/patterns/print.html#description-19
https://rust-unofficial.github.io/patterns/print.html#example-13
https://rust-unofficial.github.io/patterns/print.html#example-13
https://rust-unofficial.github.io/patterns/print.html#motivation-10
https://rust-unofficial.github.io/patterns/print.html#motivation-10

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

The primary motivation for newtypes is abstraction.
implementation details between types while precise
newtype rather than exposing the implementation t
change implementation backwards compatibly.

Newtypes can be used for distinguishing units, e.g.,
Miles and Kilometres.

Advantages

The wrapped and wrapper types are not type comp.
users of the newtype will never ‘confuse’ the wrappe

Newtypes are a zero-cost abstraction - there is no rt

The privacy system ensures that users cannot acces
private, which it is by default).

Disadvantages

The downside of newtypes (especially compared wit
special language support. This means there can be «
through’ method for every method you want to exp
for every trait you want to also be implemented for

Discussion

Newtypes are very common in Rust code. Abstractic
common uses, but they can be used for other reaso

e restricting functionality (reduce the functions ¢
e making a type with copy semantics have move
e abstraction by providing a more concrete type

pub struct Foo(Bar<Tl, T2>);
Here, Bar might be some public, generic type and

Users of our module shouldn't know that we implen
we're really hiding here is the types T1 and T2, anc

61 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#advantages-12
https://rust-unofficial.github.io/patterns/print.html#advantages-12
https://rust-unofficial.github.io/patterns/print.html#disadvantages-13
https://rust-unofficial.github.io/patterns/print.html#disadvantages-13
https://rust-unofficial.github.io/patterns/print.html#discussion-8
https://rust-unofficial.github.io/patterns/print.html#discussion-8

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

See also

e Advanced Types in the book

* Newtypes in Haskell

¢ Type aliases

e derive_more, a crate for deriving many builtin
e The Newtype Pattern In Rust

62 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#see-also-11
https://rust-unofficial.github.io/patterns/print.html#see-also-11
https://doc.rust-lang.org/book/ch19-04-advanced-types.html?highlight=newtype#using-the-newtype-pattern-for-type-safety-and-abstraction
https://doc.rust-lang.org/book/ch19-04-advanced-types.html?highlight=newtype#using-the-newtype-pattern-for-type-safety-and-abstraction
https://wiki.haskell.org/Newtype
https://wiki.haskell.org/Newtype
https://doc.rust-lang.org/stable/book/ch19-04-advanced-types.html#creating-type-synonyms-with-type-aliases
https://doc.rust-lang.org/stable/book/ch19-04-advanced-types.html#creating-type-synonyms-with-type-aliases
https://crates.io/crates/derive_more
https://crates.io/crates/derive_more
https://web.archive.org/web/20230519162111/https://www.worthe-it.co.za/blog/2020-10-31-newtype-pattern-in-rust.html
https://web.archive.org/web/20230519162111/https://www.worthe-it.co.za/blog/2020-10-31-newtype-pattern-in-rust.html

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

RAIl with guards

Description

RAIl stands for “Resource Acquisition is Initialisation
essence of the pattern is that resource initialisation
and finalisation in the destructor. This pattern is ext
as a guard of some resource and relying on the type
always mediated by the guard object.

Example

Mutex guards are the classic example of this patterr
simplified version of the real implementation):

63 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#raii-with-guards
https://rust-unofficial.github.io/patterns/print.html#raii-with-guards
https://rust-unofficial.github.io/patterns/print.html#description-20
https://rust-unofficial.github.io/patterns/print.html#description-20
https://en.wikipedia.org/wiki/Resource_Acquisition_Is_Initialization
https://en.wikipedia.org/wiki/Resource_Acquisition_Is_Initialization
https://rust-unofficial.github.io/patterns/print.html#example-14
https://rust-unofficial.github.io/patterns/print.html#example-14

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

use std::ops::Deref;
struct Foo {}

struct Mutex<T> {
// We keep a reference to our data: T het
/..

}

struct MutexGuard<'a, T: 'a> {
data: &'a T,
//..

}

// Locking the mutex s explicit.
impl<T> Mutex<T> {
fn lock(&self) -> MutexGuard<T> {
// Lock the underlying 0S mutex.
/]

// MutexGuard keeps a reference to se
MutexGuard {
data: self,

/..

}

// Destructor for unlocking the mutex.
impl<'a, T> Drop for MutexGuard<'a, T> {
fn drop(&mut self) {
// Unlock the underlying 0S mutex.

/]
}

// Implementing Deref means we can treat Mute
impl<'a, T> Deref for MutexGuard<'a, T> {
type Target = T;

fn deref(&self) -> &T {
self.data
}
}

fn baz(x: Mutex<Foo>) {

let xx = x.lock();

xx.foo(); // foo 1is a method on Foo.

// The borrow checker ensures we can't si
underlying

// Foo which will outlive the guard xx.

// x 1is unlocked when we exit this funct-

executed.

}

64 of 136 10/25/23, 12:58

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

Motivation

Where a resource must be finalised after use, RAIl ¢
is an error to access that resource after finalisation,
prevent such errors.

Advantages

Prevents errors where a resource is not finalised an
finalisation.

Discussion

RAIl is a useful pattern for ensuring resources are p
can make use of the borrow checker in Rust to statit
using resources after finalisation takes place.

The core aim of the borrow checker is to ensure tha
that data. The RAIl guard pattern works because the
the underlying resource and only exposes such refe
cannot outlive the underlying resource and that refe
the guard cannot outlive the guard. To see how this
signature of deref without lifetime elision:

fn deref<'a>(&'a self) -> &'a T {
//..
}

The returned reference to the resource has the sanm
checker therefore ensures that the lifetime of the re
lifetime of self.

Note that implementing Deref is not a core part of
guard object more ergonomic. Implementing a get
well.

See also

Finalisation in destructors idiom

65 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#motivation-11
https://rust-unofficial.github.io/patterns/print.html#motivation-11
https://rust-unofficial.github.io/patterns/print.html#advantages-13
https://rust-unofficial.github.io/patterns/print.html#advantages-13
https://rust-unofficial.github.io/patterns/print.html#discussion-9
https://rust-unofficial.github.io/patterns/print.html#discussion-9
https://rust-unofficial.github.io/patterns/print.html#see-also-12
https://rust-unofficial.github.io/patterns/print.html#see-also-12
https://rust-unofficial.github.io/patterns/idioms/dtor-finally.html
https://rust-unofficial.github.io/patterns/idioms/dtor-finally.html

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

RAIll is a common pattern in C++: cppreference.com,

Style guide entry (currently just a placeholder).

66 of 136 10/25/23, 12:58

http://en.cppreference.com/w/cpp/language/raii
http://en.cppreference.com/w/cpp/language/raii
https://doc.rust-lang.org/1.0.0/style/ownership/raii.html
https://doc.rust-lang.org/1.0.0/style/ownership/raii.html

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

Strategy (aka Policy)

Description

The Strategy design pattern is a technique that enat
allows to decouple software modules through Depe

The basic idea behind the Strategy pattern is that, g
problem, we define only the skeleton of the algorith
separate the specific algorithm’s implementation int

In this way, a client using the algorithm may choose
general algorithm workflow remains the same. In ot
of the class does not depend on the specific implerr
specific implementation must adhere to the abstrac
“Dependency Inversion”.

Motivation

Imagine we are working on a project that generates
reports to be generated in different formats (strateg
formats. But things vary over time, and we don't knc
get in the future. For example, we may need to gene
format, or just modify one of the existing formats.

Example

In this example our invariants (or abstractions) are
and Json are our strategy structs. These strategies
trait.

67 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#strategy-aka-policy
https://rust-unofficial.github.io/patterns/print.html#strategy-aka-policy
https://rust-unofficial.github.io/patterns/print.html#description-21
https://rust-unofficial.github.io/patterns/print.html#description-21
https://en.wikipedia.org/wiki/Strategy_pattern
https://en.wikipedia.org/wiki/Strategy_pattern
https://en.wikipedia.org/wiki/Dependency_inversion_principle
https://en.wikipedia.org/wiki/Dependency_inversion_principle
https://rust-unofficial.github.io/patterns/print.html#motivation-12
https://rust-unofficial.github.io/patterns/print.html#motivation-12
https://rust-unofficial.github.io/patterns/print.html#example-15
https://rust-unofficial.github.io/patterns/print.html#example-15

Rust Design Patterns

68 of 136

https://rust-unofficial.github.io/patterns/print.html

use std::collections: :HashMap;
type Data = HashMap<String, u32>;

trait Formatter {
fn format(&self, data: &Data, buf: &mut ¢

}

struct Report;

impl Report {

// Write should be used but we kept it as

fn generate<T: Formatter>(g: T, s: &mut ¢
// backend operations...
let mut data = HashMap::new();
data.insert("one".to_string(), 1);
data.insert("two".to_string(), 2);
// generate report
g.format(&data, s);

}

struct Text;
impl Formatter for Text {
fn format(&self, data: &Data, buf: &mut ¢
for (k, v) 1in data {
let entry = format!("{} {}\n", k.
buf.push_str(&entry);

}

struct Json;
impl Formatter for Json {
fn format(&self, data: &Data, buf: &mut ¢
buf.push('[');
for (k, v) 1in data.into_iter() {
let entry = format! (r#"{{"{}":"{]
buf.push_str(&entry);
buf.push(',');
}
if ldata.is_empty() {
buf.pop(); // remove extra , at 1

}
buf.push(']');
}
}
fn main() {

let mut s = String::from("");
Report::generate(Text, &mut s);
assert!(s.contains("one 1"));
assert!(s.contains("two 2"));

s.clear(); // reuse the same buffer
Report::generate(Json, &mut s);

10/25/23, 12:58

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

assert!(s.contains(r#"{"one":"1"}"#));
assert!(s.contains(r#"{"two":"2"}"#));

Advantages

The main advantage is separation of concerns. For ¢
know anything about specific implementations of 3J
implementations does not care about how data is p
only thing they have to know is a specific trait to imj
concrete algorithm implementation processing the |
format(...) .

Disadvantages
For each strategy there must be implemented at lec

modules increases with number of strategies. If the|
then users have to know how strategies differ from

Discussion

In the previous example all strategies are implemen
different strategies includes:

All in one file (as shown in this example, simila
Separated as modules, E.g. formatter::json
Use compiler feature flags, E.g. json feature,
Separated as crates, E.g. json crate, text crs

Serde crate is a good example of the Strategy patt
customization of the serialization behavior by manu
Deserialize traits for our type. For example, we cc
serde_cbor since they expose similar methods. Ha
serde_transcode much more useful and ergonomi

However, we don't need to use traits in order to des

The following toy example demonstrates the idea o

closures .

69 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#advantages-14
https://rust-unofficial.github.io/patterns/print.html#advantages-14
https://rust-unofficial.github.io/patterns/print.html#disadvantages-14
https://rust-unofficial.github.io/patterns/print.html#disadvantages-14
https://rust-unofficial.github.io/patterns/print.html#discussion-10
https://rust-unofficial.github.io/patterns/print.html#discussion-10
https://serde.rs/custom-serialization.html
https://serde.rs/custom-serialization.html

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

struct Adder;
impl Adder {
pub fn add<F>(x: u8, y: u8, f: F) -> u8
where
F: Fn(u8, u8) -> us,

{
fx, y)
}
}
fn main() {
let arith_adder = |x, y| x + y;
let bool_adder = |x, y| {
ifx==1||y==1{
1
} else {
(0]
}
}s
let custom_adder = |x, y| 2 * x + y;
assert_eq! (9, Adder::add(4, 5, arith_adde
assert_eq! (0, Adder::add(0, 0, bool_addet
assert_eq! (5, Adder::add(l, 3, custom_adc
}

In fact, Rust already uses this idea for options’s ma

fn main() {
let val = Some("Rust");

let len_strategy = |s: &str| s.len();
assert_eq! (4, val.map(len_strategy) .unwr:

let first_byte_strategy = |s: &str| s.byi
assert_eq! (82, val.map(first_byte_strates

See also

o Strategy Pattern

¢ Dependency Injection

e Policy Based Design

e Implementing a TCP server for Space Applicati

70 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#see-also-13
https://rust-unofficial.github.io/patterns/print.html#see-also-13
https://en.wikipedia.org/wiki/Strategy_pattern
https://en.wikipedia.org/wiki/Strategy_pattern
https://en.wikipedia.org/wiki/Dependency_injection
https://en.wikipedia.org/wiki/Dependency_injection
https://en.wikipedia.org/wiki/Modern_C++_Design#Policy-based_design
https://en.wikipedia.org/wiki/Modern_C++_Design#Policy-based_design
https://web.archive.org/web/20231003171500/https://robamu.github.io/posts/rust-strategy-pattern/
https://web.archive.org/web/20231003171500/https://robamu.github.io/posts/rust-strategy-pattern/

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

Visitor

Description

A visitor encapsulates an algorithm that operates o\
objects. It allows multiple different algorithms to be
having to modify the data (or their primary behaviol

Furthermore, the visitor pattern allows separating tl
from the operations performed on each object.

Example

71 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#visitor
https://rust-unofficial.github.io/patterns/print.html#visitor
https://rust-unofficial.github.io/patterns/print.html#description-22
https://rust-unofficial.github.io/patterns/print.html#description-22
https://rust-unofficial.github.io/patterns/print.html#example-16
https://rust-unofficial.github.io/patterns/print.html#example-16

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

// The data we will visit
mod ast {
pub enum Stmt {
Expr (Expr),
Let(Name, Expr),

pub struct Name {
value: String,

pub enum Expr {
IntLit(ie64),
Add (Box<Expr>, Box<Expr>),
Sub (Box<Expr>, Box<Expr>),

}

// The abstract visitor
mod visit {
use ast::ix;

pub trait Visitor<T> {
fn visit_name(&mut self, n: &Name) -:
fn visit_stmt(&mut self, s: &Stmt) -
fn visit_expr(&mut self, e: &Expr) -:

}

use visit:ix;
use ast::x;

// An example concrete implementation - walks
code.
struct Interpreter;
impl Visitor<i64> for Interpreter {
fn visit_name(&mut self, n: &Name) -> 16
fn visit_stmt(&mut self, s: &Stmt) -> 6
match *s {
Stmt::Expr(ref e) => self.visit_¢
Stmt::Let(..) => unimplemented! (

}

fn visit_expr(&mut self, e: &Expr) -> 16
match xe {
Expr::IntLit(n) => n,
Expr::Add(ref lhs, ref rhs) => se¢
self.visit_expr(rhs),
Expr::Sub(ref lhs, ref rhs) => se¢
self.visit_expr(rhs),
}
}

72 of 136 10/25/23, 12:58

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

One could implement further visitors, for example ¢
modify the AST data.

Motivation

The visitor pattern is useful anywhere that you want
heterogeneous data. If data is homogeneous, you c:
visitor object (rather than a functional approach) all
communicate information between nodes.

Discussion

It is common for the visit_x methods to return ve
that case it is possible to factor out the traversal coc
(and also to provide noop default methods). In Rust
provide walk_x functions for each datum. For exan

pub fn walk_expr(visitor: &mut Visitor, e: &l
match xe {

Expr::IntLit(_) => {1},

Expr::Add(ref 1lhs, ref rhs) => {
visitor.visit_expr(lhs);
visitor.visit_expr(rhs);

}

Expr::Sub(ref lhs, ref rhs) => {
visitor.visit_expr(lhs);
visitor.visit_expr(rhs);

In other languages (e.g., Java) it is common for data
performs the same duty.

See also

The visitor pattern is a common pattern in most OO
Wikipedia article

The fold pattern is similar to visitor but produces a r

73 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#motivation-13
https://rust-unofficial.github.io/patterns/print.html#motivation-13
https://rust-unofficial.github.io/patterns/print.html#discussion-11
https://rust-unofficial.github.io/patterns/print.html#discussion-11
https://rust-unofficial.github.io/patterns/print.html#see-also-14
https://rust-unofficial.github.io/patterns/print.html#see-also-14
https://en.wikipedia.org/wiki/Visitor_pattern
https://en.wikipedia.org/wiki/Visitor_pattern
https://rust-unofficial.github.io/patterns/patterns/creational/fold.html
https://rust-unofficial.github.io/patterns/patterns/creational/fold.html

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

structure.

74 of 136 10/25/23, 12:58

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html
Creational Patterns
From Wikipedia:

Design patterns that deal with object creation me
in a manner suitable to the situation. The basic fc
in design problems or in added complexity to the
solve this problem by somehow controlling this o

75 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#creational-patterns
https://rust-unofficial.github.io/patterns/print.html#creational-patterns
https://en.wikipedia.org/wiki/Creational_pattern
https://en.wikipedia.org/wiki/Creational_pattern

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

Builder

Description

Construct an object with calls to a builder helper.

Example

76 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#builder
https://rust-unofficial.github.io/patterns/print.html#builder
https://rust-unofficial.github.io/patterns/print.html#description-23
https://rust-unofficial.github.io/patterns/print.html#description-23
https://rust-unofficial.github.io/patterns/print.html#example-17
https://rust-unofficial.github.io/patterns/print.html#example-17

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

#[derive(Debug, PartialkEq)]

pub struct Foo {
// Lots of complicated fields.
bar: String,

}

impl Foo {
// This method will help users to discove
pub fn builder() -> FooBuilder {
FooBuilder::default()
}
}

#[derive(Default)]

pub struct FooBuilder {
// Probably lots of optional fields.
bar: String,

}

impl FooBuilder {
pub fn new(/* ... */) -> FooBuilder {
// Set the minimally required fields
FooBuilder {
bar: String::from("X"),
}
}

pub fn name(mut self, bar: String) -> Foc
// Set the name on the builder -+itseli
value.
self.bar = bar;
self

}

// If we can get away with not consuming
// advantage. It means we can use the Foc
constructing
// many Foos.
pub fn build(self) -> Foo {
// Create a Foo from the FooBuilder,

FooBuilder
// to Foo.
Foo { bar: self.bar }
}
}
#[test]

fn builder_test() {
let foo = Foo {
bar: String::from("Y"),
}s
let foo_from_builder: Foo =
FooBuilder: :new().name(String::from("Y")) .bu-
assert_eq! (foo, foo_from_builder);

}

77 of 136 10/25/23, 12:58

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

Motivation

Useful when you would otherwise require many cor
side effects.

Advantages

Separates methods for building from other method
Prevents proliferation of constructors.

Can be used for one-liner initialisation as well as mc

Disadvantages

More complex than creating a struct object directly,

Discussion

This pattern is seen more frequently in Rust (and fo
languages because Rust lacks overloading. Since you
a given name, having multiple constructors is less n

This pattern is often used where the builder object i
being just a builder. For example, see std::process
process). In these cases, the T and TBuilder nami

The example takes and returns the builder by value
more efficient) to take and return the builderasamr
makes this work naturally. This approach has the ac

let mut fb = FooBuilder::new();
fb.a();

fb.b();

let f = fb.build();

as well as the FooBuilder::new().a().b().build()

78 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#motivation-14
https://rust-unofficial.github.io/patterns/print.html#motivation-14
https://rust-unofficial.github.io/patterns/print.html#advantages-15
https://rust-unofficial.github.io/patterns/print.html#advantages-15
https://rust-unofficial.github.io/patterns/print.html#disadvantages-15
https://rust-unofficial.github.io/patterns/print.html#disadvantages-15
https://rust-unofficial.github.io/patterns/print.html#discussion-12
https://rust-unofficial.github.io/patterns/print.html#discussion-12
https://doc.rust-lang.org/std/process/struct.Command.html
https://doc.rust-lang.org/std/process/struct.Command.html
https://doc.rust-lang.org/std/process/struct.Command.html

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

See also

Description in the style guide

derive_builder, a crate for automatically implel
the boilerplate.

Constructor pattern for when construction is s
Builder pattern (wikipedia)

Construction of complex values

79 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#see-also-15
https://rust-unofficial.github.io/patterns/print.html#see-also-15
https://web.archive.org/web/20210104103100/https://doc.rust-lang.org/1.12.0/style/ownership/builders.html
https://web.archive.org/web/20210104103100/https://doc.rust-lang.org/1.12.0/style/ownership/builders.html
https://crates.io/crates/derive_builder
https://crates.io/crates/derive_builder
https://rust-unofficial.github.io/patterns/idioms/ctor.html
https://rust-unofficial.github.io/patterns/idioms/ctor.html
https://en.wikipedia.org/wiki/Builder_pattern
https://en.wikipedia.org/wiki/Builder_pattern
https://web.archive.org/web/20210104103000/https://rust-lang.github.io/api-guidelines/type-safety.html#c-builder
https://web.archive.org/web/20210104103000/https://rust-lang.github.io/api-guidelines/type-safety.html#c-builder

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

Fold

Description

Run an algorithm over each item in a collection of d
a whole new collection.

The etymology here is unclear to me. The terms ‘fol
compiler, although it appears to me to be more like
See the discussion below for more details.

Example

80 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#fold
https://rust-unofficial.github.io/patterns/print.html#fold
https://rust-unofficial.github.io/patterns/print.html#description-24
https://rust-unofficial.github.io/patterns/print.html#description-24
https://rust-unofficial.github.io/patterns/print.html#example-18
https://rust-unofficial.github.io/patterns/print.html#example-18

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

// The data we will fold, a simple AST.
mod ast {
pub enum Stmt {
Expr (Box<Expr>),
Let(Box<Name>, Box<Expr>),

pub struct Name {
value: String,

pub enum Expr {
IntLit(ie64),
Add (Box<Expr>, Box<Expr>),
Sub (Box<Expr>, Box<Expr>),

}

// The abstract folder
mod fold {
use ast::ix;

pub trait Folder {
// A leaf node just returns the node
this
// to inner nodes too.
fn fold_name(&mut self, n: Box<Name>]
// Create a new inner node by folding
fn fold_stmt(&mut self, s: Box<Stmt>]
match *s {
Stmt::Expr(e) => Box::new(Str
Stmt::Let(n, e) => Box::new(¢
self.fold_expr(e))),
}

}
fn fold_expr(&mut self, e: Box<Expr>]

}

use fold::*;
use ast::ix;

// An example concrete implementation - renar
struct Renamer;
impl Folder for Renamer {
fn fold_name(&mut self, n: Box<Name>) ->
Box::new(Name { value: "foo".to_ownec

}
// Use the default methods for the other

The result of running the Renamer on an AST is a ne
with every name changed to foo . A real life folder r
between nodes in the struct itself.

81 of 136 10/25/23, 12:58

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

A folder can also be defined to map one data structi
data structure. For example, we could fold an AST ir
level intermediate representation).

Motivation

It is common to want to map a data structure by pel
node in the structure. For simple operations on sim
using Iterator::map.For more complex operation
affect the operation on later nodes, or where iterati
trivial, using the fold pattern is more appropriate.

Like the visitor pattern, the fold pattern allows us to
from the operations performed to each node.

Discussion

Mapping data structures in this fashion is common |
languages, it would be more common to mutate the
‘functional’ approach is common in Rust, mostly due
Using fresh data structures, rather than mutating ol
code easier in most circumstances.

The trade-off between efficiency and reusability can
are accepted by the fold_x methods.

In the above example we operate on Box pointers.
exclusively, the original copy of the data structure c:
if a node is not changed, reusing it is very efficient.

If we were to operate on borrowed references, the «
however, a node must be cloned even if unchanged

Using a reference counted pointer gives the best of
original data structure, and we don't need to clone t
less ergonomic to use and mean that the data struc

See also

82 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#motivation-15
https://rust-unofficial.github.io/patterns/print.html#motivation-15
https://rust-unofficial.github.io/patterns/print.html#discussion-13
https://rust-unofficial.github.io/patterns/print.html#discussion-13
https://rust-unofficial.github.io/patterns/print.html#see-also-16
https://rust-unofficial.github.io/patterns/print.html#see-also-16

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

Iterators have a fold method, however this folds a
than into a new data structure. An iterator’'s map is

In other languages, fold is usually used in the sense
pattern. Some functional languages have powerful
maps over data structures.

The visitor pattern is closely related to fold. They sh.
structure performing an operation on each node. H
new data structure nor consume the old one.

83 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/patterns/behavioural/visitor.html
https://rust-unofficial.github.io/patterns/patterns/behavioural/visitor.html

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

Structural Patterns

From Wikipedia:

Design patterns that ease the design by identifyir
relationships among entities.

84 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#structural-patterns
https://rust-unofficial.github.io/patterns/print.html#structural-patterns
https://en.wikipedia.org/wiki/Structural_pattern
https://en.wikipedia.org/wiki/Structural_pattern

Rust Design Patterns

85 of 136

https://rust-unofficial.github.io/patterns/print.html

Struct decomposition fo
borrowing

Description

Sometimes a large struct will cause issues with the |
be borrowed independently, sometimes the whole ¢
preventing other uses. A solution might be to decon
structs. Then compose these together into the origi
borrowed separately and have more flexible behavi

This will often lead to a better design in other ways:
reveals smaller units of functionality.

Example

Here is a contrived example of where the borrow ct
struct:

struct Database {
connection_string: String,
timeout: u32,
pool_size: u32,

}

fn print_database(database: &Database) {
println! ("Connection string: {}", databas
println! ("Timeout: {}", database.timeout]
println! ("Pool size: {}'", database.pool_:

}
fn main() {
let mut db = Database {
connection_string: "initial string".1
timeout: 30,
pool_size: 100,
}3
let connection_string = &mut db.connect-ic
print_database(&db); // Immutable borrov
// *connection_string = "new string".to_s
used
}

10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#struct-decomposition-for-independent-borrowing
https://rust-unofficial.github.io/patterns/print.html#struct-decomposition-for-independent-borrowing
https://rust-unofficial.github.io/patterns/print.html#struct-decomposition-for-independent-borrowing
https://rust-unofficial.github.io/patterns/print.html#struct-decomposition-for-independent-borrowing
https://rust-unofficial.github.io/patterns/print.html#description-25
https://rust-unofficial.github.io/patterns/print.html#description-25
https://rust-unofficial.github.io/patterns/print.html#example-19
https://rust-unofficial.github.io/patterns/print.html#example-19

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

We can apply this design pattern and refactor Datal
solving the borrow checking issue:

// Database is now composed of three structs
PoolS1ize.

// Let's decompose it into smaller structs
#[derive(Debug, Clone)]

struct ConnectionString(String);

#[derive(Debug, Clone, Copy)]
struct Timeout(u32);

#[derive(Debug, Clone, Copy)]
struct PoolSize(u32);

// We then compose these smaller structs bacl
struct Database {
connection_string: ConnectionString,
timeout: Timeout,
pool_size: PoolSize,

}

// print_database can then take ConnectionStr
instead
fn print_database(connection_str: Connection!
timeout: Timeout,
pool_size: PoolSize) {
println! ("Connection string: {:?}", conne
println! ("Timeout: {:?3}", timeout);
println! ("Pool size: {:?}", pool_size);

}
fn main() {
// Initialize the Database with the three
let mut db = Database {
connection_string: ConnectionString('
timeout: Timeout(30),
pool_size: PoolSize(100),
}s
let connection_string = &mut db.connect:c
print_database(connection_string.clone(),
*connection_string = ConnectionString('ne
}
Motivation

This pattern is most useful, when you have a struct-
you want to borrow independently. Thus having a i

86 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#motivation-16
https://rust-unofficial.github.io/patterns/print.html#motivation-16

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

Advantages

Decomposition of structs lets you work around limit
often produces a better design.

Disadvantages

It can lead to more verbose code. And sometimes, t
abstractions, and so we end up with a worse design
indicating that the program should be refactored in

Discussion

This pattern is not required in languages that don't |
sense is unique to Rust. However, making smaller u
cleaner code: a widely acknowledged principle of so
the language.

This pattern relies on Rust's borrow checker to be al
each other. In the example, the borrow checker kno
can be borrowed independently, it does not try to b
pattern useless.

87 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#advantages-16
https://rust-unofficial.github.io/patterns/print.html#advantages-16
https://rust-unofficial.github.io/patterns/print.html#disadvantages-16
https://rust-unofficial.github.io/patterns/print.html#disadvantages-16
https://rust-unofficial.github.io/patterns/print.html#discussion-14
https://rust-unofficial.github.io/patterns/print.html#discussion-14

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

Prefer small crates

Description

Prefer small crates that do one thing well.

Cargo and crates.io make it easy to add third-party |
or C++. Moreover, since packages on crates.io cannc
publication, any build that works now should contin
take advantage of this tooling, and use smaller, mor

Advantages

e Small crates are easier to understand, and enc

e Crates allow for re-using code between project
developed as part of the Servo browser engine
outside the project.

e Since the compilation unit of Rust is the crate,
can allow more of the code to be built in parall

Disadvantages

e This can lead to “dependency hell”, when a prc
versions of a crate at the same time. For exam
1.0 and 0.5. Since the url from url:1.0 and
types, an HTTP client that uses url:0.5 woulc
scraper that uses url:1.0.

e Packages on crates.io are not curated. A crate
documentation, or be outright malicious.

e Two small crates may be less optimized than c
not perform link-time optimization (LTO) by de

Examples

The url crate provides tools for working with URLs

88 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#prefer-small-crates
https://rust-unofficial.github.io/patterns/print.html#prefer-small-crates
https://rust-unofficial.github.io/patterns/print.html#description-26
https://rust-unofficial.github.io/patterns/print.html#description-26
https://rust-unofficial.github.io/patterns/print.html#advantages-17
https://rust-unofficial.github.io/patterns/print.html#advantages-17
https://rust-unofficial.github.io/patterns/print.html#disadvantages-17
https://rust-unofficial.github.io/patterns/print.html#disadvantages-17
https://rust-unofficial.github.io/patterns/print.html#examples-1
https://rust-unofficial.github.io/patterns/print.html#examples-1
https://crates.io/crates/url
https://crates.io/crates/url
https://crates.io/crates/url

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

The num_cpus crate provides a function to query th

The ref_slice crate provides functions for convert

See also

e crates.io: The Rust community crate host

89 of 136 10/25/23, 12:58

https://crates.io/crates/num_cpus
https://crates.io/crates/num_cpus
https://crates.io/crates/num_cpus
https://crates.io/crates/ref_slice
https://crates.io/crates/ref_slice
https://crates.io/crates/ref_slice
https://rust-unofficial.github.io/patterns/print.html#see-also-17
https://rust-unofficial.github.io/patterns/print.html#see-also-17
https://crates.io/
https://crates.io/

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

Contain unsafety in sma

Description

If you have unsafe code, create the smallest possik
needed invariants to build a minimal safe interface |
larger module that contains only safe code and pres
that the outer module can contain unsafe functions
the unsafe code. Users may use this to gain speed t

Advantages

e This restricts the unsafe code that must be aut
e Writing the outer module is much easier, since
the inner module

Disadvantages

e Sometimes, it may be hard to find a suitable in
e The abstraction may introduce inefficiencies.

Examples

e The toolshed crate contains its unsafe operat
interface to users.

e std’s String classis a wrapper over Vec<us8:
contents must be valid UTF-8. The operations «
However, users have the option of using an ur
which case the onus is on them to guarantee t

See also

e Ralf Jung's Blog about invariants in unsafe cod:

90 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#contain-unsafety-in-small-modules
https://rust-unofficial.github.io/patterns/print.html#contain-unsafety-in-small-modules
https://rust-unofficial.github.io/patterns/print.html#description-27
https://rust-unofficial.github.io/patterns/print.html#description-27
https://rust-unofficial.github.io/patterns/print.html#advantages-18
https://rust-unofficial.github.io/patterns/print.html#advantages-18
https://rust-unofficial.github.io/patterns/print.html#disadvantages-18
https://rust-unofficial.github.io/patterns/print.html#disadvantages-18
https://rust-unofficial.github.io/patterns/print.html#examples-2
https://rust-unofficial.github.io/patterns/print.html#examples-2
https://docs.rs/toolshed
https://docs.rs/toolshed
https://docs.rs/toolshed
https://rust-unofficial.github.io/patterns/print.html#see-also-18
https://rust-unofficial.github.io/patterns/print.html#see-also-18
https://www.ralfj.de/blog/2018/08/22/two-kinds-of-invariants.html
https://www.ralfj.de/blog/2018/08/22/two-kinds-of-invariants.html

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

FFI Patterns

Writing FFI code is an entire course in itself. Howeve
can act as pointers, and avoid traps for inexperience

This section contains design patterns that may be u:

1. Object-Based API design that has good memor
boundary of what is safe and what is unsafe

2. Type Consolidation into Wrappers - group mul
opaque “object”

91 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#ffi-patterns
https://rust-unofficial.github.io/patterns/print.html#ffi-patterns
https://rust-unofficial.github.io/patterns/patterns/ffi/export.html
https://rust-unofficial.github.io/patterns/patterns/ffi/export.html
https://rust-unofficial.github.io/patterns/patterns/ffi/wrappers.html
https://rust-unofficial.github.io/patterns/patterns/ffi/wrappers.html

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

Object-Based APIs

Description

When designing APIs in Rust which are exposed to ¢
important design principles which are contrary to n«

1. All Encapsulated types should be owned by Ru

2. All Transactional data types should be owned t

3. All library behavior should be functions acting

4. All library behavior should be encapsulated int
provenance/lifetime.

Motivation

Rust has built-in FFI support to other languages. It d
authors to provide C-compatible APIs through differ
to this practice).

Well-designed Rust FFI follows C API design principle
Rust as little as possible. There are three goals with

1. Make it easy to use in the target language.

2. Avoid the API dictating internal unsafety on the

3. Keep the potential for memory unsafety and R
possible.

Rust code must trust the memory safety of the forei
However, every bit of unsafe code on the Rust side
exacerbate undefined behaviour .

For example, if a pointer provenance is wrong, that
memory access. But if it is manipulated by unsafe cc
corruption.

The Object-Based API design allows for writing shim
characteristics, and a clean boundary of what is safe

Code Example

92 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#object-based-apis
https://rust-unofficial.github.io/patterns/print.html#object-based-apis
https://rust-unofficial.github.io/patterns/print.html#description-28
https://rust-unofficial.github.io/patterns/print.html#description-28
https://rust-unofficial.github.io/patterns/print.html#motivation-17
https://rust-unofficial.github.io/patterns/print.html#motivation-17
https://rust-unofficial.github.io/patterns/print.html#code-example-3
https://rust-unofficial.github.io/patterns/print.html#code-example-3

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

The POSIX standard defines the API to access an on-
excellent example of an “object-based” API.

Here is the definition in C, which hopefully should b
FFIl. The commentary below should help explain it fc

struct DBM;
typedef struct { void *dptr, size_t dsize } ¢

int dbm_clearerr (DBM x);

void dbm_close(DBM x);

int dbm_delete(DBM x, datum);
int dbm_error (DBM *);

datum dbm_fetch(DBM *, datum);

datum dbm_f1irstkey(DBM x);

datum dbm_nextkey (DBM *);

DBM *dbm_open(const char *, int, mode_t);
int dbm_store(DBM *, datum, datum, 1int);

This API defines two types: DBM and datum.

The DBM type was called an “encapsulated” type ab«
state, and acts as an entry point for the library’s ber

It is completely opaque to the user, who cannot cre:
know its size or layout. Instead, they must call dbm_
pointer to one.

This means all pBM s are “owned” by the library in a
unknown size is kept in memory controlled by the li
manage its life cycle with open and close, and per
functions.

The datum type was called a “transactional” type ab
exchange of information between the library and its

The database is designed to store “unstructured dat
meaning. As a result, the datum is the C equivalent
count of how many there are. The main difference i
which is what void indicates.

Keep in mind that this header is written from the lib
has some type they are using, which has a known si
by the rules of C casting, any type behind a pointer «

As noted earlier, this type is transparent to the user.
user. This has subtle ramifications, due to that point
owns the memory that pointer points to?

93 of 136 10/25/23, 12:58

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

The answer for best memory safety is, “the user”. Bt
the user does not know how to allocate it correctly (
value is). In this case, the library code is expected to
to - such as the Clibrary malloc and free - andtf
sense.

This may all seem speculative, but this is what a poi
thing as Rust: “user defined lifetime.” The user of thi
documentation in order to use it correctly. That saic
fewer or greater consequences if users do it wrong.
practice is about, and the key is to transfer ownershij

Advantages

This minimizes the number of memory safety guara
relatively small number:

1. Do not call any function with a pointer not rett
corruption).

2. Do not call any function on a pointer after clos

3.The dptr onany datum mustbe NULL, or pol
advertised length.

In addition, it avoids a lot of pointer provenance isst
consider an alternative in some depth: key iteration

Rust is well known for its iterators. When implemen
separate type with a bounded lifetime to its owner,

Here is how iteration would be done in Rust for pBwm

struct Dbm { ... }

impl Dbm {
/* .. %/
pub fn keys<'it>(&'it self) -> DbmKeysIte
/* oo x/

}

struct DbmKeysIter<'it> {
owner: &'it Dbm,

}

impl<'it> Iterator for DbmKeysIter<'it> { ..

This is clean, idiomatic, and safe. thanks to Rust's gu

94 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#advantages-19
https://rust-unofficial.github.io/patterns/print.html#advantages-19

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

straightforward API translation would look like:

#[no_mangle]
pub extern "C" fn dbm_iter_new(owner: *const
// THIS API IS A BAD IDEA! For real appl-
instead.
}
#[no_mangle]
pub extern "C" fn dbm_iter_next(
iter: xmut DbmKeysIter,
key_out: *const datum
) => libc::c_int {
// THIS API IS A BAD IDEA! For real appl-
instead.
}
#[no_mangle]
pub extern "C" fn dbm_iter_del(*mut DbmKeysI1
// THIS API IS A BAD IDEA! For real appl-
instead.

}

This API loses a key piece of information: the lifetim
lifetime of the Dbm object that owns it. A user of the
causes the iterator to outlive the data it is iterating ¢
memory.

This example written in C contains a bug that will be

int count_key_sizes(DBM *db) {
// DO NOT USE THIS FUNCTION. IT HAS A SUI
datum key;
int len = 0;

if (!dbm_iter_new(db)) {
dbm_close(db) ;
return -1;

}
int 1;
while ((1 = dbm_iter_next(owner, &key)) :
by -1
free(key.dptr);
len += key.dsize;
if (1 == 0) { // end of the 1iterator
dbm_close (owner) ;
}
}
if 1 >= 0 {
return -1;
} else {
return len;
}

95 of 136 10/25/23, 12:58

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

This bug is a classic. Here's what happens when the
marker:

1. The loop condition sets 1 to zero, and enters

2. The length is incremented, in this case by zero

3. The if statement is true, so the database is clos
statement here.

4. The loop condition executes again, causing a

The worst part about this bug? If the Rust implemer
most of the time! If the memory for the pbm object
check will almost certainly fail, resulting in the iterat
But occasionally, it will cause a segmentation fault, «
corruption!

None of this can be avoided by Rust. From its persp
returned pointers to them, and gave up control of tl
“play nice”.

The programmer must read and understand the AP
consider that par for the course in C, a good API des
API for pem did this by consolidating the ownership o

datum dbm_f1irstkey(DBM *);
datum dbm_nextkey (DBM *);

Thus, all the lifetimes were bound together, and suc

Disadvantages

However, this design choice also has a number of di
considered as well.

First, the API itself becomes less expressive. With PC
per object, and every call changes its state. This is r
almost any language, even though it is safe. Perhap:
lifetimes are less hierarchical, this limitation is more

Second, depending on the relationships of the API's
involved. Many of the easier design points have oth

e Wrapper Type Consolidation groups multiple F
“object”

96 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#disadvantages-19
https://rust-unofficial.github.io/patterns/print.html#disadvantages-19
https://rust-unofficial.github.io/patterns/patterns/ffi/wrappers.html
https://rust-unofficial.github.io/patterns/patterns/ffi/wrappers.html

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

e FFl Error Passing explains error handling with i
values (such as NULL pointers)

e Accepting Foreign Strings allows accepting stri
easier to get right than Passing Strings to FFI

However, not every APl can be done this way. It is u|
programmer as to who their audience is.

97 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/idioms/ffi/errors.html
https://rust-unofficial.github.io/patterns/idioms/ffi/errors.html
https://rust-unofficial.github.io/patterns/idioms/ffi/accepting-strings.html
https://rust-unofficial.github.io/patterns/idioms/ffi/accepting-strings.html
https://rust-unofficial.github.io/patterns/idioms/ffi/passing-strings.html
https://rust-unofficial.github.io/patterns/idioms/ffi/passing-strings.html

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

Type Consolidation into

Description

This pattern is designed to allow gracefully handling
minimizing the surface area for memory unsafety.

One of the cornerstones of Rust’s aliasing rules is lif
patterns of access between types can be memory s:

However, when Rust types are exported to other lar
into pointers. In Rust, a pointer means “the user ma
their responsibility to avoid memory unsafety.

Some level of trust in the user code is thus required
Rust can do nothing about. However, some API desi
on the code written in the other language.

The lowest risk APl is the “consolidated wrapper”, w
object are folded into a “wrapper type”, while keepir

Code Example

To understand this, let us look at a classic example «
collection.

That API looks like this:

1. The iterator is initialized with first_key .
2. Each call to next_key will advance the iterator
3. Calls to next_key if the iterator is at the end v

4. As noted above, the iterator is “wrapped into”"
API).

If the iterator implements nth() efficiently, then it
each function call:

98 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#type-consolidation-into-wrappers
https://rust-unofficial.github.io/patterns/print.html#type-consolidation-into-wrappers
https://rust-unofficial.github.io/patterns/print.html#description-29
https://rust-unofficial.github.io/patterns/print.html#description-29
https://rust-unofficial.github.io/patterns/print.html#code-example-4
https://rust-unofficial.github.io/patterns/print.html#code-example-4

Rust Design Patterns

99 of 136

https://rust-unofficial.github.io/patterns/print.html

struct MySetWrapper {
myset: MySet,
iter_next: usize,

}

impl MySetWrapper {
pub fn first_key(&mut self) -> Option<&Ke
self.iter_next = 0;
self.next_key()

}
pub fn next_key(&mut self) -> Option<&Key

if let Some(next) = self.myset.keys(]
self.iter_next += 1;
Some (next)

} else {
None

}

As a result, the wrapper is simple and contains no

Advantages

This makes APIs safer to use, avoiding issues with it
Based APIs for more on the advantages and pitfalls

Disadvantages

Often, wrapping types is quite difficult, and sometin
make things easier.

As an example, consider an iterator which does not
definitely be worth putting in special logic to make t
or to support a different access pattern efficiently tt
use.

Trying to Wrap Iterators (and Failing)

To wrap any type of iterator into the API correctly, t!
C version of the code would do: erase the lifetime o

Suffice it to say, this is incredibly difficult.

10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#advantages-20
https://rust-unofficial.github.io/patterns/print.html#advantages-20
https://rust-unofficial.github.io/patterns/patterns/ffi/export.html
https://rust-unofficial.github.io/patterns/patterns/ffi/export.html
https://rust-unofficial.github.io/patterns/print.html#disadvantages-20
https://rust-unofficial.github.io/patterns/print.html#disadvantages-20
https://rust-unofficial.github.io/patterns/print.html#trying-to-wrap-iterators-and-failing
https://rust-unofficial.github.io/patterns/print.html#trying-to-wrap-iterators-and-failing

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

Here is an illustration of just one pitfall.

A first version of MySetWrapper would look like this:

struct MySetWrapper {
myset: MySet,
iter_next: usize,
// created from a transmuted Box<KeysItet
iterator: Option<NonNull<KeysIter<'stat:ic¢

With transmute being used to extend a lifetime, an
But it gets even worse: any other operation can cause

Consider that the MySet in the wrapper could be m
iteration, such as storing a new value to the key it w
discourage this, and in fact some similar C libraries

A simple implementation of myset_store would be

pub mod unsafe_module {
// other module content
pub fn myset_store(
myset: *mut MySetWrapper,
key: datum,
value: datum) -> libc::c_int {

// DO NOT USE THIS CODE. IT IS UNSAFE

let myset: &mut MySet = unsafe { // ¢

here!
&mut (*myset).myset
}s
/* ...check and cast key and value d:
match myset.store(casted_key, casted_
ok(_) => 0,
Err(e) => e.into()
}
}
}

If the iterator exists when this function is called, we
rules. According to Rust, the mutable reference in tf
the object. If the iterator simply exists, it's not exclus

behaviour !

To avoid this, we must have a way of ensuring that r

100 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#1
https://rust-unofficial.github.io/patterns/print.html#1

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

That basically means clearing out the iterator’s shar
reconstructing it. In most cases, that will still be less

Some may ask: how can C do this more efficiently? 1
rules are the problem, and C simply ignores them fc
common to see code that is declared in the manual
circumstances. In fact, the GNU C library has an enti
behavior!

Rust would rather make everything memory safe all
optimizations that C code cannot attain. Being denic
price Rust programmers need to pay.

1 For the C programmers out there scratching their heads
code cause the UB. The exclusivity rule also enables comg
inconsistent observations by the iterator’s shared referen
instructions for efficiency). These observations may happt
created.

101 of 136 10/25/23, 12:58

https://manpages.debian.org/buster/manpages/attributes.7.en.html
https://manpages.debian.org/buster/manpages/attributes.7.en.html

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

Anti-patterns

An anti-pattern is a solution to a “recurring problem
being highly counterproductive”. Just as valuable as
knowing how not to solve it. Anti-patterns give us gr
relative to design patterns. Anti-patterns are not cor
can be an anti-pattern, too.

102 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#anti-patterns
https://rust-unofficial.github.io/patterns/print.html#anti-patterns
https://en.wikipedia.org/wiki/Anti-pattern
https://en.wikipedia.org/wiki/Anti-pattern

Rust Design Patterns

103 of 136

https://rust-unofficial.github.io/patterns/print.html

Clone to satisfy the borr

Description

The borrow checker prevents Rust users from devel
ensuring that either: only one mutable reference ex
immutable references exist. If the code written doe:
this anti-pattern arises when the developer resolves
variable.

Example

// define any variable
let mut x = 53

// Borrow ‘x' -- but clone it first
let y = &mut (x.clone());

// without the x.clone() two lines prior, th-
// X has been borrowed

// thanks to x.clone(), x was never borrowed.
println! ("{}", x);

// perform some action on the borrow to preve
//out of existence
*y += 13

Motivation

It is tempting, particularly for beginners, to use this
with the borrow checker. However, there are seriou
causes a copy of the data to be made. Any changes
synchronized - as if two completely separate variab

There are special cases - Rc<T> is designed to hanc
manages exactly one copy of the data, and cloning i

Thereis also Arc<T> which provides shared owner:
allocated in the heap. Invoking .clone() on Arc p
points to the same allocation on the heap as the sot

10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#clone-to-satisfy-the-borrow-checker
https://rust-unofficial.github.io/patterns/print.html#clone-to-satisfy-the-borrow-checker
https://rust-unofficial.github.io/patterns/print.html#description-30
https://rust-unofficial.github.io/patterns/print.html#description-30
https://rust-unofficial.github.io/patterns/print.html#example-20
https://rust-unofficial.github.io/patterns/print.html#example-20
https://rust-unofficial.github.io/patterns/print.html#motivation-18
https://rust-unofficial.github.io/patterns/print.html#motivation-18

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

count.

In general, clones should be deliberate, with full unc
clone is used to make a borrow checker error disap|
pattern may be in use.

Even though .clone() is an indication of a bad pat
inefficient code, in cases such as when:

 the developer is still new to ownership

e the code doesn't have great speed or memory
or prototypes)

« satisfying the borrow checker is really complic:
readability over performance

If an unnecessary clone is suspected, The Rust Book
understood fully before assessing whether the clons

Also be sure to always run cargo clippy inyour pr
which .clone() is not necessary, like 1, 2, 3 or 4.

See also

mem: : {take(_), replace(_)} to keep owned
Rc<T> documentation, which handles .clone()
Arc<T> documentation, a thread-safe referen
Tricks with ownership in Rust

104 of 136 10/25/23, 12:58

https://doc.rust-lang.org/book/ownership.html
https://doc.rust-lang.org/book/ownership.html
https://rust-lang.github.io/rust-clippy/master/index.html#redundant_clone
https://rust-lang.github.io/rust-clippy/master/index.html#redundant_clone
https://rust-lang.github.io/rust-clippy/master/index.html#clone_on_copy
https://rust-lang.github.io/rust-clippy/master/index.html#clone_on_copy
https://rust-lang.github.io/rust-clippy/master/index.html#map_clone
https://rust-lang.github.io/rust-clippy/master/index.html#map_clone
https://rust-lang.github.io/rust-clippy/master/index.html#clone_double_ref
https://rust-lang.github.io/rust-clippy/master/index.html#clone_double_ref
https://rust-unofficial.github.io/patterns/print.html#see-also-19
https://rust-unofficial.github.io/patterns/print.html#see-also-19
https://rust-unofficial.github.io/patterns/idioms/mem-replace.html
https://rust-unofficial.github.io/patterns/idioms/mem-replace.html
https://rust-unofficial.github.io/patterns/idioms/mem-replace.html
https://rust-unofficial.github.io/patterns/idioms/mem-replace.html
http://doc.rust-lang.org/std/rc/
http://doc.rust-lang.org/std/rc/
http://doc.rust-lang.org/std/rc/
http://doc.rust-lang.org/std/rc/
https://doc.rust-lang.org/std/sync/struct.Arc.html
https://doc.rust-lang.org/std/sync/struct.Arc.html
https://doc.rust-lang.org/std/sync/struct.Arc.html
https://doc.rust-lang.org/std/sync/struct.Arc.html
https://web.archive.org/web/20210120233744/https://xion.io/post/code/rust-borrowchk-tricks.html
https://web.archive.org/web/20210120233744/https://xion.io/post/code/rust-borrowchk-tricks.html

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

#! [deny(warnings)]

Description

A well-intentioned crate author wants to ensure the
they annotate their crate root with the following:

Example

#![deny(warnings)]

// All s well.

Advantages

It is short and will stop the build if anything is amiss

Drawbacks

By disallowing the compiler to build with warnings, «
famed stability. Sometimes new features or old mis’
are done, thus lints are written that warn for a cert:

to deny.

For example, it was discovered that a type could ha
This was deemed a bad idea, but in order to make t
overlapping-inherent-impls lint was introducedt
on this fact, before it becomes a hard error in a futu

Also sometimes APIs get deprecated, so their use w
was none.

All this conspires to potentially break the build wher

Furthermore, crates that supply additional lints (e.g.
unless the annotation is removed. This is mitigated-

105 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#denywarnings
https://rust-unofficial.github.io/patterns/print.html#denywarnings
https://rust-unofficial.github.io/patterns/print.html#denywarnings
https://rust-unofficial.github.io/patterns/print.html#description-31
https://rust-unofficial.github.io/patterns/print.html#description-31
https://rust-unofficial.github.io/patterns/print.html#example-21
https://rust-unofficial.github.io/patterns/print.html#example-21
https://rust-unofficial.github.io/patterns/print.html#advantages-21
https://rust-unofficial.github.io/patterns/print.html#advantages-21
https://rust-unofficial.github.io/patterns/print.html#drawbacks
https://rust-unofficial.github.io/patterns/print.html#drawbacks

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

lints=warn command line argument, turns all deny

Alternatives

There are two ways of tackling this problem: First, w
the code, and second, we can name the lints we wat

The following command line will build with all warni
RUSTFLAGS="-D warnings" cargo build

This can be done by any individual developer (or be
remember that this may break the build when some
change to the code.

Alternatively, we can specify the lints that we want t
warning lints that is (hopefully) safe to deny (as of R

#![deny(bad_style,
const_err,
dead_code,
improper_ctypes,
non_shorthand_field_patterns,
no_mangle_generic_items,
overflowing_Tliterals,
path_statements,
patterns_in_fns_without_body,
private_in_public,
unconditional_recursion,
unused,
unused_allocation,
unused_comparisons,
unused_parens,
while_true)]

In addition, the following allow ed lints may be a gc¢

#![deny(missing_debug_implementations,
missing_docs,
trivial_casts,
trivial_numeric_casts,
unused_extern_crates,
unused_import_braces,
unused_qualifications,
unused_results)]

Some may also want to add missing-copy—impleme

106 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#alternatives
https://rust-unofficial.github.io/patterns/print.html#alternatives

Rust Design Patterns

107 of 136

https://rust-unofficial.github.io/patterns/print.html

Note that we explicitly did not add the deprecated
be more deprecated APIs in the future.

See also

o A collection of all clippy lints

e deprecate attribute documentation

e Type rustc -W help for a list of lints on your:
general list of options

e rust-clippy is a collection of lints for better Rus

10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#see-also-20
https://rust-unofficial.github.io/patterns/print.html#see-also-20
https://rust-lang.github.io/rust-clippy/master
https://rust-lang.github.io/rust-clippy/master
https://doc.rust-lang.org/reference/attributes.html#deprecation
https://doc.rust-lang.org/reference/attributes.html#deprecation
https://github.com/Manishearth/rust-clippy
https://github.com/Manishearth/rust-clippy

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

Deref polymorphism

Description

Misuse the Deref trait to emulate inheritance betw

Example

Sometimes we want to emulate the following comrmr
as Java:

class Foo {
void m() { ... }
}

class Bar extends Foo {}

public static void main(String[] args) {
Bar b = new Bar();
b.m();

We can use the deref polymorphism anti-pattern to

108 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#deref-polymorphism
https://rust-unofficial.github.io/patterns/print.html#deref-polymorphism
https://rust-unofficial.github.io/patterns/print.html#deref-polymorphism
https://rust-unofficial.github.io/patterns/print.html#deref-polymorphism
https://rust-unofficial.github.io/patterns/print.html#description-32
https://rust-unofficial.github.io/patterns/print.html#description-32
https://rust-unofficial.github.io/patterns/print.html#example-22
https://rust-unofficial.github.io/patterns/print.html#example-22

Rust Design Patterns

109 of 136

https://rust-unofficial.github.io/patterns/print.html

use std::ops::Deref;

struct Foo {}

impl Foo {
fn m(&self) {
/]
}
}

struct Bar {
f: Foo,
}

impl Deref for Bar {
type Target = Foo;
fn deref(&self) -> &Foo {

&self.f
}
}
fn main() {
let b = Bar { f: Foo {} };
b.m();
}

There is no struct inheritance in Rust. Instead we us
instance of Foo in Bar (since the field is a value, it |
they would have the same layout in memory as the
use #[repr(C)] if you wantto be sure)).

In order to make the method call work we implemei
target (returning the embedded Foo field). That me
(for example, using *) then we will geta Foo . That
givesa T from areferenceto T, here we have two
dot operator does implicit dereferencing, it means t
methods on Foo as well as Bar .

Advantages

You save a little boilerplate, e.g.,

impl Bar {
fn m(&self) {
self.f.m()
}
}

10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#advantages-22
https://rust-unofficial.github.io/patterns/print.html#advantages-22

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

Disadvantages

Most importantly this is a surprising idiom - future
not expect this to happen. That's because we are mi
using it as intended (and documented, etc.). It's also
completely implicit.

This pattern does not introduce subtyping between
or C++ does. Furthermore, traits implemented by F.
implemented for Bar, so this pattern interacts badl
generic programming.

Using this pattern gives subtly different semantics fi
to self . Usually it remains a reference to the sub-c
‘class’ where the method is defined.

Finally, this pattern only supports single inheritance
class-based privacy, or other inheritance-related fea
will be subtly surprising to programmers used to Ja\

Discussion

There is no one good alternative. Depending on the
better to re-implement using traits or to write out tf
manually. We do intend to add a mechanism for inh
is likely to be some time before it reaches stable Ru:
issue for more details.

The peref traitis designed for the implementation
intention is that it will take a pointer-to-T toa T, ni
is a shame that this isn't (probably cannot be) enfor:

Rust tries to strike a careful balance between explici
explicit conversions between types. Automatic dere’
where the ergonomics strongly favour an implicit m
this is limited to degrees of indirection, not conversi

See also

o Collections are smart pointers idiom.
e Delegation crates for less boilerplate like deleg

110 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#disadvantages-21
https://rust-unofficial.github.io/patterns/print.html#disadvantages-21
https://rust-unofficial.github.io/patterns/print.html#discussion-15
https://rust-unofficial.github.io/patterns/print.html#discussion-15
https://github.com/rust-lang/rfcs/issues/349
https://github.com/rust-lang/rfcs/issues/349
https://rust-unofficial.github.io/patterns/print.html#see-also-21
https://rust-unofficial.github.io/patterns/print.html#see-also-21
https://rust-unofficial.github.io/patterns/idioms/deref.html
https://rust-unofficial.github.io/patterns/idioms/deref.html
https://crates.io/crates/delegate
https://crates.io/crates/delegate

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

e Documentation for Deref trait.

111 of 136 10/25/23, 12:58

https://doc.rust-lang.org/std/ops/trait.Deref.html
https://doc.rust-lang.org/std/ops/trait.Deref.html
https://doc.rust-lang.org/std/ops/trait.Deref.html
https://doc.rust-lang.org/std/ops/trait.Deref.html
https://doc.rust-lang.org/std/ops/trait.Deref.html

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

Functional Usage of Rus

Rust is an imperative language, but it follows many -

In computer science, functional programming is a
programs are constructed by applying and comp:
programming paradigm in which function definit
each return a value, rather than a sequence of i
the state of the program.

112 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#functional-usage-of-rust
https://rust-unofficial.github.io/patterns/print.html#functional-usage-of-rust
https://en.wikipedia.org/wiki/Functional_programming
https://en.wikipedia.org/wiki/Functional_programming

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

Programming paradigm:

One of the biggest hurdles to understanding functic
imperative background is the shift in thinking. Impe
something, whereas declarative programs describe
from 1 to 10 to show this.

Imperative

let mut sum = 0;

for i in 1..11 {
sum += 7;

}

println! ("{}", sum);

With imperative programs, we have to play compilel
start with a sum of 0. Next, we iterate through the
through the loop, we add the corresponding value il

i sum
1 1

3

6

10
15
21
28
36
45
55

O 00 N o Ul M W N

—_
(@)

This is how most of us start out programming. We I

Declarative

println! ("{}", (1..11).fold(0, |a, b| a + b);

113 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#programming-paradigms
https://rust-unofficial.github.io/patterns/print.html#programming-paradigms
https://rust-unofficial.github.io/patterns/print.html#imperative
https://rust-unofficial.github.io/patterns/print.html#imperative
https://rust-unofficial.github.io/patterns/print.html#declarative
https://rust-unofficial.github.io/patterns/print.html#declarative

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

Whoal! This is really different! What's going on here?
programs we are describing what to do, rather thar
composes functions. The name is a convention fron

Here, we are composing functions of addition (this ¢
from 1 to 10. The o is the starting point,so a is o

range, 1. 0 + 1 = 1 isthe result. So now we fold
+ 2 = 3 is the next result. This process continues u
range, 10.

10
15
21
28
36
45

O 00 N o U A W DN

—_
(@)

114 of 136 10/25/23, 12:58

https://en.wikipedia.org/wiki/Function_composition
https://en.wikipedia.org/wiki/Function_composition

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

Generics as Type Classes

Description

Rust's type system is designed more like functional |
imperative languages (like Java and C++). As a result
programming problems into “static typing” problem
choosing a functional language, and is critical to ma

A key part of this idea is the way generic types work
types are a meta-programming construct for the co
vector<char> in C++ are just two different copies ¢
vector type (known as a template) with two differ

In Rust, a generic type parameter creates what is kn
“type class constraint”, and each different paramete
changes the type. In other words, Vec<isize> and v
which are recognized as distinct by all parts of the t

This is called monomorphization, where different t
code. This special behavior requires impl blocks to
values for the generic type cause different types, an
impl blocks.

In object-oriented languages, classes can inherit bet
this allows the attachment of not only additional be
type class, but extra behavior as well.

The nearest equivalent is the runtime polymorphisn
members can be added to objects willy-nilly by any
languages, all of Rust’s additional methods can be ty
because their generics are statically defined. That m
remaining safe.

Example

Suppose you are designing a storage server for a se
software involved, there are two different protocols
network boot), and NFS (for remote mount storage)

Your goal is to have one program, written in Rust, w

115 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#generics-as-type-classes
https://rust-unofficial.github.io/patterns/print.html#generics-as-type-classes
https://rust-unofficial.github.io/patterns/print.html#description-33
https://rust-unofficial.github.io/patterns/print.html#description-33
https://rust-unofficial.github.io/patterns/print.html#example-23
https://rust-unofficial.github.io/patterns/print.html#example-23

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

have protocol handlers and listen for both kinds of |
will then allow a lab administrator to configure stor:
actual files.

The requests from machines in the lab for files cont
matter what protocol they came from: an authentic.
retrieve. A straightforward implementation would Ic

enum AuthInfo {
Nfs(crate::nfs::AuthInfo),
Bootp(crate::bootp::AuthInfo),
}

struct FileDownloadRequest {
file_name: PathBuf,
authentication: AuthInfo,

This design might work well enough. But now suppc
metadata that was protocol specific. For example, wi
what their mount point was in order to enforce add

The way the current struct is designed leaves the pr
means any method that applies to one protocol anc
programmer to do a runtime check.

Here is how getting an NFS mount point would look

struct FileDownloadRequest {
file_name: PathBuf,
authentication: AuthInfo,
mount_point: Option<PathBuf>,
}

impl FileDownloadRequest {
// ... other methods ...

/// Gets an NFS mount point if this is ar

/// return None.

pub fn mount_point(&self) -> Option<&Patl
self.mount_point.as_ref()

}

Every caller of mount_point() must check for None
true even if they know only NFS requests are ever u

It would be far more optimal to cause a compile-tim
were confused. After all, the entire path of the user”
the library they use, will know whether a request is

116 of 136 10/25/23, 12:58

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

In Rust, this is actually possible! The solution is to ac
API.

Here is what that looks like:

117 of 136 10/25/23, 12:58

Rust Design Patterns

118 of 136

https://rust-unofficial.github.io/patterns/print.html

use std::path::{Path, PathBuf};

mod nfs {
#[derive(Clone)]
pub(crate) struct AuthInfo(String); // NI

}

mod bootp {
pub(crate) struct AuthInfo(); // no authe

}

// private module, lest outside users -invent
mod proto_trait {

use std::path::{Path, PathBuf};

use super::{bootp, nfs};

pub(crate) trait ProtoKind {
type AuthInfo;
fn auth_info(&self) -> Self::AuthInfc

}

pub struct Nfs {
auth: nfs::AuthInfo,
mount_point: PathBuf,

}
impl Nfs {
pub(crate) fn mount_point(&self) -> ¢
&self.mount_point
}
}

impl ProtoKind for Nfs {
type AuthInfo = nfs::AuthInfo;
fn auth_info(&self) -> Self::AuthInfc
self.auth.clone()
}
}

pub struct Bootp(); // no additional met:

impl ProtoKind for Bootp {
type AuthInfo = bootp::AuthInfo;
fn auth_info(&self) -> Self::AuthInfc
bootp::AuthInfo()
}

}

use proto_trait::ProtoKind; // keep 1internal
pub use proto_trait::{Nfs, Bootp}; // re-expc

struct FileDownloadRequest<P: ProtoKind> {
file_name: PathBuf,
protocol: P,

10/25/23, 12:58

Rust Design Patterns

119 of 136

https://rust-unofficial.github.io/patterns/print.html

// all common API parts go into a generdic 1imf
impl<P: ProtoKind> FileDownloadRequest<P> {
fn file_path(&self) -> &Path {
&self.file_name

fn auth_info(&self) -> P::AuthInfo {
self.protocol.auth_info()

}

// all protocol-specific impls go into their
impl FileDownloadRequest<Nfs> {
fn mount_point(&self) -> &Path {
self.protocol.mount_point()

}
}
fn main() {

// your code here
}

With this approach, if the user were to make a mistc

fn main() {
let mut socket = crate::bootp::Llisten()?:
while let Some(request) = socket.next_rec
match request.mount_point().as_ref()
"/secure" => socket.send("Access
=> {} // continue on...

}
// Rest of the code here

They would get a syntax error. The type FileDownlc
implement mount_point() , only the type FileDown
created by the NFS module, not the BOOTP module

Advantages

First, it allows fields that are common to multiple st
the non-shared fields generic, they are implementet

Second, it makes the -impl blocks easier to read, be
Methods common to all states are typed once in on
state are in a separate block.

10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#advantages-23
https://rust-unofficial.github.io/patterns/print.html#advantages-23

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

Both of these mean there are fewer lines of code, al

Disadvantages

This currently increases the size of the binary, due t
implemented in the compiler. Hopefully the implem
future.

Alternatives

« If a type seems to need a “split API” due to con
consider the Builder Pattern instead.

e If the APl between types does not change - on
Strategy Pattern is better used instead.

See also
This pattern is used throughout the standard library

e Vec<u8> can be cast from a String, unlike ever
e They can also be cast into a binary heap, but o

implements the ord trait.?

e The to_string method was specialized for c«
It is also used by several popular crates to allow API

e The embedded-hal ecosystem used for embec
this pattern. For example, it allows statically ve
registers used to control embedded pins. Whe
Pin<MODE> struct, whose generic determines t

which are not on the pin itself. 4

e The hyper HTTP client library uses this to exp
requests. Clients with different connectors hay
as different trait implementations, while a core

connector. °

e The “type state” pattern - where an object gair

120 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#disadvantages-22
https://rust-unofficial.github.io/patterns/print.html#disadvantages-22
https://rust-unofficial.github.io/patterns/print.html#alternatives-1
https://rust-unofficial.github.io/patterns/print.html#alternatives-1
https://rust-unofficial.github.io/patterns/patterns/creational/builder.html
https://rust-unofficial.github.io/patterns/patterns/creational/builder.html
https://rust-unofficial.github.io/patterns/patterns/behavioural/strategy.html
https://rust-unofficial.github.io/patterns/patterns/behavioural/strategy.html
https://rust-unofficial.github.io/patterns/print.html#see-also-22
https://rust-unofficial.github.io/patterns/print.html#see-also-22
https://rust-unofficial.github.io/patterns/print.html#2
https://rust-unofficial.github.io/patterns/print.html#2
https://rust-unofficial.github.io/patterns/print.html#4
https://rust-unofficial.github.io/patterns/print.html#4
https://rust-unofficial.github.io/patterns/print.html#5
https://rust-unofficial.github.io/patterns/print.html#5

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

state or invariant - is implemented in Rust usir

slightly different technique. ©

1 See: impl From<CString> for Vec<u8>

2 See: impl<T: Ord> Fromlterator<T> for BinaryHeap<T>
3 See: impl<’_> ToString for Cow<'_, str>

4 Example: https://docs.rs/stm32f30x-hal/0.1.0/stm32f30>
> See: https://docs.rs/hyper/0.14.5/hyper/client/struct.Clie

6 See: The Case for the Type State Pattern and Rusty Type

121 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#6
https://rust-unofficial.github.io/patterns/print.html#6
https://doc.rust-lang.org/1.59.0/src/std/ffi/c_str.rs.html#803-811
https://doc.rust-lang.org/1.59.0/src/std/ffi/c_str.rs.html#803-811
https://web.archive.org/web/20201030132806/https://doc.rust-lang.org/stable/src/alloc/collections/binary_heap.rs.html#1330-1335
https://web.archive.org/web/20201030132806/https://doc.rust-lang.org/stable/src/alloc/collections/binary_heap.rs.html#1330-1335
https://doc.rust-lang.org/stable/src/alloc/string.rs.html#2235-2240
https://doc.rust-lang.org/stable/src/alloc/string.rs.html#2235-2240
https://docs.rs/stm32f30x-hal/0.1.0/stm32f30x_hal/gpio/gpioa/struct.PA0.html
https://docs.rs/stm32f30x-hal/0.1.0/stm32f30x_hal/gpio/gpioa/struct.PA0.html
https://docs.rs/hyper/0.14.5/hyper/client/struct.Client.html
https://docs.rs/hyper/0.14.5/hyper/client/struct.Client.html
https://web.archive.org/web/20210325065112/https://www.novatec-gmbh.de/en/blog/the-case-for-the-typestate-pattern-the-typestate-pattern-itself/
https://web.archive.org/web/20210325065112/https://www.novatec-gmbh.de/en/blog/the-case-for-the-typestate-pattern-the-typestate-pattern-itself/
https://web.archive.org/web/20210328164854/https://rustype.github.io/notes/notes/rust-typestate-series/rust-typestate-index
https://web.archive.org/web/20210328164854/https://rustype.github.io/notes/notes/rust-typestate-series/rust-typestate-index

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

Functional Language Op

Optics is a type of APl design that is common to fun
functional concept that is not frequently used in Ru

Nevertheless, exploring the concept may be helpful
APIs, such as visitors. They also have niche use case

This is quite a large topic, and would require actual
into its abilities. However their applicability in Rust i

To explain the relevant parts of the concept, the se
as it is one that is difficult for many to to understanc

In the process, different specific patterns, called Opt
The Poly Iso, and The Prism.

An APl Example: Serde

Trying to understand the way Serde works by only re
especially the first time. Consider the Deserializer
which parses a new data format:

pub trait Deserializer<'de>: Sized {
type Error: Error;

fn deserialize_any<V>(self, visitor: V) -
where

V: Visitor<'de>;
fn deserialize_bool<V>(self, visitor: V)
where

V: Visitor<'de>;

// remainder omitted

And here’s the definition of the visitor trait passe

122 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#functional-language-optics
https://rust-unofficial.github.io/patterns/print.html#functional-language-optics
https://rust-unofficial.github.io/patterns/patterns/behavioural/visitor.html
https://rust-unofficial.github.io/patterns/patterns/behavioural/visitor.html
https://rust-unofficial.github.io/patterns/print.html#an-api-example-serde
https://rust-unofficial.github.io/patterns/print.html#an-api-example-serde

Rust Design Patterns

123 of 136

https://rust-unofficial.github.io/patterns/print.html

pub trait Visitor<'de>: Sized {
type Value;

fn visit_bool<E>(self, v: bool) -> Resuli
where

E: Error;
fn visit_u64<E>(self, v: u64) —-> Result«<!
where

E: Error;
fn visit_str<E>(self, v: &str) -> Result:
where

E: Error;

// remainder omitted

There is a lot of type erasure going on here, with mt
passed back and forth.

But what is the big picture? Why not just have the v
needs in a streaming API, and call it a day? Why all tl

One way to understand it is to look at a functional l¢

This is a way to do composition of behavior and pro

patterns common to Rust: failure, type transformati

The Rust language does not have very good support
appear in the design of the language itself, and theil
some of Rust’s APIs. As a result, this attempts to exg
does it.

This will perhaps shed light on what those APIs are :
composability.

Basic Optics

The Iso

The Iso is a value transformer between two types. It
conceptually important building block.

As an example, suppose that we have a custom Has

10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#basic-optics
https://rust-unofficial.github.io/patterns/print.html#basic-optics
https://rust-unofficial.github.io/patterns/print.html#the-iso
https://rust-unofficial.github.io/patterns/print.html#the-iso

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

concordance for a document.? It uses strings for ke
values (file offsets, for instance).

A key feature is the ability to serialize this format to
would be to implement a conversion to and from a:
ignored for the time being, they will be handled late

To write it in a normal form expected by functional |

case class ConcordanceSerDe {
serialize: Concordance -> String
deserialize: String -> Concordance

}

The Iso is thus a pair of functions which convert valt

deserialize.

A straightforward implementation:

use std::collections: :HashMap;

struct Concordance {
keys: HashMap<String, usize>,
value_table: Vec<(usize, usize)>,

}
struct ConcordanceSerde {}

impl ConcordanceSerde {
fn serialize(value: Concordance) -> Strir
todo! ()

}

// invalid concordances are empty

fn deserialize(value: String) -> Concord:
todo! ()

}

This may seem rather silly. In Rust, this type of behz
all, the standard library has Fromstr and ToString

But that is where our next subject comes in: Poly Isc

Poly Isos

The previous example was simply converting betwe
block builds upon it with generics, and is more inter

124 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#2
https://rust-unofficial.github.io/patterns/print.html#2
https://rust-unofficial.github.io/patterns/print.html#poly-isos
https://rust-unofficial.github.io/patterns/print.html#poly-isos

Rust Design Patterns

125 of 136

https://rust-unofficial.github.io/patterns/print.html

Poly Isos allow an operation to be generic over any

This brings us closer to parsing. Consider what a ba:
cases. Again, this is its normal form:

case class Serde[T] {
deserialize(String) -> T
serialize(T) -> String

Here we have our first generic, the type T being col

In Rust, this could be implemented with a pair of tra
and ToString . The Rust version even handles error

pub trait FromStr: Sized {
type Err;

fn from_str(s: &str) -> Result<Self, Seli
}

pub trait ToString {
fn to_string(&self) -> String;
}

Unlike the Iso, the Poly Iso allows application of mul
generically. This is what you would want for a basic

At first glance, this seems like a good option for writ

10/25/23, 12:58

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

use anyhow;
use std::str::FromStr;

struct TestStruct {
a: usize,
b: String,

}

impl FromStr for TestStruct {
type Err = anyhow::Error;
fn from_str(s: &str) -> Result<TestStruci
todo! ()
}
}

impl ToString for TestStruct {
fn to_string(&self) -> String {

todo! ()
}
}
fn main() {
let a = TestStruct { a: 5, b: "hello".to.
println! ("Our Test Struct as JSON: {}", ¢
}

That seems quite logical. However, there are two pr

First, to_string does not indicate to API users, “thi:
agree on a JSON representation, and many of the ty
already don't. Using this is a poor fit. This can easily

But there is a second, subtler problem: scaling.

When every type writes to_string by hand, this wc
wants their type to be serializable has to write a bur
JSON libraries - to do it themselves, it will turn into ¢

The answer is one of Serde’s two key innovations: al
represent Rust data in structures common to data s
that it can use Rust's code generation abilities to cre
itcallsa visitor.

This means, in normal form (again, skipping error h:

126 of 136 10/25/23, 12:58

Rust Design Patterns

127 of 136

https://rust-unofficial.github.io/patterns/print.html

case class Serde[T] {
deserialize: Visitor[T] -> T
serjalize: T -> Visitor[T]

}

case class Visitor[T] {
toJson: Visitor[T] -> String
fromJson: String -> Visitor[T]

The result is one Poly Iso and one Iso (respectively).
with traits:

trait Serde {
type V;
fn deserialize(visitor: Self::V) -> Self;
fn serialize(self) -> Self::V;

}

trait Visitor {
fn to_json(self) -> String;
fn from_json(json: String) -> Self;

Because there is a uniform set of rules to transform
form, it is even possible to have code generation cre

type T:

#[derive(Default, Serde)] // the "Serde" der-
struct TestStruct {

a: usize,

b: String,
}

// user writes this macro to generate an assc
generate_visitor! (TestStruct);

Or do they?

fn main() {
let a = TestStruct { a: 5, b: "hello".to.
let a_data = a.serdialize().to_json();
println! ("Our Test Struct as JSON: {}", ¢
let b = TestStruct::deserialize(
generated_visitor_for! (TestStruct)::1

It turns out that the conversion isn't symmetric aftel
generated code the name of the actual type necess:
String is hidden. We'd need some kind of generat

10/25/23, 12:58

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

type name.
It's wonky, but it works... until we get to the elephan
The only format currently supported is JSON. How w

The current design requires completely re-writing al
a new Serde trait. That is quite terrible and not exte

In order to solve that, we need something more pov

Prism
To take format into account, we need something in

case class Serde[T, F] {
serialize: T, F -> String
deserialize: String, F -> Result[T, Errot

This construct is called a Prism. It is “one level highe
case, the “intersecting” type F is the key).

Unfortunately because visitor is a trait (since eac
code), this would require a kind of generic type boul

Fortunately, we still have that visitor type from b
attempting to allow each data structure to define th

Well what if we could add one more interface for th:
is just an implementation detail, and it would “bridg

In normal form:

128 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#prism
https://rust-unofficial.github.io/patterns/print.html#prism

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

case class Serde[T] {
serialize: F -> String
deserialize F, String -> Result[T, Error:

}

case class VisitorForT {
build: F, String -> Result[T, Error]
decompose: F, T -> String

}

case class SerdeFormat[T, V] {
toString: T, V -> String
fromString: V, String -> Result[T, Error.

And what do you know, a pair of Poly Isos at the bot
traits!

Thus we have the Serde API:

1. Each type to be serialized implements Deseri:
the serde class

2. They get a type (well two, one for each directio
which is usually (but not always) done through
This contains the logic to construct or destruct
format of the Serde data model.

3. The type implementing the Deserializer trai
format, being “driven by” the visitor.

This splitting and Rust type erasure is really to achie

You can see it on the Deserializer trait

pub trait Deserializer<'de>: Sized {
type Error: Error;

fn deserialize_any<V>(self, visitor: V) -
where

V: Visitor<'de>;
fn deserialize_bool<V>(self, visitor: V)
where

V: Visitor<'de>;

// remainder omitted

And the visitor:

129 of 136 10/25/23, 12:58

Rust Design Patterns

130 of 136

https://rust-unofficial.github.io/patterns/print.html

pub trait Visitor<'de>: Sized {

And

type Value;

fn visit_bool<E>(self, v: bool) -> Resuli
where
E: Error;

fn visit_u64<E>(self, v: u64) —-> Result«<!
where

E: Error;
fn visit_str<E>(self, v: &str) -> Result:
where

E: Error;

// remainder omitted

the trait Deserialize implemented by the mat

pub trait Deserdialize<'de>: Sized {

This

fn deserialize<D>(deserializer: D) -> Re:
where
D: Deserializer<'de>;

has been abstract, so let's look at a concrete ex

How does actual Serde deserialize a bit of JSON into

1

2

3
4

. The user would call a library function to deseri

Deserializer based on the JSON format.

. Based on the fields in the struct, a Vvisitor w
moment) which knows how to create each typ
needed to represent it: vec (list), u64 and st

. The deserializer would make calls to the visit

. The visitor would indicate if the items founc
error to indicate deserialization has failed.

For our very simple structure above, the expected p

N =

3
4
5

6
7
8

. Begin visiting a map (Serde’s equivalent to Has
. Visit a string key called “keys".

. Begin visiting a map value.

. For each item, visit a string key then an integer
. Visit the end of the map.

. Store the map into the keys field of the data ¢
. Visit a string key called “value_table”.

. Begin visiting a list value.

10/25/23, 12:58

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

9. For each item, visit an integer.
10. Visit the end of the list
11. Store the list into the value_table field.
12. Visit the end of the map.

But what determines which “observation” pattern is

A functional programming language would be able t
each type based on the type itself. Rust does not su
need to have its own code written based on its field.

Serde solves this usability challenge with a derive m:

use serde::Deserialize;

#[derive(Deserialize)]
struct IdRecord {
name: String,
customer_id: String,

That macro simply generates an impl block causing

Deserialize.

This is the function that determines how to create t!
based on the struct’s fields. When the parsing librar
parsing library - it creates a Deserializer and calls
parameter.

The deserialize code will then create a visitor \
the Deserializer. If everything goes well, eventual
corresponding to the type being parsed and return

For a complete example, see the Serde documentati

The result is that types to be deserialized only imple
file formats only need to implement the “bottom lay
with the rest of the ecosystem, since generic types v

In conclusion, Rust's generic-inspired type system c:
use their power, as shown in this APl design. Butitr
create bridges for its generics.

If you are interested in learning more about this tog

See Also

131 of 136 10/25/23, 12:58

https://serde.rs/deserialize-struct.html
https://serde.rs/deserialize-struct.html
https://serde.rs/deserialize-struct.html
https://serde.rs/deserialize-struct.html
https://rust-unofficial.github.io/patterns/print.html#see-also-23
https://rust-unofficial.github.io/patterns/print.html#see-also-23

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

e lens-rs crate for a pre-built lenses implementa
these examples

e Serde itself, which makes these concepts intuit
structs) without needing to understand the de

e luminance is a crate for drawing computer gra
including procedural macros to create full pris
that remain generic

e An Article about Lenses in Scala that is very re:

e Paper: Profunctor Optics: Modular Data Acces:

e Musliis a library which attempts to use a simil.
e.g. doing away with the visitor

1 School of Haskell: A Little Lens Starter Tutorial

2 Concordance on Wikipedia

132 of 136 10/25/23, 12:58

https://crates.io/crates/lens-rs
https://crates.io/crates/lens-rs
https://serde.rs/
https://serde.rs/
https://github.com/phaazon/luminance-rs
https://github.com/phaazon/luminance-rs
https://web.archive.org/web/20221128185849/https://medium.com/zyseme-technology/functional-references-lens-and-other-optics-in-scala-e5f7e2fdafe
https://web.archive.org/web/20221128185849/https://medium.com/zyseme-technology/functional-references-lens-and-other-optics-in-scala-e5f7e2fdafe
https://web.archive.org/web/20220701102832/https://arxiv.org/ftp/arxiv/papers/1703/1703.10857.pdf
https://web.archive.org/web/20220701102832/https://arxiv.org/ftp/arxiv/papers/1703/1703.10857.pdf
https://github.com/udoprog/musli
https://github.com/udoprog/musli
https://web.archive.org/web/20221128190041/https://www.schoolofhaskell.com/school/to-infinity-and-beyond/pick-of-the-week/a-little-lens-starter-tutorial
https://web.archive.org/web/20221128190041/https://www.schoolofhaskell.com/school/to-infinity-and-beyond/pick-of-the-week/a-little-lens-starter-tutorial
https://en.wikipedia.org/wiki/Concordance_(publishing)
https://en.wikipedia.org/wiki/Concordance_(publishing)

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

Additional resources

A collection of complementary helpful content

Talks

e Design Patterns in Rust by Nicholas Cameron «
e Writing Idiomatic Libraries in Rust by Pascal He
e Rust Programming Techniques by Nicholas Ca

Books (Online)

e The Rust APl Guidelines

133 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#additional-resources
https://rust-unofficial.github.io/patterns/print.html#additional-resources
https://rust-unofficial.github.io/patterns/print.html#talks
https://rust-unofficial.github.io/patterns/print.html#talks
https://www.youtube.com/watch?v=Pm_oO0N5B9k
https://www.youtube.com/watch?v=Pm_oO0N5B9k
https://www.youtube.com/watch?v=0zOg8_B71gE
https://www.youtube.com/watch?v=0zOg8_B71gE
https://www.youtube.com/watch?v=vqavdUGKeb4
https://www.youtube.com/watch?v=vqavdUGKeb4
https://rust-unofficial.github.io/patterns/print.html#books-online
https://rust-unofficial.github.io/patterns/print.html#books-online
https://rust-lang.github.io/api-guidelines
https://rust-lang.github.io/api-guidelines

Rust Design Patterns

134 of 136

https://rust-unofficial.github.io/patterns/print.html

Design principles

A brief overview over common d

SOLID

Single Responsibility Principle (SRP): A class sh
that is, only changes to one part of the softwar
affect the specification of the class.
Open/Closed Principle (OCP): “Software entitie
closed for modification.”

Liskov Substitution Principle (LSP): “Objects in .
instances of their subtypes without altering th
Interface Segregation Principle (ISP): “Many clie
one general-purpose interface.”

Dependency Inversion Principle (DIP): One sho
concretions.”

DRY (Don’t Repeat Yourself)

“Every piece of knowledge must have a single, unan
within a system”

KISS principle

most systems work best if they are kept simple rath
simplicity should be a key goal in design, and unnec

Law of Demeter (LoD)

a given object should assume as little as possible ab
anything else (including its subcomponents), in accc

10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#design-principles
https://rust-unofficial.github.io/patterns/print.html#design-principles
https://rust-unofficial.github.io/patterns/print.html#a-brief-overview-over-common-design-principles
https://rust-unofficial.github.io/patterns/print.html#a-brief-overview-over-common-design-principles
https://en.wikipedia.org/wiki/SOLID
https://en.wikipedia.org/wiki/SOLID
https://en.wikipedia.org/wiki/Single-responsibility_principle
https://en.wikipedia.org/wiki/Single-responsibility_principle
https://en.wikipedia.org/wiki/Open%E2%80%93closed_principle
https://en.wikipedia.org/wiki/Open%E2%80%93closed_principle
https://en.wikipedia.org/wiki/Liskov_substitution_principle
https://en.wikipedia.org/wiki/Liskov_substitution_principle
https://en.wikipedia.org/wiki/Interface_segregation_principle
https://en.wikipedia.org/wiki/Interface_segregation_principle
https://en.wikipedia.org/wiki/Dependency_inversion_principle
https://en.wikipedia.org/wiki/Dependency_inversion_principle
https://en.wikipedia.org/wiki/Don%27t_repeat_yourself
https://en.wikipedia.org/wiki/Don%27t_repeat_yourself
https://en.wikipedia.org/wiki/KISS_principle
https://en.wikipedia.org/wiki/KISS_principle
https://en.wikipedia.org/wiki/Law_of_Demeter
https://en.wikipedia.org/wiki/Law_of_Demeter

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

“information hiding”

Design by contract (DbC)
software designers should define formal, precise an

for software components, which extend the ordinar
with preconditions, postconditions and invariants

Encapsulation
bundling of data with the methods that operate on-
access to some of an object’s components. Encapsu

state of a structured data object inside a class, prewv:
access to them.

Command-Query-Separation(CQ

“Functions should not produce abstract side effects.
permitted to produce side effects.” - Bertrand Meye
Construction

Principle of least astonishment (

a component of a system should behave in a way th
The behavior should not astonish or surprise users

Linguistic-Modular-Units

“Modules must correspond to syntactic units in the
Object-Oriented Software Construction

Self-Documentation

135 of 136 10/25/23, 12:58

https://en.wikipedia.org/wiki/Design_by_contract
https://en.wikipedia.org/wiki/Design_by_contract
https://en.wikipedia.org/wiki/Encapsulation_(computer_programming)
https://en.wikipedia.org/wiki/Encapsulation_(computer_programming)
https://en.wikipedia.org/wiki/Command%E2%80%93query_separation
https://en.wikipedia.org/wiki/Command%E2%80%93query_separation
https://en.wikipedia.org/wiki/Principle_of_least_astonishment
https://en.wikipedia.org/wiki/Principle_of_least_astonishment
https://rust-unofficial.github.io/patterns/print.html#linguistic-modular-units
https://rust-unofficial.github.io/patterns/print.html#linguistic-modular-units
https://rust-unofficial.github.io/patterns/print.html#self-documentation
https://rust-unofficial.github.io/patterns/print.html#self-documentation

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

“The designer of a module should strive to make all
the module itself.” - Bertrand Meyer: Object-Oriente

Uniform-Access

“All services offered by a module should be availabl
does not betray whether they are implemented thrc
computation.” - Bertrand Meyer: Object-Oriented Sc

Single-Choice

“Whenever a software system must support a set of
module in the system should know their exhaustive
Oriented Software Construction

Persistence-Closure

“Whenever a storage mechanism stores an object, it
that object. Whenever a retrieval mechanism retrie\
also retrieve any dependent of that object that has 1
Meyer: Object-Oriented Software Construction

136 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#uniform-access
https://rust-unofficial.github.io/patterns/print.html#uniform-access
https://rust-unofficial.github.io/patterns/print.html#single-choice
https://rust-unofficial.github.io/patterns/print.html#single-choice
https://rust-unofficial.github.io/patterns/print.html#persistence-closure
https://rust-unofficial.github.io/patterns/print.html#persistence-closure

