
The Little Book of Rust Macros

Note: This is a continuation of Daniel Keep's Book which has not been updated

since the early summer of 2016, adapted to make use of mdBook.

View the rendered version here and the repository here.

A chinese version of this book can be found here.

This book is an attempt to distill the Rust community's collective knowledge of Rust

macros, the Macros by Example  ones as well as procedural macros(WIP). As such, both

additions (in the form of pull requests) and requests (in the form of issues) are very much

welcome. If something's unclear, opens up questions or is not understandable as written

down, fear not to make an issue asking for clarification. The goal is for this book to

become the best learning resource possible.

The original Little Book of Rust Macros has helped me immensely with understanding

Macros by Example style macros while I was still learning the language. Unfortunately, the

original book hasn't been updated since April of 2016, while the Rust language as well as

its macro-system keeps evolving. Which is why I took up the task to update the book and

keep it updated as well as I can while also adding newfound things to it. In hopes that it

will help out all the fresh faces coming to Rust understanding its macro systems, a part of

the language a people tend to have trouble with.

This book expects you to have basic knowledge of Rust, it will not explain language

features or constructs that are irrelevant to macros. No prior knowledge of macros

is assumed. Having read and understood the first seven chapters of the Rust Book is

a must, though having read the majority of the book is recommended.

Thanks

A big thank you to Daniel Keep for the original work as well as all the contributors that

added to the original which can be found here.

License

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

1 of 133 10/16/23, 10:34

https://veykril.github.io/tlborm/print.html#the-little-book-of-rust-macros
https://veykril.github.io/tlborm/print.html#the-little-book-of-rust-macros
https://github.com/DanielKeep/tlborm
https://github.com/DanielKeep/tlborm
https://github.com/rust-lang/mdBook
https://github.com/rust-lang/mdBook
https://veykril.github.io/tlborm/
https://veykril.github.io/tlborm/
https://github.com/veykril/tlborm
https://github.com/veykril/tlborm
https://zjp-cn.github.io/tlborm/
https://zjp-cn.github.io/tlborm/
https://github.com/DanielKeep/tlborm
https://github.com/DanielKeep/tlborm
https://doc.rust-lang.org/stable/book/
https://doc.rust-lang.org/stable/book/
https://veykril.github.io/tlborm/print.html#thanks
https://veykril.github.io/tlborm/print.html#thanks
https://github.com/DanielKeep/tlborm
https://github.com/DanielKeep/tlborm
https://veykril.github.io/tlborm/print.html#license
https://veykril.github.io/tlborm/print.html#license


This work inherits the licenses of the original, hence it is licensed under both the Creative

Commons Attribution-ShareAlike 4.0 International License and the MIT license.

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

2 of 133 10/16/23, 10:34

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://opensource.org/licenses/MIT
http://opensource.org/licenses/MIT


Syntax Extensions

Before talking about Rust's different macro systems it is worthwhile to discuss the

general mechanism they are built on: syntax extensions.

To do that, we must first discuss how Rust source is processed by the compiler, and the

general mechanisms on which user-defined macros and proc-macros are built upon.

Note: This book will use the term syntax extension from now on when talking about

all of rust's different macro kinds in general to reduce potential confusion with the

upcoming declarative macro 2.0 proposal which uses the macro  keyword.

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

3 of 133 10/16/23, 10:34

https://veykril.github.io/tlborm/print.html#syntax-extensions
https://veykril.github.io/tlborm/print.html#syntax-extensions
https://github.com/rust-lang/rust/issues/39412
https://github.com/rust-lang/rust/issues/39412


Source Analysis

Tokenization

The first stage of compilation for a Rust program is tokenization. This is where the source

text is transformed into a sequence of tokens (i.e. indivisible lexical units; the

programming language equivalent of "words"). Rust has various kinds of tokens, such as:

• Identifiers: foo , Bambous , self , we_can_dance , LaCaravane , …

• Literals: 42 , 72u32 , 0_______0 , 1.0e-40 , "ferris was here" , …

• Keywords: _ , fn , self , match , yield , macro , …

• Symbols: [ , : , :: , ? , ~ , @ 1, …

…among others. There are some things to note about the above: first, self  is both an

identifier and a keyword. In almost all cases, self  is a keyword, but it is possible for it to

be treated as an identifier, which will come up later (along with much cursing). Secondly,

the list of keywords includes some suspicious entries such as yield  and macro  that

aren't actually in the language, but are parsed by the compiler—these are reserved for

future use. Third, the list of symbols also includes entries that aren't used by the

language. In the case of <- , it is vestigial: it was removed from the grammar, but not

from the lexer. As a final point, note that ::  is a distinct token; it is not simply two

adjacent :  tokens. The same is true of all multi-character symbol tokens in Rust, as of

Rust 1.2.2

1 @  has a purpose, though most people seem to forget about it completely: it is used in patterns to

bind a non-terminal part of the pattern to a name.

2 Technically rust currently(1.46) has two lexers, rustc_lexer  which only emits single character

symbols as tokens and the lexer in rustc_parse  which sees multi-character symbols as distinct

tokens.

As a point of comparison, it is at this stage that some languages have their macro layer,

though Rust does not. For example, C/C++ macros are effectively processed at this point. 3

This is why the following code works: 4

#define SUB int
#define BEGIN {
#define END }

SUB main() BEGIN
printf("Oh, the horror!\n");

END

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

4 of 133 10/16/23, 10:34

https://veykril.github.io/tlborm/print.html#source-analysis
https://veykril.github.io/tlborm/print.html#source-analysis
https://veykril.github.io/tlborm/print.html#tokenization
https://veykril.github.io/tlborm/print.html#tokenization
https://en.wikipedia.org/wiki/Lexical_analysis#Tokenization
https://en.wikipedia.org/wiki/Lexical_analysis#Tokenization
https://veykril.github.io/tlborm/print.html#wither-at
https://veykril.github.io/tlborm/print.html#wither-at
https://doc.rust-lang.org/reference/keywords.html#reserved-keywords
https://doc.rust-lang.org/reference/keywords.html#reserved-keywords
https://veykril.github.io/tlborm/print.html#two-lexers
https://veykril.github.io/tlborm/print.html#two-lexers
https://github.com/rust-lang/rust/tree/master/compiler/rustc_lexer
https://github.com/rust-lang/rust/tree/master/compiler/rustc_lexer
https://github.com/rust-lang/rust/tree/master/compiler/rustc_lexer
https://github.com/rust-lang/rust/tree/master/compiler/rustc_parse/src/lexer
https://github.com/rust-lang/rust/tree/master/compiler/rustc_parse/src/lexer
https://github.com/rust-lang/rust/tree/master/compiler/rustc_parse
https://github.com/rust-lang/rust/tree/master/compiler/rustc_parse
https://github.com/rust-lang/rust/tree/master/compiler/rustc_parse
https://veykril.github.io/tlborm/print.html#lies-damn-lies-cpp
https://veykril.github.io/tlborm/print.html#lies-damn-lies-cpp
https://veykril.github.io/tlborm/print.html#cpp-it-seemed-like-a-good-idea-at-the-time
https://veykril.github.io/tlborm/print.html#cpp-it-seemed-like-a-good-idea-at-the-time


3 In fact, the C preprocessor uses a different lexical structure to C itself, but the distinction is broadly

irrelevant.

4 Whether it should work is an entirely different question.

Parsing

The next stage is parsing, where the stream of tokens is turned into an Abstract Syntax

Tree (AST). This involves building up the syntactic structure of the program in memory.

For example, the token sequence 1 + 2  is transformed into the equivalent of:

The AST contains the structure of the entire program, though it is based on purely lexical

information. For example, although the compiler may know that a particular expression is

referring to a variable called a , at this stage, it has no way of knowing what a  is, or even

where it comes from.

It is after the AST has been constructed that macros are processed. However, before we

can discuss that, we have to talk about token trees.

Token trees

Token trees are somewhere between tokens and the AST. Firstly, almost all tokens are

also token trees; more specifically, they are leaves. There is one other kind of thing that

can be a token tree leaf, but we will come back to that later.

The only basic tokens that are not leaves are the "grouping" tokens: (...) , [...] , and

{...} . These three are the interior nodes of token trees, and what give them their

structure. To give a concrete example, this sequence of tokens:

would be parsed into the following token trees:

┌─────────┐   ┌─────────┐
│ BinOp   │ ┌╴│ LitInt  │
│ op: Add │ │ │ val: 1  │
│ lhs: ◌  │╶┘ └─────────┘
│ rhs: ◌  │╶┐ ┌─────────┐
└─────────┘ └╴│ LitInt  │
              │ val: 2  │
              └─────────┘

a + b + (c + d[0]) + e

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

5 of 133 10/16/23, 10:34

https://veykril.github.io/tlborm/print.html#parsing
https://veykril.github.io/tlborm/print.html#parsing
https://en.wikipedia.org/wiki/Abstract_syntax_tree
https://en.wikipedia.org/wiki/Abstract_syntax_tree
https://en.wikipedia.org/wiki/Abstract_syntax_tree
https://en.wikipedia.org/wiki/Abstract_syntax_tree
https://veykril.github.io/tlborm/print.html#token-trees
https://veykril.github.io/tlborm/print.html#token-trees


Note that this has no relationship to the AST the expression would produce; instead of a

single root node, there are seven token trees at the root level. For reference, the AST

would be:

It is important to understand the distinction between the AST and token trees. When

writing macros, you have to deal with both as distinct things.

One other aspect of this to note: it is impossible to have an unpaired parenthesis, bracket

or brace; nor is it possible to have incorrectly nested groups in a token tree.

«a» «+» «b» «+» «(   )» «+» «e»
          ╭────────┴──────────╮
           «c» «+» «d» «[   ]»
                        ╭─┴─╮
                         «0»

                                          ┌─────────┐
                                          │ BinOp   │
                                          │ op: Add │
                                        ┌╴│ lhs: ◌  │
                            ┌─────────┐ │ │ rhs: ◌  │╶┐ ┌─────────┐
                            │ BinOp   │╶┘ └─────────┘ └╴│ Var     │
                            │ op: Add │                 │ name: e │
                          ┌╴│ lhs: ◌  │                 └─────────┘
┌─────────┐   ┌─────────┐ │ │ rhs: ◌  │╶┐ ┌─────────┐
│ Var     │╶┐ │ BinOp   │╶┘ └─────────┘ └╴│ BinOp   │
│ name: a │ │ │ op: Add │                 │ op: Add │
└─────────┘ └╴│ lhs: ◌  │               ┌╴│ lhs: ◌  │
┌─────────┐ ┌╴│ rhs: ◌  │   ┌─────────┐ │ │ rhs: ◌  │╶┐ ┌─────────┐
│ Var     │╶┘ └─────────┘   │ Var     │╶┘ └─────────┘ └╴│ Index   │
│ name: b │                 │ name: c │               ┌╴│ arr: ◌  │
└─────────┘                 └─────────┘   ┌─────────┐ │ │ ind: ◌  │╶┐
                                          │ Var     │╶┘ └─────────┘ │
                                          │ name: d │   ┌─────────┐ │
                                          └─────────┘   │ LitInt  │╶┘
                                                        │ val: 0  │
                                                        └─────────┘

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

6 of 133 10/16/23, 10:34



Macros in the AST

As previously mentioned, macro processing in Rust happens after the construction of the

AST. As such, the syntax used to invoke a macro must be a proper part of the language's

syntax. In fact, there are several "syntax extension" forms which are part of Rust's syntax.

Specifically, the following 4 forms (by way of examples):

1. # [ $arg ] ; e.g. #[derive(Clone)] , #[no_mangle] , …

2. # ! [ $arg ] ; e.g. #![allow(dead_code)] , #![crate_name="blang"] , …

3. $name ! $arg ; e.g. println!("Hi!") , concat!("a", "b") , …

4. $name ! $arg0 $arg1 ; e.g. macro_rules! dummy { () => {}; } .

The first two are attributes which annotate items, expressions and statements. They can

be classified into different kinds, built-in attributes, proc-macro attributes and derive

attributes. proc-macro attributes and derive attributes can be implemented with the

second macro system that Rust offers, procedural macros. built-in attributes on the other

hand are attributes implemented by the compiler.

The third form $name ! $arg  are function-like macros. It is the form available for use

with macro_rules! , macro  and also procedural macros. Note that this form is not limited

to macro_rules!  macros: it is a generic syntax extension form. For example, whilst

format!  is a macro_rules!  macro, format_args!  (which is used to implement format! )

is not as it is a compiler builtin.

The fourth form is essentially a variation which is not available to macros. In fact, the only

case where this form is used at all is with the macro_rules!  construct itself.

So, starting with the third form, how does the Rust parser know what the $arg  in ( $name 

! $arg ) looks like for every possible syntax extension? The answer is that it doesn't have

to. Instead, the argument of a syntax extension invocation is a single token tree. More

specifically, it is a single, non-leaf token tree; (...) , [...] , or {...} . With that

knowledge, it should become apparent how the parser can understand all of the

following invocation forms:

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

7 of 133 10/16/23, 10:34

https://veykril.github.io/tlborm/print.html#macros-in-the-ast
https://veykril.github.io/tlborm/print.html#macros-in-the-ast
https://doc.rust-lang.org/reference/attributes.html
https://doc.rust-lang.org/reference/attributes.html
https://doc.rust-lang.org/reference/attributes.html#built-in-attributes-index
https://doc.rust-lang.org/reference/attributes.html#built-in-attributes-index
https://doc.rust-lang.org/reference/procedural-macros.html#attribute-macros
https://doc.rust-lang.org/reference/procedural-macros.html#attribute-macros
https://doc.rust-lang.org/reference/procedural-macros.html#derive-macro-helper-attributes
https://doc.rust-lang.org/reference/procedural-macros.html#derive-macro-helper-attributes
https://doc.rust-lang.org/reference/procedural-macros.html#derive-macro-helper-attributes
https://doc.rust-lang.org/reference/procedural-macros.html#derive-macro-helper-attributes
https://doc.rust-lang.org/reference/procedural-macros.html#attribute-macros
https://doc.rust-lang.org/reference/procedural-macros.html#attribute-macros
https://doc.rust-lang.org/reference/procedural-macros.html#derive-macro-helper-attributes
https://doc.rust-lang.org/reference/procedural-macros.html#derive-macro-helper-attributes
https://doc.rust-lang.org/reference/procedural-macros.html
https://doc.rust-lang.org/reference/procedural-macros.html
https://doc.rust-lang.org/reference/attributes.html#built-in-attributes-index
https://doc.rust-lang.org/reference/attributes.html#built-in-attributes-index
https://doc.rust-lang.org/std/macro.format.html
https://doc.rust-lang.org/std/macro.format.html
https://doc.rust-lang.org/std/macro.format.html
https://doc.rust-lang.org/std/macro.format_args.html
https://doc.rust-lang.org/std/macro.format_args.html
https://doc.rust-lang.org/std/macro.format_args.html
https://doc.rust-lang.org/std/macro.format.html
https://doc.rust-lang.org/std/macro.format.html
https://doc.rust-lang.org/std/macro.format.html


Although the above invocations may look like they contain various kinds of Rust code, the

parser simply sees a collection of meaningless token trees. To make this clearer, we can

replace all these syntactic "black boxes" with ⬚, leaving us with:

Just to reiterate: the parser does not assume anything about ⬚; it remembers the tokens it

contains, but doesn't try to understand them. This means ⬚ can be anything, even invalid

Rust! As to why this is a good thing, we will come back to that at a later point.

So, does this also apply to $arg  in form 1 and 2, and to the two args in form 4? Kind of.

The $arg  for form 1 and 2 is a bit different in that it is not directly a token tree, but a

simple path that is either followed by an =  token and a literal expression, or a token tree.

We will explore this more in-depth in the appropriate proc-macro chapter. The important

part here is that this form as well, makes use of token trees to describe the input. The 4th

bitflags! {
struct Color: u8 {

const RED    = 0b0001,
const GREEN  = 0b0010,
const BLUE   = 0b0100,
const BRIGHT = 0b1000,

    }
}

lazy_static! {
static ref FIB_100: u32 = {

fn fib(a: u32) -> u32 {
match a {

0 => 0,
1 => 1,

                a => fib(a-1) + fib(a-2)
            }
        }

        fib(100)
    };
}

fn main() {
use Color::*;
let colors = vec![RED, GREEN, BLUE];
println!("Hello, World!");

}

bitflags! ⬚

lazy_static! ⬚

fn main() {
    let colors = vec! ⬚;
    println! ⬚;
}

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

8 of 133 10/16/23, 10:34



form in general is more special and accepts a very specific grammar that also makes use

of token trees though. The specifics of this form do not matter at this point so we will skip

them until they become relevant.

The important takeaways from this are:

• There are multiple kinds of syntax extensions in Rust.

• Just seeing something of the form $name! $arg , doesn't tell you what kind of syntax

extension it might be. It could be a macro_rules!  macro, a proc-macro  or maybe

even a builtin.

• The input to every !  macro invocation, that is form 3, is a single non-leaf token tree.

• Syntax extensions are parsed as part of the abstract syntax tree.

The last point is the most important, as it has significant implications. Because syntax

extensions are parsed into the AST, they can only appear in positions where they are

explicitly supported. Specifically syntax extensions can appear in place of the following:

• Patterns

• Statements

• Expressions

• Items(this includes impl  items)

• Types

Some things not on this list:

• Identifiers

• Match arms

• Struct fields

There is absolutely, definitely no way to use syntax extensions in any position not on the

first list.

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

9 of 133 10/16/23, 10:34



Expansion

Expansion is a relatively simple affair. At some point after the construction of the AST, but

before the compiler begins constructing its semantic understanding of the program, it will

expand all syntax extensions.

This involves traversing the AST, locating syntax extension invocations and replacing them

with their expansion.

Once the compiler has run a syntax extension, it expects the result to be parsable as one

of a limited set of syntax elements, based on context. For example, if you invoke a syntax

extension at module scope, the compiler will parse the result into an AST node that

represents an item. If you invoke a syntax extension in expression position, the compiler

will parse the result into an expression AST node.

In fact, it can turn a syntax extension result into any of the following:

• an expression,

• a pattern,

• a type,

• zero or more items, or

• zero or more statements.

In other words, where you can invoke a syntax extension determines what its result will be

interpreted as.

The compiler will take this AST node and completely replace the syntax extension's

invocation node with the output node. This is a structural operation, not a textual one!

For example, consider the following:

We can visualize this partial AST as follows:

let eight = 2 * four!();

┌─────────────┐
│ Let         │
│ name: eight │   ┌─────────┐
│ init: ◌     │╶─╴│ BinOp   │
└─────────────┘   │ op: Mul │
                ┌╴│ lhs: ◌  │
     ┌────────┐ │ │ rhs: ◌  │╶┐ ┌────────────┐
     │ LitInt │╶┘ └─────────┘ └╴│ Macro      │
     │ val: 2 │                 │ name: four │
     └────────┘                 │ body: ()   │
                                └────────────┘

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

10 of 133 10/16/23, 10:34

https://veykril.github.io/tlborm/print.html#expansion
https://veykril.github.io/tlborm/print.html#expansion


From context, four!() must expand to an expression (the initializer can only be an

expression). Thus, whatever the actual expansion is, it will be interpreted as a complete

expression. In this case, we will assume four!  is defined such that it expands to the

expression 1 + 3 . As a result, expanding this invocation will result in the AST changing

to:

This can be written out like so:

Note that we added parentheses despite them not being in the expansion. Remember

that the compiler always treats the expansion of a syntax extension as a complete AST

node, not as a mere sequence of tokens. To put it another way, even if you don't explicitly

wrap a complex expression in parentheses, there is no way for the compiler to

"misinterpret" the result, or change the order of evaluation.

It is important to understand that syntax extension expansions are treated as AST nodes,

as this design has two further implications:

• In addition to there being a limited number of invocation positions, syntax extension

can only expand to the kind of AST node the parser expects at that position.

• As a consequence of the above, syntax extension absolutely cannot expand to

incomplete or syntactically invalid constructs.

There is one further thing to note about expansion: what happens when a syntax

extension expands to something that contains another syntax extension invocation. For

example, consider an alternative definition of four! ; what happens if it expands to 1 + 

three!() ?

Expands to:

┌─────────────┐
│ Let         │
│ name: eight │   ┌─────────┐
│ init: ◌     │╶─╴│ BinOp   │
└─────────────┘   │ op: Mul │
                ┌╴│ lhs: ◌  │
     ┌────────┐ │ │ rhs: ◌  │╶┐ ┌─────────┐
     │ LitInt │╶┘ └─────────┘ └╴│ BinOp   │
     │ val: 2 │                 │ op: Add │
     └────────┘               ┌╴│ lhs: ◌  │
                   ┌────────┐ │ │ rhs: ◌  │╶┐ ┌────────┐
                   │ LitInt │╶┘ └─────────┘ └╴│ LitInt │
                   │ val: 1 │                 │ val: 3 │
                   └────────┘                 └────────┘

let eight = 2 * (1 + 3);

let x = four!();

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

11 of 133 10/16/23, 10:34



This is resolved by the compiler checking the result of expansions for additional syntax

extension invocations, and expanding them. Thus, a second expansion step turns the

above into:

The takeaway here is that expansion happens in "passes"; as many as is needed to

completely expand all invocations.

Well, not quite. In fact, the compiler imposes an upper limit on the number of such

recursive passes it is willing to run before giving up. This is known as the syntax extension

recursion limit and defaults to 128. If the 128th expansion contains a syntax extension

invocation, the compiler will abort with an error indicating that the recursion limit was

exceeded.

This limit can be raised using the #![recursion_limit="…"] attribute, though it must be

done crate-wide. Generally, it is recommended to try and keep syntax extension below

this limit wherever possible as it may impact compilation times.

let x = 1 + three!();

let x = 1 + 3;

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

12 of 133 10/16/23, 10:34

https://doc.rust-lang.org/reference/attributes/limits.html#the-recursion_limit-attribute
https://doc.rust-lang.org/reference/attributes/limits.html#the-recursion_limit-attribute


Hygiene

Hygiene is an important concept for macros. It describes the ability for a macro to work in

its own syntax context, not affecting nor being affected by its surroundings. In other

words this means that a syntax extension should be invocable anywhere without

interfering with its surrounding context.

In a perfect world all syntax extensions in Rust would be fully hygienic, unfortunately this

isn't the case, so care should be taken to avoid writing syntax extensions that aren't fully

hygienic. We will go into general hygiene concepts here which will be touched upon in the

corresponding hygiene chapters for the different syntax extensions Rust has to offer.

 

Hygiene mainly affects identifiers and paths emitted by syntax extensions. In short, if an

identifier created by a syntax extension cannot be accessed by the environment where

the syntax extension has been invoked it is hygienic in regards to that identifier. Likewise,

if an identifier used in a syntax extension cannot reference something defined outside of

a syntax extension it is considered hygienic.

Note: The terms create  and use  refer to the position the identifier is in. That is

the Foo  in struct Foo {}  or the foo  in let foo = …;  are created in the sense

that they introduce something new under the name, but the Foo  in fn foo(_: 

Foo) {}  or the foo  in foo + 3  are usages in the sense that they are referring to

something existing.

This is best shown by example.

Let's assume we have some syntax extension make_local  that expands to let local = 

0; , that is it creates the identifier local . Then given the following snippet:

If the local  in assert_eq!(local, 0);  resolves to the local defined by the syntax

extension, the syntax extension is not hygienic (at least in regards to local

names/bindings).

Now let's assume we have some syntax extension use_local  that expands to local = 

42; , that is it makes use of the identifier local . Then given the following snippet:

make_local!();
assert_eq!(local, 0);

let mut local = 0;
use_local!();

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

13 of 133 10/16/23, 10:34

https://veykril.github.io/tlborm/print.html#hygiene
https://veykril.github.io/tlborm/print.html#hygiene


If the local  inside of the syntax extension for the given invocation resolves to the local

defined before its invocation, the syntax extension is not hygienic either.

This is a rather short introduction to the general concept of hygiene. It will be explained in

more depth in the corresponding macro_rules! hygiene  and proc-macro hygiene

chapters, with their specific peculiarities.

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

14 of 133 10/16/23, 10:34

https://veykril.github.io/tlborm/decl-macros/minutiae/hygiene.html
https://veykril.github.io/tlborm/decl-macros/minutiae/hygiene.html
https://veykril.github.io/tlborm/decl-macros/minutiae/hygiene.html
https://veykril.github.io/tlborm/decl-macros/minutiae/hygiene.html
https://veykril.github.io/tlborm/decl-macros/minutiae/hygiene.html
https://veykril.github.io/tlborm/decl-macros/minutiae/hygiene.html
https://veykril.github.io/tlborm/proc-macros/hygiene.html
https://veykril.github.io/tlborm/proc-macros/hygiene.html
https://veykril.github.io/tlborm/proc-macros/hygiene.html
https://veykril.github.io/tlborm/proc-macros/hygiene.html


Debugging

rustc  provides a number of tools to debug general syntax extensions, as well as some

more specific ones tailored towards declarative and procedural macros respectively.

Sometimes, it is what the extension expands to that proves problematic as you do not

usually see the expanded code. Fortunately rustc  offers the ability to look at the

expanded code via the unstable -Zunpretty=expanded  argument. Given the following

code:

compiled with the following command:

produces the following output (modified for formatting):

// Shorthand for initializing a `String`.
macro_rules! S {
    ($e:expr) => {String::from($e)};
}

fn main() {
let world = S!("World");
println!("Hello, {}!", world);

}

rustc +nightly -Zunpretty=expanded hello.rs

#![feature(prelude_import)]
#[prelude_import]
use std::prelude::rust_2018::*;
#[macro_use]
extern crate std;
// Shorthand for initializing a `String`.
macro_rules! S { ($e : expr) => { String :: from($e) } ; }

fn main() {
let world = String::from("World");

    {
        ::std::io::_print(
            ::core::fmt::Arguments::new_v1(
                &["Hello, ", "!\n"],
                &match (&world,) {
                    (arg0,) => [
                        ::core::fmt::ArgumentV1::new(arg0, 
::core::fmt::Display::fmt)
                    ],
                }
            )
        );
    };
}

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

15 of 133 10/16/23, 10:34

https://veykril.github.io/tlborm/print.html#debugging
https://veykril.github.io/tlborm/print.html#debugging


But not just rustc  exposes means to aid in debugging syntax extensions. For the

aforementioned -Zunpretty=expanded  option, there exists a nice cargo  plugin called

cargo-expand  made by dtolnay  which is basically just a wrapper around it.

You can also use the playground, clicking on its TOOLS  button in the top right gives you

the option to expand syntax extensions as well!

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

16 of 133 10/16/23, 10:34

https://github.com/dtolnay/cargo-expand
https://github.com/dtolnay/cargo-expand
https://github.com/dtolnay/cargo-expand
https://github.com/dtolnay
https://github.com/dtolnay
https://github.com/dtolnay
https://play.rust-lang.org/
https://play.rust-lang.org/


Declarative Macros

This chapter will introduce Rust's declarative macro system: macro_rules! .

There are two different introductions in this chapter, a methodical and a practical.

The former will attempt to give you a complete and thorough explanation of how the

system works, while the latter one will cover more practical examples. As such, the

methodical introduction is intended for people who just want the system as a whole

explained, while the practical introduction guides one through the implementation of a

single macro.

Following up the two introductions it offers some generally very useful patterns and

building blocks for creating feature-rich macros.

Other resources about declarative macros include the Macros chapter of the Rust Book

which is a more approachable, high-level explanation as well as the reference chapter

which goes more into the precise details of things.

Note: This book will usually use the term mbe(Macro-By-Example), mbe macro or

macro_rules!  macro when talking about macro_rules!  macros.

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

17 of 133 10/16/23, 10:34

https://veykril.github.io/tlborm/print.html#declarative-macros
https://veykril.github.io/tlborm/print.html#declarative-macros
https://doc.rust-lang.org/reference/macros-by-example.html
https://doc.rust-lang.org/reference/macros-by-example.html
https://doc.rust-lang.org/reference/macros-by-example.html
https://veykril.github.io/tlborm/decl-macros/macros-methodical.html
https://veykril.github.io/tlborm/decl-macros/macros-methodical.html
https://veykril.github.io/tlborm/decl-macros/macros-practical.html
https://veykril.github.io/tlborm/decl-macros/macros-practical.html
https://veykril.github.io/tlborm/decl-macros/macros-methodical.html
https://veykril.github.io/tlborm/decl-macros/macros-methodical.html
https://veykril.github.io/tlborm/decl-macros/macros-practical.html
https://veykril.github.io/tlborm/decl-macros/macros-practical.html
https://veykril.github.io/tlborm/decl-macros/patterns.html
https://veykril.github.io/tlborm/decl-macros/patterns.html
https://veykril.github.io/tlborm/decl-macros/building-blocks.html
https://veykril.github.io/tlborm/decl-macros/building-blocks.html
https://doc.rust-lang.org/book/ch19-06-macros.html
https://doc.rust-lang.org/book/ch19-06-macros.html
https://doc.rust-lang.org/reference/macros-by-example.html
https://doc.rust-lang.org/reference/macros-by-example.html


Macros, A Methodical Introduction

This chapter will introduce Rust's declarative Macro-By-Example system by explaining the

system as a whole. It will do so by first going into the construct's syntax and its key parts

and then following it up with more general information that one should at least be aware

of.

macro_rules!

With all that in mind, we can introduce macro_rules!  itself. As noted previously,

macro_rules!  is itself a syntax extension, meaning it is technically not part of the Rust

syntax. It uses the following forms:

There must be at least one rule, and you can omit the semicolon after the last rule. You

can use brackets( [] ), parentheses( () ) or braces( {} ).

Each "rule" looks like the following:

Like before, the types of parentheses used can be any kind, but parentheses around the

matcher and braces around the expansion are somewhat conventional. The expansion

part of a rule is also called its transcriber.

Note that the choice of the parentheses does not matter in regards to how the mbe

macro may be invoked. In fact, function-like macros can be invoked with any kind of

parentheses as well, but invocations with { .. }  and ( ... ); , notice the trailing

semicolon, are special in that their expansion will always be parsed as an item.

If you are wondering, the macro_rules!  invocation expands to... nothing. At least, nothing

that appears in the AST; rather, it manipulates compiler-internal structures to register the

mbe macro. As such, you can technically use macro_rules!  in any position where an

empty expansion is valid.

Matching

macro_rules! $name {
    $rule0 ;
    $rule1 ;

// …
    $ruleN ;
}

    ($matcher) => {$expansion}

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

18 of 133 10/16/23, 10:34

https://veykril.github.io/tlborm/print.html#macros-a-methodical-introduction
https://veykril.github.io/tlborm/print.html#macros-a-methodical-introduction
https://doc.rust-lang.org/reference/macros-by-example.html
https://doc.rust-lang.org/reference/macros-by-example.html
https://veykril.github.io/tlborm/print.html#macro_rules
https://veykril.github.io/tlborm/print.html#macro_rules
https://veykril.github.io/tlborm/print.html#macro_rules
https://veykril.github.io/tlborm/print.html#matching
https://veykril.github.io/tlborm/print.html#matching


When a macro_rules!  macro is invoked, the macro_rules!  interpreter goes through the

rules one by one, in declaration order. For each rule, it tries to match the contents of the

input token tree against that rule's matcher . A matcher must match the entirety of the

input to be considered a match.

If the input matches the matcher, the invocation is replaced by the expansion ; otherwise,

the next rule is tried. If all rules fail to match, the expansion fails with an error.

The simplest example is of an empty matcher:

This matches if and only if the input is also empty (i.e. four!() , four![]  or four!{} ).

Note that the specific grouping tokens you use when you invoke the function-like macro

are not matched, they are in fact not passed to the invocation at all. That is, you can

invoke the above macro as four![]  and it will still match. Only the contents of the input

token tree are considered.

Matchers can also contain literal token trees, which must be matched exactly. This is done

by simply writing the token trees normally. For example, to match the sequence 4 fn 

['spang "whammo"] @_@ , you would write:

You can use any token tree that you can write.

Metavariables

Matchers can also contain captures. These allow input to be matched based on some

general grammar category, with the result captured to a metavariable which can then be

substituted into the output.

Captures are written as a dollar ( $ ) followed by an identifier, a colon ( : ), and finally the

kind of capture which is also called the fragment-specifier, which must be one of the

following:

• block : a block (i.e. a block of statements and/or an expression, surrounded by

braces)

• expr : an expression

macro_rules! four {
    () => { 1 + 3 };
}

macro_rules! gibberish {
    (4 fn ['spang "whammo"] @_@) => {...};
}

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

19 of 133 10/16/23, 10:34

https://veykril.github.io/tlborm/print.html#metavariables
https://veykril.github.io/tlborm/print.html#metavariables
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#block
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#block
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#block
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#expr
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#expr
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#expr


• ident : an identifier (this includes keywords)

• item : an item, like a function, struct, module, impl, etc.

• lifetime : a lifetime (e.g. 'foo , 'static , ...)

• literal : a literal (e.g. "Hello World!" , 3.14 , '���������������' , ...)

• meta : a meta item; the things that go inside the #[...]  and #![...]  attributes

• pat : a pattern

• path : a path (e.g. foo , ::std::mem::replace , transmute::<_, int> , …)

• stmt : a statement

• tt : a single token tree

• ty : a type

• vis : a possible empty visibility qualifier (e.g. pub , pub(in crate) , ...)

For more in-depth description of the fragment specifiers, check out the Fragment

Specifiers chapter.

For example, here is a macro_rules!  macro which captures its input as an expression

under the metavariable $e :

These metavariables leverage the Rust compiler's parser, ensuring that they are always

"correct". An expr  metavariables will always capture a complete, valid expression for the

version of Rust being compiled.

You can mix literal token trees and metavariables, within limits (explained in

Metavariables and Expansion Redux).

To refer to a metavariable you simply write $name , as the type of the variable is already

specified in the matcher. For example:

Much like macro expansion, metavariables are substituted as complete AST nodes. This

means that no matter what sequence of tokens is captured by $e , it will be interpreted

as a single, complete expression.

You can also have multiple metavariables in a single matcher:

macro_rules! one_expression {
    ($e:expr) => {...};
}

macro_rules! times_five {
    ($e:expr) => { 5 * $e };
}

macro_rules! multiply_add {
    ($a:expr, $b:expr, $c:expr) => { $a * ($b + $c) };
}

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

20 of 133 10/16/23, 10:34

https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#ident
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#ident
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#ident
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#item
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#item
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#item
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#lifetime
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#lifetime
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#lifetime
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#literal
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#literal
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#literal
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#meta
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#meta
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#meta
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#pat
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#pat
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#pat
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#path
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#path
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#path
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#stmt
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#stmt
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#stmt
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#tt
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#tt
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#tt
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#ty
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#ty
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#ty
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#vis
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#vis
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#vis
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html
https://veykril.github.io/tlborm/decl-macros/minutiae/metavar-and-expansion.html
https://veykril.github.io/tlborm/decl-macros/minutiae/metavar-and-expansion.html


And use them as often as you like in the expansion:

There is also a special metavariable called $crate  which can be used to refer to the

current crate.

Repetitions

Matchers can contain repetitions. These allow a sequence of tokens to be matched. These

have the general form $ ( ... ) sep rep .

• $  is a literal dollar token.

• ( ... )  is the paren-grouped matcher being repeated.

• sep  is an optional separator token. It may not be a delimiter or one of the repetition

operators. Common examples are ,  and ; .

• rep  is the required repeat operator. Currently, this can be:

◦ ? : indicating at most one repetition

◦ * : indicating zero or more repetitions

◦ + : indicating one or more repetitions

Since ?  represents at most one occurrence, it cannot be used with a separator.

Repetitions can contain any other valid matcher, including literal token trees,

metavariables, and other repetitions allowing arbitrary nesting.

Repetitions use the same syntax in the expansion and repeated metavariables can only

be accessed inside of repetitions in the expansion.

For example, below is a mbe macro which formats each element as a string. It matches

zero or more comma-separated expressions and expands to an expression that

constructs a vector.

macro_rules! discard {
    ($e:expr) => {};
}
macro_rules! repeat {
    ($e:expr) => { $e; $e; $e; };
}

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

21 of 133 10/16/23, 10:34

https://veykril.github.io/tlborm/decl-macros/minutiae/hygiene.html#crate
https://veykril.github.io/tlborm/decl-macros/minutiae/hygiene.html#crate
https://veykril.github.io/tlborm/decl-macros/minutiae/hygiene.html#crate
https://veykril.github.io/tlborm/print.html#repetitions
https://veykril.github.io/tlborm/print.html#repetitions


You can repeat multiple metavariables in a single repetition as long as all metavariables

repeat equally often. So this invocation of the following macro works:

But this does not:

failing with the following error

macro_rules! vec_strs {
    (

// Start a repetition:
        $(

// Each repeat must contain an expression...
            $element:expr
        )

// ...separated by commas...
        ,

// ...zero or more times.
        *
    ) => {

// Enclose the expansion in a block so that we can use
// multiple statements.

        {
let mut v = Vec::new();

// Start a repetition:
            $(

// Each repeat will contain the following statement, with
// $element replaced with the corresponding expression.

                v.push(format!("{}", $element));
            )*

            v
        }
    };
}

fn main() {
let s = vec_strs![1, "a", true, 3.14159f32];
assert_eq!(s, &["1", "a", "true", "3.14159"]);

}

macro_rules! repeat_two {
    ($($i:ident)*, $($i2:ident)*) => {
        $( let $i: (); let $i2: (); )*
    }
}

repeat_two!( a b c d e f, u v w x y z );

repeat_two!( a b c d e f, x y z );

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

22 of 133 10/16/23, 10:34



Metavariable Expressions

RFC: rfcs#1584

Tracking Issue: rust#83527

Feature: #![feature(macro_metavar_expr)]

Transcriber can contain what is called metavariable expressions. Metavariable

expressions provide transcribers with information about metavariables that are

otherwise not easily obtainable. With the exception of the $$  expression, these have the

general form $ { op(...) } . Currently all metavariable expressions but $$  deal with

repetitions.

The following expressions are available with ident  being the name of a bound

metavariable and depth  being an integer literal:

• ${count(ident)} : The number of times $ident  repeats in the inner-most

repetition in total. This is equivalent to ${count(ident, 0)} .

• ${count(ident, depth)} : The number of times $ident  repeats in the repetition at

depth .

• ${index()} : The current repetition index of the inner-most repetition. This is

equivalent to ${index(0)} .

• ${index(depth)} : The current index of the repetition at depth , counting outwards.

• ${length()} : The number of times the inner-most repetition will repeat for. This is

equivalent to ${length(0)} .

• ${length(depth)} : The number of times the repetition at depth  will repeat for,

counting outwards.

• ${ignore(ident)} : Binds $ident  for repetition, while expanding to nothing.

• $$ : Expands to a single $ , effectively escaping the $  token so it won't be

transcribed.

 

For the complete grammar definition you may want to consult the Macros By Example

chapter of the Rust reference.

error: meta-variable `i` repeats 6 times, but `i2` repeats 3 times
 --> src/main.rs:6:10
  |
6 |         $( let $i: (); let $i2: (); )*
  |          ^^^^^^^^^^^^^^^^^^^^^^^^^^^^

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

23 of 133 10/16/23, 10:34

https://veykril.github.io/tlborm/print.html#metavariable-expressions
https://veykril.github.io/tlborm/print.html#metavariable-expressions
https://github.com/rust-lang/rfcs/blob/master/text/3086-macro-metavar-expr.md
https://github.com/rust-lang/rfcs/blob/master/text/3086-macro-metavar-expr.md
https://github.com/rust-lang/rust/issues/83527
https://github.com/rust-lang/rust/issues/83527
https://doc.rust-lang.org/reference/macros-by-example.html#macros-by-example
https://doc.rust-lang.org/reference/macros-by-example.html#macros-by-example


Macros, A Practical Introduction

This chapter will introduce Rust's declarative Macro-By-Example system using a relatively

simple, practical example. It does not attempt to explain all of the intricacies of the

system; its goal is to get you comfortable with how and why macros are written.

There is also the Macros chapter of the Rust Book which is another high-level

explanation, and the methodical introduction chapter of this book, which explains the

macro system in detail.

A Little Context

Note: don't panic! What follows is the only math that will be talked about. You can

quite safely skip this section if you just want to get to the meat of the article.

If you aren't familiar, a recurrence relation is a sequence where each value is defined in

terms of one or more previous values, with one or more initial values to get the whole

thing started. For example, the Fibonacci sequence can be defined by the relation:

Thus, the first two numbers in the sequence are 0 and 1, with the third being

, the fourth , and so on forever.

Now, because such a sequence can go on forever, that makes defining a fibonacci

function a little tricky, since you obviously don't want to try returning a complete vector.

What you want is to return something which will lazily compute elements of the sequence

as needed.

In Rust, that means producing an Iterator . This is not especially hard, but there is a fair

amount of boilerplate involved: you need to define a custom type, work out what state

needs to be stored in it, then implement the Iterator  trait for it.

However, recurrence relations are simple enough that almost all of these details can be

abstracted out with a little macro_rules!  macro-based code generation.

So, with all that having been said, let's get started.

Construction

= 0, 1, . . . , +Fn Fn−2 Fn−1

+ = 0 + 1 = 1F0 F1 + = 1 + 1 = 2F1 F2

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

24 of 133 10/16/23, 10:34

https://veykril.github.io/tlborm/print.html#macros-a-practical-introduction
https://veykril.github.io/tlborm/print.html#macros-a-practical-introduction
https://doc.rust-lang.org/reference/macros-by-example.html
https://doc.rust-lang.org/reference/macros-by-example.html
https://doc.rust-lang.org/book/ch19-06-macros.html
https://doc.rust-lang.org/book/ch19-06-macros.html
https://veykril.github.io/tlborm/decl-macros.html
https://veykril.github.io/tlborm/decl-macros.html
https://veykril.github.io/tlborm/print.html#a-little-context
https://veykril.github.io/tlborm/print.html#a-little-context
https://en.wikipedia.org/wiki/Fibonacci_number
https://en.wikipedia.org/wiki/Fibonacci_number
https://doc.rust-lang.org/std/iter/trait.Iterator.html
https://doc.rust-lang.org/std/iter/trait.Iterator.html
https://doc.rust-lang.org/std/iter/trait.Iterator.html
https://doc.rust-lang.org/std/iter/trait.Iterator.html
https://doc.rust-lang.org/std/iter/trait.Iterator.html
https://doc.rust-lang.org/std/iter/trait.Iterator.html
https://veykril.github.io/tlborm/print.html#construction
https://veykril.github.io/tlborm/print.html#construction


Usually, when working on a new macro_rules!  macro, the first thing I do is decide what

the invocation should look like. In this specific case, my first attempt looked like this:

From that, we can take a stab at how the macro_rules!  macro should be defined, even if

we aren't sure of the actual expansion. This is useful because if you can't figure out how

to parse the input syntax, then maybe you need to change it.

Assuming you aren't familiar with the syntax, allow me to elucidate. This is defining a

syntax extension, using the macro_rules!  system, called recurrence! . This

macro_rules!  macro has a single parsing rule. That rule says the input to the invocation

must match:

• the literal token sequence a [ n ] = ,

• a repeating (the $( ... ) ) sequence, using ,  as a separator, and one or more ( + )

repeats of:

◦ a valid expression captured into the metavariable inits  ( $inits:expr )

• the literal token sequence , ... , ,

• a valid expression captured into the metavariable recur  ( $recur:expr ).

Finally, the rule says that if the input matches this rule, then the invocation should be

replaced by the token sequence /* ... */ .

It's worth noting that inits , as implied by the name, actually contains all the expressions

that match in this position, not just the first or last. What's more, it captures them as a

sequence as opposed to, say, irreversibly pasting them all together. Also note that you can

do "zero or more" with a repetition by using *  instead of +  and even optional, "zero or

one" with ? .

As an exercise, let's take the proposed input and feed it through the rule, to see how it is

processed. The "Position" column will show which part of the syntax pattern needs to be

matched against next, denoted by a "⌂". Note that in some cases, there might be more

than one possible "next" element to match against. "Input" will contain all of the tokens

that have not been consumed yet. inits  and recur  will contain the contents of those

bindings.

Position Input inits

a[n] = $($inits:expr),+ , ... , $recur:expr a[n] = 0, 1, ..., a[n-2] + a[n-1]

let fib = recurrence![a[n] = 0, 1, ..., a[n-2] + a[n-1]];

for e in fib.take(10) { println!("{}", e) }

macro_rules! recurrence {
    ( a[n] = $($inits:expr),+ , ... , $recur:expr ) => { /* ... */ };
}

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

25 of 133 10/16/23, 10:34

https://veykril.github.io/tlborm/decl-macros/macros-methodical.html
https://veykril.github.io/tlborm/decl-macros/macros-methodical.html
https://veykril.github.io/tlborm/decl-macros/macros-methodical.html
https://veykril.github.io/tlborm/decl-macros/macros-methodical.html#repetitions
https://veykril.github.io/tlborm/decl-macros/macros-methodical.html#repetitions
https://veykril.github.io/tlborm/decl-macros/macros-methodical.html#metavariables
https://veykril.github.io/tlborm/decl-macros/macros-methodical.html#metavariables
https://veykril.github.io/tlborm/decl-macros/macros-methodical.html#metavariables
https://veykril.github.io/tlborm/decl-macros/macros-methodical.html#metavariables


Position Input inits

a[n] = $($inits:expr),+ , ... , $recur:expr [n] = 0, 1, ..., a[n-2] + a[n-1]

a[n] = $($inits:expr),+ , ... , $recur:expr n] = 0, 1, ..., a[n-2] + a[n-1]

a[n] = $($inits:expr),+ , ... , $recur:expr ] = 0, 1, ..., a[n-2] + a[n-1]

a[n] = $($inits:expr),+ , ... , $recur:expr = 0, 1, ..., a[n-2] + a[n-1]

a[n] = $($inits:expr),+ , ... , $recur:expr
       ⌂

0, 1, ..., a[n-2] + a[n-1]

a[n] = $($inits:expr),+ , ... , $recur:expr
         ⌂

0, 1, ..., a[n-2] + a[n-1]

a[n] = $($inits:expr),+ , ... , $recur:expr
                     ⌂  ⌂

, 1, ..., a[n-2] + a[n-1] 0

: there are two ⌂ here, because the next input token might match either the comma separator between elements in the repetition, 

after the repetition. The macro system will keep track of both possibilities, until it is able to decide which one to follow.

a[n] = $($inits:expr),+ , ... , $recur:expr
         ⌂                ⌂

1, ..., a[n-2] + a[n-1] 0

a[n] = $($inits:expr),+ , ... , $recur:expr
                     ⌂  ⌂ ⌂

, ..., a[n-2] + a[n-1] 0 , 1

: the third, crossed-out marker indicates that the macro system has, as a consequence of the last token consumed, eliminated one of the

previous possible branches.

a[n] = $($inits:expr),+ , ... , $recur:expr
         ⌂                ⌂

..., a[n-2] + a[n-1] 0 , 1

a[n] = $($inits:expr),+ , ... , $recur:expr
⌂                    ⌂

, a[n-2] + a[n-1] 0 , 1

a[n] = $($inits:expr),+ , ... , $recur:expr
                                ⌂

a[n-2] + a[n-1] 0 , 1

a[n] = $($inits:expr),+ , ... , $recur:expr
                                           ⌂ 0 , 1

: this particular step should make it clear that a binding like $recur:expr will consume an entire expression, using the compiler's knowledge

of what constitutes a valid expression. As will be noted later, you can do this for other language constructs, too.

The key take-away from this is that the macro system will try to incrementally match the

tokens provided as input to the macro against the provided rules. We'll come back to the

"try" part.

Now, let's begin writing the final, fully expanded form. For this expansion, I was looking

for something like:

This will be the actual iterator type. mem  will be the memo buffer to hold the last few

values so the recurrence can be computed. pos  is to keep track of the value of n .

Aside: I've chosen u64  as a "sufficiently large" type for the elements of this

sequence. Don't worry about how this will work out for other sequences; we'll come

to it.

let fib = {
struct Recurrence {

        mem: [u64; 2],
        pos: usize,
    }

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

26 of 133 10/16/23, 10:34



We need a branch to yield the initial values of the sequence; nothing tricky.

This is a bit harder; we'll come back and look at how exactly to define a . Also,

TODO_shuffle_down_and_append  is another placeholder; I want something that places

next_val  on the end of the array, shuffling the rest down by one space, dropping the 0th

element.

Lastly, return an instance of our new structure, which can then be iterated over. To

summarize, the complete expansion is:

impl Iterator for Recurrence {
type Item = u64;

fn next(&mut self) -> Option<Self::Item> {
if self.pos < 2 {

let next_val = self.mem[self.pos];
self.pos += 1;
Some(next_val)

            } else {
let a = /* something */;
let n = self.pos;
let next_val = a[n-2] + a[n-1];

self.mem.TODO_shuffle_down_and_append(next_val);

self.pos += 1;
Some(next_val)

            }
        }
    }

    Recurrence { mem: [0, 1], pos: 0 }
};

for e in fib.take(10) { println!("{}", e) }

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

27 of 133 10/16/23, 10:34



Aside: Yes, this does mean we're defining a different Recurrence  struct and its

implementation for each invocation. Most of this will optimise away in the final

binary.

It's also useful to check your expansion as you're writing it. If you see anything in the

expansion that needs to vary with the invocation, but isn't in the actual accepted syntax of

our macro, you should work out where to introduce it. In this case, we've added u64 , but

that's not necessarily what the user wants, nor is it in the macro syntax. So let's fix that.

let fib = {
struct Recurrence {

        mem: [u64; 2],
        pos: usize,
    }

impl Iterator for Recurrence {
type Item = u64;

fn next(&mut self) -> Option<u64> {
if self.pos < 2 {

let next_val = self.mem[self.pos];
self.pos += 1;
Some(next_val)

            } else {
let a = /* something */;
let n = self.pos;
let next_val = (a[n-2] + a[n-1]);

self.mem.TODO_shuffle_down_and_append(next_val.clone());

self.pos += 1;
Some(next_val)

            }
        }
    }

    Recurrence { mem: [0, 1], pos: 0 }
};

for e in fib.take(10) { println!("{}", e) }

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

28 of 133 10/16/23, 10:34



Here, I've added a new metavariable: sty  which should be a type.

Aside: if you're wondering, the bit after the colon in a metavariable can be one of

several kinds of syntax matchers. The most common ones are item , expr , and ty .

A complete explanation can be found in Macros, A Methodical Introduction;

macro_rules!  (Matchers).

There's one other thing to be aware of: in the interests of future-proofing the

language, the compiler restricts what tokens you're allowed to put after a matcher,

depending on what kind it is. Typically, this comes up when trying to match

expressions or statements; those can only be followed by one of => , , , and ; .

A complete list can be found in Macros, A Methodical Introduction; Minutiae;

Metavariables and Expansion Redux.

Indexing and Shuffling

I will skim a bit over this part, since it's effectively tangential to the macro-related stuff.

We want to make it so that the user can access previous values in the sequence by

indexing a ; we want it to act as a sliding window keeping the last few (in this case, 2)

elements of the sequence.

We can do this pretty easily with a wrapper type:

macro_rules! recurrence {
    ( a[n]: $sty:ty = $($inits:expr),+ , ... , $recur:expr ) => { /* ... */
};
}

/*
let fib = recurrence![a[n]: u64 = 0, 1, ..., a[n-2] + a[n-1]];

for e in fib.take(10) { println!("{}", e) }
*/

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

29 of 133 10/16/23, 10:34

https://veykril.github.io/tlborm/decl-macros/macros-methodical.html#metavariables
https://veykril.github.io/tlborm/decl-macros/macros-methodical.html#metavariables
https://veykril.github.io/tlborm/decl-macros/macros-methodical.html#metavariables
https://veykril.github.io/tlborm/decl-macros/macros-methodical.html#metavariables
https://veykril.github.io/tlborm/decl-macros/macros-methodical.html#metavariables
https://veykril.github.io/tlborm/decl-macros/macros-methodical.html#metavariables
https://veykril.github.io/tlborm/decl-macros/minutiae/metavar-and-expansion.html
https://veykril.github.io/tlborm/decl-macros/minutiae/metavar-and-expansion.html
https://veykril.github.io/tlborm/decl-macros/minutiae/metavar-and-expansion.html
https://veykril.github.io/tlborm/decl-macros/minutiae/metavar-and-expansion.html
https://veykril.github.io/tlborm/print.html#indexing-and-shuffling
https://veykril.github.io/tlborm/print.html#indexing-and-shuffling


Aside: since lifetimes come up a lot with people new to Rust, a quick explanation:

'a  and 'b  are lifetime parameters that are used to track where a reference (i.e. a

borrowed pointer to some data) is valid. In this case, IndexOffset  borrows a

reference to our iterator's data, so it needs to keep track of how long it's allowed to

hold that reference for, using 'a .

'b  is used because the Index::index  function (which is how subscript syntax is

actually implemented) is also parameterized on a lifetime, on account of returning a

borrowed reference. 'a  and 'b  are not necessarily the same thing in all cases. The

borrow checker will make sure that even though we don't explicitly relate 'a  and

'b  to one another, we don't accidentally violate memory safety.

This changes the definition of a  to:

The only remaining question is what to do about TODO_shuffle_down_and_append . I

wasn't able to find a method in the standard library with exactly the semantics I wanted,

but it isn't hard to do by hand.

struct IndexOffset<'a> {
    slice: &'a [u64; 2],
    offset: usize,
}

impl<'a> Index<usize> for IndexOffset<'a> {
type Output = u64;

fn index<'b>(&'b self, index: usize) -> &'b u64 {
use std::num::Wrapping;

let index = Wrapping(index);
let offset = Wrapping(self.offset);
let window = Wrapping(2);

let real_index = index - offset + window;
        &self.slice[real_index.0]
    }
}

let a = IndexOffset { slice: &self.mem, offset: n };

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

30 of 133 10/16/23, 10:34



This swaps the new value into the end of the array, swapping the other elements down

one space.

Aside: doing it this way means that this code will work for non-copyable types, as

well.

The working code thus far now looks like this:

{
use std::mem::swap;

let mut swap_tmp = next_val;
for i in (0..2).rev() {

        swap(&mut swap_tmp, &mut self.mem[i]);
    }
}

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

31 of 133 10/16/23, 10:34



macro_rules! recurrence {
    ( a[n]: $sty:ty = $($inits:expr),+ , ... , $recur:expr ) => { /* ... */
};
}

fn main() {
/*

    let fib = recurrence![a[n]: u64 = 0, 1, ..., a[n-2] + a[n-1]];

    for e in fib.take(10) { println!("{}", e) }
    */

let fib = {
use std::ops::Index;

struct Recurrence {
            mem: [u64; 2],
            pos: usize,
        }

struct IndexOffset<'a> {
            slice: &'a [u64; 2],
            offset: usize,
        }

impl<'a> Index<usize> for IndexOffset<'a> {
type Output = u64;

#[inline(always)]
fn index<'b>(&'b self, index: usize) -> &'b u64 {

use std::num::Wrapping;

let index = Wrapping(index);
let offset = Wrapping(self.offset);
let window = Wrapping(2);

let real_index = index - offset + window;
                &self.slice[real_index.0]
            }
        }

impl Iterator for Recurrence {
type Item = u64;

#[inline]
fn next(&mut self) -> Option<u64> {

if self.pos < 2 {
let next_val = self.mem[self.pos];
self.pos += 1;
Some(next_val)

                } else {
let next_val = {

let n = self.pos;
let a = IndexOffset { slice: &self.mem, offset: n };

                        a[n-2] + a[n-1]
                    };

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

32 of 133 10/16/23, 10:34



Note that I've changed the order of the declarations of n  and a , as well as wrapped

them(along with the recurrence expression) in a block. The reason for the first should be

obvious( n  needs to be defined first so I can use it for a ). The reason for the second is

that the borrowed reference &self.mem  will prevent the swaps later on from happening

(you cannot mutate something that is aliased elsewhere). The block ensures that the

&self.mem  borrow expires before then.

Incidentally, the only reason the code that does the mem  swaps is in a block is to narrow

the scope in which std::mem::swap  is available, for the sake of being tidy.

If we take this code and run it, we get:

Success! Now, let's copy & paste this into the macro expansion, and replace the expanded

code with an invocation. This gives us:

                    {
use std::mem::swap;

let mut swap_tmp = next_val;
for i in [1,0] {

                            swap(&mut swap_tmp, &mut self.mem[i]);
                        }
                    }

self.pos += 1;
Some(next_val)

                }
            }
        }

        Recurrence { mem: [0, 1], pos: 0 }
    };

for e in fib.take(10) { println!("{}", e) }
}

0
1
1
2
3
5
8
13
21
34

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

33 of 133 10/16/23, 10:34



macro_rules! recurrence {
    ( a[n]: $sty:ty = $($inits:expr),+ , ... , $recur:expr ) => {
        {

/*
                What follows here is *literally* the code from before,
                cut and pasted into a new position. No other changes
                have been made.
            */

use std::ops::Index;

struct Recurrence {
                mem: [u64; 2],
                pos: usize,
            }

struct IndexOffset<'a> {
                slice: &'a [u64; 2],
                offset: usize,
            }

impl<'a> Index<usize> for IndexOffset<'a> {
type Output = u64;

fn index<'b>(&'b self, index: usize) -> &'b u64 {
use std::num::Wrapping;

let index = Wrapping(index);
let offset = Wrapping(self.offset);
let window = Wrapping(2);

let real_index = index - offset + window;
                    &self.slice[real_index.0]
                }
            }

impl Iterator for Recurrence {
type Item = u64;

fn next(&mut self) -> Option<u64> {
if self.pos < 2 {

let next_val = self.mem[self.pos];
self.pos += 1;
Some(next_val)

                    } else {
let next_val = {

let n = self.pos;
let a = IndexOffset { slice: &self.mem, offset: n 

};
                            (a[n-2] + a[n-1])
                        };

                        {
use std::mem::swap;

let mut swap_tmp = next_val;

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

34 of 133 10/16/23, 10:34



Obviously, we aren't using the metavariables yet, but we can change that fairly easily.

However, if we try to compile this, rustc  aborts, telling us:

Here, we've run into a limitation of the macro_rules  system. The problem is that second

comma. When it sees it during expansion, macro_rules  can't decide if it's supposed to

parse another expression for inits , or ... . Sadly, it isn't quite clever enough to realise

that ...  isn't a valid expression, so it gives up. Theoretically, this should work as desired,

but currently doesn't.

Aside: I did fib a little about how our rule would be interpreted by the macro

system. In general, it should work as described, but doesn't in this case. The

macro_rules  machinery, as it stands, has its foibles, and its worthwhile

remembering that on occasion, you'll need to contort a little to get it to work.

In this particular case, there are two issues. First, the macro system doesn't know

what does and does not constitute the various grammar elements (e.g. an

expression); that's the parser's job. As such, it doesn't know that ...  isn't an

expression. Secondly, it has no way of trying to capture a compound grammar

element (like an expression) without 100% committing to that capture.

for i in (0..2).rev() {
                                swap(&mut swap_tmp, &mut self.mem[i]);
                            }
                        }

self.pos += 1;
Some(next_val)

                    }
                }
            }

            Recurrence { mem: [0, 1], pos: 0 }
        }
    };
}

fn main() {
let fib = recurrence![a[n]: u64 = 0, 1, ..., a[n-2] + a[n-1]];

for e in fib.take(10) { println!("{}", e) }
}

error: local ambiguity: multiple parsing options: built-in NTs expr ('inits') 
or 1 other option.
  --> src/main.rs:75:45
   |
75 |     let fib = recurrence![a[n]: u64 = 0, 1, ..., a[n-2] + a[n-1]];
   |

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

35 of 133 10/16/23, 10:34



In other words, it can ask the parser to try and parse some input as an expression,

but the parser will respond to any problems by aborting. The only way the macro

system can currently deal with this is to just try to forbid situations where this could

be a problem.

On the bright side, this is a state of affairs that exactly no one is enthusiastic about.

The macro  keyword has already been reserved for a more rigorously-defined future

macro system. Until then, needs must.

Thankfully, the fix is relatively simple: we remove the comma from the syntax. To keep

things balanced, we'll remove both commas around ... :

Success! ... or so we thought. Turns out this is being rejected by the compiler nowadays,

while it was fine back when this was written. The reason for this is that the compiler now

recognizes the ...  as a token, and as we know we may only use => , ,  or ;  after an

expression fragment. So unfortunately we are now out of luck as our dreamed up syntax

will not work out this way, so let us just choose one that looks the most befitting that we

are allowed to use instead, I'd say replacing ,  with ;  works.

Success! But for real this time.

macro_rules! recurrence {
    ( a[n]: $sty:ty = $($inits:expr),+ ... $recur:expr ) => {
//                                     ^~~ changed

/* ... */
    };
}

fn main() {
let fib = recurrence![a[n]: u64 = 0, 1 ... a[n-2] + a[n-1]];

//                                         ^~~ changed

for e in fib.take(10) { println!("{}", e) }
}

macro_rules! recurrence {
    ( a[n]: $sty:ty = $($inits:expr),+ ; ... ; $recur:expr ) => {
//                                     ^~~~~~^ changed

/* ... */
    };
}

fn main() {
let fib = recurrence![a[n]: u64 = 0, 1; ...; a[n-2] + a[n-1]];

//                                        ^~~~~^ changed

for e in fib.take(10) { println!("{}", e) }
}

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

36 of 133 10/16/23, 10:34

https://github.com/rust-lang/rust/issues/39412
https://github.com/rust-lang/rust/issues/39412


Substitution

Substituting something you've captured in a macro is quite simple; you can insert the

contents of a metavariable $sty:ty  by using $sty . So, let's go through and fix the u64 s:

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

37 of 133 10/16/23, 10:34

https://veykril.github.io/tlborm/print.html#substitution
https://veykril.github.io/tlborm/print.html#substitution


macro_rules! recurrence {
    ( a[n]: $sty:ty = $($inits:expr),+ ; ... ; $recur:expr ) => {
        {

use std::ops::Index;

struct Recurrence {
                mem: [$sty; 2],
//                    ^~~~ changed
                pos: usize,
            }

struct IndexOffset<'a> {
                slice: &'a [$sty; 2],
//                          ^~~~ changed
                offset: usize,
            }

impl<'a> Index<usize> for IndexOffset<'a> {
type Output = $sty;

//                            ^~~~ changed

#[inline(always)]
fn index<'b>(&'b self, index: usize) -> &'b $sty {

//                                                          ^~~~ changed
use std::num::Wrapping;

let index = Wrapping(index);
let offset = Wrapping(self.offset);
let window = Wrapping(2);

let real_index = index - offset + window;
                    &self.slice[real_index.0]
                }
            }

impl Iterator for Recurrence {
type Item = $sty;

//                          ^~~~ changed

#[inline]
fn next(&mut self) -> Option<$sty> {

//                                           ^~~~ changed
/* ... */

                }
            }

            Recurrence { mem: [0, 1], pos: 0 }
        }
    };
}

fn main() {
let fib = recurrence![a[n]: u64 = 0, 1; ...; a[n-2] + a[n-1]];

for e in fib.take(10) { println!("{}", e) }
}

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

38 of 133 10/16/23, 10:34



Let's tackle a harder one: how to turn inits  into both the array literal [0, 1] and the

array type, [$sty; 2] . The first one we can do like so:

This effectively does the opposite of the capture: repeat inits  one or more times,

separating each with a comma. This expands to the expected sequence of tokens: 0, 1 .

Somehow turning inits  into a literal 2  is a little trickier. It turns out that there's no

direct way to do this, but we can do it by using a second macro_rules!  macro. Let's take

this one step at a time.

The obvious case is: given zero expressions, you would expect count_exprs  to expand to

a literal 0 .

Aside: You may have noticed I used parentheses here instead of curly braces for the

expansion. macro_rules  really doesn't care what you use, so long as it's one of the

"matcher" pairs: ( ) , { }  or [ ] . In fact, you can switch out the matchers on the

macro itself(i.e. the matchers right after the macro name), the matchers around the

syntax rule, and the matchers around the corresponding expansion.

You can also switch out the matchers used when you invoke a macro, but in a more

limited fashion: a macro invoked as { ... }  or ( ... );  will always be parsed as

an item (i.e. like a struct  or fn  declaration). This is important when using macros

in a function body; it helps disambiguate between "parse like an expression" and

"parse like a statement".

What if you have one expression? That should be a literal 1 .

            Recurrence { mem: [$($inits),+], pos: 0 }
//                             ^~~~~~~~~~~ changed

macro_rules! count_exprs {
/* ??? */

}

macro_rules! count_exprs {
    () => (0);
//  ^~~~~~~~~~ added
}

macro_rules! count_exprs {
    () => (0);
    ($e:expr) => (1);
//  ^~~~~~~~~~~~~~~~~ added
}

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

39 of 133 10/16/23, 10:34



Two?

We can "simplify" this a little by re-expressing the case of two expressions recursively.

This is fine since Rust can fold 1 + 1  into a constant value. What if we have three

expressions?

Aside: You might be wondering if we could reverse the order of these rules. In this

particular case, yes, but the macro system can sometimes be picky about what it is

and is not willing to recover from. If you ever find yourself with a multi-rule macro

that you swear should work, but gives you errors about unexpected tokens, try

changing the order of the rules.

Hopefully, you can see the pattern here. We can always reduce the list of expressions by

matching one expression, followed by zero or more expressions, expanding that into 1 +

a count.

macro_rules! count_exprs {
    () => (0);
    ($e:expr) => (1);
    ($e0:expr, $e1:expr) => (2);
//  ^~~~~~~~~~~~~~~~~~~~~~~~~~~~ added
}

macro_rules! count_exprs {
    () => (0);
    ($e:expr) => (1);
    ($e0:expr, $e1:expr) => (1 + count_exprs!($e1));
//                           ^~~~~~~~~~~~~~~~~~~~~ changed
}

macro_rules! count_exprs {
    () => (0);
    ($e:expr) => (1);
    ($e0:expr, $e1:expr) => (1 + count_exprs!($e1));
    ($e0:expr, $e1:expr, $e2:expr) => (1 + count_exprs!($e1, $e2));
//  ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ added
}

macro_rules! count_exprs {
    () => (0);
    ($head:expr) => (1);
    ($head:expr, $($tail:expr),*) => (1 + count_exprs!($($tail),*));
//  ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ changed
}

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

40 of 133 10/16/23, 10:34



JFTE: this is not the only, or even the best way of counting things. You may wish to

peruse the Counting section later for a more efficient way.

With this, we can now modify recurrence  to determine the necessary size of mem .

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

41 of 133 10/16/23, 10:34

https://veykril.github.io/tlborm/decl-macros/building-blocks/counting.html
https://veykril.github.io/tlborm/decl-macros/building-blocks/counting.html


// added:
macro_rules! count_exprs {
    () => (0);
    ($head:expr) => (1);
    ($head:expr, $($tail:expr),*) => (1 + count_exprs!($($tail),*));
}

macro_rules! recurrence {
    ( a[n]: $sty:ty = $($inits:expr),+ ; ... ; $recur:expr ) => {
        {

use std::ops::Index;

const MEM_SIZE: usize = count_exprs!($($inits),+);
//          ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ added

struct Recurrence {
                mem: [$sty; MEM_SIZE],
//                          ^~~~~~~~ changed
                pos: usize,
            }

struct IndexOffset<'a> {
                slice: &'a [$sty; MEM_SIZE],
//                                ^~~~~~~~ changed
                offset: usize,
            }

impl<'a> Index<usize> for IndexOffset<'a> {
type Output = $sty;

#[inline(always)]
fn index<'b>(&'b self, index: usize) -> &'b $sty {

use std::num::Wrapping;

let index = Wrapping(index);
let offset = Wrapping(self.offset);
let window = Wrapping(MEM_SIZE);

//                                        ^~~~~~~~ changed

let real_index = index - offset + window;
                    &self.slice[real_index.0]
                }
            }

impl Iterator for Recurrence {
type Item = $sty;

#[inline]
fn next(&mut self) -> Option<$sty> {

if self.pos < MEM_SIZE {
//                                ^~~~~~~~ changed

let next_val = self.mem[self.pos];
self.pos += 1;
Some(next_val)

                    } else {
let next_val = {

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

42 of 133 10/16/23, 10:34



With that done, we can now substitute the last thing: the recur  expression.

let n = self.pos;
let a = IndexOffset { slice: &self.mem, offset: n 

};
                            (a[n-2] + a[n-1])
                        };

                        {
use std::mem::swap;

let mut swap_tmp = next_val;
for i in (0..MEM_SIZE).rev() {

//                                       ^~~~~~~~ changed
                                swap(&mut swap_tmp, &mut self.mem[i]);
                            }
                        }

self.pos += 1;
Some(next_val)

                    }
                }
            }

            Recurrence { mem: [$($inits),+], pos: 0 }
        }
    };
}
/* ... */

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

43 of 133 10/16/23, 10:34



And, when we compile our finished macro_rules!  macro...

/* ... */
#[inline]
fn next(&mut self) -> Option<u64> {

if self.pos < MEM_SIZE {
let next_val = self.mem[self.pos];
self.pos += 1;
Some(next_val)

                    } else {
let next_val = {

let n = self.pos;
let a = IndexOffset { slice: &self.mem, offset: n 

};
                            $recur
//                          ^~~~~~ changed
                        };
                        {

use std::mem::swap;
let mut swap_tmp = next_val;
for i in (0..MEM_SIZE).rev() {

                                swap(&mut swap_tmp, &mut self.mem[i]);
                            }
                        }

self.pos += 1;
Some(next_val)

                    }
                }
/* ... */

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

44 of 133 10/16/23, 10:34



... wait, what? That can't be right... let's check what the macro is expanding to.

The -Zunpretty=expanded  argument tells rustc  to perform macro expansion, then turn

the resulting AST back into source code. The output (after cleaning up some formatting) is

shown below; in particular, note the place in the code where $recur  was substituted:

error[E0425]: cannot find value `a` in this scope
  --> src/main.rs:68:50
   |
68 |     let fib = recurrence![a[n]: u64 = 1, 1; ...; a[n-2] + a[n-1]];
   |                                                  ^ not found in this 
scope

error[E0425]: cannot find value `n` in this scope
  --> src/main.rs:68:52
   |
68 |     let fib = recurrence![a[n]: u64 = 1, 1; ...; a[n-2] + a[n-1]];
   |                                                    ^ not found in this 
scope

error[E0425]: cannot find value `a` in this scope
  --> src/main.rs:68:59
   |
68 |     let fib = recurrence![a[n]: u64 = 1, 1; ...; a[n-2] + a[n-1]];
   |                                                           ^ not found in 
this scope

error[E0425]: cannot find value `n` in this scope
  --> src/main.rs:68:61
   |
68 |     let fib = recurrence![a[n]: u64 = 1, 1; ...; a[n-2] + a[n-1]];
   |                                                             ^ not found 
in this scope

$ rustc +nightly -Zunpretty=expanded recurrence.rs

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

45 of 133 10/16/23, 10:34



#![feature(no_std)]
#![no_std]
#[prelude_import]
use std::prelude::v1::*;
#[macro_use]
extern crate std as std;
fn main() {

let fib = {
use std::ops::Index;
const MEM_SIZE: usize = 1 + 1;
struct Recurrence {

            mem: [u64; MEM_SIZE],
            pos: usize,
        }

struct IndexOffset<'a> {
            slice: &'a [u64; MEM_SIZE],
            offset: usize,
        }

impl <'a> Index<usize> for IndexOffset<'a> {
type Output = u64;
#[inline(always)]
fn index<'b>(&'b self, index: usize) -> &'b u64 {

use std::num::Wrapping;
let index = Wrapping(index);
let offset = Wrapping(self.offset);
let window = Wrapping(MEM_SIZE);
let real_index = index - offset + window;

                &self.slice[real_index.0]
            }
        }

impl Iterator for Recurrence {
type Item = u64;
#[inline]
fn next(&mut self) -> Option<u64> {

if self.pos < MEM_SIZE {
let next_val = self.mem[self.pos];
self.pos += 1;
Some(next_val)

                } else {
let next_val = {

let n = self.pos;
let a = IndexOffset{slice: &self.mem, offset: n,};

                        a[n - 1] + a[n - 2]
                    };
                    {

use std::mem::swap;
let mut swap_tmp = next_val;

                        {
let result =

match
::std::iter::IntoIterator::into_iter((0..MEM_SIZE).rev()) {

mut iter => loop {
match

::std::iter::Iterator::next(&mut iter) {
                                            ::std::option::Option::Some(i) => 
{

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

46 of 133 10/16/23, 10:34



But that looks fine! If we add a few missing #![feature(...)]  attributes and feed it to a

nightly build of rustc , it even compiles! ... what?!

Aside: You can't compile the above with a non-nightly build of rustc . This is

because the expansion of the println!  macro depends on internal compiler details

which are not publicly stabilized.

                                                swap(&mut swap_tmp, &mut
self.mem[i]);
                                            }
                                            ::std::option::Option::None => 
break,
                                        }
                                    },
                                };
                            result
                        }
                    }

self.pos += 1;
Some(next_val)

                }
            }
        }
        Recurrence{mem: [0, 1], pos: 0,}
    };
    {

let result =
match ::std::iter::IntoIterator::into_iter(fib.take(10)) {

mut iter => loop {
match ::std::iter::Iterator::next(&mut iter) {

                        ::std::option::Option::Some(e) => {
                            ::std::io::_print(::std::fmt::Arguments::new_v1(
                                {

static __STATIC_FMTSTR: &'static
[&'static str] = &["", "\n"];
                                    __STATIC_FMTSTR
                                },
                                &match (&e,) {
                                    (__arg0,) => 
[::std::fmt::ArgumentV1::new(__arg0, ::std::fmt::Display::fmt)],
                                }
                            ))
                        }
                        ::std::option::Option::None => break,
                    }
                },
            };
        result
    }
}

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

47 of 133 10/16/23, 10:34



Being Hygienic

The issue here is that identifiers in Rust syntax extensions are hygienic. That is, identifiers

from two different contexts cannot collide. To show the difference, let's take a simpler

example.

This macro simply takes an expression, then wraps it in a block with a variable a  defined.

We then use this as a round-about way of computing 4 . There are actually two syntax

contexts involved in this example, but they're invisible. So, to help with this, let's give each

context a different colour. Let's start with the unexpanded code, where there is only a

single context:

Now, let's expand the invocation.

As you can see, the a  that's defined by the macro invocation is in a different context to

the a  we provided in our invocation. As such, the compiler treats them as completely

different identifiers, even though they have the same lexical appearance.

This is something to be really careful of when working on macro_rules!  macros, syntax

extensions in general even: they can produce ASTs which will not compile, but which will

compile if written out by hand, or dumped using -Zunpretty=expanded .

The solution to this is to capture the identifier with the appropriate syntax context. To do

macro_rules! using_a {
    ($e:expr) => {
        {

let a = 42;
            $e
        }
    }
}

let four = using_a!(a / 10);

macro_rules! using_a {
    ($e:expr) => {
        {

let a = 42;
$e

        }
    }
}

let four = using_a!(a / 10);

let four = {
let a = 42;
a / 10

};

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

48 of 133 10/16/23, 10:34

https://veykril.github.io/tlborm/print.html#being-hygienic
https://veykril.github.io/tlborm/print.html#being-hygienic


that, we need to again adjust our macro syntax. To continue with our simpler example:

This now expands to:

Now, the contexts match, and the code will compile. We can make this adjustment to our

recurrence!  macro by explicitly capturing a  and n . After making the necessary

changes, we have:

macro_rules! using_a {
    ($a:ident, $e:expr) => {
        {

let $a = 42;
$e

        }
    }
}

let four = using_a!(a, a / 10);

let four = {
let a = 42;
a / 10

};

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

49 of 133 10/16/23, 10:34



macro_rules! count_exprs {
    () => (0);
    ($head:expr) => (1);
    ($head:expr, $($tail:expr),*) => (1 + count_exprs!($($tail),*));
}

macro_rules! recurrence {
    ( $seq:ident [ $ind:ident ]: $sty:ty = $($inits:expr),+ ; ... ; 
$recur:expr ) => {
//    ^~~~~~~~~~   ^~~~~~~~~~ changed
        {

use std::ops::Index;

const MEM_SIZE: usize = count_exprs!($($inits),+);

struct Recurrence {
                mem: [$sty; MEM_SIZE],
                pos: usize,
            }

struct IndexOffset<'a> {
                slice: &'a [$sty; MEM_SIZE],
                offset: usize,
            }

impl<'a> Index<usize> for IndexOffset<'a> {
type Output = $sty;

#[inline(always)]
fn index<'b>(&'b self, index: usize) -> &'b $sty {

use std::num::Wrapping;

let index = Wrapping(index);
let offset = Wrapping(self.offset);
let window = Wrapping(MEM_SIZE);

let real_index = index - offset + window;
                    &self.slice[real_index.0]
                }
            }

impl Iterator for Recurrence {
type Item = $sty;

#[inline]
fn next(&mut self) -> Option<$sty> {

if self.pos < MEM_SIZE {
let next_val = self.mem[self.pos];
self.pos += 1;
Some(next_val)

                    } else {
let next_val = {

let $ind = self.pos;
//                              ^~~~ changed

let $seq = IndexOffset { slice: &self.mem, 
offset: $ind };

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

50 of 133 10/16/23, 10:34



And it compiles! Now, let's try with a different sequence.

Which gives us:

Success!

//                              ^~~~ changed
                            $recur
                        };

                        {
use std::mem::swap;

let mut swap_tmp = next_val;
for i in (0..MEM_SIZE).rev() {

                                swap(&mut swap_tmp, &mut self.mem[i]);
                            }
                        }

self.pos += 1;
Some(next_val)

                    }
                }
            }

            Recurrence { mem: [$($inits),+], pos: 0 }
        }
    };
}

fn main() {
let fib = recurrence![a[n]: u64 = 0, 1; ...; a[n-2] + a[n-1]];

for e in fib.take(10) { println!("{}", e) }
}

for e in recurrence!(f[i]: f64 = 1.0; ...; f[i-1] * i as f64).take(10) {
println!("{}", e)

}

1
1
2
6
24
120
720
5040
40320
362880

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

51 of 133 10/16/23, 10:34



Minutiae

This section goes through some of the finer details of the macro_rules!  system. At a

minimum, you should try to be at least aware of these details and issues.

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

52 of 133 10/16/23, 10:34

https://veykril.github.io/tlborm/print.html#minutiae
https://veykril.github.io/tlborm/print.html#minutiae


Fragment Specifiers

As mentioned in the methodical introduction  chapter, Rust, as of 1.60, has 14 fragment

specifiers. This section will go a bit more into detail for some of them and shows a few

example inputs of what each matcher matches.

Note: Capturing with anything but the ident , lifetime  and tt  fragments will

render the captured AST opaque, making it impossible to further match it with other

fragment specifiers in future macro invocations.

• block

• expr

• ident

• item

• lifetime

• literal

• meta

• pat

• pat_param

• path

• stmt

• tt

• ty

• vis

block

The block  fragment solely matches a block expression, which consists of an opening {

brace, followed by any number of statements and finally followed by a closing }  brace.

macro_rules! blocks {
    ($($block:block)*) => ();
}

blocks! {
    {}
    {

let zig;
    }
    { 2 }
}

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

53 of 133 10/16/23, 10:34

https://veykril.github.io/tlborm/print.html#fragment-specifiers
https://veykril.github.io/tlborm/print.html#fragment-specifiers
https://veykril.github.io/tlborm/decl-macros/macros-methodical.html
https://veykril.github.io/tlborm/decl-macros/macros-methodical.html
https://veykril.github.io/tlborm/decl-macros/macros-methodical.html
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#block
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#block
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#block
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#expr
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#expr
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#expr
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#ident
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#ident
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#ident
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#item
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#item
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#item
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#lifetime
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#lifetime
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#lifetime
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#literal
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#literal
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#literal
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#meta
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#meta
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#meta
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#pat
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#pat
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#pat
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#pat_param
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#pat_param
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#pat_param
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#path
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#path
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#path
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#stmt
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#stmt
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#stmt
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#tt
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#tt
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#tt
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#ty
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#ty
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#ty
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#vis
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#vis
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#vis
https://veykril.github.io/tlborm/print.html#block
https://veykril.github.io/tlborm/print.html#block
https://veykril.github.io/tlborm/print.html#block
https://doc.rust-lang.org/reference/expressions/block-expr.html
https://doc.rust-lang.org/reference/expressions/block-expr.html


expr

The expr  fragment matches any kind of expression (Rust has a lot of them, given it is an

expression orientated language).

ident

The ident  fragment matches an identifier or keyword.

item

The item  fragment simply matches any of Rust's item definitions, not identifiers that refer

to items. This includes visibility modifiers.

macro_rules! expressions {
    ($($expr:expr)*) => ();
}

expressions! {
"literal"

    funcall()
    future.await

break 'foo bar
}

macro_rules! idents {
    ($($ident:ident)*) => ();
}

idents! {
// _ <- This is not an ident, it is a pattern

    foo
async

    O_________O
    _____O_____
}

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

54 of 133 10/16/23, 10:34

https://veykril.github.io/tlborm/print.html#expr
https://veykril.github.io/tlborm/print.html#expr
https://veykril.github.io/tlborm/print.html#expr
https://doc.rust-lang.org/reference/expressions.html
https://doc.rust-lang.org/reference/expressions.html
https://veykril.github.io/tlborm/print.html#ident
https://veykril.github.io/tlborm/print.html#ident
https://veykril.github.io/tlborm/print.html#ident
https://doc.rust-lang.org/reference/identifiers.html
https://doc.rust-lang.org/reference/identifiers.html
https://veykril.github.io/tlborm/print.html#item
https://veykril.github.io/tlborm/print.html#item
https://veykril.github.io/tlborm/print.html#item
https://doc.rust-lang.org/reference/items.html
https://doc.rust-lang.org/reference/items.html


lifetime

The lifetime  fragment matches a lifetime or label. It's quite similar to ident  but with a

prepended ' .

literal

The literal  fragment matches any literal expression.

macro_rules! items {
    ($($item:item)*) => ();
}

items! {
struct Foo;
enum Bar {

        Baz
    }

impl Foo {}
pub use crate::foo;
/*...*/

}

macro_rules! lifetimes {
    ($($lifetime:lifetime)*) => ();
}

lifetimes! {
'static
'shiv
'_

}

macro_rules! literals {
    ($($literal:literal)*) => ();
}

literals! {
    -1

"hello world"
2.3
b'b'
true

}

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

55 of 133 10/16/23, 10:34

https://veykril.github.io/tlborm/print.html#lifetime
https://veykril.github.io/tlborm/print.html#lifetime
https://veykril.github.io/tlborm/print.html#lifetime
https://doc.rust-lang.org/reference/tokens.html#lifetimes-and-loop-labels
https://doc.rust-lang.org/reference/tokens.html#lifetimes-and-loop-labels
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#ident
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#ident
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#ident
https://veykril.github.io/tlborm/print.html#literal
https://veykril.github.io/tlborm/print.html#literal
https://veykril.github.io/tlborm/print.html#literal
https://doc.rust-lang.org/reference/expressions/literal-expr.html
https://doc.rust-lang.org/reference/expressions/literal-expr.html


meta

The meta  fragment matches the contents of an attribute. That is, it will match a simple

path, one without generic arguments followed by a delimited token tree or an =  followed

by a literal expression.

Note: You will usually see this fragment being used in a matcher like

#[$meta:meta]  or #![$meta:meta]  to actually capture an attribute.

Doc-Comment Fact: Doc-Comments like /// ...  and //! ...  are actually syntax

sugar for attributes! They desugar to #[doc="..."]  and #![doc="..."]

respectively, meaning you can match on them like with attributes!

pat

The pat  fragment matches any kind of pattern, including or-patterns starting with the

2021 edition.

macro_rules! metas {
    ($($meta:meta)*) => ();
}

metas! {
    ASimplePath
    super::man
    path = "home"
    foo(bar)
}

macro_rules! patterns {
    ($($pat:pat)*) => ();
}

patterns! {
"literal"

    _
0..5
ref mut PatternsAreNice
0 | 1 | 2 | 3

}

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

56 of 133 10/16/23, 10:34

https://veykril.github.io/tlborm/print.html#meta
https://veykril.github.io/tlborm/print.html#meta
https://veykril.github.io/tlborm/print.html#meta
https://doc.rust-lang.org/reference/attributes.html
https://doc.rust-lang.org/reference/attributes.html
https://veykril.github.io/tlborm/print.html#pat
https://veykril.github.io/tlborm/print.html#pat
https://veykril.github.io/tlborm/print.html#pat
https://doc.rust-lang.org/reference/patterns.html
https://doc.rust-lang.org/reference/patterns.html


pat_param

In the 2021 edition, the behavior for the pat  fragment type has been changed to allow

or-patterns to be parsed. This changes the follow list of the fragment, preventing such

fragment from being followed by a |  token. To avoid this problem or to get the old

fragment behavior back one can use the pat_param  fragment which allows |  to follow it,

as it disallows top level or-patterns.

path

The path  fragment matches a so called TypePath style path. This includes the function

style trait forms, Fn() -> () .

stmt

The statement  fragment solely matches a statement without its trailing semicolon,

unless it is an item statement that requires one (such as a Unit-Struct).

Let's use a simple example to show exactly what is meant with this. We use a macro that

merely emits what it captures:

macro_rules! patterns {
    ($( $( $pat:pat_param )|+ )*) => ();
}

patterns! {
"literal"

    _
0..5
ref mut PatternsAreNice
0 | 1 | 2 | 3

}

macro_rules! paths {
    ($($path:path)*) => ();
}

paths! {
    ASimplePath
    ::A::B::C::D
    G::<eneri>::C

FnMut(u32) -> ()
}

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

57 of 133 10/16/23, 10:34

https://veykril.github.io/tlborm/print.html#pat_param
https://veykril.github.io/tlborm/print.html#pat_param
https://veykril.github.io/tlborm/print.html#pat_param
https://veykril.github.io/tlborm/print.html#path
https://veykril.github.io/tlborm/print.html#path
https://veykril.github.io/tlborm/print.html#path
https://doc.rust-lang.org/reference/paths.html#paths-in-types
https://doc.rust-lang.org/reference/paths.html#paths-in-types
https://veykril.github.io/tlborm/print.html#stmt
https://veykril.github.io/tlborm/print.html#stmt
https://veykril.github.io/tlborm/print.html#stmt
https://doc.rust-lang.org/reference/statements.html
https://doc.rust-lang.org/reference/statements.html


Expanding this, via the playground for example1, gives us roughly the following:

From this we can tell a few things.

The first you should be able to see immediately is that while the stmt  fragment doesn't

capture trailing semicolons, it still emits them when required, even if the statement is

already followed by one. The simple reason for that is that semicolons on their own are

already valid statements which the fragment captures eagerly. So our macro isn't

capturing 8 times, but 10! This can be important when doing multiples repetitions and

expanding these in one repetition expansion, as the repetition numbers have to match in

those cases.

Another thing you should be able to notice here is that the trailing semicolon of the

struct Foo;  item statement is being matched, otherwise we would've seen an extra one

like in the other cases. This makes sense as we already said, that for item statements that

require one, the trailing semicolon will be matched with.

A last observation is that expressions get emitted back with a trailing semicolon, unless

macro_rules! statements {
    ($($stmt:stmt)*) => ($($stmt)*);
}

fn main() {
    statements! {

struct Foo;
fn foo() {}
let zig = 3
let zig = 3;
3
3;
if true {} else {}

        {}
    }
}

/* snip */

fn main() {
struct Foo;
fn foo() { }
let zig = 3;
let zig = 3;

    ;
3;
3;

    ;
if true { } else { }

    { }
}

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

58 of 133 10/16/23, 10:34

https://play.rust-lang.org/
https://play.rust-lang.org/
https://veykril.github.io/tlborm/print.html#debugging
https://veykril.github.io/tlborm/print.html#debugging


the expression solely consists of only a block expression or control flow expression.

The fine details of what was just mentioned here can be looked up in the reference.

Fortunately, these fine details here are usually not of importance whatsoever, with the

small exception that was mentioned earlier in regards to repetitions which by itself

shouldn't be a common problem to run into.

1 See the debugging chapter for tips on how to do this.

tt

The tt  fragment matches a TokenTree. If you need a refresher on what exactly a

TokenTree was you may want to revisit the TokenTree chapter of this book. The tt

fragment is one of the most powerful fragments, as it can match nearly anything while

still allowing you to inspect the contents of it at a later state in the macro.

This allows one to make use of very powerful patterns like the tt-muncher or the push-

down-accumulator.

ty

The ty  fragment matches any kind of type expression.

vis

The vis  fragment matches a possibly empty Visibility qualifier.

macro_rules! types {
    ($($type:ty)*) => ();
}

types! {
    foo::bar

bool
    [u8]

impl IntoIterator<Item = u32>
}

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

59 of 133 10/16/23, 10:34

https://doc.rust-lang.org/reference/statements.html
https://doc.rust-lang.org/reference/statements.html
https://veykril.github.io/tlborm/decl-macros/minutiae/debugging.html
https://veykril.github.io/tlborm/decl-macros/minutiae/debugging.html
https://veykril.github.io/tlborm/print.html#tt
https://veykril.github.io/tlborm/print.html#tt
https://veykril.github.io/tlborm/print.html#tt
https://veykril.github.io/tlborm/syntax-extensions/source-analysis.html#token-trees
https://veykril.github.io/tlborm/syntax-extensions/source-analysis.html#token-trees
https://veykril.github.io/tlborm/decl-macros/patterns/tt-muncher.html
https://veykril.github.io/tlborm/decl-macros/patterns/tt-muncher.html
https://veykril.github.io/tlborm/decl-macros/patterns/push-down-acc.html
https://veykril.github.io/tlborm/decl-macros/patterns/push-down-acc.html
https://veykril.github.io/tlborm/decl-macros/patterns/push-down-acc.html
https://veykril.github.io/tlborm/decl-macros/patterns/push-down-acc.html
https://veykril.github.io/tlborm/print.html#ty
https://veykril.github.io/tlborm/print.html#ty
https://veykril.github.io/tlborm/print.html#ty
https://doc.rust-lang.org/reference/types.html#type-expressions
https://doc.rust-lang.org/reference/types.html#type-expressions
https://veykril.github.io/tlborm/print.html#vis
https://veykril.github.io/tlborm/print.html#vis
https://veykril.github.io/tlborm/print.html#vis
https://doc.rust-lang.org/reference/visibility-and-privacy.html
https://doc.rust-lang.org/reference/visibility-and-privacy.html


While able to match empty sequences of tokens, the fragment specifier still acts quite

different from optional repetitions which is described in the following:

If it is being matched against no left over tokens the entire macro matching fails.

$vis:vis $ident:ident  matches fine, unlike $(pub)? $ident:ident  which is

ambiguous, as pub  denotes a valid identifier.

Being a fragment that matches the empty token sequence also gives it a very interesting

quirk in combination with tt  fragments and recursive expansions.

When matching the empty token sequence, the metavariable will still count as a capture

and since it is not a tt , ident  or lifetime  fragment it will become opaque to further

expansions. This means if this capture is passed onto another macro invocation that

captures it as a tt  you effectively end up with token tree that contains nothing!

macro_rules! visibilities {
//         ∨~~Note this comma, since we cannot repeat a `vis` fragment on 

its own
    ($($vis:vis,)*) => ();
}

visibilities! {
    , // no vis is fine, due to the implicit `?`

pub,
pub(crate),
pub(in super),
pub(in some_path),

}

macro_rules! non_optional_vis {
    ($vis:vis) => ();
}
non_optional_vis!();
// ^^^^^^^^^^^^^^^^ error: missing tokens in macro arguments

macro_rules! vis_ident {
    ($vis:vis $ident:ident) => ();
}
vis_ident!(pub foo); // this works fine

macro_rules! pub_ident {
    ($(pub)? $ident:ident) => ();
}
pub_ident!(pub foo);

// ^^^ error: local ambiguity when calling macro `pub_ident`: 
multiple parsing options: built-in NTs ident ('ident') or 1 other option.

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

60 of 133 10/16/23, 10:34

https://veykril.github.io/tlborm/decl-macros/macros-methodical.html#repetitions
https://veykril.github.io/tlborm/decl-macros/macros-methodical.html#repetitions


macro_rules! it_is_opaque {
    (()) => { "()" };
    (($tt:tt)) => { concat!("$tt is ", stringify!($tt)) };
    ($vis:vis ,) => { it_is_opaque!( ($vis) ); }
}
fn main() {

// this prints "$tt is ", as the recursive calls hits the second branch 
with

// an empty tt, opposed to matching with the first branch!
println!("{}", it_is_opaque!(,));

}

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

61 of 133 10/16/23, 10:34



Metavariables and Expansion Redux

Once the parser begins consuming tokens for a metavariable, it cannot stop or backtrack.

This means that the second rule of the following macro cannot ever match, no matter

what input is provided:

Consider what happens if this macro is invoked as dead_rule!(x+) . The interpreter will

start at the first rule, and attempt to parse the input as an expression. The first token x  is

valid as an expression. The second token is also valid in an expression, forming a binary

addition node.

At this point, given that there is no right-hand side of the addition, you might expect the

parser to give up and try the next rule. Instead, the parser will panic and abort the entire

compilation, citing a syntax error.

As such, it is important in general that you write macro rules from most-specific to least-

specific.

To defend against future syntax changes altering the interpretation of macro input,

macro_rules!  restricts what can follow various metavariables. The complete list, showing

what may follow what fragment specifier, as of Rust 1.46 is as follows:

• stmt  and expr : => , , , or ;

• pat : => , , , = , if , in 1

• pat_param : => , , , = , | , if , in

• path  and ty : => , , , = , | , ; , : , > , >> , [ , { , as , where , or a macro variable

of the block  fragment specifier.

• vis : , , an identifier other than a non-raw priv , any token that can begin a type or

a metavariable with an ident , ty , or path  fragment specifier.

• All other fragment specifiers have no restrictions.

1 Edition Differences: Before the 2021 edition, pat  may also be followed by | .

Repetitions also adhere to these restrictions, meaning if a repetition can repeat multiple

times( *  or + ), then the contents must be able to follow themselves. If a repetition can

repeat zero times ( ?  or * ) then what comes after the repetition must be able to follow

what comes before.

The parser also does not perform any kind of lookahead. That means if the compiler

macro_rules! dead_rule {
    ($e:expr) => { ... };
    ($i:ident +) => { ... };
}

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

62 of 133 10/16/23, 10:34

https://veykril.github.io/tlborm/print.html#metavariables-and-expansion-redux
https://veykril.github.io/tlborm/print.html#metavariables-and-expansion-redux
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#stmt
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#stmt
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#stmt
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#expr
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#expr
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#expr
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#pat
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#pat
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#pat
https://veykril.github.io/tlborm/print.html#pat-edition
https://veykril.github.io/tlborm/print.html#pat-edition
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#pat_param
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#pat_param
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#pat_param
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#path
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#path
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#path
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#ty
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#ty
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#ty
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#block
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#block
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#block
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#vis
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#vis
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#vis
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#ident
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#ident
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#ident
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#ty
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#ty
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#ty
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#path
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#path
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#path


cannot unambiguously determine how to parse the macro invocation one token at a time,

it will abort with an ambiguity error. A simple example that triggers this:

The parser does not look ahead past the identifier to see if the following token is a ) ,

which would allow it to parse properly.

One aspect of substitution that often surprises people is that substitution is not token-

based, despite very much looking like it.

Consider the following:

The output is:

macro_rules! ambiguity {
    ($($i:ident)* $i2:ident) => { };
}

// error:
//    local ambiguity: multiple parsing options: built-in NTs ident ('i') or 
ident ('i2').
ambiguity!(an_identifier);

macro_rules! capture_then_match_tokens {
    ($e:expr) => {match_tokens!($e)};
}

macro_rules! match_tokens {
    ($a:tt + $b:tt) => {"got an addition"};
    (($i:ident)) => {"got an identifier"};
    ($($other:tt)*) => {"got something else"};
}

fn main() {
println!("{}\n{}\n{}\n",

        match_tokens!((caravan)),
        match_tokens!(3 + 6),
        match_tokens!(5));

println!("{}\n{}\n{}",
        capture_then_match_tokens!((caravan)),
        capture_then_match_tokens!(3 + 6),
        capture_then_match_tokens!(5));
}

got an identifier
got an addition
got something else

got something else
got something else
got something else

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

63 of 133 10/16/23, 10:34



By parsing the input into an AST node, the substituted result becomes un-destructible; i.e.

you cannot examine the contents or match against it ever again.

Here is another example which can be particularly confusing:

The output is:

The only way to avoid this is to capture using the tt , ident  or lifetime  kinds. Once

you capture with anything else, the only thing you can do with the result from then on is

substitute it directly into the output.

macro_rules! capture_then_what_is {
    (#[$m:meta]) => {what_is!(#[$m])};
}

macro_rules! what_is {
    (#[no_mangle]) => {"no_mangle attribute"};
    (#[inline]) => {"inline attribute"};
    ($($tts:tt)*) => {concat!("something else (", stringify!($($tts)*), 
")")};
}

fn main() {
println!(

"{}\n{}\n{}\n{}",
        what_is!(#[no_mangle]),
        what_is!(#[inline]),
        capture_then_what_is!(#[no_mangle]),
        capture_then_what_is!(#[inline]),
    );
}

no_mangle attribute
inline attribute
something else (#[no_mangle])
something else (#[inline])

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

64 of 133 10/16/23, 10:34

https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#tt
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#tt
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#tt
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#ident
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#ident
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#ident
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#lifetime
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#lifetime
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#lifetime


Metavariable Expressions

RFC: rfcs#1584

Tracking Issue: rust#83527

Feature: #![feature(macro_metavar_expr)]

Note: The example code snippets are very bare bones, trying to show off how they

work. If you think you got small snippets with proper isolated usage of these

expression please submit them!

As mentioned in the methodical introduction , Rust has special expressions that can be

used by macro transcribers to obtain information about metavariables that are otherwise

difficult or even impossible to get. This chapter will introduce them more in-depth

together with usage examples.

• $$

• ${count(ident, depth)}

• ${index(depth)}

• ${length(depth)}

• ${ignore(ident)}

Dollar Dollar ($$)

The $$  expression expands to a single $ , making it effectively an escaped $ . This

enables the ability in writing macros emitting new macros as the former macro won't

transcribe metavariables, repetitions and metavariable expressions that have an escaped

$ .

We can see the problem without using $$  in the following snippet:

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

65 of 133 10/16/23, 10:34

https://veykril.github.io/tlborm/print.html#metavariable-expressions-1
https://veykril.github.io/tlborm/print.html#metavariable-expressions-1
https://github.com/rust-lang/rfcs/blob/master/text/3086-macro-metavar-expr.md
https://github.com/rust-lang/rfcs/blob/master/text/3086-macro-metavar-expr.md
https://github.com/rust-lang/rust/issues/83527
https://github.com/rust-lang/rust/issues/83527
https://veykril.github.io/tlborm/decl-macros/macros-methodical.html
https://veykril.github.io/tlborm/decl-macros/macros-methodical.html
https://veykril.github.io/tlborm/decl-macros/macros-methodical.html
https://veykril.github.io/tlborm/decl-macros/minutiae/metavar-expr.html#dollar-dollar-
https://veykril.github.io/tlborm/decl-macros/minutiae/metavar-expr.html#dollar-dollar-
https://veykril.github.io/tlborm/decl-macros/minutiae/metavar-expr.html#dollar-dollar-
https://veykril.github.io/tlborm/decl-macros/minutiae/metavar-expr.html#countident-depth
https://veykril.github.io/tlborm/decl-macros/minutiae/metavar-expr.html#countident-depth
https://veykril.github.io/tlborm/decl-macros/minutiae/metavar-expr.html#countident-depth
https://veykril.github.io/tlborm/decl-macros/minutiae/metavar-expr.html#indexdepth
https://veykril.github.io/tlborm/decl-macros/minutiae/metavar-expr.html#indexdepth
https://veykril.github.io/tlborm/decl-macros/minutiae/metavar-expr.html#indexdepth
https://veykril.github.io/tlborm/decl-macros/minutiae/metavar-expr.html#lengthdepth
https://veykril.github.io/tlborm/decl-macros/minutiae/metavar-expr.html#lengthdepth
https://veykril.github.io/tlborm/decl-macros/minutiae/metavar-expr.html#lengthdepth
https://veykril.github.io/tlborm/decl-macros/minutiae/metavar-expr.html#ignoreident
https://veykril.github.io/tlborm/decl-macros/minutiae/metavar-expr.html#ignoreident
https://veykril.github.io/tlborm/decl-macros/minutiae/metavar-expr.html#ignoreident
https://veykril.github.io/tlborm/print.html#dollar-dollar-
https://veykril.github.io/tlborm/print.html#dollar-dollar-
https://veykril.github.io/tlborm/print.html#dollar-dollar-
https://veykril.github.io/tlborm/print.html#dollar-dollar-
https://veykril.github.io/tlborm/print.html#dollar-dollar-


The problem is obvious, the transcriber of foo sees a repetition and tries to repeat it

when transcribing, but there is no $any  metavariable in its scope causing it to fail. With

$$  we can get around this as the transcriber of foo  will no longer try to do the

repetition.1

1 Before $$  occurs, users must resort to a tricky and not so well-known hack to declare nested

macros with repetitions via using $tt  like this.

count(ident, depth)

The count  metavariable expression expands to the repetition count of the metavariable

$ident  up to the given repetition depth.

• The ident  argument must be a declared metavariable in the scope of the rule.

• The depth  argument must be an integer literal of value less or equal to the

maximum repetition depth that the $ident  metavariable appears in.

• The expression expands to an unsuffixed integer literal token.

The count(ident)  expression defaults depth  to the maximum valid depth, making it

count the total repetitions for the given metavariable.

macro_rules! foo {
    () => {

macro_rules! bar {
            ( $( $any:tt )* ) => { $( $any )* };

// ^^^^^^^^^^^ error: attempted to repeat an expression 
containing no syntax variables matched as repeating at this depth
        }
    };
}

foo!();

#![feature(macro_metavar_expr)]

macro_rules! foo {
    () => {

macro_rules! bar {
            ( $$( $$any:tt )* ) => { $$( $$any )* };
        }
    };
}

foo!();
bar!();

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

66 of 133 10/16/23, 10:34

https://veykril.github.io/tlborm/print.html#tt-$
https://veykril.github.io/tlborm/print.html#tt-$
https://play.rust-lang.org/?version=nightly&mode=debug&edition=2021&gist=9ce18fc79ce17c77d20e74f3c46ee13c
https://play.rust-lang.org/?version=nightly&mode=debug&edition=2021&gist=9ce18fc79ce17c77d20e74f3c46ee13c
https://play.rust-lang.org/?version=nightly&mode=debug&edition=2021&gist=9ce18fc79ce17c77d20e74f3c46ee13c
https://play.rust-lang.org/?version=nightly&mode=debug&edition=2021&gist=9ce18fc79ce17c77d20e74f3c46ee13c
https://play.rust-lang.org/?version=nightly&mode=debug&edition=2021&gist=9ce18fc79ce17c77d20e74f3c46ee13c
https://veykril.github.io/tlborm/print.html#countident-depth
https://veykril.github.io/tlborm/print.html#countident-depth
https://veykril.github.io/tlborm/print.html#countident-depth


index(depth)

The index(depth)  metavariable expression expands to the current iteration index of the

repetition at the given depth.

• The depth  argument targets the repetition at depth  counting outwards from the

inner-most repetition where the expression is invoked.

• The expression expands to an unsuffixed integer literal token.

The index()  expression defaults depth  to 0 , making it a shorthand for index(0) .

#![feature(macro_metavar_expr)]

macro_rules! foo {
    ( $( $outer:ident ( $( $inner:ident ),* ) ; )* ) => {

println!("count(outer, 0): $outer repeats {} times", 
${count(outer)});

println!("count(inner, 0): The $inner repetition repeats {} times in 
the outer repetition", ${count(inner, 0)});

println!("count(inner, 1): $inner repeats {} times in the inner 
repetitions", ${count(inner, 1)});
    };
}

fn main() {
    foo! {
        outer () ;
        outer ( inner , inner ) ;
        outer () ;
        outer ( inner ) ;
    };
}

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

67 of 133 10/16/23, 10:34

https://veykril.github.io/tlborm/print.html#indexdepth
https://veykril.github.io/tlborm/print.html#indexdepth
https://veykril.github.io/tlborm/print.html#indexdepth


length(depth)

The length(depth)  metavariable expression expands to the iteration count of the

repetition at the given depth.

• The depth  argument targets the repetition at depth  counting outwards from the

inner-most repetition where the expression is invoked.

• The expression expands to an unsuffixed integer literal token.

The length()  expression defaults depth  to 0 , making it a shorthand for length(0) .

#![feature(macro_metavar_expr)]

macro_rules! attach_iteration_counts {
    ( $( ( $( $inner:ident ),* ) ; )* ) => {
        ( $(
            $((

stringify!($inner),
                ${index(1)}, // this targets the outer repetition
                ${index()}  // and this, being an alias for `index(0)` 
targets the inner repetition
            ),)*
        )* )
    };
}

fn main() {
let v = attach_iteration_counts! {

        ( hello ) ;
        ( indices , of ) ;
        () ;
        ( these, repetitions ) ;
    };

println!("{v:?}");
}

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

68 of 133 10/16/23, 10:34

https://veykril.github.io/tlborm/print.html#lengthdepth
https://veykril.github.io/tlborm/print.html#lengthdepth
https://veykril.github.io/tlborm/print.html#lengthdepth


ignore(ident)

The ignore(ident)  metavariable expression expands to nothing, making it possible to

expand something as often as a metavariable repeats without expanding the

metavariable.

• The ident  argument must be a declared metavariable in the scope of the rule.

#![feature(macro_metavar_expr)]

macro_rules! lets_count {
    ( $( $outer:ident ( $( $inner:ident ),* ) ; )* ) => {
        $(
            $(

println!(
"'{}' in inner iteration {}/{} with '{}' in outer 

iteration {}/{} ",
stringify!($inner), ${index()}, ${length()},
stringify!($outer), ${index(1)}, ${length(1)},

                );
            )*
        )*
    };
}

fn main() {
    lets_count!(
        many (small , things) ;
        none () ;
        exactly ( one ) ;
    );
}

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

69 of 133 10/16/23, 10:34

https://veykril.github.io/tlborm/print.html#ignoreident
https://veykril.github.io/tlborm/print.html#ignoreident
https://veykril.github.io/tlborm/print.html#ignoreident


#![feature(macro_metavar_expr)]

macro_rules! repetition_tuples {
    ( $( ( $( $inner:ident ),* ) ; )* ) => {
        ($(
            $(
                (
                    ${index()},
                    ${index(1)}
                    ${ignore(inner)} // without this metavariable expression, 
compilation would fail
                ),
            )*
        )*)
    };
}

fn main() {
let tuple = repetition_tuples!(

        ( one, two ) ;
        () ;
        ( one ) ;
        ( one, two, three ) ;
    );

println!("{tuple:?}");
}

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

70 of 133 10/16/23, 10:34



Hygiene

macro_rules!  macros in Rust are partially hygienic, also called mixed hygiene.

Specifically, they are hygienic when it comes to local variables, labels and $crate , but

nothing else.

Hygiene works by attaching an invisible "syntax context" value to all identifiers. When two

identifiers are compared, both the identifiers' textual names and syntax contexts must be

identical for the two to be considered equal.

To illustrate this, consider the following code:

We will use the background colour to denote the syntax context. Now, let's expand the

macro invocation:

First, recall that macro_rules!  invocations effectively disappear during expansion.

Second, if you attempt to compile this code, the compiler will respond with something

along the following lines:

Note that the background colour (i.e. syntax context) for the expanded macro changes as

part of expansion. Each macro_rules!  macro expansion is given a new, unique syntax

context for its contents. As a result, there are two different a s in the expanded code: one

in the first syntax context, the second in the other. In other words, a  is not the same

identifier as a , however similar they may appear.

macro_rules! using_a {
    ($e:expr) => {
        {

let a = 42;
            $e
        }
    }
}

let four = using_a!(a / 10);

let four = {
let a = 42;
a / 10

};

error[E0425]: cannot find value `a` in this scope
  --> src/main.rs:13:21
   |
13 | let four = using_a!(a / 10);
   |                     ^ not found in this scope

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

71 of 133 10/16/23, 10:34

https://veykril.github.io/tlborm/print.html#hygiene-1
https://veykril.github.io/tlborm/print.html#hygiene-1


That said, tokens that were substituted into the expanded output retain their original

syntax context (by virtue of having been provided to the macro as opposed to being part

of the macro itself). Thus, the solution is to modify the macro as follows:

Which, upon expansion becomes:

The compiler will accept this code because there is only one a  being used.

$crate

Hygiene is also the reason that we need the $crate  metavariable when our macro needs

access to other items in the defining crate. What this special metavariable does is that it

expands to an absolute path to the defining crate.

macro_rules! using_a {
    ($a:ident, $e:expr) => {
        {

let $a = 42;
            $e
        }
    }
}

let four = using_a!(a, a / 10);

let four = {
let a = 42;
a / 10

};

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

72 of 133 10/16/23, 10:34

https://veykril.github.io/tlborm/print.html#crate
https://veykril.github.io/tlborm/print.html#crate
https://veykril.github.io/tlborm/print.html#crate


Note that, because $crate  refers to the current crate, it must be used with a fully

qualified module path when referring to non-macro items:

//// Definitions in the `helper_macro` crate.
#[macro_export]
macro_rules! helped {

// () => { helper!() } // This might lead to an error due to 'helper' not 
being in scope.
    () => { $crate::helper!() }
}

#[macro_export]
macro_rules! helper {
    () => { () }
}

//// Usage in another crate.
// Note that `helper_macro::helper` is not imported!
use helper_macro::helped;

fn unit() {
// but it still works due to `$crate` properly expanding to the crate path 

`helper_macro`
   helped!();
}

pub mod inner {
#[macro_export]
macro_rules! call_foo {

        () => { $crate::inner::foo() };
    }

pub fn foo() {}
}

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

73 of 133 10/16/23, 10:34



Non-Identifier Identifiers

There are two tokens which you are likely to run into eventually that look like identifiers,

but aren't. Except when they are.

First is self . This is very definitely a keyword. However, it also happens to fit the

definition of an identifier. In regular Rust code, there's no way for self  to be interpreted

as an identifier, but it can happen with macro_rules!  macros:

The above outputs:

But that makes no sense; call_with_ident!  required an identifier, matched one, and

substituted it! So self  is both a keyword and not a keyword at the same time. You might

wonder how this is in any way important. Take this example:

This fails to compile with:

macro_rules! what_is {
    (self) => {"the keyword `self`"};
    ($i:ident) => {concat!("the identifier `", stringify!($i), "`")};
}

macro_rules! call_with_ident {
    ($c:ident($i:ident)) => {$c!($i)};
}

fn main() {
println!("{}", what_is!(self));
println!("{}", call_with_ident!(what_is(self)));

}

the keyword `self`
the keyword `self`

macro_rules! make_mutable {
    ($i:ident) => {let mut $i = $i;};
}

struct Dummy(i32);

impl Dummy {
fn double(self) -> Dummy {

        make_mutable!(self);
self.0 *= 2;
self

    }
}

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

74 of 133 10/16/23, 10:34

https://veykril.github.io/tlborm/print.html#non-identifier-identifiers
https://veykril.github.io/tlborm/print.html#non-identifier-identifiers


So the macro will happily match self  as an identifier, allowing you to use it in cases

where you can't actually use it. But, fine; it somehow remembers that self  is a keyword

even when it's an identifier, so you should be able to do this, right?

This fails with:

Now the compiler thinks we refer to our module with self , but that doesn't make sense.

We already have a self  right there, in the function signature which is definitely not a

module. It's almost like it's complaining that the self  it's trying to use isn't the same

error: `mut` must be followed by a named binding
 --> src/main.rs:2:24
  |
2 |     ($i:ident) => {let mut $i = $i;};
  |                        ^^^^^^ help: remove the `mut` prefix: `self`
...
9 |         make_mutable!(self);
  |         -------------------- in this macro invocation
  |
  = note: `mut` may be followed by `variable` and `variable @ pattern`

macro_rules! make_self_mutable {
    ($i:ident) => {let mut $i = self;};
}

struct Dummy(i32);

impl Dummy {
fn double(self) -> Dummy {

        make_self_mutable!(mut_self);
        mut_self.0 *= 2;
        mut_self
    }
}

error[E0424]: expected value, found module `self`
  --> src/main.rs:2:33
   |
2  |       ($i:ident) => {let mut $i = self;};
   |                                   ^^^^ `self` value is a keyword only 
available in methods with a `self` parameter
...
8  | /     fn double(self) -> Dummy {
9  | |         make_self_mutable!(mut_self);
   | |         ----------------------------- in this macro invocation
10 | |         mut_self.0 *= 2;
11 | |         mut_self
12 | |     }
   | |_____- this function has a `self` parameter, but a macro invocation can 
only access identifiers it receives from parameters
   |

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

75 of 133 10/16/23, 10:34



self ... as though the self  keyword has hygiene, like an... identifier.

Same error. What about...

At last, this works. So self  is both a keyword and an identifier when it feels like it. Surely

this works for other, similar constructs, right?

macro_rules! double_method {
    ($body:expr) => {

fn double(mut self) -> Dummy {
            $body
        }
    };
}

struct Dummy(i32);

impl Dummy {
    double_method! {{

self.0 *= 2;
self

    }}
}

macro_rules! double_method {
    ($self_:ident, $body:expr) => {

fn double(mut $self_) -> Dummy {
            $body
        }
    };
}

struct Dummy(i32);

impl Dummy {
    double_method! {self, {

self.0 *= 2;
self

    }}
}

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

76 of 133 10/16/23, 10:34



No, of course not. _  is a keyword that is valid in patterns and expressions, but somehow

isn't an identifier like the keyword self  is, despite matching the definition of an identifier

just the same.

You might think you can get around this by using $self_:pat  instead; that way, _  will

match! Except, no, because self  isn't a pattern. Joy.

The only work around for this (in cases where you want to accept some combination of

these tokens) is to use a tt  matcher instead.

macro_rules! double_method {
    ($self_:ident, $body:expr) => {

fn double($self_) -> Dummy {
            $body
        }
    };
}

struct Dummy(i32);

impl Dummy {
    double_method! {_, 0}
}

error: no rules expected the token `_`
  --> src/main.rs:12:21
   |
1  | macro_rules! double_method {
   | -------------------------- when calling this macro
...
12 |     double_method! {_, 0}
   |                     ^ no rules expected this token in macro call

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

77 of 133 10/16/23, 10:34

https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#tt
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#tt
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#tt


Debugging

Note: This is a list of debugging tools specifically tailored towards declarative

macros, additional means of debugging these can be found in the debugging

chapter of syntax extensions.

One of the most useful is trace_macros! , which is a directive to the compiler instructing

it to dump every macro_rules!  macro invocation prior to expansion. For example, given

the following:

The output is:

This is particularly invaluable when debugging deeply recursive macro_rules!  macros.

You can also enable this from the command-line by adding -Z trace-macros  to the

compiler command line.

Secondly, there is log_syntax!  which causes the compiler to output all tokens passed to

#![feature(trace_macros)]

macro_rules! each_tt {
    () => {};
    ($_tt:tt $($rest:tt)*) => {each_tt!($($rest)*);};
}

each_tt!(foo bar baz quux);
trace_macros!(true);
each_tt!(spim wak plee whum);
trace_macros!(false);
each_tt!(trom qlip winp xod);

note: trace_macro
  --> src/main.rs:11:1
   |
11 | each_tt!(spim wak plee whum);
   | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   |
   = note: expanding `each_tt! { spim wak plee whum }`
   = note: to `each_tt ! (wak plee whum) ;`
   = note: expanding `each_tt! { wak plee whum }`
   = note: to `each_tt ! (plee whum) ;`
   = note: expanding `each_tt! { plee whum }`
   = note: to `each_tt ! (whum) ;`
   = note: expanding `each_tt! { whum }`
   = note: to `each_tt ! () ;`
   = note: expanding `each_tt! {  }`
   = note: to ``

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

78 of 133 10/16/23, 10:34

https://veykril.github.io/tlborm/print.html#debugging-1
https://veykril.github.io/tlborm/print.html#debugging-1
https://veykril.github.io/tlborm/syntax-extensions/debugging.html
https://veykril.github.io/tlborm/syntax-extensions/debugging.html
https://veykril.github.io/tlborm/syntax-extensions/debugging.html
https://veykril.github.io/tlborm/syntax-extensions/debugging.html
https://doc.rust-lang.org/std/macro.trace_macros.html
https://doc.rust-lang.org/std/macro.trace_macros.html
https://doc.rust-lang.org/std/macro.trace_macros.html
https://doc.rust-lang.org/std/macro.log_syntax.html
https://doc.rust-lang.org/std/macro.log_syntax.html
https://doc.rust-lang.org/std/macro.log_syntax.html


it. For example, this makes the compiler sing a song:

This can be used to do slightly more targeted debugging than trace_macros! .

Another amazing tool is lukaslueg 's macro_railroad , a tool that allows you visualize

and generate syntax diagrams for Rust's macro_rules!  macros. It visualizes the accepted

macro's grammar as an automata.

#![feature(log_syntax)]

macro_rules! sing {
    () => {};
    ($tt:tt $($rest:tt)*) => {log_syntax!($tt); sing!($($rest)*);};
}

sing! {
    ^ < @ < . @ *

'\x08' '{' '"' _ # ' '
    - @ '$' && / _ %
    ! ( '\t' @ | = >
    ; '\x08' '\'' + '$' ? '\x7f'
    , # '"' ~ | ) '\x07'
}

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

79 of 133 10/16/23, 10:34

https://doc.rust-lang.org/std/macro.trace_macros.html
https://doc.rust-lang.org/std/macro.trace_macros.html
https://doc.rust-lang.org/std/macro.trace_macros.html
https://github.com/lukaslueg
https://github.com/lukaslueg
https://github.com/lukaslueg
https://github.com/lukaslueg
https://github.com/lukaslueg/macro_railroad
https://github.com/lukaslueg/macro_railroad
https://github.com/lukaslueg/macro_railroad


Scoping

The way in which mbe macros are scoped can be somewhat unintuitive. They use two

forms of scopes: textual scope, and path-based scope.

When such a macro is invoked by an unqualified identifier(an identifier that isn't part of a

multi-segment path), it is first looked up in textual scoping and then in path-based

scoping should the first lookup not yield any results. If it is invoked by a qualified

identifier it will skip the textual scoping lookup and instead only do a look up in the path-

based scoping.

Textual Scope

Firstly, unlike everything else in the language, function-like macros will remain visible in

sub-modules.

Note: In these examples, remember that all of them have the same behavior when

the module contents are in separate files.

Secondly, also unlike everything else in the language, macro_rules!  macros are only

accessible after their definition. Also note that this example demonstrates how

macro_rules!  macros do not "leak" out of their defining scope:

macro_rules! X { () => {}; }
mod a {
    X!(); // defined
}
mod b {
    X!(); // defined
}
mod c {
    X!(); // defined
}

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

80 of 133 10/16/23, 10:34

https://veykril.github.io/tlborm/print.html#scoping
https://veykril.github.io/tlborm/print.html#scoping
https://veykril.github.io/tlborm/print.html#textual-scope
https://veykril.github.io/tlborm/print.html#textual-scope


To be clear, this lexical order dependency applies even if you move the macro to an outer

scope:

However, this dependency does not apply to macros themselves:

Defining macro_rules!  macros multiple times is allowed and the most recent declaration

will simply shadow previous ones unless it has gone out of scope.

mod a {
// X!(); // undefined

}
mod b {

// X!(); // undefined
macro_rules! X { () => {}; }

    X!(); // defined
}
mod c {

// X!(); // undefined
}

mod a {
// X!(); // undefined

}
macro_rules! X { () => {}; }
mod b {
    X!(); // defined
}
mod c {
    X!(); // defined
}

mod a {
// X!(); // undefined

}
macro_rules! X { () => { Y!(); }; }
mod b {

// X!(); // defined, but Y! is undefined
}
macro_rules! Y { () => {}; }
mod c {
    X!(); // defined, and so is Y!
}

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

81 of 133 10/16/23, 10:34



macro_rules!  macros can be exported from a module using the #[macro_use]  attribute.

Using this on a module is similar to saying that you do not want to have the module's

macro's scope end with the module.

Note that this can interact in somewhat bizarre ways due to the fact that identifiers in a

macro_rules!  macro (including other macros) are only resolved upon expansion:

Another complication is that #[macro_use]  applied to an extern crate does not behave

this way: such declarations are effectively hoisted to the top of the module. Thus,

assuming X!  is defined in an external crate called macs , the following holds:

macro_rules! X { (1) => {}; }
X!(1);
macro_rules! X { (2) => {}; }
// X!(1); // Error: no rule matches `1`
X!(2);

mod a {
macro_rules! X { (3) => {}; }
// X!(2); // Error: no rule matches `2`

    X!(3);
}
// X!(3); // Error: no rule matches `3`
X!(2);

mod a {
// X!(); // undefined

}
#[macro_use]
mod b {

macro_rules! X { () => {}; }
    X!(); // defined
}
mod c {
    X!(); // defined
}

mod a {
// X!(); // undefined

}
#[macro_use]
mod b {

macro_rules! X { () => { Y!(); }; }
// X!(); // defined, but Y! is undefined

}
macro_rules! Y { () => {}; }
mod c {
    X!(); // defined, and so is Y!
}

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

82 of 133 10/16/23, 10:34



Finally, note that these scoping behaviors apply to functions as well, with the exception of

#[macro_use]  (which isn't applicable):

These scoping rules are why a common piece of advice is to place all macro_rules!

macros which should be accessible "crate wide" at the very top of your root module,

before any other modules. This ensures they are available consistently. This also applies to

mod  definitions for files, as in:

The order here is important, swap the declaration order and it won't compile.

Path-Based Scope

mod a {
// X!(); // defined, but Y! is undefined

}
macro_rules! Y { () => {}; }
mod b {
    X!(); // defined, and so is Y!
}
#[macro_use] extern crate macs;
mod c {
    X!(); // defined, and so is Y!
}

macro_rules! X {
    () => { Y!() };
}

fn a() {
macro_rules! Y { () => {"Hi!"} }
assert_eq!(X!(), "Hi!");

    {
assert_eq!(X!(), "Hi!");
macro_rules! Y { () => {"Bye!"} }
assert_eq!(X!(), "Bye!");

    }
assert_eq!(X!(), "Hi!");

}

fn b() {
macro_rules! Y { () => {"One more"} }
assert_eq!(X!(), "One more");

}

#[macro_use]
mod some_mod_that_defines_macros;
mod some_mod_that_uses_those_macros;

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

83 of 133 10/16/23, 10:34

https://veykril.github.io/tlborm/print.html#path-based-scope
https://veykril.github.io/tlborm/print.html#path-based-scope


By default, a macro_rules!  macro has no path-based scope. However, if it has the

#[macro_export]  attribute, then it is declared in the crate root scope and can be referred

to similar to how you refer to any other item. The Import and Export chapter goes more

in-depth into said attribute.

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

84 of 133 10/16/23, 10:34

https://veykril.github.io/tlborm/decl-macros/minutiae/import-export.html
https://veykril.github.io/tlborm/decl-macros/minutiae/import-export.html


Import and Export

Importing macro_rules!  macros differs between the two Rust Editions, 2015 and 2018. It

is recommended to read both parts nevertheless, as the 2018 Edition can still use the

constructs that are explained in the 2015 Edition.

Edition 2015

In Edition 2015 you have to use the #[macro_use]  attribute that has already been

introduced in the scoping chapter. This can be applied to either modules or external

crates. For example:

macro_rules!  macros can be exported from the current crate using #[macro_export] .

Note that this ignores all visibility.

Given the following definition for a library package macs :

The following code will work as expected:

This works, as said in the scoping chapter, because #[macro_use]  works slightly different

on extern crates, as it basically hoists the exported macros out of the crate to the top of

the module.

#[macro_use]
mod macros {

macro_rules! X { () => { Y!(); } }
macro_rules! Y { () => {} }

}

X!();

mod macros {
#[macro_export] macro_rules! X { () => { Y!(); } }
#[macro_export] macro_rules! Y { () => {} }

}

// X! and Y! are *not* defined here, but *are* exported,
// despite `macros` being private.

X!(); // X is defined
#[macro_use] extern crate macs;
X!();

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

85 of 133 10/16/23, 10:34

https://veykril.github.io/tlborm/print.html#import-and-export
https://veykril.github.io/tlborm/print.html#import-and-export
https://veykril.github.io/tlborm/print.html#edition-2015
https://veykril.github.io/tlborm/print.html#edition-2015
https://veykril.github.io/tlborm/decl-macros/minutiae/scoping.html
https://veykril.github.io/tlborm/decl-macros/minutiae/scoping.html
https://veykril.github.io/tlborm/decl-macros/minutiae/scoping.html
https://veykril.github.io/tlborm/decl-macros/minutiae/scoping.html


Note: you can only #[macro_use]  an external crate from the root module.

Finally, when importing macro_rules!  macros from an external crate, you can control

which macros you import. You can use this to limit namespace pollution, or to override

specific macros, like so:

When exporting macro_rules!  macros, it is often useful to refer to non-macro symbols

in the defining crate. Because crates can be renamed, there is a special substitution

variable available: $crate . This will always expand to an absolute path prefix to the

containing crate (e.g. :: macs ).

Note that unless your compiler version is >= 1.30, this does not work for macro_rules!

macros, because macro_rules!  macros do not interact with regular name resolution in

any way. Otherwise, you cannot use something like $crate::Y!  to refer to a particular

macro within your crate. The implication, combined with selective imports via

#[macro_use]  is that there is currently no way to guarantee any given macro will be

available when imported by another crate.

It is recommended that you always use absolute paths to non-macro names, to avoid

conflicts, including names in the standard library.

Edition 2018

The 2018 Edition made our lives a lot easier when it comes to macro_rules!  macros.

Why you ask? Quite simply because it managed to make them feel more like proper items

than some special thing in the language. What this means is that we can properly import

and use them in a namespaced fashion!

So instead of using #[macro_use]  to import every exported macro from a crate into the

global namespace we can now do the following:

// Import *only* the `X!` macro.
#[macro_use(X)] extern crate macs;

// X!(); // X is defined, but Y! is undefined

macro_rules! Y { () => {} }

X!(); // X is defined, and so is Y!

fn main() {}

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

86 of 133 10/16/23, 10:34

https://veykril.github.io/tlborm/decl-macros/minutiae/hygiene.html#crate
https://veykril.github.io/tlborm/decl-macros/minutiae/hygiene.html#crate
https://veykril.github.io/tlborm/decl-macros/minutiae/hygiene.html#crate
https://veykril.github.io/tlborm/print.html#edition-2018
https://veykril.github.io/tlborm/print.html#edition-2018


Unfortunately, this only applies for external crates, if you use macro_rules!  macros that

you have defined in your own crate you are still required to go with #[macro_use]  on the

defining modules. So scoping applies there the same way as before as well.

The $crate  prefix works in this version for everything, macros and items alike since

this Edition came out with Rust 1.31.

use some_crate::some_macro;

fn main() {
    some_macro!("hello");

// as well as
    some_crate::some_other_macro!("macro world");
}

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

87 of 133 10/16/23, 10:34



Patterns

Parsing and expansion patterns.

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

88 of 133 10/16/23, 10:34

https://veykril.github.io/tlborm/print.html#patterns
https://veykril.github.io/tlborm/print.html#patterns


Callbacks

Due to the order that macros are expanded in, it is (as of Rust 1.2) impossible to pass

information to a macro from the expansion of another macro:

This can make modularizing macros very difficult.

An alternative is to use recursion and pass a callback:

Using a tt  repetition, one can also forward arbitrary arguments to a callback.

macro_rules! recognize_tree {
    (larch) => { println!("#1, the Larch.") };
    (redwood) => { println!("#2, the Mighty Redwood.") };
    (fir) => { println!("#3, the Fir.") };
    (chestnut) => { println!("#4, the Horse Chestnut.") };
    (pine) => { println!("#5, the Scots Pine.") };
    ($($other:tt)*) => { println!("I don't know; some kind of birch maybe?") 
};
}

macro_rules! expand_to_larch {
    () => { larch };
}

fn main() {
    recognize_tree!(expand_to_larch!());

// first expands to:  recognize_tree! { expand_to_larch ! (  ) }
// and then:          println! { "I don't know; some kind of birch 

maybe?" }
}

// ...

macro_rules! call_with_larch {
    ($callback:ident) => { $callback!(larch) };
}

fn main() {
    call_with_larch!(recognize_tree);

// first expands to:  call_with_larch! { recognize_tree }
// then:              recognize_tree! { larch }
// and finally:       println! { "#1, the Larch." }

}

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

89 of 133 10/16/23, 10:34

https://veykril.github.io/tlborm/print.html#callbacks
https://veykril.github.io/tlborm/print.html#callbacks


You can, of course, insert additional tokens in the arguments as needed.

macro_rules! callback {
    ($callback:ident( $($args:tt)* )) => {
        $callback!( $($args)* )
    };
}

fn main() {
    callback!(callback(println("Yes, this *was* unnecessary.")));
}

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

90 of 133 10/16/23, 10:34



Incremental TT Munchers

This pattern is perhaps the most powerful macro parsing technique available, allowing one

to parse grammars of significant complexity. However, it can increase compile times if

used excessively, so should be used with care.

A TT muncher is a recursive macro_rules!  macro that works by incrementally processing

its input one step at a time. At each step, it matches and removes (munches) some

sequence of tokens from the start of its input, generates some intermediate output, then

recurses on the input tail.

The reason for "TT" in the name specifically is that the unprocessed part of the input is

always captured as $($tail:tt)* . This is done as a tt  repetition is the only way to

losslessly capture part of a macro's input.

The only hard restrictions on TT munchers are those imposed on the macro_rules!

macro system as a whole:

• You can only match against literals and grammar constructs which can be captured

by macro_rules! .

• You cannot match unbalanced groups.

It is important, however, to keep the macro recursion limit in mind. macro_rules!  does

not have any form of tail recursion elimination or optimization. It is recommended that,

when writing a TT muncher, you make reasonable efforts to keep recursion as limited as

possible. This can be done by adding additional rules to account for variation in the input

(as opposed to recursion into an intermediate layer), or by making compromises on the

input syntax to make using standard repetitions more tractable.

macro_rules! mixed_rules {
    () => {};
    (trace $name:ident; $($tail:tt)*) => {
        {

println!(concat!(stringify!($name), " = {:?}"), $name);
            mixed_rules!($($tail)*);
        }
    };
    (trace $name:ident = $init:expr; $($tail:tt)*) => {
        {

let $name = $init;
println!(concat!(stringify!($name), " = {:?}"), $name);

            mixed_rules!($($tail)*);
        }
    };
}

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

91 of 133 10/16/23, 10:34

https://veykril.github.io/tlborm/print.html#incremental-tt-munchers
https://veykril.github.io/tlborm/print.html#incremental-tt-munchers
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#tt
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#tt
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#tt


Performance

TT munchers are inherently quadratic. Consider a TT muncher rule that consumes one

token tree and then recursively calls itself on the remaining input. If it is passed 100 token

trees:

• The initial invocation will match against all 100 token trees.

• The first recursive invocation will match against 99 token trees.

• The next recursive invocation will match against 98 token trees.

And so on, down to 1. This is a classic quadratic pattern, and long inputs can cause macro

expansion to blow out compile times.

Try to avoid using TT munchers too much, especially with long inputs. The default value of

the recursion_limit  attribute is a good sanity check; if you have to exceed it, you might

be heading for trouble.

If you have the choice between writing a TT muncher that can be called once to handle

multiple things, or a simpler macro that can be called multiple times to handle a single

thing, prefer the latter. For example, you could change a macro that is called like this:

To one that is called like this:

The longer the input, the more likely this will improve compile times.

Also, if a TT muncher macro has many rules, put the most frequently matched rules as

early as possible. This avoids unnecessary matching failures. (In fact, this is good advice

for any kind of declarative macro, not just TT munchers.)

Finally, if you can write a macro using normal repetition via *  or + , that should be

preferred to a TT muncher. This is most likely if each invocation of the TT muncher would

only process one token at a time. In more complicated cases, there is an advanced

technique used within the quote  crate that can avoid the quadratic behaviour, at the cost

f! {
fn f_u8(x: u32) -> u8;
fn f_u16(x: u32) -> u16;
fn f_u32(x: u32) -> u32;
fn f_u64(x: u64) -> u64;
fn f_u128(x: u128) -> u128;

}

f! { fn f_u8(x: u32) -> u8; }
f! { fn f_u16(x: u32) -> u16; }
f! { fn f_u32(x: u32) -> u32; }
f! { fn f_u64(x: u64) -> u64; }
f! { fn f_u128(x: u128) -> u128; }

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

92 of 133 10/16/23, 10:34

https://veykril.github.io/tlborm/print.html#performance
https://veykril.github.io/tlborm/print.html#performance


of some conceptual complexity. See this comment for details.

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

93 of 133 10/16/23, 10:34

https://github.com/dtolnay/quote/blob/31c3be473d0457e29c4f47ab9cff73498ac804a7/src/lib.rs#L664-L746
https://github.com/dtolnay/quote/blob/31c3be473d0457e29c4f47ab9cff73498ac804a7/src/lib.rs#L664-L746


Internal Rules

Internal rules can be used to unify multiple macro_rules!  macros into one, or to make it

easier to read and write TT Munchers by explicitly naming what rule you wish to call in a

macro.

So why is it useful to unify multiple macros-by-example into one? The main reasoning for

this is how they are handled in the 2015 Edition of Rust due to macro_rules!  macros not

being namespaced in said edition. This gives one the troubles of having to re-export all

the internal macro_rules!  macros as well as polluting the global macro namespace or

even worse, macro name collisions with other crates. In short, it's quite a hassle. This

fortunately isn't really a problem anymore nowadays with a rustc version >= 1.30, for

more information consult the Import and Export chapter.

Nevertheless, let's talk about how we can unify multiple macro_rules!  macros into one

with this technique and what exactly this technique even is.

We have two macro_rules!  macros, the common as_expr!  macro and a foo  macro

that makes use of the first one:

This is definitely not the nicest solution we could have for this macro, as it pollutes the

global macro namespace as mentioned earlier. In this specific case as_expr  is also a very

simple macro that we only used once, so let's "embed" this macro in our foo  macro with

internal rules! To do so, we simply prepend a new matcher for our macro, which consists

of the matcher used in the as_expr  macro, but with a small addition. We prepend a

tokentree that makes it match only when specifically asked to. In this case we can for

example use @as_expr , so our matcher becomes (@as_expr $e:expr) => {$e}; . With

#[macro_export]
macro_rules! foo {
    (@as_expr $e:expr) => {$e};

    ($($tts:tt)*) => {
        foo!(@as_expr $($tts)*)
    };
}

#[macro_export]
macro_rules! as_expr { ($e:expr) => {$e} }

#[macro_export]
macro_rules! foo {
    ($($tts:tt)*) => {
        as_expr!($($tts)*)
    };
}

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

94 of 133 10/16/23, 10:34

https://veykril.github.io/tlborm/print.html#internal-rules
https://veykril.github.io/tlborm/print.html#internal-rules
https://veykril.github.io/tlborm/decl-macros/patterns/tt-muncher.html
https://veykril.github.io/tlborm/decl-macros/patterns/tt-muncher.html
https://veykril.github.io/tlborm/decl-macros/minutiae/import-export.html
https://veykril.github.io/tlborm/decl-macros/minutiae/import-export.html
https://veykril.github.io/tlborm/decl-macros/building-blocks/ast-coercion.html
https://veykril.github.io/tlborm/decl-macros/building-blocks/ast-coercion.html
https://veykril.github.io/tlborm/decl-macros/building-blocks/ast-coercion.html
https://veykril.github.io/tlborm/decl-macros/building-blocks/ast-coercion.html


this we get the macro that was defined at the very top of this page:

You see how we embedded the as_expr  macro in the foo  one? All that changed is that

instead of invoking the as_expr  macro, we now invoke foo  recursively but with a special

token tree prepended to the arguments, foo!(@as_expr $($tts)*) . If you look closely

you might even see that this pattern can be combined quite nicely with TT Munchers!

The reason for using @  was that, as of Rust 1.2, the @  token is not used in prefix position;

as such, it cannot conflict with anything. This reasoning became obsolete later on when in

Rust 1.7 macro matchers got future proofed by emitting a warning to prevent certain

tokens from being allowed to follow certain fragments1, which in Rust 1.12 became a

hard-error. Other symbols or unique prefixes may be used as desired, but use of @  has

started to become widespread, so using it may aid readers in understanding your macro.

1 ambiguity-restrictions

Note: in the early days of Rust the @  token was previously used in prefix position to

denote a garbage-collected pointer, back when the language used sigils to denote

pointer types. Its only current purpose is for binding names to patterns. For this,

however, it is used as an infix operator, and thus does not conflict with its use here.

Additionally, internal rules will often come before any "bare" rules, to avoid issues with

macro_rules!  incorrectly attempting to parse an internal invocation as something it

cannot possibly be, such as an expression.

Performance

One downside of internal rules is that they can hurt compile times. Only one macro rule

can match any (valid) macro invocation, but the compiler must try to match all rules in

order. If a macro has many rules, there can be many such failures, and the use of internal

rules will increase the number of such failures.

Also, the @as_expr -style identifier makes rules longer, slightly increasing the amount of

#[macro_export]
macro_rules! foo {
    (@as_expr $e:expr) => {$e};

    ($($tts:tt)*) => {
        foo!(@as_expr $($tts)*)
    };
}

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

95 of 133 10/16/23, 10:34

https://veykril.github.io/tlborm/decl-macros/patterns/tt-muncher.html
https://veykril.github.io/tlborm/decl-macros/patterns/tt-muncher.html
https://veykril.github.io/tlborm/print.html#ambiguity-restrictions
https://veykril.github.io/tlborm/print.html#ambiguity-restrictions
https://veykril.github.io/tlborm/decl-macros/minutiae/metavar-and-expansion.html
https://veykril.github.io/tlborm/decl-macros/minutiae/metavar-and-expansion.html
https://veykril.github.io/tlborm/print.html#performance-1
https://veykril.github.io/tlborm/print.html#performance-1


work the compiler must do when matching.

Therefore, for best performance, avoiding internal rules is best. Avoiding them often

makes complex macros easier to read, too.

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

96 of 133 10/16/23, 10:34



Push-down Accumulation

The following macro uses push-down accumulation.

All syntax extensions in Rust must result in a complete, supported syntax element (such

as an expression, item, etc.). This means that it is impossible to have a syntax extension

expand to a partial construct.

One might hope that the above example could be more directly expressed like so:

The expectation is that the expansion of the array literal would proceed as follows:

macro_rules! init_array {
    [$e:expr; $n:tt] => { 
        {   

let e = $e; 
            accum!([$n, e.clone()] -> [])
        }
    };
}
macro_rules! accum {
    ([3, $e:expr] -> [$($body:tt)*]) => { accum!([2, $e] -> [$($body)* $e,]) 
};
    ([2, $e:expr] -> [$($body:tt)*]) => { accum!([1, $e] -> [$($body)* $e,]) 
};
    ([1, $e:expr] -> [$($body:tt)*]) => { accum!([0, $e] -> [$($body)* $e,]) 
};
    ([0, $_:expr] -> [$($body:tt)*]) => { [$($body)*] };
}

let strings: [String; 3] = init_array![String::from("hi!"); 3];

macro_rules! init_array {
    [$e:expr; $n:tt] => {
        {

let e = $e;
            [accum!($n, e.clone())]
        }
    };
}
macro_rules! accum {
    (3, $e:expr) => { $e, accum!(2, $e) };
    (2, $e:expr) => { $e, accum!(1, $e) };
    (1, $e:expr) => { $e };
}

    [accum!(3, e.clone())]
    [e.clone(), accum!(2, e.clone())]
    [e.clone(), e.clone(), accum!(1, e.clone())]
    [e.clone(), e.clone(), e.clone()]

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

97 of 133 10/16/23, 10:34

https://veykril.github.io/tlborm/print.html#push-down-accumulation
https://veykril.github.io/tlborm/print.html#push-down-accumulation


However, this would require each intermediate step to expand to an incomplete

expression. Even though the intermediate results will never be used outside of a macro

context, it is still forbidden.

Push-down, however, allows us to incrementally build up a sequence of tokens without

needing to actually have a complete construct at any point prior to completion. In the

example given at the top, the sequence of invocations proceeds as follows:

As you can see, each layer adds to the accumulated output until the terminating rule

finally emits it as a complete construct.

The only critical part of the above formulation is the use of $($body:tt)*  to preserve the

output without triggering parsing. The use of ($input) -> ($output)  is simply a

convention adopted to help clarify the behavior of such macros.

Push-down accumulation is frequently used as part of incremental TT munchers, as it

allows arbitrarily complex intermediate results to be constructed. Internal Rules were of

use here as well, as they simplify creating such macros.

Performance

Push-down accumulation is inherently quadratic. Consider a push-down accumulation

rule that builds up an accumulator of 100 token trees, one token tree per invocation.

• The initial invocation will match against the empty accumulator.

• The first recursive invocation will match against the accumulator of 1 token tree.

• The next recursive invocation will match against the accumulator of 2 token trees.

And so on, up to 100. This is a classic quadratic pattern, and long inputs can cause macro

expansion to blow out compile times. Furthermore, TT munchers are also inherently

quadratic over their input, so a macro that uses both TT munching and push-down

accumulation will be doubly quadratic!

All the performance advice about TT munchers holds for push-down accumulation. In

general, avoid using them too much, and keep them as simple as possible.

Finally, make sure you put the accumulator at the end of rules, rather than the beginning.

That way, if a rule fails, the compiler won't have had to match the (potentially long)

init_array!(String::from("hi!"); 3)
accum!([3, e.clone()] -> [])
accum!([2, e.clone()] -> [e.clone(),])
accum!([1, e.clone()] -> [e.clone(), e.clone(),])
accum!([0, e.clone()] -> [e.clone(), e.clone(), e.clone(),])
[e.clone(), e.clone(), e.clone(),]

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

98 of 133 10/16/23, 10:34

https://veykril.github.io/tlborm/decl-macros/patterns/tt-muncher.html
https://veykril.github.io/tlborm/decl-macros/patterns/tt-muncher.html
https://veykril.github.io/tlborm/decl-macros/patterns/internal-rules.html
https://veykril.github.io/tlborm/decl-macros/patterns/internal-rules.html
https://veykril.github.io/tlborm/print.html#performance-2
https://veykril.github.io/tlborm/print.html#performance-2
https://veykril.github.io/tlborm/decl-macros/patterns/tt-muncher.html#performance
https://veykril.github.io/tlborm/decl-macros/patterns/tt-muncher.html#performance


accumulator before hitting the part of the rule that fails to match. This can make a large

difference to compile times.

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

99 of 133 10/16/23, 10:34



Repetition Replacement

This pattern is where a matched repetition sequence is simply discarded, with the

variable being used to instead drive some repeated pattern that is related to the input

only in terms of length.

For example, consider constructing a default instance of a tuple with more than 12

elements (the limit as of Rust 1.2).

JFTE: we could have simply used $tup_tys::default() .

Here, we are not actually using the matched types. Instead, we throw them away and

replace them with a single, repeated expression. To put it another way, we don't care

what the types are, only how many there are.

macro_rules! replace_expr {
    ($_t:tt $sub:expr) => {$sub};
}

macro_rules! tuple_default {
    ($($tup_tys:ty),*) => {
        (
            $(
                replace_expr!(
                    ($tup_tys)

Default::default()
                ),
            )*
        )
    };
}

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

100 of 133 10/16/23, 10:34

https://veykril.github.io/tlborm/print.html#repetition-replacement
https://veykril.github.io/tlborm/print.html#repetition-replacement


TT Bundling

In particularly complex recursive macros, a large number of arguments may be needed in

order to carry identifiers and expressions to successive layers. However, depending on

the implementation there may be many intermediate layers which need to forward these

arguments, but do not need to use them.

As such, it can be very useful to bundle all such arguments together into a single TT by

macro_rules! call_a_or_b_on_tail {
    ((a: $a:ident, b: $b:ident), call a: $($tail:tt)*) => {
        $a(stringify!($($tail)*))
    };

    ((a: $a:ident, b: $b:ident), call b: $($tail:tt)*) => {
        $b(stringify!($($tail)*))
    };

    ($ab:tt, $_skip:tt $($tail:tt)*) => {
        call_a_or_b_on_tail!($ab, $($tail)*)
    };
}

fn compute_len(s: &str) -> Option<usize> {
Some(s.len())

}

fn show_tail(s: &str) -> Option<usize> {
println!("tail: {:?}", s);
None

}

fn main() {
assert_eq!(

        call_a_or_b_on_tail!(
            (a: compute_len, b: show_tail),
            the recursive part that skips over all these
            tokens does not much care whether we will call a
            or call b: only the terminal rules care.
        ),

None
    );

assert_eq!(
        call_a_or_b_on_tail!(
            (a: compute_len, b: show_tail),
            and now, to justify the existence of two paths
            we will also call a: its input should somehow
            be self-referential, so let us make it return
            some ninety-one!
        ),

Some(91)
    );
}

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

101 of 133 10/16/23, 10:34

https://veykril.github.io/tlborm/print.html#tt-bundling
https://veykril.github.io/tlborm/print.html#tt-bundling


placing them in a group. This allows layers which do not need to use the arguments to

simply capture and substitute a single tt , rather than having to exactly capture and

substitute the entire argument group.

The example above bundles the $a  and $b  expressions into a group which can then be

forwarded as a single tt  by the recursive rule. This group is then destructured by the

terminal rules to access the expressions.

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

102 of 133 10/16/23, 10:34

https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#tt
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#tt
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#tt
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#tt
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#tt
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#tt


Building Blocks

Reusable snippets of macro_rules!  macro code.

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

103 of 133 10/16/23, 10:34

https://veykril.github.io/tlborm/print.html#building-blocks
https://veykril.github.io/tlborm/print.html#building-blocks


AST Coercion

The Rust parser is not very robust in the face of tt  substitutions. Problems can arise

when the parser is expecting a particular grammar construct and instead finds a lump of

substituted tt  tokens. Rather than attempt to parse them, it will often just give up. In

these cases, it is necessary to employ an AST coercion.

These coercions are often used with push-down accumulation macros in order to get the

parser to treat the final tt  sequence as a particular kind of grammar construct.

Note that this specific set of macros is determined by what macros are allowed to expand

to, not what they are able to capture.

macro_rules! as_expr { ($e:expr) => {$e} }
macro_rules! as_item { ($i:item) => {$i} }
macro_rules! as_pat  { ($p:pat)  => {$p} }
macro_rules! as_stmt { ($s:stmt) => {$s} }
macro_rules! as_ty   { ($t:ty)   => {$t} }

as_item!{struct Dummy;}

fn main() {
    as_stmt!(let as_pat!(_): as_ty!(_) = as_expr!(42));
}

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

104 of 133 10/16/23, 10:34

https://veykril.github.io/tlborm/print.html#ast-coercion
https://veykril.github.io/tlborm/print.html#ast-coercion
https://veykril.github.io/tlborm/decl-macros/patterns/push-down-acc.html
https://veykril.github.io/tlborm/decl-macros/patterns/push-down-acc.html


Counting

What follows are several techniques for counting in macro_rules!  macros:

Note: If you are just interested in the most efficient way look here

Repetition with replacement

Counting things in a macro is a surprisingly tricky task. The simplest way is to use

replacement with a repetition match.

This is a fine approach for smallish numbers, but will likely crash the compiler with inputs

of around 500 or so tokens. Consider that the output will look something like this:

The compiler must parse this into an AST, which will produce what is effectively a

perfectly unbalanced binary tree 500+ levels deep.

Recursion

An older approach is to use recursion.

Note: As of rustc  1.2, the compiler has grievous performance problems when large

numbers of integer literals of unknown type must undergo inference. We are using

explicitly usize -typed literals here to avoid that.

macro_rules! replace_expr {
    ($_t:tt $sub:expr) => {$sub};
}

macro_rules! count_tts {
    ($($tts:tt)*) => {0usize $(+ replace_expr!($tts 1usize))*};
}

0usize + 1usize + /* ~500 `+ 1usize`s */ + 1usize

macro_rules! count_tts {
    () => {0usize};
    ($_head:tt $($tail:tt)*) => {1usize + count_tts!($($tail)*)};
}

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

105 of 133 10/16/23, 10:34

https://veykril.github.io/tlborm/print.html#counting
https://veykril.github.io/tlborm/print.html#counting
https://veykril.github.io/tlborm/decl-macros/building-blocks/counting.html#bit-twiddling
https://veykril.github.io/tlborm/decl-macros/building-blocks/counting.html#bit-twiddling
https://veykril.github.io/tlborm/print.html#repetition-with-replacement
https://veykril.github.io/tlborm/print.html#repetition-with-replacement
https://veykril.github.io/tlborm/print.html#recursion
https://veykril.github.io/tlborm/print.html#recursion


If this is not suitable (such as when the type must be substitutable), you can help

matters by using as  (e.g. 0 as $ty , 1 as $ty , etc.).

This works, but will trivially exceed the recursion limit. Unlike the repetition approach, you

can extend the input size by matching multiple tokens at once.

This particular formulation will work up to ~1,200 tokens.

macro_rules! count_tts {
    ($_a:tt $_b:tt $_c:tt $_d:tt $_e:tt
     $_f:tt $_g:tt $_h:tt $_i:tt $_j:tt
     $_k:tt $_l:tt $_m:tt $_n:tt $_o:tt
     $_p:tt $_q:tt $_r:tt $_s:tt $_t:tt
     $($tail:tt)*)
        => {20usize + count_tts!($($tail)*)};
    ($_a:tt $_b:tt $_c:tt $_d:tt $_e:tt
     $_f:tt $_g:tt $_h:tt $_i:tt $_j:tt
     $($tail:tt)*)
        => {10usize + count_tts!($($tail)*)};
    ($_a:tt $_b:tt $_c:tt $_d:tt $_e:tt
     $($tail:tt)*)
        => {5usize + count_tts!($($tail)*)};
    ($_a:tt
     $($tail:tt)*)
        => {1usize + count_tts!($($tail)*)};
    () => {0usize};
}

fn main() {
assert_eq!(700, count_tts!(

        ,,,,,,,,,, ,,,,,,,,,, ,,,,,,,,,, ,,,,,,,,,, ,,,,,,,,,,
        ,,,,,,,,,, ,,,,,,,,,, ,,,,,,,,,, ,,,,,,,,,, ,,,,,,,,,,

        ,,,,,,,,,, ,,,,,,,,,, ,,,,,,,,,, ,,,,,,,,,, ,,,,,,,,,,
        ,,,,,,,,,, ,,,,,,,,,, ,,,,,,,,,, ,,,,,,,,,, ,,,,,,,,,,

        ,,,,,,,,,, ,,,,,,,,,, ,,,,,,,,,, ,,,,,,,,,, ,,,,,,,,,,
        ,,,,,,,,,, ,,,,,,,,,, ,,,,,,,,,, ,,,,,,,,,, ,,,,,,,,,,

        ,,,,,,,,,, ,,,,,,,,,, ,,,,,,,,,, ,,,,,,,,,, ,,,,,,,,,,
        ,,,,,,,,,, ,,,,,,,,,, ,,,,,,,,,, ,,,,,,,,,, ,,,,,,,,,,

        ,,,,,,,,,, ,,,,,,,,,, ,,,,,,,,,, ,,,,,,,,,, ,,,,,,,,,,
        ,,,,,,,,,, ,,,,,,,,,, ,,,,,,,,,, ,,,,,,,,,, ,,,,,,,,,,

// Repetition breaks somewhere after this
        ,,,,,,,,,, ,,,,,,,,,, ,,,,,,,,,, ,,,,,,,,,, ,,,,,,,,,,
        ,,,,,,,,,, ,,,,,,,,,, ,,,,,,,,,, ,,,,,,,,,, ,,,,,,,,,,

        ,,,,,,,,,, ,,,,,,,,,, ,,,,,,,,,, ,,,,,,,,,, ,,,,,,,,,,
        ,,,,,,,,,, ,,,,,,,,,, ,,,,,,,,,, ,,,,,,,,,, ,,,,,,,,,,
    ));
}

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

106 of 133 10/16/23, 10:34



Slice length

A third approach is to help the compiler construct a shallow AST that won't lead to a stack

overflow. This can be done by constructing an array literal and calling the len  method.

This has been tested to work up to 10,000 tokens, and can probably go much higher.

Array length

Another modification of the previous approach is to use const generics stabilized in Rust

1.51. It's only slightly slower than slice length method on 20,000 tokens and works in

const contexts.

Enum counting

This approach can be used where you need to count a set of mutually distinct identifiers.

macro_rules! replace_expr {
    ($_t:tt $sub:expr) => {$sub};
}

macro_rules! count_tts {
    ($($tts:tt)*) => {<[()]>::len(&[$(replace_expr!($tts ())),*])};
}

const fn count_helper<const N: usize>(_: [(); N]) -> usize { N }

macro_rules! replace_expr {
    ($_t:tt $sub:expr) => { $sub }
}

macro_rules! count_tts {
    ($($smth:tt)*) => {
        count_helper([$(replace_expr!($smth ())),*])
    }
}

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

107 of 133 10/16/23, 10:34

https://veykril.github.io/tlborm/print.html#slice-length
https://veykril.github.io/tlborm/print.html#slice-length
https://veykril.github.io/tlborm/print.html#array-length
https://veykril.github.io/tlborm/print.html#array-length
https://veykril.github.io/tlborm/print.html#enum-counting
https://veykril.github.io/tlborm/print.html#enum-counting


This method does have two drawbacks. As implied above, it can only count valid

identifiers (which are also not keywords), and it does not allow those identifiers to repeat.

Bit twiddling

Another recursive approach using bit operations:

This approach is pretty smart as it effectively halves its input whenever its even and then

multiplying the counter by 2 (or in this case shifting 1 bit to the left which is equivalent). If

the input is uneven it simply takes one token tree from the input or s the token tree to

the previous counter which is equivalent to adding 1 as the lowest bit has to be a 0 at this

point due to the previous shifting. Rinse and repeat until we hit the base rule () => 0 .

The benefit of this is that the constructed AST expression that makes up the counter

value will grow with a complexity of O(log(n))  instead of O(n)  like the other

approaches. Be aware that you can still hit the recursion limit with this if you try hard

enough. Credits for this method go to Reddit user YatoRust .

Let's go through the procedure by hand once:

This invocation will match the third rule due to the fact that we have an even number of

token trees(10). The matcher names the odd token trees in the sequence $a  and the

even ones $even  but the expansion only makes use of $a , which means it effectively

discards all the even elements cutting the input in half. So the invocation now becomes:

macro_rules! count_idents {
    () => {0};
    ($last_ident:ident, $($idents:ident),* $(,)?) => {
        {

#[allow(dead_code, non_camel_case_types)]
enum Idents { $($idents,)* $last_ident }
const COUNT: u32 = Idents::$last_ident as u32 + 1;

            COUNT
        }
    };
}

macro_rules! count_tts {
    () => { 0 };
    ($odd:tt $($a:tt $b:tt)*) => { (count_tts!($($a)*) << 1) | 1 };
    ($($a:tt $even:tt)*) => { count_tts!($($a)*) << 1 };
}

count_tts!(0 0 0 0 0 0 0 0 0 0);

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

108 of 133 10/16/23, 10:34

https://veykril.github.io/tlborm/print.html#bit-twiddling
https://veykril.github.io/tlborm/print.html#bit-twiddling
https://www.reddit.com/r/rust/comments/d3yag8/the_little_book_of_rust_macros/
https://www.reddit.com/r/rust/comments/d3yag8/the_little_book_of_rust_macros/
https://www.reddit.com/r/rust/comments/d3yag8/the_little_book_of_rust_macros/


This invocation will now match the second rule as its input is an uneven amount of token

trees. In this case the first token tree is discarded to make the input even again, then we

also do the halving step in this invocation again since we know the input would be even

now anyways. Therefore we can count 1 for the uneven discard and multiply by 2 again

since we also halved.

Now to check if we expanded correctly manually we can use a one of the tools we

introduced for debugging . When expanding the macro there we should get:

That's the same so we didn't make any mistakes, great!

count_tts!(0 0 0 0 0) << 1;

((count_tts!(0 0) << 1) | 1) << 1;

((count_tts!(0) << 1 << 1) | 1) << 1;

((((count_tts!() << 1) | 1) << 1 << 1) | 1) << 1;

((((0 << 1) | 1) << 1 << 1) | 1) << 1;

((((0 << 1) | 1) << 1 << 1) | 1) << 1;

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

109 of 133 10/16/23, 10:34

https://veykril.github.io/tlborm/decl-macros/minutiae/debugging.html
https://veykril.github.io/tlborm/decl-macros/minutiae/debugging.html
https://veykril.github.io/tlborm/decl-macros/minutiae/debugging.html


Abacus Counters

Provisional: needs a more compelling example. Matching nested groups that are

not denoted by Rust groups is sufficiently unusual that it may not merit inclusion.

Note: this section assumes understanding of push-down accumulation and

incremental TT munchers.

This technique can be used in cases where you need to keep track of a varying counter

that starts at or near zero, and must support the following operations:

• Increment by one.

• Decrement by one.

• Compare to zero (or any other fixed, finite value).

A value of n is represented by n instances of a specific token stored in a group.

Modifications are done using recursion and push-down accumulation. Assuming the

token used is x , the operations above are implemented as follows:

• Increment by one: match ($($count:tt)*) , substitute (x $($count)*) .

• Decrement by one: match (x $($count:tt)*) , substitute ($($count)*) .

macro_rules! abacus {
    ((- $($moves:tt)*) -> (+ $($count:tt)*)) => {
        abacus!(($($moves)*) -> ($($count)*))
    };
    ((- $($moves:tt)*) -> ($($count:tt)*)) => {
        abacus!(($($moves)*) -> (- $($count)*))
    };
    ((+ $($moves:tt)*) -> (- $($count:tt)*)) => {
        abacus!(($($moves)*) -> ($($count)*))
    };
    ((+ $($moves:tt)*) -> ($($count:tt)*)) => {
        abacus!(($($moves)*) -> (+ $($count)*))
    };

// Check if the final result is zero.
    (() -> ()) => { true };
    (() -> ($($count:tt)+)) => { false };
}

fn main() {
let equals_zero = abacus!((++-+-+++--++---++----+) -> ());
assert_eq!(equals_zero, true);

}

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

110 of 133 10/16/23, 10:34

https://veykril.github.io/tlborm/print.html#abacus-counters
https://veykril.github.io/tlborm/print.html#abacus-counters
https://veykril.github.io/tlborm/decl-macros/building-blocks/abacus-counting.html#push-down-accumulation
https://veykril.github.io/tlborm/decl-macros/building-blocks/abacus-counting.html#push-down-accumulation
https://veykril.github.io/tlborm/decl-macros/building-blocks/abacus-counting.html#incremental-tt-munchers
https://veykril.github.io/tlborm/decl-macros/building-blocks/abacus-counting.html#incremental-tt-munchers
https://veykril.github.io/tlborm/decl-macros/building-blocks/abacus-counting.html#push-down-accumulation
https://veykril.github.io/tlborm/decl-macros/building-blocks/abacus-counting.html#push-down-accumulation


• Compare to zero: match () .

• Compare to one: match (x) .

• Compare to two: match (x x) .

• (and so on...)

In this way, operations on the counter are like flicking tokens back and forth like an

abacus.1

1 This desperately thin reasoning conceals the real reason for this name: to avoid having yet another

thing with "token" in the name. Talk to your writer about avoiding semantic satiation today!

In fairness, it could also have been called "unary counting".

In cases where you want to represent negative values, -n can be represented as n

instances of a different token. In the example given above, +n is stored as n +  tokens, and

-m is stored as m -  tokens.

In this case, the operations become slightly more complicated; increment and decrement

effectively reverse their usual meanings when the counter is negative. To which given +

and -  for the positive and negative tokens respectively, the operations change to:

• Increment by one:

◦ match () , substitute (+) .

◦ match (- $($count:tt)*) , substitute ($($count)*) .

◦ match ($($count:tt)+) , substitute (+ $($count)+) .

• Decrement by one:

◦ match () , substitute (-) .

◦ match (+ $($count:tt)*) , substitute ($($count)*) .

◦ match ($($count:tt)+) , substitute (- $($count)+) .

• Compare to 0: match () .

• Compare to +1: match (+) .

• Compare to -1: match (-) .

• Compare to +2: match (++) .

• Compare to -2: match (--) .

• (and so on...)

Note that the example at the top combines some of the rules together (for example, it

combines increment on ()  and ($($count:tt)+)  into an increment on

($($count:tt)*) ).

If you want to extract the actual value of the counter, this can be done using a regular

counter macro. For the example above, the terminal rules can be replaced with the

following:

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

111 of 133 10/16/23, 10:34

https://veykril.github.io/tlborm/print.html#abacus
https://veykril.github.io/tlborm/print.html#abacus
https://en.wikipedia.org/wiki/Semantic_satiation
https://en.wikipedia.org/wiki/Semantic_satiation
https://en.wikipedia.org/wiki/Unary_numeral_system
https://en.wikipedia.org/wiki/Unary_numeral_system
https://veykril.github.io/tlborm/decl-macros/building-blocks/counting.html
https://veykril.github.io/tlborm/decl-macros/building-blocks/counting.html


JFTE: strictly speaking, the above formulation of abacus!  is needlessly complex. It

can be implemented much more efficiently using repetition, provided you do not

need to match against the counter's value in a macro:

macro_rules! abacus {
// ...

// This extracts the counter as an integer expression.
    (() -> ()) => {0};
    (() -> (- $($count:tt)*)) => {
        - ( count_tts!($( $count_tts:tt )*) )
    };
    (() -> (+ $($count:tt)*)) => {
        count_tts!($( $count_tts:tt )*)
    };
}

// One of the many token tree counting macros in the counting chapter
macro_rules! count_tts {

// ...
}

macro_rules! abacus {
    (-) => {-1};
    (+) => {1};
    ($( $moves:tt )*) => {
        0 $(+ abacus!($moves))*
    }
}

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

112 of 133 10/16/23, 10:34



Parsing Rust

Parsing some of Rust's items can be useful in certain situations. This section will show a

few macros that can parse some of Rust's more complex items like structs and functions

to a certain extent. The goal of these macros is not to be able to parse the entire

grammar of the items but to parse parts that are in general quite useful without being

too complex to parse. This means we ignore things like generics and such.

The main points of interest of these macros are their matchers . The transcribers are only

there for example purposes and are usually not that impressive.

Function

A simple function matcher that ignores qualifiers like unsafe , async , ... as well as

generics and where clauses. If parsing those is required it is likely that you are better off

using a proc-macro instead.

This lets you for example, inspect the function signature, generate some extra things

from it and then re-emit the entire function again. Kind of like a Derive  proc-macro but

weaker and for functions.

Ideally we would like to use a pattern fragment specifier instead of an ident for the

arguments but this is currently not allowed. Fortunately people don't use non-

identifier patterns in function signatures that often so this is okay(a shame, really).

macro_rules! function_item_matcher {
    (

        $( #[$meta:meta] )*
//  ^~~~attributes~~~~^

        $vis:vis fn $name:ident ( $( $arg_name:ident : $arg_ty:ty ),* $(,)? )
//                          ^~~~~~~~~~~~~~~~argument list!~~~~~~~~~~~~~~^

            $( -> $ret_ty:ty )?
//      ^~~~return type~~~^

            { $($tt:tt)* }
//      ^~~~~body~~~~^

    ) => {
        $( #[$meta] )*
        $vis fn $name ( $( $arg_name : $arg_ty ),* ) $( -> $ret_ty )? { 
$($tt)* }
    }
}

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

113 of 133 10/16/23, 10:34

https://veykril.github.io/tlborm/print.html#parsing-rust
https://veykril.github.io/tlborm/print.html#parsing-rust
https://veykril.github.io/tlborm/print.html#function
https://veykril.github.io/tlborm/print.html#function


Method

The macro for parsing basic functions is nice and all, but sometimes we would like to also

parse methods, functions that refer to their object via some form of self  usage. This

makes things a bit trickier:

WIP

Struct

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

114 of 133 10/16/23, 10:34

https://veykril.github.io/tlborm/print.html#method
https://veykril.github.io/tlborm/print.html#method
https://veykril.github.io/tlborm/print.html#struct
https://veykril.github.io/tlborm/print.html#struct


macro_rules! struct_item_matcher {
// Unit-Struct

    (
        $( #[$meta:meta] )*

//  ^~~~attributes~~~~^
        $vis:vis struct $name:ident;
    ) => {
        $( #[$meta] )*
        $vis struct $name;
    };

// Tuple-Struct
    (
        $( #[$meta:meta] )*

//  ^~~~attributes~~~~^
        $vis:vis struct $name:ident (
            $(
                $( #[$field_meta:meta] )*

//          ^~~~field attributes~~~~^
                $field_vis:vis $field_ty:ty

//          ^~~~~~a single field~~~~~~^
            ),*
        $(,)? );
    ) => {
        $( #[$meta] )*
        $vis struct $name (
            $(
                $( #[$field_meta] )*
                $field_vis $field_ty
            ),*
        );
    };

// Named-Struct
    (
        $( #[$meta:meta] )*

//  ^~~~attributes~~~~^
        $vis:vis struct $name:ident {
            $(
                $( #[$field_meta:meta] )*

//          ^~~~field attributes~~~!^
                $field_vis:vis $field_name:ident : $field_ty:ty

//          ^~~~~~~~~~~~~~~~~a single field~~~~~~~~~~~~~~~^
            ),*
        $(,)? }
    ) => {
        $( #[$meta] )*
        $vis struct $name {
            $(
                $( #[$field_meta] )*
                $field_vis $field_name : $field_ty
            ),*
        }
    }
}

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

115 of 133 10/16/23, 10:34



Enum

Parsing enums is a bit more complex than structs so we will finally make use of some of

the patterns we have discussed, Incremental TT Muncher and Internal Rules. Instead of

just building the parsed enum again we will merely visit all the tokens of the enum, as

rebuilding the enum would require us to collect all the parsed tokens temporarily again

via a Push Down Accumulator.

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

116 of 133 10/16/23, 10:34

https://veykril.github.io/tlborm/print.html#enum
https://veykril.github.io/tlborm/print.html#enum
https://veykril.github.io/tlborm/decl-macros/patterns.html
https://veykril.github.io/tlborm/decl-macros/patterns.html
https://veykril.github.io/tlborm/decl-macros/patterns/tt-muncher.html
https://veykril.github.io/tlborm/decl-macros/patterns/tt-muncher.html
https://veykril.github.io/tlborm/decl-macros/patterns/internal-rules.html
https://veykril.github.io/tlborm/decl-macros/patterns/internal-rules.html
https://veykril.github.io/tlborm/decl-macros/patterns/push-down-acc.html
https://veykril.github.io/tlborm/decl-macros/patterns/push-down-acc.html


macro_rules! enum_item_matcher {
// tuple variant

    (@variant $variant:ident (
        $(
            $( #[$field_meta:meta] )*

//      ^~~~field attributes~~~~^
            $field_vis:vis $field_ty:ty

//      ^~~~~~a single field~~~~~~^
        ),* $(,)?

//∨~~rest of input~~∨
    ) $(, $($tt:tt)* )? ) => {

// process rest of the enum
        $( enum_item_matcher!(@variant $( $tt )*) )?
    };

// named variant
    (@variant $variant:ident {
        $(
            $( #[$field_meta:meta] )*

//      ^~~~field attributes~~~!^
            $field_vis:vis $field_name:ident : $field_ty:ty

//      ^~~~~~~~~~~~~~~~~a single field~~~~~~~~~~~~~~~^
        ),* $(,)?

//∨~~rest of input~~∨
    } $(, $($tt:tt)* )? ) => {

// process rest of the enum
        $( enum_item_matcher!(@variant $( $tt )*) )?
    };

// unit variant
    (@variant $variant:ident $(, $($tt:tt)* )? ) => {

// process rest of the enum
        $( enum_item_matcher!(@variant $( $tt )*) )?
    };

// trailing comma
    (@variant ,) => {};

// base case
    (@variant) => {};

// entry point
    (
        $( #[$meta:meta] )*
        $vis:vis enum $name:ident {
            $($tt:tt)*
        }
    ) => {
        enum_item_matcher!(@variant $($tt)*)
    };
}

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

117 of 133 10/16/23, 10:34



Macros 2.0

RFC: rfcs#1584

Tracking Issue: rust#39412

Feature: #![feature(decl_macro)]

While not yet stable(or rather far from being finished), there is proposal for a new

declarative macro system that is supposed to replace macro_rules!  dubbed declarative

macros 2.0, macro , decl_macro  or confusingly also macros-by-example .

This chapter is only meant to quickly glance over the current state, showing how to use

this macro system and where it differs. Nothing described here is final or complete, and

may be subject to change.

Syntax

We'll do a comparison between the macro  and macro_rules  syntax for two macros we

have implemented in previous chapters:

As can be seen, they look very similar, with just a few differences as well as that macro s

have two different forms.

Let's inspect the count_tts  macro first, as that one looks more like what we are used to.

As can be seen, it practically looks identical to the macro_rules  version with two

#![feature(decl_macro)]

macro_rules! replace_expr_ {
    ($_t:tt $sub:expr) => { $sub }
}
macro replace_expr($_t:tt $sub:expr) {
    $sub
}

macro_rules! count_tts_ {
    () => { 0 };
    ($odd:tt $($a:tt $b:tt)*) => { (count_tts!($($a)*) << 1) | 1 };
    ($($a:tt $even:tt)*) => { count_tts!($($a)*) << 1 };
}
macro count_tts {
    () => { 0 },
    ($odd:tt $($a:tt $b:tt)*) => { (count_tts!($($a)*) << 1) | 1 },
    ($($a:tt $even:tt)*) => { count_tts!($($a)*) << 1 },
}

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

118 of 133 10/16/23, 10:34

https://veykril.github.io/tlborm/print.html#macros-20
https://veykril.github.io/tlborm/print.html#macros-20
https://github.com/rust-lang/rfcs/blob/master/text/1584-macros.md
https://github.com/rust-lang/rfcs/blob/master/text/1584-macros.md
https://github.com/rust-lang/rust/issues/39412
https://github.com/rust-lang/rust/issues/39412
https://veykril.github.io/tlborm/print.html#syntax
https://veykril.github.io/tlborm/print.html#syntax


exceptions, it uses the macro  keyword and the rule separator is a ,  instead of a ; .

There is a second form to this though, which is a shorthand for macros that only have

one rule. Taking a look at replace_expr  we can see that in this case we can write the

definition in a way that more resembles an ordinary function. We can write the matcher

directly after the name followed by the transcriber, dropping a pair of braces and the =>

token.

Syntax for invoking macro s is the same as for macro_rules  and function-like procedural

macros, the name followed by a !  followed by the macro input token tree.

macro are proper items

Unlike with macro_rules  macros, which are textually scoped and require

#[macro_export] (and potentially a re-export) to be treated as an item, macro  macros

behave like proper rust items by default.

As such, you can properly qualify them with visibility specifiers like pub , pub(crate) ,

pub(in path)  and the like.

Hygiene

Hygiene is by far the biggest difference between the two declarative macro systems.

Unlike macro_rules  which have mixed site hygiene, macro  have definition site hygiene,

meaning they do not leak identifiers outside of their invocation.

As such the following compiles with a macro_rules  macro, but fails with a macro

definition:

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

119 of 133 10/16/23, 10:34

https://veykril.github.io/tlborm/print.html#macro-are-proper-items
https://veykril.github.io/tlborm/print.html#macro-are-proper-items
https://veykril.github.io/tlborm/print.html#macro-are-proper-items
https://veykril.github.io/tlborm/print.html#macro-are-proper-items
https://veykril.github.io/tlborm/print.html#hygiene-2
https://veykril.github.io/tlborm/print.html#hygiene-2
https://veykril.github.io/tlborm/decl-macros/minutiae/hygiene.html
https://veykril.github.io/tlborm/decl-macros/minutiae/hygiene.html


There may be plans to allow escaping hygiene for identifiers(hygiene bending) in the

future.

#![feature(decl_macro)]
// try uncommenting the following line, and commenting out the line right 
after

macro_rules! foo {
// macro foo {
    ($name: ident) => {

pub struct $name;

impl $name {
pub fn new() -> $name {

                $name
            }
        }
    }
}

foo!(Foo);

fn main() {
// this fails with a `macro`, but succeeds with a `macro_rules`
let foo = Foo::new();

}

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

120 of 133 10/16/23, 10:34



Procedural Macros

Note: This section is still very incomplete!

This chapter will introduce Rust's second syntax extension type, procedural macros.

As with the declarative macros chapter, this one is also split into a methodical and a (WIP)

practical subchapter with the former being a more formal introduction and the latter

being a more practical oriented one.

A lot of the basic information covered has been sourced from the rust reference, as most

knowledge about procedural macros is currently located there.

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

121 of 133 10/16/23, 10:34

https://veykril.github.io/tlborm/print.html#procedural-macros
https://veykril.github.io/tlborm/print.html#procedural-macros
https://veykril.github.io/tlborm/decl-macros.html
https://veykril.github.io/tlborm/decl-macros.html
https://veykril.github.io/tlborm/proc-macros/methodical.html
https://veykril.github.io/tlborm/proc-macros/methodical.html
https://doc.rust-lang.org/nightly/reference/introduction.html
https://doc.rust-lang.org/nightly/reference/introduction.html


A Methodical Introduction

This chapter will introduce Rust's procedural macro system by explaining the system as a

whole.

Unlike a declarative macro, a procedural macro takes the form of a Rust function taking in

a token stream(or two) and outputting a token stream.

A proc-macro is at its core just a function exported from a crate with the proc-macro

crate type, so when writing multiple proc macros you can have them all live in one crate.

Note: When using Cargo, to define a proc-macro  crate you define and set the

lib.proc-macro  key in the Cargo.toml  to true.

A proc-macro  type crate implicitly links to the compiler-provided proc_macro crate,

which contains all the things you need to get going with developing procedural macros.

The two most important types exposed by the crate are the TokenStream , which are the

proc-macro variant of the already familiar token trees as well as the Span , which

describes a part of source code used primarily for error reporting and hygiene. See the

Hygiene and Spans chapter for more information.

As proc-macros therefore are functions living in a crate, they can be addressed as all the

other items in a Rust project. All thats required to add the crate to the dependency graph

of a project and bring the desired item into scope.

Note: Procedural macros invocations still run at the same stage in the compiler

expansion-wise as declarative macros, just that they are standalone Rust programs

that the compiler compiles, runs, and finally either replaces or appends to.

Types of procedural macros

With procedural macros, there actually exists 3 different kinds with each having slightly

different properties.

• function-like proc-macros which are used to implement $name ! $arg  invocable

macros

[lib]
proc-macro = true

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

122 of 133 10/16/23, 10:34

https://veykril.github.io/tlborm/print.html#a-methodical-introduction
https://veykril.github.io/tlborm/print.html#a-methodical-introduction
https://veykril.github.io/tlborm/decl-macros.html
https://veykril.github.io/tlborm/decl-macros.html
https://doc.rust-lang.org/reference/linkage.html
https://doc.rust-lang.org/reference/linkage.html
https://doc.rust-lang.org/proc_macro/index.html
https://doc.rust-lang.org/proc_macro/index.html
https://doc.rust-lang.org/proc_macro/struct.TokenStream.html
https://doc.rust-lang.org/proc_macro/struct.TokenStream.html
https://doc.rust-lang.org/proc_macro/struct.TokenStream.html
https://doc.rust-lang.org/proc_macro/struct.Span.html
https://doc.rust-lang.org/proc_macro/struct.Span.html
https://doc.rust-lang.org/proc_macro/struct.Span.html
https://veykril.github.io/tlborm/proc-macros/hygiene.html
https://veykril.github.io/tlborm/proc-macros/hygiene.html
https://veykril.github.io/tlborm/print.html#types-of-procedural-macros
https://veykril.github.io/tlborm/print.html#types-of-procedural-macros


• attribute proc-macros which are used to implement #[$arg]  attributes

• derive proc-macros which are used to implement a derive, an input to a

#[derive(…)]  attribute

At their core, all 3 work almost the same with a few differences in their inputs and output

reflected by their function definition. As mentioned all a procedural macro really is, is a

function that maps a token stream so let's take a quick look at each basic definition and

their differences.

function-like

attribute

derive

As shown, the basic structure is the same for each, a public function marked with an

attribute defining its procedural macro type returning a TokenStream . Note how the

return type is a TokenStream  and not a result or something else that gives the notion of

being fallible. This does not mean that proc-macros cannot fail though, in fact they have

two ways of reporting errors, the first one being to panic and the second to emit a

compile_error!  invocation. If a proc-macro panics the compiler will catch it and emit the

payload as an error coming from the macro invocation.

#[proc_macro]
pub fn my_proc_macro(input: TokenStream) -> TokenStream {
    TokenStream::new()
}

#[proc_macro_attribute]
pub fn my_attribute(input: TokenStream, annotated_item: TokenStream) -> 
TokenStream {
    TokenStream::new()
}

#[proc_macro_derive(MyDerive)]
pub fn my_derive(annotated_item: TokenStream) -> TokenStream {
    TokenStream::new()
}

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

123 of 133 10/16/23, 10:34

https://veykril.github.io/tlborm/print.html#function-like
https://veykril.github.io/tlborm/print.html#function-like
https://veykril.github.io/tlborm/print.html#function-like
https://veykril.github.io/tlborm/print.html#attribute
https://veykril.github.io/tlborm/print.html#attribute
https://veykril.github.io/tlborm/print.html#attribute
https://veykril.github.io/tlborm/print.html#derive
https://veykril.github.io/tlborm/print.html#derive
https://veykril.github.io/tlborm/print.html#derive
https://doc.rust-lang.org/std/macro.compile_error.html
https://doc.rust-lang.org/std/macro.compile_error.html
https://doc.rust-lang.org/std/macro.compile_error.html


Beware: The compiler will happily hang on endless loops spun up inside proc-

macros causing the compilation of crates using the proc-macro to hang as well.

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

124 of 133 10/16/23, 10:34



Function-like

Function-like procedural macros are invoked like declarative macros that is makro!(…) .

This type of macro is the simplest of the three though. It is also the only one which you

can't differentiate from declarative macros when solely looking at the invocation.

A simple skeleton of a function-like procedural macro looks like the following:

As one can see this is in fact just a mapping from one TokenStream  to another where the

input  will be the tokens inside of the invocation delimiters, e.g. for an example

invocation foo!(bar)  the input token stream would consist of the bar  token. The

returned token stream will replace the macro invocation.

For this macro type the same placement and expansion rules apply as for declarative

macros, that is the macro must output a correct token stream for the invocation location.

Unlike with declarative macros though, function-like procedural macros do not have

certain restrictions imposed on their inputs though. That is the restrictions for what may

follow fragment specifiers listed in the Metavariables and Expansion Redux chapter listed

is not applicable here, as the procedural macros work on the tokens directly instead of

matching them against fragment specifiers or similar.

With that said it is apparent that the procedural counter part to these macros is more

powerful as they can arbitrarily modify their input, and produce any output desired as

long as its within the bounds of the language syntax.

Usage example:

use proc_macro::TokenStream;

#[proc_macro]
pub fn tlborm_fn_macro(input: TokenStream) -> TokenStream {
    input
}

use tlborm_proc::tlborm_attribute;

fn foo() {
    tlborm_attribute!(be quick; time is mana);
}

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

125 of 133 10/16/23, 10:34

https://veykril.github.io/tlborm/print.html#function-like-1
https://veykril.github.io/tlborm/print.html#function-like-1
https://doc.rust-lang.org/proc_macro/struct.TokenStream.html
https://doc.rust-lang.org/proc_macro/struct.TokenStream.html
https://doc.rust-lang.org/proc_macro/struct.TokenStream.html
https://veykril.github.io/tlborm/decl-macros/minutiae/metavar-and-expansion.html
https://veykril.github.io/tlborm/decl-macros/minutiae/metavar-and-expansion.html


Attribute

Attribute procedural macros define new outer attributes which can be attached to items.

This type can be invoked with the #[attr]  or #[attr(…)]  syntax where …  is an arbitrary

token tree.

A simple skeleton of an attribute procedural macro looks like the following:

Of note here is that unlike the other two procedural macro kinds, this one has two input

parameters instead of one.

• The first parameter is the delimited token tree following the attribute's name,

excluding the delimiters around it. It is empty if the attribute is written bare, that is

just a name without a (TokenTree)  following it, e.g. #[attr] .

• The second token stream is the item the attribute is attached to without the

attribute this proc macro defines. As this is an active  attribute, the attribute will be

stripped from the item before it is being passed to the proc macro.

The returned token stream will replace the annotated item fully. Note that the

replacement does not have to be a single item, it can be 0 or more.

Usage example:

use proc_macro::TokenStream;

#[proc_macro_attribute]
pub fn tlborm_attribute(input: TokenStream, annotated_item: TokenStream) -> 
TokenStream {
    annotated_item
}

use tlborm_proc::tlborm_attribute;

#[tlborm_attribute]
fn foo() {}

#[tlborm_attribute(attributes are pretty handsome)]
fn bar() {}

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

126 of 133 10/16/23, 10:34

https://veykril.github.io/tlborm/print.html#attribute-1
https://veykril.github.io/tlborm/print.html#attribute-1
https://doc.rust-lang.org/reference/attributes.html#active-and-inert-attributes
https://doc.rust-lang.org/reference/attributes.html#active-and-inert-attributes
https://doc.rust-lang.org/reference/attributes.html#active-and-inert-attributes


Derive

Derive procedural macros define new inputs for the derive  attribute. This type can be

invoked by feeding it to a derive attribute's input, e.g. #[derive(TlbormDerive)] .

A simple skeleton of a derive procedural macro looks like the following:

The proc_macro_derive  is a bit more special in that it requires an extra identifier, this

identifier will become the actual name of the derive proc macro. The input token stream

is the item the derive attribute is attached to, that is, it will always be an enum , struct  or

union  as these are the only items a derive attribute can annotate. The returned token

stream will be appended to the containing block or module of the annotated item with

the requirement that the token stream consists of a set of valid items.

Usage example:

Helper Attributes

Derive proc macros are a bit more special in that they can add additional attributes visible

only in the scope of the item definition. These attributes are called derive macro helper

attributes and are inert. Their purpose is to give derive proc macros additional

customizability on a per field or variant basis, that is these attributes can be used to

annotate fields or enum variants while having no effect on their own. As they are inert

they will not be stripped and are visible to all macros.

They can be defined by adding an attributes(helper0, helper1, ..)  argument to the

proc_macro_derive  attribute containing a comma separated list of identifiers which are

the names of the helper attributes.

Thus a simple skeleton of a derive procedural macro with helper attributes looks like the

following:

use proc_macro::TokenStream;

#[proc_macro_derive(TlbormDerive)]
pub fn tlborm_derive(item: TokenStream) -> TokenStream {
    TokenStream::new()
}

use tlborm_proc::TlbormDerive;

#[derive(TlbormDerive)]
struct Foo;

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

127 of 133 10/16/23, 10:34

https://veykril.github.io/tlborm/print.html#derive-1
https://veykril.github.io/tlborm/print.html#derive-1
https://doc.rust-lang.org/reference/attributes/derive.html
https://doc.rust-lang.org/reference/attributes/derive.html
https://doc.rust-lang.org/reference/attributes/derive.html
https://veykril.github.io/tlborm/print.html#helper-attributes
https://veykril.github.io/tlborm/print.html#helper-attributes
https://doc.rust-lang.org/reference/attributes.html#active-and-inert-attributes
https://doc.rust-lang.org/reference/attributes.html#active-and-inert-attributes


That is all there is to helper attributes, to consume them in the proc macro the

implementation will then have to check the attributes of fields and variants to see

whether they are attributed with the corresponding helper. It is an error to use a helper

attribute if none of the used derive macros of the given item declare it as such, as the

compiler will then instead try to resolve it as a normal attribute.

Usage example:

use proc_macro::TokenStream;

#[proc_macro_derive(TlbormDerive, attributes(tlborm_helper))]
pub fn tlborm_derive(item: TokenStream) -> TokenStream {
    TokenStream::new()
}

use tlborm_proc::TlbormDerive;

#[derive(TlbormDerive)]
struct Foo {

#[tlborm_helper]
    field: u32
}

#[derive(TlbormDerive)]
enum Bar {

#[tlborm_helper]
    Variant { #[tlborm_helper] field: u32 }
}

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

128 of 133 10/16/23, 10:34



Third-Party Crates

Note: Crates beyond the automatically linked proc_macro  crate are not required to

write procedural macros. The crates listed here merely make writing them simpler

and more concise, while potentially adding to the compilation time of the

procedural macro due to added dependencies.

As procedural macros live in a crate they can naturally depend on (crates.io) crates. turns

out the crate ecosystem has some really helpful crates tailored towards procedural

macros that this chapter will quickly go over, most of which will be used in the following

chapters to implement the example macros. As these are merely quick introductions it is

advised to look at each crate's documentation for more in-depth information if required.

proc-macro2

proc-macro2 , the successor of the proc_macro  crate! Or so you might think but that is of

course not correct, the name might be a bit misleading. This crate is actually just a

wrapper around the proc_macro  crate serving two specific purposes, taken from the

documentation:

• Bring proc-macro-like functionality to other contexts like build.rs and main.rs.

• Make procedural macros unit testable.

As the proc_macro  crate is exclusive to proc_macro  type crates, making them unit

testable or accessing them from non-proc macro code is next to impossible. With that in

mind the proc-macro2  crate mimics the original proc_macro  crate's api, acting as a

wrapper in proc-macro crates and standing on its own in non-proc-macro crates. Hence it

is advised to build libraries targeting proc-macro code to be built against proc-macro2

instead as that will enable those libraries to be unit testable, which is also the reason why

the following listed crates take and emit proc-macro2::TokenStream s instead. When a

proc_macro  token stream is required, one can simply .into()  the proc-macro2  token

stream to get the proc_macro  version and vice-versa.

Procedural macros using the proc-macro2  crate will usually import the proc-

macro2::TokenStream  in an aliased form like use proc-macro2::TokenStream as 

TokenStream2 .

quote

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

129 of 133 10/16/23, 10:34

https://veykril.github.io/tlborm/print.html#third-party-crates
https://veykril.github.io/tlborm/print.html#third-party-crates
https://doc.rust-lang.org/proc_macro/
https://doc.rust-lang.org/proc_macro/
https://doc.rust-lang.org/proc_macro/
https://crates.io/
https://crates.io/
https://docs.rs/proc-macro2/*/proc_macro2/
https://docs.rs/proc-macro2/*/proc_macro2/
https://docs.rs/proc-macro2/*/proc_macro2/
https://docs.rs/proc-macro2/*/proc_macro2/
https://docs.rs/proc-macro2/*/proc_macro2/
https://docs.rs/proc-macro2/*/proc_macro2/
https://doc.rust-lang.org/proc_macro/
https://doc.rust-lang.org/proc_macro/
https://doc.rust-lang.org/proc_macro/
https://doc.rust-lang.org/proc_macro/
https://doc.rust-lang.org/proc_macro/
https://doc.rust-lang.org/proc_macro/
https://doc.rust-lang.org/proc_macro/
https://doc.rust-lang.org/proc_macro/
https://doc.rust-lang.org/proc_macro/
https://doc.rust-lang.org/proc_macro/
https://doc.rust-lang.org/proc_macro/
https://doc.rust-lang.org/proc_macro/
https://docs.rs/proc-macro2/*/proc_macro2/
https://docs.rs/proc-macro2/*/proc_macro2/
https://docs.rs/proc-macro2/*/proc_macro2/
https://doc.rust-lang.org/proc_macro/
https://doc.rust-lang.org/proc_macro/
https://doc.rust-lang.org/proc_macro/
https://docs.rs/proc-macro2/*/proc_macro2/
https://docs.rs/proc-macro2/*/proc_macro2/
https://docs.rs/proc-macro2/*/proc_macro2/
https://docs.rs/proc-macro2/1.0.27/proc_macro2/struct.TokenStream.html
https://docs.rs/proc-macro2/1.0.27/proc_macro2/struct.TokenStream.html
https://docs.rs/proc-macro2/1.0.27/proc_macro2/struct.TokenStream.html
https://docs.rs/quote/*/quote/
https://docs.rs/quote/*/quote/
https://docs.rs/quote/*/quote/


The quote  crate mainly exposes just one macro, the quote!  macro.

This little macro allows you to easily create token streams by writing the actual source out

as syntax while also giving you the power of interpolating tokens right into the written

syntax. Interpolation can be done by using the #local  syntax where local refers to a local

in the current scope. Likewise #( #local )*  can be used to interpolate over an iterator

of types that implement ToTokens , this works similar to declarative macro_rules!

repetitions in that they allow a separator as well as extra tokens inside the repetition.

This a very useful tool when preparing macro output avoiding the need of creating a

token stream by inserting tokens one by one.

Note: As stated earlier, this crate makes use of proc_macro2  and thus the quote!

macro returns a proc-macro2::TokenStream .

syn

The syn  crate is a parsing library for parsing a stream of Rust tokens into a syntax tree of

Rust source code. It is a very powerful library that makes parsing proc-macro input quite

a bit easier, as the proc_macro  crate itself does not expose any kind of parsing

capabilities, merely the tokens. As the library can be a heavy compilation dependency, it

makes heavy use of feature gates to allow users to cut it as small as required.

So what does it offer? A bunch of things.

First of all it has definitions and parsing for all standard Rust syntax nodes(when the

full  feature is enabled), as well as a DeriveInput  type which encapsulates all the

information a derive macro gets passed as an input stream as a structured input(requires

the derive  feature, enabled by default). These can be used right out of the box with the

parse_macro_input!  macro(requires the parsing  and proc-macro  features, enabled by

default) to parse token streams into these types.

let name = /* some identifier */;
let exprs = /* an iterator over expressions tokenstreams */;
let expanded = quote! {

impl SomeTrait for #name { // #name interpolates the name local from 
above

fn some_function(&self) -> usize {
            #( #exprs )* // #name interpolates exprs by iterating the 
iterator
        }
    }
};

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

130 of 133 10/16/23, 10:34

https://docs.rs/quote/*/quote/
https://docs.rs/quote/*/quote/
https://docs.rs/quote/*/quote/
https://docs.rs/quote/1/quote/macro.quote.html
https://docs.rs/quote/1/quote/macro.quote.html
https://docs.rs/quote/1/quote/macro.quote.html
https://docs.rs/quote/1/quote/macro.quote.html#interpolation
https://docs.rs/quote/1/quote/macro.quote.html#interpolation
https://docs.rs/quote/1/quote/trait.ToTokens.html
https://docs.rs/quote/1/quote/trait.ToTokens.html
https://docs.rs/quote/1/quote/trait.ToTokens.html
https://docs.rs/syn/*/syn/
https://docs.rs/syn/*/syn/
https://docs.rs/syn/*/syn/
https://docs.rs/syn/*/syn/
https://docs.rs/syn/*/syn/
https://docs.rs/syn/*/syn/
https://doc.rust-lang.org/proc_macro/
https://doc.rust-lang.org/proc_macro/
https://doc.rust-lang.org/proc_macro/
https://docs.rs/syn/1/syn/struct.DeriveInput.html
https://docs.rs/syn/1/syn/struct.DeriveInput.html
https://docs.rs/syn/1/syn/struct.DeriveInput.html
https://docs.rs/syn/1/syn/macro.parse_macro_input.html
https://docs.rs/syn/1/syn/macro.parse_macro_input.html
https://docs.rs/syn/1/syn/macro.parse_macro_input.html


If Rust syntax doesn't cut it, and instead one wishes to parse custom non-Rust syntax the

crate also offers a generic parsing API, mainly in the form of the Parse  trait(requires the

parsing  feature, enabled by default).

Aside from this the types exposed by the library keep location information and spans

which allows procedural macros to emit detailed error messages pointing at the macro

input at the points of interest.

As this is again a library for procedural macros, it makes use of the proc_macro2  token

streams and spans and as such, conversions may be required.

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

131 of 133 10/16/23, 10:34

https://docs.rs/syn/1/syn/parse/index.html
https://docs.rs/syn/1/syn/parse/index.html
https://docs.rs/syn/1/syn/parse/trait.Parse.html
https://docs.rs/syn/1/syn/parse/trait.Parse.html
https://docs.rs/syn/1/syn/parse/trait.Parse.html


Hygiene and Spans

This chapter talks about procedural macro hygiene and the type that encodes it, Span .

Every token in a TokenStream  has an associated Span  holding some additional info. A

span, as its documentation states, is A region of source code, along with macro 

expansion information . It points into a region of the original source code(important for

displaying diagnostics at the correct places) as well as holding the kind of hygiene for this

location. The hygiene is relevant mainly for identifiers, as it allows or forbids the identifier

from referencing things or being referenced by things defined outside of the invocation.

There are 3 kinds of hygiene(which can be seen by the constructors of the Span  type):

• definition site (unstable): A span that resolves at the macro definition site.

Identifiers with this span will not be able to reference things defined outside or be

referenced by things outside of the invocation. This is what one would call

"hygienic".

• mixed site : A span that has the same hygiene as macro_rules  declarative macros,

that is it may resolve to definition site or call site depending on the type of identifier.

See here for more information.

• call site : A span that resolves to the invocation site. Identifiers in this case will

behave as if written directly at the call site, that is they freely resolve to things

defined outside of the invocation and can be referenced from the outside as well.

This is what one would call "unhygienic".

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

132 of 133 10/16/23, 10:34

https://veykril.github.io/tlborm/print.html#hygiene-and-spans
https://veykril.github.io/tlborm/print.html#hygiene-and-spans
https://veykril.github.io/tlborm/syntax-extensions/hygiene.html
https://veykril.github.io/tlborm/syntax-extensions/hygiene.html
https://doc.rust-lang.org/proc_macro/struct.Span.html
https://doc.rust-lang.org/proc_macro/struct.Span.html
https://doc.rust-lang.org/proc_macro/struct.Span.html
https://doc.rust-lang.org/proc_macro/struct.TokenStream.html
https://doc.rust-lang.org/proc_macro/struct.TokenStream.html
https://doc.rust-lang.org/proc_macro/struct.TokenStream.html
https://doc.rust-lang.org/proc_macro/struct.Span.html#method.def_site
https://doc.rust-lang.org/proc_macro/struct.Span.html#method.def_site
https://doc.rust-lang.org/proc_macro/struct.Span.html#method.def_site
https://doc.rust-lang.org/proc_macro/struct.Span.html#method.mixed_site
https://doc.rust-lang.org/proc_macro/struct.Span.html#method.mixed_site
https://doc.rust-lang.org/proc_macro/struct.Span.html#method.mixed_site
https://veykril.github.io/tlborm/decl-macros/minutiae/hygiene.html
https://veykril.github.io/tlborm/decl-macros/minutiae/hygiene.html
https://doc.rust-lang.org/proc_macro/struct.Span.html#method.call_site
https://doc.rust-lang.org/proc_macro/struct.Span.html#method.call_site
https://doc.rust-lang.org/proc_macro/struct.Span.html#method.call_site


Glossary

A place for obscure words and their descriptions. If you feel like there is an important

word missing here, please open an issue or a pull request.

Function-like macro

A function like macro describes a syntax extension that can be invoked via the form

identifier!(...) . It is called this way due to its resemblance of a function call.

Syntax Extension

The mechanism Rust's macro_rules!  and procedural macros are built on.

The Little Book of Rust Macros https://veykril.github.io/tlborm/print.html

133 of 133 10/16/23, 10:34

https://veykril.github.io/tlborm/print.html#glossary
https://veykril.github.io/tlborm/print.html#glossary
https://github.com/Veykril/tlborm/issues/new
https://github.com/Veykril/tlborm/issues/new
https://veykril.github.io/tlborm/print.html#function-like-macro
https://veykril.github.io/tlborm/print.html#function-like-macro
https://veykril.github.io/tlborm/print.html#syntax-extension
https://veykril.github.io/tlborm/print.html#syntax-extension

