
The Rust Performance Book
First published in November 2020

Written by Nicholas Nethercote and others

Source code

The Rust Performance Book https://nnethercote.github.io/perf-book/print.html

1 of 46 10/26/23, 15:08

https://nnethercote.github.io/perf-book/print.html#the-rust-performance-book
https://nnethercote.github.io/perf-book/print.html#the-rust-performance-book
https://nnethercote.github.io/perf-book/print.html#the-rust-performance-book
https://github.com/nnethercote/perf-book
https://github.com/nnethercote/perf-book

Introduction

Performance is important for many Rust programs.

This book contains techniques that can improve the performance-related characteristics

of Rust programs, such as runtime speed, memory usage, and binary size. The Compile

Times section also contains techniques that will improve the compile times of Rust

programs. Some techniques only require changing build configurations, but many require

changing code.

Some techniques are entirely Rust-specific, and some involve ideas that can be applied

(often with modifications) to programs written in other languages. The General Tips

section also includes some general principles that apply to any programming language.

Nonetheless, this book is mostly about the performance of Rust programs and is no

substitute for a general purpose guide to profiling and optimization.

This book also focuses on techniques that are practical and proven: many are

accompanied by links to pull requests or other resources that show how the technique

was used on a real-world Rust program. It reflects the primary author’s background,

being somewhat biased towards compiler development and away from other areas such

as scientific computing.

This book is deliberately terse, favouring breadth over depth, so that it is quick to read. It

links to external sources that provide more depth when appropriate.

This book is aimed at intermediate and advanced Rust users. Beginner Rust users have

more than enough to learn and these techniques are likely to be an unhelpful distraction

to them.

The Rust Performance Book https://nnethercote.github.io/perf-book/print.html

2 of 46 10/26/23, 15:08

https://nnethercote.github.io/perf-book/print.html#introduction
https://nnethercote.github.io/perf-book/print.html#introduction
https://nnethercote.github.io/perf-book/compile-times.html
https://nnethercote.github.io/perf-book/compile-times.html
https://nnethercote.github.io/perf-book/compile-times.html
https://nnethercote.github.io/perf-book/compile-times.html
https://nnethercote.github.io/perf-book/general-tips.html
https://nnethercote.github.io/perf-book/general-tips.html

Benchmarking

Benchmarking typically involves comparing the performance of two or more programs

that do the same thing. Sometimes this might involve comparing two or more different

programs, e.g. Firefox vs Safari vs Chrome. Sometimes it involves comparing two different

versions of the same program. This latter case lets us reliably answer the question “did

this change speed things up?”

Benchmarking is a complex topic and a thorough coverage is beyond the scope of this

book, but here are the basics.

First, you need workloads to measure. Ideally, you would have a variety of workloads that

represent realistic usage of your program. Workloads using real-world inputs are best,

but microbenchmarks and stress tests can be useful in moderation.

Second, you need a way to run the workloads, which will also dictate the metrics used.

• Rust’s built-in benchmark tests are a simple starting point, but they use unstable

features and therefore only work on Nightly Rust.

• Criterion is a more sophisticated alternative.

• Hyperfine is an excellent general-purpose benchmarking tool.

• Custom benchmarking harnesses are also possible. For example, rustc-perf is the

harness used to benchmark the Rust compiler.

When it comes to metrics, there are many choices, and the right one(s) will depend on the

nature of the program being benchmarked. For example, metrics that make sense for a

batch program might not make sense for an interactive program. Wall-time is an obvious

choice in many cases because it corresponds to what users perceive. However, it can

suffer from high variance. In particular, tiny changes in memory layout can cause

significant but ephemeral performance fluctuations. Therefore, other metrics with lower

variance (such as cycles or instruction counts) may be a reasonable alternative.

Summarizing measurements from multiple workloads is also a challenge, and there are a

variety of ways to do it, with no single method being obviously best.

Good benchmarking is hard. Having said that, do not stress too much about having a

perfect benchmarking setup, particularly when you start optimizing a program. Mediocre

benchmarking is far better than no benchmarking. Keep an open mind about what you

are measuring, and over time you can make benchmarking improvements as you learn

about the performance characteristics of your program.

The Rust Performance Book https://nnethercote.github.io/perf-book/print.html

3 of 46 10/26/23, 15:08

https://nnethercote.github.io/perf-book/print.html#benchmarking
https://nnethercote.github.io/perf-book/print.html#benchmarking
https://stackoverflow.com/questions/2842695/what-is-microbenchmarking
https://stackoverflow.com/questions/2842695/what-is-microbenchmarking
https://en.wikipedia.org/wiki/Stress_testing_(software)
https://en.wikipedia.org/wiki/Stress_testing_(software)
https://doc.rust-lang.org/nightly/unstable-book/library-features/test.html
https://doc.rust-lang.org/nightly/unstable-book/library-features/test.html
https://github.com/bheisler/criterion.rs
https://github.com/bheisler/criterion.rs
https://github.com/sharkdp/hyperfine
https://github.com/sharkdp/hyperfine
https://github.com/rust-lang/rustc-perf/
https://github.com/rust-lang/rustc-perf/

Build Configuration

You can drastically change the performance of a Rust program without changing its code,

just by changing its build configuration. There are many possible build configurations for

each Rust program. The one chosen will affect several characteristics of the compiled

code, such as compile times, runtime speed, memory use, binary size, debuggability,

profilability, and which architectures your compiled program will run on.

Most configuration choices will improve one or more characteristics while worsening one

or more others. For example, a common trade-off is to accept worse compile times in

exchange for higher runtime speeds. The right choice for your program depends on your

needs and the specifics of your program, and performance-related choices (which is most

of them) should be validated with benchmarking.

Note that Cargo only looks at the profile settings in the Cargo.toml file at the root of the

workspace. Profile settings defined in dependencies are ignored. Therefore, these options

are mostly relevant for binary crates, not library crates.

Release Builds

The single most important build configuration choice is simple but easy to overlook: make

sure you are using a release build rather than a dev build when you want high

performance. This is usually done by specifying the --release flag to Cargo.

Dev builds are the default. They are good for debugging, but are not optimized. They are

produced if you run cargo build or cargo run . (Alternatively, running rustc without

additional options also produces an unoptimized build.)

Consider the following final line of output from a cargo build run.

This output indicates that a dev build has been produced. The compiled code will be

placed in the target/debug/ directory. cargo run will run the dev build.

In comparison, release builds are much more optimized, omit debug assertions and

integer overflow checks, and omit debug info. 10-100x speedups over dev builds are

common! They are produced if you run cargo build --release or cargo run

--release . (Alternatively, rustc has multiple options for optimized builds, such as -O

and -C opt-level .) This will typically take longer than a dev build because of the

additional optimizations.

Finished dev [unoptimized + debuginfo] target(s) in 29.80s

The Rust Performance Book https://nnethercote.github.io/perf-book/print.html

4 of 46 10/26/23, 15:08

https://nnethercote.github.io/perf-book/print.html#build-configuration
https://nnethercote.github.io/perf-book/print.html#build-configuration
https://nnethercote.github.io/perf-book/print.html#release-builds
https://nnethercote.github.io/perf-book/print.html#release-builds
https://users.rust-lang.org/t/why-my-rust-program-is-so-slow/47764/5
https://users.rust-lang.org/t/why-my-rust-program-is-so-slow/47764/5
https://doc.rust-lang.org/cargo/reference/profiles.html#release
https://doc.rust-lang.org/cargo/reference/profiles.html#release
https://doc.rust-lang.org/cargo/reference/profiles.html#dev
https://doc.rust-lang.org/cargo/reference/profiles.html#dev

Consider the following final line of output from a cargo build --release run.

This output indicates that a release build has been produced. The compiled code will be

placed in the target/release/ directory. cargo run --release will run the release

build.

See the Cargo profile documentation for more details about the differences between dev

builds (which use the dev profile) and release builds (which use the release profile).

The default build configuration choices used in release builds provide a good balance

between the abovementioned characteristics such as compile times, runtime speed, and

binary size. But there are many possible adjustments, as the following sections explain.

Maximizing Runtime Speed

The following build configuration options are designed primarily to maximize runtime

speed. Some of them may also reduce binary size.

Codegen Units

The Rust compiler splits crates into multiple codegen units to parallelize (and thus speed

up) compilation. However, this might cause it to miss some potential optimizations. You

may be able to improve runtime speed and reduce binary size, at the cost of increased

compile times, by setting the number of units to one. Add these lines to the Cargo.toml

file:

Example 1, Example 2.

Link-time Optimization

Link-time optimization (LTO) is a whole-program optimization technique that can improve

runtime speed by 10-20% or more, and also reduce binary size, at the cost of worse

compile times. It comes in several forms.

The first form of LTO is thin local LTO, a lightweight form of LTO. By default the compiler

uses this for any build that involves a non-zero level of optimization. This includes release

Finished release [optimized] target(s) in 1m 01s

[profile.release]
codegen-units = 1

The Rust Performance Book https://nnethercote.github.io/perf-book/print.html

5 of 46 10/26/23, 15:08

https://doc.rust-lang.org/cargo/reference/profiles.html
https://doc.rust-lang.org/cargo/reference/profiles.html
https://nnethercote.github.io/perf-book/print.html#maximizing-runtime-speed
https://nnethercote.github.io/perf-book/print.html#maximizing-runtime-speed
https://nnethercote.github.io/perf-book/print.html#codegen-units
https://nnethercote.github.io/perf-book/print.html#codegen-units
https://doc.rust-lang.org/cargo/reference/profiles.html#codegen-units
https://doc.rust-lang.org/cargo/reference/profiles.html#codegen-units
http://likebike.com/posts/How_To_Write_Fast_Rust_Code.html#emit-asm
http://likebike.com/posts/How_To_Write_Fast_Rust_Code.html#emit-asm
http://likebike.com/posts/How_To_Write_Fast_Rust_Code.html#emit-asm
https://github.com/rust-lang/rust/pull/115554#issuecomment-1742192440
https://github.com/rust-lang/rust/pull/115554#issuecomment-1742192440
https://github.com/rust-lang/rust/pull/115554#issuecomment-1742192440
https://nnethercote.github.io/perf-book/print.html#link-time-optimization
https://nnethercote.github.io/perf-book/print.html#link-time-optimization
https://doc.rust-lang.org/cargo/reference/profiles.html#lto
https://doc.rust-lang.org/cargo/reference/profiles.html#lto

builds. To explicitly request this level of LTO, put these lines in the Cargo.toml file:

The second form of LTO is thin LTO, which is a little more aggressive, and likely to improve

runtime speed and reduce binary size while also increasing compile times. Use lto =

"thin" in Cargo.toml to enable it.

The third form of LTO is fat LTO, which is even more aggressive, and may improve

performance and reduce binary size further while increasing build times again. Use lto

= "fat" in Cargo.toml to enable it.

Finally, it is possible to fully disable LTO, which will likely worsen runtime speed and

increase binary size but reduce compile times. Use lto = "off" in Cargo.toml for this.

Note that this is different to the lto = false option, which, as mentioned above, leaves

thin local LTO enabled.

Alternative Allocators

It is possible to replace the default (system) heap allocator used by a Rust program with

an alternative allocator. The exact effect will depend on the individual program and the

alternative allocator chosen, but large improvements in runtime speed and large

reductions in memory usage have been seen in practice. The effect will also vary across

platforms, because each platform’s system allocator has its own strengths and

weaknesses. The use of an alternative allocator is also likely to increase binary size and

compile times.

One popular alternative allocator for Linux and Mac is jemalloc, usable via the tikv-

jemallocator crate. To use it, add a dependency to your Cargo.toml file:

Then add the following to your Rust code, e.g. at the top of src/main.rs :

Another alternative allocator that works on many platforms is mimalloc, usable via the

mimalloc crate.

CPU Specific Instructions

[profile.release]
lto = false

[dependencies]
tikv-jemallocator = "0.5.0"

#[global_allocator]
static GLOBAL: tikv_jemallocator::Jemalloc = tikv_jemallocator::Jemalloc;

The Rust Performance Book https://nnethercote.github.io/perf-book/print.html

6 of 46 10/26/23, 15:08

https://nnethercote.github.io/perf-book/print.html#alternative-allocators
https://nnethercote.github.io/perf-book/print.html#alternative-allocators
https://github.com/jemalloc/jemalloc
https://github.com/jemalloc/jemalloc
https://crates.io/crates/tikv-jemallocator
https://crates.io/crates/tikv-jemallocator
https://crates.io/crates/tikv-jemallocator
https://crates.io/crates/tikv-jemallocator
https://crates.io/crates/tikv-jemallocator
https://crates.io/crates/tikv-jemallocator
https://github.com/microsoft/mimalloc
https://github.com/microsoft/mimalloc
https://docs.rs/mimalloc/0.1.22/mimalloc/
https://docs.rs/mimalloc/0.1.22/mimalloc/
https://docs.rs/mimalloc/0.1.22/mimalloc/
https://nnethercote.github.io/perf-book/print.html#cpu-specific-instructions
https://nnethercote.github.io/perf-book/print.html#cpu-specific-instructions

If you do not care about the compatibility of your binary on older (or other types of)

processors, you can tell the compiler to generate the newest (and potentially fastest)

instructions specific to a certain CPU architecture, such as AVX SIMD instructions for

x86-64 CPUs.

To request these instructions from the command line, use the -C target-cpu=native

flag. For example:

Alternatively, to request these instructions from a config.toml file (for one or more

projects), add these lines:

This can improve runtime speed, especially if the compiler finds vectorization

opportunities in your code.

If you are unsure whether -C target-cpu=native is working optimally, compare the

output of rustc --print cfg and rustc --print cfg -C target-cpu=native to see if

the CPU features are being detected correctly in the latter case. If not, you can use -C

target-feature to target specific features.

Profile-guided Optimization

Profile-guided optimization (PGO) is a compilation model where you compile your

program, run it on sample data while collecting profiling data, and then use that profiling

data to guide a second compilation of the program. This can improve runtime speed by

10% or more. Example 1, Example 2.

It is an advanced technique that takes some effort to set up, but is worthwhile in some

cases. See the rustc PGO documentation for details. Also, the cargo-pgo command

makes it easier to use PGO (and BOLT, which is similar) to optimize Rust binaries.

Unfortunately, PGO is not supported for binaries hosted on crates.io and distributed via

cargo install , which limits its usability.

Minimizing Binary Size

The following build configuration options are designed primarily to minimize binary size.

Their effects on runtime speed vary.

$ RUSTFLAGS="-C target-cpu=native" cargo build --release

[build]
rustflags = ["-C", "target-cpu=native"]

The Rust Performance Book https://nnethercote.github.io/perf-book/print.html

7 of 46 10/26/23, 15:08

https://doc.rust-lang.org/rustc/codegen-options/index.html#target-cpu
https://doc.rust-lang.org/rustc/codegen-options/index.html#target-cpu
https://doc.rust-lang.org/cargo/reference/config.html
https://doc.rust-lang.org/cargo/reference/config.html
https://doc.rust-lang.org/cargo/reference/config.html
https://nnethercote.github.io/perf-book/print.html#profile-guided-optimization
https://nnethercote.github.io/perf-book/print.html#profile-guided-optimization
https://blog.rust-lang.org/inside-rust/2020/11/11/exploring-pgo-for-the-rust-compiler.html
https://blog.rust-lang.org/inside-rust/2020/11/11/exploring-pgo-for-the-rust-compiler.html
https://blog.rust-lang.org/inside-rust/2020/11/11/exploring-pgo-for-the-rust-compiler.html
https://github.com/rust-lang/rust/pull/96978
https://github.com/rust-lang/rust/pull/96978
https://github.com/rust-lang/rust/pull/96978
https://doc.rust-lang.org/rustc/profile-guided-optimization.html
https://doc.rust-lang.org/rustc/profile-guided-optimization.html
https://github.com/Kobzol/cargo-pgo
https://github.com/Kobzol/cargo-pgo
https://github.com/Kobzol/cargo-pgo
https://github.com/llvm/llvm-project/tree/main/bolt
https://github.com/llvm/llvm-project/tree/main/bolt
https://nnethercote.github.io/perf-book/print.html#minimizing-binary-size
https://nnethercote.github.io/perf-book/print.html#minimizing-binary-size

Optimization Level

You can request an optimization level that aims to minimize binary size by adding these

lines to the Cargo.toml file:

This may also reduce runtime speed.

An alternative is opt-level = "s" , which targets minimal binary size a little less

aggressively. Compared to opt-level = "z" , it allows slightly more inlining and also the

vectorization of loops.

Abort on panic!

If you do not need to unwind on panic, e.g. because your program doesn’t use

catch_unwind , you can tell the compiler to simply abort on panic. On panic, your

program will still produce a backtrace.

This might reduce binary size and increase runtime speed slightly, and may even reduce

compile times slightly. Add these lines to the Cargo.toml file:

Strip Debug Info and Symbols

You can tell the compiler to strip debug info and symbols from the compiled binary. Add

these lines to Cargo.toml to strip just debug info:

Alternatively, use strip = "symbols" to strip both debug info and symbols.

Stripping debug info can greatly reduce binary size. On Linux, the binary size of a small

Rust programs might shrink by 4x when debug info is stripped. Stripping symbols can

also reduce binary size, though generally not by as much. Example. The exact effects are

platform-dependent.

However, stripping makes your compiled program more difficult to debug and profile. For

example, if a stripped program panics, the backtrace produced may contain less useful

[profile.release]
opt-level = "z"

[profile.release]
panic = "abort"

[profile.release]
strip = "debuginfo"

The Rust Performance Book https://nnethercote.github.io/perf-book/print.html

8 of 46 10/26/23, 15:08

https://nnethercote.github.io/perf-book/print.html#optimization-level
https://nnethercote.github.io/perf-book/print.html#optimization-level
https://doc.rust-lang.org/cargo/reference/profiles.html#opt-level
https://doc.rust-lang.org/cargo/reference/profiles.html#opt-level
https://doc.rust-lang.org/rustc/codegen-options/index.html#inline-threshold
https://doc.rust-lang.org/rustc/codegen-options/index.html#inline-threshold
https://nnethercote.github.io/perf-book/print.html#abort-on-panic
https://nnethercote.github.io/perf-book/print.html#abort-on-panic
https://nnethercote.github.io/perf-book/print.html#abort-on-panic
https://nnethercote.github.io/perf-book/print.html#abort-on-panic
https://doc.rust-lang.org/std/panic/fn.catch_unwind.html
https://doc.rust-lang.org/std/panic/fn.catch_unwind.html
https://doc.rust-lang.org/std/panic/fn.catch_unwind.html
https://doc.rust-lang.org/cargo/reference/profiles.html#panic
https://doc.rust-lang.org/cargo/reference/profiles.html#panic
https://nnethercote.github.io/perf-book/print.html#strip-debug-info-and-symbols
https://nnethercote.github.io/perf-book/print.html#strip-debug-info-and-symbols
https://doc.rust-lang.org/cargo/reference/profiles.html#strip
https://doc.rust-lang.org/cargo/reference/profiles.html#strip
https://github.com/nnethercote/counts/commit/53cab44cd09ff1aa80de70a6dbe1893ff8a41142
https://github.com/nnethercote/counts/commit/53cab44cd09ff1aa80de70a6dbe1893ff8a41142
https://github.com/nnethercote/counts/commit/53cab44cd09ff1aa80de70a6dbe1893ff8a41142

information than normal. The exact effects for the two levels of stripping depend on the

platform.

Other ideas

For more advanced binary size minimization techniques, consult the comprehensive

documentation in the excellent min-sized-rust repository.

Minimizing Compile Times

The following build configuration options are designed primarily to minimize compile

times.

Linking

A big part of compile time is actually linking time, particularly when rebuilding a program

after a small change. It is possible to select a faster linker than the default one.

One option is lld, which is available on Linux and Windows. To specify lld from the

command line, use the -C link-arg=-fuse-ld=lld flag. For example:

Alternatively, to specify lld from a config.toml file (for one or more projects), add these

lines:

lld is not fully supported for use with Rust, but it should work for most use cases on Linux

and Windows. There is a GitHub Issue tracking full support for lld.

Another option is mold, which is currently available on Linux and macOS. Simply

substitute mold for lld in the instructions above. mold is often faster than lld. It is also

much newer and may not work in all cases.

Unlike the other options in this chapter, there are no trade-offs here! Alternative linkers

can be dramatically faster, without any downsides.

$ RUSTFLAGS="-C link-arg=-fuse-ld=lld" cargo build --release

[build]
rustflags = ["-C", "link-arg=-fuse-ld=lld"]

The Rust Performance Book https://nnethercote.github.io/perf-book/print.html

9 of 46 10/26/23, 15:08

https://nnethercote.github.io/perf-book/print.html#other-ideas
https://nnethercote.github.io/perf-book/print.html#other-ideas
https://github.com/johnthagen/min-sized-rust
https://github.com/johnthagen/min-sized-rust
https://github.com/johnthagen/min-sized-rust
https://nnethercote.github.io/perf-book/print.html#minimizing-compile-times
https://nnethercote.github.io/perf-book/print.html#minimizing-compile-times
https://nnethercote.github.io/perf-book/print.html#linking
https://nnethercote.github.io/perf-book/print.html#linking
https://lld.llvm.org/
https://lld.llvm.org/
https://doc.rust-lang.org/cargo/reference/config.html
https://doc.rust-lang.org/cargo/reference/config.html
https://doc.rust-lang.org/cargo/reference/config.html
https://github.com/rust-lang/rust/issues/39915#issuecomment-618726211
https://github.com/rust-lang/rust/issues/39915#issuecomment-618726211
https://github.com/rui314/mold
https://github.com/rui314/mold

Custom profiles

In addition to the dev and release profiles, Cargo supports custom profiles. It might be

useful, for example, to create a custom profile halfway between dev and release if you

find the runtime speed of dev builds insufficient and the compile times of release builds

too slow for everyday development.

Summary

There are many choices to be made when it comes to build configurations. The following

points summarize the above information into some recommendations.

• If you want to maximize runtime speed, consider all of the following: codegen-

units = 1 , lto = "fat" , an alternative allocator, and panic = "abort" .

• If you want to minimize binary size, consider opt-level = "z" , codegen-units =

1 , lto = "fat" , panic = "abort" , and strip = "symbols" .

• In either case, consider -C target-cpu=native if broad architecture support is not

needed, and cargo-pgo if it works with your distribution mechanism.

• Always use a faster linker if you are on a platform that supports it, because there

are no downsides to doing so.

• Benchmark all changes, one at a time, to ensure they have the expected effects.

Finally, this issue tracks the evolution of the Rust compiler’s own build configuration. The

Rust compiler’s build system is stranger and more complex than that of most Rust

programs. Nonetheless, this issue may be instructive in showing how build configuration

choices can be applied to a large program.

The Rust Performance Book https://nnethercote.github.io/perf-book/print.html

10 of 46 10/26/23, 15:08

https://nnethercote.github.io/perf-book/print.html#custom-profiles
https://nnethercote.github.io/perf-book/print.html#custom-profiles
https://doc.rust-lang.org/cargo/reference/profiles.html#custom-profiles
https://doc.rust-lang.org/cargo/reference/profiles.html#custom-profiles
https://nnethercote.github.io/perf-book/print.html#summary
https://nnethercote.github.io/perf-book/print.html#summary
https://github.com/rust-lang/rust/issues/103595
https://github.com/rust-lang/rust/issues/103595

Linting

Clippy is a collection of lints to catch common mistakes in Rust code. It is an excellent tool

to run on Rust code in general. It can also help with performance, because a number of

the lints relate to code patterns that can cause sub-optimal performance.

Given that automated detection of problems is preferable to manual detection, the rest

of this book will not mention performance problems that Clippy detects by default.

Basics

Once installed, it is easy to run:

The full list of performance lints can be seen by visiting the lint list and deselecting all the

lint groups except for “Perf”.

As well as making the code faster, the performance lint suggestions usually result in code

that is simpler and more idiomatic, so they are worth following even for code that is not

executed frequently.

Conversely, some non-performance lint suggestions can improve performance. For

example, the ptr_arg style lint suggests changing various container arguments to slices,

such as changing &mut Vec<T> arguments to &mut [T] . The primary motivation here is

that a slice gives a more flexible API, but it may also result in faster code due to less

indirection and better optimization opportunities for the compiler. Example.

Disallowing Types

In the following chapters we will see that it is sometimes worth avoiding certain standard

library types in favour of alternatives that are faster. If you decide to use these

alternatives, it is easy to accidentally use the standard library types in some places by

mistake.

You can use Clippy’s disallowed_types lint to avoid this problem. For example, to

disallow the use of the standard hash tables (for reasons explained in the Hashing

section) add a clippy.toml file to your code with the following line.

cargo clippy

disallowed-types = ["std::collections::HashMap", "std::collections::HashSet"]

The Rust Performance Book https://nnethercote.github.io/perf-book/print.html

11 of 46 10/26/23, 15:08

https://nnethercote.github.io/perf-book/print.html#linting
https://nnethercote.github.io/perf-book/print.html#linting
https://github.com/rust-lang/rust-clippy
https://github.com/rust-lang/rust-clippy
https://nnethercote.github.io/perf-book/print.html#basics
https://nnethercote.github.io/perf-book/print.html#basics
https://rust-lang.github.io/rust-clippy/master/
https://rust-lang.github.io/rust-clippy/master/
https://rust-lang.github.io/rust-clippy/master/index.html#ptr_arg
https://rust-lang.github.io/rust-clippy/master/index.html#ptr_arg
https://rust-lang.github.io/rust-clippy/master/index.html#ptr_arg
https://github.com/fschutt/fastblur/pull/3/files
https://github.com/fschutt/fastblur/pull/3/files
https://github.com/fschutt/fastblur/pull/3/files
https://nnethercote.github.io/perf-book/print.html#disallowing-types
https://nnethercote.github.io/perf-book/print.html#disallowing-types
https://rust-lang.github.io/rust-clippy/master/index.html#disallowed_types
https://rust-lang.github.io/rust-clippy/master/index.html#disallowed_types
https://rust-lang.github.io/rust-clippy/master/index.html#disallowed_types
https://nnethercote.github.io/perf-book/hashing.html
https://nnethercote.github.io/perf-book/hashing.html

Profiling

When optimizing a program, you also need a way to determine which parts of the

program are “hot” (executed frequently enough to affect runtime) and worth modifying.

This is best done via profiling.

Profilers

There are many different profilers available, each with their strengths and weaknesses.

The following is an incomplete list of profilers that have been used successfully on Rust

programs.

• perf is a general-purpose profiler that uses hardware performance counters.

Hotspot and Firefox Profiler are good for viewing data recorded by perf. It works on

Linux.

• Instruments is a general-purpose profiler that comes with Xcode on macOS.

• Intel VTune Profiler is a general-purpose profiler. It works on Windows, Linux, and

macOS.

• AMD μProf is a general-purpose profiler. It works on Windows and Linux.

• samply is a sampling profiler that produces profiles that can be viewed in the Firefox

Profiler. It works on Mac and Linux.

• flamegraph is a Cargo command that uses perf/DTrace to profile your code and

then displays the results in a flame graph. It works on Linux and all platforms that

support DTrace (macOS, FreeBSD, NetBSD, and possibly Windows).

• Cachegrind & Callgrind give global, per-function, and per-source-line instruction

counts and simulated cache and branch prediction data. They work on Linux and

some other Unixes.

• DHAT is good for finding which parts of the code are causing a lot of allocations, and

for giving insight into peak memory usage. It can also be used to identify hot calls to

memcpy . It works on Linux and some other Unixes. dhat-rs is an experimental

alternative that is a little less powerful and requires minor changes to your Rust

program, but works on all platforms.

• heaptrack and bytehound are heap profiling tools. They work on Linux.

• counts supports ad hoc profiling, which combines the use of eprintln! statement

with frequency-based post-processing, which is good for getting domain-specific

insights into parts of your code. It works on all platforms.

• Coz performs causal profiling to measure optimization potential, and has Rust

support via coz-rs. It works on Linux.

The Rust Performance Book https://nnethercote.github.io/perf-book/print.html

12 of 46 10/26/23, 15:08

https://nnethercote.github.io/perf-book/print.html#profiling
https://nnethercote.github.io/perf-book/print.html#profiling
https://nnethercote.github.io/perf-book/print.html#profilers
https://nnethercote.github.io/perf-book/print.html#profilers
https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page
https://github.com/KDAB/hotspot
https://github.com/KDAB/hotspot
https://profiler.firefox.com/
https://profiler.firefox.com/
https://developer.apple.com/forums/tags/instruments
https://developer.apple.com/forums/tags/instruments
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://developer.amd.com/amd-uprof/
https://developer.amd.com/amd-uprof/
https://github.com/mstange/samply/
https://github.com/mstange/samply/
https://github.com/flamegraph-rs/flamegraph
https://github.com/flamegraph-rs/flamegraph
https://www.valgrind.org/docs/manual/cg-manual.html
https://www.valgrind.org/docs/manual/cg-manual.html
https://www.valgrind.org/docs/manual/cl-manual.html
https://www.valgrind.org/docs/manual/cl-manual.html
https://www.valgrind.org/docs/manual/dh-manual.html
https://www.valgrind.org/docs/manual/dh-manual.html
https://github.com/nnethercote/dhat-rs/
https://github.com/nnethercote/dhat-rs/
https://github.com/KDE/heaptrack
https://github.com/KDE/heaptrack
https://github.com/koute/bytehound
https://github.com/koute/bytehound
https://github.com/nnethercote/counts/
https://github.com/nnethercote/counts/
https://github.com/nnethercote/counts/
https://github.com/plasma-umass/coz
https://github.com/plasma-umass/coz
https://github.com/plasma-umass/coz/tree/master/rust
https://github.com/plasma-umass/coz/tree/master/rust

Debug Info

To profile a release build effectively you might need to enable source line debug info. To

do this, add the following lines to your Cargo.toml file:

See the Cargo documentation for more details about the debug setting.

Unfortunately, even after doing the above step you won’t get detailed profiling

information for standard library code. This is because shipped versions of the Rust

standard library are not built with debug info.

The most reliable way around this is to build your own version of the compiler and

standard library, following these instructions, and adding the following lines to the

config.toml file:

This is a hassle, but may be worth the effort in some cases.

Alternatively, the unstable build-std feature lets you compile the standard library as part

of your program’s normal compilation, with the same build configuration. However,

filenames present in the debug info for the standard library will not point to source code

files, because this feature does not also download standard library source code. So this

approach will not help with profilers such as Cachegrind and Samply that require source

code to work fully.

Symbol Demangling

Rust uses a form of name mangling to encode function names in compiled code. If a

profiler is unaware of this, its output may contain symbol names beginning with _ZN or

_R , such as _ZN3foo3barE or _ZN28_$u7b$$u7b$closure$u7d$$u7d$E or

_RMCsno73SFvQKx_1cINtB0_3StrKRe616263_E

Names like these can be manually demangled using rustfilt .

If you are having trouble with symbol demangling while profiling, it may be worth

changing the mangling format from the default legacy format to the newer v0 format.

To use the v0 format from the command line, use the -C symbol-mangling-version=v0

flag. For example:

[profile.release]
debug = 1

[rust]
debuginfo-level = 1

The Rust Performance Book https://nnethercote.github.io/perf-book/print.html

13 of 46 10/26/23, 15:08

https://nnethercote.github.io/perf-book/print.html#debug-info
https://nnethercote.github.io/perf-book/print.html#debug-info
https://doc.rust-lang.org/cargo/reference/profiles.html#debug
https://doc.rust-lang.org/cargo/reference/profiles.html#debug
https://github.com/rust-lang/rust
https://github.com/rust-lang/rust
https://doc.rust-lang.org/cargo/reference/unstable.html#build-std
https://doc.rust-lang.org/cargo/reference/unstable.html#build-std
https://nnethercote.github.io/perf-book/print.html#symbol-demangling
https://nnethercote.github.io/perf-book/print.html#symbol-demangling
https://crates.io/crates/rustfilt
https://crates.io/crates/rustfilt
https://crates.io/crates/rustfilt
https://doc.rust-lang.org/rustc/codegen-options/index.html#symbol-mangling-version
https://doc.rust-lang.org/rustc/codegen-options/index.html#symbol-mangling-version

Alternatively, to request these instructions from a config.toml file (for one or more

projects), add these lines:

$ RUSTFLAGS="-C symbol-mangling-version=v0" cargo build --release

[build]
rustflags = ["-C", "symbol-mangling-version=v0"]

The Rust Performance Book https://nnethercote.github.io/perf-book/print.html

14 of 46 10/26/23, 15:08

https://doc.rust-lang.org/cargo/reference/config.html
https://doc.rust-lang.org/cargo/reference/config.html
https://doc.rust-lang.org/cargo/reference/config.html

Inlining

Entry to and exit from hot, uninlined functions often accounts for a non-trivial fraction of

execution time. Inlining these functions can provide small but easy speed wins.

There are four inline attributes that can be used on Rust functions.

• None. The compiler will decide itself if the function should be inlined. This will

depend on factors such as the optimization level and the size of the function. Non-

generic functions will never be inlined across crate boundaries unless link-time

optimization is used; generic functions might be.

• #[inline] . This suggests that the function should be inlined, including across crate

boundaries.

• #[inline(always)] . This strongly suggests that the function should be inlined,

including across crate boundaries.

• #[inline(never)] . This strongly suggests that the function should not be inlined.

Inline attributes do not guarantee that a function is inlined or not inlined, but in practice

#[inline(always)] will cause inlining in all but the most exceptional cases.

Inlining is non-transitive. If a function f calls a function g and you want both functions

to be inlined together at a callsite to f , both functions should be marked with an inline

attribute.

Simple Cases

The best candidates for inlining are (a) functions that are very small, or (b) functions that

have a single call site. The compiler will often inline these functions itself even without an

inline attribute. But the compiler cannot always make the best choices, so attributes are

sometimes needed. Example 1, Example 2, Example 3, Example 4, Example 5.

Cachegrind is a good profiler for determining if a function is inlined. When looking at

Cachegrind’s output, you can tell that a function has been inlined if (and only if) its first

and last lines are not marked with event counts. For example:

The Rust Performance Book https://nnethercote.github.io/perf-book/print.html

15 of 46 10/26/23, 15:08

https://nnethercote.github.io/perf-book/print.html#inlining
https://nnethercote.github.io/perf-book/print.html#inlining
https://nnethercote.github.io/perf-book/print.html#simple-cases
https://nnethercote.github.io/perf-book/print.html#simple-cases
https://github.com/rust-lang/rust/pull/37083/commits/6a4bb35b70862f33ac2491ffe6c55fb210c8490d
https://github.com/rust-lang/rust/pull/37083/commits/6a4bb35b70862f33ac2491ffe6c55fb210c8490d
https://github.com/rust-lang/rust/pull/37083/commits/6a4bb35b70862f33ac2491ffe6c55fb210c8490d
https://github.com/rust-lang/rust/pull/50407/commits/e740b97be699c9445b8a1a7af6348ca2d4c460ce
https://github.com/rust-lang/rust/pull/50407/commits/e740b97be699c9445b8a1a7af6348ca2d4c460ce
https://github.com/rust-lang/rust/pull/50407/commits/e740b97be699c9445b8a1a7af6348ca2d4c460ce
https://github.com/rust-lang/rust/pull/50564/commits/77c40f8c6f8cc472f6438f7724d60bf3b7718a0c
https://github.com/rust-lang/rust/pull/50564/commits/77c40f8c6f8cc472f6438f7724d60bf3b7718a0c
https://github.com/rust-lang/rust/pull/50564/commits/77c40f8c6f8cc472f6438f7724d60bf3b7718a0c
https://github.com/rust-lang/rust/pull/57719/commits/92fd6f9d30d0b6b4ecbcf01534809fb66393f139
https://github.com/rust-lang/rust/pull/57719/commits/92fd6f9d30d0b6b4ecbcf01534809fb66393f139
https://github.com/rust-lang/rust/pull/57719/commits/92fd6f9d30d0b6b4ecbcf01534809fb66393f139
https://github.com/rust-lang/rust/pull/69256/commits/e761f3af904b3c275bdebc73bb29ffc45384945d
https://github.com/rust-lang/rust/pull/69256/commits/e761f3af904b3c275bdebc73bb29ffc45384945d
https://github.com/rust-lang/rust/pull/69256/commits/e761f3af904b3c275bdebc73bb29ffc45384945d

You should measure again after adding inline attributes, because the effects can be

unpredictable. Sometimes it has no effect because a nearby function that was previously

inlined no longer is. Sometimes it slows the code down. Inlining can also affect compile

times, especially cross-crate inlining which involves duplicating internal representations

of the functions.

Harder Cases

Sometimes you have a function that is large and has multiple call sites, but only one call

site is hot. You would like to inline the hot call site for speed, but not inline the cold call

sites to avoid unnecessary code bloat. The way to handle this is to split the function

always-inlined and never-inlined variants, with the latter calling the former.

For example, this function:

Would become these two functions:

 . #[inline(always)]
 . fn inlined(x: u32, y: u32) -> u32 {
700,000 eprintln!("inlined: {} + {}", x, y);
200,000 x + y
 . }
 .
 . #[inline(never)]
400,000 fn not_inlined(x: u32, y: u32) -> u32 {
700,000 eprintln!("not_inlined: {} + {}", x, y);
200,000 x + y
200,000 }

fn my_function() {
 one();
 two();
 three();
}

The Rust Performance Book https://nnethercote.github.io/perf-book/print.html

16 of 46 10/26/23, 15:08

https://nnethercote.github.io/perf-book/print.html#harder-cases
https://nnethercote.github.io/perf-book/print.html#harder-cases

Example 1, Example 2.

// Use this at the hot call site.
#[inline(always)]
fn inlined_my_function() {
 one();
 two();
 three();
}

// Use this at the cold call sites.
#[inline(never)]
fn uninlined_my_function() {
 inlined_my_function();
}

The Rust Performance Book https://nnethercote.github.io/perf-book/print.html

17 of 46 10/26/23, 15:08

https://github.com/rust-lang/rust/pull/53513/commits/b73843f9422fb487b2d26ac2d65f79f73a4c9ae3
https://github.com/rust-lang/rust/pull/53513/commits/b73843f9422fb487b2d26ac2d65f79f73a4c9ae3
https://github.com/rust-lang/rust/pull/53513/commits/b73843f9422fb487b2d26ac2d65f79f73a4c9ae3
https://github.com/rust-lang/rust/pull/64420/commits/a2261ad66400c3145f96ebff0d9b75e910fa89dd
https://github.com/rust-lang/rust/pull/64420/commits/a2261ad66400c3145f96ebff0d9b75e910fa89dd
https://github.com/rust-lang/rust/pull/64420/commits/a2261ad66400c3145f96ebff0d9b75e910fa89dd

Hashing

HashSet and HashMap are two widely-used types. The default hashing algorithm is not

specified, but at the time of writing the default is an algorithm called SipHash 1-3. This

algorithm is high quality—it provides high protection against collisions—but is relatively

slow, particularly for short keys such as integers.

If profiling shows that hashing is hot, and HashDoS attacks are not a concern for your

application, the use of hash tables with faster hash algorithms can provide large speed

wins.

• rustc-hash provides FxHashSet and FxHashMap types that are drop-in

replacements for HashSet and HashMap . Its hashing algorithm is low-quality but

very fast, especially for integer keys, and has been found to out-perform all other

hash algorithms within rustc. (fxhash is an older, less well maintained

implementation of the same algorithm and types.)

• fnv provides FnvHashSet and FnvHashMap types. Its hashing algorithm is higher

quality than rustc-hash ’s but a little slower.

• ahash provides AHashSet and AHashMap . Its hashing algorithm can take advantage

of AES instruction support that is available on some processors.

If hashing performance is important in your program, it is worth trying more than one of

these alternatives. For example, the following results were seen in rustc.

• The switch from fnv to fxhash gave speedups of up to 6%.

• An attempt to switch from fxhash to ahash resulted in slowdowns of 1-4%.

• An attempt to switch from fxhash back to the default hasher resulted in slowdowns

ranging from 4-84%!

If you decide to universally use one of the alternatives, such as FxHashSet / FxHashMap , it

is easy to accidentally use HashSet / HashMap in some places. You can use Clippy to avoid

this problem.

Some types don’t need hashing. For example, you might have a newtype that wraps an

integer and the integer values are random, or close to random. For such a type, the

distribution of the hashed values won’t be that different to the distribution of the values

themselves. In this case the nohash_hasher crate can be useful.

Hash function design is a complex topic and is beyond the scope of this book. The ahash

documentation has a good discussion.

The Rust Performance Book https://nnethercote.github.io/perf-book/print.html

18 of 46 10/26/23, 15:08

https://nnethercote.github.io/perf-book/print.html#hashing
https://nnethercote.github.io/perf-book/print.html#hashing
https://en.wikipedia.org/wiki/SipHash
https://en.wikipedia.org/wiki/SipHash
https://en.wikipedia.org/wiki/Collision_attack
https://en.wikipedia.org/wiki/Collision_attack
https://crates.io/crates/rustc-hash
https://crates.io/crates/rustc-hash
https://crates.io/crates/rustc-hash
https://crates.io/crates/fxhash
https://crates.io/crates/fxhash
https://crates.io/crates/fxhash
https://crates.io/crates/fnv
https://crates.io/crates/fnv
https://crates.io/crates/fnv
https://crates.io/crates/ahash
https://crates.io/crates/ahash
https://crates.io/crates/ahash
https://github.com/rust-lang/rust/pull/37229/commits/00e48affde2d349e3b3bfbd3d0f6afb5d76282a7
https://github.com/rust-lang/rust/pull/37229/commits/00e48affde2d349e3b3bfbd3d0f6afb5d76282a7
https://github.com/rust-lang/rust/issues/69153#issuecomment-589504301
https://github.com/rust-lang/rust/issues/69153#issuecomment-589504301
https://github.com/rust-lang/rust/issues/69153#issuecomment-589338446
https://github.com/rust-lang/rust/issues/69153#issuecomment-589338446
https://github.com/rust-lang/rust/issues/69153#issuecomment-589338446
https://github.com/rust-lang/rust/issues/69153#issuecomment-589338446
https://nnethercote.github.io/perf-book/linting.html#disallowing-types
https://nnethercote.github.io/perf-book/linting.html#disallowing-types
https://crates.io/crates/nohash-hasher
https://crates.io/crates/nohash-hasher
https://crates.io/crates/nohash-hasher
https://github.com/tkaitchuck/aHash/blob/master/compare/readme.md
https://github.com/tkaitchuck/aHash/blob/master/compare/readme.md
https://github.com/tkaitchuck/aHash/blob/master/compare/readme.md
https://github.com/tkaitchuck/aHash/blob/master/compare/readme.md
https://github.com/tkaitchuck/aHash/blob/master/compare/readme.md

Heap Allocations

Heap allocations are moderately expensive. The exact details depend on which allocator

is in use, but each allocation (and deallocation) typically involves acquiring a global lock,

doing some non-trivial data structure manipulation, and possibly executing a system call.

Small allocations are not necessarily cheaper than large allocations. It is worth

understanding which Rust data structures and operations cause allocations, because

avoiding them can greatly improve performance.

The Rust Container Cheat Sheet has visualizations of common Rust types, and is an

excellent companion to the following sections.

Profiling

If a general-purpose profiler shows malloc , free , and related functions as hot, then it is

likely worth trying to reduce the allocation rate and/or using an alternative allocator.

DHAT is an excellent profiler to use when reducing allocation rates. It works on Linux and

some other Unixes. It precisely identifies hot allocation sites and their allocation rates.

Exact results will vary, but experience with rustc has shown that reducing allocation rates

by 10 allocations per million instructions executed can have measurable performance

improvements (e.g. ~1%).

Here is some example output from DHAT.

The Rust Performance Book https://nnethercote.github.io/perf-book/print.html

19 of 46 10/26/23, 15:08

https://nnethercote.github.io/perf-book/print.html#heap-allocations
https://nnethercote.github.io/perf-book/print.html#heap-allocations
https://docs.google.com/presentation/d/1q-c7UAyrUlM-eZyTo1pd8SZ0qwA_wYxmPZVOQkoDmH4/
https://docs.google.com/presentation/d/1q-c7UAyrUlM-eZyTo1pd8SZ0qwA_wYxmPZVOQkoDmH4/
https://nnethercote.github.io/perf-book/print.html#profiling-1
https://nnethercote.github.io/perf-book/print.html#profiling-1
https://www.valgrind.org/docs/manual/dh-manual.html
https://www.valgrind.org/docs/manual/dh-manual.html

It is beyond the scope of this book to describe everything in this example, but it should be

clear that DHAT gives a wealth of information about allocations, such as where and how

often they happen, how big they are, how long they live for, and how often they are

accessed.

Box

Box is the simplest heap-allocated type. A Box<T> value is a T value that is allocated on

the heap.

It is sometimes worth boxing one or more fields in a struct or enum fields to make a type

smaller. (See the Type Sizes chapter for more about this.)

Other than that, Box is straightforward and does not offer much scope for optimizations.

Rc/Arc

Rc / Arc are similar to Box , but the value on the heap is accompanied by two reference

counts. They allow value sharing, which can be an effective way to reduce memory usage.

However, if used for values that are rarely shared, they can increase allocation rates by

AP 1.1/25 (2 children) {
 Total: 54,533,440 bytes (4.02%, 2,714.28/Minstr) in 458,839 blocks
(7.72%, 22.84/Minstr), avg size 118.85 bytes, avg lifetime 1,127,259,403.64
instrs (5.61% of program duration)
 At t-gmax: 0 bytes (0%) in 0 blocks (0%), avg size 0 bytes
 At t-end: 0 bytes (0%) in 0 blocks (0%), avg size 0 bytes
 Reads: 15,993,012 bytes (0.29%, 796.02/Minstr), 0.29/byte
 Writes: 20,974,752 bytes (1.03%, 1,043.97/Minstr), 0.38/byte
 Allocated at {
 #1: 0x95CACC9: alloc (alloc.rs:72)
 #2: 0x95CACC9: alloc (alloc.rs:148)
 #3: 0x95CACC9:
reserve_internal<syntax::tokenstream::TokenStream,alloc::alloc::Global>
(raw_vec.rs:669)
 #4: 0x95CACC9:
reserve<syntax::tokenstream::TokenStream,alloc::alloc::Global>
(raw_vec.rs:492)
 #5: 0x95CACC9: reserve<syntax::tokenstream::TokenStream> (vec.rs:460)
 #6: 0x95CACC9: push<syntax::tokenstream::TokenStream> (vec.rs:989)
 #7: 0x95CACC9: parse_token_trees_until_close_delim (tokentrees.rs:27)
 #8: 0x95CACC9: syntax::parse::lexer::tokentrees::<impl
syntax::parse::lexer::StringReader<'a>>::parse_token_tree (tokentrees.rs:81)
 }
}

The Rust Performance Book https://nnethercote.github.io/perf-book/print.html

20 of 46 10/26/23, 15:08

https://nnethercote.github.io/perf-book/print.html#box
https://nnethercote.github.io/perf-book/print.html#box
https://nnethercote.github.io/perf-book/print.html#box
https://doc.rust-lang.org/std/boxed/struct.Box.html
https://doc.rust-lang.org/std/boxed/struct.Box.html
https://doc.rust-lang.org/std/boxed/struct.Box.html
https://nnethercote.github.io/perf-book/type-sizes.html
https://nnethercote.github.io/perf-book/type-sizes.html
https://nnethercote.github.io/perf-book/print.html#rcarc
https://nnethercote.github.io/perf-book/print.html#rcarc
https://nnethercote.github.io/perf-book/print.html#rcarc
https://nnethercote.github.io/perf-book/print.html#rcarc
https://nnethercote.github.io/perf-book/print.html#rcarc
https://nnethercote.github.io/perf-book/print.html#rcarc
https://doc.rust-lang.org/std/rc/struct.Rc.html
https://doc.rust-lang.org/std/rc/struct.Rc.html
https://doc.rust-lang.org/std/rc/struct.Rc.html
https://doc.rust-lang.org/std/sync/struct.Arc.html
https://doc.rust-lang.org/std/sync/struct.Arc.html
https://doc.rust-lang.org/std/sync/struct.Arc.html

heap allocating values that might otherwise not be heap-allocated. Example.

Unlike Box , calling clone on an Rc / Arc value does not involve an allocation. Instead, it

merely increments a reference count.

Vec

Vec is a heap-allocated type with a great deal of scope for optimizing the number of

allocations, and/or minimizing the amount of wasted space. To do this requires

understanding how its elements are stored.

A Vec contains three words: a length, a capacity, and a pointer. The pointer will point to

heap-allocated memory if the capacity is nonzero and the element size is nonzero;

otherwise, it will not point to allocated memory.

Even if the Vec itself is not heap-allocated, the elements (if present and nonzero-sized)

always will be. If nonzero-sized elements are present, the memory holding those

elements may be larger than necessary, providing space for additional future elements.

The number of elements present is the length, and the number of elements that could be

held without reallocating is the capacity.

When the vector needs to grow beyond its current capacity, the elements will be copied

into a larger heap allocation, and the old heap allocation will be freed.

Vec Growth

A new, empty Vec created by the common means (vec![] or Vec::new or

Vec::default) has a length and capacity of zero, and no heap allocation is required. If

you repeatedly push individual elements onto the end of the Vec , it will periodically

reallocate. The growth strategy is not specified, but at the time of writing it uses a quasi-

doubling strategy resulting in the following capacities: 0, 4, 8, 16, 32, 64, and so on. (It

skips directly from 0 to 4, instead of going via 1 and 2, because this avoids many

allocations in practice.) As a vector grows, the frequency of reallocations will decrease

exponentially, but the amount of possibly-wasted excess capacity will increase

exponentially.

This growth strategy is typical for growable data structures and reasonable in the general

case, but if you know in advance the likely length of a vector you can often do better. If

you have a hot vector allocation site (e.g. a hot Vec::push call), it is worth using

eprintln! to print the vector length at that site and then doing some post-processing

(e.g. with counts) to determine the length distribution. For example, you might have

many short vectors, or you might have a smaller number of very long vectors, and the

The Rust Performance Book https://nnethercote.github.io/perf-book/print.html

21 of 46 10/26/23, 15:08

https://github.com/rust-lang/rust/pull/37373/commits/c440a7ae654fb641e68a9ee53b03bf3f7133c2fe
https://github.com/rust-lang/rust/pull/37373/commits/c440a7ae654fb641e68a9ee53b03bf3f7133c2fe
https://github.com/rust-lang/rust/pull/37373/commits/c440a7ae654fb641e68a9ee53b03bf3f7133c2fe
https://nnethercote.github.io/perf-book/print.html#vec
https://nnethercote.github.io/perf-book/print.html#vec
https://nnethercote.github.io/perf-book/print.html#vec
https://doc.rust-lang.org/std/vec/struct.Vec.html
https://doc.rust-lang.org/std/vec/struct.Vec.html
https://doc.rust-lang.org/std/vec/struct.Vec.html
https://nnethercote.github.io/perf-book/print.html#vec-growth
https://nnethercote.github.io/perf-book/print.html#vec-growth
https://nnethercote.github.io/perf-book/print.html#vec-growth
https://nnethercote.github.io/perf-book/print.html#vec-growth
https://doc.rust-lang.org/std/macro.vec.html
https://doc.rust-lang.org/std/macro.vec.html
https://doc.rust-lang.org/std/macro.vec.html
https://doc.rust-lang.org/std/vec/struct.Vec.html#method.new
https://doc.rust-lang.org/std/vec/struct.Vec.html#method.new
https://doc.rust-lang.org/std/vec/struct.Vec.html#method.new
https://doc.rust-lang.org/std/default/trait.Default.html#tymethod.default
https://doc.rust-lang.org/std/default/trait.Default.html#tymethod.default
https://doc.rust-lang.org/std/default/trait.Default.html#tymethod.default
https://github.com/rust-lang/rust/pull/72227
https://github.com/rust-lang/rust/pull/72227
https://github.com/rust-lang/rust/pull/72227
https://github.com/rust-lang/rust/pull/72227
https://doc.rust-lang.org/std/vec/struct.Vec.html#method.push
https://doc.rust-lang.org/std/vec/struct.Vec.html#method.push
https://doc.rust-lang.org/std/vec/struct.Vec.html#method.push
https://doc.rust-lang.org/std/macro.eprintln.html
https://doc.rust-lang.org/std/macro.eprintln.html
https://doc.rust-lang.org/std/macro.eprintln.html
https://github.com/nnethercote/counts/
https://github.com/nnethercote/counts/
https://github.com/nnethercote/counts/

best way to optimize the allocation site will vary accordingly.

Short Vecs

If you have many short vectors, you can use the SmallVec type from the smallvec crate.

SmallVec<[T; N]> is a drop-in replacement for Vec that can store N elements within

the SmallVec itself, and then switches to a heap allocation if the number of elements

exceeds that. (Note also that vec![] literals must be replaced with smallvec![] literals.)

Example 1, Example 2.

SmallVec reliably reduces the allocation rate when used appropriately, but its use does

not guarantee improved performance. It is slightly slower than Vec for normal

operations because it must always check if the elements are heap-allocated or not. Also,

If N is high or T is large, then the SmallVec<[T; N]> itself can be larger than Vec<T> ,

and copying of SmallVec values will be slower. As always, benchmarking is required to

confirm that an optimization is effective.

If you have many short vectors and you precisely know their maximum length, ArrayVec

from the arrayvec crate is a better choice than SmallVec . It does not require the

fallback to heap allocation, which makes it a little faster. Example.

Longer Vecs

If you know the minimum or exact size of a vector, you can reserve a specific capacity

with Vec::with_capacity , Vec::reserve , or Vec::reserve_exact . For example, if you

know a vector will grow to have at least 20 elements, these functions can immediately

provide a vector with a capacity of at least 20 using a single allocation, whereas pushing

the items one at a time would result in four allocations (for capacities of 4, 8, 16, and 32).

Example.

If you know the maximum length of a vector, the above functions also let you not allocate

excess space unnecessarily. Similarly, Vec::shrink_to_fit can be used to minimize

wasted space, but note that it may cause a reallocation.

String

A String contains heap-allocated bytes. The representation and operation of String

are very similar to that of Vec<u8> . Many Vec methods relating to growth and capacity

have equivalents for String , such as String::with_capacity .

The Rust Performance Book https://nnethercote.github.io/perf-book/print.html

22 of 46 10/26/23, 15:08

https://nnethercote.github.io/perf-book/print.html#short-vecs
https://nnethercote.github.io/perf-book/print.html#short-vecs
https://nnethercote.github.io/perf-book/print.html#short-vecs
https://nnethercote.github.io/perf-book/print.html#short-vecs
https://nnethercote.github.io/perf-book/print.html#short-vecs
https://crates.io/crates/smallvec
https://crates.io/crates/smallvec
https://crates.io/crates/smallvec
https://github.com/rust-lang/rust/pull/50565/commits/78262e700dc6a7b57e376742f344e80115d2d3f2
https://github.com/rust-lang/rust/pull/50565/commits/78262e700dc6a7b57e376742f344e80115d2d3f2
https://github.com/rust-lang/rust/pull/50565/commits/78262e700dc6a7b57e376742f344e80115d2d3f2
https://github.com/rust-lang/rust/pull/55383/commits/526dc1421b48e3ee8357d58d997e7a0f4bb26915
https://github.com/rust-lang/rust/pull/55383/commits/526dc1421b48e3ee8357d58d997e7a0f4bb26915
https://github.com/rust-lang/rust/pull/55383/commits/526dc1421b48e3ee8357d58d997e7a0f4bb26915
https://crates.io/crates/arrayvec
https://crates.io/crates/arrayvec
https://crates.io/crates/arrayvec
https://github.com/rust-lang/rust/pull/74310/commits/c492ca40a288d8a85353ba112c4d38fe87ef453e
https://github.com/rust-lang/rust/pull/74310/commits/c492ca40a288d8a85353ba112c4d38fe87ef453e
https://github.com/rust-lang/rust/pull/74310/commits/c492ca40a288d8a85353ba112c4d38fe87ef453e
https://nnethercote.github.io/perf-book/print.html#longer-vecs
https://nnethercote.github.io/perf-book/print.html#longer-vecs
https://nnethercote.github.io/perf-book/print.html#longer-vecs
https://nnethercote.github.io/perf-book/print.html#longer-vecs
https://nnethercote.github.io/perf-book/print.html#longer-vecs
https://doc.rust-lang.org/std/vec/struct.Vec.html#method.with_capacity
https://doc.rust-lang.org/std/vec/struct.Vec.html#method.with_capacity
https://doc.rust-lang.org/std/vec/struct.Vec.html#method.with_capacity
https://doc.rust-lang.org/std/vec/struct.Vec.html#method.reserve
https://doc.rust-lang.org/std/vec/struct.Vec.html#method.reserve
https://doc.rust-lang.org/std/vec/struct.Vec.html#method.reserve
https://doc.rust-lang.org/std/vec/struct.Vec.html#method.reserve_exact
https://doc.rust-lang.org/std/vec/struct.Vec.html#method.reserve_exact
https://doc.rust-lang.org/std/vec/struct.Vec.html#method.reserve_exact
https://github.com/rust-lang/rust/pull/77990/commits/a7f2bb634308a5f05f2af716482b67ba43701681
https://github.com/rust-lang/rust/pull/77990/commits/a7f2bb634308a5f05f2af716482b67ba43701681
https://github.com/rust-lang/rust/pull/77990/commits/a7f2bb634308a5f05f2af716482b67ba43701681
https://doc.rust-lang.org/std/vec/struct.Vec.html#method.shrink_to_fit
https://doc.rust-lang.org/std/vec/struct.Vec.html#method.shrink_to_fit
https://doc.rust-lang.org/std/vec/struct.Vec.html#method.shrink_to_fit
https://nnethercote.github.io/perf-book/print.html#string
https://nnethercote.github.io/perf-book/print.html#string
https://nnethercote.github.io/perf-book/print.html#string
https://doc.rust-lang.org/std/string/struct.String.html
https://doc.rust-lang.org/std/string/struct.String.html
https://doc.rust-lang.org/std/string/struct.String.html
https://doc.rust-lang.org/std/string/struct.String.html#method.with_capacity
https://doc.rust-lang.org/std/string/struct.String.html#method.with_capacity
https://doc.rust-lang.org/std/string/struct.String.html#method.with_capacity

The SmallString type from the smallstr crate is similar to the SmallVec type.

The String type from the smartstring crate is a drop-in replacement for String that

avoids heap allocations for strings with less than three words’ worth of characters. On 64-

bit platforms, this is any string that is less than 24 bytes, which includes all strings

containing 23 or fewer ASCII characters. Example.

Note that the format! macro produces a String , which means it performs an

allocation. If you can avoid a format! call by using a string literal, that will avoid this

allocation. Example. std::format_args and/or the lazy_format crate may help with

this.

Hash Tables

HashSet and HashMap are hash tables. Their representation and operations are similar

to those of Vec , in terms of allocations: they have a single contiguous heap allocation,

holding keys and values, which is reallocated as necessary as the table grows. Many Vec

methods relating to growth and capacity have equivalents for HashSet / HashMap , such as

HashSet::with_capacity .

clone

Calling clone on a value that contains heap-allocated memory typically involves

additional allocations. For example, calling clone on a non-empty Vec requires a new

allocation for the elements (but note that the capacity of the new Vec might not be the

same as the capacity of the original Vec). The exception is Rc / Arc , where a clone call

just increments the reference count.

clone_from is an alternative to clone . a.clone_from(&b) is equivalent to a =

b.clone() but may avoid unnecessary allocations. For example, if you want to clone one

Vec over the top of an existing Vec , the existing Vec ’s heap allocation will be reused if

possible, as the following example shows.

Although clone usually causes allocations, it is a reasonable thing to use in many

circumstances and can often make code simpler. Use profiling data to see which clone

calls are hot and worth taking the effort to avoid.

let mut v1: Vec<u32> = Vec::with_capacity(99);
let v2: Vec<u32> = vec![1, 2, 3];
v1.clone_from(&v2); // v1's allocation is reused
assert_eq!(v1.capacity(), 99);

The Rust Performance Book https://nnethercote.github.io/perf-book/print.html

23 of 46 10/26/23, 15:08

https://crates.io/crates/smallstr
https://crates.io/crates/smallstr
https://crates.io/crates/smallstr
https://crates.io/crates/smartstring
https://crates.io/crates/smartstring
https://crates.io/crates/smartstring
https://github.com/djc/topfew-rs/commit/803fd566e9b889b7ba452a2a294a3e4df76e6c4c
https://github.com/djc/topfew-rs/commit/803fd566e9b889b7ba452a2a294a3e4df76e6c4c
https://github.com/djc/topfew-rs/commit/803fd566e9b889b7ba452a2a294a3e4df76e6c4c
https://github.com/rust-lang/rust/pull/55905/commits/c6862992d947331cd6556f765f6efbde0a709cf9
https://github.com/rust-lang/rust/pull/55905/commits/c6862992d947331cd6556f765f6efbde0a709cf9
https://github.com/rust-lang/rust/pull/55905/commits/c6862992d947331cd6556f765f6efbde0a709cf9
https://doc.rust-lang.org/std/macro.format_args.html
https://doc.rust-lang.org/std/macro.format_args.html
https://doc.rust-lang.org/std/macro.format_args.html
https://crates.io/crates/lazy_format
https://crates.io/crates/lazy_format
https://crates.io/crates/lazy_format
https://nnethercote.github.io/perf-book/print.html#hash-tables
https://nnethercote.github.io/perf-book/print.html#hash-tables
https://doc.rust-lang.org/std/collections/struct.HashSet.html
https://doc.rust-lang.org/std/collections/struct.HashSet.html
https://doc.rust-lang.org/std/collections/struct.HashSet.html
https://doc.rust-lang.org/std/collections/struct.HashMap.html
https://doc.rust-lang.org/std/collections/struct.HashMap.html
https://doc.rust-lang.org/std/collections/struct.HashMap.html
https://doc.rust-lang.org/std/collections/struct.HashSet.html#method.with_capacity
https://doc.rust-lang.org/std/collections/struct.HashSet.html#method.with_capacity
https://doc.rust-lang.org/std/collections/struct.HashSet.html#method.with_capacity
https://nnethercote.github.io/perf-book/print.html#clone
https://nnethercote.github.io/perf-book/print.html#clone
https://nnethercote.github.io/perf-book/print.html#clone
https://doc.rust-lang.org/std/clone/trait.Clone.html#tymethod.clone
https://doc.rust-lang.org/std/clone/trait.Clone.html#tymethod.clone
https://doc.rust-lang.org/std/clone/trait.Clone.html#tymethod.clone
https://doc.rust-lang.org/std/clone/trait.Clone.html#method.clone_from
https://doc.rust-lang.org/std/clone/trait.Clone.html#method.clone_from
https://doc.rust-lang.org/std/clone/trait.Clone.html#method.clone_from

Sometimes Rust code ends up containing unnecessary clone calls, due to (a)

programmer error, or (b) changes in the code that render previously-necessary clone

calls unnecessary. If you see a hot clone call that does not seem necessary, sometimes it

can simply be removed. Example 1, Example 2, Example 3.

to_owned

ToOwned::to_owned is implemented for many common types. It creates owned data from

borrowed data, usually by cloning, and therefore often causes heap allocations. For

example, it can be used to create a String from a &str .

Sometimes to_owned calls (and related calls such as clone and to_string) can be

avoided by storing a reference to borrowed data in a struct rather than an owned copy.

This requires lifetime annotations on the struct, complicating the code, and should only

be done when profiling and benchmarking shows that it is worthwhile. Example.

Cow

Sometimes code deals with a mixture of borrowed and owned data. Imagine a vector of

error messages, some of which are static string literals and some of which are

constructed with format! . The obvious representation is Vec<String> , as the following

example shows.

That requires a to_string call to promote the static string literal to a String , which

incurs an allocation.

Instead you can use the Cow type, which can hold either borrowed or owned data. A

borrowed value x is wrapped with Cow::Borrowed(x) , and an owned value y is

wrapped with Cow::Owned(y) . Cow also implements the From<T> trait for various string,

slice, and path types, so you can usually use into as well. (Or Cow::from , which is longer

but results in more readable code, because it makes the type clearer.) The following

example puts all this together.

let mut errors: Vec<String> = vec![];
errors.push("something went wrong".to_string());
errors.push(format!("something went wrong on line {}", 100));

The Rust Performance Book https://nnethercote.github.io/perf-book/print.html

24 of 46 10/26/23, 15:08

https://github.com/rust-lang/rust/pull/37318/commits/e382267cfb9133ef12d59b66a2935ee45b546a61
https://github.com/rust-lang/rust/pull/37318/commits/e382267cfb9133ef12d59b66a2935ee45b546a61
https://github.com/rust-lang/rust/pull/37318/commits/e382267cfb9133ef12d59b66a2935ee45b546a61
https://github.com/rust-lang/rust/pull/37705/commits/11c1126688bab32f76dbe1a973906c7586da143f
https://github.com/rust-lang/rust/pull/37705/commits/11c1126688bab32f76dbe1a973906c7586da143f
https://github.com/rust-lang/rust/pull/37705/commits/11c1126688bab32f76dbe1a973906c7586da143f
https://github.com/rust-lang/rust/pull/64302/commits/36b37e22de92b584b9cf4464ed1d4ad317b798be
https://github.com/rust-lang/rust/pull/64302/commits/36b37e22de92b584b9cf4464ed1d4ad317b798be
https://github.com/rust-lang/rust/pull/64302/commits/36b37e22de92b584b9cf4464ed1d4ad317b798be
https://nnethercote.github.io/perf-book/print.html#to_owned
https://nnethercote.github.io/perf-book/print.html#to_owned
https://nnethercote.github.io/perf-book/print.html#to_owned
https://doc.rust-lang.org/std/borrow/trait.ToOwned.html#tymethod.to_owned
https://doc.rust-lang.org/std/borrow/trait.ToOwned.html#tymethod.to_owned
https://doc.rust-lang.org/std/borrow/trait.ToOwned.html#tymethod.to_owned
https://github.com/rust-lang/rust/pull/50855/commits/6872377357dbbf373cfd2aae352cb74cfcc66f34
https://github.com/rust-lang/rust/pull/50855/commits/6872377357dbbf373cfd2aae352cb74cfcc66f34
https://github.com/rust-lang/rust/pull/50855/commits/6872377357dbbf373cfd2aae352cb74cfcc66f34
https://nnethercote.github.io/perf-book/print.html#cow
https://nnethercote.github.io/perf-book/print.html#cow
https://nnethercote.github.io/perf-book/print.html#cow
https://doc.rust-lang.org/std/borrow/enum.Cow.html
https://doc.rust-lang.org/std/borrow/enum.Cow.html
https://doc.rust-lang.org/std/borrow/enum.Cow.html

errors now holds a mixture of borrowed and owned data without requiring any extra

allocations. This example involves &str / String , but other pairings such as

&[T] / Vec<T> and &Path / PathBuf are also possible.

Example 1, Example 2.

All of the above applies if the data is immutable. But Cow also allows borrowed data to be

promoted to owned data if it needs to be mutated. Cow::to_mut will obtain a mutable

reference to an owned value, cloning if necessary. This is called “clone-on-write”, which is

where the name Cow comes from.

This clone-on-write behaviour is useful when you have some borrowed data, such as a

&str , that is mostly read-only but occasionally needs to be modified.

Example 1, Example 2.

Finally, because Cow implements Deref , you can call methods directly on the data it

encloses.

Cow can be fiddly to get working, but it is often worth the effort.

Reusing Collections

Sometimes you need to build up a collection such as a Vec in stages. It is usually better

to do this by modifying a single Vec than by building multiple Vec s and then combining

them.

For example, if you have a function do_stuff that produces a Vec that might be called

multiple times:

It might be better to instead modify a passed-in Vec :

use std::borrow::Cow;
let mut errors: Vec<Cow<'static, str>> = vec![];
errors.push(Cow::Borrowed("something went wrong"));
errors.push(Cow::Owned(format!("something went wrong on line {}", 100)));
errors.push(Cow::from("something else went wrong"));
errors.push(format!("something else went wrong on line {}", 101).into());

fn do_stuff(x: u32, y: u32) -> Vec<u32> {
vec![x, y]

}

The Rust Performance Book https://nnethercote.github.io/perf-book/print.html

25 of 46 10/26/23, 15:08

https://github.com/rust-lang/rust/pull/37064/commits/b043e11de2eb2c60f7bfec5e15960f537b229e20
https://github.com/rust-lang/rust/pull/37064/commits/b043e11de2eb2c60f7bfec5e15960f537b229e20
https://github.com/rust-lang/rust/pull/37064/commits/b043e11de2eb2c60f7bfec5e15960f537b229e20
https://github.com/rust-lang/rust/pull/56336/commits/787959c20d062d396b97a5566e0a766d963af022
https://github.com/rust-lang/rust/pull/56336/commits/787959c20d062d396b97a5566e0a766d963af022
https://github.com/rust-lang/rust/pull/56336/commits/787959c20d062d396b97a5566e0a766d963af022
https://doc.rust-lang.org/std/borrow/enum.Cow.html#method.to_mut
https://doc.rust-lang.org/std/borrow/enum.Cow.html#method.to_mut
https://doc.rust-lang.org/std/borrow/enum.Cow.html#method.to_mut
https://github.com/rust-lang/rust/pull/50855/commits/ad471452ba6fbbf91ad566dc4bdf1033a7281811
https://github.com/rust-lang/rust/pull/50855/commits/ad471452ba6fbbf91ad566dc4bdf1033a7281811
https://github.com/rust-lang/rust/pull/50855/commits/ad471452ba6fbbf91ad566dc4bdf1033a7281811
https://github.com/rust-lang/rust/pull/68848/commits/67da45f5084f98eeb20cc6022d68788510dc832a
https://github.com/rust-lang/rust/pull/68848/commits/67da45f5084f98eeb20cc6022d68788510dc832a
https://github.com/rust-lang/rust/pull/68848/commits/67da45f5084f98eeb20cc6022d68788510dc832a
https://doc.rust-lang.org/std/ops/trait.Deref.html
https://doc.rust-lang.org/std/ops/trait.Deref.html
https://doc.rust-lang.org/std/ops/trait.Deref.html
https://nnethercote.github.io/perf-book/print.html#reusing-collections
https://nnethercote.github.io/perf-book/print.html#reusing-collections

Sometimes it is worth keeping around a “workhorse” collection that can be reused. For

example, if a Vec is needed for each iteration of a loop, you could declare the Vec

outside the loop, use it within the loop body, and then call clear at the end of the loop

body (to empty the Vec without affecting its capacity). This avoids allocations at the cost

of obscuring the fact that each iteration’s usage of the Vec is unrelated to the others.

Example 1, Example 2.

Similarly, it is sometimes worth keeping a workhorse collection within a struct, to be

reused in one or more methods that are called repeatedly.

Reading Lines from a File

BufRead::lines makes it easy to read a file one line at a time:

But the iterator it produces returns io::Result<String> , which means it allocates for

every line in the file.

An alternative is to use a workhorse String in a loop over BufRead::read_line :

This reduces the number of allocations to at most a handful, and possibly just one. (The

exact number depends on how many times line needs to be reallocated, which

depends on the distribution of line lengths in the file.)

This will only work if the loop body can operate on a &str , rather than a String .

Example.

fn do_stuff(x: u32, y: u32, vec: &mut Vec<u32>) {
 vec.push(x);
 vec.push(y);
}

use std::io::{self, BufRead};
let mut lock = io::stdin().lock();
for line in lock.lines() {
 process(&line?);
}

use std::io::{self, BufRead};
let mut lock = io::stdin().lock();
let mut line = String::new();
while lock.read_line(&mut line)? != 0 {
 process(&line);
 line.clear();
}

The Rust Performance Book https://nnethercote.github.io/perf-book/print.html

26 of 46 10/26/23, 15:08

https://doc.rust-lang.org/std/vec/struct.Vec.html#method.clear
https://doc.rust-lang.org/std/vec/struct.Vec.html#method.clear
https://doc.rust-lang.org/std/vec/struct.Vec.html#method.clear
https://github.com/rust-lang/rust/pull/77990/commits/45faeb43aecdc98c9e3f2b24edf2ecc71f39d323
https://github.com/rust-lang/rust/pull/77990/commits/45faeb43aecdc98c9e3f2b24edf2ecc71f39d323
https://github.com/rust-lang/rust/pull/77990/commits/45faeb43aecdc98c9e3f2b24edf2ecc71f39d323
https://github.com/rust-lang/rust/pull/51870/commits/b0c78120e3ecae5f4043781f7a3f79e2277293e7
https://github.com/rust-lang/rust/pull/51870/commits/b0c78120e3ecae5f4043781f7a3f79e2277293e7
https://github.com/rust-lang/rust/pull/51870/commits/b0c78120e3ecae5f4043781f7a3f79e2277293e7
https://nnethercote.github.io/perf-book/print.html#reading-lines-from-a-file
https://nnethercote.github.io/perf-book/print.html#reading-lines-from-a-file
https://doc.rust-lang.org/stable/std/io/trait.BufRead.html#method.lines
https://doc.rust-lang.org/stable/std/io/trait.BufRead.html#method.lines
https://doc.rust-lang.org/stable/std/io/trait.BufRead.html#method.lines
https://doc.rust-lang.org/stable/std/io/trait.BufRead.html#method.read_line
https://doc.rust-lang.org/stable/std/io/trait.BufRead.html#method.read_line
https://doc.rust-lang.org/stable/std/io/trait.BufRead.html#method.read_line
https://github.com/nnethercote/counts/commit/7d39bbb1867720ef3b9799fee739cd717ad1539a
https://github.com/nnethercote/counts/commit/7d39bbb1867720ef3b9799fee739cd717ad1539a
https://github.com/nnethercote/counts/commit/7d39bbb1867720ef3b9799fee739cd717ad1539a

Using an Alternative Allocator

It is also possible to improve heap allocation performance without changing your code,

simply by using a different allocator. See the Alternative Allocators section for details.

Avoiding Regressions

To ensure the number and/or size of allocations done by your code doesn’t increase

unintentionally, you can use the heap usage testing feature of dhat-rs to write tests that

check particular code snippets allocate the expected amount of heap memory.

The Rust Performance Book https://nnethercote.github.io/perf-book/print.html

27 of 46 10/26/23, 15:08

https://nnethercote.github.io/perf-book/print.html#using-an-alternative-allocator
https://nnethercote.github.io/perf-book/print.html#using-an-alternative-allocator
https://nnethercote.github.io/perf-book/build-configuration.html#alternative-allocators
https://nnethercote.github.io/perf-book/build-configuration.html#alternative-allocators
https://nnethercote.github.io/perf-book/print.html#avoiding-regressions
https://nnethercote.github.io/perf-book/print.html#avoiding-regressions
https://crates.io/crates/dhat
https://crates.io/crates/dhat

Type Sizes

Shrinking oft-instantiated types can help performance.

For example, if memory usage is high, a heap profiler like DHAT can identify the hot

allocation points and the types involved. Shrinking these types can reduce peak memory

usage, and possibly improve performance by reducing memory traffic and cache

pressure.

Furthermore, Rust types that are larger than 128 bytes are copied with memcpy rather

than inline code. If memcpy shows up in non-trivial amounts in profiles, DHAT’s “copy

profiling” mode will tell you exactly where the hot memcpy calls are and the types

involved. Shrinking these types to 128 bytes or less can make the code faster by avoiding

memcpy calls and reducing memory traffic.

Measuring Type Sizes

std::mem::size_of gives the size of a type, in bytes, but often you want to know the

exact layout as well. For example, an enum might be surprisingly large due to a single

outsized variant.

The -Zprint-type-sizes option does exactly this. It isn’t enabled on release versions of

rustc, so you’ll need to use a nightly version of rustc. Here is one possible invocation via

Cargo:

And here is a possible invocation of rustc:

It will print out details of the size, layout, and alignment of all types in use. For example,

for this type:

it prints the following, plus information about a few built-in types.

RUSTFLAGS=-Zprint-type-sizes cargo +nightly build --release

rustc +nightly -Zprint-type-sizes input.rs

enum E {
 A,
 B(i32),
 C(u64, u8, u64, u8),
 D(Vec<u32>),
}

The Rust Performance Book https://nnethercote.github.io/perf-book/print.html

28 of 46 10/26/23, 15:08

https://nnethercote.github.io/perf-book/print.html#type-sizes
https://nnethercote.github.io/perf-book/print.html#type-sizes
https://www.valgrind.org/docs/manual/dh-manual.html
https://www.valgrind.org/docs/manual/dh-manual.html
https://nnethercote.github.io/perf-book/print.html#measuring-type-sizes
https://nnethercote.github.io/perf-book/print.html#measuring-type-sizes
https://doc.rust-lang.org/std/mem/fn.size_of.html
https://doc.rust-lang.org/std/mem/fn.size_of.html
https://doc.rust-lang.org/std/mem/fn.size_of.html

The output shows the following.

• The size and alignment of the type.

• For enums, the size of the discriminant.

• For enums, the size of each variant (sorted from largest to smallest).

• The size, alignment, and ordering of all fields. (Note that the compiler has reordered

variant C ’s fields to minimize the size of E .)

• The size and location of all padding.

Alternatively, the top-type-sizes crate can be used to display the output in a more

compact form.

Once you know the layout of a hot type, there are multiple ways to shrink it.

Field Ordering

The Rust compiler automatically sorts the fields in struct and enums to minimize their

sizes (unless the #[repr(C)] attribute is specified), so you do not have to worry about

field ordering. But there are other ways to minimize the size of hot types.

Smaller Enums

If an enum has an outsized variant, consider boxing one or more fields. For example, you

could change this type:

print-type-size type: `E`: 32 bytes, alignment: 8 bytes
print-type-size discriminant: 1 bytes
print-type-size variant `D`: 31 bytes
print-type-size padding: 7 bytes
print-type-size field `.0`: 24 bytes, alignment: 8 bytes
print-type-size variant `C`: 23 bytes
print-type-size field `.1`: 1 bytes
print-type-size field `.3`: 1 bytes
print-type-size padding: 5 bytes
print-type-size field `.0`: 8 bytes, alignment: 8 bytes
print-type-size field `.2`: 8 bytes
print-type-size variant `B`: 7 bytes
print-type-size padding: 3 bytes
print-type-size field `.0`: 4 bytes, alignment: 4 bytes
print-type-size variant `A`: 0 bytes

The Rust Performance Book https://nnethercote.github.io/perf-book/print.html

29 of 46 10/26/23, 15:08

https://crates.io/crates/top-type-sizes
https://crates.io/crates/top-type-sizes
https://nnethercote.github.io/perf-book/print.html#field-ordering
https://nnethercote.github.io/perf-book/print.html#field-ordering
https://nnethercote.github.io/perf-book/print.html#smaller-enums
https://nnethercote.github.io/perf-book/print.html#smaller-enums

to this:

This reduces the type size at the cost of requiring an extra heap allocation for the A::Z

variant. This is more likely to be a net performance win if the A::Z variant is relatively

rare. The Box will also make A::Z slightly less ergonomic to use, especially in match

patterns. Example 1, Example 2, Example 3, Example 4, Example 5, Example 6.

Smaller Integers

It is often possible to shrink types by using smaller integer types. For example, while it is

most natural to use usize for indices, it is often reasonable to stores indices as u32 ,

u16 , or even u8 , and then coerce to usize at use points. Example 1, Example 2.

Boxed Slices

Rust vectors contain three words: a length, a capacity, and a pointer. If you have a vector

that is unlikely to be changed in the future, you can convert it to a boxed slice with

Vec::into_boxed_slice . A boxed slice contains only two words, a length and a pointer.

Any excess element capacity is dropped, which may cause a reallocation.

The boxed slice can be converted back to a vector with slice::into_vec without any

cloning or a reallocation.

type LargeType = [u8; 100];
enum A {
 X,
 Y(i32),
 Z(i32, LargeType),
}

enum A {
 X,
 Y(i32),
 Z(Box<(i32, LargeType)>),
}

let v: Vec<u32> = vec![1, 2, 3];
assert_eq!(size_of_val(&v), 3 * size_of::<usize>());

let bs: Box<[u32]> = v.into_boxed_slice();
assert_eq!(size_of_val(&bs), 2 * size_of::<usize>());

The Rust Performance Book https://nnethercote.github.io/perf-book/print.html

30 of 46 10/26/23, 15:08

https://github.com/rust-lang/rust/pull/37445/commits/a920e355ea837a950b484b5791051337cd371f5d
https://github.com/rust-lang/rust/pull/37445/commits/a920e355ea837a950b484b5791051337cd371f5d
https://github.com/rust-lang/rust/pull/37445/commits/a920e355ea837a950b484b5791051337cd371f5d
https://github.com/rust-lang/rust/pull/55346/commits/38d9277a77e982e49df07725b62b21c423b6428e
https://github.com/rust-lang/rust/pull/55346/commits/38d9277a77e982e49df07725b62b21c423b6428e
https://github.com/rust-lang/rust/pull/55346/commits/38d9277a77e982e49df07725b62b21c423b6428e
https://github.com/rust-lang/rust/pull/64302/commits/b972ac818c98373b6d045956b049dc34932c41be
https://github.com/rust-lang/rust/pull/64302/commits/b972ac818c98373b6d045956b049dc34932c41be
https://github.com/rust-lang/rust/pull/64302/commits/b972ac818c98373b6d045956b049dc34932c41be
https://github.com/rust-lang/rust/pull/64374/commits/2fcd870711ce267c79408ec631f7eba8e0afcdf6
https://github.com/rust-lang/rust/pull/64374/commits/2fcd870711ce267c79408ec631f7eba8e0afcdf6
https://github.com/rust-lang/rust/pull/64374/commits/2fcd870711ce267c79408ec631f7eba8e0afcdf6
https://github.com/rust-lang/rust/pull/64394/commits/7f0637da5144c7435e88ea3805021882f077d50c
https://github.com/rust-lang/rust/pull/64394/commits/7f0637da5144c7435e88ea3805021882f077d50c
https://github.com/rust-lang/rust/pull/64394/commits/7f0637da5144c7435e88ea3805021882f077d50c
https://github.com/rust-lang/rust/pull/71942/commits/27ae2f0d60d9201133e1f9ec7a04c05c8e55e665
https://github.com/rust-lang/rust/pull/71942/commits/27ae2f0d60d9201133e1f9ec7a04c05c8e55e665
https://github.com/rust-lang/rust/pull/71942/commits/27ae2f0d60d9201133e1f9ec7a04c05c8e55e665
https://nnethercote.github.io/perf-book/print.html#smaller-integers
https://nnethercote.github.io/perf-book/print.html#smaller-integers
https://github.com/rust-lang/rust/pull/49993/commits/4d34bfd00a57f8a8bdb60ec3f908c5d4256f8a9a
https://github.com/rust-lang/rust/pull/49993/commits/4d34bfd00a57f8a8bdb60ec3f908c5d4256f8a9a
https://github.com/rust-lang/rust/pull/49993/commits/4d34bfd00a57f8a8bdb60ec3f908c5d4256f8a9a
https://github.com/rust-lang/rust/pull/50981/commits/8d0fad5d3832c6c1f14542ea0be038274e454524
https://github.com/rust-lang/rust/pull/50981/commits/8d0fad5d3832c6c1f14542ea0be038274e454524
https://github.com/rust-lang/rust/pull/50981/commits/8d0fad5d3832c6c1f14542ea0be038274e454524
https://nnethercote.github.io/perf-book/print.html#boxed-slices
https://nnethercote.github.io/perf-book/print.html#boxed-slices
https://doc.rust-lang.org/std/vec/struct.Vec.html#method.into_boxed_slice
https://doc.rust-lang.org/std/vec/struct.Vec.html#method.into_boxed_slice
https://doc.rust-lang.org/std/vec/struct.Vec.html#method.into_boxed_slice
https://doc.rust-lang.org/std/primitive.slice.html#method.into_vec
https://doc.rust-lang.org/std/primitive.slice.html#method.into_vec
https://doc.rust-lang.org/std/primitive.slice.html#method.into_vec

ThinVec

An alternative to boxed slices is ThinVec , from the thin_vec crate. It is functionally

equivalent to Vec , but stores the length and capacity in the same allocation as the

elements (if there are any). This means that size_of::<ThinVec<T>> is only one word.

ThinVec is a good choice within oft-instantiated types for vectors that are often empty. It

can also be used to shrink the largest variant of an enum, if that variant contains a Vec .

Avoiding Regressions

If a type is hot enough that its size can affect performance, it is a good idea to use a static

assertion to ensure that it does not accidentally regress. The following example uses a

macro from the static_assertions crate.

The cfg attribute is important, because type sizes can vary on different platforms.

Restricting the assertion to x86_64 (which is typically the most widely-used platform) is

likely to be good enough to prevent regressions in practice.

// This type is used a lot. Make sure it doesn't unintentionally get
bigger.
#[cfg(target_arch = "x86_64")]

 static_assertions::assert_eq_size!(HotType, [u8; 64]);

The Rust Performance Book https://nnethercote.github.io/perf-book/print.html

31 of 46 10/26/23, 15:08

https://nnethercote.github.io/perf-book/print.html#thinvec
https://nnethercote.github.io/perf-book/print.html#thinvec
https://nnethercote.github.io/perf-book/print.html#thinvec
https://crates.io/crates/thin-vec
https://crates.io/crates/thin-vec
https://crates.io/crates/thin-vec
https://nnethercote.github.io/perf-book/print.html#avoiding-regressions-1
https://nnethercote.github.io/perf-book/print.html#avoiding-regressions-1
https://crates.io/crates/static_assertions
https://crates.io/crates/static_assertions
https://crates.io/crates/static_assertions

Standard Library Types

It is worth reading through the documentation for common standard library types—such

as Box , Vec , Option , Result , and Rc / Arc —to find interesting functions that can

sometimes be used to improve performance.

It is also worth knowing about high-performance alternatives to standard library types,

such as Mutex , RwLock , Condvar , and Once .

Box

The expression Box::default() has the same effect as Box::new(T::default()) but

can be faster because the compiler can create the value directly on the heap, rather than

constructing it on the stack and then copying it over. Example.

Vec

The best way to create a zero-filled Vec of length n is with vec![0; n] . This is simple

and probably as fast or faster than alternatives, such as using resize , extend , or

anything involving unsafe , because it can use OS assistance.

Vec::remove removes an element at a particular index and shifts all subsequent

elements one to the left, which makes it O(n). Vec::swap_remove replaces an element at

a particular index with the final element, which does not preserve ordering, but is O(1).

Vec::retain efficiently removes multiple items from a Vec . There is an equivalent

method for other collection types such as String , HashSet , and HashMap .

Option and Result

Option::ok_or converts an Option into a Result , and is passed an err parameter that

is used if the Option value is None . err is computed eagerly. If its computation is

expensive, you should instead use Option::ok_or_else , which computes the error value

lazily via a closure. For example, this:

should be changed to this:

let r = o.ok_or(expensive()); // always evaluates `expensive()`

The Rust Performance Book https://nnethercote.github.io/perf-book/print.html

32 of 46 10/26/23, 15:08

https://nnethercote.github.io/perf-book/print.html#standard-library-types
https://nnethercote.github.io/perf-book/print.html#standard-library-types
https://doc.rust-lang.org/std/boxed/struct.Box.html
https://doc.rust-lang.org/std/boxed/struct.Box.html
https://doc.rust-lang.org/std/boxed/struct.Box.html
https://doc.rust-lang.org/std/vec/struct.Vec.html
https://doc.rust-lang.org/std/vec/struct.Vec.html
https://doc.rust-lang.org/std/vec/struct.Vec.html
https://doc.rust-lang.org/std/option/enum.Option.html
https://doc.rust-lang.org/std/option/enum.Option.html
https://doc.rust-lang.org/std/option/enum.Option.html
https://doc.rust-lang.org/std/result/enum.Result.html
https://doc.rust-lang.org/std/result/enum.Result.html
https://doc.rust-lang.org/std/result/enum.Result.html
https://doc.rust-lang.org/std/rc/struct.Rc.html
https://doc.rust-lang.org/std/rc/struct.Rc.html
https://doc.rust-lang.org/std/rc/struct.Rc.html
https://doc.rust-lang.org/std/sync/struct.Arc.html
https://doc.rust-lang.org/std/sync/struct.Arc.html
https://doc.rust-lang.org/std/sync/struct.Arc.html
https://doc.rust-lang.org/std/sync/struct.Mutex.html
https://doc.rust-lang.org/std/sync/struct.Mutex.html
https://doc.rust-lang.org/std/sync/struct.Mutex.html
https://doc.rust-lang.org/std/sync/struct.RwLock.html
https://doc.rust-lang.org/std/sync/struct.RwLock.html
https://doc.rust-lang.org/std/sync/struct.RwLock.html
https://doc.rust-lang.org/std/sync/struct.Condvar.html
https://doc.rust-lang.org/std/sync/struct.Condvar.html
https://doc.rust-lang.org/std/sync/struct.Condvar.html
https://doc.rust-lang.org/std/sync/struct.Once.html
https://doc.rust-lang.org/std/sync/struct.Once.html
https://doc.rust-lang.org/std/sync/struct.Once.html
https://nnethercote.github.io/perf-book/print.html#box-1
https://nnethercote.github.io/perf-book/print.html#box-1
https://nnethercote.github.io/perf-book/print.html#box-1
https://doc.rust-lang.org/std/boxed/struct.Box.html#method.default
https://doc.rust-lang.org/std/boxed/struct.Box.html#method.default
https://doc.rust-lang.org/std/boxed/struct.Box.html#method.default
https://github.com/komora-io/art/commit/d5dc58338f475709c375e15976d0d77eb5d7f7ef
https://github.com/komora-io/art/commit/d5dc58338f475709c375e15976d0d77eb5d7f7ef
https://github.com/komora-io/art/commit/d5dc58338f475709c375e15976d0d77eb5d7f7ef
https://nnethercote.github.io/perf-book/print.html#vec-1
https://nnethercote.github.io/perf-book/print.html#vec-1
https://nnethercote.github.io/perf-book/print.html#vec-1
https://github.com/rust-lang/rust/issues/54628
https://github.com/rust-lang/rust/issues/54628
https://doc.rust-lang.org/std/vec/struct.Vec.html#method.remove
https://doc.rust-lang.org/std/vec/struct.Vec.html#method.remove
https://doc.rust-lang.org/std/vec/struct.Vec.html#method.remove
https://doc.rust-lang.org/std/vec/struct.Vec.html#method.swap_remove
https://doc.rust-lang.org/std/vec/struct.Vec.html#method.swap_remove
https://doc.rust-lang.org/std/vec/struct.Vec.html#method.swap_remove
https://doc.rust-lang.org/std/vec/struct.Vec.html#method.retain
https://doc.rust-lang.org/std/vec/struct.Vec.html#method.retain
https://doc.rust-lang.org/std/vec/struct.Vec.html#method.retain
https://nnethercote.github.io/perf-book/print.html#option-and-result
https://nnethercote.github.io/perf-book/print.html#option-and-result
https://nnethercote.github.io/perf-book/print.html#option-and-result
https://nnethercote.github.io/perf-book/print.html#option-and-result
https://nnethercote.github.io/perf-book/print.html#option-and-result
https://nnethercote.github.io/perf-book/print.html#option-and-result
https://doc.rust-lang.org/std/option/enum.Option.html#method.ok_or
https://doc.rust-lang.org/std/option/enum.Option.html#method.ok_or
https://doc.rust-lang.org/std/option/enum.Option.html#method.ok_or
https://doc.rust-lang.org/std/option/enum.Option.html#method.ok_or_else
https://doc.rust-lang.org/std/option/enum.Option.html#method.ok_or_else
https://doc.rust-lang.org/std/option/enum.Option.html#method.ok_or_else

Example.

There are similar alternatives for Option::map_or , Option::unwrap_or , Result::or ,

Result::map_or , and Result::unwrap_or .

Rc/Arc

Rc::make_mut / Arc::make_mut provide clone-on-write semantics. They make a mutable

reference to an Rc / Arc . If the refcount is greater than one, they will clone the inner

value to ensure unique ownership; otherwise, they will modify the original value. They are

not needed often, but they can be extremely useful on occasion. Example 1, Example 2.

Mutex, RwLock, Condvar, and Once

The parking_lot crate provides alternative implementations of these synchronization

types. The APIs and semantics of the parking_lot types are similar but not identical to

those of the equivalent types in the standard library.

The parking_lot versions used to be reliably smaller, faster, and more flexible than

those in the standard library, but the standard library versions have greatly improved on

some platforms. So you should measure before switching to parking_lot .

If you decide to universally use the parking_lot types it is easy to accidentally use the

standard library equivalents in some places. You can use Clippy to avoid this problem.

let r = o.ok_or_else(|| expensive()); // evaluates `expensive()` only when
needed

The Rust Performance Book https://nnethercote.github.io/perf-book/print.html

33 of 46 10/26/23, 15:08

https://github.com/rust-lang/rust/pull/50051/commits/5070dea2366104fb0b5c344ce7f2a5cf8af176b0
https://github.com/rust-lang/rust/pull/50051/commits/5070dea2366104fb0b5c344ce7f2a5cf8af176b0
https://github.com/rust-lang/rust/pull/50051/commits/5070dea2366104fb0b5c344ce7f2a5cf8af176b0
https://doc.rust-lang.org/std/option/enum.Option.html#method.map_or
https://doc.rust-lang.org/std/option/enum.Option.html#method.map_or
https://doc.rust-lang.org/std/option/enum.Option.html#method.map_or
https://doc.rust-lang.org/std/option/enum.Option.html#method.unwrap_or
https://doc.rust-lang.org/std/option/enum.Option.html#method.unwrap_or
https://doc.rust-lang.org/std/option/enum.Option.html#method.unwrap_or
https://doc.rust-lang.org/std/result/enum.Result.html#method.or
https://doc.rust-lang.org/std/result/enum.Result.html#method.or
https://doc.rust-lang.org/std/result/enum.Result.html#method.or
https://doc.rust-lang.org/std/result/enum.Result.html#method.map_or
https://doc.rust-lang.org/std/result/enum.Result.html#method.map_or
https://doc.rust-lang.org/std/result/enum.Result.html#method.map_or
https://doc.rust-lang.org/std/result/enum.Result.html#method.unwrap_or
https://doc.rust-lang.org/std/result/enum.Result.html#method.unwrap_or
https://doc.rust-lang.org/std/result/enum.Result.html#method.unwrap_or
https://nnethercote.github.io/perf-book/print.html#rcarc-1
https://nnethercote.github.io/perf-book/print.html#rcarc-1
https://nnethercote.github.io/perf-book/print.html#rcarc-1
https://nnethercote.github.io/perf-book/print.html#rcarc-1
https://nnethercote.github.io/perf-book/print.html#rcarc-1
https://nnethercote.github.io/perf-book/print.html#rcarc-1
https://doc.rust-lang.org/std/rc/struct.Rc.html#method.make_mut
https://doc.rust-lang.org/std/rc/struct.Rc.html#method.make_mut
https://doc.rust-lang.org/std/rc/struct.Rc.html#method.make_mut
https://doc.rust-lang.org/std/sync/struct.Arc.html#method.make_mut
https://doc.rust-lang.org/std/sync/struct.Arc.html#method.make_mut
https://doc.rust-lang.org/std/sync/struct.Arc.html#method.make_mut
https://github.com/rust-lang/rust/pull/65198/commits/3832a634d3aa6a7c60448906e6656a22f7e35628
https://github.com/rust-lang/rust/pull/65198/commits/3832a634d3aa6a7c60448906e6656a22f7e35628
https://github.com/rust-lang/rust/pull/65198/commits/3832a634d3aa6a7c60448906e6656a22f7e35628
https://github.com/rust-lang/rust/pull/65198/commits/75e0078a1703448a19e25eac85daaa5a4e6e68ac
https://github.com/rust-lang/rust/pull/65198/commits/75e0078a1703448a19e25eac85daaa5a4e6e68ac
https://github.com/rust-lang/rust/pull/65198/commits/75e0078a1703448a19e25eac85daaa5a4e6e68ac
https://nnethercote.github.io/perf-book/print.html#mutex-rwlock-condvar-and-once
https://nnethercote.github.io/perf-book/print.html#mutex-rwlock-condvar-and-once
https://nnethercote.github.io/perf-book/print.html#mutex-rwlock-condvar-and-once
https://nnethercote.github.io/perf-book/print.html#mutex-rwlock-condvar-and-once
https://nnethercote.github.io/perf-book/print.html#mutex-rwlock-condvar-and-once
https://nnethercote.github.io/perf-book/print.html#mutex-rwlock-condvar-and-once
https://nnethercote.github.io/perf-book/print.html#mutex-rwlock-condvar-and-once
https://nnethercote.github.io/perf-book/print.html#mutex-rwlock-condvar-and-once
https://nnethercote.github.io/perf-book/print.html#mutex-rwlock-condvar-and-once
https://nnethercote.github.io/perf-book/print.html#mutex-rwlock-condvar-and-once
https://nnethercote.github.io/perf-book/print.html#mutex-rwlock-condvar-and-once
https://nnethercote.github.io/perf-book/print.html#mutex-rwlock-condvar-and-once
https://crates.io/crates/parking_lot
https://crates.io/crates/parking_lot
https://crates.io/crates/parking_lot
https://nnethercote.github.io/perf-book/linting.html#disallowing-types
https://nnethercote.github.io/perf-book/linting.html#disallowing-types

Iterators

collect and extend

Iterator::collect converts an iterator into a collection such as Vec , which typically

requires an allocation. You should avoid calling collect if the collection is then only

iterated over again.

For this reason, it is often better to return an iterator type like impl Iterator<Item=T>

from a function than a Vec<T> . Note that sometimes additional lifetimes are required on

these return types, as this blog post explains. Example.

Similarly, you can use extend to extend an existing collection (such as a Vec) with an

iterator, rather than collecting the iterator into a Vec and then using append .

Finally, when you write an iterator it is often worth implementing the

Iterator::size_hint or ExactSizeIterator::len method, if possible. collect and

extend calls that use the iterator may then do fewer allocations, because they have

advance information about the number of elements yielded by the iterator.

Chaining

chain can be very convenient, but it can also be slower than a single iterator. It may be

worth avoiding for hot iterators, if possible. Example.

Similarly, filter_map may be faster than using filter followed by map .

Chunks

When a chunking iterator is required and the chunk size is known to exactly divide the

slice length, use the faster slice::chunks_exact instead of slice::chunks .

When the chunk size is not known to exactly divide the slice length, it can still be faster to

use slice::chunks_exact in combination with either ChunksExact::remainder or

manual handling of excess elements. Example 1, Example 2.

The same is true for related iterators:

• slice::rchunks , slice::rchunks_exact , and RChunksExact::remainder ;

The Rust Performance Book https://nnethercote.github.io/perf-book/print.html

34 of 46 10/26/23, 15:08

https://nnethercote.github.io/perf-book/print.html#iterators
https://nnethercote.github.io/perf-book/print.html#iterators
https://nnethercote.github.io/perf-book/print.html#collect-and-extend
https://nnethercote.github.io/perf-book/print.html#collect-and-extend
https://nnethercote.github.io/perf-book/print.html#collect-and-extend
https://nnethercote.github.io/perf-book/print.html#collect-and-extend
https://nnethercote.github.io/perf-book/print.html#collect-and-extend
https://nnethercote.github.io/perf-book/print.html#collect-and-extend
https://doc.rust-lang.org/std/iter/trait.Iterator.html#method.collect
https://doc.rust-lang.org/std/iter/trait.Iterator.html#method.collect
https://doc.rust-lang.org/std/iter/trait.Iterator.html#method.collect
https://blog.katona.me/2019/12/29/Rust-Lifetimes-and-Iterators/
https://blog.katona.me/2019/12/29/Rust-Lifetimes-and-Iterators/
https://github.com/rust-lang/rust/pull/77990/commits/660d8a6550a126797aa66a417137e39a5639451b
https://github.com/rust-lang/rust/pull/77990/commits/660d8a6550a126797aa66a417137e39a5639451b
https://github.com/rust-lang/rust/pull/77990/commits/660d8a6550a126797aa66a417137e39a5639451b
https://doc.rust-lang.org/std/iter/trait.Extend.html#tymethod.extend
https://doc.rust-lang.org/std/iter/trait.Extend.html#tymethod.extend
https://doc.rust-lang.org/std/iter/trait.Extend.html#tymethod.extend
https://doc.rust-lang.org/std/vec/struct.Vec.html#method.append
https://doc.rust-lang.org/std/vec/struct.Vec.html#method.append
https://doc.rust-lang.org/std/vec/struct.Vec.html#method.append
https://doc.rust-lang.org/std/iter/trait.Iterator.html#method.size_hint
https://doc.rust-lang.org/std/iter/trait.Iterator.html#method.size_hint
https://doc.rust-lang.org/std/iter/trait.Iterator.html#method.size_hint
https://doc.rust-lang.org/std/iter/trait.ExactSizeIterator.html#method.len
https://doc.rust-lang.org/std/iter/trait.ExactSizeIterator.html#method.len
https://doc.rust-lang.org/std/iter/trait.ExactSizeIterator.html#method.len
https://nnethercote.github.io/perf-book/print.html#chaining
https://nnethercote.github.io/perf-book/print.html#chaining
https://doc.rust-lang.org/std/iter/trait.Iterator.html#method.chain
https://doc.rust-lang.org/std/iter/trait.Iterator.html#method.chain
https://doc.rust-lang.org/std/iter/trait.Iterator.html#method.chain
https://github.com/rust-lang/rust/pull/64801/commits/5ca99b750e455e9b5e13e83d0d7886486231e48a
https://github.com/rust-lang/rust/pull/64801/commits/5ca99b750e455e9b5e13e83d0d7886486231e48a
https://github.com/rust-lang/rust/pull/64801/commits/5ca99b750e455e9b5e13e83d0d7886486231e48a
https://doc.rust-lang.org/std/iter/trait.Iterator.html#method.filter_map
https://doc.rust-lang.org/std/iter/trait.Iterator.html#method.filter_map
https://doc.rust-lang.org/std/iter/trait.Iterator.html#method.filter_map
https://doc.rust-lang.org/std/iter/trait.Iterator.html#method.filter
https://doc.rust-lang.org/std/iter/trait.Iterator.html#method.filter
https://doc.rust-lang.org/std/iter/trait.Iterator.html#method.filter
https://doc.rust-lang.org/std/iter/trait.Iterator.html#method.map
https://doc.rust-lang.org/std/iter/trait.Iterator.html#method.map
https://doc.rust-lang.org/std/iter/trait.Iterator.html#method.map
https://nnethercote.github.io/perf-book/print.html#chunks
https://nnethercote.github.io/perf-book/print.html#chunks
https://doc.rust-lang.org/stable/std/primitive.slice.html#method.chunks_exact
https://doc.rust-lang.org/stable/std/primitive.slice.html#method.chunks_exact
https://doc.rust-lang.org/stable/std/primitive.slice.html#method.chunks_exact
https://doc.rust-lang.org/stable/std/primitive.slice.html#method.chunks
https://doc.rust-lang.org/stable/std/primitive.slice.html#method.chunks
https://doc.rust-lang.org/stable/std/primitive.slice.html#method.chunks
https://doc.rust-lang.org/stable/std/slice/struct.ChunksExact.html#method.remainder
https://doc.rust-lang.org/stable/std/slice/struct.ChunksExact.html#method.remainder
https://doc.rust-lang.org/stable/std/slice/struct.ChunksExact.html#method.remainder
https://github.com/johannesvollmer/exrs/pull/173/files
https://github.com/johannesvollmer/exrs/pull/173/files
https://github.com/johannesvollmer/exrs/pull/173/files
https://github.com/johannesvollmer/exrs/pull/175/files
https://github.com/johannesvollmer/exrs/pull/175/files
https://github.com/johannesvollmer/exrs/pull/175/files
https://doc.rust-lang.org/stable/std/primitive.slice.html#method.rchunks
https://doc.rust-lang.org/stable/std/primitive.slice.html#method.rchunks
https://doc.rust-lang.org/stable/std/primitive.slice.html#method.rchunks
https://doc.rust-lang.org/stable/std/primitive.slice.html#method.rchunks_exact
https://doc.rust-lang.org/stable/std/primitive.slice.html#method.rchunks_exact
https://doc.rust-lang.org/stable/std/primitive.slice.html#method.rchunks_exact
https://doc.rust-lang.org/stable/std/slice/struct.RChunksExact.html#method.remainder
https://doc.rust-lang.org/stable/std/slice/struct.RChunksExact.html#method.remainder
https://doc.rust-lang.org/stable/std/slice/struct.RChunksExact.html#method.remainder

• slice::chunks_mut , slice::chunks_exact_mut , and

ChunksExactMut::into_remainder ;

• slice::rchunks_mut , slice::rchunks_exact_mut , and

RChunksExactMut::into_remainder .

The Rust Performance Book https://nnethercote.github.io/perf-book/print.html

35 of 46 10/26/23, 15:08

https://doc.rust-lang.org/stable/std/primitive.slice.html#method.chunks_mut
https://doc.rust-lang.org/stable/std/primitive.slice.html#method.chunks_mut
https://doc.rust-lang.org/stable/std/primitive.slice.html#method.chunks_mut
https://doc.rust-lang.org/stable/std/primitive.slice.html#method.chunks_exact_mut
https://doc.rust-lang.org/stable/std/primitive.slice.html#method.chunks_exact_mut
https://doc.rust-lang.org/stable/std/primitive.slice.html#method.chunks_exact_mut
https://doc.rust-lang.org/stable/std/slice/struct.ChunksExactMut.html#method.into_remainder
https://doc.rust-lang.org/stable/std/slice/struct.ChunksExactMut.html#method.into_remainder
https://doc.rust-lang.org/stable/std/slice/struct.ChunksExactMut.html#method.into_remainder
https://doc.rust-lang.org/stable/std/primitive.slice.html#method.rchunks_mut
https://doc.rust-lang.org/stable/std/primitive.slice.html#method.rchunks_mut
https://doc.rust-lang.org/stable/std/primitive.slice.html#method.rchunks_mut
https://doc.rust-lang.org/stable/std/primitive.slice.html#method.rchunks_exact_mut
https://doc.rust-lang.org/stable/std/primitive.slice.html#method.rchunks_exact_mut
https://doc.rust-lang.org/stable/std/primitive.slice.html#method.rchunks_exact_mut
https://doc.rust-lang.org/stable/std/slice/struct.RChunksExactMut.html#method.into_remainder
https://doc.rust-lang.org/stable/std/slice/struct.RChunksExactMut.html#method.into_remainder
https://doc.rust-lang.org/stable/std/slice/struct.RChunksExactMut.html#method.into_remainder

Bounds Checks

By default, accesses to container types such as slices and vectors involve bounds checks

in Rust. These can affect performance, e.g. within hot loops, though less often than you

might expect.

There are several safe ways to change code so that the compiler knows about container

lengths and can optimize away bounds checks.

• Replace direct element accesses in a loop by using iteration.

• Instead of indexing into a Vec within a loop, make a slice of the Vec before the

loop and then index into the slice within the loop.

• Add assertions on the ranges of index variables. Example 1, Example 2.

Getting these to work can be tricky. The Bounds Check Cookbook goes into more detail

on this topic.

As a last resort, there are the unsafe methods get_unchecked and get_unchecked_mut .

The Rust Performance Book https://nnethercote.github.io/perf-book/print.html

36 of 46 10/26/23, 15:08

https://nnethercote.github.io/perf-book/print.html#bounds-checks
https://nnethercote.github.io/perf-book/print.html#bounds-checks
https://github.com/rust-random/rand/pull/960/commits/de9dfdd86851032d942eb583d8d438e06085867b
https://github.com/rust-random/rand/pull/960/commits/de9dfdd86851032d942eb583d8d438e06085867b
https://github.com/rust-random/rand/pull/960/commits/de9dfdd86851032d942eb583d8d438e06085867b
https://github.com/image-rs/jpeg-decoder/pull/167/files
https://github.com/image-rs/jpeg-decoder/pull/167/files
https://github.com/image-rs/jpeg-decoder/pull/167/files
https://github.com/Shnatsel/bounds-check-cookbook/
https://github.com/Shnatsel/bounds-check-cookbook/
https://doc.rust-lang.org/std/primitive.slice.html#method.get_unchecked
https://doc.rust-lang.org/std/primitive.slice.html#method.get_unchecked
https://doc.rust-lang.org/std/primitive.slice.html#method.get_unchecked
https://doc.rust-lang.org/std/primitive.slice.html#method.get_unchecked_mut
https://doc.rust-lang.org/std/primitive.slice.html#method.get_unchecked_mut
https://doc.rust-lang.org/std/primitive.slice.html#method.get_unchecked_mut

I/O

Locking

Rust’s print! and println! macros lock stdout on every call. If you have repeated calls

to these macros it may be better to lock stdout manually.

For example, change this code:

to this:

stdin and stderr can likewise be locked when doing repeated operations on them.

Buffering

Rust file I/O is unbuffered by default. If you have many small and repeated read or write

calls to a file or network socket, use BufReader or BufWriter . They maintain an in-

memory buffer for input and output, minimizing the number of system calls required.

For example, change this unbuffered writer code:

to this:

for line in lines {
println!("{}", line);

}

use std::io::Write;
let mut stdout = std::io::stdout();
let mut lock = stdout.lock();
for line in lines {

writeln!(lock, "{}", line)?;
}
// stdout is unlocked when `lock` is dropped

use std::io::Write;
let mut out = std::fs::File::create("test.txt")?;
for line in lines {

writeln!(out, "{}", line)?;
}

The Rust Performance Book https://nnethercote.github.io/perf-book/print.html

37 of 46 10/26/23, 15:08

https://nnethercote.github.io/perf-book/print.html#io
https://nnethercote.github.io/perf-book/print.html#io
https://nnethercote.github.io/perf-book/print.html#locking
https://nnethercote.github.io/perf-book/print.html#locking
https://doc.rust-lang.org/std/macro.print.html
https://doc.rust-lang.org/std/macro.print.html
https://doc.rust-lang.org/std/macro.print.html
https://doc.rust-lang.org/std/macro.println.html
https://doc.rust-lang.org/std/macro.println.html
https://doc.rust-lang.org/std/macro.println.html
https://nnethercote.github.io/perf-book/print.html#buffering
https://nnethercote.github.io/perf-book/print.html#buffering
https://doc.rust-lang.org/std/io/struct.BufReader.html
https://doc.rust-lang.org/std/io/struct.BufReader.html
https://doc.rust-lang.org/std/io/struct.BufReader.html
https://doc.rust-lang.org/std/io/struct.BufWriter.html
https://doc.rust-lang.org/std/io/struct.BufWriter.html
https://doc.rust-lang.org/std/io/struct.BufWriter.html

Example 1, Example 2.

The explicit call to flush is not strictly necessary, as flushing will happen automatically

when out is dropped. However, in that case any error that occurs on flushing will be

ignored, whereas an explicit flush will make that error explicit.

Forgetting to buffer is more common when writing. Both unbuffered and buffered writers

implement the Write trait, which means the code for writing to an unbuffered writer and

a buffered writer is much the same. In contrast, unbuffered readers implement the Read

trait but buffered readers implement the BufRead trait, which means the code for

reading from an unbuffered reader and a buffered reader is different. For example, it is

difficult to read a file line by line with an unbuffered reader, but it is trivial with a buffered

reader by using BufRead::read_line or BufRead::lines . For this reason, it is hard to

write an example for readers like the one above for writers, where the before and after

versions are so similar.

Finally, note that buffering also works with stdout, so you might want to combine manual

locking and buffering when making many writes to stdout.

Reading Lines from a File

This section explains how to avoid excessive allocations when using BufRead to read a

file one line at a time.

Reading Input as Raw Bytes

The built-in String type uses UTF-8 internally, which adds a small, but nonzero overhead

caused by UTF-8 validation when you read input into it. If you just want to process input

bytes without worrying about UTF-8 (for example if you handle ASCII text), you can use

BufRead::read_until .

There are also dedicated crates for reading byte-oriented lines of data and working with

byte strings.

use std::io::{BufWriter, Write};
let mut out = BufWriter::new(std::fs::File::create("test.txt")?);
for line in lines {

writeln!(out, "{}", line)?;
}
out.flush()?;

The Rust Performance Book https://nnethercote.github.io/perf-book/print.html

38 of 46 10/26/23, 15:08

https://github.com/rust-lang/rust/pull/93954
https://github.com/rust-lang/rust/pull/93954
https://github.com/rust-lang/rust/pull/93954
https://github.com/nnethercote/dhat-rs/pull/22/commits/8c3ae26f1219474ee55c30bc9981e6af2e869be2
https://github.com/nnethercote/dhat-rs/pull/22/commits/8c3ae26f1219474ee55c30bc9981e6af2e869be2
https://github.com/nnethercote/dhat-rs/pull/22/commits/8c3ae26f1219474ee55c30bc9981e6af2e869be2
https://doc.rust-lang.org/std/io/trait.Write.html#tymethod.flush
https://doc.rust-lang.org/std/io/trait.Write.html#tymethod.flush
https://doc.rust-lang.org/std/io/trait.Write.html#tymethod.flush
https://doc.rust-lang.org/std/io/trait.Write.html
https://doc.rust-lang.org/std/io/trait.Write.html
https://doc.rust-lang.org/std/io/trait.Write.html
https://doc.rust-lang.org/std/io/trait.Read.html
https://doc.rust-lang.org/std/io/trait.Read.html
https://doc.rust-lang.org/std/io/trait.Read.html
https://doc.rust-lang.org/std/io/trait.BufRead.html
https://doc.rust-lang.org/std/io/trait.BufRead.html
https://doc.rust-lang.org/std/io/trait.BufRead.html
https://doc.rust-lang.org/std/io/trait.BufRead.html#method.read_line
https://doc.rust-lang.org/std/io/trait.BufRead.html#method.read_line
https://doc.rust-lang.org/std/io/trait.BufRead.html#method.read_line
https://doc.rust-lang.org/std/io/trait.BufRead.html#method.lines
https://doc.rust-lang.org/std/io/trait.BufRead.html#method.lines
https://doc.rust-lang.org/std/io/trait.BufRead.html#method.lines
https://nnethercote.github.io/perf-book/print.html#reading-lines-from-a-file-1
https://nnethercote.github.io/perf-book/print.html#reading-lines-from-a-file-1
https://nnethercote.github.io/perf-book/heap-allocations.html#reading-lines-from-a-file
https://nnethercote.github.io/perf-book/heap-allocations.html#reading-lines-from-a-file
https://doc.rust-lang.org/std/io/trait.BufRead.html
https://doc.rust-lang.org/std/io/trait.BufRead.html
https://doc.rust-lang.org/std/io/trait.BufRead.html
https://nnethercote.github.io/perf-book/print.html#reading-input-as-raw-bytes
https://nnethercote.github.io/perf-book/print.html#reading-input-as-raw-bytes
https://doc.rust-lang.org/std/string/struct.String.html
https://doc.rust-lang.org/std/string/struct.String.html
https://doc.rust-lang.org/std/io/trait.BufRead.html#method.read_until
https://doc.rust-lang.org/std/io/trait.BufRead.html#method.read_until
https://doc.rust-lang.org/std/io/trait.BufRead.html#method.read_until
https://github.com/Freaky/rust-linereader
https://github.com/Freaky/rust-linereader
https://github.com/BurntSushi/bstr
https://github.com/BurntSushi/bstr

Logging and Debugging

Sometimes logging code or debugging code can slow down a program significantly. Either

the logging/debugging code itself is slow, or data collection code that feeds into

logging/debugging code is slow. Make sure that no unnecessary work is done for

logging/debugging purposes when logging/debugging is not enabled. Example 1,

Example 2.

Note that assert! calls always run, but debug_assert! calls only run in dev builds. If you

have an assertion that is hot but is not necessary for safety, consider making it a

debug_assert! . Example 1, Example 2.

The Rust Performance Book https://nnethercote.github.io/perf-book/print.html

39 of 46 10/26/23, 15:08

https://nnethercote.github.io/perf-book/print.html#logging-and-debugging
https://nnethercote.github.io/perf-book/print.html#logging-and-debugging
https://github.com/rust-lang/rust/pull/50246/commits/2e4f66a86f7baa5644d18bb2adc07a8cd1c7409d
https://github.com/rust-lang/rust/pull/50246/commits/2e4f66a86f7baa5644d18bb2adc07a8cd1c7409d
https://github.com/rust-lang/rust/pull/50246/commits/2e4f66a86f7baa5644d18bb2adc07a8cd1c7409d
https://github.com/rust-lang/rust/pull/75133/commits/eeb4b83289e09956e0dda174047729ca87c709fe
https://github.com/rust-lang/rust/pull/75133/commits/eeb4b83289e09956e0dda174047729ca87c709fe
https://github.com/rust-lang/rust/pull/75133/commits/eeb4b83289e09956e0dda174047729ca87c709fe
https://doc.rust-lang.org/std/macro.assert.html
https://doc.rust-lang.org/std/macro.assert.html
https://doc.rust-lang.org/std/macro.assert.html
https://doc.rust-lang.org/std/macro.debug_assert.html
https://doc.rust-lang.org/std/macro.debug_assert.html
https://doc.rust-lang.org/std/macro.debug_assert.html
https://github.com/rust-lang/rust/pull/58210/commits/f7ed6e18160bc8fccf27a73c05f3935c9e8f672e
https://github.com/rust-lang/rust/pull/58210/commits/f7ed6e18160bc8fccf27a73c05f3935c9e8f672e
https://github.com/rust-lang/rust/pull/58210/commits/f7ed6e18160bc8fccf27a73c05f3935c9e8f672e
https://github.com/rust-lang/rust/pull/90746/commits/580d357b5adef605fc731d295ca53ab8532e26fb
https://github.com/rust-lang/rust/pull/90746/commits/580d357b5adef605fc731d295ca53ab8532e26fb
https://github.com/rust-lang/rust/pull/90746/commits/580d357b5adef605fc731d295ca53ab8532e26fb

Wrapper Types

Rust has a variety of “wrapper” types, such as RefCell and Mutex , that provide special

behavior for values. Accessing these values can take a non-trivial amount of time. If

multiple such values are typically accessed together, it may be better to put them within a

single wrapper.

For example, a struct like this:

may be better represented like this:

Whether or not this helps performance will depend on the exact access patterns of the

values. Example.

struct S {
 x: Arc<Mutex<u32>>,
 y: Arc<Mutex<u32>>,
}

struct S {
 xy: Arc<Mutex<(u32, u32)>>,
}

The Rust Performance Book https://nnethercote.github.io/perf-book/print.html

40 of 46 10/26/23, 15:08

https://nnethercote.github.io/perf-book/print.html#wrapper-types
https://nnethercote.github.io/perf-book/print.html#wrapper-types
https://doc.rust-lang.org/std/cell/struct.RefCell.html
https://doc.rust-lang.org/std/cell/struct.RefCell.html
https://doc.rust-lang.org/std/cell/struct.RefCell.html
https://doc.rust-lang.org/std/sync/struct.Mutex.html
https://doc.rust-lang.org/std/sync/struct.Mutex.html
https://doc.rust-lang.org/std/sync/struct.Mutex.html
https://github.com/rust-lang/rust/pull/68694/commits/7426853ba255940b880f2e7f8026d60b94b42404
https://github.com/rust-lang/rust/pull/68694/commits/7426853ba255940b880f2e7f8026d60b94b42404
https://github.com/rust-lang/rust/pull/68694/commits/7426853ba255940b880f2e7f8026d60b94b42404

Machine Code

When you have a small piece of very hot code it may be worth inspecting the generated

machine code to see if it has any inefficiencies, such as removable bounds checks. The

Compiler Explorer website is an excellent resource when doing this on small snippets.

cargo-show-asm is an alternative tool that can be used on full Rust projects.

Relatedly, the core::arch module provides access to architecture-specific intrinsics,

many of which relate to SIMD instructions.

The Rust Performance Book https://nnethercote.github.io/perf-book/print.html

41 of 46 10/26/23, 15:08

https://nnethercote.github.io/perf-book/print.html#machine-code
https://nnethercote.github.io/perf-book/print.html#machine-code
https://nnethercote.github.io/perf-book/bounds-checks.html
https://nnethercote.github.io/perf-book/bounds-checks.html
https://godbolt.org/
https://godbolt.org/
https://github.com/pacak/cargo-show-asm
https://github.com/pacak/cargo-show-asm
https://github.com/pacak/cargo-show-asm
https://doc.rust-lang.org/core/arch/index.html
https://doc.rust-lang.org/core/arch/index.html
https://doc.rust-lang.org/core/arch/index.html

Parallelism

Rust provides excellent support for safe parallel programming, which can lead to large

performance improvements. There are a variety of ways to introduce parallelism into a

program and the best way for any program will depend greatly on its design.

An in-depth treatment of parallelism is beyond the scope of this book. If you are

interested in this topic, the documentation for the rayon and crossbeam crates is a good

place to start.

The Rust Performance Book https://nnethercote.github.io/perf-book/print.html

42 of 46 10/26/23, 15:08

https://nnethercote.github.io/perf-book/print.html#parallelism
https://nnethercote.github.io/perf-book/print.html#parallelism
https://crates.io/crates/rayon
https://crates.io/crates/rayon
https://crates.io/crates/rayon
https://crates.io/crates/crossbeam
https://crates.io/crates/crossbeam
https://crates.io/crates/crossbeam

General Tips

The previous sections of this book have discussed Rust-specific techniques. This section

gives a brief overview of some general performance principles.

As long as the obvious pitfalls are avoided (e.g. using non-release builds), Rust code

generally is fast and uses little memory. Especially if you are used to dynamically-typed

languages such as Python and Ruby, or statically-types languages with a garbage collector

such as Java and C#.

Optimized code is often more complex and takes more effort to write than unoptimized

code. For this reason, it is only worth optimizing hot code.

The biggest performance improvements often come from changes to algorithms or data

structures, rather than low-level optimizations. Example 1, Example 2.

Writing code that works well with modern hardware is not always easy, but worth striving

for. For example, try to minimize cache misses and branch mispredictions, where

possible.

Most optimizations result in small speedups. Although no single small speedup is

noticeable, they really add up if you can do enough of them.

Different profilers have different strengths. It is good to use more than one.

When profiling indicates that a function is hot, there are two common ways to speed

things up: (a) make the function faster, and/or (b) avoid calling it as much.

It is often easier to eliminate silly slowdowns than it is to introduce clever speedups.

Avoid computing things unless necessary. Lazy/on-demand computations are often a win.

Example 1, Example 2.

Complex general cases can often be avoided by optimistically checking for common

special cases that are simpler. Example 1, Example 2, Example 3. In particular, specially

handling collections with 0, 1, or 2 elements is often a win when small sizes dominate.

Example 1, Example 2, Example 3, Example 4.

Similarly, when dealing with repetitive data, it is often possible to use a simple form of

data compression, by using a compact representation for common values and then

having a fallback to a secondary table for unusual values. Example 1, Example 2,

Example 3.

When code deals with multiple cases, measure case frequencies and handle the most

common ones first.

When dealing with lookups that involve high locality, it can be a win to put a small cache

The Rust Performance Book https://nnethercote.github.io/perf-book/print.html

43 of 46 10/26/23, 15:08

https://nnethercote.github.io/perf-book/print.html#general-tips
https://nnethercote.github.io/perf-book/print.html#general-tips
https://nnethercote.github.io/perf-book/build-configuration.html
https://nnethercote.github.io/perf-book/build-configuration.html
https://github.com/rust-lang/rust/pull/53383/commits/5745597e6195fe0591737f242d02350001b6c590
https://github.com/rust-lang/rust/pull/53383/commits/5745597e6195fe0591737f242d02350001b6c590
https://github.com/rust-lang/rust/pull/53383/commits/5745597e6195fe0591737f242d02350001b6c590
https://github.com/rust-lang/rust/pull/54318/commits/154be2c98cf348de080ce951df3f73649e8bb1a6
https://github.com/rust-lang/rust/pull/54318/commits/154be2c98cf348de080ce951df3f73649e8bb1a6
https://github.com/rust-lang/rust/pull/54318/commits/154be2c98cf348de080ce951df3f73649e8bb1a6
https://github.com/rust-lang/rust/pull/36592/commits/80a44779f7a211e075da9ed0ff2763afa00f43dc
https://github.com/rust-lang/rust/pull/36592/commits/80a44779f7a211e075da9ed0ff2763afa00f43dc
https://github.com/rust-lang/rust/pull/36592/commits/80a44779f7a211e075da9ed0ff2763afa00f43dc
https://github.com/rust-lang/rust/pull/50339/commits/989815d5670826078d9984a3515eeb68235a4687
https://github.com/rust-lang/rust/pull/50339/commits/989815d5670826078d9984a3515eeb68235a4687
https://github.com/rust-lang/rust/pull/50339/commits/989815d5670826078d9984a3515eeb68235a4687
https://github.com/rust-lang/rust/pull/68790/commits/d62b6f204733d255a3e943388ba99f14b053bf4a
https://github.com/rust-lang/rust/pull/68790/commits/d62b6f204733d255a3e943388ba99f14b053bf4a
https://github.com/rust-lang/rust/pull/68790/commits/d62b6f204733d255a3e943388ba99f14b053bf4a
https://github.com/rust-lang/rust/pull/53733/commits/130e55665f8c9f078dec67a3e92467853f400250
https://github.com/rust-lang/rust/pull/53733/commits/130e55665f8c9f078dec67a3e92467853f400250
https://github.com/rust-lang/rust/pull/53733/commits/130e55665f8c9f078dec67a3e92467853f400250
https://github.com/rust-lang/rust/pull/65260/commits/59e41edcc15ed07de604c61876ea091900f73649
https://github.com/rust-lang/rust/pull/65260/commits/59e41edcc15ed07de604c61876ea091900f73649
https://github.com/rust-lang/rust/pull/65260/commits/59e41edcc15ed07de604c61876ea091900f73649
https://github.com/rust-lang/rust/pull/50932/commits/2ff632484cd8c2e3b123fbf52d9dd39b54a94505
https://github.com/rust-lang/rust/pull/50932/commits/2ff632484cd8c2e3b123fbf52d9dd39b54a94505
https://github.com/rust-lang/rust/pull/50932/commits/2ff632484cd8c2e3b123fbf52d9dd39b54a94505
https://github.com/rust-lang/rust/pull/64627/commits/acf7d4dcdba4046917c61aab141c1dec25669ce9
https://github.com/rust-lang/rust/pull/64627/commits/acf7d4dcdba4046917c61aab141c1dec25669ce9
https://github.com/rust-lang/rust/pull/64627/commits/acf7d4dcdba4046917c61aab141c1dec25669ce9
https://github.com/rust-lang/rust/pull/64949/commits/14192607d38f5501c75abea7a4a0e46349df5b5f
https://github.com/rust-lang/rust/pull/64949/commits/14192607d38f5501c75abea7a4a0e46349df5b5f
https://github.com/rust-lang/rust/pull/64949/commits/14192607d38f5501c75abea7a4a0e46349df5b5f
https://github.com/rust-lang/rust/pull/64949/commits/d1a7bb36ad0a5932384eac03d3fb834efc0317e5
https://github.com/rust-lang/rust/pull/64949/commits/d1a7bb36ad0a5932384eac03d3fb834efc0317e5
https://github.com/rust-lang/rust/pull/64949/commits/d1a7bb36ad0a5932384eac03d3fb834efc0317e5
https://github.com/rust-lang/rust/pull/54420/commits/b2f25e3c38ff29eebe6c8ce69b8c69243faa440d
https://github.com/rust-lang/rust/pull/54420/commits/b2f25e3c38ff29eebe6c8ce69b8c69243faa440d
https://github.com/rust-lang/rust/pull/54420/commits/b2f25e3c38ff29eebe6c8ce69b8c69243faa440d
https://github.com/rust-lang/rust/pull/59693/commits/fd7f605365b27bfdd3cd6763124e81bddd61dd28
https://github.com/rust-lang/rust/pull/59693/commits/fd7f605365b27bfdd3cd6763124e81bddd61dd28
https://github.com/rust-lang/rust/pull/59693/commits/fd7f605365b27bfdd3cd6763124e81bddd61dd28
https://github.com/rust-lang/rust/pull/65750/commits/eea6f23a0ed67fd8c6b8e1b02cda3628fee56b2f
https://github.com/rust-lang/rust/pull/65750/commits/eea6f23a0ed67fd8c6b8e1b02cda3628fee56b2f
https://github.com/rust-lang/rust/pull/65750/commits/eea6f23a0ed67fd8c6b8e1b02cda3628fee56b2f

in front of a data structure.

Optimized code often has a non-obvious structure, which means that explanatory

comments are valuable, particularly those that reference profiling measurements. A

comment like “99% of the time this vector has 0 or 1 elements, so handle those cases

first” can be illuminating.

The Rust Performance Book https://nnethercote.github.io/perf-book/print.html

44 of 46 10/26/23, 15:08

Compile Times

Although this book is primarily about improving the performance of Rust programs, this

section is about reducing the compile times of Rust programs, because that is a related

topic of interest to many people.

The Minimizing Compile Times section discussed ways to reduce compile times via build

configuration choices. The rest of this section discusses ways to reduce compile times

that require modifying your program’s code.

Visualization

Cargo has a feature that lets you visualize compilation of your program. Build with this

command:

On completion it will print the name of an HTML file. Open that file in a web browser. It

contains a Gantt chart that shows the dependencies between the various crates in your

program. This shows how much parallelism there is in your crate graph, which can

indicate if any large crates that serialize compilation should be broken up. See the

documentation for more details on how to read the graphs.

LLVM IR

The Rust compiler uses LLVM for its back-end. LLVM’s execution can be a large part of

compile times, especially when the Rust compiler’s front end generates a lot of IR which

takes LLVM a long time to optimize.

These problems can be diagnosed with cargo llvm-lines , which shows which Rust

functions cause the most LLVM IR to be generated. Generic functions are often the most

important ones, because they can be instantiated dozens or even hundreds of times in

large programs.

If a generic function causes IR bloat, there are several ways to fix it. The simplest is to just

make the function smaller. Example 1, Example 2.

Another way is to move the non-generic parts of the function into a separate, non-generic

function, which will only be instantiated once. Whether this is possible will depend on the

details of the generic function. When it is possible, the non-generic function can often be

cargo build --timings

The Rust Performance Book https://nnethercote.github.io/perf-book/print.html

45 of 46 10/26/23, 15:08

https://nnethercote.github.io/perf-book/print.html#compile-times
https://nnethercote.github.io/perf-book/print.html#compile-times
https://nnethercote.github.io/perf-book/build-configuration.html#minimizing-compile-times
https://nnethercote.github.io/perf-book/build-configuration.html#minimizing-compile-times
https://nnethercote.github.io/perf-book/print.html#visualization
https://nnethercote.github.io/perf-book/print.html#visualization
https://en.wikipedia.org/wiki/Gantt_chart
https://en.wikipedia.org/wiki/Gantt_chart
https://doc.rust-lang.org/nightly/cargo/reference/timings.html
https://doc.rust-lang.org/nightly/cargo/reference/timings.html
https://doc.rust-lang.org/nightly/cargo/reference/timings.html
https://doc.rust-lang.org/nightly/cargo/reference/timings.html
https://nnethercote.github.io/perf-book/print.html#llvm-ir
https://nnethercote.github.io/perf-book/print.html#llvm-ir
https://llvm.org/
https://llvm.org/
https://en.wikipedia.org/wiki/Intermediate_representation
https://en.wikipedia.org/wiki/Intermediate_representation
https://github.com/dtolnay/cargo-llvm-lines/
https://github.com/dtolnay/cargo-llvm-lines/
https://github.com/dtolnay/cargo-llvm-lines/
https://github.com/rust-lang/rust/pull/72166/commits/5a0ac0552e05c079f252482cfcdaab3c4b39d614
https://github.com/rust-lang/rust/pull/72166/commits/5a0ac0552e05c079f252482cfcdaab3c4b39d614
https://github.com/rust-lang/rust/pull/72166/commits/5a0ac0552e05c079f252482cfcdaab3c4b39d614
https://github.com/rust-lang/rust/pull/91246/commits/f3bda74d363a060ade5e5caeb654ba59bfed51a4
https://github.com/rust-lang/rust/pull/91246/commits/f3bda74d363a060ade5e5caeb654ba59bfed51a4
https://github.com/rust-lang/rust/pull/91246/commits/f3bda74d363a060ade5e5caeb654ba59bfed51a4

written neatly as an inner function within the generic function, as shown by the code for

std::fs::read :

Example.

Sometimes common utility functions like Option::map and Result::map_err are

instantiated many times. Replacing them with equivalent match expressions can help

compile times.

The effects of these sorts of changes on compile times will usually be small, though

occasionally they can be large. Example.

Such changes can also reduce binary size.

pub fn read<P: AsRef<Path>>(path: P) -> io::Result<Vec<u8>> {
fn inner(path: &Path) -> io::Result<Vec<u8>> {

let mut file = File::open(path)?;
let size = file.metadata().map(|m| m.len()).unwrap_or(0);
let mut bytes = Vec::with_capacity(size as usize);

 io::default_read_to_end(&mut file, &mut bytes)?;
Ok(bytes)

 }
 inner(path.as_ref())
}

The Rust Performance Book https://nnethercote.github.io/perf-book/print.html

46 of 46 10/26/23, 15:08

https://doc.rust-lang.org/std/fs/fn.read.html
https://doc.rust-lang.org/std/fs/fn.read.html
https://doc.rust-lang.org/std/fs/fn.read.html
https://github.com/rust-lang/rust/pull/72013/commits/68b75033ad78d88872450a81745cacfc11e58178
https://github.com/rust-lang/rust/pull/72013/commits/68b75033ad78d88872450a81745cacfc11e58178
https://github.com/rust-lang/rust/pull/72013/commits/68b75033ad78d88872450a81745cacfc11e58178
https://doc.rust-lang.org/std/option/enum.Option.html#method.map
https://doc.rust-lang.org/std/option/enum.Option.html#method.map
https://doc.rust-lang.org/std/option/enum.Option.html#method.map
https://doc.rust-lang.org/std/result/enum.Result.html#method.map_err
https://doc.rust-lang.org/std/result/enum.Result.html#method.map_err
https://doc.rust-lang.org/std/result/enum.Result.html#method.map_err
https://github.com/servo/servo/issues/26585
https://github.com/servo/servo/issues/26585
https://github.com/servo/servo/issues/26585

