
Introduction

Participation

If you are interested in contributing to this book, check out the

Design patterns

In software development, we often come across problems that share simi

regardless of the environment they appear in. Although the implementati

crucial to solve the task at hand, we may abstract from these particularitie

common practices that are generically applicable.

Design patterns are a collection of reusable and tested solutions to recurr

engineering. They make our software more modular, maintainable, and e

Moreover, these patterns provide a common language for developers, ma

excellent tool for effective communication when problem-solving in team

Design patterns in Rust

Rust is not object-oriented, and the combination of all its characteristics, s

functional elements, a strong type system, and the borrow checker, make

Because of this, Rust design patterns vary with respect to other traditiona

oriented programming languages. That’s why we decided to write this boo

enjoy reading it! The book is divided in three main chapters:

• Idioms: guidelines to follow when coding. They are the social norms

community. You should break them only if you have a good reason f

• Design patterns: methods to solve common problems when coding.

• Anti-patterns: methods to solve common problems when coding. Ho

design patterns give us benefits, anti-patterns create more problem

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

1 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#introduction
https://rust-unofficial.github.io/patterns/print.html#introduction
https://rust-unofficial.github.io/patterns/print.html#participation
https://rust-unofficial.github.io/patterns/print.html#participation
https://rust-unofficial.github.io/patterns/print.html#design-patterns
https://rust-unofficial.github.io/patterns/print.html#design-patterns
https://rust-unofficial.github.io/patterns/print.html#design-patterns-in-rust
https://rust-unofficial.github.io/patterns/print.html#design-patterns-in-rust
https://rust-unofficial.github.io/patterns/idioms/index.html
https://rust-unofficial.github.io/patterns/idioms/index.html
https://rust-unofficial.github.io/patterns/patterns/index.html
https://rust-unofficial.github.io/patterns/patterns/index.html
https://rust-unofficial.github.io/patterns/anti_patterns/index.html
https://rust-unofficial.github.io/patterns/anti_patterns/index.html

Translations

We are utilizing mdbook-i18n-helper. Please read up on how to

translations in their repository

External translations

• 简体中⽂

If you want to add a translation, please open an issue in the

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

2 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#translations
https://rust-unofficial.github.io/patterns/print.html#translations
https://github.com/google/mdbook-i18n-helpers
https://github.com/google/mdbook-i18n-helpers
https://github.com/google/mdbook-i18n-helpers#creating-and-updating-translations
https://github.com/google/mdbook-i18n-helpers#creating-and-updating-translations
https://rust-unofficial.github.io/patterns/print.html#external-translations
https://rust-unofficial.github.io/patterns/print.html#external-translations
https://fomalhauthmj.github.io/patterns/
https://fomalhauthmj.github.io/patterns/

Idioms

Idioms are commonly used styles, guidelines and patterns largely agreed

community. Writing idiomatic code allows other developers to understand

happening.

After all, the computer only cares about the machine code that is generat

compiler. Instead, the source code is mainly beneficial to the developer. S

this abstraction layer, why not make it more readable?

Remember the KISS principle: “Keep It Simple, Stupid”. It claims that “mos

best if they are kept simple rather than made complicated; therefore, sim

a key goal in design, and unnecessary complexity should be avoided”.

Code is there for humans, not computers, to understand.

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

3 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#idioms
https://rust-unofficial.github.io/patterns/print.html#idioms
https://en.wikipedia.org/wiki/Programming_idiom
https://en.wikipedia.org/wiki/Programming_idiom
https://en.wikipedia.org/wiki/KISS_principle
https://en.wikipedia.org/wiki/KISS_principle

Use borrowed types for arguments

Description

Using a target of a deref coercion can increase the flexibility of your code

deciding which argument type to use for a function argument. In this way

will accept more input types.

This is not limited to slice-able or fat pointer types. In fact, you should alw

the borrowed type over borrowing the owned type

over &Vec<T> , or &T over &Box<T> .

Using borrowed types you can avoid layers of indirection for those instan

owned type already provides a layer of indirection. For instance, a

indirection, so a &String will have two layers of indirection. We can avoid

&str instead, and letting &String coerce to a &str

Example

For this example, we will illustrate some differences for using

argument versus using a &str , but the ideas apply as well to using

a &[T] or using a &Box<T> versus a &T .

Consider an example where we wish to determine if a word contains thre

vowels. We don’t need to own the string to determine this, so we will take

The code might look something like this:

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

4 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#use-borrowed-types-for-arguments
https://rust-unofficial.github.io/patterns/print.html#use-borrowed-types-for-arguments
https://rust-unofficial.github.io/patterns/print.html#description
https://rust-unofficial.github.io/patterns/print.html#description
https://rust-unofficial.github.io/patterns/print.html#example
https://rust-unofficial.github.io/patterns/print.html#example

This works fine because we are passing a &String type as a parameter. If

comments on the last two lines, the example will fail. This is because a

coerce to a &String type. We can fix this by simply modifying the type fo

For instance, if we change our function declaration to:

then both versions will compile and print the same output.

But wait, that’s not all! There is more to this story. It’s likely that you may s

that doesn’t matter, I will never be using a &'static str

when we used "Ferris"). Even ignoring this special example, you may st

using &str will give you more flexibility than using a

Let’s now take an example where someone gives us a sentence, and we w

determine if any of the words in the sentence contain three consecutive v

probably should make use of the function we have already defined and si

each word from the sentence.

fn three_vowels(word: &String) -> bool {
let mut vowel_count = 0;
for c in word.chars() {

match c {
'a' | 'e' | 'i' | 'o' | 'u' => {

 vowel_count += 1;
if vowel_count >= 3 {

return true
 }
 }
 _ => vowel_count = 0
 }
 }

false
}

fn main() {
let ferris = "Ferris".to_string();
let curious = "Curious".to_string();
println!("{}: {}", ferris, three_vowels(&ferris));
println!("{}: {}", curious, three_vowels(&curious));

// This works fine, but the following two lines would fail
// println!("Ferris: {}", three_vowels("Ferris"));
// println!("Curious: {}", three_vowels("Curious"));

}

fn three_vowels(word: &str) -> bool {

Ferris: false
Curious: true

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

5 of 136 10/25/23, 12:58

An example of this could look like this:

Running this example using our function declared with an argument type

However, this example will not run when our function is declared with an

&String . This is because string slices are a &str and not a

require an allocation to be converted to &String which is not implicit, wh

converting from String to &str is cheap and implicit.

See also

• Rust Language Reference on Type Coercions

• For more discussion on how to handle String

by Herman J. Radtke III

fn three_vowels(word: &str) -> bool {
let mut vowel_count = 0;
for c in word.chars() {

match c {
'a' | 'e' | 'i' | 'o' | 'u' => {

 vowel_count += 1;
if vowel_count >= 3 {

return true
 }
 }
 _ => vowel_count = 0
 }
 }

false
}

fn main() {
let sentence_string =

"Once upon a time, there was a friendly curious crab n
Ferris".to_string();

for word in sentence_string.split(' ') {
if three_vowels(word) {

println!("{} has three consecutive vowels!"
 }
 }
}

curious has three consecutive vowels!

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

6 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#see-also
https://rust-unofficial.github.io/patterns/print.html#see-also
https://doc.rust-lang.org/reference/type-coercions.html
https://doc.rust-lang.org/reference/type-coercions.html

Concatenating strings with

Description

It is possible to build up strings using the push and

String , or using its + operator. However, it is often more convenient to

especially where there is a mix of literal and non-literal strings.

Example

Advantages

Using format! is usually the most succinct and readable way to combine

Disadvantages

It is usually not the most efficient way to combine strings - a series of

a mutable string is usually the most efficient (especially if the string has be

allocated to the expected size).

fn say_hello(name: &str) -> String {
// We could construct the result string manually.
// let mut result = "Hello ".to_owned();
// result.push_str(name);
// result.push('!');
// result

// But using format! is better.
format!("Hello {}!", name)

}

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

7 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#concatenating-strings-with-format
https://rust-unofficial.github.io/patterns/print.html#concatenating-strings-with-format
https://rust-unofficial.github.io/patterns/print.html#description-1
https://rust-unofficial.github.io/patterns/print.html#description-1
https://rust-unofficial.github.io/patterns/print.html#example-1
https://rust-unofficial.github.io/patterns/print.html#example-1
https://rust-unofficial.github.io/patterns/print.html#advantages
https://rust-unofficial.github.io/patterns/print.html#advantages
https://rust-unofficial.github.io/patterns/print.html#disadvantages
https://rust-unofficial.github.io/patterns/print.html#disadvantages

Constructors

Description

Rust does not have constructors as a language construct. Instead, the con

use an associated function new to create an object:

Default Constructors

Rust supports default constructors with the Default

/// Time in seconds.
///
/// # Example
///
/// ```
/// let s = Second::new(42);
/// assert_eq!(42, s.value());
/// ```
pub struct Second {
 value: u64
}

impl Second {
// Constructs a new instance of [`Second`].
// Note this is an associated function - no self.
pub fn new(value: u64) -> Self {

Self { value }
 }

/// Returns the value in seconds.
pub fn value(&self) -> u64 {

self.value
 }
}

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

8 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#constructors
https://rust-unofficial.github.io/patterns/print.html#constructors
https://rust-unofficial.github.io/patterns/print.html#description-2
https://rust-unofficial.github.io/patterns/print.html#description-2
https://doc.rust-lang.org/stable/book/ch05-03-method-syntax.html#associated-functions
https://doc.rust-lang.org/stable/book/ch05-03-method-syntax.html#associated-functions
https://rust-unofficial.github.io/patterns/print.html#default-constructors
https://rust-unofficial.github.io/patterns/print.html#default-constructors
https://doc.rust-lang.org/stable/std/default/trait.Default.html
https://doc.rust-lang.org/stable/std/default/trait.Default.html
https://doc.rust-lang.org/stable/std/default/trait.Default.html

Default can also be derived if all types of all fields implement

Second :

Note: It is common and expected for types to implement both

new constructor. new is the constructor convention in Rust, and users ex

so if it is reasonable for the basic constructor to take no arguments, then

it is functionally identical to default.

/// Time in seconds.
///
/// # Example
///
/// ```
/// let s = Second::default();
/// assert_eq!(0, s.value());
/// ```
pub struct Second {
 value: u64
}

impl Second {
/// Returns the value in seconds.
pub fn value(&self) -> u64 {

self.value
 }
}

impl Default for Second {
fn default() -> Self {

Self { value: 0 }
 }
}

/// Time in seconds.
///
/// # Example
///
/// ```
/// let s = Second::default();
/// assert_eq!(0, s.value());
/// ```
#[derive(Default)]
pub struct Second {
 value: u64
}

impl Second {
/// Returns the value in seconds.
pub fn value(&self) -> u64 {

self.value
 }
}

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

9 of 136 10/25/23, 12:58

Hint: The advantage of implementing or deriving Default

used where a Default implementation is required, most prominently, an

*or_default functions in the standard library.

See also

• The default idiom for a more in-depth description of the

• The builder pattern for constructing objects where there are multipl

configurations.

• API Guidelines/C-COMMON-TRAITS for implementing both,

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

10 of 136 10/25/23, 12:58

https://doc.rust-lang.org/stable/std/?search=or_default
https://doc.rust-lang.org/stable/std/?search=or_default
https://doc.rust-lang.org/stable/std/?search=or_default
https://doc.rust-lang.org/stable/std/?search=or_default
https://rust-unofficial.github.io/patterns/print.html#see-also-1
https://rust-unofficial.github.io/patterns/print.html#see-also-1
https://rust-unofficial.github.io/patterns/idioms/default.html
https://rust-unofficial.github.io/patterns/idioms/default.html
https://rust-unofficial.github.io/patterns/patterns/creational/builder.html
https://rust-unofficial.github.io/patterns/patterns/creational/builder.html
https://rust-lang.github.io/api-guidelines/interoperability.html#types-eagerly-implement-common-traits-c-common-traits
https://rust-lang.github.io/api-guidelines/interoperability.html#types-eagerly-implement-common-traits-c-common-traits

The Default Trait

Description

Many types in Rust have a constructor. However, this is

abstract over “everything that has a new() method”. To allow this, the

conceived, which can be used with containers and other generic types (e.g

Option::unwrap_or_default()). Notably, some containers already imple

applicable.

Not only do one-element containers like Cow , Box or

contained Default types, one can automatically #[derive(Default)]

fields all implement it, so the more types implement

becomes.

On the other hand, constructors can take multiple arguments, while the

method does not. There can even be multiple constructors with different

there can only be one Default implementation per type.

Example

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

11 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#the-default-trait
https://rust-unofficial.github.io/patterns/print.html#the-default-trait
https://rust-unofficial.github.io/patterns/print.html#the-default-trait
https://rust-unofficial.github.io/patterns/print.html#the-default-trait
https://rust-unofficial.github.io/patterns/print.html#the-default-trait
https://rust-unofficial.github.io/patterns/print.html#description-3
https://rust-unofficial.github.io/patterns/print.html#description-3
https://rust-unofficial.github.io/patterns/idioms/ctor.html
https://rust-unofficial.github.io/patterns/idioms/ctor.html
https://doc.rust-lang.org/stable/std/option/enum.Option.html#method.unwrap_or_default
https://doc.rust-lang.org/stable/std/option/enum.Option.html#method.unwrap_or_default
https://doc.rust-lang.org/stable/std/option/enum.Option.html#method.unwrap_or_default
https://rust-unofficial.github.io/patterns/print.html#example-2
https://rust-unofficial.github.io/patterns/print.html#example-2

See also

• The constructor idiom is another way to generate instances that ma

“default”

• The Default documentation (scroll down for the list of implemento

• Option::unwrap_or_default()

• derive(new)

use std::{path::PathBuf, time::Duration};

// note that we can simply auto-derive Default here.
#[derive(Default, Debug, PartialEq)]
struct MyConfiguration {

// Option defaults to None
 output: Option<PathBuf>,

// Vecs default to empty vector
 search_path: Vec<PathBuf>,

// Duration defaults to zero time
 timeout: Duration,

// bool defaults to false
 check: bool,
}

impl MyConfiguration {
// add setters here

}

fn main() {
// construct a new instance with default values
let mut conf = MyConfiguration::default();
// do something with conf here

 conf.check = true;
println!("conf = {:#?}", conf);

// partial initialization with default values, creates the
let conf1 = MyConfiguration {

 check: true,
 ..Default::default()
 };

assert_eq!(conf, conf1);
}

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

12 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#see-also-2
https://rust-unofficial.github.io/patterns/print.html#see-also-2
https://rust-unofficial.github.io/patterns/idioms/ctor.html
https://rust-unofficial.github.io/patterns/idioms/ctor.html
https://doc.rust-lang.org/stable/std/default/trait.Default.html
https://doc.rust-lang.org/stable/std/default/trait.Default.html
https://doc.rust-lang.org/stable/std/default/trait.Default.html
https://doc.rust-lang.org/stable/std/option/enum.Option.html#method.unwrap_or_default
https://doc.rust-lang.org/stable/std/option/enum.Option.html#method.unwrap_or_default
https://doc.rust-lang.org/stable/std/option/enum.Option.html#method.unwrap_or_default
https://crates.io/crates/derive-new/
https://crates.io/crates/derive-new/
https://crates.io/crates/derive-new/

Collections are smart pointers

Description

Use the Deref trait to treat collections like smart pointers, offering ownin

views of data.

Example

A Vec<T> is an owning collection of T s, while a slice (

T s. Implementing Deref for Vec allows implicit dereferencing from

and includes the relationship in auto-derefencing searches. Most method

expect to be implemented for Vec s are instead implemented for slices.

Also String and &str have a similar relation.

Motivation

Ownership and borrowing are key aspects of the Rust language. Data stru

account for these semantics properly to give a good user experience. Whe

a data structure that owns its data, offering a borrowed view of that data

flexible APIs.

use std::ops::Deref;

struct Vec<T> {
 data: RawVec<T>,

//..
}

impl<T> Deref for Vec<T> {
type Target = [T];

fn deref(&self) -> &[T] {
//..

 }
}

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

13 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#collections-are-smart-pointers
https://rust-unofficial.github.io/patterns/print.html#collections-are-smart-pointers
https://rust-unofficial.github.io/patterns/print.html#description-4
https://rust-unofficial.github.io/patterns/print.html#description-4
https://doc.rust-lang.org/std/ops/trait.Deref.html
https://doc.rust-lang.org/std/ops/trait.Deref.html
https://doc.rust-lang.org/std/ops/trait.Deref.html
https://rust-unofficial.github.io/patterns/print.html#example-3
https://rust-unofficial.github.io/patterns/print.html#example-3
https://rust-unofficial.github.io/patterns/print.html#motivation
https://rust-unofficial.github.io/patterns/print.html#motivation

Advantages

Most methods can be implemented only for the borrowed view, they are

available for the owning view.

Gives clients a choice between borrowing or taking ownership of data.

Disadvantages

Methods and traits only available via dereferencing are not taken into acc

bounds checking, so generic programming with data structures using this

complex (see the Borrow and AsRef traits, etc.).

Discussion

Smart pointers and collections are analogous: a smart pointer points to a

whereas a collection points to many objects. From the point of view of the

there is little difference between the two. A collection owns its data if the

access each datum is via the collection and the collection is responsible fo

data (even in cases of shared ownership, some kind of borrowed view ma

appropriate). If a collection owns its data, it is usually useful to provide a v

as borrowed so that it can be referenced multiple times.

Most smart pointers (e.g., Foo<T>) implement Deref<Target=T>

will usually dereference to a custom type. [T] and

but in the general case, this is not necessary. Foo<T>

Deref<Target=Bar<T>> where Bar is a dynamically sized type and

borrowed view of the data in Foo<T> .

Commonly, ordered collections will implement Index

syntax. The target will be the borrowed view.

See also

• Deref polymorphism anti-pattern.

• Documentation for Deref trait.

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

14 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#advantages-1
https://rust-unofficial.github.io/patterns/print.html#advantages-1
https://rust-unofficial.github.io/patterns/print.html#disadvantages-1
https://rust-unofficial.github.io/patterns/print.html#disadvantages-1
https://rust-unofficial.github.io/patterns/print.html#discussion
https://rust-unofficial.github.io/patterns/print.html#discussion
https://rust-unofficial.github.io/patterns/print.html#see-also-3
https://rust-unofficial.github.io/patterns/print.html#see-also-3
https://rust-unofficial.github.io/patterns/anti_patterns/deref.html
https://rust-unofficial.github.io/patterns/anti_patterns/deref.html
https://doc.rust-lang.org/std/ops/trait.Deref.html
https://doc.rust-lang.org/std/ops/trait.Deref.html
https://doc.rust-lang.org/std/ops/trait.Deref.html
https://doc.rust-lang.org/std/ops/trait.Deref.html
https://doc.rust-lang.org/std/ops/trait.Deref.html

Finalisation in destructors

Description

Rust does not provide the equivalent to finally blocks - code that will be

matter how a function is exited. Instead, an object’s destructor can be use

that must be run before exit.

Example

Motivation

If a function has multiple return points, then executing code on exit becom

repetitive (and thus bug-prone). This is especially the case where return is

a macro. A common case is the ? operator which returns if the result is a

continues if it is Ok . ? is used as an exception handling mechanism, but

(which has finally), there is no way to schedule code to run in both the

exceptional cases. Panicking will also exit a function early.

fn bar() -> Result<(), ()> {
// These don't need to be defined inside the function.
struct Foo;

// Implement a destructor for Foo.
impl Drop for Foo {

fn drop(&mut self) {
println!("exit");

 }
 }

// The dtor of _exit will run however the function `bar` i
let _exit = Foo;
// Implicit return with `?` operator.

 baz()?;
// Normal return.
Ok(())

}

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

15 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#finalisation-in-destructors
https://rust-unofficial.github.io/patterns/print.html#finalisation-in-destructors
https://rust-unofficial.github.io/patterns/print.html#description-5
https://rust-unofficial.github.io/patterns/print.html#description-5
https://rust-unofficial.github.io/patterns/print.html#example-4
https://rust-unofficial.github.io/patterns/print.html#example-4
https://rust-unofficial.github.io/patterns/print.html#motivation-1
https://rust-unofficial.github.io/patterns/print.html#motivation-1

Advantages

Code in destructors will (nearly) always be run - copes with panics, early re

Disadvantages

It is not guaranteed that destructors will run. For example, if there is an in

function or if running a function crashes before exit. Destructors are also

case of a panic in an already panicking thread. Therefore, destructors can

as finalizers where it is absolutely essential that finalisation happens.

This pattern introduces some hard to notice, implicit code. Reading a func

clear indication of destructors to be run on exit. This can make debugging

Requiring an object and Drop impl just for finalisation is heavy on boilerp

Discussion

There is some subtlety about how exactly to store the object used as a fin

be kept alive until the end of the function and must then be destroyed. Th

always be a value or uniquely owned pointer (e.g., Box<Foo>

Rc) is used, then the finalizer can be kept alive beyond the lifetime of the

similar reasons, the finalizer should not be moved or returned.

The finalizer must be assigned into a variable, otherwise it will be destroye

rather than when it goes out of scope. The variable name must start with

variable is only used as a finalizer, otherwise the compiler will warn that th

never used. However, do not call the variable _ with no suffix - in that cas

destroyed immediately.

In Rust, destructors are run when an object goes out of scope. This happe

reach the end of block, there is an early return, or the program panics. Wh

Rust unwinds the stack running destructors for each object in each stack f

destructors get called even if the panic happens in a function being called

If a destructor panics while unwinding, there is no good action to take, so

thread immediately, without running further destructors. This means that

not absolutely guaranteed to run. It also means that you must take extra

destructors not to panic, since it could leave resources in an unexpected s

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

16 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#advantages-2
https://rust-unofficial.github.io/patterns/print.html#advantages-2
https://rust-unofficial.github.io/patterns/print.html#disadvantages-2
https://rust-unofficial.github.io/patterns/print.html#disadvantages-2
https://rust-unofficial.github.io/patterns/print.html#discussion-1
https://rust-unofficial.github.io/patterns/print.html#discussion-1

See also

RAII guards.

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

17 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#see-also-4
https://rust-unofficial.github.io/patterns/print.html#see-also-4
https://rust-unofficial.github.io/patterns/patterns/behavioural/RAII.html
https://rust-unofficial.github.io/patterns/patterns/behavioural/RAII.html

mem::{take(_), replace(_)}

owned values in changed enums

Description

Say we have a &mut MyEnum which has (at least) two variants,

} and B { name: String } . Now we want to change

while keeping MyEnum::B intact.

We can do this without cloning the name .

Example

This also works with more variants:

use std::mem;

enum MyEnum {
 A { name: String, x: u8 },
 B { name: String }
}

fn a_to_b(e: &mut MyEnum) {
if let MyEnum::A { name, x: 0 } = e {

// This takes out our `name` and puts in an empty Stri
// (note that empty strings don't allocate).
// Then, construct the new enum variant (which will
// be assigned to `*e`).

 *e = MyEnum::B { name: mem::take(name) }
 }
}

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

18 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#memtake_-replace_-to-keep-owned-values-in-changed-enums
https://rust-unofficial.github.io/patterns/print.html#memtake_-replace_-to-keep-owned-values-in-changed-enums
https://rust-unofficial.github.io/patterns/print.html#memtake_-replace_-to-keep-owned-values-in-changed-enums
https://rust-unofficial.github.io/patterns/print.html#memtake_-replace_-to-keep-owned-values-in-changed-enums
https://rust-unofficial.github.io/patterns/print.html#memtake_-replace_-to-keep-owned-values-in-changed-enums
https://rust-unofficial.github.io/patterns/print.html#description-6
https://rust-unofficial.github.io/patterns/print.html#description-6
https://rust-unofficial.github.io/patterns/print.html#example-5
https://rust-unofficial.github.io/patterns/print.html#example-5

Motivation

When working with enums, we may want to change an enum value in plac

another variant. This is usually done in two phases to keep the borrow ch

the first phase, we observe the existing value and look at its parts to decid

next. In the second phase we may conditionally change the value (as in th

above).

The borrow checker won’t allow us to take out name

must be there.) We could of course .clone() name and put the clone int

MyEnum::B , but that would be an instance of the Clone to satisfy the borr

pattern. Anyway, we can avoid the extra allocation by changing

borrow.

mem::take lets us swap out the value, replacing it with its default value, a

the previous value. For String , the default value is an empty

need to allocate. As a result, we get the original name

wrap this in another enum.

NOTE: mem::replace is very similar, but allows us to specify what to repla

with. An equivalent to our mem::take line would be

String::new()) .

Note, however, that if we are using an Option and want to replace its valu

Option ’s take() method provides a shorter and more idiomatic alternat

use std::mem;

enum MultiVariateEnum {
 A { name: String },
 B { name: String },
 C,
 D
}

fn swizzle(e: &mut MultiVariateEnum) {
use MultiVariateEnum::*;

 *e = match e {
// Ownership rules do not allow taking `name` by value
// take the value out of a mutable reference, unless w

 A { name } => B { name: mem::take(name) },
 B { name } => A { name: mem::take(name) },
 C => D,
 D => C
 }
}

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

19 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#motivation-2
https://rust-unofficial.github.io/patterns/print.html#motivation-2
https://rust-unofficial.github.io/patterns/anti_patterns/borrow_clone.html
https://rust-unofficial.github.io/patterns/anti_patterns/borrow_clone.html

Advantages

Look ma, no allocation! Also you may feel like Indiana Jones while doing it

Disadvantages

This gets a bit wordy. Getting it wrong repeatedly will make you hate the b

The compiler may fail to optimize away the double store, resulting in redu

performance as opposed to what you’d do in unsafe languages.

Furthermore, the type you are taking needs to implement the

the type you’re working with doesn’t implement this, you can instead use

Discussion

This pattern is only of interest in Rust. In GC’d languages, you’d take the re

value by default (and the GC would keep track of refs), and in other low-le

like C you’d simply alias the pointer and fix things later.

However, in Rust, we have to do a little more work to do this. An owned va

have one owner, so to take it out, we need to put something back in – like

replacing the artifact with a bag of sand.

See also

This gets rid of the Clone to satisfy the borrow checker

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

20 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#advantages-3
https://rust-unofficial.github.io/patterns/print.html#advantages-3
https://rust-unofficial.github.io/patterns/print.html#disadvantages-3
https://rust-unofficial.github.io/patterns/print.html#disadvantages-3
https://rust-unofficial.github.io/patterns/print.html#discussion-2
https://rust-unofficial.github.io/patterns/print.html#discussion-2
https://rust-unofficial.github.io/patterns/print.html#see-also-5
https://rust-unofficial.github.io/patterns/print.html#see-also-5
https://rust-unofficial.github.io/patterns/anti_patterns/borrow_clone.html
https://rust-unofficial.github.io/patterns/anti_patterns/borrow_clone.html

On-Stack Dynamic Dispatch

Description

We can dynamically dispatch over multiple values, however, to do so, we n

multiple variables to bind differently-typed objects. To extend the lifetime

we can use deferred conditional initialization, as seen below:

Example

Motivation

Rust monomorphises code by default. This means a copy of the code will

for each type it is used with and optimized independently. While this allow

code on the hot path, it also bloats the code in places where performance

essence, thus costing compile time and cache usage.

Luckily, Rust allows us to use dynamic dispatch, but we have to explicitly a

Advantages

use std::io;
use std::fs;

// These must live longer than `readable`, and thus are declar
let (mut stdin_read, mut file_read);

// We need to ascribe the type to get dynamic dispatch.
let readable: &mut dyn io::Read = if arg == "-"
 stdin_read = io::stdin();
 &mut stdin_read
} else {
 file_read = fs::File::open(arg)?;
 &mut file_read
};

// Read from `readable` here.

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

21 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#on-stack-dynamic-dispatch
https://rust-unofficial.github.io/patterns/print.html#on-stack-dynamic-dispatch
https://rust-unofficial.github.io/patterns/print.html#description-7
https://rust-unofficial.github.io/patterns/print.html#description-7
https://rust-unofficial.github.io/patterns/print.html#example-6
https://rust-unofficial.github.io/patterns/print.html#example-6
https://rust-unofficial.github.io/patterns/print.html#motivation-3
https://rust-unofficial.github.io/patterns/print.html#motivation-3
https://rust-unofficial.github.io/patterns/print.html#advantages-4
https://rust-unofficial.github.io/patterns/print.html#advantages-4

We do not need to allocate anything on the heap. Neither do we need to i

something we won’t use later, nor do we need to monomorphize the who

follows to work with both File or Stdin .

Disadvantages

The code needs more moving parts than the Box -based version:

Discussion

Rust newcomers will usually learn that Rust requires all variables to be ini

use, so it’s easy to overlook the fact that unused variables may well be unin

works quite hard to ensure that this works out fine and only the initialized

dropped at the end of their scope.

The example meets all the constraints Rust places on us:

• All variables are initialized before using (in this case borrowing) them

• Each variable only holds values of a single type. In our example,

Stdin , file is of type File and readable is of type

• Each borrowed value outlives all the references borrowed from it

See also

• Finalisation in destructors and RAII guards can benefit from tight con

lifetimes.

• For conditionally filled Option<&T> s of (mutable) references, one ca

Option<T> directly and use its .as_ref() method to get an optiona

// We still need to ascribe the type for dynamic dispatch.
let readable: Box<dyn io::Read> = if arg == "-"

Box::new(io::stdin())
} else {

Box::new(fs::File::open(arg)?)
};
// Read from `readable` here.

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

22 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#disadvantages-4
https://rust-unofficial.github.io/patterns/print.html#disadvantages-4
https://rust-unofficial.github.io/patterns/print.html#discussion-3
https://rust-unofficial.github.io/patterns/print.html#discussion-3
https://rust-unofficial.github.io/patterns/print.html#see-also-6
https://rust-unofficial.github.io/patterns/print.html#see-also-6
https://rust-unofficial.github.io/patterns/idioms/dtor-finally.html
https://rust-unofficial.github.io/patterns/idioms/dtor-finally.html
https://rust-unofficial.github.io/patterns/patterns/behavioural/RAII.html
https://rust-unofficial.github.io/patterns/patterns/behavioural/RAII.html
https://doc.rust-lang.org/std/option/enum.Option.html#method.as_ref
https://doc.rust-lang.org/std/option/enum.Option.html#method.as_ref
https://doc.rust-lang.org/std/option/enum.Option.html#method.as_ref

FFI Idioms

Writing FFI code is an entire course in itself. However, there are several id

can act as pointers, and avoid traps for inexperienced users of

This section contains idioms that may be useful when doing FFI.

1. Idiomatic Errors - Error handling with integer codes and sentinel retu

as NULL pointers)

2. Accepting Strings with minimal unsafe code

3. Passing Strings to FFI functions

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

23 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#ffi-idioms
https://rust-unofficial.github.io/patterns/print.html#ffi-idioms
https://rust-unofficial.github.io/patterns/idioms/ffi/errors.html
https://rust-unofficial.github.io/patterns/idioms/ffi/errors.html
https://rust-unofficial.github.io/patterns/idioms/ffi/accepting-strings.html
https://rust-unofficial.github.io/patterns/idioms/ffi/accepting-strings.html
https://rust-unofficial.github.io/patterns/idioms/ffi/passing-strings.html
https://rust-unofficial.github.io/patterns/idioms/ffi/passing-strings.html

Error Handling in FFI

Description

In foreign languages like C, errors are represented by return codes. Howe

system allows much more rich error information to be captured and prop

a full type.

This best practice shows different kinds of error codes, and how to expos

usable way:

1. Flat Enums should be converted to integers and returned as codes.

2. Structured Enums should be converted to an integer code with a str

message for detail.

3. Custom Error Types should become “transparent”, with a C represen

Code Example

Flat Enums

Structured Enums

enum DatabaseError {
 IsReadOnly = 1, // user attempted a write operation
 IOError = 2, // user should read the C errno() for what it
 FileCorrupted = 3, // user should run a repair tool to rec
}

impl From<DatabaseError> for libc::c_int {
fn from(e: DatabaseError) -> libc::c_int {

 (e as i8).into()
 }
}

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

24 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#error-handling-in-ffi
https://rust-unofficial.github.io/patterns/print.html#error-handling-in-ffi
https://rust-unofficial.github.io/patterns/print.html#description-8
https://rust-unofficial.github.io/patterns/print.html#description-8
https://rust-unofficial.github.io/patterns/print.html#code-example
https://rust-unofficial.github.io/patterns/print.html#code-example
https://rust-unofficial.github.io/patterns/print.html#flat-enums
https://rust-unofficial.github.io/patterns/print.html#flat-enums
https://rust-unofficial.github.io/patterns/print.html#structured-enums
https://rust-unofficial.github.io/patterns/print.html#structured-enums

pub mod errors {
enum DatabaseError {

 IsReadOnly,
 IOError(std::io::Error),
 FileCorrupted(String), // message describing the issue
 }

impl From<DatabaseError> for libc::c_int {
fn from(e: DatabaseError) -> libc::c_int {

match e {
 DatabaseError::IsReadOnly =>
 DatabaseError::IOError(_) =>
 DatabaseError::FileCorrupted(_) =>
 }
 }
 }
}

pub mod c_api {
use super::errors::DatabaseError;

#[no_mangle]
pub extern "C" fn db_error_description(

 e: *const DatabaseError
) -> *mut libc::c_char {

let error: &DatabaseError = unsafe {
// SAFETY: pointer lifetime is greater than the cu

frame
 &*e
 };

let error_str: String = match error {
 DatabaseError::IsReadOnly => {

format!("cannot write to read-only database"
 }
 DatabaseError::IOError(e) => {

format!("I/O Error: {}", e);
 }
 DatabaseError::FileCorrupted(s) => {

format!("File corrupted, run repair: {}"
 }
 };

let c_error = unsafe {
// SAFETY: copying error_str to an allocated buffe
// character at the end
let mut malloc: *mut u8 = libc::malloc(error_str.l

*mut _;

if malloc.is_null() {
return std::ptr::null_mut();

 }

let src = error_str.as_bytes().as_ptr();

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

25 of 136 10/25/23, 12:58

Custom Error Types

Advantages

This ensures that the foreign language has clear access to error informati

compromising the Rust code’s API at all.

Disadvantages

It’s a lot of typing, and some types may not be able to be converted easily

 std::ptr::copy_nonoverlapping(src, malloc, error_s

 std::ptr::write(malloc.add(error_str.len()),

 malloc as *mut libc::c_char
 };

 c_error
 }
}

struct ParseError {
 expected: char,
 line: u32,
 ch: u16
}

impl ParseError { /* ... */ }

/* Create a second version which is exposed as a C structure *
#[repr(C)]
pub struct parse_error {

pub expected: libc::c_char,
pub line: u32,
pub ch: u16

}

impl From<ParseError> for parse_error {
fn from(e: ParseError) -> parse_error {

let ParseError { expected, line, ch } = e;
 parse_error { expected, line, ch }
 }
}

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

26 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#custom-error-types
https://rust-unofficial.github.io/patterns/print.html#custom-error-types
https://rust-unofficial.github.io/patterns/print.html#advantages-5
https://rust-unofficial.github.io/patterns/print.html#advantages-5
https://rust-unofficial.github.io/patterns/print.html#disadvantages-5
https://rust-unofficial.github.io/patterns/print.html#disadvantages-5

Accepting Strings

Description

When accepting strings via FFI through pointers, there are two principles t

followed:

1. Keep foreign strings “borrowed”, rather than copying them directly.

2. Minimize the amount of complexity and unsafe

C-style string to native Rust strings.

Motivation

The strings used in C have different behaviours to those used in Rust, nam

• C strings are null-terminated while Rust strings store their length

• C strings can contain any arbitrary non-zero byte while Rust strings m

• C strings are accessed and manipulated using

interactions with Rust strings go through safe methods

The Rust standard library comes with C equivalents of Rust’s

CString and &CStr , that allow us to avoid a lot of the complexity and

involved in converting between C strings and Rust strings.

The &CStr type also allows us to work with borrowed data, meaning pass

between Rust and C is a zero-cost operation.

Code Example

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

27 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#accepting-strings
https://rust-unofficial.github.io/patterns/print.html#accepting-strings
https://rust-unofficial.github.io/patterns/print.html#description-9
https://rust-unofficial.github.io/patterns/print.html#description-9
https://rust-unofficial.github.io/patterns/print.html#motivation-4
https://rust-unofficial.github.io/patterns/print.html#motivation-4
https://rust-unofficial.github.io/patterns/print.html#code-example-1
https://rust-unofficial.github.io/patterns/print.html#code-example-1

Advantages

The example is is written to ensure that:

1. The unsafe block is as small as possible.

2. The pointer with an “untracked” lifetime becomes a “tracked” shared

Consider an alternative, where the string is actually copied:

pub mod unsafe_module {

// other module content

/// Log a message at the specified level.
///
/// # Safety
///
/// It is the caller's guarantee to ensure `msg`:
///
/// - is not a null pointer
/// - points to valid, initialized data
/// - points to memory ending in a null byte
/// - won't be mutated for the duration of this function c
#[no_mangle]
pub unsafe extern "C" fn mylib_log(

 msg: *const libc::c_char,
 level: libc::c_int
) {

let level: crate::LogLevel = match level {

// SAFETY: The caller has already guaranteed this is o
// `# Safety` section of the doc-comment).
let msg_str: &str = match std::ffi::CStr::from_ptr(msg

Ok(s) => s,
Err(e) => {

 crate::log_error("FFI string conversion failed
return;

 }
 };

 crate::log(msg_str, level);
 }
}

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

28 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#advantages-6
https://rust-unofficial.github.io/patterns/print.html#advantages-6

This code in inferior to the original in two respects:

1. There is much more unsafe code, and more importantly, more inva

uphold.

2. Due to the extensive arithmetic required, there is a bug in this versio

Rust undefined behaviour .

The bug here is a simple mistake in pointer arithmetic: the string was cop

bytes of it. However, the NUL terminator at the end was not.

The Vector then had its size set to the length of the zero padded string

to it, which could have added a zero at the end. As a result, the last byte in

pub mod unsafe_module {

// other module content

pub extern "C" fn mylib_log(msg: *const libc::c_char, leve
{

// DO NOT USE THIS CODE.
// IT IS UGLY, VERBOSE, AND CONTAINS A SUBTLE BUG.

let level: crate::LogLevel = match level {

let msg_len = unsafe { /* SAFETY: strlen is what it is
 libc::strlen(msg)
 };

let mut msg_data = Vec::with_capacity(msg_len +

let msg_cstr: std::ffi::CString = unsafe
// SAFETY: copying from a foreign pointer expected
// for the entire stack frame into owned memory

 std::ptr::copy_nonoverlapping(msg, msg_data.as_mut

 msg_data.set_len(msg_len + 1);

 std::ffi::CString::from_vec_with_nul(msg_data).unw
 }

let msg_str: String = unsafe {
match msg_cstr.into_string() {

Ok(s) => s,
Err(e) => {

 crate::log_error("FFI string conversion fa
return;

 }
 }
 };

 crate::log(&msg_str, level);
 }
}

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

29 of 136 10/25/23, 12:58

uninitialized memory. When the CString is created at the bottom of the

the Vector will cause undefined behaviour !

Like many such issues, this would be difficult issue to track down. Sometim

panic because the string was not UTF-8 , sometimes it would put a weird

end of the string, sometimes it would just completely crash.

Disadvantages

None?

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

30 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#disadvantages-6
https://rust-unofficial.github.io/patterns/print.html#disadvantages-6

Passing Strings

Description

When passing strings to FFI functions, there are four principles that shoul

1. Make the lifetime of owned strings as long as possible.

2. Minimize unsafe code during the conversion.

3. If the C code can modify the string data, use Vec

4. Unless the Foreign Function API requires it, the ownership of the stri

transfer to the callee.

Motivation

Rust has built-in support for C-style strings with its

there are different approaches one can take with strings that are being se

function call from a Rust function.

The best practice is simple: use CString in such a way as to minimize

However, a secondary caveat is that the object must live long enough

should be maximized. In addition, the documentation explains that “roun

CString after modification is UB, so additional work is necessary in that c

Code Example

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

31 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#passing-strings
https://rust-unofficial.github.io/patterns/print.html#passing-strings
https://rust-unofficial.github.io/patterns/print.html#description-10
https://rust-unofficial.github.io/patterns/print.html#description-10
https://rust-unofficial.github.io/patterns/print.html#motivation-5
https://rust-unofficial.github.io/patterns/print.html#motivation-5
https://rust-unofficial.github.io/patterns/print.html#code-example-2
https://rust-unofficial.github.io/patterns/print.html#code-example-2

Advantages

The example is written in a way to ensure that:

1. The unsafe block is as small as possible.

2. The CString lives long enough.

3. Errors with typecasts are always propagated when possible.

A common mistake (so common it’s in the documentation) is to not use th

first block:

pub mod unsafe_module {

// other module content

extern "C" {
fn seterr(message: *const libc::c_char);
fn geterr(buffer: *mut libc::c_char, size: libc::c_int

libc::c_int;
 }

fn report_error_to_ffi<S: Into<String>>(
 err: S
) -> Result<(), std::ffi::NulError>{

let c_err = std::ffi::CString::new(err.into())?;

unsafe {
// SAFETY: calling an FFI whose documentation says
// const, so no modification should occur

 seterr(c_err.as_ptr());
 }

Ok(())
// The lifetime of c_err continues until here

 }

fn get_error_from_ffi() -> Result<String, std::ffi::IntoSt
let mut buffer = vec![0u8; 1024];
unsafe {

// SAFETY: calling an FFI whose documentation impl
// that the input need only live as long as the ca
let written: usize = geterr(buffer.as_mut_ptr(),

 buffer.truncate(written + 1);
 }

 std::ffi::CString::new(buffer).unwrap().into_string()
 }
}

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

32 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#advantages-7
https://rust-unofficial.github.io/patterns/print.html#advantages-7

This code will result in a dangling pointer, because the lifetime of the

extended by the pointer creation, unlike if a reference were created.

Another issue frequently raised is that the initialization of a 1k vector of ze

However, recent versions of Rust actually optimize that particular macro t

zmalloc , meaning it is as fast as the operating system’s ability to return z

(which is quite fast).

Disadvantages

None?

pub mod unsafe_module {

// other module content

fn report_error<S: Into<String>>(err: S) ->
std::ffi::NulError> {

unsafe {
// SAFETY: whoops, this contains a dangling pointe

 seterr(std::ffi::CString::new(err.into())?.as_ptr(
 }

Ok(())
 }
}

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

33 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#disadvantages-7
https://rust-unofficial.github.io/patterns/print.html#disadvantages-7

Iterating over an Option

Description

Option can be viewed as a container that contains either zero or one elem

particular, it implements the IntoIterator trait, and as such can be used

code that needs such a type.

Examples

Since Option implements IntoIterator , it can be used as an argument

If you need to tack an Option to the end of an existing iterator, you can p

.chain() :

Note that if the Option is always Some , then it is more idiomatic to use

std::iter::once on the element instead.

Also, since Option implements IntoIterator , it’s possible to iterate ove

loop. This is equivalent to matching it with if let Some(..)

should prefer the latter.

See also

let turing = Some("Turing");
let mut logicians = vec!["Curry", "Kleene", "Markov"

logicians.extend(turing);

// equivalent to
if let Some(turing_inner) = turing {
 logicians.push(turing_inner);
}

let turing = Some("Turing");
let logicians = vec!["Curry", "Kleene", "Markov"

for logician in logicians.iter().chain(turing.iter()) {
println!("{} is a logician", logician);

}

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

34 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#iterating-over-an-option
https://rust-unofficial.github.io/patterns/print.html#iterating-over-an-option
https://rust-unofficial.github.io/patterns/print.html#iterating-over-an-option
https://rust-unofficial.github.io/patterns/print.html#iterating-over-an-option
https://rust-unofficial.github.io/patterns/print.html#description-11
https://rust-unofficial.github.io/patterns/print.html#description-11
https://rust-unofficial.github.io/patterns/print.html#examples
https://rust-unofficial.github.io/patterns/print.html#examples
https://doc.rust-lang.org/std/iter/trait.Iterator.html#method.chain
https://doc.rust-lang.org/std/iter/trait.Iterator.html#method.chain
https://doc.rust-lang.org/std/iter/trait.Iterator.html#method.chain
https://doc.rust-lang.org/std/iter/fn.once.html
https://doc.rust-lang.org/std/iter/fn.once.html
https://doc.rust-lang.org/std/iter/fn.once.html
https://rust-unofficial.github.io/patterns/print.html#see-also-7
https://rust-unofficial.github.io/patterns/print.html#see-also-7

• std::iter::once is an iterator which yields exactly one element. It’s

readable alternative to Some(foo).into_iter()

• Iterator::filter_map is a version of Iterator::map

functions which return Option .

• The ref_slice crate provides functions for converting an

element slice.

• Documentation for Option<T>

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

35 of 136 10/25/23, 12:58

https://doc.rust-lang.org/std/iter/fn.once.html
https://doc.rust-lang.org/std/iter/fn.once.html
https://doc.rust-lang.org/std/iter/fn.once.html
https://doc.rust-lang.org/std/iter/trait.Iterator.html#method.filter_map
https://doc.rust-lang.org/std/iter/trait.Iterator.html#method.filter_map
https://doc.rust-lang.org/std/iter/trait.Iterator.html#method.filter_map
https://doc.rust-lang.org/std/iter/trait.Iterator.html#method.map
https://doc.rust-lang.org/std/iter/trait.Iterator.html#method.map
https://doc.rust-lang.org/std/iter/trait.Iterator.html#method.map
https://crates.io/crates/ref_slice
https://crates.io/crates/ref_slice
https://crates.io/crates/ref_slice
https://doc.rust-lang.org/std/option/enum.Option.html
https://doc.rust-lang.org/std/option/enum.Option.html
https://doc.rust-lang.org/std/option/enum.Option.html
https://doc.rust-lang.org/std/option/enum.Option.html

Pass variables to closure

Description

By default, closures capture their environment by borrowing. Or you can u

closure to move whole environment. However, often you want to move ju

variables to closure, give it copy of some data, pass it by reference, or per

other transformation.

Use variable rebinding in separate scope for that.

Example

Use

instead of

use std::rc::Rc;

let num1 = Rc::new(1);
let num2 = Rc::new(2);
let num3 = Rc::new(3);
let closure = {

// `num1` is moved
let num2 = num2.clone(); // `num2` is cloned
let num3 = num3.as_ref(); // `num3` is borrowed
move || {

 *num1 + *num2 + *num3;
 }
};

use std::rc::Rc;

let num1 = Rc::new(1);
let num2 = Rc::new(2);
let num3 = Rc::new(3);

let num2_cloned = num2.clone();
let num3_borrowed = num3.as_ref();
let closure = move || {
 *num1 + *num2_cloned + *num3_borrowed;
};

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

36 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#pass-variables-to-closure
https://rust-unofficial.github.io/patterns/print.html#pass-variables-to-closure
https://rust-unofficial.github.io/patterns/print.html#description-12
https://rust-unofficial.github.io/patterns/print.html#description-12
https://rust-unofficial.github.io/patterns/print.html#example-7
https://rust-unofficial.github.io/patterns/print.html#example-7

Advantages

Copied data are grouped together with closure definition, so their purpos

and they will be dropped immediately even if they are not consumed by c

Closure uses same variable names as surrounding code whether data are

moved.

Disadvantages

Additional indentation of closure body.

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

37 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#advantages-8
https://rust-unofficial.github.io/patterns/print.html#advantages-8
https://rust-unofficial.github.io/patterns/print.html#disadvantages-8
https://rust-unofficial.github.io/patterns/print.html#disadvantages-8

#[non_exhaustive] and private fields

for extensibility

Description

A small set of scenarios exist where a library author may want to add pub

public struct or new variants to an enum without breaking backwards com

Rust offers two solutions to this problem:

• Use #[non_exhaustive] on struct s, enum s, and

documentation on all the places where #[non_exhaustive]

docs.

• You may add a private field to a struct to prevent it from being direc

or matched against (see Alternative)

Example

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

38 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#non_exhaustive-and-private-fields-for-extensibility
https://rust-unofficial.github.io/patterns/print.html#non_exhaustive-and-private-fields-for-extensibility
https://rust-unofficial.github.io/patterns/print.html#non_exhaustive-and-private-fields-for-extensibility
https://rust-unofficial.github.io/patterns/print.html#non_exhaustive-and-private-fields-for-extensibility
https://rust-unofficial.github.io/patterns/print.html#non_exhaustive-and-private-fields-for-extensibility
https://rust-unofficial.github.io/patterns/print.html#non_exhaustive-and-private-fields-for-extensibility
https://rust-unofficial.github.io/patterns/print.html#description-13
https://rust-unofficial.github.io/patterns/print.html#description-13
https://doc.rust-lang.org/reference/attributes/type_system.html#the-non_exhaustive-attribute
https://doc.rust-lang.org/reference/attributes/type_system.html#the-non_exhaustive-attribute
https://rust-unofficial.github.io/patterns/print.html#example-8
https://rust-unofficial.github.io/patterns/print.html#example-8

Alternative: Private fields for structs

#[non_exhaustive] only works across crate boundaries. Within a crate, t

method may be used.

Adding a field to a struct is a mostly backwards compatible change. Howe

uses a pattern to deconstruct a struct instance, they might name all the fi

and adding a new one would break that pattern. The client could name so

use .. in the pattern, in which case adding another field is backwards co

Making at least one of the struct’s fields private forces clients to use the la

patterns, ensuring that the struct is future-proof.

The downside of this approach is that you might need to add an otherwis

field to the struct. You can use the () type so that there is no runtime ov

mod a {
// Public struct.
#[non_exhaustive]
pub struct S {

pub foo: i32,
 }

#[non_exhaustive]
pub enum AdmitMoreVariants {

 VariantA,
 VariantB,

#[non_exhaustive]
 VariantC { a: String }
 }
}

fn print_matched_variants(s: a::S) {
// Because S is `#[non_exhaustive]`, it cannot be named he
// we must use `..` in the pattern.
let a::S { foo: _, ..} = s;

let some_enum = a::AdmitMoreVariants::VariantA;
match some_enum {

 a::AdmitMoreVariants::VariantA => println!
 a::AdmitMoreVariants::VariantB => println!

// .. required because this variant is non-exhaustive
 a::AdmitMoreVariants::VariantC { a, .. } =>

// The wildcard match is required because more variant
// added in the future

 _ => println!("it's a new variant")
 }
}

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

39 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#alternative-private-fields-for-structs
https://rust-unofficial.github.io/patterns/print.html#alternative-private-fields-for-structs
https://rust-unofficial.github.io/patterns/print.html#alternative-private-fields-for-structs
https://rust-unofficial.github.io/patterns/print.html#alternative-private-fields-for-structs
https://rust-unofficial.github.io/patterns/print.html#alternative-private-fields-for-structs

prepend _ to the field name to avoid the unused field warning.

Discussion

On struct s, #[non_exhaustive] allows adding additional fields in a back

compatible way. It will also prevent clients from using the struct construct

the fields are public. This may be helpful, but it’s worth considering if you

additional field to be found by clients as a compiler error rather than som

be silently undiscovered.

#[non_exhaustive] can be applied to enum variants as well. A

variant behaves in the same way as a #[non_exhaustive]

Use this deliberately and with caution: incrementing the major version wh

or variants is often a better option. #[non_exhaustive]

where you’re modeling an external resource that may change out-of-sync

library, but is not a general purpose tool.

Disadvantages

#[non_exhaustive] can make your code much less ergonomic to use, esp

forced to handle unknown enum variants. It should only be used when th

evolutions are required without incrementing the major version.

When #[non_exhaustive] is applied to enum s, it forces clients to handle

variant. If there is no sensible action to take in this case, this may lead to a

and code paths that are only executed in extremely rare circumstances. If

to panic!() in this scenario, it may have been better to expose this error

time. In fact, #[non_exhaustive] forces clients to handle the “Something

is rarely a sensible action to take in this scenario.

See also

pub struct S {
pub a: i32,
// Because `b` is private, you cannot match on `S` without

`S`
// cannot be directly instantiated or matched against

 _b: ()
}

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

40 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#discussion-4
https://rust-unofficial.github.io/patterns/print.html#discussion-4
https://rust-unofficial.github.io/patterns/print.html#disadvantages-9
https://rust-unofficial.github.io/patterns/print.html#disadvantages-9
https://rust-unofficial.github.io/patterns/print.html#see-also-8
https://rust-unofficial.github.io/patterns/print.html#see-also-8

• RFC introducing #[non_exhaustive] attribute for enums and structs

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

41 of 136 10/25/23, 12:58

https://github.com/rust-lang/rfcs/blob/master/text/2008-non-exhaustive.md
https://github.com/rust-lang/rfcs/blob/master/text/2008-non-exhaustive.md

Easy doc initialization

Description

If a struct takes significant effort to initialize when writing docs, it can be q

your example with a helper function which takes the struct as an argumen

Motivation

Sometimes there is a struct with multiple or complicated parameters and

methods. Each of these methods should have examples.

For example:

Example

struct Connection {
 name: String,
 stream: TcpStream,
}

impl Connection {
/// Sends a request over the connection.
///
/// # Example
/// ```no_run
/// # // Boilerplate are required to get an example workin
/// # let stream = TcpStream::connect("127.0.0.1:34254");
/// # let connection = Connection { name: "foo".to_owned()
/// # let request = Request::new("RequestId", RequestType:

"payload");
/// let response = connection.send_request(request);
/// assert!(response.is_ok());
/// ```
fn send_request(&self, request: Request) ->

// ...
 }

/// Oh no, all that boilerplate needs to be repeated here!
fn check_status(&self) -> Status {

// ...
 }
}

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

42 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#easy-doc-initialization
https://rust-unofficial.github.io/patterns/print.html#easy-doc-initialization
https://rust-unofficial.github.io/patterns/print.html#description-14
https://rust-unofficial.github.io/patterns/print.html#description-14
https://rust-unofficial.github.io/patterns/print.html#motivation-6
https://rust-unofficial.github.io/patterns/print.html#motivation-6
https://rust-unofficial.github.io/patterns/print.html#example-9
https://rust-unofficial.github.io/patterns/print.html#example-9

Instead of typing all of this boilerplate to create a Connection

just create a wrapping helper function which takes them as arguments:

Note in the above example the line assert!(response.is_ok());

while testing because it is inside a function which is never invoked.

Advantages

This is much more concise and avoids repetitive code in examples.

Disadvantages

As example is in a function, the code will not be tested. Though it will still

make sure it compiles when running a cargo test . So this pattern is mos

you need no_run . With this, you do not need to add

Discussion

If assertions are not required this pattern works well.

If they are, an alternative can be to create a public method to create a hel

which is annotated with #[doc(hidden)] (so that users won’t see it). Then

struct Connection {
 name: String,
 stream: TcpStream,
}

impl Connection {
/// Sends a request over the connection.
///
/// # Example
/// ```
/// # fn call_send(connection: Connection, request: Reques
/// let response = connection.send_request(request);
/// assert!(response.is_ok());
/// # }
/// ```
fn send_request(&self, request: Request) {

// ...
 }
}

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

43 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#advantages-9
https://rust-unofficial.github.io/patterns/print.html#advantages-9
https://rust-unofficial.github.io/patterns/print.html#disadvantages-10
https://rust-unofficial.github.io/patterns/print.html#disadvantages-10
https://rust-unofficial.github.io/patterns/print.html#discussion-5
https://rust-unofficial.github.io/patterns/print.html#discussion-5

can be called inside of rustdoc because it is part of the crate’s public API.

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

44 of 136 10/25/23, 12:58

Temporary mutability

Description

Often it is necessary to prepare and process some data, but after that dat

inspected and never modified. The intention can be made explicit by rede

mutable variable as immutable.

It can be done either by processing data within a nested block or by redefi

variable.

Example

Say, vector must be sorted before usage.

Using nested block:

Using variable rebinding:

Advantages

Compiler ensures that you don’t accidentally mutate data after some poin

Disadvantages

let data = {
let mut data = get_vec();

 data.sort();
 data
};

// Here `data` is immutable.

let mut data = get_vec();
data.sort();
let data = data;

// Here `data` is immutable.

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

45 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#temporary-mutability
https://rust-unofficial.github.io/patterns/print.html#temporary-mutability
https://rust-unofficial.github.io/patterns/print.html#description-15
https://rust-unofficial.github.io/patterns/print.html#description-15
https://rust-unofficial.github.io/patterns/print.html#example-10
https://rust-unofficial.github.io/patterns/print.html#example-10
https://rust-unofficial.github.io/patterns/print.html#advantages-10
https://rust-unofficial.github.io/patterns/print.html#advantages-10
https://rust-unofficial.github.io/patterns/print.html#disadvantages-11
https://rust-unofficial.github.io/patterns/print.html#disadvantages-11

Nested block requires additional indentation of block body. One more line

from block or redefine variable.

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

46 of 136 10/25/23, 12:58

Return consumed argument on error

Description

If a fallible function consumes (moves) an argument, return that argumen

error.

Example

Motivation

pub fn send(value: String) -> Result<(), SendError> {
println!("using {value} in a meaningful way"
// Simulate non-deterministic fallible action.
use std::time::SystemTime;
let period =

SystemTime::now().duration_since(SystemTime::UNIX_EPOCH).unwra
if period.subsec_nanos() % 2 == 1 {

Ok(())
 } else {

Err(SendError(value))
 }
}

pub struct SendError(String);

fn main() {
let mut value = "imagine this is very long string"

let success = 's: {
// Try to send value two times.
for _ in 0..2 {

 value = match send(value) {
Ok(()) => break 's true,
Err(SendError(value)) => value,

 }
 }

false
 };

println!("success: {}", success);
}

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

47 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#return-consumed-argument-on-error
https://rust-unofficial.github.io/patterns/print.html#return-consumed-argument-on-error
https://rust-unofficial.github.io/patterns/print.html#description-16
https://rust-unofficial.github.io/patterns/print.html#description-16
https://rust-unofficial.github.io/patterns/print.html#example-11
https://rust-unofficial.github.io/patterns/print.html#example-11
https://rust-unofficial.github.io/patterns/print.html#motivation-7
https://rust-unofficial.github.io/patterns/print.html#motivation-7

In case of error you may want to try some alternative way or to retry actio

non-deterministic function. But if the argument is always consumed, you

clone it on every call, which is not very efficient.

The standard library uses this approach in e.g. String::from_utf8

a vector that doesn’t contain valid UTF-8, a FromUtf8Error

original vector back using FromUtf8Error::into_bytes

Advantages

Better performance because of moving arguments whenever possible.

Disadvantages

Slightly more complex error types.

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

48 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#advantages-11
https://rust-unofficial.github.io/patterns/print.html#advantages-11
https://rust-unofficial.github.io/patterns/print.html#disadvantages-12
https://rust-unofficial.github.io/patterns/print.html#disadvantages-12

Design Patterns

Design patterns are “general reusable solutions to a commonly occurring

a given context in software design”. Design patterns are a great way to de

culture of a programming language. Design patterns are very language-sp

pattern in one language may be unnecessary in another due to a languag

impossible to express due to a missing feature.

If overused, design patterns can add unnecessary complexity to programs

are a great way to share intermediate and advanced level knowledge abo

programming language.

Design patterns in Rust

Rust has many unique features. These features give us great benefit by re

classes of problems. Some of them are also patterns that are

YAGNI

YAGNI is an acronym that stands for You Aren't Going to Need It

design principle to apply as you write code.

The best code I ever wrote was code I never wrote.

If we apply YAGNI to design patterns, we see that the features of Rust allo

out many patterns. For instance, there is no need for the

we can just use traits.

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

49 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#design-patterns-1
https://rust-unofficial.github.io/patterns/print.html#design-patterns-1
https://en.wikipedia.org/wiki/Software_design_pattern
https://en.wikipedia.org/wiki/Software_design_pattern
https://rust-unofficial.github.io/patterns/print.html#design-patterns-in-rust-1
https://rust-unofficial.github.io/patterns/print.html#design-patterns-in-rust-1
https://rust-unofficial.github.io/patterns/print.html#yagni
https://rust-unofficial.github.io/patterns/print.html#yagni
https://doc.rust-lang.org/book/traits.html
https://doc.rust-lang.org/book/traits.html

Behavioural Patterns

From Wikipedia:

Design patterns that identify common communication patterns among

doing so, these patterns increase flexibility in carrying out communicat

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

50 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#behavioural-patterns
https://rust-unofficial.github.io/patterns/print.html#behavioural-patterns
https://en.wikipedia.org/wiki/Behavioral_pattern
https://en.wikipedia.org/wiki/Behavioral_pattern

Command

Description

The basic idea of the Command pattern is to separate out actions into its

pass them as parameters.

Motivation

Suppose we have a sequence of actions or transactions encapsulated as o

these actions or commands to be executed or invoked in some order late

time. These commands may also be triggered as a result of some event. F

when a user pushes a button, or on arrival of a data packet. In addition, th

might be undoable. This may come in useful for operations of an editor. W

to store logs of executed commands so that we could reapply the change

system crashes.

Example

Define two database operations create table and

is a command which knows how to undo the command, e.g.,

field . When a user invokes a database migration operation then each co

executed in the defined order, and when the user invokes the rollback op

whole set of commands is invoked in reverse order.

Approach: Using trait objects

We define a common trait which encapsulates our command with two op

execute and rollback . All command structs must implement this trai

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

51 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#command
https://rust-unofficial.github.io/patterns/print.html#command
https://rust-unofficial.github.io/patterns/print.html#description-17
https://rust-unofficial.github.io/patterns/print.html#description-17
https://rust-unofficial.github.io/patterns/print.html#motivation-8
https://rust-unofficial.github.io/patterns/print.html#motivation-8
https://rust-unofficial.github.io/patterns/print.html#example-12
https://rust-unofficial.github.io/patterns/print.html#example-12
https://rust-unofficial.github.io/patterns/print.html#approach-using-trait-objects
https://rust-unofficial.github.io/patterns/print.html#approach-using-trait-objects

pub trait Migration {
fn execute(&self) -> &str;
fn rollback(&self) -> &str;

}

pub struct CreateTable;
impl Migration for CreateTable {

fn execute(&self) -> &str {
"create table"

 }
fn rollback(&self) -> &str {

"drop table"
 }
}

pub struct AddField;
impl Migration for AddField {

fn execute(&self) -> &str {
"add field"

 }
fn rollback(&self) -> &str {

"remove field"
 }
}

struct Schema {
 commands: Vec<Box<dyn Migration>>,
}

impl Schema {
fn new() -> Self {

Self { commands: vec![] }
 }

fn add_migration(&mut self, cmd: Box<dyn Migration>) {
self.commands.push(cmd);

 }

fn execute(&self) -> Vec<&str> {
self.commands.iter().map(|cmd| cmd.execute()).collect(

 }
fn rollback(&self) -> Vec<&str> {

self.commands
 .iter()
 .rev() // reverse iterator's direction
 .map(|cmd| cmd.rollback())
 .collect()
 }
}

fn main() {
let mut schema = Schema::new();

let cmd = Box::new(CreateTable);
 schema.add_migration(cmd);

let cmd = Box::new(AddField);

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

52 of 136 10/25/23, 12:58

Approach: Using function pointers

We could follow another approach by creating each individual command a

function and store function pointers to invoke these functions later at a d

Since function pointers implement all three traits Fn

well pass and store closures instead of function pointers.

 schema.add_migration(cmd);

assert_eq!(vec!["create table", "add field"
assert_eq!(vec!["remove field", "drop table"

}

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

53 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#approach-using-function-pointers
https://rust-unofficial.github.io/patterns/print.html#approach-using-function-pointers

Approach: Using Fn trait objects

Finally, instead of defining a common command trait we could store each

implementing the Fn trait separately in vectors.

type FnPtr = fn() -> String;
struct Command {
 execute: FnPtr,
 rollback: FnPtr,
}

struct Schema {
 commands: Vec<Command>,
}

impl Schema {
fn new() -> Self {

Self { commands: vec![] }
 }

fn add_migration(&mut self, execute: FnPtr, rollback: FnPt
self.commands.push(Command { execute, rollback });

 }
fn execute(&self) -> Vec<String> {

self.commands.iter().map(|cmd| (cmd.execute)()).collec
 }

fn rollback(&self) -> Vec<String> {
self.commands

 .iter()
 .rev()
 .map(|cmd| (cmd.rollback)())
 .collect()
 }
}

fn add_field() -> String {
"add field".to_string()

}

fn remove_field() -> String {
"remove field".to_string()

}

fn main() {
let mut schema = Schema::new();

 schema.add_migration(|| "create table".to_string(), ||
table".to_string());
 schema.add_migration(add_field, remove_field);

assert_eq!(vec!["create table", "add field"
assert_eq!(vec!["remove field", "drop table"

}

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

54 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#approach-using-fn-trait-objects
https://rust-unofficial.github.io/patterns/print.html#approach-using-fn-trait-objects
https://rust-unofficial.github.io/patterns/print.html#approach-using-fn-trait-objects
https://rust-unofficial.github.io/patterns/print.html#approach-using-fn-trait-objects
https://rust-unofficial.github.io/patterns/print.html#approach-using-fn-trait-objects

Discussion

If our commands are small and may be defined as functions or passed as

using function pointers might be preferable since it does not exploit dyna

But if our command is a whole struct with a bunch of functions and variab

type Migration<'a> = Box<dyn Fn() -> &'a str>;

struct Schema<'a> {
 executes: Vec<Migration<'a>>,
 rollbacks: Vec<Migration<'a>>,
}

impl<'a> Schema<'a> {
fn new() -> Self {

Self {
 executes: vec![],
 rollbacks: vec![],
 }
 }

fn add_migration<E, R>(&mut self, execute: E, rollback: R)
where

 E: Fn() -> &'a str + 'static,
 R: Fn() -> &'a str + 'static,
 {

self.executes.push(Box::new(execute));
self.rollbacks.push(Box::new(rollback));

 }
fn execute(&self) -> Vec<&str> {

self.executes.iter().map(|cmd| cmd()).collect()
 }

fn rollback(&self) -> Vec<&str> {
self.rollbacks.iter().rev().map(|cmd| cmd()).collect()

 }
}

fn add_field() -> &'static str {
"add field"

}

fn remove_field() -> &'static str {
"remove field"

}

fn main() {
let mut schema = Schema::new();

 schema.add_migration(|| "create table", ||
 schema.add_migration(add_field, remove_field);

assert_eq!(vec!["create table", "add field"
assert_eq!(vec!["remove field", "drop table"

}

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

55 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#discussion-6
https://rust-unofficial.github.io/patterns/print.html#discussion-6

seperated module then using trait objects would be more suitable. A case

can be found in actix , which uses trait objects when it registers a handle

routes. In case of using Fn trait objects we can create and use commands

way as we used in case of function pointers.

As performance, there is always a trade-off between performance and co

and organisation. Static dispatch gives faster performance, while dynamic

provides flexibility when we structure our application.

See also

• Command pattern

• Another example for the command pattern

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

56 of 136 10/25/23, 12:58

https://actix.rs/
https://actix.rs/
https://actix.rs/
https://rust-unofficial.github.io/patterns/print.html#see-also-9
https://rust-unofficial.github.io/patterns/print.html#see-also-9
https://en.wikipedia.org/wiki/Command_pattern
https://en.wikipedia.org/wiki/Command_pattern
https://web.archive.org/web/20210223131236/https://chercher.tech/rust/command-design-pattern-rust
https://web.archive.org/web/20210223131236/https://chercher.tech/rust/command-design-pattern-rust
https://web.archive.org/web/20210223131236/https://chercher.tech/rust/command-design-pattern-rust
https://web.archive.org/web/20210223131236/https://chercher.tech/rust/command-design-pattern-rust
https://web.archive.org/web/20210223131236/https://chercher.tech/rust/command-design-pattern-rust

Interpreter

Description

If a problem occurs very often and requires long and repetitive steps to so

problem instances might be expressed in a simple language and an interp

could solve it by interpreting the sentences written in this simple language

Basically, for any kind of problems we define:

• A domain specific language,

• A grammar for this language,

• An interpreter that solves the problem instances.

Motivation

Our goal is to translate simple mathematical expressions into postfix expr

Reverse Polish notation) For simplicity, our expressions consist of ten digi

two operations + , - . For example, the expression

Context Free Grammar for our problem

Our task is translating infix expressions into postfix ones. Let’s define a co

grammar for a set of infix expressions over 0 , …, 9

• Terminal symbols: 0 , ... , 9 , + , -

• Non-terminal symbols: exp , term

• Start symbol is exp

• And the following are production rules

NOTE: This grammar should be further transformed depending on what w

do with it. For example, we might need to remove left recursion. For more

see Compilers: Principles,Techniques, and Tools (aka Dragon Book).

exp -> exp + term
exp -> exp - term
exp -> term
term -> 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

57 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#interpreter
https://rust-unofficial.github.io/patterns/print.html#interpreter
https://rust-unofficial.github.io/patterns/print.html#description-18
https://rust-unofficial.github.io/patterns/print.html#description-18
https://en.wikipedia.org/wiki/Domain-specific_language
https://en.wikipedia.org/wiki/Domain-specific_language
https://rust-unofficial.github.io/patterns/print.html#motivation-9
https://rust-unofficial.github.io/patterns/print.html#motivation-9
https://en.wikipedia.org/wiki/Reverse_Polish_notation
https://en.wikipedia.org/wiki/Reverse_Polish_notation
https://rust-unofficial.github.io/patterns/print.html#context-free-grammar-for-our-problem
https://rust-unofficial.github.io/patterns/print.html#context-free-grammar-for-our-problem
https://en.wikipedia.org/wiki/Compilers:_Principles,_Techniques,_and_Tools
https://en.wikipedia.org/wiki/Compilers:_Principles,_Techniques,_and_Tools

Solution

We simply implement a recursive descent parser. For simplicity’s sake, the

when an expression is syntactically wrong (for example

according to the grammar definition).

pub struct Interpreter<'a> {
 it: std::str::Chars<'a>,
}

impl<'a> Interpreter<'a> {

pub fn new(infix: &'a str) -> Self {
Self { it: infix.chars() }

 }

fn next_char(&mut self) -> Option<char> {
self.it.next()

 }

pub fn interpret(&mut self, out: &mut String
self.term(out);

while let Some(op) = self.next_char() {
if op == '+' || op == '-' {

self.term(out);
 out.push(op);
 } else {

panic!("Unexpected symbol '{}'"
 }
 }
 }

fn term(&mut self, out: &mut String) {
match self.next_char() {

Some(ch) if ch.is_digit(10) => out.push(ch),
Some(ch) => panic!("Unexpected symbol '{}'"
None => panic!("Unexpected end of string"

 }
 }
}

pub fn main() {
let mut intr = Interpreter::new("2+3");
let mut postfix = String::new();

 intr.interpret(&mut postfix);
assert_eq!(postfix, "23+");

 intr = Interpreter::new("1-2+3-4");
 postfix.clear();
 intr.interpret(&mut postfix);

assert_eq!(postfix, "12-3+4-");
}

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

58 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#solution
https://rust-unofficial.github.io/patterns/print.html#solution

Discussion

There may be a wrong perception that the Interpreter design pattern is ab

grammars for formal languages and implementation of parsers for these

fact, this pattern is about expressing problem instances in a more specific

implementing functions/classes/structs that solve these problem instance

language has macro_rules! that allow us to define special syntax and rul

expand this syntax into source code.

In the following example we create a simple macro_rules!

length of n dimensional vectors. Writing norm!(x,1,2)

more efficient than packing x,1,2 into a Vec and calling a function comp

length.

See also

• Interpreter pattern

• Context free grammar

• macro_rules!

macro_rules! norm {
 ($($element:expr),*) => {
 {

let mut n = 0.0;
 $(
 n += ($element as f64)*($element
)*
 n.sqrt()
 }
 };
}

fn main() {
let x = -3f64;
let y = 4f64;

assert_eq!(3f64, norm!(x));
assert_eq!(5f64, norm!(x, y));
assert_eq!(0f64, norm!(0, 0, 0));
assert_eq!(1f64, norm!(0.5, -0.5, 0.5, -0.5

}

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

59 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#discussion-7
https://rust-unofficial.github.io/patterns/print.html#discussion-7
https://en.wikipedia.org/wiki/Euclidean_distance
https://en.wikipedia.org/wiki/Euclidean_distance
https://rust-unofficial.github.io/patterns/print.html#see-also-10
https://rust-unofficial.github.io/patterns/print.html#see-also-10
https://en.wikipedia.org/wiki/Interpreter_pattern
https://en.wikipedia.org/wiki/Interpreter_pattern
https://en.wikipedia.org/wiki/Context-free_grammar
https://en.wikipedia.org/wiki/Context-free_grammar
https://doc.rust-lang.org/rust-by-example/macros.html
https://doc.rust-lang.org/rust-by-example/macros.html

Newtype

What if in some cases we want a type to behave similar to another type or

behaviour at compile time when using only type aliases would not be eno

For example, if we want to create a custom Display

security considerations (e.g. passwords).

For such cases we could use the Newtype pattern to provide

encapsulation.

Description

Use a tuple struct with a single field to make an opaque wrapper for a typ

new type, rather than an alias to a type (type items).

Example

Motivation

use std::fmt::Display;

// Create Newtype Password to override the Display trait for S
struct Password(String);

impl Display for Password {
fn fmt(&self, f: &mut std::fmt::Formatter<

write!(f, "****************")
 }
}

fn main() {
let unsecured_password: String = "ThisIsMyPassword"
let secured_password: Password = Password(unsecured_passwo
println!("unsecured_password: {unsecured_password}"
println!("secured_password: {secured_password}"

}

unsecured_password: ThisIsMyPassword
secured_password: ****************

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

60 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#newtype
https://rust-unofficial.github.io/patterns/print.html#newtype
https://rust-unofficial.github.io/patterns/print.html#description-19
https://rust-unofficial.github.io/patterns/print.html#description-19
https://rust-unofficial.github.io/patterns/print.html#example-13
https://rust-unofficial.github.io/patterns/print.html#example-13
https://rust-unofficial.github.io/patterns/print.html#motivation-10
https://rust-unofficial.github.io/patterns/print.html#motivation-10

The primary motivation for newtypes is abstraction. It allows you to share

implementation details between types while precisely controlling the inte

newtype rather than exposing the implementation type as part of an API,

change implementation backwards compatibly.

Newtypes can be used for distinguishing units, e.g., wrapping

Miles and Kilometres .

Advantages

The wrapped and wrapper types are not type compatible (as opposed to u

users of the newtype will never ‘confuse’ the wrapped and wrapper types.

Newtypes are a zero-cost abstraction - there is no runtime overhead.

The privacy system ensures that users cannot access the wrapped type (if

private, which it is by default).

Disadvantages

The downside of newtypes (especially compared with type aliases), is that

special language support. This means there can be a lot

through’ method for every method you want to expose on the wrapped ty

for every trait you want to also be implemented for the wrapper type.

Discussion

Newtypes are very common in Rust code. Abstraction or representing uni

common uses, but they can be used for other reasons:

• restricting functionality (reduce the functions exposed or traits imple

• making a type with copy semantics have move semantics,

• abstraction by providing a more concrete type and thus hiding intern

Here, Bar might be some public, generic type and

Users of our module shouldn’t know that we implement

we’re really hiding here is the types T1 and T2 , and how they are used w

pub struct Foo(Bar<T1, T2>);

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

61 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#advantages-12
https://rust-unofficial.github.io/patterns/print.html#advantages-12
https://rust-unofficial.github.io/patterns/print.html#disadvantages-13
https://rust-unofficial.github.io/patterns/print.html#disadvantages-13
https://rust-unofficial.github.io/patterns/print.html#discussion-8
https://rust-unofficial.github.io/patterns/print.html#discussion-8

See also

• Advanced Types in the book

• Newtypes in Haskell

• Type aliases

• derive_more, a crate for deriving many builtin traits on newtypes.

• The Newtype Pattern In Rust

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

62 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#see-also-11
https://rust-unofficial.github.io/patterns/print.html#see-also-11
https://doc.rust-lang.org/book/ch19-04-advanced-types.html?highlight=newtype#using-the-newtype-pattern-for-type-safety-and-abstraction
https://doc.rust-lang.org/book/ch19-04-advanced-types.html?highlight=newtype#using-the-newtype-pattern-for-type-safety-and-abstraction
https://wiki.haskell.org/Newtype
https://wiki.haskell.org/Newtype
https://doc.rust-lang.org/stable/book/ch19-04-advanced-types.html#creating-type-synonyms-with-type-aliases
https://doc.rust-lang.org/stable/book/ch19-04-advanced-types.html#creating-type-synonyms-with-type-aliases
https://crates.io/crates/derive_more
https://crates.io/crates/derive_more
https://web.archive.org/web/20230519162111/https://www.worthe-it.co.za/blog/2020-10-31-newtype-pattern-in-rust.html
https://web.archive.org/web/20230519162111/https://www.worthe-it.co.za/blog/2020-10-31-newtype-pattern-in-rust.html

RAII with guards

Description

RAII stands for “Resource Acquisition is Initialisation” which is a terrible na

essence of the pattern is that resource initialisation is done in the constru

and finalisation in the destructor. This pattern is extended in Rust by usin

as a guard of some resource and relying on the type system to ensure tha

always mediated by the guard object.

Example

Mutex guards are the classic example of this pattern from the std library (

simplified version of the real implementation):

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

63 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#raii-with-guards
https://rust-unofficial.github.io/patterns/print.html#raii-with-guards
https://rust-unofficial.github.io/patterns/print.html#description-20
https://rust-unofficial.github.io/patterns/print.html#description-20
https://en.wikipedia.org/wiki/Resource_Acquisition_Is_Initialization
https://en.wikipedia.org/wiki/Resource_Acquisition_Is_Initialization
https://rust-unofficial.github.io/patterns/print.html#example-14
https://rust-unofficial.github.io/patterns/print.html#example-14

use std::ops::Deref;

struct Foo {}

struct Mutex<T> {
// We keep a reference to our data: T here.
//..

}

struct MutexGuard<'a, T: 'a> {
 data: &'a T,

//..
}

// Locking the mutex is explicit.
impl<T> Mutex<T> {

fn lock(&self) -> MutexGuard<T> {
// Lock the underlying OS mutex.
//..

// MutexGuard keeps a reference to self
 MutexGuard {
 data: self,

//..
 }
 }
}

// Destructor for unlocking the mutex.
impl<'a, T> Drop for MutexGuard<'a, T> {

fn drop(&mut self) {
// Unlock the underlying OS mutex.
//..

 }
}

// Implementing Deref means we can treat MutexGuard like a poi
impl<'a, T> Deref for MutexGuard<'a, T> {

type Target = T;

fn deref(&self) -> &T {
self.data

 }
}

fn baz(x: Mutex<Foo>) {
let xx = x.lock();

 xx.foo(); // foo is a method on Foo.
// The borrow checker ensures we can't store a reference t

underlying
// Foo which will outlive the guard xx.

// x is unlocked when we exit this function and xx's destr
executed.
}

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

64 of 136 10/25/23, 12:58

Motivation

Where a resource must be finalised after use, RAII can be used to do this fi

is an error to access that resource after finalisation, then this pattern can

prevent such errors.

Advantages

Prevents errors where a resource is not finalised and where a resource is

finalisation.

Discussion

RAII is a useful pattern for ensuring resources are properly deallocated or

can make use of the borrow checker in Rust to statically prevent errors st

using resources after finalisation takes place.

The core aim of the borrow checker is to ensure that references to data d

that data. The RAII guard pattern works because the guard object contain

the underlying resource and only exposes such references. Rust ensures t

cannot outlive the underlying resource and that references to the resourc

the guard cannot outlive the guard. To see how this works it is helpful to e

signature of deref without lifetime elision:

The returned reference to the resource has the same lifetime as

checker therefore ensures that the lifetime of the reference to

lifetime of self .

Note that implementing Deref is not a core part of this pattern, it only m

guard object more ergonomic. Implementing a get

well.

See also

Finalisation in destructors idiom

fn deref<'a>(&'a self) -> &'a T {
//..

}

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

65 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#motivation-11
https://rust-unofficial.github.io/patterns/print.html#motivation-11
https://rust-unofficial.github.io/patterns/print.html#advantages-13
https://rust-unofficial.github.io/patterns/print.html#advantages-13
https://rust-unofficial.github.io/patterns/print.html#discussion-9
https://rust-unofficial.github.io/patterns/print.html#discussion-9
https://rust-unofficial.github.io/patterns/print.html#see-also-12
https://rust-unofficial.github.io/patterns/print.html#see-also-12
https://rust-unofficial.github.io/patterns/idioms/dtor-finally.html
https://rust-unofficial.github.io/patterns/idioms/dtor-finally.html

RAII is a common pattern in C++: cppreference.com,

Style guide entry (currently just a placeholder).

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

66 of 136 10/25/23, 12:58

http://en.cppreference.com/w/cpp/language/raii
http://en.cppreference.com/w/cpp/language/raii
https://doc.rust-lang.org/1.0.0/style/ownership/raii.html
https://doc.rust-lang.org/1.0.0/style/ownership/raii.html

Strategy (aka Policy)

Description

The Strategy design pattern is a technique that enables separation of con

allows to decouple software modules through Dependency Inversion

The basic idea behind the Strategy pattern is that, given an algorithm solv

problem, we define only the skeleton of the algorithm at an abstract level

separate the specific algorithm’s implementation into different parts.

In this way, a client using the algorithm may choose a specific implementa

general algorithm workflow remains the same. In other words, the abstra

of the class does not depend on the specific implementation of the derive

specific implementation must adhere to the abstract specification. This is

“Dependency Inversion”.

Motivation

Imagine we are working on a project that generates reports every month.

reports to be generated in different formats (strategies), e.g., in

formats. But things vary over time, and we don’t know what kind of requir

get in the future. For example, we may need to generate our report in a co

format, or just modify one of the existing formats.

Example

In this example our invariants (or abstractions) are

and Json are our strategy structs. These strategies have to implement th

trait.

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

67 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#strategy-aka-policy
https://rust-unofficial.github.io/patterns/print.html#strategy-aka-policy
https://rust-unofficial.github.io/patterns/print.html#description-21
https://rust-unofficial.github.io/patterns/print.html#description-21
https://en.wikipedia.org/wiki/Strategy_pattern
https://en.wikipedia.org/wiki/Strategy_pattern
https://en.wikipedia.org/wiki/Dependency_inversion_principle
https://en.wikipedia.org/wiki/Dependency_inversion_principle
https://rust-unofficial.github.io/patterns/print.html#motivation-12
https://rust-unofficial.github.io/patterns/print.html#motivation-12
https://rust-unofficial.github.io/patterns/print.html#example-15
https://rust-unofficial.github.io/patterns/print.html#example-15

use std::collections::HashMap;

type Data = HashMap<String, u32>;

trait Formatter {
fn format(&self, data: &Data, buf: &mut String

}

struct Report;

impl Report {
// Write should be used but we kept it as String to ignore
fn generate<T: Formatter>(g: T, s: &mut String

// backend operations...
let mut data = HashMap::new();

 data.insert("one".to_string(), 1);
 data.insert("two".to_string(), 2);

// generate report
 g.format(&data, s);
 }
}

struct Text;
impl Formatter for Text {

fn format(&self, data: &Data, buf: &mut String
for (k, v) in data {

let entry = format!("{} {}\n", k, v);
 buf.push_str(&entry);
 }
 }
}

struct Json;
impl Formatter for Json {

fn format(&self, data: &Data, buf: &mut String
 buf.push('[');

for (k, v) in data.into_iter() {
let entry = format!(r#"{{"{}":"{}"}}"#

 buf.push_str(&entry);
 buf.push(',');
 }

if !data.is_empty() {
 buf.pop(); // remove extra , at the end
 }
 buf.push(']');
 }
}

fn main() {
let mut s = String::from("");

 Report::generate(Text, &mut s);
assert!(s.contains("one 1"));
assert!(s.contains("two 2"));

 s.clear(); // reuse the same buffer
 Report::generate(Json, &mut s);

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

68 of 136 10/25/23, 12:58

Advantages

The main advantage is separation of concerns. For example, in this case

know anything about specific implementations of Json

implementations does not care about how data is preprocessed, stored, a

only thing they have to know is a specific trait to implement and its metho

concrete algorithm implementation processing the result, i.e.,

format(...) .

Disadvantages

For each strategy there must be implemented at least one module, so num

modules increases with number of strategies. If there are many strategies

then users have to know how strategies differ from one another.

Discussion

In the previous example all strategies are implemented in a single file. Wa

different strategies includes:

• All in one file (as shown in this example, similar to being separated a

• Separated as modules, E.g. formatter::json module,

• Use compiler feature flags, E.g. json feature,

• Separated as crates, E.g. json crate, text crate

Serde crate is a good example of the Strategy pattern in action. Serde al

customization of the serialization behavior by manually implementing

Deserialize traits for our type. For example, we could easily swap

serde_cbor since they expose similar methods. Having this makes the he

serde_transcode much more useful and ergonomic.

However, we don’t need to use traits in order to design this pattern in Rus

The following toy example demonstrates the idea of the Strategy pattern

closures :

assert!(s.contains(r#"{"one":"1"}"#));
assert!(s.contains(r#"{"two":"2"}"#));

}

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

69 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#advantages-14
https://rust-unofficial.github.io/patterns/print.html#advantages-14
https://rust-unofficial.github.io/patterns/print.html#disadvantages-14
https://rust-unofficial.github.io/patterns/print.html#disadvantages-14
https://rust-unofficial.github.io/patterns/print.html#discussion-10
https://rust-unofficial.github.io/patterns/print.html#discussion-10
https://serde.rs/custom-serialization.html
https://serde.rs/custom-serialization.html

In fact, Rust already uses this idea for Options ’s map

See also

• Strategy Pattern

• Dependency Injection

• Policy Based Design

• Implementing a TCP server for Space Applications in Rust using the S

struct Adder;
impl Adder {

pub fn add<F>(x: u8, y: u8, f: F) -> u8
where

 F: Fn(u8, u8) -> u8,
 {
 f(x, y)
 }
}

fn main() {
let arith_adder = |x, y| x + y;
let bool_adder = |x, y| {

if x == 1 || y == 1 {
1

 } else {
0

 }
 };

let custom_adder = |x, y| 2 * x + y;

assert_eq!(9, Adder::add(4, 5, arith_adder));
assert_eq!(0, Adder::add(0, 0, bool_adder));
assert_eq!(5, Adder::add(1, 3, custom_adder));

}

fn main() {
let val = Some("Rust");

let len_strategy = |s: &str| s.len();
assert_eq!(4, val.map(len_strategy).unwrap());

let first_byte_strategy = |s: &str| s.bytes().next().unwra
assert_eq!(82, val.map(first_byte_strategy).unwrap());

}

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

70 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#see-also-13
https://rust-unofficial.github.io/patterns/print.html#see-also-13
https://en.wikipedia.org/wiki/Strategy_pattern
https://en.wikipedia.org/wiki/Strategy_pattern
https://en.wikipedia.org/wiki/Dependency_injection
https://en.wikipedia.org/wiki/Dependency_injection
https://en.wikipedia.org/wiki/Modern_C++_Design#Policy-based_design
https://en.wikipedia.org/wiki/Modern_C++_Design#Policy-based_design
https://web.archive.org/web/20231003171500/https://robamu.github.io/posts/rust-strategy-pattern/
https://web.archive.org/web/20231003171500/https://robamu.github.io/posts/rust-strategy-pattern/

Visitor

Description

A visitor encapsulates an algorithm that operates over a heterogeneous c

objects. It allows multiple different algorithms to be written over the same

having to modify the data (or their primary behaviour).

Furthermore, the visitor pattern allows separating the traversal of a collec

from the operations performed on each object.

Example

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

71 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#visitor
https://rust-unofficial.github.io/patterns/print.html#visitor
https://rust-unofficial.github.io/patterns/print.html#description-22
https://rust-unofficial.github.io/patterns/print.html#description-22
https://rust-unofficial.github.io/patterns/print.html#example-16
https://rust-unofficial.github.io/patterns/print.html#example-16

// The data we will visit
mod ast {

pub enum Stmt {
 Expr(Expr),
 Let(Name, Expr),
 }

pub struct Name {
 value: String,
 }

pub enum Expr {
 IntLit(i64),
 Add(Box<Expr>, Box<Expr>),
 Sub(Box<Expr>, Box<Expr>),
 }
}

// The abstract visitor
mod visit {

use ast::*;

pub trait Visitor<T> {
fn visit_name(&mut self, n: &Name) -> T;
fn visit_stmt(&mut self, s: &Stmt) -> T;
fn visit_expr(&mut self, e: &Expr) -> T;

 }
}

use visit::*;
use ast::*;

// An example concrete implementation - walks the AST interpre
code.
struct Interpreter;
impl Visitor<i64> for Interpreter {

fn visit_name(&mut self, n: &Name) -> i64
fn visit_stmt(&mut self, s: &Stmt) -> i64

match *s {
 Stmt::Expr(ref e) => self.visit_expr(e),
 Stmt::Let(..) => unimplemented!(),
 }
 }

fn visit_expr(&mut self, e: &Expr) -> i64
match *e {

 Expr::IntLit(n) => n,
 Expr::Add(ref lhs, ref rhs) => self
self.visit_expr(rhs),
 Expr::Sub(ref lhs, ref rhs) => self
self.visit_expr(rhs),
 }
 }
}

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

72 of 136 10/25/23, 12:58

One could implement further visitors, for example a type checker, withou

modify the AST data.

Motivation

The visitor pattern is useful anywhere that you want to apply an algorithm

heterogeneous data. If data is homogeneous, you can use an iterator-like

visitor object (rather than a functional approach) allows the visitor to be s

communicate information between nodes.

Discussion

It is common for the visit_* methods to return void (as opposed to in th

that case it is possible to factor out the traversal code and share it betwee

(and also to provide noop default methods). In Rust, the common way to d

provide walk_* functions for each datum. For example,

In other languages (e.g., Java) it is common for data to have an

performs the same duty.

See also

The visitor pattern is a common pattern in most OO languages.

Wikipedia article

The fold pattern is similar to visitor but produces a new version of the visi

pub fn walk_expr(visitor: &mut Visitor, e: &Expr) {
match *e {

 Expr::IntLit(_) => {},
 Expr::Add(ref lhs, ref rhs) => {
 visitor.visit_expr(lhs);
 visitor.visit_expr(rhs);
 }
 Expr::Sub(ref lhs, ref rhs) => {
 visitor.visit_expr(lhs);
 visitor.visit_expr(rhs);
 }
 }
}

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

73 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#motivation-13
https://rust-unofficial.github.io/patterns/print.html#motivation-13
https://rust-unofficial.github.io/patterns/print.html#discussion-11
https://rust-unofficial.github.io/patterns/print.html#discussion-11
https://rust-unofficial.github.io/patterns/print.html#see-also-14
https://rust-unofficial.github.io/patterns/print.html#see-also-14
https://en.wikipedia.org/wiki/Visitor_pattern
https://en.wikipedia.org/wiki/Visitor_pattern
https://rust-unofficial.github.io/patterns/patterns/creational/fold.html
https://rust-unofficial.github.io/patterns/patterns/creational/fold.html

structure.

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

74 of 136 10/25/23, 12:58

Creational Patterns

From Wikipedia:

Design patterns that deal with object creation mechanisms, trying to cr

in a manner suitable to the situation. The basic form of object creation

in design problems or in added complexity to the design. Creational de

solve this problem by somehow controlling this object creation.

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

75 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#creational-patterns
https://rust-unofficial.github.io/patterns/print.html#creational-patterns
https://en.wikipedia.org/wiki/Creational_pattern
https://en.wikipedia.org/wiki/Creational_pattern

Builder

Description

Construct an object with calls to a builder helper.

Example

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

76 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#builder
https://rust-unofficial.github.io/patterns/print.html#builder
https://rust-unofficial.github.io/patterns/print.html#description-23
https://rust-unofficial.github.io/patterns/print.html#description-23
https://rust-unofficial.github.io/patterns/print.html#example-17
https://rust-unofficial.github.io/patterns/print.html#example-17

#[derive(Debug, PartialEq)]
pub struct Foo {

// Lots of complicated fields.
 bar: String,
}

impl Foo {
// This method will help users to discover the builder
pub fn builder() -> FooBuilder {

 FooBuilder::default()
 }
}

#[derive(Default)]
pub struct FooBuilder {

// Probably lots of optional fields.
 bar: String,
}

impl FooBuilder {
pub fn new(/* ... */) -> FooBuilder {

// Set the minimally required fields of Foo.
 FooBuilder {
 bar: String::from("X"),
 }
 }

pub fn name(mut self, bar: String) -> FooBuilder {
// Set the name on the builder itself, and return the

value.
self.bar = bar;
self

 }

// If we can get away with not consuming the Builder here,
// advantage. It means we can use the FooBuilder as a temp

constructing
// many Foos.
pub fn build(self) -> Foo {

// Create a Foo from the FooBuilder, applying all sett
FooBuilder

// to Foo.
 Foo { bar: self.bar }
 }
}

#[test]
fn builder_test() {

let foo = Foo {
 bar: String::from("Y"),
 };

let foo_from_builder: Foo =
FooBuilder::new().name(String::from("Y")).build();

assert_eq!(foo, foo_from_builder);
}

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

77 of 136 10/25/23, 12:58

Motivation

Useful when you would otherwise require many constructors or where co

side effects.

Advantages

Separates methods for building from other methods.

Prevents proliferation of constructors.

Can be used for one-liner initialisation as well as more complex construct

Disadvantages

More complex than creating a struct object directly, or a simple construct

Discussion

This pattern is seen more frequently in Rust (and for simpler objects) than

languages because Rust lacks overloading. Since you can only have a sing

a given name, having multiple constructors is less nice in Rust than in C++

This pattern is often used where the builder object is useful in its own righ

being just a builder. For example, see std::process::Command

process). In these cases, the T and TBuilder naming pattern is not used

The example takes and returns the builder by value. It is often more ergon

more efficient) to take and return the builder as a mutable reference. The

makes this work naturally. This approach has the advantage that one can

as well as the FooBuilder::new().a().b().build()

let mut fb = FooBuilder::new();
fb.a();
fb.b();
let f = fb.build();

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

78 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#motivation-14
https://rust-unofficial.github.io/patterns/print.html#motivation-14
https://rust-unofficial.github.io/patterns/print.html#advantages-15
https://rust-unofficial.github.io/patterns/print.html#advantages-15
https://rust-unofficial.github.io/patterns/print.html#disadvantages-15
https://rust-unofficial.github.io/patterns/print.html#disadvantages-15
https://rust-unofficial.github.io/patterns/print.html#discussion-12
https://rust-unofficial.github.io/patterns/print.html#discussion-12
https://doc.rust-lang.org/std/process/struct.Command.html
https://doc.rust-lang.org/std/process/struct.Command.html
https://doc.rust-lang.org/std/process/struct.Command.html

See also

• Description in the style guide

• derive_builder, a crate for automatically implementing this pattern w

the boilerplate.

• Constructor pattern for when construction is simpler.

• Builder pattern (wikipedia)

• Construction of complex values

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

79 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#see-also-15
https://rust-unofficial.github.io/patterns/print.html#see-also-15
https://web.archive.org/web/20210104103100/https://doc.rust-lang.org/1.12.0/style/ownership/builders.html
https://web.archive.org/web/20210104103100/https://doc.rust-lang.org/1.12.0/style/ownership/builders.html
https://crates.io/crates/derive_builder
https://crates.io/crates/derive_builder
https://rust-unofficial.github.io/patterns/idioms/ctor.html
https://rust-unofficial.github.io/patterns/idioms/ctor.html
https://en.wikipedia.org/wiki/Builder_pattern
https://en.wikipedia.org/wiki/Builder_pattern
https://web.archive.org/web/20210104103000/https://rust-lang.github.io/api-guidelines/type-safety.html#c-builder
https://web.archive.org/web/20210104103000/https://rust-lang.github.io/api-guidelines/type-safety.html#c-builder

Fold

Description

Run an algorithm over each item in a collection of data to create a new ite

a whole new collection.

The etymology here is unclear to me. The terms ‘fold’ and ‘folder’ are used

compiler, although it appears to me to be more like a map than a fold in t

See the discussion below for more details.

Example

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

80 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#fold
https://rust-unofficial.github.io/patterns/print.html#fold
https://rust-unofficial.github.io/patterns/print.html#description-24
https://rust-unofficial.github.io/patterns/print.html#description-24
https://rust-unofficial.github.io/patterns/print.html#example-18
https://rust-unofficial.github.io/patterns/print.html#example-18

The result of running the Renamer on an AST is a new AST identical to the

with every name changed to foo . A real life folder might have some state

between nodes in the struct itself.

// The data we will fold, a simple AST.
mod ast {

pub enum Stmt {
 Expr(Box<Expr>),
 Let(Box<Name>, Box<Expr>),
 }

pub struct Name {
 value: String,
 }

pub enum Expr {
 IntLit(i64),
 Add(Box<Expr>, Box<Expr>),
 Sub(Box<Expr>, Box<Expr>),
 }
}

// The abstract folder
mod fold {

use ast::*;

pub trait Folder {
// A leaf node just returns the node itself. In some c

this
// to inner nodes too.
fn fold_name(&mut self, n: Box<Name>) ->
// Create a new inner node by folding its children.
fn fold_stmt(&mut self, s: Box<Stmt>) ->

match *s {
 Stmt::Expr(e) => Box::new(Stmt::Expr(
 Stmt::Let(n, e) => Box::new(Stmt::Let(
self.fold_expr(e))),
 }
 }

fn fold_expr(&mut self, e: Box<Expr>) ->
 }
}

use fold::*;
use ast::*;

// An example concrete implementation - renames every name to
struct Renamer;
impl Folder for Renamer {

fn fold_name(&mut self, n: Box<Name>) ->
Box::new(Name { value: "foo".to_owned() })

 }
// Use the default methods for the other nodes.

}

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

81 of 136 10/25/23, 12:58

A folder can also be defined to map one data structure to a different (but

data structure. For example, we could fold an AST into a HIR tree (HIR stan

level intermediate representation).

Motivation

It is common to want to map a data structure by performing some operat

node in the structure. For simple operations on simple data structures, th

using Iterator::map . For more complex operations, perhaps where earl

affect the operation on later nodes, or where iteration over the data struc

trivial, using the fold pattern is more appropriate.

Like the visitor pattern, the fold pattern allows us to separate traversal of

from the operations performed to each node.

Discussion

Mapping data structures in this fashion is common in functional language

languages, it would be more common to mutate the data structure in plac

‘functional’ approach is common in Rust, mostly due to the preference for

Using fresh data structures, rather than mutating old ones, makes reason

code easier in most circumstances.

The trade-off between efficiency and reusability can be tweaked by chang

are accepted by the fold_* methods.

In the above example we operate on Box pointers. Since these own their

exclusively, the original copy of the data structure cannot be re-used. On t

if a node is not changed, reusing it is very efficient.

If we were to operate on borrowed references, the original data structure

however, a node must be cloned even if unchanged, which can be expens

Using a reference counted pointer gives the best of both worlds - we can r

original data structure, and we don’t need to clone unchanged nodes. How

less ergonomic to use and mean that the data structures cannot be muta

See also

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

82 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#motivation-15
https://rust-unofficial.github.io/patterns/print.html#motivation-15
https://rust-unofficial.github.io/patterns/print.html#discussion-13
https://rust-unofficial.github.io/patterns/print.html#discussion-13
https://rust-unofficial.github.io/patterns/print.html#see-also-16
https://rust-unofficial.github.io/patterns/print.html#see-also-16

Iterators have a fold method, however this folds a data structure into a

than into a new data structure. An iterator’s map is more like this fold pat

In other languages, fold is usually used in the sense of Rust’s iterators, rat

pattern. Some functional languages have powerful constructs for perform

maps over data structures.

The visitor pattern is closely related to fold. They share the concept of wal

structure performing an operation on each node. However, the visitor doe

new data structure nor consume the old one.

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

83 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/patterns/behavioural/visitor.html
https://rust-unofficial.github.io/patterns/patterns/behavioural/visitor.html

Structural Patterns

From Wikipedia:

Design patterns that ease the design by identifying a simple way to rea

relationships among entities.

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

84 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#structural-patterns
https://rust-unofficial.github.io/patterns/print.html#structural-patterns
https://en.wikipedia.org/wiki/Structural_pattern
https://en.wikipedia.org/wiki/Structural_pattern

Struct decomposition for independent

borrowing

Description

Sometimes a large struct will cause issues with the borrow checker - altho

be borrowed independently, sometimes the whole struct ends up being u

preventing other uses. A solution might be to decompose the struct into s

structs. Then compose these together into the original struct. Then each s

borrowed separately and have more flexible behaviour.

This will often lead to a better design in other ways: applying this design p

reveals smaller units of functionality.

Example

Here is a contrived example of where the borrow checker foils us in our p

struct:

struct Database {
 connection_string: String,
 timeout: u32,
 pool_size: u32,
}

fn print_database(database: &Database) {
println!("Connection string: {}", database.connection_stri
println!("Timeout: {}", database.timeout);
println!("Pool size: {}", database.pool_size);

}

fn main() {
let mut db = Database {

 connection_string: "initial string".to_string(),
 timeout: 30,
 pool_size: 100,
 };

let connection_string = &mut db.connection_string;
 print_database(&db); // Immutable borrow of `db` happens

// *connection_string = "new string".to_string(); // Muta
used

}

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

85 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#struct-decomposition-for-independent-borrowing
https://rust-unofficial.github.io/patterns/print.html#struct-decomposition-for-independent-borrowing
https://rust-unofficial.github.io/patterns/print.html#struct-decomposition-for-independent-borrowing
https://rust-unofficial.github.io/patterns/print.html#struct-decomposition-for-independent-borrowing
https://rust-unofficial.github.io/patterns/print.html#description-25
https://rust-unofficial.github.io/patterns/print.html#description-25
https://rust-unofficial.github.io/patterns/print.html#example-19
https://rust-unofficial.github.io/patterns/print.html#example-19

We can apply this design pattern and refactor Database

solving the borrow checking issue:

Motivation

This pattern is most useful, when you have a struct that ended up with a l

you want to borrow independently. Thus having a more flexible behaviou

// Database is now composed of three structs - ConnectionStrin
PoolSize.
// Let's decompose it into smaller structs
#[derive(Debug, Clone)]
struct ConnectionString(String);

#[derive(Debug, Clone, Copy)]
struct Timeout(u32);

#[derive(Debug, Clone, Copy)]
struct PoolSize(u32);

// We then compose these smaller structs back into `Database`
struct Database {
 connection_string: ConnectionString,
 timeout: Timeout,
 pool_size: PoolSize,
}

// print_database can then take ConnectionString, Timeout and
instead
fn print_database(connection_str: ConnectionString,
 timeout: Timeout,
 pool_size: PoolSize) {

println!("Connection string: {:?}", connection_str);
println!("Timeout: {:?}", timeout);
println!("Pool size: {:?}", pool_size);

}

fn main() {
// Initialize the Database with the three structs
let mut db = Database {

 connection_string: ConnectionString("localhost"
 timeout: Timeout(30),
 pool_size: PoolSize(100),
 };

let connection_string = &mut db.connection_string;
 print_database(connection_string.clone(), db.timeout, db.p
 *connection_string = ConnectionString("new string"
}

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

86 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#motivation-16
https://rust-unofficial.github.io/patterns/print.html#motivation-16

Advantages

Decomposition of structs lets you work around limitations in the borrow c

often produces a better design.

Disadvantages

It can lead to more verbose code. And sometimes, the smaller structs are

abstractions, and so we end up with a worse design. That is probably a ‘co

indicating that the program should be refactored in some way.

Discussion

This pattern is not required in languages that don’t have a borrow checke

sense is unique to Rust. However, making smaller units of functionality of

cleaner code: a widely acknowledged principle of software engineering, in

the language.

This pattern relies on Rust’s borrow checker to be able to borrow fields in

each other. In the example, the borrow checker knows that

can be borrowed independently, it does not try to borrow all of

pattern useless.

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

87 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#advantages-16
https://rust-unofficial.github.io/patterns/print.html#advantages-16
https://rust-unofficial.github.io/patterns/print.html#disadvantages-16
https://rust-unofficial.github.io/patterns/print.html#disadvantages-16
https://rust-unofficial.github.io/patterns/print.html#discussion-14
https://rust-unofficial.github.io/patterns/print.html#discussion-14

Prefer small crates

Description

Prefer small crates that do one thing well.

Cargo and crates.io make it easy to add third-party libraries, much more s

or C++. Moreover, since packages on crates.io cannot be edited or remove

publication, any build that works now should continue to work in the futu

take advantage of this tooling, and use smaller, more fine-grained depend

Advantages

• Small crates are easier to understand, and encourage more modular

• Crates allow for re-using code between projects. For example, the

developed as part of the Servo browser engine, but has since found

outside the project.

• Since the compilation unit of Rust is the crate, splitting a project into

can allow more of the code to be built in parallel.

Disadvantages

• This can lead to “dependency hell”, when a project depends on mult

versions of a crate at the same time. For example, the

1.0 and 0.5. Since the Url from url:1.0 and the

types, an HTTP client that uses url:0.5 would not accept

scraper that uses url:1.0 .

• Packages on crates.io are not curated. A crate may be poorly written

documentation, or be outright malicious.

• Two small crates may be less optimized than one large one, since th

not perform link-time optimization (LTO) by default.

Examples

The url crate provides tools for working with URLs.

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

88 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#prefer-small-crates
https://rust-unofficial.github.io/patterns/print.html#prefer-small-crates
https://rust-unofficial.github.io/patterns/print.html#description-26
https://rust-unofficial.github.io/patterns/print.html#description-26
https://rust-unofficial.github.io/patterns/print.html#advantages-17
https://rust-unofficial.github.io/patterns/print.html#advantages-17
https://rust-unofficial.github.io/patterns/print.html#disadvantages-17
https://rust-unofficial.github.io/patterns/print.html#disadvantages-17
https://rust-unofficial.github.io/patterns/print.html#examples-1
https://rust-unofficial.github.io/patterns/print.html#examples-1
https://crates.io/crates/url
https://crates.io/crates/url
https://crates.io/crates/url

The num_cpus crate provides a function to query the number of CPUs on

The ref_slice crate provides functions for converting

See also

• crates.io: The Rust community crate host

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

89 of 136 10/25/23, 12:58

https://crates.io/crates/num_cpus
https://crates.io/crates/num_cpus
https://crates.io/crates/num_cpus
https://crates.io/crates/ref_slice
https://crates.io/crates/ref_slice
https://crates.io/crates/ref_slice
https://rust-unofficial.github.io/patterns/print.html#see-also-17
https://rust-unofficial.github.io/patterns/print.html#see-also-17
https://crates.io/
https://crates.io/

Contain unsafety in small modules

Description

If you have unsafe code, create the smallest possible module that can up

needed invariants to build a minimal safe interface upon the unsafety. Em

larger module that contains only safe code and presents an ergonomic in

that the outer module can contain unsafe functions and methods that cal

the unsafe code. Users may use this to gain speed benefits.

Advantages

• This restricts the unsafe code that must be audited

• Writing the outer module is much easier, since you can count on the

the inner module

Disadvantages

• Sometimes, it may be hard to find a suitable interface.

• The abstraction may introduce inefficiencies.

Examples

• The toolshed crate contains its unsafe operations in submodules, p

interface to users.

• std ’s String class is a wrapper over Vec<u8>

contents must be valid UTF-8. The operations on

However, users have the option of using an unsafe

which case the onus is on them to guarantee the validity of the cont

See also

• Ralf Jung’s Blog about invariants in unsafe code

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

90 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#contain-unsafety-in-small-modules
https://rust-unofficial.github.io/patterns/print.html#contain-unsafety-in-small-modules
https://rust-unofficial.github.io/patterns/print.html#description-27
https://rust-unofficial.github.io/patterns/print.html#description-27
https://rust-unofficial.github.io/patterns/print.html#advantages-18
https://rust-unofficial.github.io/patterns/print.html#advantages-18
https://rust-unofficial.github.io/patterns/print.html#disadvantages-18
https://rust-unofficial.github.io/patterns/print.html#disadvantages-18
https://rust-unofficial.github.io/patterns/print.html#examples-2
https://rust-unofficial.github.io/patterns/print.html#examples-2
https://docs.rs/toolshed
https://docs.rs/toolshed
https://docs.rs/toolshed
https://rust-unofficial.github.io/patterns/print.html#see-also-18
https://rust-unofficial.github.io/patterns/print.html#see-also-18
https://www.ralfj.de/blog/2018/08/22/two-kinds-of-invariants.html
https://www.ralfj.de/blog/2018/08/22/two-kinds-of-invariants.html

FFI Patterns

Writing FFI code is an entire course in itself. However, there are several id

can act as pointers, and avoid traps for inexperienced users of unsafe Rus

This section contains design patterns that may be useful when doing FFI.

1. Object-Based API design that has good memory safety characteristic

boundary of what is safe and what is unsafe

2. Type Consolidation into Wrappers - group multiple Rust types togeth

opaque “object”

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

91 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#ffi-patterns
https://rust-unofficial.github.io/patterns/print.html#ffi-patterns
https://rust-unofficial.github.io/patterns/patterns/ffi/export.html
https://rust-unofficial.github.io/patterns/patterns/ffi/export.html
https://rust-unofficial.github.io/patterns/patterns/ffi/wrappers.html
https://rust-unofficial.github.io/patterns/patterns/ffi/wrappers.html

Object-Based APIs

Description

When designing APIs in Rust which are exposed to other languages, there

important design principles which are contrary to normal Rust API design

1. All Encapsulated types should be owned by Rust,

2. All Transactional data types should be owned by the user, and

3. All library behavior should be functions acting upon Encapsulated ty

4. All library behavior should be encapsulated into types not based on

provenance/lifetime.

Motivation

Rust has built-in FFI support to other languages. It does this by providing a

authors to provide C-compatible APIs through different ABIs (though that

to this practice).

Well-designed Rust FFI follows C API design principles, while compromisin

Rust as little as possible. There are three goals with any foreign API:

1. Make it easy to use in the target language.

2. Avoid the API dictating internal unsafety on the Rust side as much as

3. Keep the potential for memory unsafety and Rust

possible.

Rust code must trust the memory safety of the foreign language beyond a

However, every bit of unsafe code on the Rust side is an opportunity for

exacerbate undefined behaviour .

For example, if a pointer provenance is wrong, that may be a segfault due

memory access. But if it is manipulated by unsafe code, it could become f

corruption.

The Object-Based API design allows for writing shims that have good mem

characteristics, and a clean boundary of what is safe and what is

Code Example

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

92 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#object-based-apis
https://rust-unofficial.github.io/patterns/print.html#object-based-apis
https://rust-unofficial.github.io/patterns/print.html#description-28
https://rust-unofficial.github.io/patterns/print.html#description-28
https://rust-unofficial.github.io/patterns/print.html#motivation-17
https://rust-unofficial.github.io/patterns/print.html#motivation-17
https://rust-unofficial.github.io/patterns/print.html#code-example-3
https://rust-unofficial.github.io/patterns/print.html#code-example-3

The POSIX standard defines the API to access an on-file database, known

excellent example of an “object-based” API.

Here is the definition in C, which hopefully should be easy to read for thos

FFI. The commentary below should help explain it for those who miss the

This API defines two types: DBM and datum .

The DBM type was called an “encapsulated” type above. It is designed to c

state, and acts as an entry point for the library’s behavior.

It is completely opaque to the user, who cannot create a

know its size or layout. Instead, they must call dbm_open

pointer to one.

This means all DBM s are “owned” by the library in a Rust sense. The intern

unknown size is kept in memory controlled by the library, not the user. Th

manage its life cycle with open and close , and perform operations on it

functions.

The datum type was called a “transactional” type above. It is designed to f

exchange of information between the library and its user.

The database is designed to store “unstructured data”, with no pre-define

meaning. As a result, the datum is the C equivalent of a Rust slice: a bunch

count of how many there are. The main difference is that there is no type

which is what void indicates.

Keep in mind that this header is written from the library’s point of view. Th

has some type they are using, which has a known size. But the library doe

by the rules of C casting, any type behind a pointer can be cast to

As noted earlier, this type is transparent to the user. But also, this type is

user. This has subtle ramifications, due to that pointer inside it. The quest

owns the memory that pointer points to?

struct DBM;
typedef struct { void *dptr, size_t dsize } datum;

int dbm_clearerr(DBM *);
void dbm_close(DBM *);
int dbm_delete(DBM *, datum);
int dbm_error(DBM *);
datum dbm_fetch(DBM *, datum);
datum dbm_firstkey(DBM *);
datum dbm_nextkey(DBM *);
DBM *dbm_open(const char *, int, mode_t);
int dbm_store(DBM *, datum, datum, int);

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

93 of 136 10/25/23, 12:58

The answer for best memory safety is, “the user”. But in cases such as retr

the user does not know how to allocate it correctly (since they don’t know

value is). In this case, the library code is expected to use the heap that the

to – such as the C library malloc and free – and then

sense.

This may all seem speculative, but this is what a pointer means in C. It me

thing as Rust: “user defined lifetime.” The user of the library needs to read

documentation in order to use it correctly. That said, there are some decis

fewer or greater consequences if users do it wrong. Minimizing those are

practice is about, and the key is to transfer ownership of everything that is tr

Advantages

This minimizes the number of memory safety guarantees the user must u

relatively small number:

1. Do not call any function with a pointer not returned by

corruption).

2. Do not call any function on a pointer after close (use after free).

3. The dptr on any datum must be NULL , or point to a valid slice of m

advertised length.

In addition, it avoids a lot of pointer provenance issues. To understand wh

consider an alternative in some depth: key iteration.

Rust is well known for its iterators. When implementing one, the program

separate type with a bounded lifetime to its owner, and implements the

Here is how iteration would be done in Rust for DBM

This is clean, idiomatic, and safe. thanks to Rust’s guarantees. However, co

struct Dbm { ... }

impl Dbm {
/* ... */
pub fn keys<'it>(&'it self) -> DbmKeysIter<
/* ... */

}

struct DbmKeysIter<'it> {
 owner: &'it Dbm,
}

impl<'it> Iterator for DbmKeysIter<'it> { ... }

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

94 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#advantages-19
https://rust-unofficial.github.io/patterns/print.html#advantages-19

straightforward API translation would look like:

This API loses a key piece of information: the lifetime of the iterator must

lifetime of the Dbm object that owns it. A user of the library could use it in

causes the iterator to outlive the data it is iterating on, resulting in reading

memory.

This example written in C contains a bug that will be explained afterwards

#[no_mangle]
pub extern "C" fn dbm_iter_new(owner: *const Dbm) -> *

// THIS API IS A BAD IDEA! For real applications, use obje
instead.
}
#[no_mangle]
pub extern "C" fn dbm_iter_next(
 iter: *mut DbmKeysIter,
 key_out: *const datum
) -> libc::c_int {

// THIS API IS A BAD IDEA! For real applications, use obje
instead.
}
#[no_mangle]
pub extern "C" fn dbm_iter_del(*mut DbmKeysIter) {

// THIS API IS A BAD IDEA! For real applications, use obje
instead.
}

int count_key_sizes(DBM *db) {
// DO NOT USE THIS FUNCTION. IT HAS A SUBTLE BUT SERIOUS B

 datum key;
int len = 0;

if (!dbm_iter_new(db)) {
 dbm_close(db);

return -1;
 }

int l;
while ((l = dbm_iter_next(owner, &key)) >=

by -1
free(key.dptr);

 len += key.dsize;
if (l == 0) { // end of the iterator

 dbm_close(owner);
 }
 }

if l >= 0 {
return -1;

 } else {
return len;

 }
}

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

95 of 136 10/25/23, 12:58

This bug is a classic. Here’s what happens when the iterator returns the en

marker:

1. The loop condition sets l to zero, and enters the loop because

2. The length is incremented, in this case by zero.

3. The if statement is true, so the database is closed. There should be a

statement here.

4. The loop condition executes again, causing a next

The worst part about this bug? If the Rust implementation was careful, thi

most of the time! If the memory for the Dbm object is not immediately reu

check will almost certainly fail, resulting in the iterator returning a

But occasionally, it will cause a segmentation fault, or even worse, nonsen

corruption!

None of this can be avoided by Rust. From its perspective, it put those obj

returned pointers to them, and gave up control of their lifetimes. The C co

“play nice”.

The programmer must read and understand the API documentation. Whi

consider that par for the course in C, a good API design can mitigate this r

API for DBM did this by consolidating the ownership of the iterator with its p

Thus, all the lifetimes were bound together, and such unsafety was preven

Disadvantages

However, this design choice also has a number of drawbacks, which shou

considered as well.

First, the API itself becomes less expressive. With POSIX DBM, there is onl

per object, and every call changes its state. This is much more restrictive t

almost any language, even though it is safe. Perhaps with other related ob

lifetimes are less hierarchical, this limitation is more of a cost than the saf

Second, depending on the relationships of the API’s parts, significant desig

involved. Many of the easier design points have other patterns associated

• Wrapper Type Consolidation groups multiple Rust types together int

“object”

datum dbm_firstkey(DBM *);
datum dbm_nextkey(DBM *);

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

96 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#disadvantages-19
https://rust-unofficial.github.io/patterns/print.html#disadvantages-19
https://rust-unofficial.github.io/patterns/patterns/ffi/wrappers.html
https://rust-unofficial.github.io/patterns/patterns/ffi/wrappers.html

• FFI Error Passing explains error handling with integer codes and sen

values (such as NULL pointers)

• Accepting Foreign Strings allows accepting strings with minimal unsa

easier to get right than Passing Strings to FFI

However, not every API can be done this way. It is up to the best judgeme

programmer as to who their audience is.

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

97 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/idioms/ffi/errors.html
https://rust-unofficial.github.io/patterns/idioms/ffi/errors.html
https://rust-unofficial.github.io/patterns/idioms/ffi/accepting-strings.html
https://rust-unofficial.github.io/patterns/idioms/ffi/accepting-strings.html
https://rust-unofficial.github.io/patterns/idioms/ffi/passing-strings.html
https://rust-unofficial.github.io/patterns/idioms/ffi/passing-strings.html

Type Consolidation into Wrappers

Description

This pattern is designed to allow gracefully handling multiple related type

minimizing the surface area for memory unsafety.

One of the cornerstones of Rust’s aliasing rules is lifetimes. This ensures t

patterns of access between types can be memory safe, data race safety in

However, when Rust types are exported to other languages, they are usua

into pointers. In Rust, a pointer means “the user manages the lifetime of t

their responsibility to avoid memory unsafety.

Some level of trust in the user code is thus required, notably around use-a

Rust can do nothing about. However, some API designs place higher burd

on the code written in the other language.

The lowest risk API is the “consolidated wrapper”, where all possible intera

object are folded into a “wrapper type”, while keeping the Rust API clean.

Code Example

To understand this, let us look at a classic example of an API to export: ite

collection.

That API looks like this:

1. The iterator is initialized with first_key .

2. Each call to next_key will advance the iterator.

3. Calls to next_key if the iterator is at the end will do nothing.

4. As noted above, the iterator is “wrapped into” the collection (unlike t

API).

If the iterator implements nth() efficiently, then it is possible to make it e

each function call:

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

98 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#type-consolidation-into-wrappers
https://rust-unofficial.github.io/patterns/print.html#type-consolidation-into-wrappers
https://rust-unofficial.github.io/patterns/print.html#description-29
https://rust-unofficial.github.io/patterns/print.html#description-29
https://rust-unofficial.github.io/patterns/print.html#code-example-4
https://rust-unofficial.github.io/patterns/print.html#code-example-4

As a result, the wrapper is simple and contains no unsafe

Advantages

This makes APIs safer to use, avoiding issues with lifetimes between types

Based APIs for more on the advantages and pitfalls this avoids.

Disadvantages

Often, wrapping types is quite difficult, and sometimes a Rust API compro

make things easier.

As an example, consider an iterator which does not efficiently implement

definitely be worth putting in special logic to make the object handle itera

or to support a different access pattern efficiently that only the Foreign Fu

use.

Trying to Wrap Iterators (and Failing)

To wrap any type of iterator into the API correctly, the wrapper would nee

C version of the code would do: erase the lifetime of the iterator, and man

Suffice it to say, this is incredibly difficult.

struct MySetWrapper {
 myset: MySet,
 iter_next: usize,
}

impl MySetWrapper {
pub fn first_key(&mut self) -> Option<&Key> {

self.iter_next = 0;
self.next_key()

 }
pub fn next_key(&mut self) -> Option<&Key> {

if let Some(next) = self.myset.keys().nth(
self.iter_next += 1;
Some(next)

 } else {
None

 }
 }
}

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

99 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#advantages-20
https://rust-unofficial.github.io/patterns/print.html#advantages-20
https://rust-unofficial.github.io/patterns/patterns/ffi/export.html
https://rust-unofficial.github.io/patterns/patterns/ffi/export.html
https://rust-unofficial.github.io/patterns/print.html#disadvantages-20
https://rust-unofficial.github.io/patterns/print.html#disadvantages-20
https://rust-unofficial.github.io/patterns/print.html#trying-to-wrap-iterators-and-failing
https://rust-unofficial.github.io/patterns/print.html#trying-to-wrap-iterators-and-failing

Here is an illustration of just one pitfall.

A first version of MySetWrapper would look like this:

With transmute being used to extend a lifetime, and a pointer to hide it, i

But it gets even worse: any other operation can cause Rust

Consider that the MySet in the wrapper could be manipulated by other fu

iteration, such as storing a new value to the key it was iterating over. The

discourage this, and in fact some similar C libraries expect it.

A simple implementation of myset_store would be:

If the iterator exists when this function is called, we have violated one of R

rules. According to Rust, the mutable reference in this block must have

the object. If the iterator simply exists, it’s not exclusive, so we have

behaviour ! 1

To avoid this, we must have a way of ensuring that mutable reference rea

struct MySetWrapper {
 myset: MySet,
 iter_next: usize,

// created from a transmuted Box<KeysIter + 'self>
 iterator: Option<NonNull<KeysIter<'static
}

pub mod unsafe_module {

// other module content

pub fn myset_store(
 myset: *mut MySetWrapper,
 key: datum,
 value: datum) -> libc::c_int {

// DO NOT USE THIS CODE. IT IS UNSAFE TO DEMONSTRATE A

let myset: &mut MySet = unsafe { // SAFETY: whoops, UB
here!
 &mut (*myset).myset
 };

/* ...check and cast key and value data... */

match myset.store(casted_key, casted_value) {
Ok(_) => 0,
Err(e) => e.into()

 }
 }
}

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

100 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#1
https://rust-unofficial.github.io/patterns/print.html#1

That basically means clearing out the iterator’s shared reference while it e

reconstructing it. In most cases, that will still be less efficient than the C ve

Some may ask: how can C do this more efficiently? The answer is, it cheat

rules are the problem, and C simply ignores them for its pointers. In exch

common to see code that is declared in the manual as “not thread safe” u

circumstances. In fact, the GNU C library has an entire lexicon dedicated t

behavior!

Rust would rather make everything memory safe all the time, for both saf

optimizations that C code cannot attain. Being denied access to certain sh

price Rust programmers need to pay.

1 For the C programmers out there scratching their heads, the iterator need no

code cause the UB. The exclusivity rule also enables compiler optimizations whi

inconsistent observations by the iterator’s shared reference (e.g. stack spills or

instructions for efficiency). These observations may happen

created.

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

101 of 136 10/25/23, 12:58

https://manpages.debian.org/buster/manpages/attributes.7.en.html
https://manpages.debian.org/buster/manpages/attributes.7.en.html

Anti-patterns

An anti-pattern is a solution to a “recurring problem that is usually ineffec

being highly counterproductive”. Just as valuable as knowing how to solve

knowing how not to solve it. Anti-patterns give us great counter-examples

relative to design patterns. Anti-patterns are not confined to code. For exa

can be an anti-pattern, too.

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

102 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#anti-patterns
https://rust-unofficial.github.io/patterns/print.html#anti-patterns
https://en.wikipedia.org/wiki/Anti-pattern
https://en.wikipedia.org/wiki/Anti-pattern

Clone to satisfy the borrow checker

Description

The borrow checker prevents Rust users from developing otherwise unsa

ensuring that either: only one mutable reference exists, or potentially ma

immutable references exist. If the code written does not hold true to thes

this anti-pattern arises when the developer resolves the compiler error by

variable.

Example

Motivation

It is tempting, particularly for beginners, to use this pattern to resolve con

with the borrow checker. However, there are serious consequences. Using

causes a copy of the data to be made. Any changes between the two are n

synchronized – as if two completely separate variables exist.

There are special cases – Rc<T> is designed to handle clones intelligently.

manages exactly one copy of the data, and cloning it will only clone the re

There is also Arc<T> which provides shared ownership of a value of type

allocated in the heap. Invoking .clone() on Arc produces a new

points to the same allocation on the heap as the source

// define any variable
let mut x = 5;

// Borrow `x` -- but clone it first
let y = &mut (x.clone());

// without the x.clone() two lines prior, this line would fail
// x has been borrowed
// thanks to x.clone(), x was never borrowed, and this line wi
println!("{}", x);

// perform some action on the borrow to prevent rust from opti
//out of existence
*y += 1;

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

103 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#clone-to-satisfy-the-borrow-checker
https://rust-unofficial.github.io/patterns/print.html#clone-to-satisfy-the-borrow-checker
https://rust-unofficial.github.io/patterns/print.html#description-30
https://rust-unofficial.github.io/patterns/print.html#description-30
https://rust-unofficial.github.io/patterns/print.html#example-20
https://rust-unofficial.github.io/patterns/print.html#example-20
https://rust-unofficial.github.io/patterns/print.html#motivation-18
https://rust-unofficial.github.io/patterns/print.html#motivation-18

count.

In general, clones should be deliberate, with full understanding of the con

clone is used to make a borrow checker error disappear, that’s a good ind

pattern may be in use.

Even though .clone() is an indication of a bad pattern, sometimes

inefficient code, in cases such as when:

• the developer is still new to ownership

• the code doesn’t have great speed or memory constraints (like hacka

or prototypes)

• satisfying the borrow checker is really complicated, and you prefer t

readability over performance

If an unnecessary clone is suspected, The Rust Book’s chapter on Ownersh

understood fully before assessing whether the clone is required or not.

Also be sure to always run cargo clippy in your project, which will detec

which .clone() is not necessary, like 1, 2, 3 or 4.

See also

• mem::{take(_), replace(_)} to keep owned values in changed enu

• Rc<T> documentation, which handles .clone() intelligently

• Arc<T> documentation, a thread-safe reference-counting pointer

• Tricks with ownership in Rust

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

104 of 136 10/25/23, 12:58

https://doc.rust-lang.org/book/ownership.html
https://doc.rust-lang.org/book/ownership.html
https://rust-lang.github.io/rust-clippy/master/index.html#redundant_clone
https://rust-lang.github.io/rust-clippy/master/index.html#redundant_clone
https://rust-lang.github.io/rust-clippy/master/index.html#clone_on_copy
https://rust-lang.github.io/rust-clippy/master/index.html#clone_on_copy
https://rust-lang.github.io/rust-clippy/master/index.html#map_clone
https://rust-lang.github.io/rust-clippy/master/index.html#map_clone
https://rust-lang.github.io/rust-clippy/master/index.html#clone_double_ref
https://rust-lang.github.io/rust-clippy/master/index.html#clone_double_ref
https://rust-unofficial.github.io/patterns/print.html#see-also-19
https://rust-unofficial.github.io/patterns/print.html#see-also-19
https://rust-unofficial.github.io/patterns/idioms/mem-replace.html
https://rust-unofficial.github.io/patterns/idioms/mem-replace.html
https://rust-unofficial.github.io/patterns/idioms/mem-replace.html
https://rust-unofficial.github.io/patterns/idioms/mem-replace.html
http://doc.rust-lang.org/std/rc/
http://doc.rust-lang.org/std/rc/
http://doc.rust-lang.org/std/rc/
http://doc.rust-lang.org/std/rc/
https://doc.rust-lang.org/std/sync/struct.Arc.html
https://doc.rust-lang.org/std/sync/struct.Arc.html
https://doc.rust-lang.org/std/sync/struct.Arc.html
https://doc.rust-lang.org/std/sync/struct.Arc.html
https://web.archive.org/web/20210120233744/https://xion.io/post/code/rust-borrowchk-tricks.html
https://web.archive.org/web/20210120233744/https://xion.io/post/code/rust-borrowchk-tricks.html

#![deny(warnings)]

Description

A well-intentioned crate author wants to ensure their code builds without

they annotate their crate root with the following:

Example

Advantages

It is short and will stop the build if anything is amiss.

Drawbacks

By disallowing the compiler to build with warnings, a crate author opts ou

famed stability. Sometimes new features or old misfeatures need a chang

are done, thus lints are written that warn for a certain grace period befor

to deny .

For example, it was discovered that a type could have two

This was deemed a bad idea, but in order to make the transition smooth,

overlapping-inherent-impls lint was introduced to give a warning to tho

on this fact, before it becomes a hard error in a future release.

Also sometimes APIs get deprecated, so their use will emit a warning whe

was none.

All this conspires to potentially break the build whenever something chan

Furthermore, crates that supply additional lints (e.g.

unless the annotation is removed. This is mitigated with

#![deny(warnings)]

// All is well.

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

105 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#denywarnings
https://rust-unofficial.github.io/patterns/print.html#denywarnings
https://rust-unofficial.github.io/patterns/print.html#denywarnings
https://rust-unofficial.github.io/patterns/print.html#description-31
https://rust-unofficial.github.io/patterns/print.html#description-31
https://rust-unofficial.github.io/patterns/print.html#example-21
https://rust-unofficial.github.io/patterns/print.html#example-21
https://rust-unofficial.github.io/patterns/print.html#advantages-21
https://rust-unofficial.github.io/patterns/print.html#advantages-21
https://rust-unofficial.github.io/patterns/print.html#drawbacks
https://rust-unofficial.github.io/patterns/print.html#drawbacks

lints=warn command line argument, turns all deny

Alternatives

There are two ways of tackling this problem: First, we can decouple the bu

the code, and second, we can name the lints we want to deny explicitly.

The following command line will build with all warnings set to

RUSTFLAGS="-D warnings" cargo build

This can be done by any individual developer (or be set in a CI tool like Tra

remember that this may break the build when something changes) withou

change to the code.

Alternatively, we can specify the lints that we want to

warning lints that is (hopefully) safe to deny (as of Rustc 1.48.0):

In addition, the following allow ed lints may be a good idea to

Some may also want to add missing-copy-implementations

#![deny(bad_style,
 const_err,
 dead_code,
 improper_ctypes,
 non_shorthand_field_patterns,
 no_mangle_generic_items,
 overflowing_literals,
 path_statements,
 patterns_in_fns_without_body,
 private_in_public,
 unconditional_recursion,
 unused,
 unused_allocation,
 unused_comparisons,
 unused_parens,
 while_true)]

#![deny(missing_debug_implementations,
 missing_docs,
 trivial_casts,
 trivial_numeric_casts,
 unused_extern_crates,
 unused_import_braces,
 unused_qualifications,
 unused_results)]

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

106 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#alternatives
https://rust-unofficial.github.io/patterns/print.html#alternatives

Note that we explicitly did not add the deprecated lint, as it is fairly certa

be more deprecated APIs in the future.

See also

• A collection of all clippy lints

• deprecate attribute documentation

• Type rustc -W help for a list of lints on your system. Also type

general list of options

• rust-clippy is a collection of lints for better Rust code

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

107 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#see-also-20
https://rust-unofficial.github.io/patterns/print.html#see-also-20
https://rust-lang.github.io/rust-clippy/master
https://rust-lang.github.io/rust-clippy/master
https://doc.rust-lang.org/reference/attributes.html#deprecation
https://doc.rust-lang.org/reference/attributes.html#deprecation
https://github.com/Manishearth/rust-clippy
https://github.com/Manishearth/rust-clippy

Deref polymorphism

Description

Misuse the Deref trait to emulate inheritance between structs, and thus

Example

Sometimes we want to emulate the following common pattern from OO l

as Java:

We can use the deref polymorphism anti-pattern to do so:

class Foo {
void m() { ... }

}

class Bar extends Foo {}

public static void main(String[] args) {
 Bar b = new Bar();
 b.m();
}

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

108 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#deref-polymorphism
https://rust-unofficial.github.io/patterns/print.html#deref-polymorphism
https://rust-unofficial.github.io/patterns/print.html#deref-polymorphism
https://rust-unofficial.github.io/patterns/print.html#deref-polymorphism
https://rust-unofficial.github.io/patterns/print.html#description-32
https://rust-unofficial.github.io/patterns/print.html#description-32
https://rust-unofficial.github.io/patterns/print.html#example-22
https://rust-unofficial.github.io/patterns/print.html#example-22

There is no struct inheritance in Rust. Instead we use composition and inc

instance of Foo in Bar (since the field is a value, it is stored inline, so if th

they would have the same layout in memory as the Java version (probably

use #[repr(C)] if you want to be sure)).

In order to make the method call work we implement

target (returning the embedded Foo field). That means that when we der

(for example, using *) then we will get a Foo . That is pretty weird. Derefe

gives a T from a reference to T , here we have two unrelated types. How

dot operator does implicit dereferencing, it means that the method call w

methods on Foo as well as Bar .

Advantages

You save a little boilerplate, e.g.,

use std::ops::Deref;

struct Foo {}

impl Foo {
fn m(&self) {

//..
 }
}

struct Bar {
 f: Foo,
}

impl Deref for Bar {
type Target = Foo;
fn deref(&self) -> &Foo {

 &self.f
 }
}

fn main() {
let b = Bar { f: Foo {} };

 b.m();
}

impl Bar {
fn m(&self) {

self.f.m()
 }
}

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

109 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#advantages-22
https://rust-unofficial.github.io/patterns/print.html#advantages-22

Disadvantages

Most importantly this is a surprising idiom - future programmers reading

not expect this to happen. That’s because we are misusing the

using it as intended (and documented, etc.). It’s also because the mechani

completely implicit.

This pattern does not introduce subtyping between

or C++ does. Furthermore, traits implemented by Foo

implemented for Bar , so this pattern interacts badly with bounds checkin

generic programming.

Using this pattern gives subtly different semantics from most OO languag

to self . Usually it remains a reference to the sub-class, with this pattern

‘class’ where the method is defined.

Finally, this pattern only supports single inheritance, and has no notion of

class-based privacy, or other inheritance-related features. So, it gives an e

will be subtly surprising to programmers used to Java inheritance, etc.

Discussion

There is no one good alternative. Depending on the exact circumstances i

better to re-implement using traits or to write out the facade methods to

manually. We do intend to add a mechanism for inheritance similar to thi

is likely to be some time before it reaches stable Rust. See these

issue for more details.

The Deref trait is designed for the implementation of custom pointer typ

intention is that it will take a pointer-to- T to a T , not convert between di

is a shame that this isn’t (probably cannot be) enforced by the trait definit

Rust tries to strike a careful balance between explicit and implicit mechan

explicit conversions between types. Automatic dereferencing in the dot op

where the ergonomics strongly favour an implicit mechanism, but the inte

this is limited to degrees of indirection, not conversion between arbitrary

See also

• Collections are smart pointers idiom.

• Delegation crates for less boilerplate like delegate

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

110 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#disadvantages-21
https://rust-unofficial.github.io/patterns/print.html#disadvantages-21
https://rust-unofficial.github.io/patterns/print.html#discussion-15
https://rust-unofficial.github.io/patterns/print.html#discussion-15
https://github.com/rust-lang/rfcs/issues/349
https://github.com/rust-lang/rfcs/issues/349
https://rust-unofficial.github.io/patterns/print.html#see-also-21
https://rust-unofficial.github.io/patterns/print.html#see-also-21
https://rust-unofficial.github.io/patterns/idioms/deref.html
https://rust-unofficial.github.io/patterns/idioms/deref.html
https://crates.io/crates/delegate
https://crates.io/crates/delegate

• Documentation for Deref trait.

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

111 of 136 10/25/23, 12:58

https://doc.rust-lang.org/std/ops/trait.Deref.html
https://doc.rust-lang.org/std/ops/trait.Deref.html
https://doc.rust-lang.org/std/ops/trait.Deref.html
https://doc.rust-lang.org/std/ops/trait.Deref.html
https://doc.rust-lang.org/std/ops/trait.Deref.html

Functional Usage of Rust

Rust is an imperative language, but it follows many functional programmi

In computer science, functional programming is a programming paradig

programs are constructed by applying and composing functions. It is a

programming paradigm in which function definitions are trees of expre

each return a value, rather than a sequence of imperative statements w

the state of the program.

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

112 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#functional-usage-of-rust
https://rust-unofficial.github.io/patterns/print.html#functional-usage-of-rust
https://en.wikipedia.org/wiki/Functional_programming
https://en.wikipedia.org/wiki/Functional_programming

Programming paradigms

One of the biggest hurdles to understanding functional programs when co

imperative background is the shift in thinking. Imperative programs descr

something, whereas declarative programs describe

from 1 to 10 to show this.

Imperative

With imperative programs, we have to play compiler to see what is happe

start with a sum of 0 . Next, we iterate through the range from 1 to 10. Ea

through the loop, we add the corresponding value in the range. Then we p

i sum

1 1

2 3

3 6

4 10

5 15

6 21

7 28

8 36

9 45

10 55

This is how most of us start out programming. We learn that a program is

Declarative

let mut sum = 0;
for i in 1..11 {
 sum += i;
}
println!("{}", sum);

println!("{}", (1..11).fold(0, |a, b| a + b));

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

113 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#programming-paradigms
https://rust-unofficial.github.io/patterns/print.html#programming-paradigms
https://rust-unofficial.github.io/patterns/print.html#imperative
https://rust-unofficial.github.io/patterns/print.html#imperative
https://rust-unofficial.github.io/patterns/print.html#declarative
https://rust-unofficial.github.io/patterns/print.html#declarative

Whoa! This is really different! What’s going on here? Remember that with

programs we are describing what to do, rather than

composes functions. The name is a convention from Haskell.

Here, we are composing functions of addition (this closure:

from 1 to 10. The 0 is the starting point, so a is 0 at first.

range, 1 . 0 + 1 = 1 is the result. So now we fold

+ 2 = 3 is the next result. This process continues until we get to the last e

range, 10 .

a b result

0 1

1 2

3 3

6 4

10 5

15 6

21 7

28 8

36 9

45 10

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

114 of 136 10/25/23, 12:58

https://en.wikipedia.org/wiki/Function_composition
https://en.wikipedia.org/wiki/Function_composition

Generics as Type Classes

Description

Rust’s type system is designed more like functional languages (like Haskel

imperative languages (like Java and C++). As a result, Rust can turn many k

programming problems into “static typing” problems. This is one of the bi

choosing a functional language, and is critical to many of Rust’s compile ti

A key part of this idea is the way generic types work. In C++ and Java, for e

types are a meta-programming construct for the compiler.

vector<char> in C++ are just two different copies of the same boilerplate

vector type (known as a template) with two different types filled in.

In Rust, a generic type parameter creates what is known in functional lang

“type class constraint”, and each different parameter filled in by an end us

changes the type. In other words, Vec<isize> and Vec<char>

which are recognized as distinct by all parts of the type system.

This is called monomorphization, where different types are created from

code. This special behavior requires impl blocks to specify generic param

values for the generic type cause different types, and different types can h

impl blocks.

In object-oriented languages, classes can inherit behavior from their pare

this allows the attachment of not only additional behavior to particular m

type class, but extra behavior as well.

The nearest equivalent is the runtime polymorphism in Javascript and Pyt

members can be added to objects willy-nilly by any constructor. However

languages, all of Rust’s additional methods can be type checked when the

because their generics are statically defined. That makes them more usab

remaining safe.

Example

Suppose you are designing a storage server for a series of lab machines. B

software involved, there are two different protocols you need to support:

network boot), and NFS (for remote mount storage).

Your goal is to have one program, written in Rust, which can handle both

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

115 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#generics-as-type-classes
https://rust-unofficial.github.io/patterns/print.html#generics-as-type-classes
https://rust-unofficial.github.io/patterns/print.html#description-33
https://rust-unofficial.github.io/patterns/print.html#description-33
https://rust-unofficial.github.io/patterns/print.html#example-23
https://rust-unofficial.github.io/patterns/print.html#example-23

have protocol handlers and listen for both kinds of requests. The main ap

will then allow a lab administrator to configure storage and security contr

actual files.

The requests from machines in the lab for files contain the same basic inf

matter what protocol they came from: an authentication method, and a fi

retrieve. A straightforward implementation would look something like this

This design might work well enough. But now suppose you needed to sup

metadata that was protocol specific. For example, with NFS, you wanted to

what their mount point was in order to enforce additional security rules.

The way the current struct is designed leaves the protocol decision until r

means any method that applies to one protocol and not the other require

programmer to do a runtime check.

Here is how getting an NFS mount point would look:

Every caller of mount_point() must check for None

true even if they know only NFS requests are ever used in a given code pa

It would be far more optimal to cause a compile-time error if the different

were confused. After all, the entire path of the user’s code, including what

the library they use, will know whether a request is an NFS request or a BO

enum AuthInfo {
 Nfs(crate::nfs::AuthInfo),
 Bootp(crate::bootp::AuthInfo),
}

struct FileDownloadRequest {
 file_name: PathBuf,
 authentication: AuthInfo,
}

struct FileDownloadRequest {
 file_name: PathBuf,
 authentication: AuthInfo,
 mount_point: Option<PathBuf>,
}

impl FileDownloadRequest {
// ... other methods ...

/// Gets an NFS mount point if this is an NFS request. Oth
/// return None.
pub fn mount_point(&self) -> Option<&Path> {

self.mount_point.as_ref()
 }
}

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

116 of 136 10/25/23, 12:58

In Rust, this is actually possible! The solution is to add a generic type

API.

Here is what that looks like:

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

117 of 136 10/25/23, 12:58

use std::path::{Path, PathBuf};

mod nfs {
#[derive(Clone)]
pub(crate) struct AuthInfo(String); // NFS session managem

}

mod bootp {
pub(crate) struct AuthInfo(); // no authentication in boot

}

// private module, lest outside users invent their own protoco
mod proto_trait {

use std::path::{Path, PathBuf};
use super::{bootp, nfs};

pub(crate) trait ProtoKind {
type AuthInfo;
fn auth_info(&self) -> Self::AuthInfo;

 }

pub struct Nfs {
 auth: nfs::AuthInfo,
 mount_point: PathBuf,
 }

impl Nfs {
pub(crate) fn mount_point(&self) -> &Path {

 &self.mount_point
 }
 }

impl ProtoKind for Nfs {
type AuthInfo = nfs::AuthInfo;
fn auth_info(&self) -> Self::AuthInfo {

self.auth.clone()
 }
 }

pub struct Bootp(); // no additional metadata

impl ProtoKind for Bootp {
type AuthInfo = bootp::AuthInfo;
fn auth_info(&self) -> Self::AuthInfo {

 bootp::AuthInfo()
 }
 }
}

use proto_trait::ProtoKind; // keep internal to prevent impls
pub use proto_trait::{Nfs, Bootp}; // re-export so callers can

struct FileDownloadRequest<P: ProtoKind> {
 file_name: PathBuf,
 protocol: P,
}

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

118 of 136 10/25/23, 12:58

With this approach, if the user were to make a mistake and use the wrong

They would get a syntax error. The type FileDownloadRequest<Bootp>

implement mount_point() , only the type FileDownloadRequest<Nfs>

created by the NFS module, not the BOOTP module of course!

Advantages

First, it allows fields that are common to multiple states to be de-duplicate

the non-shared fields generic, they are implemented once.

Second, it makes the impl blocks easier to read, because they are broken

Methods common to all states are typed once in one block, and methods

state are in a separate block.

// all common API parts go into a generic impl block
impl<P: ProtoKind> FileDownloadRequest<P> {

fn file_path(&self) -> &Path {
 &self.file_name
 }

fn auth_info(&self) -> P::AuthInfo {
self.protocol.auth_info()

 }
}

// all protocol-specific impls go into their own block
impl FileDownloadRequest<Nfs> {

fn mount_point(&self) -> &Path {
self.protocol.mount_point()

 }
}

fn main() {
// your code here

}

fn main() {
let mut socket = crate::bootp::listen()?;
while let Some(request) = socket.next_request()? {

match request.mount_point().as_ref()
"/secure" => socket.send("Access denied"

 _ => {} // continue on...
 }

// Rest of the code here
 }
}

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

119 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#advantages-23
https://rust-unofficial.github.io/patterns/print.html#advantages-23

Both of these mean there are fewer lines of code, and they are better org

Disadvantages

This currently increases the size of the binary, due to the way monomorph

implemented in the compiler. Hopefully the implementation will be able t

future.

Alternatives

• If a type seems to need a “split API” due to construction or partial ini

consider the Builder Pattern instead.

• If the API between types does not change – only the behavior does –

Strategy Pattern is better used instead.

See also

This pattern is used throughout the standard library:

• Vec<u8> can be cast from a String, unlike every other type of

• They can also be cast into a binary heap, but only if they contain a ty

implements the Ord trait.2

• The to_string method was specialized for Cow

It is also used by several popular crates to allow API flexibility:

• The embedded-hal ecosystem used for embedded devices makes ex

this pattern. For example, it allows statically verifying the configurati

registers used to control embedded pins. When a pin is put into a m

Pin<MODE> struct, whose generic determines the functions usable in

which are not on the Pin itself. 4

• The hyper HTTP client library uses this to expose rich APIs for differ

requests. Clients with different connectors have different methods o

as different trait implementations, while a core set of methods apply

connector. 5

• The “type state” pattern – where an object gains and loses API based

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

120 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#disadvantages-22
https://rust-unofficial.github.io/patterns/print.html#disadvantages-22
https://rust-unofficial.github.io/patterns/print.html#alternatives-1
https://rust-unofficial.github.io/patterns/print.html#alternatives-1
https://rust-unofficial.github.io/patterns/patterns/creational/builder.html
https://rust-unofficial.github.io/patterns/patterns/creational/builder.html
https://rust-unofficial.github.io/patterns/patterns/behavioural/strategy.html
https://rust-unofficial.github.io/patterns/patterns/behavioural/strategy.html
https://rust-unofficial.github.io/patterns/print.html#see-also-22
https://rust-unofficial.github.io/patterns/print.html#see-also-22
https://rust-unofficial.github.io/patterns/print.html#2
https://rust-unofficial.github.io/patterns/print.html#2
https://rust-unofficial.github.io/patterns/print.html#4
https://rust-unofficial.github.io/patterns/print.html#4
https://rust-unofficial.github.io/patterns/print.html#5
https://rust-unofficial.github.io/patterns/print.html#5

state or invariant – is implemented in Rust using the same basic con

slightly different technique. 6

1 See: impl From<CString> for Vec<u8>

2 See: impl<T: Ord> FromIterator<T> for BinaryHeap<T>

3 See: impl<‘_> ToString for Cow<’_, str>

4 Example: https://docs.rs/stm32f30x-hal/0.1.0/stm32f30x_hal/gpio/gpioa/struc

5 See: https://docs.rs/hyper/0.14.5/hyper/client/struct.Client.html

6 See: The Case for the Type State Pattern and Rusty Typestate Series (an exten

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

121 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#6
https://rust-unofficial.github.io/patterns/print.html#6
https://doc.rust-lang.org/1.59.0/src/std/ffi/c_str.rs.html#803-811
https://doc.rust-lang.org/1.59.0/src/std/ffi/c_str.rs.html#803-811
https://web.archive.org/web/20201030132806/https://doc.rust-lang.org/stable/src/alloc/collections/binary_heap.rs.html#1330-1335
https://web.archive.org/web/20201030132806/https://doc.rust-lang.org/stable/src/alloc/collections/binary_heap.rs.html#1330-1335
https://doc.rust-lang.org/stable/src/alloc/string.rs.html#2235-2240
https://doc.rust-lang.org/stable/src/alloc/string.rs.html#2235-2240
https://docs.rs/stm32f30x-hal/0.1.0/stm32f30x_hal/gpio/gpioa/struct.PA0.html
https://docs.rs/stm32f30x-hal/0.1.0/stm32f30x_hal/gpio/gpioa/struct.PA0.html
https://docs.rs/hyper/0.14.5/hyper/client/struct.Client.html
https://docs.rs/hyper/0.14.5/hyper/client/struct.Client.html
https://web.archive.org/web/20210325065112/https://www.novatec-gmbh.de/en/blog/the-case-for-the-typestate-pattern-the-typestate-pattern-itself/
https://web.archive.org/web/20210325065112/https://www.novatec-gmbh.de/en/blog/the-case-for-the-typestate-pattern-the-typestate-pattern-itself/
https://web.archive.org/web/20210328164854/https://rustype.github.io/notes/notes/rust-typestate-series/rust-typestate-index
https://web.archive.org/web/20210328164854/https://rustype.github.io/notes/notes/rust-typestate-series/rust-typestate-index

Functional Language Optics

Optics is a type of API design that is common to functional languages. This

functional concept that is not frequently used in Rust.

Nevertheless, exploring the concept may be helpful to understand other p

APIs, such as visitors. They also have niche use cases.

This is quite a large topic, and would require actual books on language de

into its abilities. However their applicability in Rust is much simpler.

To explain the relevant parts of the concept, the Serde

as it is one that is difficult for many to to understand from simply the API

In the process, different specific patterns, called Optics, will be covered. Th

The Poly Iso, and The Prism.

An API Example: Serde

Trying to understand the way Serde works by only reading the API is a cha

especially the first time. Consider the Deserializer

which parses a new data format:

And here’s the definition of the Visitor trait passed in generically:

pub trait Deserializer<'de>: Sized {
type Error: Error;

fn deserialize_any<V>(self, visitor: V) ->
where

 V: Visitor<'de>;

fn deserialize_bool<V>(self, visitor: V) ->
where

 V: Visitor<'de>;

// remainder omitted
}

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

122 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#functional-language-optics
https://rust-unofficial.github.io/patterns/print.html#functional-language-optics
https://rust-unofficial.github.io/patterns/patterns/behavioural/visitor.html
https://rust-unofficial.github.io/patterns/patterns/behavioural/visitor.html
https://rust-unofficial.github.io/patterns/print.html#an-api-example-serde
https://rust-unofficial.github.io/patterns/print.html#an-api-example-serde

There is a lot of type erasure going on here, with multiple levels of associa

passed back and forth.

But what is the big picture? Why not just have the Visitor

needs in a streaming API, and call it a day? Why all the extra pieces?

One way to understand it is to look at a functional languages concept calle

This is a way to do composition of behavior and proprieties that is designe

patterns common to Rust: failure, type transformation, etc.

The Rust language does not have very good support for these directly. Ho

appear in the design of the language itself, and their concepts can help to

some of Rust’s APIs. As a result, this attempts to explain the concepts with

does it.

This will perhaps shed light on what those APIs are achieving: specific pro

composability.

Basic Optics

The Iso

The Iso is a value transformer between two types. It is extremely simple, b

conceptually important building block.

As an example, suppose that we have a custom Hash table structure used

pub trait Visitor<'de>: Sized {
type Value;

fn visit_bool<E>(self, v: bool) -> Result
where

 E: Error;

fn visit_u64<E>(self, v: u64) -> Result<Self::Value, E>
where

 E: Error;

fn visit_str<E>(self, v: &str) -> Result<Self::Value, E>
where

 E: Error;

// remainder omitted
}

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

123 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#basic-optics
https://rust-unofficial.github.io/patterns/print.html#basic-optics
https://rust-unofficial.github.io/patterns/print.html#the-iso
https://rust-unofficial.github.io/patterns/print.html#the-iso

concordance for a document.2 It uses strings for keys (words) and a list of

values (file offsets, for instance).

A key feature is the ability to serialize this format to disk. A “quick and dirt

would be to implement a conversion to and from a string in JSON format.

ignored for the time being, they will be handled later.)

To write it in a normal form expected by functional language users:

The Iso is thus a pair of functions which convert values of different types:

deserialize .

A straightforward implementation:

This may seem rather silly. In Rust, this type of behavior is typically done w

all, the standard library has FromStr and ToString

But that is where our next subject comes in: Poly Isos.

Poly Isos

The previous example was simply converting between values of two fixed

block builds upon it with generics, and is more interesting.

case class ConcordanceSerDe {
 serialize: Concordance -> String
 deserialize: String -> Concordance
}

use std::collections::HashMap;

struct Concordance {
 keys: HashMap<String, usize>,
 value_table: Vec<(usize, usize)>,
}

struct ConcordanceSerde {}

impl ConcordanceSerde {
fn serialize(value: Concordance) -> String

 todo!()
 }

// invalid concordances are empty
fn deserialize(value: String) -> Concordance {

 todo!()
 }
}

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

124 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#2
https://rust-unofficial.github.io/patterns/print.html#2
https://rust-unofficial.github.io/patterns/print.html#poly-isos
https://rust-unofficial.github.io/patterns/print.html#poly-isos

Poly Isos allow an operation to be generic over any type while returning a

This brings us closer to parsing. Consider what a basic parser would do ig

cases. Again, this is its normal form:

Here we have our first generic, the type T being converted.

In Rust, this could be implemented with a pair of traits in the standard libr

and ToString . The Rust version even handles errors:

Unlike the Iso, the Poly Iso allows application of multiple types, and return

generically. This is what you would want for a basic string parser.

At first glance, this seems like a good option for writing a parser. Let’s see

case class Serde[T] {
 deserialize(String) -> T
 serialize(T) -> String
}

pub trait FromStr: Sized {
type Err;

fn from_str(s: &str) -> Result<Self, Self::
}

pub trait ToString {
fn to_string(&self) -> String;

}

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

125 of 136 10/25/23, 12:58

That seems quite logical. However, there are two problems with this.

First, to_string does not indicate to API users, “this is JSON.” Every type w

agree on a JSON representation, and many of the types in the Rust standa

already don’t. Using this is a poor fit. This can easily be resolved with our o

But there is a second, subtler problem: scaling.

When every type writes to_string by hand, this works. But if every single

wants their type to be serializable has to write a bunch of code – and poss

JSON libraries – to do it themselves, it will turn into a mess very quickly!

The answer is one of Serde’s two key innovations: an independent data m

represent Rust data in structures common to data serialization languages

that it can use Rust’s code generation abilities to create an intermediary c

it calls a Visitor .

This means, in normal form (again, skipping error handling for simplicity):

use anyhow;

use std::str::FromStr;

struct TestStruct {
 a: usize,
 b: String,
}

impl FromStr for TestStruct {
type Err = anyhow::Error;
fn from_str(s: &str) -> Result<TestStruct, Self::

 todo!()
 }
}

impl ToString for TestStruct {
fn to_string(&self) -> String {

 todo!()
 }
}

fn main() {
let a = TestStruct { a: 5, b: "hello".to_string() };
println!("Our Test Struct as JSON: {}", a.to_string());

}

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

126 of 136 10/25/23, 12:58

The result is one Poly Iso and one Iso (respectively). Both of these can be i

with traits:

Because there is a uniform set of rules to transform Rust structures to the

form, it is even possible to have code generation creating the

type T :

Or do they?

It turns out that the conversion isn’t symmetric after all! On paper it is, bu

generated code the name of the actual type necessary to convert all the w

String is hidden. We’d need some kind of generated_visitor_for!

case class Serde[T] {
 deserialize: Visitor[T] -> T
 serialize: T -> Visitor[T]
}

case class Visitor[T] {
 toJson: Visitor[T] -> String
 fromJson: String -> Visitor[T]
}

trait Serde {
type V;
fn deserialize(visitor: Self::V) -> Self;
fn serialize(self) -> Self::V;

}

trait Visitor {
fn to_json(self) -> String;
fn from_json(json: String) -> Self;

}

#[derive(Default, Serde)] // the "Serde" derive creates the tr
struct TestStruct {
 a: usize,
 b: String,
}

// user writes this macro to generate an associated visitor ty
generate_visitor!(TestStruct);

fn main() {
let a = TestStruct { a: 5, b: "hello".to_string() };
let a_data = a.serialize().to_json();
println!("Our Test Struct as JSON: {}", a_data);
let b = TestStruct::deserialize(

 generated_visitor_for!(TestStruct)::from_json(a_data))
}

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

127 of 136 10/25/23, 12:58

type name.

It’s wonky, but it works… until we get to the elephant in the room.

The only format currently supported is JSON. How would we support mor

The current design requires completely re-writing all of the code generatio

a new Serde trait. That is quite terrible and not extensible at all!

In order to solve that, we need something more powerful.

Prism

To take format into account, we need something in normal form like this:

This construct is called a Prism. It is “one level higher” in generics than Pol

case, the “intersecting” type F is the key).

Unfortunately because Visitor is a trait (since each incarnation requires

code), this would require a kind of generic type boundary that Rust does n

Fortunately, we still have that Visitor type from before. What is the

attempting to allow each data structure to define the way it is itself parsed

Well what if we could add one more interface for the generic format? The

is just an implementation detail, and it would “bridge” the two APIs.

In normal form:

case class Serde[T, F] {
 serialize: T, F -> String
 deserialize: String, F -> Result[T, Error]
}

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

128 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#prism
https://rust-unofficial.github.io/patterns/print.html#prism

And what do you know, a pair of Poly Isos at the bottom which can be imp

traits!

Thus we have the Serde API:

1. Each type to be serialized implements Deserialize

the Serde class

2. They get a type (well two, one for each direction) implementing the

which is usually (but not always) done through code generated by a

This contains the logic to construct or destruct between the data typ

format of the Serde data model.

3. The type implementing the Deserializer trait handles all details sp

format, being “driven by” the Visitor .

This splitting and Rust type erasure is really to achieve a Prism through in

You can see it on the Deserializer trait

And the visitor:

case class Serde[T] {
 serialize: F -> String
 deserialize F, String -> Result[T, Error]
}

case class VisitorForT {
 build: F, String -> Result[T, Error]
 decompose: F, T -> String
}

case class SerdeFormat[T, V] {
 toString: T, V -> String
 fromString: V, String -> Result[T, Error]
}

pub trait Deserializer<'de>: Sized {
type Error: Error;

fn deserialize_any<V>(self, visitor: V) ->
where

 V: Visitor<'de>;

fn deserialize_bool<V>(self, visitor: V) ->
where

 V: Visitor<'de>;

// remainder omitted
}

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

129 of 136 10/25/23, 12:58

And the trait Deserialize implemented by the macros:

This has been abstract, so let’s look at a concrete example.

How does actual Serde deserialize a bit of JSON into

1. The user would call a library function to deserialize the data. This wo

Deserializer based on the JSON format.

2. Based on the fields in the struct, a Visitor would be created (more

moment) which knows how to create each type in a generic data mo

needed to represent it: Vec (list), u64 and String

3. The deserializer would make calls to the Visitor

4. The Visitor would indicate if the items found were expected, and i

error to indicate deserialization has failed.

For our very simple structure above, the expected pattern would be:

1. Begin visiting a map (Serde’s equivalent to HashMap

2. Visit a string key called “keys”.

3. Begin visiting a map value.

4. For each item, visit a string key then an integer value.

5. Visit the end of the map.

6. Store the map into the keys field of the data structure.

7. Visit a string key called “value_table”.

8. Begin visiting a list value.

pub trait Visitor<'de>: Sized {
type Value;

fn visit_bool<E>(self, v: bool) -> Result
where

 E: Error;

fn visit_u64<E>(self, v: u64) -> Result<Self::Value, E>
where

 E: Error;

fn visit_str<E>(self, v: &str) -> Result<Self::Value, E>
where

 E: Error;

// remainder omitted
}

pub trait Deserialize<'de>: Sized {
fn deserialize<D>(deserializer: D) -> Result
where

 D: Deserializer<'de>;
}

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

130 of 136 10/25/23, 12:58

9. For each item, visit an integer.

10. Visit the end of the list

11. Store the list into the value_table field.

12. Visit the end of the map.

But what determines which “observation” pattern is expected?

A functional programming language would be able to use currying to crea

each type based on the type itself. Rust does not support that, so every si

need to have its own code written based on its fields and their properties

Serde solves this usability challenge with a derive macro:

That macro simply generates an impl block causing the struct to impleme

Deserialize .

This is the function that determines how to create the struct itself. Code is

based on the struct’s fields. When the parsing library is called - in our exam

parsing library - it creates a Deserializer and calls

parameter.

The deserialize code will then create a Visitor which will have its calls

the Deserializer . If everything goes well, eventually that

corresponding to the type being parsed and return it.

For a complete example, see the Serde documentation

The result is that types to be deserialized only implement the “top layer” o

file formats only need to implement the “bottom layer”. Each piece can th

with the rest of the ecosystem, since generic types will bridge them.

In conclusion, Rust’s generic-inspired type system can bring it close to the

use their power, as shown in this API design. But it may also need procedu

create bridges for its generics.

If you are interested in learning more about this topic, please check the fo

See Also

use serde::Deserialize;

#[derive(Deserialize)]
struct IdRecord {
 name: String,
 customer_id: String,
}

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

131 of 136 10/25/23, 12:58

https://serde.rs/deserialize-struct.html
https://serde.rs/deserialize-struct.html
https://serde.rs/deserialize-struct.html
https://serde.rs/deserialize-struct.html
https://rust-unofficial.github.io/patterns/print.html#see-also-23
https://rust-unofficial.github.io/patterns/print.html#see-also-23

• lens-rs crate for a pre-built lenses implementation, with a cleaner int

these examples

• Serde itself, which makes these concepts intuitive for end users (i.e.

structs) without needing to understand the details

• luminance is a crate for drawing computer graphics that uses similar

including procedural macros to create full prisms for buffers of diffe

that remain generic

• An Article about Lenses in Scala that is very readable even without S

• Paper: Profunctor Optics: Modular Data Accessors

• Musli is a library which attempts to use a similar structure with a diff

e.g. doing away with the visitor

1 School of Haskell: A Little Lens Starter Tutorial

2 Concordance on Wikipedia

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

132 of 136 10/25/23, 12:58

https://crates.io/crates/lens-rs
https://crates.io/crates/lens-rs
https://serde.rs/
https://serde.rs/
https://github.com/phaazon/luminance-rs
https://github.com/phaazon/luminance-rs
https://web.archive.org/web/20221128185849/https://medium.com/zyseme-technology/functional-references-lens-and-other-optics-in-scala-e5f7e2fdafe
https://web.archive.org/web/20221128185849/https://medium.com/zyseme-technology/functional-references-lens-and-other-optics-in-scala-e5f7e2fdafe
https://web.archive.org/web/20220701102832/https://arxiv.org/ftp/arxiv/papers/1703/1703.10857.pdf
https://web.archive.org/web/20220701102832/https://arxiv.org/ftp/arxiv/papers/1703/1703.10857.pdf
https://github.com/udoprog/musli
https://github.com/udoprog/musli
https://web.archive.org/web/20221128190041/https://www.schoolofhaskell.com/school/to-infinity-and-beyond/pick-of-the-week/a-little-lens-starter-tutorial
https://web.archive.org/web/20221128190041/https://www.schoolofhaskell.com/school/to-infinity-and-beyond/pick-of-the-week/a-little-lens-starter-tutorial
https://en.wikipedia.org/wiki/Concordance_(publishing)
https://en.wikipedia.org/wiki/Concordance_(publishing)

Additional resources

A collection of complementary helpful content

Talks

• Design Patterns in Rust by Nicholas Cameron at the PDRust (2016)

• Writing Idiomatic Libraries in Rust by Pascal Hertleif at RustFest (201

• Rust Programming Techniques by Nicholas Cameron at LinuxConfAu

Books (Online)

• The Rust API Guidelines

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

133 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#additional-resources
https://rust-unofficial.github.io/patterns/print.html#additional-resources
https://rust-unofficial.github.io/patterns/print.html#talks
https://rust-unofficial.github.io/patterns/print.html#talks
https://www.youtube.com/watch?v=Pm_oO0N5B9k
https://www.youtube.com/watch?v=Pm_oO0N5B9k
https://www.youtube.com/watch?v=0zOg8_B71gE
https://www.youtube.com/watch?v=0zOg8_B71gE
https://www.youtube.com/watch?v=vqavdUGKeb4
https://www.youtube.com/watch?v=vqavdUGKeb4
https://rust-unofficial.github.io/patterns/print.html#books-online
https://rust-unofficial.github.io/patterns/print.html#books-online
https://rust-lang.github.io/api-guidelines
https://rust-lang.github.io/api-guidelines

Design principles

A brief overview over common design principles

SOLID

• Single Responsibility Principle (SRP): A class should only have a single

that is, only changes to one part of the software’s specification shou

affect the specification of the class.

• Open/Closed Principle (OCP): “Software entities … should be open fo

closed for modification.”

• Liskov Substitution Principle (LSP): “Objects in a program should be r

instances of their subtypes without altering the correctness of that p

• Interface Segregation Principle (ISP): “Many client-specific interfaces

one general-purpose interface.”

• Dependency Inversion Principle (DIP): One should “depend upon abs

concretions.”

DRY (Don’t Repeat Yourself)

“Every piece of knowledge must have a single, unambiguous, authoritative

within a system”

KISS principle

most systems work best if they are kept simple rather than made complic

simplicity should be a key goal in design, and unnecessary complexity sho

Law of Demeter (LoD)

a given object should assume as little as possible about the structure or p

anything else (including its subcomponents), in accordance with the princ

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

134 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#design-principles
https://rust-unofficial.github.io/patterns/print.html#design-principles
https://rust-unofficial.github.io/patterns/print.html#a-brief-overview-over-common-design-principles
https://rust-unofficial.github.io/patterns/print.html#a-brief-overview-over-common-design-principles
https://en.wikipedia.org/wiki/SOLID
https://en.wikipedia.org/wiki/SOLID
https://en.wikipedia.org/wiki/Single-responsibility_principle
https://en.wikipedia.org/wiki/Single-responsibility_principle
https://en.wikipedia.org/wiki/Open%E2%80%93closed_principle
https://en.wikipedia.org/wiki/Open%E2%80%93closed_principle
https://en.wikipedia.org/wiki/Liskov_substitution_principle
https://en.wikipedia.org/wiki/Liskov_substitution_principle
https://en.wikipedia.org/wiki/Interface_segregation_principle
https://en.wikipedia.org/wiki/Interface_segregation_principle
https://en.wikipedia.org/wiki/Dependency_inversion_principle
https://en.wikipedia.org/wiki/Dependency_inversion_principle
https://en.wikipedia.org/wiki/Don%27t_repeat_yourself
https://en.wikipedia.org/wiki/Don%27t_repeat_yourself
https://en.wikipedia.org/wiki/KISS_principle
https://en.wikipedia.org/wiki/KISS_principle
https://en.wikipedia.org/wiki/Law_of_Demeter
https://en.wikipedia.org/wiki/Law_of_Demeter

“information hiding”

Design by contract (DbC)

software designers should define formal, precise and verifiable interface s

for software components, which extend the ordinary definition of abstrac

with preconditions, postconditions and invariants

Encapsulation

bundling of data with the methods that operate on that data, or the restri

access to some of an object’s components. Encapsulation is used to hide t

state of a structured data object inside a class, preventing unauthorized p

access to them.

Command-Query-Separation(CQS)

“Functions should not produce abstract side effects…only commands (pro

permitted to produce side effects.” - Bertrand Meyer: Object-Oriented Sof

Construction

Principle of least astonishment (POLA)

a component of a system should behave in a way that most users will exp

The behavior should not astonish or surprise users

Linguistic-Modular-Units

“Modules must correspond to syntactic units in the language used.” - Bert

Object-Oriented Software Construction

Self-Documentation

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

135 of 136 10/25/23, 12:58

https://en.wikipedia.org/wiki/Design_by_contract
https://en.wikipedia.org/wiki/Design_by_contract
https://en.wikipedia.org/wiki/Encapsulation_(computer_programming)
https://en.wikipedia.org/wiki/Encapsulation_(computer_programming)
https://en.wikipedia.org/wiki/Command%E2%80%93query_separation
https://en.wikipedia.org/wiki/Command%E2%80%93query_separation
https://en.wikipedia.org/wiki/Principle_of_least_astonishment
https://en.wikipedia.org/wiki/Principle_of_least_astonishment
https://rust-unofficial.github.io/patterns/print.html#linguistic-modular-units
https://rust-unofficial.github.io/patterns/print.html#linguistic-modular-units
https://rust-unofficial.github.io/patterns/print.html#self-documentation
https://rust-unofficial.github.io/patterns/print.html#self-documentation

“The designer of a module should strive to make all information about the

the module itself.” - Bertrand Meyer: Object-Oriented Software Constructi

Uniform-Access

“All services offered by a module should be available through a uniform n

does not betray whether they are implemented through storage or throug

computation.” - Bertrand Meyer: Object-Oriented Software Construction

Single-Choice

“Whenever a software system must support a set of alternatives, one and

module in the system should know their exhaustive list.” - Bertrand Meye

Oriented Software Construction

Persistence-Closure

“Whenever a storage mechanism stores an object, it must store with it the

that object. Whenever a retrieval mechanism retrieves a previously stored

also retrieve any dependent of that object that has not yet been retrieved

Meyer: Object-Oriented Software Construction

Rust Design Patterns https://rust-unofficial.github.io/patterns/print.html

136 of 136 10/25/23, 12:58

https://rust-unofficial.github.io/patterns/print.html#uniform-access
https://rust-unofficial.github.io/patterns/print.html#uniform-access
https://rust-unofficial.github.io/patterns/print.html#single-choice
https://rust-unofficial.github.io/patterns/print.html#single-choice
https://rust-unofficial.github.io/patterns/print.html#persistence-closure
https://rust-unofficial.github.io/patterns/print.html#persistence-closure

