
Writing Interpreters in Rust: a Guide

Welcome!

In this book we will walk through the basics of interpreted language implementation in

Rust with a focus on the challenges that are specific to using Rust.

At a glance, these are:

• A custom allocator for use in an interpreter

• A safe-Rust wrapper over allocation

• A compiler and VM that interact with the above two layers

The goal of this book is not to cover a full featured language but rather to provide a solid

foundation on which you can build further features. Along the way we'll implement as

much as possible in terms of our own memory management abstractions rather than

using Rust std collections.

Level of difficulty

Bob Nystrom's Crafting Interpreters is recommended introductory reading to this book for

beginners to the topic. Bob has produced a high quality, accessible work and while there

is considerable overlap, in some ways this book builds on Bob's work with some

additional complexity, optimizations and discussions of Rust's safe vs unsafe.

We hope you find this book to be informative!

Further reading and other projects to study:

All the links below are acknowledged as inspiration or prior art.

Interpreters

• Bob Nystrom's Crafting Interpreters

• The Inko programming language

• kyren - luster and gc-arena

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

1 of 123 10/26/23, 19:01

https://rust-hosted-langs.github.io/book/print.html#writing-interpreters-in-rust-a-guide
https://rust-hosted-langs.github.io/book/print.html#writing-interpreters-in-rust-a-guide
https://rust-hosted-langs.github.io/book/print.html#welcome
https://rust-hosted-langs.github.io/book/print.html#welcome
https://rust-hosted-langs.github.io/book/print.html#level-of-difficulty
https://rust-hosted-langs.github.io/book/print.html#level-of-difficulty
http://craftinginterpreters.com/
http://craftinginterpreters.com/
https://rust-hosted-langs.github.io/book/print.html#further-reading-and-other-projects-to-study
https://rust-hosted-langs.github.io/book/print.html#further-reading-and-other-projects-to-study
https://rust-hosted-langs.github.io/book/print.html#interpreters
https://rust-hosted-langs.github.io/book/print.html#interpreters
http://craftinginterpreters.com/
http://craftinginterpreters.com/
https://inko-lang.org/
https://inko-lang.org/
https://github.com/kyren/luster
https://github.com/kyren/luster
https://github.com/kyren/gc-arena
https://github.com/kyren/gc-arena

Memory management

• Richard Jones, Anthony Hosking, Elliot Moss - The Garbage Collection Handbook

• Stephen M. Blackburn & Kathryn S. McKinley - Immix: A Mark-Region Garbage

Collector with Space Efficiency, Fast Collection, and Mutator Performance

• Felix S Klock II - GC and Rust Part 0: Garbage Collection Background

• Felix S Klock II - GC and Rust Part 1: Specifying the Problem

• Felix S Klock II - GC and Rust Part 2: The Roots of the Problem

Allocators

This section gives an overview and implementation detail of allocating blocks of memory.

What this is not: a custom allocator to replace the global Rust allocator

Alignment

There are subtleties in memory access alignment:

• Some hardware architectures and implementations may fault on unaligned memory

access.

• Atomic operations require word-aligned access.

• SIMD operations typically require double-word-aligned access.

• In practice on 64 bit architectures, allocators align objects to 8 byte boundaries for

64 bit objects and smaller and 16 byte boundaries for larger objects for

performance optimization and the above reasons.

Intel 32 and 64 bit x86 architectures allow general access to be unaligned but will

probably incur an access penalty. The story on 32bit ARM and aarch64 is sufficiently

similar but there is a higher chance that an ARM core is configured to raise a bus error on

a misaligned access.

Another very important factor is atomic memory operations. Atomic access works on a

whole word basis - any unaligned access by nature cannot be guaranteed to be atomic as

it will probably involve more than one access. To support atomic operations, alignment

must be minmally on word boundaries.

SIMD operations, tending to be 128 bits wide or higher, should be aligned to 16 byte

boundaries for optimal code generation and performance. Unaligned loads and stores

may be allowed but normally these incur performance penalties.

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

2 of 123 10/26/23, 19:01

https://rust-hosted-langs.github.io/book/print.html#memory-management
https://rust-hosted-langs.github.io/book/print.html#memory-management
http://gchandbook.org/
http://gchandbook.org/
http://www.cs.utexas.edu/users/speedway/DaCapo/papers/immix-pldi-2008.pdf
http://www.cs.utexas.edu/users/speedway/DaCapo/papers/immix-pldi-2008.pdf
http://www.cs.utexas.edu/users/speedway/DaCapo/papers/immix-pldi-2008.pdf
http://www.cs.utexas.edu/users/speedway/DaCapo/papers/immix-pldi-2008.pdf
http://blog.pnkfx.org/blog/2015/10/27/gc-and-rust-part-0-how-does-gc-work/
http://blog.pnkfx.org/blog/2015/10/27/gc-and-rust-part-0-how-does-gc-work/
http://blog.pnkfx.org/blog/2015/11/10/gc-and-rust-part-1-specing-the-problem/
http://blog.pnkfx.org/blog/2015/11/10/gc-and-rust-part-1-specing-the-problem/
http://blog.pnkfx.org/blog/2016/01/01/gc-and-rust-part-2-roots-of-the-problem/
http://blog.pnkfx.org/blog/2016/01/01/gc-and-rust-part-2-roots-of-the-problem/
https://rust-hosted-langs.github.io/book/print.html#allocators
https://rust-hosted-langs.github.io/book/print.html#allocators
https://rust-hosted-langs.github.io/book/print.html#alignment
https://rust-hosted-langs.github.io/book/print.html#alignment

While Intel allows unaligned access (that is, alignment on any byte boundary), the

recommended (see section 3.6.4) alignment for objects larger than 64 bits is to 16 byte

boundaries.

Apparently system malloc() implementations tend to comply with the 16 byte

boundary.

To verify the above, a rough test of both the system allocator and jemalloc on x86_64 by

using Box::new() on a set of types (u8 , u16 , u32 , u64 , String and a larger struct)

confirms a minimum of 8 byte alignment for anything word size or smaller and 16 byte

alignment for everything bigger. Sample pointer printouts below are for jemalloc but

Linux libc malloc produced the same pattern:

Compare with std::mem::align_of<T>() which, on x86_64 for example, returns

alignment values:

• u8 : 1 byte

• u16 : 2 bytes

• u32 : 4 bytes

• u64 : 8 bytes

• any bigger struct: 8

Thus despite the value of std::mem::align_of::<T>() , mature allocators will do what is

most pragmatic and follow recommended practice in support of optimal performance.

With all that in mind, to keep things simple, we'll align everything to a double-word

boundaries. When we add in prepending an object header, the minimum memory

p=0x7fb78b421028 u8
p=0x7fb78b421030 u16
p=0x7fb78b421038 u32
p=0x7fb78b421050 u64
p=0x7fb78b420060 "spam"

p=0x7fb78b4220f0 Hoge { y: 2, z: "ほげ", x: 1 }

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

3 of 123 10/26/23, 19:01

https://software.intel.com/sites/default/files/managed/9e/bc/64-ia-32-architectures-optimization-manual.pdf?wapkw=248966
https://software.intel.com/sites/default/files/managed/9e/bc/64-ia-32-architectures-optimization-manual.pdf?wapkw=248966
http://www.erahm.org/2016/03/24/minimum-alignment-of-allocation-across-platforms/
http://www.erahm.org/2016/03/24/minimum-alignment-of-allocation-across-platforms/

required for an object will be two words anyway.

Thus, the allocated size of an object will be calculated1 by

1 For a more detailed explanation of alignment adjustment calculations, see phil-opp's kernel heap

allocator.

Obtaining Blocks of Memory

When requesting blocks of memory at a time, one of the questions is what is the desired

block alignment?

• In deciding, one factor is that using an alignment that is a multiple of the page size

can make it easier to return memory to the operating system.

• Another factor is that if the block is aligned to it's size, it is fast to do bitwise

arithmetic on a pointer to an object in a block to compute the block boundary and

therefore the location of any block metadata.

With both these in mind we'll look at how to allocate blocks that are aligned to the size of

the block.

A basic crate interface

A block of memory is defined as a base address and a size, so we need a struct that

contains these elements.

To wrap the base address pointer, we'll use the recommended type for building

collections, std::ptr::NonNull<T> , which is available on stable.

Where BlockPtr and BlockSize are defined as:

let alignment = size_of::<usize>() * 2;
// mask out the least significant bits that correspond to the alignment - 1
// then add the full alignment
let size = (size_of::<T>() & !(alignment - 1)) + alignment;

pub struct Block {
 ptr: BlockPtr,
 size: BlockSize,
}

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

4 of 123 10/26/23, 19:01

https://rust-hosted-langs.github.io/book/print.html#1
https://rust-hosted-langs.github.io/book/print.html#1
https://github.com/phil-opp
https://github.com/phil-opp
https://os.phil-opp.com/kernel-heap/#alignment
https://os.phil-opp.com/kernel-heap/#alignment
https://os.phil-opp.com/kernel-heap/#alignment
https://os.phil-opp.com/kernel-heap/#alignment
https://rust-hosted-langs.github.io/book/print.html#obtaining-blocks-of-memory
https://rust-hosted-langs.github.io/book/print.html#obtaining-blocks-of-memory
https://rust-hosted-langs.github.io/book/print.html#a-basic-crate-interface
https://rust-hosted-langs.github.io/book/print.html#a-basic-crate-interface
https://doc.rust-lang.org/std/ptr/struct.NonNull.html
https://doc.rust-lang.org/std/ptr/struct.NonNull.html
https://doc.rust-lang.org/std/ptr/struct.NonNull.html

To obtain a Block , we'll create a Block::new() function which, along with

Block::drop() , is implemented internally by wrapping the stabilized Rust alloc routines:

Where parameter size must be a power of two, which is validated on the first line of the

function. Requiring the block size to be a power of two means simple bit arithmetic can

be used to find the beginning and end of a block in memory, if the block size is always the

same.

Errors take one of two forms, an invalid block-size or out-of-memory, both of which may

be returned by Block::new() .

Now on to the platform-specific implementations.

Custom aligned allocation on stable Rust

On the stable rustc channel we have access to some features of the Alloc API.

This is the ideal option since it abstracts platform specifics for us, we do not need to write

different code for Unix and Windows ourselves.

Fortunately there is enough stable functionality to fully implement what we need.

With an appropriate underlying implementation this code should compile and execute for

any target. The allocation function, implemented in the internal mod, reads:

pub type BlockPtr = NonNull<u8>;
pub type BlockSize = usize;

pub fn new(size: BlockSize) -> Result<Block, BlockError> {
if !size.is_power_of_two() {

return Err(BlockError::BadRequest);
 }

Ok(Block {
 ptr: internal::alloc_block(size)?,
 size,
 })
 }

#[derive(Debug, PartialEq)]
pub enum BlockError {

/// Usually means requested block size, and therefore alignment, wasn't a
/// power of two

 BadRequest,
/// Insufficient memory, couldn't allocate a block

 OOM,
}

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

5 of 123 10/26/23, 19:01

https://rust-hosted-langs.github.io/book/print.html#custom-aligned-allocation-on-stable-rust
https://rust-hosted-langs.github.io/book/print.html#custom-aligned-allocation-on-stable-rust
https://doc.rust-lang.org/std/alloc/index.html
https://doc.rust-lang.org/std/alloc/index.html

Once a block has been allocated, there is no safe abstraction at this level to access the

memory. The Block will provide a bare pointer to the beginning of the memory and it is

up to the user to avoid invalid pointer arithmetic and reading or writing outside of the

block boundary.

Deallocation

Again, using the stable Alloc functions:

The implementation of Block::drop() calls the deallocation function for us so we can

create and drop Block instances without leaking memory.

Testing

We want to be sure that the system level allocation APIs do indeed return block-size-

aligned blocks. Checking for this is straightforward.

A correctly aligned block should have it's low bits set to 0 for a number of bits that

represents the range of the block size - that is, the block size minus one. A bitwise XOR

pub fn alloc_block(size: BlockSize) -> Result<BlockPtr, BlockError> {
unsafe {

let layout = Layout::from_size_align_unchecked(size, size);

let ptr = alloc(layout);
if ptr.is_null() {

Err(BlockError::OOM)
 } else {

Ok(NonNull::new_unchecked(ptr))
 }
 }
 }

pub fn as_ptr(&self) -> *const u8 {
self.ptr.as_ptr()

 }

pub fn dealloc_block(ptr: BlockPtr, size: BlockSize) {
unsafe {

let layout = Layout::from_size_align_unchecked(size, size);

 dealloc(ptr.as_ptr(), layout);
 }
 }

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

6 of 123 10/26/23, 19:01

https://rust-hosted-langs.github.io/book/print.html#deallocation
https://rust-hosted-langs.github.io/book/print.html#deallocation
https://rust-hosted-langs.github.io/book/print.html#testing
https://rust-hosted-langs.github.io/book/print.html#testing

will highlight any bits that shouldn't be set:

The type of allocation

Before we start writing objects into Block s, we need to know the nature of the interface

in Rust terms.

If we consider the global allocator in Rust, implicitly available via Box::new() ,

Vec::new() and so on, we'll notice that since the global allocator is available on every

thread and allows the creation of new objects on the heap (that is, mutation of the heap)

from any code location without needing to follow the rules of borrowing and mutable

aliasing, it is essentially a container that implements Sync and the interior mutability

pattern.

We need to follow suit, but we'll leave Sync for advanced chapters.

An interface that satisfies the interior mutability property, by borrowing the allocator

instance immutably, might look like:

naming it AllocRaw because when layering on top of Block we'll work with raw pointers

and not concern ourselves with the lifetime of allocated objects.

It will become a little more complex than this but for now, this captures the essence of

the interface.

An allocator: Sticky Immix

Quickly, some terminology:

• Mutator: the thread of execution that writes and modifies objects on the heap.

• Live objects: the graph of objects that the mutator can reach, either directly from it's

stack or indirectly through other reachable objects.

• Dead objects: any object that is disconnected from the mutator's graph of live

objects.

• Collector: the thread of execution that identifies objects that are no longer

reachable by the mutator and marks them as free space that can be reused

// the block address bitwise AND the alignment bits (size - 1) should
// be a mutually exclusive set of bits
let mask = size - 1;
assert!((block.ptr.as_ptr() as usize & mask) ^ mask == mask);

trait AllocRaw {
fn alloc<T>(&self, object: T) -> *const T;

}

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

7 of 123 10/26/23, 19:01

https://rust-hosted-langs.github.io/book/print.html#the-type-of-allocation
https://rust-hosted-langs.github.io/book/print.html#the-type-of-allocation
https://rust-hosted-langs.github.io/book/print.html#an-allocator-sticky-immix
https://rust-hosted-langs.github.io/book/print.html#an-allocator-sticky-immix

• Fragmentation: as objects have many different sizes, after allocating and freeing

many objects, gaps of unused memory appear between objects that are too small

for most objects but that add up to a measurable percentage of wasted space.

• Evacuation: when the collector moves live objects to another block of memory so

that the originating block can be de_fragmented

About Immix

Immix is a memory management scheme that considers blocks of fixed size at a time.

Each block is divided into lines. In the original paper, blocks are sized at 32k and lines at

128 bytes. Objects are allocated into blocks using bump allocation and objects can cross

line boundaries.

During tracing to discover live objects, objects are marked as live, but the line, or lines,

that each object occupies are also marked as live. This can mean, of course, that a line

may contain a dead object and a live object but the whole line is marked as live.

To mark lines as live, a portion of the block is set aside for line mark bits, usually one byte

per mark bit. If any line is marked as live, the whole block is also marked as live. There

must also, therefore, be a bit that indicates block liveness.

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

8 of 123 10/26/23, 19:01

https://rust-hosted-langs.github.io/book/print.html#about-immix
https://rust-hosted-langs.github.io/book/print.html#about-immix

Conservative marking

The Immix authors found that marking every line that contains a live object could be

expensive. For example, many small objects might cross line boundaries, requiring two

lines to be marked as live. This would require looking up the object size and calculating

whether the object crosses the boundary into the next line. To save CPU cycles, they

simplified the algorithm by saying that any object that fits in a line might cross into the

next line so we will conservatively consider the next line marked just in case. This sped up

marking at little fragmentation expense.

Collection

During collection, only lines not marked as live are considered available for re-use.

Inevitably then, there is acceptance of some amount of fragmentation at this point.

Full Immix implements evacuating objects out of the most fragmented blocks into fresh,

empty blocks, for defragmentation.

For simplicity of implementation, we'll leave out this evacuation operation in this guide.

This is called Sticky Immix.

We'll also stick to a single thread for the mutator and collector to avoid the complexity

overhead of a multi-threaded implementation for now.

Recommended reading: Stephen M. Blackburn & Kathryn S. McKinley - Immix: A Mark-

Region Garbage Collector with Space Efficiency, Fast Collection, and Mutator Performance

About this part of the book

This section will describe a Rust crate that implements a Sticky Immix heap. As part of this

implementation we will dive into the crate API details to understand how we can define

an interface between the heap and the language VM that will come later.

What this is not: custom memory management to replace the global Rust allocator! The APIs we

arrive at will be substantially incompatible with the global Rust allocator.

Bump allocation

Now that we can get blocks of raw memory, we need to write objects into it. The simplest

way to do this is to write objects into a block one after the other in consecutive order. This

is bump allocation - we have a pointer, the bump pointer, which points at the space in the

block after the last object that was written. When the next object is written, the bump

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

9 of 123 10/26/23, 19:01

https://rust-hosted-langs.github.io/book/print.html#conservative-marking
https://rust-hosted-langs.github.io/book/print.html#conservative-marking
https://rust-hosted-langs.github.io/book/print.html#collection
https://rust-hosted-langs.github.io/book/print.html#collection
http://www.cs.utexas.edu/users/speedway/DaCapo/papers/immix-pldi-2008.pdf
http://www.cs.utexas.edu/users/speedway/DaCapo/papers/immix-pldi-2008.pdf
http://www.cs.utexas.edu/users/speedway/DaCapo/papers/immix-pldi-2008.pdf
http://www.cs.utexas.edu/users/speedway/DaCapo/papers/immix-pldi-2008.pdf
https://rust-hosted-langs.github.io/book/print.html#about-this-part-of-the-book
https://rust-hosted-langs.github.io/book/print.html#about-this-part-of-the-book
https://rust-hosted-langs.github.io/book/print.html#bump-allocation
https://rust-hosted-langs.github.io/book/print.html#bump-allocation

pointer is incremented to point to the space after that object.

In a twist of mathematical convenience, though, it is more efficient to bump allocate from

a high memory location downwards. We will do that.

We will used a fixed power-of-two block size. The benefit of this is that given a pointer to

an object, by zeroing the bits of the pointer that represent the block size, the result points

to the beginning of the block. This will be useful later when implementing garbage

collection.

Our block size will be 32k, a reasonably optimal size arrived at in the original Immix

paper. This size can be any power of two though and different use cases may show

different optimal sizes.

Now we'll define a struct that wraps the block with a bump pointer and garbage collection

metadata:

Bump allocation basics

In this struct definition, there are two members that we are interested in to begin with.

The other two, limit and meta , will be discussed in the next section.

• cursor : this is the bump pointer. In our implementation it is the index into the

block where the last object was written.

• block : this is the Block itself in which objects will be written.

Below is a start to a bump allocation function:

pub const BLOCK_SIZE_BITS: usize = 15;
pub const BLOCK_SIZE: usize = 1 << BLOCK_SIZE_BITS;

pub struct BumpBlock {
 cursor: *const u8,
 limit: *const u8,
 block: Block,
 meta: BlockMeta,
}

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

10 of 123 10/26/23, 19:01

https://fitzgeraldnick.com/2019/11/01/always-bump-downwards.html
https://fitzgeraldnick.com/2019/11/01/always-bump-downwards.html
http://www.cs.utexas.edu/users/speedway/DaCapo/papers/immix-pldi-2008.pdf
http://www.cs.utexas.edu/users/speedway/DaCapo/papers/immix-pldi-2008.pdf
http://www.cs.utexas.edu/users/speedway/DaCapo/papers/immix-pldi-2008.pdf
http://www.cs.utexas.edu/users/speedway/DaCapo/papers/immix-pldi-2008.pdf
https://rust-hosted-langs.github.io/book/print.html#bump-allocation-basics
https://rust-hosted-langs.github.io/book/print.html#bump-allocation-basics

In our function, the alloc_size parameter should be a number of bytes of memory

requested.

The value of alloc_size may produce an unaligned pointer at which to write the object.

Fortunately, by bump allocating downward we can apply a simple mask to the pointer to

align it down to the nearest word:

In initial implementation, allocation will simply return None if the block does not have

enough capacity for the requested alloc_size . If there is space, it will be returned as a

Some(*const u8) pointer.

Note that this function does not write the object to memory, it merely returns a pointer to

an available space. Writing the object will require invoking the std::ptr::write function.

We will do that in a separate module but for completeness of this chapter, this might look

something like:

Some time passes...

impl BumpBlock {
pub fn inner_alloc(&mut self, alloc_size: usize) -> Option<*const u8> {

let block_start_ptr = self.block.as_ptr() as usize;
let cursor_ptr = self.cursor as usize;

// align to word boundary
let align_mask = usize = !(size_of::<usize>() - 1);

let next_ptr = cursor_ptr.checked_sub(alloc_size)? & align_mask;

if next_ptr < block_start_ptr {
// allocation would start lower than block beginning, which means
// there isn't space in the block for this allocation
None

 } else {
self.cursor = next_ptr as *const u8;
Some(next_ptr)

 }
 }
}

let align_mask = usize = !(size_of::<usize>() - 1);

use std::ptr::write;

unsafe fn write<T>(dest: *const u8, object: T) {
 write(dest as *mut T, object);
}

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

11 of 123 10/26/23, 19:01

https://rust-hosted-langs.github.io/book/print.html#some-time-passes
https://rust-hosted-langs.github.io/book/print.html#some-time-passes

After allocating and freeing objects, we will have gaps between objects in a block that can

be reused. The above bump allocation algorithm is unaware of these gaps so we'll have

to modify it before it can allocate into fragmented blocks.

To recap, in Immix, a block is divided into lines and only whole lines are considered for

reuse. When objects are marked as live, so are the lines that an object occupies.

Therefore, only lines that are not marked as live are usable for allocation into. Even if a

line is only partially allocated into, it is not a candidate for further allocation.

In our implementation we will use the high bytes of the Block to represent these line

mark bits, where each line is represented by a single byte.

We'll need a data structure to represent this. we'll call it BlockMeta , but first some

constants that we need in order to know

• how big a line is

• how many lines are in a block

• how many bytes remain in the Block for allocating into

For clarity, let's put some numbers to the definitions we've made so far:

• A block size is 32Kbytes

• A line is 128 bytes long

• The number of lines within a 32Kbyte Block is 256

Therefore the top 256 bytes of a Block are used for line mark bits. Since these line mark

bits do not need to be marked themselves, the last two bytes of the Block are not needed

to mark lines.

This leaves one last thing to mark: the entire Block . If any line in the Block is marked,

then the Block is considered to be live and must be marked as such.

We use the final byte of the Block to store the Block mark bit.

The definition of BumpBlock contains member meta which is of type BlockMeta . We can

now introduce the definition of BlockMeta which we simply need to represent a pointer

to the line mark section at the end of the Block :

pub const LINE_SIZE_BITS: usize = 7;
pub const LINE_SIZE: usize = 1 << LINE_SIZE_BITS;

// How many total lines are in a block
pub const LINE_COUNT: usize = BLOCK_SIZE / LINE_SIZE;

// We need LINE_COUNT number of bytes for marking lines, so the capacity of a
block
// is reduced by that number of bytes.
pub const BLOCK_CAPACITY: usize = BLOCK_SIZE - LINE_COUNT;

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

12 of 123 10/26/23, 19:01

This pointer could be easily calculated, of course, so this is just a handy shortcut.

Allocating into a fragmented Block

The struct BlockMeta contains one function we will study:

pub struct BlockMeta {
 lines: *mut u8,
}

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

13 of 123 10/26/23, 19:01

https://rust-hosted-langs.github.io/book/print.html#allocating-into-a-fragmented-block
https://rust-hosted-langs.github.io/book/print.html#allocating-into-a-fragmented-block

The purpose of this function is to locate a gap of unmarked lines of sufficient size to

allocate an object of size alloc_size into.

The input to this function, starting_at , is the offset into the block to start looking for a

/// When it comes to finding allocatable holes, we bump-allocate
downward.

pub fn find_next_available_hole(
 &self,
 starting_at: usize,
 alloc_size: usize,
) -> Option<(usize, usize)> {

// The count of consecutive avaliable holes. Must take into account a
conservatively marked

// hole at the beginning of the sequence.
let mut count = 0;
let starting_line = starting_at / constants::LINE_SIZE;
let lines_required = (alloc_size + constants::LINE_SIZE - 1) /

constants::LINE_SIZE;
// Counting down from the given search start index
let mut end = starting_line;

for index in (0..starting_line).rev() {
let marked = unsafe { *self.lines.add(index) };

if marked == 0 {
// count unmarked lines

 count += 1;

if index == 0 && count >= lines_required {
let limit = index * constants::LINE_SIZE;
let cursor = end * constants::LINE_SIZE;
return Some((cursor, limit));

 }
 } else {

// This block is marked
if count > lines_required {

// But at least 2 previous blocks were not marked. Return
the hole, considering the

// immediately preceding block as conservatively marked
let limit = (index + 2) * constants::LINE_SIZE;
let cursor = end * constants::LINE_SIZE;
return Some((cursor, limit));

 }

// If this line is marked and we didn't return a new
cursor/limit pair by now,

// reset the hole search state
 count = 0;
 end = index;
 }
 }

None
 }

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

14 of 123 10/26/23, 19:01

hole.

If no suitable hole is found, the return value is None .

If there are unmarked lines lower in memory than the starting_at point (bump

allocating downwards), the return value will be a pair of numbers: (cursor, limit)

where:

• cursor will be the new bump pointer value

• limit will be the lower bound of the available hole.

A deeper dive

Our first variable is a counter of consecutive available lines. This count will always assume

that the first line in the sequence is conservatively marked and won't count toward the

total, unless it is line 0.

Next, the starting_at and alloc_size arguments have units of bytes but we want to

use line count math, so conversion must be done.

Our final variable will be the end line that, together with starting_line , will mark the

boundary of the hole we hope to find.

Now for the loop that identifies holes and ends the function if either:

• a large enough hole is found

• no suitable hole is found

We iterate over lines in decreasing order from starting_line down to line zero and

fetch the mark bit into variable marked .

If the line is unmarked, we increment our consecutive-unmarked-lines counter.

Then we reach the first termination condition: we reached line zero and we have a large

enough hole for our object. The hole extents can be returned, converting back to byte

offsets.

let mut count = 0;

let starting_line = starting_at / constants::LINE_SIZE;
let lines_required = (alloc_size + constants::LINE_SIZE - 1) /

constants::LINE_SIZE;

let mut end = starting_line;

for index in (0..starting_line).rev() {
let marked = unsafe { *self.lines.add(index) };

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

15 of 123 10/26/23, 19:01

https://rust-hosted-langs.github.io/book/print.html#a-deeper-dive
https://rust-hosted-langs.github.io/book/print.html#a-deeper-dive

Otherwise if the line is marked, we've reached the end of the current hole (if we were

even over one.)

Here, we have the second possible termination condition: we have a large enough hole

for our object. The hole extents can be returned, taking the last line as conservatively

marked.

This is seen in adding 2 to index :

• 1 for walking back from the current marked line

• plus 1 for walking back from the previous conservatively marked line

If this condition isn't met, our search is reset - count is back to zero and we keep

iterating.

Finally, if iterating over lines reached line zero without finding a hole, we return None to

indicate failure.

Making use of the hole finder

We'll return to the BumpBlock::inner_alloc() function now to make use of BlockMeta

and its hole finding operation.

if marked == 0 {
 count += 1;

if index == 0 && count >= lines_required {
let limit = index * constants::LINE_SIZE;
let cursor = end * constants::LINE_SIZE;
return Some((cursor, limit));

 }
 } else {

 } else {
if count > lines_required {

let limit = (index + 2) * constants::LINE_SIZE;
let cursor = end * constants::LINE_SIZE;
return Some((cursor, limit));

 }

 count = 0;
 end = index;
 }

 }

None
 }

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

16 of 123 10/26/23, 19:01

https://rust-hosted-langs.github.io/book/print.html#making-use-of-the-hole-finder
https://rust-hosted-langs.github.io/book/print.html#making-use-of-the-hole-finder

The BumpBlock struct contains two more members: limit and meta . These should now

be obvious - limit is the known byte offset limit into which we can allocate, and meta is

the BlockMeta instance associated with the block.

We need to update inner_alloc() with a new condition:

• the size being requested must fit between self.cursor and self.limit

(Note that for a fresh, new block, self.limit is set to the block size.)

If the above condition is not met, we will call BlockMeta::find_next_available_hole()

to get a new cursor and limit to try, and repeat that until we've either found a big

enough hole or reached the end of the block, exhausting our options.

The new definition of BumpBlock::inner_alloc() reads as follows:

and as you can see, this implementation is recursive.

Wrapping this up

pub fn inner_alloc(&mut self, alloc_size: usize) -> Option<*const u8> {
let ptr = self.cursor as usize;
let limit = self.limit as usize;

let next_ptr = ptr.checked_sub(alloc_size)? &
constants::ALLOC_ALIGN_MASK;

if next_ptr < limit {
let block_relative_limit =

unsafe { self.limit.sub(self.block.as_ptr() as usize) } as
usize;

if block_relative_limit > 0 {
if let Some((cursor, limit)) = self

 .meta
 .find_next_available_hole(block_relative_limit,
alloc_size)
 {

self.cursor = unsafe { self.block.as_ptr().add(cursor) };
self.limit = unsafe { self.block.as_ptr().add(limit) };
return self.inner_alloc(alloc_size);

 }
 }

None
 } else {

self.cursor = next_ptr as *const u8;
Some(self.cursor)

 }
 }

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

17 of 123 10/26/23, 19:01

https://rust-hosted-langs.github.io/book/print.html#wrapping-this-up
https://rust-hosted-langs.github.io/book/print.html#wrapping-this-up

At the beginning of this chapter we stated that given a pointer to an object, by zeroing the

bits of the pointer that represent the block size, the result points to the beginning of the

block.

We'll make use of that now.

During the mark phase of garbage collection, we will need to know which line or lines to

mark, in addition to marking the object itself. We will make a copy of the BlockMeta

instance pointer in the 0th word of the memory block so that given any object pointer, we

can obtain the BlockMeta instance.

In the next chapter we'll handle multiple BumpBlock s so that we can keep allocating

objects after one block is full.

Allocating into Multiple Blocks

Let's now zoom out of the fractal code soup one level and begin arranging multiple blocks

so we can allocate - in theory - indefinitely.

Lists of blocks

We'll need a new struct for wrapping multiple blocks:

Immix maintains several lists of blocks. We won't include them all in the first iteration but

in short they are:

• free : a list of blocks that contain no objects. These blocks are held at the ready to

allocate into on demand

• recycle : a list of blocks that contain some objects but also at least one line that can

be allocated into

• large : not a list of blocks, necessarily, but a list of objects larger than the block size,

or some other method of accounting for large objects

• rest : the rest of the blocks that have been allocated into but are not suitable for

recycling

In our first iteration we'll only keep the rest list of blocks and two blocks to immediately

allocate into. Why two? To understand why, we need to understand how Immix thinks

struct BlockList {
 head: Option<BumpBlock>,
 overflow: Option<BumpBlock>,
 rest: Vec<BumpBlock>,
}

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

18 of 123 10/26/23, 19:01

https://rust-hosted-langs.github.io/book/print.html#allocating-into-multiple-blocks
https://rust-hosted-langs.github.io/book/print.html#allocating-into-multiple-blocks
https://rust-hosted-langs.github.io/book/print.html#lists-of-blocks
https://rust-hosted-langs.github.io/book/print.html#lists-of-blocks

about object sizes.

Immix and object sizes

We've seen that there are two numbers that define granularity in Immix: the block size

and the line size. These numbers give us the ability to categorize object sizes:

• small: those that (with object header and alignment overhead) fit inside a line

• medium: those that (again with object header and alignment overhead) are larger

than one line but smaller than a block

• large: those that are larger than a block

In the previous chapter we described the basic allocation algorithm: when an object is

being allocated, the current block is scanned for a hole between marked lines large

enough to allocate into. This does seem like it could be inefficient. We could spend a lot of

CPU cycles looking for a big enough hole, especially for a medium sized object.

To avoid this, Immix maintains a second block, an overflow block, to allocate medium

objects into that don't fit the first available hole in the main block being allocated into.

Thus two blocks to immediately allocate into:

• head : the current block being allocated into

• overflow : a block kept handy for writing medium objects into that don't fit the

head block's current hole

We'll be ignoring large objects for now and attending only to allocating small and medium

objects into blocks.

Instead of recycling blocks with holes, or maintaining a list of pre-allocated free blocks,

we'll allocate a new block on demand whenever we need more space. We'll get to

identifying holes and recyclable blocks in a later chapter.

Managing the overflow block

Generally in our code for this book, we will try to default to not allocating memory unless

it is needed. For example, when an array is instantiated, the backing storage will remain

unallocated until a value is pushed on to it.

Thus in the definition of BlockList , head and overflow are Option types and won't be

instantiated except on demand.

For allocating into the overflow block we'll define a function in the BlockList impl:

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

19 of 123 10/26/23, 19:01

https://rust-hosted-langs.github.io/book/print.html#immix-and-object-sizes
https://rust-hosted-langs.github.io/book/print.html#immix-and-object-sizes
https://rust-hosted-langs.github.io/book/print.html#managing-the-overflow-block
https://rust-hosted-langs.github.io/book/print.html#managing-the-overflow-block

The input constraint is that, since overflow is for medium objects, alloc_size must be

less than the block size.

The logic inside will divide into three branches:

1. We haven't got an overflow block yet - self.overflow is None . In this case we have

to instantiate a new block (since we're not maintaining a list of preinstantiated free

blocks yet) and then, since that block is empty and we have a medium sized object,

we can expect the allocation to succeed.

2. We have an overflow block and the object fits. Easy.

impl BlockList {
fn overflow_alloc(&mut self, alloc_size: usize) -> Result<*const u8,

AllocError> {
 ...
 }
}

match self.overflow {

Some ...,

None => {

let mut overflow = BumpBlock::new()?;

// object size < block size means we can't fail this expect

let space = overflow

 .inner_alloc(alloc_size)

 .expect("We expected this object to fit!");

self.overflow = Some(overflow);

 space

 }

 }

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

20 of 123 10/26/23, 19:01

3. We have an overflow block but the object does not fit. Now we simply instantiate a

new overflow block, adding the old one to the rest list (in future it will make a good

candidate for recycing!). Again, since we're writing a medium object into a block, we

can expect allocation to succeed.

In this logic, the only error can come from failing to create a new block.

On success, at this level of interface we continue to return a *const u8 pointer to the

available space as we're not yet handling the type of the object being allocated.

match self.overflow {

// We already have an overflow block to try to use...

Some(ref mut overflow) => {

// This is a medium object that might fit in the current

block...

match overflow.inner_alloc(alloc_size) {

// the block has a suitable hole

Some(space) => space,

 ...

 }

 },

None => ...

 }

match self.overflow {

// We already have an overflow block to try to use...

Some(ref mut overflow) => {

// This is a medium object that might fit in the current

block...

match overflow.inner_alloc(alloc_size) {

Some ...,

// the block does not have a suitable hole

None => {

let previous = replace(overflow, BumpBlock::new()?);

self.rest.push(previous);

 overflow.inner_alloc(alloc_size).expect("Unexpected

error!")

 }

 }

 },

None => ...

 }

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

21 of 123 10/26/23, 19:01

You may have noticed that the function signature for overflow_alloc takes a &mut

self . This isn't compatible with the interior mutability model of allocation. We'll have to

wrap the BlockList struct in another struct that handles this change of API model.

The heap struct

This outer struct will provide the external crate interface and some further

implementation of block management.

The crate interface will require us to consider object headers and so in the struct

definition below there is reference to a generic type H that the user of the heap will

define as the object header.

Since object headers are not owned directly by the heap struct, we need a PhantomData

instance to associate with H . We'll discuss object headers in a later chapter.

Now let's focus on the use of the BlockList .

The instance of BlockList in the StickyImmixHeap struct is wrapped in an UnsafeCell

because we need interior mutability. We need to be able to borrow the BlockList

mutably while presenting an immutable interface to the outside world. Since we won't be

borrowing the BlockList in multiple places in the same call tree, we don't need RefCell

and we can avoid it's runtime borrow checking.

Allocating into the head block

We've already taken care of the overflow block, now we'll handle allocation into the head

block. We'll define a new function:

pub struct StickyImmixHeap<H> {
 blocks: UnsafeCell<BlockList>,

 _header_type: PhantomData<*const H>,
}

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

22 of 123 10/26/23, 19:01

https://rust-hosted-langs.github.io/book/print.html#the-heap-struct
https://rust-hosted-langs.github.io/book/print.html#the-heap-struct
https://rust-hosted-langs.github.io/book/print.html#allocating-into-the-head-block
https://rust-hosted-langs.github.io/book/print.html#allocating-into-the-head-block

This function is going to look almost identical to the alloc_overflow() function defined

earlier. It has more or less the same cases to walk through:

1. head block is None , i.e. we haven't allocated a head block yet. Allocate one and

write the object into it.

2. We have Some(ref mut head) in head . At this point we divert from the

alloc_overflow() function and query the size of the object - if this is is a medium

object and the current hole between marked lines in the head block is too small,

call into alloc_overflow() and return.

Otherwise, continue to allocate into head and return.

3. We have Some(ref mut head) in head but this block is unable to accommodate the

object, whether medium or small. We must append the current head to the rest

list and create a new BumpBlock to allocate into.

There is one more thing to mention. What about large objects? We'll cover those in a later

chapter. Right now we'll make it an error to try to allocate a large object by putting this at

the beginning of the StickyImmixHeap::inner_alloc() function:

Where to next?

We have a scheme for finding space in blocks for small and medium objects and so, in the

next chapter we will define the external interface to the crate.

impl StickyImmixHeap {
fn find_space(

 &self,
 alloc_size: usize,
 size_class: SizeClass,
) -> Result<*const u8, AllocError> {

let blocks = unsafe { &mut *self.blocks.get() };
 ...
 }
}

if size_class == SizeClass::Medium && alloc_size >

head.current_hole_size() {

return blocks.overflow_alloc(alloc_size);

 }

if size_class == SizeClass::Large {
return Err(AllocError::BadRequest);

 }

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

23 of 123 10/26/23, 19:01

https://rust-hosted-langs.github.io/book/print.html#where-to-next
https://rust-hosted-langs.github.io/book/print.html#where-to-next

Defining the allocation API

Let's look back at the allocator prototype API we defined in the introductory chapter.

This will quickly prove to be inadequate and non-idiomatic. For starters, there is no way to

report that allocation failed except for perhaps returning a null pointer. That is certainly a

workable solution but is not going to feel idiomatic or ergonomic for how we want to use

the API. Let's make a couple changes:

Now we're returning a Result , the failure side of which is an error type where we can

distinguish between different allocation failure modes. This is often not that useful but

working with Result is far more idiomatic Rust than checking a pointer for being null.

We'll allow for distinguishing between Out Of Memory and an allocation request that for

whatever reason is invalid.

The second change is that instead of a *const T value in the success discriminant we'll

wrap a pointer in a new struct: RawPtr<T> . This wrapper will amount to little more than

containing a std::ptr::NonNull instance and some functions to access the pointer.

This'll be better to work with on the user-of-the-crate side.

It'll also make it easier to modify internals or even swap out entire implementations. This

is a motivating factor for the design of this interface as we'll see as we continue to amend

it to account for object headers now.

trait AllocRaw {
fn alloc<T>(&self, object: T) -> *const T;

}

trait AllocRaw {
fn alloc<T>(&self, object: T) -> Result<RawPtr<T>, AllocError>;

}

#[derive(Copy, Clone, Debug, PartialEq)]
pub enum AllocError {

/// Some attribute of the allocation, most likely the size requested,
/// could not be fulfilled

 BadRequest,
/// Out of memory - allocating the space failed

 OOM,
}

pub struct RawPtr<T: Sized> {
 ptr: NonNull<T>,
}

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

24 of 123 10/26/23, 19:01

https://rust-hosted-langs.github.io/book/print.html#defining-the-allocation-api
https://rust-hosted-langs.github.io/book/print.html#defining-the-allocation-api

Object headers

The purpose of an object header is to provide the allocator, the language runtime and the

garbage collector with information about the object that is needed at runtime. Typical

data points that are stored might include:

• object size

• some kind of type identifier

• garbage collection information such as a mark flag

We want to create a flexible interface to a language while also ensuring that the

interpreter will provide the information that the allocator and garbage collector in this

crate need.

We'll define a trait for the user to implement.

Now we have a bunch more questions to answer! Some of these trait methods are

straightforward - fn size(&self) -> u32 returns the object size; mark() and

is_marked() must be GC related. Some are less obvious, such as new_array() which

we'll cover at the end of this chapter.

But this struct references some more types that must be defined and explained.

pub trait AllocHeader: Sized {
/// Associated type that identifies the allocated object type
type TypeId: AllocTypeId;

/// Create a new header for object type O
fn new<O: AllocObject<Self::TypeId>>(size: u32, size_class: SizeClass,

mark: Mark) -> Self;

/// Create a new header for an array type
fn new_array(size: ArraySize, size_class: SizeClass, mark: Mark) -> Self;

/// Set the Mark value to "marked"
fn mark(&mut self);

/// Get the current Mark value
fn is_marked(&self) -> bool;

/// Get the size class of the object
fn size_class(&self) -> SizeClass;

/// Get the size of the object in bytes
fn size(&self) -> u32;

/// Get the type of the object
fn type_id(&self) -> Self::TypeId;

}

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

25 of 123 10/26/23, 19:01

https://rust-hosted-langs.github.io/book/print.html#object-headers
https://rust-hosted-langs.github.io/book/print.html#object-headers

Type identification

What follows is a set of design trade-offs made for the purposes of this book; there are

many ways this could be implemented.

The types described next are all about sharing compile-time and runtime object type

information between the allocator, the GC and the interpreter.

We ideally want to make it difficult for the user to make mistakes with this and leak

undefined behavior. We would also prefer this to be a safe-Rust interface, while at the

same time being flexible enough for the user to make interpreter-appropriate decisions

about the header design.

First up, an object header implementation must define an associated type

where AllocTypeId is define simply as:

This means the interpreter is free to implement a type identifier type however it pleases,

the only constraint is that it implements this trait.

Next, the definition of the header constructor,

refers to a type O that must implement AllocObject which in turn must refer to the

common AllocTypeId . The generic type O is the object for which the header is being

instantiated for.

And what is AllocObject ? Simply:

pub trait AllocHeader: Sized {
type TypeId: AllocTypeId;

}

pub trait AllocTypeId: Copy + Clone {}

pub trait AllocHeader: Sized {
 ...

fn new<O: AllocObject<Self::TypeId>>(
 size: u32,
 size_class: SizeClass,
 mark: Mark
) -> Self;

 ...
}

pub trait AllocObject<T: AllocTypeId> {
const TYPE_ID: T;

}

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

26 of 123 10/26/23, 19:01

https://rust-hosted-langs.github.io/book/print.html#type-identification
https://rust-hosted-langs.github.io/book/print.html#type-identification

In summary, we have:

• AllocHeader : a trait that the header type must implement

• AllocTypeId : a trait that a type identifier must implement

• AllocObject : a trait that objects that can be allocated must implement

An example

Let's implement a couple of traits to make it more concrete.

The simplest form of type identifier is an enum. Each discriminant describes a type that

the interpreter will use at runtime.

A hypothetical numeric type for our interpreter with the type identifier as associated

constant:

And finally, here is a possible object header struct and the implementation of

AllocHeader::new() :

#[derive(PartialEq, Copy, Clone)]
enum MyTypeId {
 Number,

String,
 Array,
}

impl AllocTypeId for MyTypeId {}

struct BigNumber {
 value: i64
}

impl AllocObject<MyTypeId> for BigNumber {
const TYPE_ID: MyTypeId = MyTypeId::Number;

}

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

27 of 123 10/26/23, 19:01

https://rust-hosted-langs.github.io/book/print.html#an-example
https://rust-hosted-langs.github.io/book/print.html#an-example

These would all be defined and implemented in the interpreter and are not provided by

the Sticky Immix crate, while all the functions in the trait AllocHeader are intended to be

called internally by the allocator itself, not on the interpreter side.

The types SizeClass and Mark are provided by this crate and are enums.

The one drawback to this scheme is that it's possible to associate an incorrect type id

constant with an object. This would result in objects being misidentified at runtime and

accessed incorrectly, likely leading to panics.

Fortunately, this kind of trait implementation boilerplate is ideal for derive macros. Since

the language side will be implementing these structs and traits, we'll defer until the

relevant interpreter chapter to go over that.

Back to AllocRaw

Now that we have some object and header definitions and constraints, we need to apply

them to the AllocRaw API. We can't allocate an object unless it implements AllocObject

and has an associated constant that implements AllocTypeId . We also need to expand

the interface with functions that the interpreter can use to reliably get the header for an

object and the object for a header.

struct MyHeader {
 size: u32,
 size_class: SizeClass,
 mark: Mark,
 type_id: MyTypeId,
}

impl AllocHeader for MyHeader {
type TypeId = MyTypeId;

fn new<O: AllocObject<Self::TypeId>>(
 size: u32,
 size_class: SizeClass,
 mark: Mark
) -> Self {
 MyHeader {
 size,
 size_class,
 mark,
 type_id: O::TYPE_ID,
 }
 }

 ...
}

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

28 of 123 10/26/23, 19:01

https://rust-hosted-langs.github.io/book/print.html#back-to-allocraw
https://rust-hosted-langs.github.io/book/print.html#back-to-allocraw

We will add an associated type to tie the allocator API to the header type and indirectly to

the type identification that will be used.

Then we can update the alloc() function definition to constrain the types that can be

allocated to only those that implement the appropriate traits.

We need the user and the garbage collector to be able to access the header, so we need a

function that will return the header given an object pointer.

The garbage collector does not know about concrete types, it will need to be able to get

the header without knowing the object type. It's likely that the interpreter will, at times,

also not know the type at runtime.

Indeed, one of the functions of an object header is to, at runtime, given an object pointer,

derive the type of the object.

The function signature therefore cannot refer to the type. That is, we can't write

even though it seems this would be good and right. Instead this function will have to be

much simpler:

pub trait AllocRaw {

type Header: AllocHeader;

 ...
}

pub trait AllocRaw {
 ...

fn alloc<T>(&self, object: T) -> Result<RawPtr<T>, AllocError>
where

 T: AllocObject<<Self::Header as AllocHeader>::TypeId>;

 ...
}

pub trait AllocRaw {
 ...

// looks good but won't work in all cases
fn get_header<T>(object: RawPtr<T>) -> NonNull<Self::Header>
where

 T: AllocObject<<Self::Header as AllocHeader>::TypeId>;

 ...
}

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

29 of 123 10/26/23, 19:01

We also need a function to get the object from the header:

These functions are not unsafe but they do return NonNull which implies that

dereferencing the result should be considered unsafe - there is no protection against

passing in garbage and getting garbage out.

Now we have an object allocation function, traits that constrain what can be allocated,

allocation header definitions and functions for switching between an object and it's

header.

There's one missing piece: we can allocate objects of type T , but such objects always

have compile-time defined size. T is constrained to Sized types in the RawPtr

definition. So how do we allocate dynamically sized objects, such as arrays?

Dynamically sized types

Since we can allocate objects of type T , and each T must derive AllocObject and have

an associated const of type AllocTypeId , dynamically sized allocations must fit into this

type identification scheme.

Allocating dynamically sized types, or in short, arrays, means there's some ambiguity

about the type at compile time as far as the allocator is concerned:

• Are we allocating one object or an array of objects? If we're allocating an array of

objects, we'll have to initialize them all. Perhaps we don't want to impose that

overhead up front?

• If the allocator knows how many objects compose an array, do we want to bake fat

pointers into the interface to carry that number around?

In the same way, then, that the underlying implementation of std::vec::Vec is backed

pub trait AllocRaw {
 ...

fn get_header(object: NonNull<()>) -> NonNull<Self::Header>;

 ...
}

pub trait AllocRaw {
 ...

fn get_object(header: NonNull<Self::Header>) -> NonNull<()>;

 ...
}

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

30 of 123 10/26/23, 19:01

https://rust-hosted-langs.github.io/book/print.html#dynamically-sized-types
https://rust-hosted-langs.github.io/book/print.html#dynamically-sized-types

by an array of u8 , we'll do the same. We shall define the return type of an array

allocation to be of type RawPtr<u8> and the size requested to be in bytes. We'll leave it to

the interpreter to build layers on top of this to handle the above questions.

As the definition of AllocTypeId is up to the interpreter, this crate can't know the type id

of an array. Instead, we will require the interpreter to implement a function on the

AllocHeader trait:

This function should return a new object header for an array of u8 with the appropriate

type identifier.

We will also add a function to the AllocRaw trait for allocating arrays that returns the

RawPtr<u8> type.

Our complete AllocRaw trait definition now looks like this:

pub trait AllocHeader: Sized {
 ...

fn new_array(size: ArraySize, size_class: SizeClass, mark: Mark) -> Self;

 ...
}

pub trait AllocRaw {
 ...

fn alloc_array(&self, size_bytes: ArraySize) -> Result<RawPtr<u8>,
AllocError>;

 ...
}

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

31 of 123 10/26/23, 19:01

In the next chapter we'll build out the AllocRaw trait implementation.

Implementing the Allocation API

In this final chapter of the allocation part of the book, we'll cover the AllocRaw trait

implementation.

This trait is implemented on the StickyImmixHeap struct:

Here the associated header type is provided as the generic type H , leaving it up to the

interpreter to define.

Allocating objects

pub trait AllocRaw {
/// An implementation of an object header type
type Header: AllocHeader;

/// Allocate a single object of type T.
fn alloc<T>(&self, object: T) -> Result<RawPtr<T>, AllocError>
where

 T: AllocObject<<Self::Header as AllocHeader>::TypeId>;

/// Allocating an array allows the client to put anything in the
resulting data

/// block but the type of the memory block will simply be 'Array'. No
other

/// type information will be stored in the object header.
/// This is just a special case of alloc<T>() for T=u8 but a count > 1 of

u8
/// instances. The caller is responsible for the content of the array.
fn alloc_array(&self, size_bytes: ArraySize) -> Result<RawPtr<u8>,

AllocError>;

/// Given a bare pointer to an object, return the expected header address
fn get_header(object: NonNull<()>) -> NonNull<Self::Header>;

/// Given a bare pointer to an object's header, return the expected
object address

fn get_object(header: NonNull<Self::Header>) -> NonNull<()>;
}

impl<H: AllocHeader> AllocRaw for StickyImmixHeap<H> {
type Header = H;

 ...
}

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

32 of 123 10/26/23, 19:01

https://rust-hosted-langs.github.io/book/print.html#implementing-the-allocation-api
https://rust-hosted-langs.github.io/book/print.html#implementing-the-allocation-api
https://rust-hosted-langs.github.io/book/print.html#allocating-objects
https://rust-hosted-langs.github.io/book/print.html#allocating-objects

The first function to implement is AllocRaw::alloc<T>() . This function must:

• calculate how much space in bytes is required by the object and header

• allocate that space

• instantiate an object header and write it to the first bytes of the space

• copy the object itself to the remaining bytes of the space

• return a pointer to where the object lives in this space

Let's look at the implementation.

This, hopefully, is easy enough to follow after the previous chapters -

impl<H: AllocHeader> AllocRaw for StickyImmixHeap<H> {
fn alloc<T>(&self, object: T) -> Result<RawPtr<T>, AllocError>
where

 T: AllocObject<<Self::Header as AllocHeader>::TypeId>,
 {

// calculate the total size of the object and it's header
let header_size = size_of::<Self::Header>();
let object_size = size_of::<T>();
let total_size = header_size + object_size;

// round the size to the next word boundary to keep objects aligned
and get the size class

// TODO BUG? should this be done separately for header and object?
// If the base allocation address is where the header gets placed,

perhaps
// this breaks the double-word alignment object alignment desire?
let alloc_size = alloc_size_of(total_size);
let size_class = SizeClass::get_for_size(alloc_size)?;

// attempt to allocate enough space for the header and the object
let space = self.find_space(alloc_size, size_class)?;

// instantiate an object header for type T, setting the mark bit to
"allocated"

let header = Self::Header::new::<T>(object_size as ArraySize,
size_class, Mark::Allocated);

// write the header into the front of the allocated space
unsafe {

 write(space as *mut Self::Header, header);
 }

// write the object into the allocated space after the header
let object_space = unsafe { space.offset(header_size as isize) };
unsafe {

 write(object_space as *mut T, object);
 }

// return a pointer to the object in the allocated space
Ok(RawPtr::new(object_space as *const T))

 }
}

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

33 of 123 10/26/23, 19:01

• self.find_space() is the function described in the chapter Allocating into multiple

blocks

• Self::Header::new() will be implemented by the interpreter

• write(space as *mut Self::Header, header) calls the std function

std::ptr::write

Allocating arrays

We need a similar (but awkwardly different enough) implementation for array allocation.

The key differences are that the type is fixed to a u8 pointer and the array is initialized to

zero bytes. It is up to the interpreter to write into the array itself.

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

34 of 123 10/26/23, 19:01

https://rust-hosted-langs.github.io/book/chapter-managing-blocks.html#allocating-into-the-head-block
https://rust-hosted-langs.github.io/book/chapter-managing-blocks.html#allocating-into-the-head-block
https://rust-hosted-langs.github.io/book/chapter-managing-blocks.html#allocating-into-the-head-block
https://rust-hosted-langs.github.io/book/chapter-managing-blocks.html#allocating-into-the-head-block
https://rust-hosted-langs.github.io/book/print.html#allocating-arrays
https://rust-hosted-langs.github.io/book/print.html#allocating-arrays

Switching between header and object

As stated in the previous chapter, these functions are essentially pointer operations that

do not dereference the pointers. Thus they are not unsafe to call, but the types they

operate on should have a suitably unsafe API.

NonNull is the chosen parameter and return type and the pointer arithmetic for

impl<H: AllocHeader> AllocRaw for StickyImmixHeap<H> {
fn alloc_array(&self, size_bytes: ArraySize) -> Result<RawPtr<u8>,

AllocError> {
// calculate the total size of the array and it's header
let header_size = size_of::<Self::Header>();
let total_size = header_size + size_bytes as usize;

// round the size to the next word boundary to keep objects aligned
and get the size class

let alloc_size = alloc_size_of(total_size);
let size_class = SizeClass::get_for_size(alloc_size)?;

// attempt to allocate enough space for the header and the array
let space = self.find_space(alloc_size, size_class)?;

// instantiate an object header for an array, setting the mark bit to
"allocated"

let header = Self::Header::new_array(size_bytes, size_class,
Mark::Allocated);

// write the header into the front of the allocated space
unsafe {

 write(space as *mut Self::Header, header);
 }

// calculate where the array will begin after the header
let array_space = unsafe { space.offset(header_size as isize) };

// Initialize object_space to zero here.
// If using the system allocator for any objects (SizeClass::Large,

for example),
// the memory may already be zeroed.
let array = unsafe { from_raw_parts_mut(array_space as *mut u8,

size_bytes as usize) };
// The compiler should recognize this as optimizable
for byte in array {

 *byte = 0;
 }

// return a pointer to the array in the allocated space
Ok(RawPtr::new(array_space as *const u8))

 }
}

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

35 of 123 10/26/23, 19:01

https://rust-hosted-langs.github.io/book/print.html#switching-between-header-and-object
https://rust-hosted-langs.github.io/book/print.html#switching-between-header-and-object

obtaining the header from an object pointer of unknown type is shown below.

For our Immix implementation, since headers are placed immediately ahead of an object,

we simply subtract the header size from the object pointer.

Getting the object from a header is the reverse - adding the header size to the header

pointer results in the object pointer:

Conclusion

Thus ends the first part of our Immix implementation. In the next part of the book we will

jump over the fence to the interpreter and begin using the interfaces we've defined in this

part.

An interpreter: Eval-rs

In this part of the book we'll dive into creating:

• a safe Rust layer on top of the Sticky Immix API of the previous part

• a compiler for a primitive s-expression syntax language

• a bytecode based virtual machine

So what kind of interpreter will we implement? This book is a guide to help you along

your own journey and not not intended to provide an exhaustive language ecosystem.

The direction we'll take is to support John McCarthy's classic s-expression based meta-

circular evaluator1.

Along the way we'll need to implement fundamental data types and structures from

scratch upon our safe layer - symbols, pairs, arrays and dicts - with each chapter building

upon the previous ones.

impl<H: AllocHeader> AllocRaw for StickyImmixHeap<H> {
fn get_header(object: NonNull<()>) -> NonNull<Self::Header> {

unsafe { NonNull::new_unchecked(object.cast::<Self::Header>
().as_ptr().offset(-1)) }
 }
}

impl<H: AllocHeader> AllocRaw for StickyImmixHeap<H> {
fn get_object(header: NonNull<Self::Header>) -> NonNull<()> {

unsafe { NonNull::new_unchecked(header.as_ptr().offset(1).cast::
<()>()) }
 }
}

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

36 of 123 10/26/23, 19:01

https://rust-hosted-langs.github.io/book/print.html#conclusion
https://rust-hosted-langs.github.io/book/print.html#conclusion
https://rust-hosted-langs.github.io/book/print.html#an-interpreter-eval-rs
https://rust-hosted-langs.github.io/book/print.html#an-interpreter-eval-rs
https://rust-hosted-langs.github.io/book/print.html#1
https://rust-hosted-langs.github.io/book/print.html#1

While this will not result in an exhaustive language implementation, you'll see that we will

end up with all the building blocks for you to take it the rest of the way!

We shall name our interpreter "Eval-rs", for which we have an appropriate illustration

generously provided by the author's then 10 year old daughter.

We'll begin by defining the safe abstration over the Sticky Immix interface. Then we'll put

that to use in parsing s-expressions into a very simple data structure.

Once we've covered those basics, we'll build arrays and dicts and then use those in the

compiler and virtual machine.

1 These days this is cliché but that is substantially to our benefit. We're not trying to create yet

another Lisp, rather the fact that there is a preexisting design of some elegance and historical

interest is a convenience. For a practical, accessible introduction to the topic, do see Paul Graham's

The Roots of Lisp

Allocating objects and dereferencing

safely

In this chapter we'll build some safe Rust abstractions over the allocation API defined in

the Sticky Immix crate.

Let's first recall this interface:

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

37 of 123 10/26/23, 19:01

http://www.paulgraham.com/rootsoflisp.html
http://www.paulgraham.com/rootsoflisp.html
https://rust-hosted-langs.github.io/book/print.html#allocating-objects-and-dereferencing-safely
https://rust-hosted-langs.github.io/book/print.html#allocating-objects-and-dereferencing-safely
https://rust-hosted-langs.github.io/book/print.html#allocating-objects-and-dereferencing-safely
https://rust-hosted-langs.github.io/book/print.html#allocating-objects-and-dereferencing-safely

These are the functions we'll be calling. When we allocate an object, we'll get back a

RawPtr<T> which has no safe way to dereference it. This is impractical, we very much do

not want to wrap every dereferencing in unsafe { ... } . We'll need a layer over

RawPtr<T> where we can guarantee safe dereferencing.

Pointers

In safe Rust, mutable (&mut) and immutable (&) references are passed around to access

objects. These reference types are compile-time constrained pointers where the

constraints are

1. the mutability of the access

2. the lifetime of the access

For our layer over RawPtr<T> we'll have to consider both these constraints.

Mutability

This constraint is concerned with shared access to an object. In other words, it cares

pub trait AllocRaw {
/// An implementation of an object header type
type Header: AllocHeader;

/// Allocate a single object of type T.
fn alloc<T>(&self, object: T) -> Result<RawPtr<T>, AllocError>
where

 T: AllocObject<<Self::Header as AllocHeader>::TypeId>;

/// Allocating an array allows the client to put anything in the
resulting data

/// block but the type of the memory block will simply be 'Array'. No
other

/// type information will be stored in the object header.
/// This is just a special case of alloc<T>() for T=u8 but a count > 1 of

u8
/// instances. The caller is responsible for the content of the array.
fn alloc_array(&self, size_bytes: ArraySize) -> Result<RawPtr<u8>,

AllocError>;

/// Given a bare pointer to an object, return the expected header address
fn get_header(object: NonNull<()>) -> NonNull<Self::Header>;

/// Given a bare pointer to an object's header, return the expected
object address

fn get_object(header: NonNull<Self::Header>) -> NonNull<()>;
}

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

38 of 123 10/26/23, 19:01

https://rust-hosted-langs.github.io/book/print.html#pointers
https://rust-hosted-langs.github.io/book/print.html#pointers
https://rust-hosted-langs.github.io/book/print.html#mutability
https://rust-hosted-langs.github.io/book/print.html#mutability

about how many pointers there are to an object at any time and whether they allow

mutable or immutable access.

The short of it is:

• Either only one &mut reference may be held in a scope

• Or many & immutable references may be held in a scope

The compiler must be able to determine that a &mut reference is the only live reference

in it's scope that points at an object in order for mutable access to that object to be safe

of data races.

In a runtime memory managed language such as the interpreter we are building, we will

not have compile time knowledge of shared access to objects. We won't know at compile

time how many pointers to an object we may have at any time. This is the normal state of

things in languages such as Python, Ruby or Javascript.

This means that we can't allow &mut references in our safe layer at all!

If we're restricted to & immutable references everywhere, that then means we must

apply the interior mutability pattern everywhere in our design in order to comply with the

laws of safe Rust.

Lifetime

The second aspect to references is their lifetime. This concerns the duration of the

reference, from inception until it goes out of scope.

The key concept to think about now is "scope."

In an interpreted language there are two major operations on the objects in memory:

and

A few paragraphs earlier we determined that we can't have &mut references to objects in

our interpreter.

fn run_mutator() {
 parse_source_code();
 compile();
 execute_bytecode();
}

fn run_garbage_collection() {
 trace_objects();
 free_dead_objects();
}

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

39 of 123 10/26/23, 19:01

https://rust-hosted-langs.github.io/book/print.html#lifetime
https://rust-hosted-langs.github.io/book/print.html#lifetime

By extension, we can't safely hold a mutable reference to the entire heap as a data

structure.

Except, that is exactly what garbage collection requires. The nature of garbage collection

is that it views the entire heap as a single data structure in it's own right that it needs to

traverse and modify. It wants the heap to be &mut .

Consider, especially, that some garbage collectors move objects, so that pointers to

moved objects, wherever they may be, must be modified by the garbage collector without

breaking the mutator! The garbage collector must be able to reliably discover every single

pointer to moved objects to avoid leaving invalid pointers scattered around1.

Thus we have two mutually exclusive interface requirements, one that must only hold &

object references and applies interior mutability to the heap and the other that wants the

whole heap to be &mut .

For this part of the book, we'll focus on the use of the allocator and save garbage

collection for a later part.

This mutual exclusivity constraint on the allocator results in the statements:

• When garbage collection is running, it is not safe to run the mutator2

• When garbage collection is not running, it is safe to run the mutator

Thus our abstraction must encapsulate a concept of a time when "it is safe to run the

mutator" and since we're working with safe Rust, this must be a compile time concept.

Scopes and lifetimes are perfect for this abstraction. What we'll need is some way to

define a lifetime (that is, a scope) within which access to the heap by the mutator is safe.

Some pointer types

First, let's define a simple pointer type that can wrap an allocated type T in a lifetime:

This type will implement Clone , Copy and Deref - it can be passed around freely within

the scope and safely dereferenced.

As you can see we have a lifetime 'guard that we'll use to restrict the scope in which this

pointer can be accessed. We need a mechanism to restrict this scope.

The guard pattern is what we'll use, if the hint wasn't strong enough.

pub struct ScopedPtr<'guard, T: Sized> {
 value: &'guard T,
}

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

40 of 123 10/26/23, 19:01

https://rust-hosted-langs.github.io/book/print.html#1
https://rust-hosted-langs.github.io/book/print.html#1
https://rust-hosted-langs.github.io/book/print.html#2
https://rust-hosted-langs.github.io/book/print.html#2
https://rust-hosted-langs.github.io/book/print.html#some-pointer-types
https://rust-hosted-langs.github.io/book/print.html#some-pointer-types

We'll construct some types that ensure that safe pointers such as ScopedPtr<T> , and

access to the heap at in any way, are mediated by an instance of a guard type that can

provide access.

We will end up passing a reference to the guard instance around everywhere. In most

cases we won't care about the instance type itself so much as the lifetime that it carries

with it. As such, we'll define a trait for this type to implement that so that we can refer to

the guard instance by this trait rather than having to know the concrete type. This'll also

allow other types to proxy the main scope-guarding instance.

You may have noticed that we've jumped from RawPtr<T> to ScopedPtr<T> with

seemingly nothing to bridge the gap. How do we get a ScopedPtr<T> ?

We'll create a wrapper around RawPtr<T> that will complete the picture. This wrapper

type is what will hold pointers at rest inside any data structures.

This is straightforwardly a RawPtr<T> in a Cell to allow for modifying the pointer. We

won't allow dereferencing from this type either though.

Remember that dereferencing a heap object pointer is only safe when we are in the right

scope? We need to create a ScopedPtr<T> from a CellPtr<T> to be able to use it.

First we'll add a helper function to RawPtr<T> in our interpreter crate so we can safely

dereference a RawPtr<T> . This code says that, given an instance of a MutatorScope -

implementing type, give me back a reference type with the same lifetime as the guard

that I can safely use. Since the _guard parameter is never used except to define a

lifetime, it should be optimized out by the compiler!

We'll use this in our CellPtr<T> to obtain a ScopedPtr<T> :

pub trait MutatorScope {}

#[derive(Clone)]
pub struct CellPtr<T: Sized> {
 inner: Cell<RawPtr<T>>,
}

pub trait ScopedRef<T> {
fn scoped_ref<'scope>(&self, guard: &'scope dyn MutatorScope) -> &'scope

T;
}

impl<T> ScopedRef<T> for RawPtr<T> {
fn scoped_ref<'scope>(&self, _guard: &'scope dyn MutatorScope) -> &'scope

T {
unsafe { &*self.as_ptr() }

 }
}

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

41 of 123 10/26/23, 19:01

Thus, anywhere (structs, enums) that needs to store a pointer to something on the heap

will use CellPtr<T> and any code that accesses these pointers during the scope-guarded

mutator code will obtain ScopedPtr<T> instances that can be safely dereferenced.

The heap and the mutator

The next question is: where do we get an instance of MutatorScope from?

The lifetime of an instance of a MutatorScope will define the lifetime of any safe object

accesses. By following the guard pattern, we will find we have:

• a heap struct that contains an instance of the Sticky Immix heap

• a guard struct that proxies the heap struct for the duration of a scope

• a mechanism to enforce the scope limit

A heap struct

Let's make a type alias for the Sticky Immix heap so we aren't referring to it as such

throughout the interpreter:

The let's put that into a heap struct, along with any other interpreter-global storage:

We'll discuss the SymbolMap type in the next chapter.

Now, since we've wrapped the Sticky Immix heap in our own Heap struct, we'll need to

impl an alloc() method to proxy the Sticky Immix allocation function.

impl<T: Sized> CellPtr<T> {
pub fn get<'guard>(&self, guard: &'guard dyn MutatorScope) ->

ScopedPtr<'guard, T> {
 ScopedPtr::new(guard, self.inner.get().scoped_ref(guard))
 }
}

pub type HeapStorage = StickyImmixHeap<ObjectHeader>;

struct Heap {
 heap: HeapStorage,
 syms: SymbolMap,
}

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

42 of 123 10/26/23, 19:01

https://rust-hosted-langs.github.io/book/print.html#the-heap-and-the-mutator
https://rust-hosted-langs.github.io/book/print.html#the-heap-and-the-mutator
https://rust-hosted-langs.github.io/book/print.html#a-heap-struct
https://rust-hosted-langs.github.io/book/print.html#a-heap-struct

A couple things to note about this function:

• It returns RuntimeError in the error case, this type converts From the Sticky Immix

crate's error type.

• The where constraint is similar to that of AllocRaw::alloc() but in now we have a

concrete TypeList type to bind to. We'll look at TypeList in the next chapter along

with SymbolMap .

A guard struct

This next struct will be used as a scope-limited proxy for the Heap struct with one major

difference: function return types will no longer be RawPtr<T> but ScopedPtr<T> .

Here in this struct definition, it becomes clear that all we are doing is borrowing the Heap

instance for a limited lifetime. Thus, the lifetime of the MutatorView instance will be the

lifetime that all safe object access is constrained to.

A look at the alloc() function now:

Very similar to Heap::alloc() but the return type is now a ScopedPtr<T> whose lifetime

is the same as the MutatorView instance.

impl Heap {
fn alloc<T>(&self, object: T) -> Result<RawPtr<T>, RuntimeError>
where

 T: AllocObject<TypeList>,
 {

Ok(self.heap.alloc(object)?)
 }
}

pub struct MutatorView<'memory> {
 heap: &'memory Heap,
}

impl<'memory> MutatorView<'memory> {
pub fn alloc<T>(&self, object: T) -> Result<ScopedPtr<'_, T>,

RuntimeError>
where

 T: AllocObject<TypeList>,
 {

Ok(ScopedPtr::new(
self,
self.heap.alloc(object)?.scoped_ref(self),

))
 }
}

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

43 of 123 10/26/23, 19:01

https://rust-hosted-langs.github.io/book/print.html#a-guard-struct
https://rust-hosted-langs.github.io/book/print.html#a-guard-struct

Enforcing a scope limit

We now have a Heap and a guard, MutatorView , but we want one more thing: to prevent

an instance of MutatorView from being returned from anywhere - that is, enforcing a

scope within which an instance of MutatorView will live and die. This will make it easier to

separate mutator operations and garbage collection operations.

First we'll apply a constraint on how a mutator gains heap access: through a trait.

If a piece of code wants to access the heap, it must implement this trait!

Secondly, we'll apply another wrapper struct, this time to the Heap type. This is so that

we can borrow the heap member instance.

This Memory struct and the Mutator trait are now tied together with a function:

The key to the scope limitation mechanism is that this mutate function is the only way to

gain access to the heap. It creates an instance of MutatorView that goes out of scope at

the end of the function and thus can't leak outside of the call stack.

An example

Let's construct a simple example to demonstrate these many parts. This will omit defining

pub trait Mutator: Sized {
type Input;
type Output;

fn run(&self, mem: &MutatorView, input: Self::Input) ->
Result<Self::Output, RuntimeError>;

// TODO
// function to return iterator that iterates over roots

}

pub struct Memory {
 heap: Heap,
}

impl Memory {
pub fn mutate<M: Mutator>(&self, m: &M, input: M::Input) ->

Result<M::Output, RuntimeError> {
let mut guard = MutatorView::new(self);

 m.run(&mut guard, input)
 }

}

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

44 of 123 10/26/23, 19:01

https://rust-hosted-langs.github.io/book/print.html#enforcing-a-scope-limit
https://rust-hosted-langs.github.io/book/print.html#enforcing-a-scope-limit
https://rust-hosted-langs.github.io/book/print.html#an-example-1
https://rust-hosted-langs.github.io/book/print.html#an-example-1

a TypeId and any other types that we didn't discuss above.

struct Stack {}

impl Stack {
fn say_hello(&self) {

println!("I'm the stack!");
 }
}

struct Roots {
 stack: CellPtr<Stack>
}

impl Roots {
fn new(stack: ScopedPtr<'_, Stack>) -> Roots {

 Roots {
 stack: CellPtr::new_with(stack)
 }
 }
}

struct Interpreter {}

impl Mutator for Interpreter {
type Input: ();
type Output: Roots;

fn run(&self, mem: &MutatorView, input: Self::Input) ->
Result<Self::Output, RuntimeError> {

let stack = mem.alloc(Stack {})?; // returns a ScopedPtr<'_, Stack>
 stack.say_hello();

let roots = Roots::new(stack);

let stack_ptr = roots.stack.get(mem); // returns a ScopedPtr<'_,
Stack>
 stack_ptr.say_hello();

Ok(roots)
 }
}

fn main() {
 ...

let interp = Interpreter {};

let result = memory.mutate(&interp, ());

let roots = result.unwrap();

// no way to do this - compile error
let stack = roots.stack.get();

 ...
}

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

45 of 123 10/26/23, 19:01

In this simple, contrived example, we instantiated a Stack on the heap. An instance of

Roots is created on the native stack and given a pointer to the Stack instance. The

mutator returns the Roots object, which continues to hold a pointer to a heap object.

However, outside of the run() function, the stack member can't be safely accesed.

Up next: using this framework to implement parsing!

1 This is the topic of discussion in Felix Klock's series GC and Rust which is recommended reading.

2 while this distinction exists at the interface level, in reality there are multiple phases in garbage

collection and not all of them require exclusive access to the heap. This is an advanced topic that

we won't bring into consideration yet.

Tagged pointers and object headers

Since our virtual machine will support a dynamic language where the compiler does no

type checking, all the type information will be managed at runtime.

In the previous chapter, we introduced a pointer type ScopedPtr<T> . This pointer type

has compile time knowledge of the type it is pointing at.

We need an alternative to ScopedPtr<T> that can represent all the runtime-visible types

so they can be resolved at runtime.

As we'll see, carrying around type information or looking it up in the header on every

access will be inefficient space and performance-wise.

We'll implement a common optimization: tagged pointers.

Runtime type identification

The object header can always give us the type id for an object, given a pointer to the

object. However, it requires us to do some arithmetic on the pointer to get the location of

the type identifier, then dereference the pointer to get the type id value. This dereference

can be expensive if the object being pointed at is not in the CPU cache. Since getting an

object type is a very common operation in a dynamic language, these lookups become

expensive, time-wise.

Rust itself doesn't have runtime type identification but does have runtime dispatch

through trait objects. In this scheme a pointer consists of two words: the pointer to the

object itself and a second pointer to the vtable where the concrete object type's methods

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

46 of 123 10/26/23, 19:01

http://blog.pnkfx.org/blog/categories/gc/
http://blog.pnkfx.org/blog/categories/gc/
https://rust-hosted-langs.github.io/book/print.html#tagged-pointers-and-object-headers
https://rust-hosted-langs.github.io/book/print.html#tagged-pointers-and-object-headers
https://rust-hosted-langs.github.io/book/print.html#runtime-type-identification
https://rust-hosted-langs.github.io/book/print.html#runtime-type-identification

can be looked up. The generic name for this form of pointer is a fat pointer.

We could easily use a fat pointer type for runtime type identification in our interpreter.

Each pointer could carry with it an additional word with the type id in it, or we could even

just use trait objects!

A dynamically typed language will manage many pointers that must be type identified at

runtime. Carrying around an extra word per pointer is expensive, space-wise, however.

Tagged pointers

Many runtimes implement tagged pointers to avoid the space overhead, while partially

improving the time overhead of the header type-id lookup.

In a pointer to any object on the heap, the least most significant bits turn out to always be

zero due to word or double-word alignment.

On a 64 bit platform, a pointer is a 64 bit word. Since objects are at least word-aligned, a

pointer is always be a multiple of 8 and the 3 least significant bits are always 0. On 32 bit

platforms, the 2 least significant bits are always 0.

When dereferencing a pointer, these bits must always be zero. But we can use them in

pointers at rest to store a limited type identifier! We'll limit ourselves to 2 bits of type

identifier so as to not complicate our code in distinguishing between 32 and 64 bit

platforms1.

Given we'll only have 4 possible types we can id directly from a pointer, we'll still need to

fall back on the object header for types that don't fit into this range.

Encoding this in Rust

Flipping bits on a pointer directly definitely constitutes a big Unsafe. We'll need to make a

tagged pointer type that will fundamentally be unsafe because it won't be safe to

dereference it. Then we'll need a safe abstraction over that type to make it safe to

dereference.

But first we need to understand the object header and how we get an object's type from

 64..............48..............32..............16...........xxx
0b111000
 / |
 / |
 unused

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

47 of 123 10/26/23, 19:01

https://rust-hosted-langs.github.io/book/print.html#tagged-pointers
https://rust-hosted-langs.github.io/book/print.html#tagged-pointers
https://en.wikipedia.org/wiki/Tagged_pointer
https://en.wikipedia.org/wiki/Tagged_pointer
https://rust-hosted-langs.github.io/book/print.html#1
https://rust-hosted-langs.github.io/book/print.html#1
https://rust-hosted-langs.github.io/book/print.html#encoding-this-in-rust
https://rust-hosted-langs.github.io/book/print.html#encoding-this-in-rust

it.

The object header

We introduced the object header traits in the earlier chapter Defining the allocation API.

The chapter explained how the object header is the responsibility of the interpreter to

implement.

Now that we need to implement type identification, we need the object header.

The allocator API requires that the type identifier implement the AllocTypeId trait. We'll

use an enum to identify for all our runtime types:

Given that the allocator API requires every object that can be allocated to have an

associated type id const , this enum represents every type that can be allocated and that

we will go on to describe in this book.

It is a member of the ObjectHeader struct along with a few other members that our

Immix implementation requires:

#[repr(u16)]
#[derive(Debug, Copy, Clone, PartialEq)]
pub enum TypeList {
 ArrayBackingBytes,
 ArrayOpcode,
 ArrayU8,
 ArrayU16,
 ArrayU32,
 ByteCode,
 CallFrameList,
 Dict,
 Function,
 InstructionStream,
 List,
 NumberObject,
 Pair,
 Partial,
 Symbol,
 Text,
 Thread,
 Upvalue,
}

// Mark this as a Stickyimmix type-identifier type
impl AllocTypeId for TypeList {}

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

48 of 123 10/26/23, 19:01

https://rust-hosted-langs.github.io/book/print.html#the-object-header
https://rust-hosted-langs.github.io/book/print.html#the-object-header
https://rust-hosted-langs.github.io/book/chapter-allocation-api.html
https://rust-hosted-langs.github.io/book/chapter-allocation-api.html

The rest of the header members will be the topic of the later garbage collection part of

the book.

A safe pointer abstraction

A type that can represent one of multiple types at runtime is obviously the enum . We can

wrap possible ScopedPtr<T> types like so:

Note that this definition does not include all the same types that were listed above in

TypeList . Only the types that can be passed dynamically at runtime need to be

represented here. The types not included here are always referenced directly by

ScopedPtr<T> and are therefore known types at compile and run time.

You probably also noticed that Value is the fat pointer we discussed earlier. It is

composed of a set of ScopedPtr<T> s, each of which should only require a single word,

and an enum discriminant integer, which will also, due to alignment, require a word.

This enum , since it wraps ScopedPtr<T> and has the same requirement for an explicit

lifetime, is Safe To Dereference.

As this type occupies the same space as a fat pointer, it isn't the type we want for storing

pointers at rest, though. For that type, let's look at the compact tagged pointer type now.

pub struct ObjectHeader {
 mark: Mark,
 size_class: SizeClass,
 type_id: TypeList,
 size_bytes: u32,
}

#[derive(Copy, Clone)]
pub enum Value<'guard> {
 ArrayU8(ScopedPtr<'guard, ArrayU8>),
 ArrayU16(ScopedPtr<'guard, ArrayU16>),
 ArrayU32(ScopedPtr<'guard, ArrayU32>),
 Dict(ScopedPtr<'guard, Dict>),
 Function(ScopedPtr<'guard, Function>),
 List(ScopedPtr<'guard, List>),
 Nil,
 Number(isize),
 NumberObject(ScopedPtr<'guard, NumberObject>),
 Pair(ScopedPtr<'guard, Pair>),
 Partial(ScopedPtr<'guard, Partial>),
 Symbol(ScopedPtr<'guard, Symbol>),
 Text(ScopedPtr<'guard, Text>),
 Upvalue(ScopedPtr<'guard, Upvalue>),
}

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

49 of 123 10/26/23, 19:01

https://rust-hosted-langs.github.io/book/print.html#a-safe-pointer-abstraction
https://rust-hosted-langs.github.io/book/print.html#a-safe-pointer-abstraction

What lies beneath

Below we have a union type, making this an unsafe representation of a pointer. The tag

value will be constrained to the values 0, 1, 2 or 3, which will determine which of the next

four possible members should be accessed. Members will have to be bit-masked to

access their correct values.

As you can see, we've allocated a tag for a Symbol type, a Pair type and one for a

numeric type. The fourth member indicates an object whose type must be determined

from the type id in the object header.

Note: Making space for an inline integer is a common use of a tag. It means any

integer arithmetic that fits within the available bits will not require memory lookups

into the heap to retrieve operands. In our case we've defined the numeric type as an

isize . Since the 2 least significant bits are used for the tag, we will have to right-

shift the value by 2 to extract the correct integer value. We'll go into this

implementation in more depth in a later chapter.

The tags and masks are defined as:

Thus you can see from the choice of embedded tag values, we've optimized for fast

identification of Pair s and Symbol s and integer math. If we decide to, it will be easy to

switch to other types to represent in the 2 tag bits.

Connecting into the allocation API

Translating between Value and TaggedPtr will be made easier by creating an

intermediate type that represents all types as an enum but doesn't require a valid

lifetime. This type will be useful because it is most closely ergonomic with the allocator

#[derive(Copy, Clone)]
pub union TaggedPtr {
 tag: usize,
 number: isize,
 symbol: NonNull<Symbol>,
 pair: NonNull<Pair>,
 object: NonNull<()>,
}

const TAG_MASK: usize = 0x3;
pub const TAG_SYMBOL: usize = 0x0;
pub const TAG_PAIR: usize = 0x1;
pub const TAG_OBJECT: usize = 0x2;
pub const TAG_NUMBER: usize = 0x3;
const PTR_MASK: usize = !0x3;

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

50 of 123 10/26/23, 19:01

https://rust-hosted-langs.github.io/book/print.html#what-lies-beneath
https://rust-hosted-langs.github.io/book/print.html#what-lies-beneath
https://rust-hosted-langs.github.io/book/print.html#connecting-into-the-allocation-api
https://rust-hosted-langs.github.io/book/print.html#connecting-into-the-allocation-api

API and the object header type information.

We'll extend Heap (see previous chapter) with a method to return a tagged pointer on

request:

In this method it's clear that we implemented From<T> to convert between pointer types.

Next we'll look at how these conversions are implemented.

Type conversions

We have three pointer types: Value , FatPtr and TaggedPtr , each which has a distinct

flavor. We need to be able to convert from one to the other:

FatPtr to Value

We can implement From<FatPtr> for TaggedPtr and Value to convert to the final two

possible pointer representations. Well, not exactly - the function signature

#[derive(Copy, Clone)]
pub enum FatPtr {
 ArrayU8(RawPtr<ArrayU8>),
 ArrayU16(RawPtr<ArrayU16>),
 ArrayU32(RawPtr<ArrayU32>),
 Dict(RawPtr<Dict>),
 Function(RawPtr<Function>),
 List(RawPtr<List>),
 Nil,
 Number(isize),
 NumberObject(RawPtr<NumberObject>),
 Pair(RawPtr<Pair>),
 Partial(RawPtr<Partial>),
 Symbol(RawPtr<Symbol>),
 Text(RawPtr<Text>),
 Upvalue(RawPtr<Upvalue>),
}

impl Heap {
fn alloc_tagged<T>(&self, object: T) -> Result<TaggedPtr, RuntimeError>
where

 FatPtr: From<RawPtr<T>>,
 T: AllocObject<TypeList>,
 {

Ok(TaggedPtr::from(FatPtr::from(self.heap.alloc(object)?)))
 }
}

TaggedPtr <-> FatPtr -> Value

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

51 of 123 10/26/23, 19:01

https://rust-hosted-langs.github.io/book/print.html#type-conversions
https://rust-hosted-langs.github.io/book/print.html#type-conversions
https://rust-hosted-langs.github.io/book/print.html#fatptr-to-value
https://rust-hosted-langs.github.io/book/print.html#fatptr-to-value

is not able to define the 'guard lifetime, so we have to implement a similar method that

can:

impl From<FatPtr> for Value<'guard> {
fn from(ptr: FatPtr) -> Value<'guard> { ... }

}

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

52 of 123 10/26/23, 19:01

FatPtr to TaggedPtr

For converting down to a single-word TaggedPtr type we will introduce a helper trait and

impl FatPtr {
pub fn as_value<'guard>(&self, guard: &'guard dyn MutatorScope) ->

Value<'guard> {
match self {

 FatPtr::ArrayU8(raw_ptr) => {
 Value::ArrayU8(ScopedPtr::new(guard,
raw_ptr.scoped_ref(guard)))
 }
 FatPtr::ArrayU16(raw_ptr) => {
 Value::ArrayU16(ScopedPtr::new(guard,
raw_ptr.scoped_ref(guard)))
 }
 FatPtr::ArrayU32(raw_ptr) => {
 Value::ArrayU32(ScopedPtr::new(guard,
raw_ptr.scoped_ref(guard)))
 }
 FatPtr::Dict(raw_ptr) => Value::Dict(ScopedPtr::new(guard,
raw_ptr.scoped_ref(guard))),
 FatPtr::Function(raw_ptr) => {
 Value::Function(ScopedPtr::new(guard,
raw_ptr.scoped_ref(guard)))
 }
 FatPtr::List(raw_ptr) => Value::List(ScopedPtr::new(guard,
raw_ptr.scoped_ref(guard))),
 FatPtr::Nil => Value::Nil,
 FatPtr::Number(num) => Value::Number(*num),
 FatPtr::NumberObject(raw_ptr) => {
 Value::NumberObject(ScopedPtr::new(guard,
raw_ptr.scoped_ref(guard)))
 }
 FatPtr::Pair(raw_ptr) => Value::Pair(ScopedPtr::new(guard,
raw_ptr.scoped_ref(guard))),
 FatPtr::Partial(raw_ptr) => {
 Value::Partial(ScopedPtr::new(guard,
raw_ptr.scoped_ref(guard)))
 }
 FatPtr::Symbol(raw_ptr) => {
 Value::Symbol(ScopedPtr::new(guard,
raw_ptr.scoped_ref(guard)))
 }
 FatPtr::Text(raw_ptr) => Value::Text(ScopedPtr::new(guard,
raw_ptr.scoped_ref(guard))),
 FatPtr::Upvalue(raw_ptr) => {
 Value::Upvalue(ScopedPtr::new(guard,
raw_ptr.scoped_ref(guard)))
 }
 }
 }
}

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

53 of 123 10/26/23, 19:01

https://rust-hosted-langs.github.io/book/print.html#fatptr-to-taggedptr
https://rust-hosted-langs.github.io/book/print.html#fatptr-to-taggedptr

methods to work with tag values and RawPtr<T> types from the allocator:

This will help convert from RawPtr<T> values in FatPtr to the NonNull<T> based

TaggedPtr discriminants.

Because TaggedPtr is a union type and because it has to apply the appropriate tag

value inside the pointer itself, we can't work with it as ergnomically as an enum . We'll

create some more helper functions for instantiating TaggedPtr s appropriately.

Remember that for storing an integer in the pointer we have to left-shift it 2 bits to allow

for the tag. We'll apply proper range checking in a later chapter.

Finally, we can use the above methods to implement From<FatPtr for TaggedPtr :

pub trait Tagged<T> {
fn tag(self, tag: usize) -> NonNull<T>;
fn untag(from: NonNull<T>) -> RawPtr<T>;

}

impl<T> Tagged<T> for RawPtr<T> {
fn tag(self, tag: usize) -> NonNull<T> {

unsafe { NonNull::new_unchecked((self.as_word() | tag) as *mut T) }
 }

fn untag(from: NonNull<T>) -> RawPtr<T> {
 RawPtr::new((from.as_ptr() as usize & PTR_MASK) as *const T)
 }
}

impl TaggedPtr {
pub fn nil() -> TaggedPtr {

 TaggedPtr { tag: 0 }
 }

pub fn number(value: isize) -> TaggedPtr {
 TaggedPtr {
 number: (((value as usize) << 2) | TAG_NUMBER) as isize,
 }
 }

pub fn symbol(ptr: RawPtr<Symbol>) -> TaggedPtr {
 TaggedPtr {
 symbol: ptr.tag(TAG_SYMBOL),
 }
 }

fn pair(ptr: RawPtr<Pair>) -> TaggedPtr {
 TaggedPtr {
 pair: ptr.tag(TAG_PAIR),
 }
 }
}

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

54 of 123 10/26/23, 19:01

TaggedPtr to FatPtr

To convert from a TaggedPtr to the intermediate type is implemented in two parts:

identifying object types from the tag; identifying object types from the header where the

tag is insufficient.

Part the first, which requires unsafe due to accessing a union type and dereferencing

the object header for the TAG_OBJECT discriminant:

impl From<FatPtr> for TaggedPtr {
fn from(ptr: FatPtr) -> TaggedPtr {

match ptr {
 FatPtr::ArrayU8(raw) => TaggedPtr::object(raw),
 FatPtr::ArrayU16(raw) => TaggedPtr::object(raw),
 FatPtr::ArrayU32(raw) => TaggedPtr::object(raw),
 FatPtr::Dict(raw) => TaggedPtr::object(raw),
 FatPtr::Function(raw) => TaggedPtr::object(raw),
 FatPtr::List(raw) => TaggedPtr::object(raw),
 FatPtr::Nil => TaggedPtr::nil(),
 FatPtr::Number(value) => TaggedPtr::number(value),
 FatPtr::NumberObject(raw) => TaggedPtr::object(raw),
 FatPtr::Pair(raw) => TaggedPtr::pair(raw),
 FatPtr::Partial(raw) => TaggedPtr::object(raw),
 FatPtr::Text(raw) => TaggedPtr::object(raw),
 FatPtr::Symbol(raw) => TaggedPtr::symbol(raw),
 FatPtr::Upvalue(raw) => TaggedPtr::object(raw),
 }
 }
}

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

55 of 123 10/26/23, 19:01

https://rust-hosted-langs.github.io/book/print.html#taggedptr-to-fatptr
https://rust-hosted-langs.github.io/book/print.html#taggedptr-to-fatptr

And part two, the object header method get_object_fatptr() as seen in the code

above:

impl From<TaggedPtr> for FatPtr {
fn from(ptr: TaggedPtr) -> FatPtr {

 ptr.into_fat_ptr()
 }
}

impl TaggedPtr {
fn into_fat_ptr(&self) -> FatPtr {

unsafe {
if self.tag == 0 {

 FatPtr::Nil
 } else {

match get_tag(self.tag) {
 TAG_NUMBER => FatPtr::Number(self.number >> 2),
 TAG_SYMBOL => FatPtr::Symbol(RawPtr::untag(self.symbol)),
 TAG_PAIR => FatPtr::Pair(RawPtr::untag(self.pair)),

 TAG_OBJECT => {
let untyped_object_ptr =

RawPtr::untag(self.object).as_untyped();
let header_ptr =

HeapStorage::get_header(untyped_object_ptr);

 header_ptr.as_ref().get_object_fatptr()
 }

 _ => panic!("Invalid TaggedPtr type tag!"),
 }
 }
 }
 }
}

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

56 of 123 10/26/23, 19:01

This method contains no unsafe code and yet we've declared it unsafe!

Manipulating pointer types is not unsafe in of itself, only dereferencing them is unsafe

and we are not dereferencing them here.

While we have the safety rails of the enum types to prevent invalid types from being

returned, we could easily mismatch a TypeList value with an incorrect FatPtr value

and return an incorrect type. Additionally we could forget to untag a pointer, leaving it as

an invalid pointer value.

These possible mistakes could cause undefined behavior and quite likely crash the

interpreter.

The compiler will not catch these cases and so this is an area for critical scrutiny of

impl ObjectHeader {
pub unsafe fn get_object_fatptr(&self) -> FatPtr {

let ptr_to_self = self.non_null_ptr();
let object_addr = HeapStorage::get_object(ptr_to_self);

match self.type_id {
 TypeList::ArrayU8 =>
FatPtr::ArrayU8(RawPtr::untag(object_addr.cast::<ArrayU8>())),
 TypeList::ArrayU16 =>
FatPtr::ArrayU16(RawPtr::untag(object_addr.cast::<ArrayU16>())),
 TypeList::ArrayU32 =>
FatPtr::ArrayU32(RawPtr::untag(object_addr.cast::<ArrayU32>())),
 TypeList::Dict => FatPtr::Dict(RawPtr::untag(object_addr.cast::
<Dict>())),
 TypeList::Function =>
FatPtr::Function(RawPtr::untag(object_addr.cast::<Function>())),
 TypeList::List => FatPtr::List(RawPtr::untag(object_addr.cast::
<List>())),
 TypeList::NumberObject => {
 FatPtr::NumberObject(RawPtr::untag(object_addr.cast::
<NumberObject>()))
 }
 TypeList::Pair => FatPtr::Pair(RawPtr::untag(object_addr.cast::
<Pair>())),
 TypeList::Partial =>
FatPtr::Partial(RawPtr::untag(object_addr.cast::<Partial>())),
 TypeList::Symbol =>
FatPtr::Symbol(RawPtr::untag(object_addr.cast::<Symbol>())),
 TypeList::Text => FatPtr::Text(RawPtr::untag(object_addr.cast::
<Text>())),
 TypeList::Upvalue =>
FatPtr::Upvalue(RawPtr::untag(object_addr.cast::<Upvalue>())),

// Other types not represented by FatPtr are an error to id here
 _ => panic!("Invalid ObjectHeader type tag {:?}!", self.type_id),
 }
 }
}

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

57 of 123 10/26/23, 19:01

correctness! Hence the method is marked unsafe to draw attention.

Using tagged pointers in data structures

Finally, we need to see how to use these types in data structures that we'll create.

In the previous chapter, we defined a CellPtr type that wrapped a RawPtr<T> in a

Cell<T> so that data structures can contain mutable pointers to other objects. Similarly,

we'll want something to wrap tagged pointers:

We'll also wrap Value in a type TaggedScopedPtr that we'll use similarly to

ScopedPtr<T> .

This TaggedScopedPtr carries an instance of TaggedPtr and a Value . This tradeoff

means that while this type has three words to heft around, the TaggedPtr member can

be quickly accessed for copying into a TaggedCellPtr without needing to down-convert

from Value .

The type is only suitable for handling pointers that actively need to be dereferenced due

to it's size.

Note: Redundancy: TaggedScopedPtr and Value are almost identical in requirement

and functionality. TODO: consider merging into one type. See issue

https://github.com/rust-hosted-langs/book/issues/30

A TaggedScopedPtr can be obtained by:

• calling TaggedCellPtr::get()

• or the MutatorView::alloc_tagged() method

The get() method on TaggedCellPtr returns a TaggedScopedPtr :

#[derive(Clone)]
pub struct TaggedCellPtr {
 inner: Cell<TaggedPtr>,
}

#[derive(Copy, Clone)]
pub struct TaggedScopedPtr<'guard> {
 ptr: TaggedPtr,
 value: Value<'guard>,
}

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

58 of 123 10/26/23, 19:01

https://rust-hosted-langs.github.io/book/print.html#using-tagged-pointers-in-data-structures
https://rust-hosted-langs.github.io/book/print.html#using-tagged-pointers-in-data-structures
https://github.com/rust-hosted-langs/book/issues/30
https://github.com/rust-hosted-langs/book/issues/30

The MutatorView method to allocate a new object and get back a tagged pointer (a

TaggedScopedPtr) looks simply like this:

Quick recap

In summary, what we created here was a set of pointer types:

• types suitable for storing a pointer at rest - TaggedPtr and TaggedCellPtr

• types suitable for dereferencing a pointer - Value and TaggedScopedPtr

• a type suitable for intermediating between the two - FatPtr - that the heap

allocation interface can return

We now have the basic pieces to start defining data structures for our interpreter, so that

is what we shall do next!

1 There are other pointer tagging schemes, notably the use of "spare" NaN bit patterns in 64 bit

floating point values. Further, which types are best represented by the tag bits is highly language

dependent. Some languages use them for garbage collection information while others may use

them for still other types hidden from the language user. In the interest of clarity, we'll stick to a

simple scheme.

Symbols and Pairs

To bootstrap our compiler, we'll parse s-expressions into Symbol ad Pair types, where a

impl TaggedCellPtr {
pub fn get<'guard>(&self, guard: &'guard dyn MutatorScope) ->

TaggedScopedPtr<'guard> {
 TaggedScopedPtr::new(guard, self.inner.get())
 }
}

impl MutatorView {
pub fn alloc_tagged<T>(&self, object: T) -> Result<TaggedScopedPtr<'_>,

RuntimeError>
where

 FatPtr: From<RawPtr<T>>,
 T: AllocObject<TypeList>,
 {

Ok(TaggedScopedPtr::new(self, self.heap.alloc_tagged(object)?))
 }
}

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

59 of 123 10/26/23, 19:01

https://rust-hosted-langs.github.io/book/print.html#quick-recap
https://rust-hosted-langs.github.io/book/print.html#quick-recap
https://rust-hosted-langs.github.io/book/print.html#symbols-and-pairs
https://rust-hosted-langs.github.io/book/print.html#symbols-and-pairs

Pair is essentially a Lisp cons cell.

The definition of Symbol is just the raw components of a &str :

Why this is how Symbol is defined and how we handle these raw components will be

covered in just a bit. First though, we'll delve into the Pair type.

Pairs of pointers

The definition of Pair is

The type of first and second is TaggedCellPtr , as seen in the previous chapter. This

pointer type can point at any dynamic type. By the end of this chapter we'll be able to

build a nested linked list of Pair s and Symbol s.

Since this structure will be used for parsing and compiling, the Pair struct has a

couple of extra members that optionally describe the source code line and character

number of the values pointed at by first and second . These will be useful for reporting

error messages. We'll come back to these in the chapter on parsing.

To instantiate a Pair function with first and second set to nil, let's create a new()

function:

#[derive(Copy, Clone)]
pub struct Symbol {
 name_ptr: *const u8,
 name_len: usize,
}

#[derive(Clone)]
pub struct Pair {

pub first: TaggedCellPtr,
pub second: TaggedCellPtr,
// Possible source code positions of the first and second values
pub first_pos: Cell<Option<SourcePos>>,
pub second_pos: Cell<Option<SourcePos>>,

}

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

60 of 123 10/26/23, 19:01

https://rust-hosted-langs.github.io/book/print.html#pairs-of-pointers
https://rust-hosted-langs.github.io/book/print.html#pairs-of-pointers

That function, as it's not being allocated into the heap, doesn't require the lifetime guard.

Let's look at a more interesting function: cons() , which assigns a value to first and

second and puts the Pair on to the heap:

Here we have the lifetime 'guard associated with the MutatorView instance which

grants access to the allocator alloc_tagged() method and the getter and setter on

TaggedScopedPtr .

The other two args, head and rest are required to share the same 'guard lifetime as

the MutatorView instance, or rather, 'guard must at least be a subtype of their lifetimes.

Their values, of type TaggedScopedPtr<'guard> , can be written directly to the first and

second members of Pair with the setter TaggedCellPtr::set() .

We'll also add a couple impl methods for appending an object to a Pair in linked-list

fashion:

impl Pair {
pub fn new() -> Pair {

 Pair {
 first: TaggedCellPtr::new_nil(),
 second: TaggedCellPtr::new_nil(),
 first_pos: Cell::new(None),
 second_pos: Cell::new(None),
 }
 }
}

pub fn cons<'guard>(
 mem: &'guard MutatorView,
 head: TaggedScopedPtr<'guard>,
 rest: TaggedScopedPtr<'guard>,
) -> Result<TaggedScopedPtr<'guard>, RuntimeError> {

let pair = Pair::new();
 pair.first.set(head);
 pair.second.set(rest);
 mem.alloc_tagged(pair)
}

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

61 of 123 10/26/23, 19:01

This method, given a value to append, creates a new Pair whose member first points

at the value, then sets the second of the &self Pair to that new Pair instance. This is

in support of s-expression notation (a b) which describes a linked-list of Pair s

arranged, in pseudo-Rust:

The second method is for directly setting the value of the second for s-expression dot-

notation style: (a . b) is represented by first pointing at a , dotted with b which is

pointed at by second . In our pseudo representation:

The implementation is simply:

The only other piece to add, since Pair must be able to be passed into our allocator API,

is the AllocObject impl for Pair :

impl Pair {
pub fn append<'guard>(

 &self,
 mem: &'guard MutatorView,
 value: TaggedScopedPtr<'guard>,
) -> Result<TaggedScopedPtr<'guard>, RuntimeError> {

let pair = Pair::new();
 pair.first.set(value);

let pair = mem.alloc_tagged(pair)?;
self.second.set(pair);

Ok(pair)
 }
}

Pair {
 first: a,
 second: Pair {
 first: b,
 second: nil,
 },
}

Pair {
 first: a,
 second: b,
}

impl Pair {
pub fn dot<'guard>(&self, value: TaggedScopedPtr<'guard>) {

self.second.set(value);
 }
}

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

62 of 123 10/26/23, 19:01

This impl pattern will repeat for every type in TypeList so it'll be a great candidate for a

macro.

And that's it! We have a cons-cell style Pair type and some elementary methods for

creating and allocating them.

Now, back to Symbol , which seems like it should be even simpler, but as we'll see has

some nuance to it.

Symbols and pointers

Let's recap the definition of Symbol and that it is the raw members of a &str :

By this definition, a symbol has a name string, but does not own the string itself. What

means this?

Symbols are in fact pointers to interned strings. Since each symbol points to a unique

string, we can identify a symbol by it's pointer value rather than needing to look up the

string itself.

However, symbols do need to be discovered by their string name, and symbol pointers

must dereference to return their string form. i.e. a we need a bidirectional mapping of

string to pointer and pointer to string.

In our implementation, we use a HashMap<String, RawPtr<Symbol>> to map from name

strings to symbol pointers, while the Symbol object itself points back to the name string.

This is encapsulated in a SymbolMap struct:

where we use RefCell to wrap operations in interior mutability, just like all other

allocator functionality.

impl AllocObject<TypeList> for Pair {
const TYPE_ID: TypeList = TypeList::Pair;

}

#[derive(Copy, Clone)]
pub struct Symbol {
 name_ptr: *const u8,
 name_len: usize,
}

pub struct SymbolMap {
 map: RefCell<HashMap<String, RawPtr<Symbol>>>,
 arena: Arena,
}

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

63 of 123 10/26/23, 19:01

https://rust-hosted-langs.github.io/book/print.html#symbols-and-pointers
https://rust-hosted-langs.github.io/book/print.html#symbols-and-pointers

The second struct member Arena requires further explanation: since symbols are unique

strings that can be identified and compared by their pointer values, these pointer values

must remain static throughout the program lifetime. Thus, Symbol objects cannot be

managed by a heap that might perform object relocation. We need a separate heap type

for objects that are never moved or freed unil the program ends, the Arena type.

The Arena type is simple. It, like Heap , wraps StickyImmixHeap but unlike Heap , it will

never run garbage collection.

The ArenaHeader is a simple object header type to fulfill the allocator API requirements

but whose methods will never be needed.

Allocating a Symbol will use the Arena::alloc() method which calls through to the

StickyImmixHeap instance.

We'll add a method for getting a Symbol from it's name string to the SymbolMap at the

allocator API level:

Then we'll add wrappers to the Heap and MutatorView impls to scope-restrict access:

and

pub struct Arena {
 heap: StickyImmixHeap<ArenaHeader>,
}

impl SymbolMap {
pub fn lookup(&self, name: &str) -> RawPtr<Symbol> {

 {
if let Some(ptr) = self.map.borrow().get(name) {

return *ptr;
 }
 }

let name = String::from(name);
let ptr = self.arena.alloc(Symbol::new(&name)).unwrap();
self.map.borrow_mut().insert(name, ptr);

 ptr
 }
}

impl Heap {
fn lookup_sym(&self, name: &str) -> TaggedPtr {

 TaggedPtr::symbol(self.syms.lookup(name))
 }
}

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

64 of 123 10/26/23, 19:01

This scope restriction is absolutely necessary, despite these objects never being freed or

moved during runtime. This is because Symbol , as a standalone struct, remains unsafe to

use with it's raw &str components. These components can only safely be accessed when

there is a guarantee that the backing Hashmap is still in existence, which is only when the

MutatorView is accessible.

Two methods on Symbol guard access to the &str , one unsafe to reassemble the &str

from raw components, the other safe when given a MutatorScope guard instance.

Finally, to make Symbol s allocatable in the Sticky Immix heap, we need to implement

AllocObject for it:

Moving on swiftly

Now we've got the elemental pieces of s-expressions, lists and symbols, we can move on

to parsing s-expression strings.

Since the focus of this book is the underlying mechanisms of memory management in

Rust and the details of runtime implementation, parsing will receive less attention. We'll

make it quick!

Parsing s-expressions

impl<'memory> MutatorView<'memory> {
pub fn lookup_sym(&self, name: &str) -> TaggedScopedPtr<'_> {

 TaggedScopedPtr::new(self, self.heap.lookup_sym(name))
 }
}

impl Symbol {
pub unsafe fn unguarded_as_str<'desired_lifetime>(&self) ->

&'desired_lifetime str {
let slice = slice::from_raw_parts(self.name_ptr, self.name_len);
str::from_utf8(slice).unwrap()

 }

pub fn as_str<'guard>(&self, _guard: &'guard dyn MutatorScope) -> &'guard
str {

unsafe { self.unguarded_as_str() }
 }
}

impl AllocObject<TypeList> for Symbol {
const TYPE_ID: TypeList = TypeList::Symbol;

}

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

65 of 123 10/26/23, 19:01

https://rust-hosted-langs.github.io/book/print.html#moving-on-swiftly
https://rust-hosted-langs.github.io/book/print.html#moving-on-swiftly
https://rust-hosted-langs.github.io/book/print.html#parsing-s-expressions
https://rust-hosted-langs.github.io/book/print.html#parsing-s-expressions

We'll make this quick. It's not the main focus of this book and the topic is better served by

seeking out other resources that can do it justice.

In service of keeping it short, we're parsing s-expressions and we'll start by considering

only symbols and parentheses. We could hardly make it simpler.

The interface

The interface we want should take a &str and return a TaggedScopedPtr . We want the

tagged version of the scoped ptr because the return value might point to either a Pair

or a Symbol . Examples of valid input are:

• a-symbol : a Symbol with name "a-symbol"

• (this is a list) : a linked list of Pair s, each with the first value pointing to a

Symbol

• (this (is a nested) list) : a linked list, as above, containing a nested linked list

• (this () is a nil symbol) : the two characters () together are equivalent to the

special symbol nil , also the value 0 in our TaggedPtr type

• (one . pair) : a single Pair instance with first pointing at the Symbol for "one"

and second at the Symbol for "two"

Our internal implementation is split into tokenizing and then parsing the token stream.

Tokenizing takes the &str input and returns a Vec<Token> on success:

The return Vec<Token> is an intermediate, throwaway value, and does not interact with

our Sticky Immix heap. Parsing takes the Vec<Token> and returns a TaggedScopedPtr on

success:

Tokens, a short description

The full set of tokens we will consider parsing is:

fn tokenize(input: &str) -> Result<Vec<Token>, RuntimeError>;

fn parse_tokens<'guard>(
 mem: &'guard MutatorView,
 tokens: Vec<Token>,
) -> Result<TaggedScopedPtr<'guard>, RuntimeError>;

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

66 of 123 10/26/23, 19:01

https://rust-hosted-langs.github.io/book/print.html#the-interface
https://rust-hosted-langs.github.io/book/print.html#the-interface
https://rust-hosted-langs.github.io/book/print.html#tokens-a-short-description
https://rust-hosted-langs.github.io/book/print.html#tokens-a-short-description

We combine this enum with a source input position indicator to compose the Token

type. This source position is defined as:

And whenever it is available to return as part of an error, error messages can be printed

with the relevant source code line.

The Token type;

Parsing, a short description

The key to quickly writing a parser in Rust is the std::iter::Peekable iterator which can

be obtained from the Vec<Token> instance with tokens.iter().peekable() . This

iterator has a peek() method that allows you to look at the next Token instance without

advancing the iterator.

Our parser, a hand-written recursive descent parser, uses this iterator type to look ahead

to the next token to identify primarily whether the next token is valid in combination with

the current token, or to know how to recurse next without consuming the token yet.

For example, an open paren (followed by a symbol would start a new Pair linked list,

recursing into a new parser function call, but if it is immediately followed by a close paren

) , that is () , it is equivalent to the symbol nil , while otherwise) terminates a Pair

linked list and causes the current parsing function instance to return.

#[derive(Debug, PartialEq)]
pub enum TokenType {
 OpenParen,
 CloseParen,
 Symbol(String),
 Dot,
 Text(String),
 Quote,
}

#[derive(Copy, Clone, Debug, PartialEq)]
pub struct SourcePos {

pub line: u32,
pub column: u32,

}

#[derive(Debug, PartialEq)]
pub struct Token {

pub pos: SourcePos,
pub token: TokenType,

}

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

67 of 123 10/26/23, 19:01

https://rust-hosted-langs.github.io/book/print.html#parsing-a-short-description
https://rust-hosted-langs.github.io/book/print.html#parsing-a-short-description

Another case is the . operator, which is only valid in the following pattern: (a b c . d)

where a , b , c , and d must be symbols or nested lists. A . must be followed by a

single expression followed by a) .

Tokenizing and parsing are wrapped in a function that takes the input &str and gives

back the TaggedScopedPtr :

Notice that this function and parse_tokens() require the mem: &'guard MutatorView

parameter. Parsing creates Symbol and Pair instances in our Sticky Immix heap and so

requires the scope-restricted MutatorView instance.

This is all we'll say on parsing s-expressions. In the next chapter we'll do something

altogether more informative with regards to memory management and it'll be necessary

by the time we're ready to compile: arrays!

Arrays

Before we get to the basics of compilation, we need another data structure: the humble

array. The first use for arrays will be to store the bytecode sequences that the compiler

generates.

Rust already provides Vec but as we're implementing everything in terms of our memory

management abstraction, we cannot directly use Vec . Rust does not (yet) expose the

ability to specify a custom allocator type as part of Vec , nor are we interested in

replacing the global allocator.

Our only option is to write our own version of Vec ! Fortunately we can learn a lot from

Vec itself and it's underlying implementation. Jump over to the Rustonomicon for a

primer on the internals of Vec .

The first thing we'll learn is to split the implementation into a RawArray<T> type and an

Array<T> type. RawArray<T> will provide an unsafe abstraction while Array<T> will

make a safe layer over it.

RawArray

pub fn parse<'guard>(
 mem: &'guard MutatorView,
 input: &str,
) -> Result<TaggedScopedPtr<'guard>, RuntimeError> {
 parse_tokens(mem, tokenize(input)?)
}

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

68 of 123 10/26/23, 19:01

https://rust-hosted-langs.github.io/book/print.html#arrays
https://rust-hosted-langs.github.io/book/print.html#arrays
https://doc.rust-lang.org/nomicon/vec.html
https://doc.rust-lang.org/nomicon/vec.html
https://rust-hosted-langs.github.io/book/print.html#rawarray
https://rust-hosted-langs.github.io/book/print.html#rawarray

If you've just come back from Implementing Vec in the Nomicon, you'll recognize what

we're doing below with RawArray<T> :

Instead of Unique<T> for the pointer, we're using Option<NonNull<T>> . One simple

reason is that Unique<T> is likely to be permanently unstable and only available

internally to std collections. The other is that we can avoid allocating the backing store if

no capacity is requested yet, setting the value of ptr to None .

For when we do know the desired capacity, there is RawArray<T>::with_capacity() . This

method, because it allocates, requires access to the MutatorView instance. If you'll recall

from the chapter on the allocation API, the API provides an array allocation method with

signature:

This method is wrapped on the interpreter side by Heap and MutatorView and in both

cases the return value remains, simply, RawPtr<u8> in the success case. It's up to

RawArray<T> to receive the RawPtr<u8> value and maintain it safely. Here's

with_capcity() , now:

Resizing

If a RawArray<T> 's content will exceed it's capacity, there is RawArray<T>::resize() . It

pub struct RawArray<T: Sized> {
/// Count of T-sized objects that can fit in the array

 capacity: ArraySize,
 ptr: Option<NonNull<T>>,
}

AllocRaw::alloc_array(&self, size_bytes: ArraySize) -> Result<RawPtr<u8>,
AllocError>;

pub fn with_capacity<'scope>(
 mem: &'scope MutatorView,
 capacity: u32,
) -> Result<RawArray<T>, RuntimeError> {

// convert to bytes, checking for possible overflow of ArraySize
limit

let capacity_bytes = capacity
 .checked_mul(size_of::<T>() as ArraySize)
 .ok_or(RuntimeError::new(ErrorKind::BadAllocationRequest))?;

Ok(RawArray {
 capacity,
 ptr: NonNull::new(mem.alloc_array(capacity_bytes)?.as_ptr() as
*mut T),
 })
 }

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

69 of 123 10/26/23, 19:01

https://rust-hosted-langs.github.io/book/print.html#resizing
https://rust-hosted-langs.github.io/book/print.html#resizing

allocates a new backing array using the MutatorView method alloc_array() and copies

the content of the old over to the new, finally swapping in the new backing array for the

old.

The code for this is straightforward but a little longer, go check it out in interpreter/src

/rawarray.rs .

Accessing

Since RawArray<T> will be wrapped by Array<T> , we need a couple more methods to

access the raw memory:

And that's it! Now for the safe wrapper.

Array

The definition of the struct wrapping RawArray<T> is as follows:

Here we have three members:

• length - the length of the array

• data - the RawArray<T> being wrapped

• borrow - a flag serving as a runtime borrow check, allowing RefCell runtime

semantics, since we're in a world of interior mutability patterns

impl<T: Sized> RawArray<T> {
pub fn capacity(&self) -> ArraySize {

self.capacity
 }

pub fn as_ptr(&self) -> Option<*const T> {
match self.ptr {

Some(ptr) => Some(ptr.as_ptr()),
None => None,

 }
 }
}

#[derive(Clone)]
pub struct Array<T: Sized + Clone> {
 length: Cell<ArraySize>,
 data: Cell<RawArray<T>>,
 borrow: Cell<BorrowFlag>,
}

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

70 of 123 10/26/23, 19:01

https://rust-hosted-langs.github.io/book/print.html#accessing
https://rust-hosted-langs.github.io/book/print.html#accessing
https://rust-hosted-langs.github.io/book/print.html#array
https://rust-hosted-langs.github.io/book/print.html#array

We have a method to create a new array - Array::alloc()

In fact we'll extend this pattern of a method named "alloc" to any data structure for

convenience sake.

There are many more methods for Array<T> and it would be exhausting to be

exhaustive. Let's go over the core methods used to read and write elements and then an

example use case.

Reading and writing

First of all, we need a function that takes an array index and returns a pointer to a

memory location, if the index is within bounds:

There are two bounds checks here - firstly, the index should be within the (likely non-zero)

length values; secondly, the RawArray<T> instance should have a backing array allocated.

If either of these checks fail, the result is an error. If these checks pass, we can be

confident that there is array backing memory and that we can return a valid pointer to

somewhere inside that memory block.

impl<T: Sized + Clone> Array<T> {
pub fn alloc<'guard>(

 mem: &'guard MutatorView,
) -> Result<ScopedPtr<'guard, Array<T>>, RuntimeError>

where
 Array<T>: AllocObject<TypeList>,
 {
 mem.alloc(Array::new())
 }
}

impl<T: Sized + Clone> Array<T> {
fn get_offset(&self, index: ArraySize) -> Result<*mut T, RuntimeError> {

if index >= self.length.get() {
Err(RuntimeError::new(ErrorKind::BoundsError))

 } else {
let ptr = self

 .data
 .get()
 .as_ptr()
 .ok_or_else(|| RuntimeError::new(ErrorKind::BoundsError))?;

let dest_ptr = unsafe { ptr.offset(index as isize) as *mut T };

Ok(dest_ptr)
 }
 }
}

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

71 of 123 10/26/23, 19:01

https://rust-hosted-langs.github.io/book/print.html#reading-and-writing
https://rust-hosted-langs.github.io/book/print.html#reading-and-writing

For reading a value in an array, we need two methods:

1. one that handles move/copy semantics and returns a value

2. one that handles reference semantics and returns a reference to the original value

in it's location in the backing memory

First, then:

and secondly:

Writing, or copying, an object to an array is implemented as simply as follows:

These simple functions should only be used internally by Array<T> impl methods. We

impl<T: Sized + Clone> Array<T> {
fn read<'guard>(

 &self,
 _guard: &'guard dyn MutatorScope,
 index: ArraySize,
) -> Result<T, RuntimeError> {

unsafe {
let dest = self.get_offset(index)?;
Ok(read(dest))

 }
 }
}

impl<T: Sized + Clone> Array<T> {
pub fn read_ref<'guard>(

 &self,
 _guard: &'guard dyn MutatorScope,
 index: ArraySize,
) -> Result<&T, RuntimeError> {

unsafe {
let dest = self.get_offset(index)?;
Ok(&*dest as &T)

 }
 }
}

impl<T: Sized + Clone> Array<T> {
pub fn read_ref<'guard>(

 &self,
 _guard: &'guard dyn MutatorScope,
 index: ArraySize,
) -> Result<&T, RuntimeError> {

unsafe {
let dest = self.get_offset(index)?;
Ok(&*dest as &T)

 }
 }
}

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

72 of 123 10/26/23, 19:01

have numerous methods that wrap the above in more appropriate semantics for values

of T in Array<T> .

The Array interfaces

To define the interfaces to the Array, and other collection types, we define a number of

traits. For example, a collection that behaves as a stack implements StackContainer ; a

numerically indexable type implements IndexedContainer , and so on. As we'll see, there

is some nuance, though, when it comes to a difference between collections of non-

pointer types and collections of pointer types.

For our example, we will describe the stack interfaces of Array<T> .

First, the general case trait, with methods for accessing values stored in the array (non-

pointer types):

These are unremarkable functions, by now we're familiar with the references to

MutatorScope and MutatorView in method parameter lists.

In any instance of Array<T> , T need only implement Clone and cannot be dynamically

sized. Thus T can be any primitive type or any straightforward struct.

What if we want to store pointers to other objects? For example, if we want a

heterogenous array, such as Python's List type, what would we provide in place of T ?

The answer is to use the TaggedCellPtr type. However, an Array<TaggedCellPtr ,

because we want to interface with pointers and use the memory access abstractions

provided, can be made a little more ergonomic. For that reason, we have separate traits

for containers of type Container<TaggedCellPtr . In the case of the stack interface this

looks like:

pub trait StackContainer<T: Sized + Clone>: Container<T> {
/// Push can trigger an underlying array resize, hence it requires the

ability to allocate
fn push<'guard>(&self, mem: &'guard MutatorView, item: T) -> Result<(),

RuntimeError>;

/// Pop returns a bounds error if the container is empty, otherwise moves
the last item of the

/// array out to the caller.
fn pop<'guard>(&self, _guard: &'guard dyn MutatorScope) -> Result<T,

RuntimeError>;

/// Return the value at the top of the stack without removing it
fn top<'guard>(&self, _guard: &'guard dyn MutatorScope) -> Result<T,

RuntimeError>;
}

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

73 of 123 10/26/23, 19:01

https://rust-hosted-langs.github.io/book/print.html#the-array-interfaces
https://rust-hosted-langs.github.io/book/print.html#the-array-interfaces

As you can see, these methods, while for T = TaggedCellPtr , provide an interface based

on passing and returning TaggedScopedPtr .

Let's look at the implementation of one of these methods - push() - for both

StackContainer and StackAnyContainer .

Here's the code for StackContainer::push() :

pub trait StackAnyContainer: StackContainer<TaggedCellPtr> {
/// Push can trigger an underlying array resize, hence it requires the

ability to allocate
fn push<'guard>(

 &self,
 mem: &'guard MutatorView,
 item: TaggedScopedPtr<'guard>,
) -> Result<(), RuntimeError>;

/// Pop returns a bounds error if the container is empty, otherwise moves
the last item of the

/// array out to the caller.
fn pop<'guard>(

 &self,
 _guard: &'guard dyn MutatorScope,
) -> Result<TaggedScopedPtr<'guard>, RuntimeError>;

/// Return the value at the top of the stack without removing it
fn top<'guard>(

 &self,
 _guard: &'guard dyn MutatorScope,
) -> Result<TaggedScopedPtr<'guard>, RuntimeError>;
}

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

74 of 123 10/26/23, 19:01

In summary, the order of operations is:

1. Check that a runtime borrow isn't in progress. If it is, return an error.

2. Since we must implement interior mutability, the member data of the Array<T>

struct is a Cell . We have to get() the content in order to use it.

3. We then ask whether the array backing store needs to be grown. If so, we resize the

RawArray<T> and, since it's kept in a Cell on Array<T> , we have to set() value

back into data to save the change.

4. Now we have an RawArray<T> that has enough capacity, the length is incremented

and the object to be pushed is written to the next memory location using the

internal Array<T>::write() method detailed earlier.

Fortunately we can implement StackAnyContainer::push() in terms of

StackContainer::push() :

impl<T: Sized + Clone> StackContainer<T> for Array<T> {
fn push<'guard>(&self, mem: &'guard MutatorView, item: T) -> Result<(),

RuntimeError> {
if self.borrow.get() != INTERIOR_ONLY {

return Err(RuntimeError::new(ErrorKind::MutableBorrowError));
 }

let length = self.length.get();
let mut array = self.data.get(); // Takes a copy

let capacity = array.capacity();

if length == capacity {
if capacity == 0 {

 array.resize(mem, DEFAULT_ARRAY_SIZE)?;
 } else {
 array.resize(mem, default_array_growth(capacity)?)?;
 }

// Replace the struct's copy with the resized RawArray object
self.data.set(array);

 }

self.length.set(length + 1);
self.write(mem, length, item)?;
Ok(())

 }
}

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

75 of 123 10/26/23, 19:01

One last thing

To more easily differentiate arrays of type Array<T> from arrays of type

Array<TaggedCellPtr> , we make a type alias List where:

In conclusion

We referenced how Vec is implemented internally and followed the same pattern of

defining a RawArray<T> unsafe layer with a safe Array<T> wrapper. Then we looked into

the stack interface for Array<T> and the implementation of push() .

There is more to arrays, of course - indexed access the most obvious, and also a few

convenience methods. See the source code in interpreter/src/array.rs for the full

detail.

In the next chapter we'll put Array<T> to use in a Bytecode type!

Bytecode

In this chapter we will look at a bytecode compilation target. We'll combine this with a

section on the virtual machine interface to the bytecode data structure.

We won't go much into detail on each bytecode operation, that will be more usefully

covered in the compiler and virtual machine chapters. Here, we'll describe the data

structures involved. As such, this will be one of our shorter chapters. Let's go!

Design questions

impl StackAnyContainer for Array<TaggedCellPtr> {
fn push<'guard>(

 &self,
 mem: &'guard MutatorView,
 item: TaggedScopedPtr<'guard>,
) -> Result<(), RuntimeError> {
 StackContainer::<TaggedCellPtr>::push(self, mem,
TaggedCellPtr::new_with(item))
 }
}

pub type List = Array<TaggedCellPtr>;

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

76 of 123 10/26/23, 19:01

https://rust-hosted-langs.github.io/book/print.html#one-last-thing
https://rust-hosted-langs.github.io/book/print.html#one-last-thing
https://rust-hosted-langs.github.io/book/print.html#in-conclusion
https://rust-hosted-langs.github.io/book/print.html#in-conclusion
https://rust-hosted-langs.github.io/book/print.html#bytecode
https://rust-hosted-langs.github.io/book/print.html#bytecode
https://rust-hosted-langs.github.io/book/print.html#design-questions
https://rust-hosted-langs.github.io/book/print.html#design-questions

Now that we're talking bytecode, we're at the point of choosing what type of virtual

machine we will be compiling for. The most common type is stack-based where operands

are pushed and popped on and off the stack. This requires instructions for pushing and

popping, with instructions in-between for operating on values on the stack.

We'll be implementing a register-based VM though. The inspiration for this comes from

Lua 51 which implements a fixed-width bytecode register VM. While stack based VMs are

typically claimed to be simpler, we'll see that the Lua way of allocating registers per

function also has an inherent simplicity and has performance gains over a stack VM, at

least for an interpreted non jit-compiled VM.

Given register based, fixed-width bytecode, each opcode must reference the register

numbers that it operates on. Thus, for an (untyped) addition operation x = a + b , each

of x , a and b must be associated with a register.

Following Lua, encoding this as a fixed width opcode typically looks like encoding the

operator and operands as 8 bit values packed into a 32 bit opcode word. That implies,

given 8 bits, that there can be a theoretical maximum of 256 registers for a function call.

For the addition above, this encoding might look like this:

where the first 8 bits contain the operator, in this case "Add", and the other three 8 bit

slots in the 32 bit word each contain a register number.

For some operators, we will need to encode values larger than 8 bits. As we will still need

space for an operator and a destination register, that leaves a maximum of 16 bits for

larger values.

Opcodes

We have options in how we describe opcodes in Rust.

1. Each opcode represented by a u32

◦ Pros: encoding flexibility, it's just a set of bits

◦ Cons: bit shift and masking operations to encode and decode operator and

operands. This isn't necessarily a big deal but it doesn't allow us to leverage

the Rust type system to avoid encoding mistakes

2. Each opcode represented by an enum discriminant

◦ Pros: operators and operands baked as Rust types at compile time, type safe

encoding; no bit operations needed

◦ Cons: encoding scheme limited to what an enum can represent

 32.....24......16.......8.......0
 [reg a][reg b][reg x][Add]

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

77 of 123 10/26/23, 19:01

https://rust-hosted-langs.github.io/book/print.html#1
https://rust-hosted-langs.github.io/book/print.html#1
https://rust-hosted-langs.github.io/book/print.html#opcodes
https://rust-hosted-langs.github.io/book/print.html#opcodes

The ability to leverage the compiler to prevent opcode encoding errors is attractive and

we won't have any need for complex encodings. We'll use an enum to represent all

possible opcodes and their operands.

Since a Rust enum can contain named values within each variant, this is what we use to

most tightly define our opcodes.

Opcode size

Since we're using enum instead of a directly size-controlled type such as u32 for our

opcodes, we have to be more careful about making sure our opcode type doesn't take up

more space than is necessary. 32 bits is ideal for reasons stated earlier (8 bits for the

operator and 8 bits for three operands each.)

Let's do an experiment.

First, we need to define a register as an 8 bit value. We'll also define an inline literal

integer as 16 bits.

Then we'll create an opcode enum with a few variants that might be typical:

It should be obvious that with an enum like this we can safely pass compiled bytecode

from the compiler to the VM. It should also be clear that this, by allowing use of match

statements, will be very ergonomic to work with.

Theoretically, if we never have more than 256 variants, our variants never have more

than 3 Register values (or one Register and one LiteralInteger sized value), the

compiler should be able to pack Opcode into 32 bits.

Our test: we hope the output of the following code to be 4 - 4 bytes or 32 bits.

type Register = u8;
type LiteralInteger = i16;

#[derive(Copy, Clone)]
enum Opcode {
 Add {
 dest: Register,
 a: Register,
 b: Register
 },
 LoadLiteral {
 dest: Register,
 value: LiteralInteger
 }
}

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

78 of 123 10/26/23, 19:01

https://rust-hosted-langs.github.io/book/print.html#opcode-size
https://rust-hosted-langs.github.io/book/print.html#opcode-size

And indeed when we run this, we get Size of Opcode is 4 !

To keep an eye on this situation, we'll put this check into a unit test:

Now, let's put these Opcode s into an array.

An array of Opcode

We can define this array easily, given that Array<T> is a generic type:

Is this enough to define bytecode? Not quite. We've accommodated 16 bit literal signed

integers, but all kinds of other types can be literals. We need some way of referencing any

literal type in bytecode. For that we add a Literals type, which is just:

Any opcode that loads a literal (other than a 16 bit signed integer) will need to reference

an object in the Literals list. This is easy enough: just as there's a LiteralInteger , we

have LiteralId defined as

This id is an index into the Literals list. This isn't the most efficient scheme or encoding,

but given a preference for fixed 32 bit opcodes, it will also keep things simple.

The ByteCode type, finally, is a composition of ArrayOpcode and Literals :

use std::mem::size_of;

fn main() {
println!("Size of Opcode is {}", size_of::<Opcode>());

}

#[test]
fn test_opcode_is_32_bits() {

// An Opcode should be 32 bits; anything bigger and we've mis-defined
some

// variant
assert!(size_of::<Opcode>() == 4);

 }

pub type ArrayOpcode = Array<Opcode>;

pub type Literals = List;

pub type LiteralId = u16;

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

79 of 123 10/26/23, 19:01

https://rust-hosted-langs.github.io/book/print.html#an-array-of-opcode
https://rust-hosted-langs.github.io/book/print.html#an-array-of-opcode

Bytecode compiler support

There are a few methods implemented for ByteCode :

1. fn push<'guard>(&self, mem: &'MutatorView, op: Opcode) -> Result<(),

RuntimeError> This function pushes a new opcode into the ArrayOpcode instance.

2.

This function, given an instruction index into the ArrayOpcode instance, and given

that the instruction at that index is a type of jump instruction, sets the relative jump

offset of the instruction to the given offset. This is necessary because forward jumps

cannot be calculated until all the in-between instructions have been compiled first.

3.

This function pushes a literal on to the Literals list and returns the index - the id -

of the item.

4.

After pushing a literal into the Literals list, the corresponding load instruction

#[derive(Clone)]
pub struct ByteCode {
 code: ArrayOpcode,
 literals: Literals,
}

fn update_jump_offset<'guard>(

 &self,

 mem: &'guard MutatorView,

 instruction: ArraySize,

 offset: JumpOffset,

) -> Result<(), RuntimeError>

fn push_lit<'guard>(

 &self,

 mem: &'guard MutatorView,

 literal: TaggedScopedPtr

) -> Result<LiteralId, RuntimeError>

fn push_loadlit<'guard>(

 &self,

 mem: &'guard MutatorView,

 dest: Register,

 literal_id: LiteralId,

) -> Result<(), RuntimeError>

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

80 of 123 10/26/23, 19:01

https://rust-hosted-langs.github.io/book/print.html#bytecode-compiler-support
https://rust-hosted-langs.github.io/book/print.html#bytecode-compiler-support

should be pushed into the ArrayOpcode list.

ByteCode and it's functions combined with the Opcode enum are enough to build a

compiler for.

Bytecode execution support

The previous section described a handful of functions for our compiler to use to build a

ByteCode structure.

We'll need a different set of functions for our virtual machine to access ByteCode from

an execution standpoint.

The execution view of bytecode is of a contiguous sequence of instructions and an

instruction pointer. We're going to create a separate ByteCode instance for each function

that gets compiled, so our execution model will have to be able to jump between

ByteCode instances. We'll need a new struct to represent that:

In this definition, the pointer instructions can be updated to point at any ByteCode

instance. This allows us to switch between functions by managing different ByteCode

pointers as part of a stack of call frames. In support of this we have:

Of course, the main function needed during execution is to retrieve the next opcode.

Ideally, we can keep a pointer that points directly at the next opcode such that only a

single dereference and pointer increment is needed to get the opcode and advance the

instruction pointer. Our implementation is less efficient for now, requiring a dereference

of 1. the ByteCode instance and then 2. the ArrayOpcode instance and finally 3. an

indexing into the ArrayOpcode instance:

pub struct InstructionStream {
 instructions: CellPtr<ByteCode>,
 ip: Cell<ArraySize>,
}

impl InstructionStream {
pub fn switch_frame(&self, code: ScopedPtr<'_, ByteCode>, ip: ArraySize)

{
self.instructions.set(code);
self.ip.set(ip);

 }
}

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

81 of 123 10/26/23, 19:01

https://rust-hosted-langs.github.io/book/print.html#bytecode-execution-support
https://rust-hosted-langs.github.io/book/print.html#bytecode-execution-support

Conclusion

The full Opcode definition can be found in interpreter/src/bytecode.rs .

As we work toward implementing a compiler, the next data structure we need is a

dictionary or hash map. This will also build on the foundational RawArray<T>

implementation. Let's go on to that now!

1 Roberto Ierusalimschy et al, The Implementation of Lua 5.0

Dicts

The implementation of dicts, or hash tables, is going to combine a reuse of the RawArray

type and closely follow the Crafting Interpreters design:

• open addressing

• linear probing

• FNV hashing

Go read the corresponding chapter in Crafting Interpreters and then come back here. We

won't duplicate much of Bob's excellent explanation of the above terms and we'll assume

you are familiar with his chapter when reading ours.

Code design

A Dict in our interpreter will allow any hashable value as a key and any type as a value.

pub fn get_next_opcode<'guard>(
 &self,
 guard: &'guard dyn MutatorScope,
) -> Result<Opcode, RuntimeError> {

let instr = self
 .instructions
 .get(guard)
 .code
 .get(guard, self.ip.get())?;

self.ip.set(self.ip.get() + 1);
Ok(instr)

 }

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

82 of 123 10/26/23, 19:01

https://rust-hosted-langs.github.io/book/print.html#conclusion-1
https://rust-hosted-langs.github.io/book/print.html#conclusion-1
https://www.lua.org/doc/jucs05.pdf
https://www.lua.org/doc/jucs05.pdf
https://rust-hosted-langs.github.io/book/print.html#dicts
https://rust-hosted-langs.github.io/book/print.html#dicts
https://rust-hosted-langs.github.io/book/chapter-interp-arrays.html
https://rust-hosted-langs.github.io/book/chapter-interp-arrays.html
http://craftinginterpreters.com/hash-tables.html
http://craftinginterpreters.com/hash-tables.html
https://rust-hosted-langs.github.io/book/print.html#code-design
https://rust-hosted-langs.github.io/book/print.html#code-design

We'll store pointers to the key and the value together in a struct DictItem .

Here, we'll also introduce the single diversion from Crafting Interpreters' implementation

in that we'll cache the hash value and use it as part of a tombstone indicator. This adds an

extra word per entry but we will also take the stance that if two keys have the same hash

value then the keys are equal. This simplifies our implementation as we won't need to

implement object equality comparisons just yet.

The Dict itself mirrors Crafting Interpreters' implementation of a count of used entries

and an array of entries. Since tombstones are counted as used entries, we'll add a

separate length that excludes tombstones so we can accurately report the number of

items in a dict.

Hashing

To implement our compiler we will need to be able to hash the Symbol type and integers

(inline in tagged pointers.)

The Rust standard library defines trait std::hash::Hash that must be implemented by

types that want to be hashed. This trait requires the type to implement method fn

hash<H>(&self, state: &mut H) where H: Hasher .

This signature requires a reference to the type &self to access it's data. In our world, this

is insufficient: we also require a &MutatorScope lifetime to access an object. We will have

to wrap std::hash::Hash in our own trait that extends, essentially the same signature,

with this scope guard parameter. This trait is named Hashable :

#[derive(Clone)]
pub struct DictItem {
 key: TaggedCellPtr,
 value: TaggedCellPtr,
 hash: u64,
}

pub struct Dict {
/// Number of items stored

 length: Cell<ArraySize>,
/// Total count of items plus tombstones

 used_entries: Cell<ArraySize>,
/// Backing array for key/value entries

 data: Cell<RawArray<DictItem>>,
}

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

83 of 123 10/26/23, 19:01

https://rust-hosted-langs.github.io/book/print.html#hashing
https://rust-hosted-langs.github.io/book/print.html#hashing

We can implement this trait for Symbol - it's a straightforward wrap of calling

Hash::hash() :

Then finally, because this is all for a dynamically typed interpreter, we'll write a function

that can take any type - a TaggedScopedPtr - and attempt to return a 64 bit hash value

from it:

Now we can take a Symbol or a tagged integer and use them as keys in our Dict .

Finding an entry

The methods that a dictionary typically provides, lookup, insertion and deletion, all hinge

around one internal function, find_entry() .

This function scans the internal RawArray<DictItem> array for a slot that matches the

hash value argument. It may find an exact match for an existing key-value entry; if it does

not, it will return the first available slot for the hash value, whether an empty never-

before used slot or the tombstone entry of a formerly used slot.

A tombstone, remember, is a slot that previously held a key-value pair but has been

/// Similar to Hash but for use in a mutator lifetime-limited scope
pub trait Hashable {

fn hash<'guard, H: Hasher>(&self, _guard: &'guard dyn MutatorScope,
hasher: &mut H);
}

impl Hashable for Symbol {
fn hash<'guard, H: Hasher>(&self, guard: &'guard dyn MutatorScope, h:

&mut H) {
self.as_str(guard).hash(h)

 }
}

fn hash_key<'guard>(
 guard: &'guard dyn MutatorScope,
 key: TaggedScopedPtr<'guard>,
) -> Result<u64, RuntimeError> {

match *key {
 Value::Symbol(s) => {

let mut hasher = FnvHasher::default();
 s.hash(guard, &mut hasher);

Ok(hasher.finish())
 }
 Value::Number(n) => Ok(n as u64),
 _ => Err(RuntimeError::new(ErrorKind::UnhashableError)),
 }
}

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

84 of 123 10/26/23, 19:01

https://rust-hosted-langs.github.io/book/print.html#finding-an-entry
https://rust-hosted-langs.github.io/book/print.html#finding-an-entry

deleted. These slots must be specially marked so that when searching for an entry that

generated a hash for an earlier slot but had to be inserted at a later slot, we know to keep

looking rather than stop searching at the empty slot of a deleted entry.

Slot Content

n - 1 empty

n X: hash % capacity == n

n + 1 tombstone

n + 2 Y: hash % capacity == n

n + 3 empty

For example, in the above table:

• Key X 's hash maps to slot n .

• At some point another entry was inserted at slot n + 1 .

• Then Y , with hash mapping also to slot n , was inserted, but had to be bumped to

slot n + 2 because the previous two slots were occupied.

• Then the entry at slot n + 1 was deleted and marked as a tombstone.

If slot n + 1 was simply marked as empty after it's occupant was deleted, then when

searching for Y we wouldn't know to keep searching and find Y in slot n + 2 . Hence,

deleted entries are marked differently to empty slots.

Here is the code for the Find Entry function:

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

85 of 123 10/26/23, 19:01

To begin with, it calculates the index in the array from which to start searching. Then it

iterates over the internal array, examining each entry's hash and key as it goes.

• The first tombstone that is encountered is saved. This may turn out to be the entry

that should be returned if an exact hash match isn't found by the time a never-

before used slot is reached. We want to reuse tombstone entries, of course.

/// Given a key, generate the hash and search for an entry that either
matches this hash
/// or the next available blank entry.
fn find_entry<'guard>(
 _guard: &'guard dyn MutatorScope,
 data: &RawArray<DictItem>,
 hash: u64,
) -> Result<&'guard mut DictItem, RuntimeError> {

// get raw pointer to base of array
let ptr = data

 .as_ptr()
 .ok_or(RuntimeError::new(ErrorKind::BoundsError))?;

// calculate the starting index into `data` to begin scanning at
let mut index = (hash % data.capacity() as u64) as ArraySize;

// the first tombstone we find will be saved here
let mut tombstone: Option<&mut DictItem> = None;

loop {
let entry = unsafe { &mut *(ptr.offset(index as isize) as *mut

DictItem) as &mut DictItem };

if entry.hash == TOMBSTONE && entry.key.is_nil() {
// this is a tombstone: save the first tombstone reference we

find
if tombstone.is_none() {

 tombstone = Some(entry);
 }
 } else if entry.hash == hash {

// this is an exact match slot
return Ok(entry);

 } else if entry.key.is_nil() {
// this is a non-tombstone empty slot
if let Some(earlier_entry) = tombstone {

// if we recorded a tombstone, return _that_ slot to be
reused

return Ok(earlier_entry);
 } else {

return Ok(entry);
 }
 }

// increment the index, wrapping back to 0 when we get to the end of
the array
 index = (index + 1) % data.capacity();
 }
}

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

86 of 123 10/26/23, 19:01

• If no tombstone was found and we reach a never-before used slot, return that slot.

• If an exact match is found, return that slot of course.

The external API

Just as we defined some conainer traits for Array<T> to define access to arrays based on

stack or indexed style access, we'll define a container trait for Dict :

This trait contains the external API that Dict will expose for managing keys and values.

The implementation of each of these methods will be in terms of the find_entry()

function described above. Let's look at a couple of the more complex examples, assoc()

and dissoc() .

assoc

pub trait HashIndexedAnyContainer {
/// Return a pointer to to the object associated with the given key.
/// Absence of an association should return an error.
fn lookup<'guard>(

 &self,
 guard: &'guard dyn MutatorScope,
 key: TaggedScopedPtr,
) -> Result<TaggedScopedPtr<'guard>, RuntimeError>;

/// Associate a key with a value.
fn assoc<'guard>(

 &self,
 mem: &'guard MutatorView,
 key: TaggedScopedPtr<'guard>,
 value: TaggedScopedPtr<'guard>,
) -> Result<(), RuntimeError>;

/// Remove an association by its key.
fn dissoc<'guard>(

 &self,
 guard: &'guard dyn MutatorScope,
 key: TaggedScopedPtr,
) -> Result<TaggedScopedPtr<'guard>, RuntimeError>;

/// Returns true if the key exists in the container.
fn exists<'guard>(

 &self,
 guard: &'guard dyn MutatorScope,
 key: TaggedScopedPtr,
) -> Result<bool, RuntimeError>;
}

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

87 of 123 10/26/23, 19:01

https://rust-hosted-langs.github.io/book/print.html#the-external-api
https://rust-hosted-langs.github.io/book/print.html#the-external-api
https://rust-hosted-langs.github.io/book/print.html#assoc
https://rust-hosted-langs.github.io/book/print.html#assoc

dissoc

impl HashIndexedAnyContainer for Dict {
fn assoc<'guard>(

 &self,
 mem: &'guard MutatorView,
 key: TaggedScopedPtr<'guard>,
 value: TaggedScopedPtr<'guard>,
) -> Result<(), RuntimeError> {

let hash = hash_key(mem, key)?;

let mut data = self.data.get();
// check the load factor (what percentage of the capacity is or has

been used)
if needs_to_grow(self.used_entries.get() + 1, data.capacity()) {

// create a new, larger, backing array, and copy all existing
entries over

self.grow_capacity(mem)?;
 data = self.data.get();
 }

// find the slot whose entry matches the hash or is the nearest
available entry

let entry = find_entry(mem, &data, hash)?;

// update counters if necessary
if entry.key.is_nil() {

// if `key` is nil, this entry is unused: increment the length
self.length.set(self.length.get() + 1);
if entry.hash == 0 {

// if `hash` is 0, this entry has _never_ been used:
increment the count

// of used entries
self.used_entries.set(self.used_entries.get() + 1);

 }
 }

// finally, write the key, value and hash to the entry
 entry.key.set(key);
 entry.value.set(value);
 entry.hash = hash;

Ok(())
 }
}

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

88 of 123 10/26/23, 19:01

https://rust-hosted-langs.github.io/book/print.html#dissoc
https://rust-hosted-langs.github.io/book/print.html#dissoc

As you can see, once find_entry() is implemented as a separate function, these

methods become fairly easy to comprehend.

Conclusion

If you haven't read Bob Nystron's chapter on hash tables in Crafting Interpreters we

encourage you to do so: it will help make sense of this chapter.

Now, we'll transition to some compiler and virtual machine design before we continue

with code implementation.

Virtual Machine: Architecture and Design

In this short chapter we will outline our virtual machine design choices. These are

substantially a matter of pragmatic dynamic language implementation points and as

such, borrow heavily from uncomplicated prior work such as Lua 5 and Crafting

Interpreters.

impl HashIndexedAnyContainer for Dict {
fn dissoc<'guard>(

 &self,
 guard: &'guard dyn MutatorScope,
 key: TaggedScopedPtr,
) -> Result<TaggedScopedPtr<'guard>, RuntimeError> {

let hash = hash_key(guard, key)?;

let data = self.data.get();
let entry = find_entry(guard, &data, hash)?;

if entry.key.is_nil() {
// a nil key means the key was not found in the Dict
return Err(RuntimeError::new(ErrorKind::KeyError));

 }

// decrement the length but not the `used_entries` count
self.length.set(self.length.get() - 1);

// write the "tombstone" markers to the entry
 entry.key.set_to_nil();
 entry.hash = TOMBSTONE;

// return the value that was associated with the key
Ok(entry.value.get(guard))

 }
}

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

89 of 123 10/26/23, 19:01

https://rust-hosted-langs.github.io/book/print.html#conclusion-2
https://rust-hosted-langs.github.io/book/print.html#conclusion-2
http://craftinginterpreters.com/hash-tables.html
http://craftinginterpreters.com/hash-tables.html
https://rust-hosted-langs.github.io/book/print.html#virtual-machine-architecture-and-design
https://rust-hosted-langs.github.io/book/print.html#virtual-machine-architecture-and-design

Bytecode

We already discussed our Lua-inspired bytecode in a previous chapter. To recap, we are

using 32 bit fixed-width opcodes with space for 8 bit register identifiers and 16 bit literals.

The stack

Following the example of Crafting Interpreters we'll maintain two separate stack data

structures:

• the register stack for storing stack values

• the call frame stack

In our case, these are best separated out because the register stack will be composed

entirely of TaggedCellPtr s.

To store call frames on the register stack we would have to either:

1. allocate every stack frame on the heap with pointers to them from the register stack

2. or coerce a call frame struct type into the register stack type

Neither of these is attractive so we will maintain the call frame stack as an independent

data structure.

The register stack

The register stack is a homogeneous array of TaggedCellPtr s. Thus, no object is

allocated directly on the stack, all objects are heap allocated and the stack only consists of

pointers to heap objects. The exception is literal integers that fit within the range allowed

by a tagged pointer.

Since this is a register virtual machine, not following stack push and pop semantics, and

bytecode operands are limited to 8 bit register indexes, a function is limited to addressing

a maximum of 256 contiguous registers.

Due to function call nesting, the register stack may naturally grow much more than a

length of 256.

This requires us to implement a sliding window into the register stack which will move as

functions are called and return. The call frame stack will contain the stack base pointer

for each function call. We can then happily make use a Rust slice to implement the

window of 256 contiguous stack slots which a function call is limited to.

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

90 of 123 10/26/23, 19:01

https://rust-hosted-langs.github.io/book/print.html#bytecode-1
https://rust-hosted-langs.github.io/book/print.html#bytecode-1
https://rust-hosted-langs.github.io/book/chapter-interp-bytecode.html
https://rust-hosted-langs.github.io/book/chapter-interp-bytecode.html
https://rust-hosted-langs.github.io/book/print.html#the-stack
https://rust-hosted-langs.github.io/book/print.html#the-stack
http://craftinginterpreters.com/calls-and-functions.html#call-frames
http://craftinginterpreters.com/calls-and-functions.html#call-frames
https://rust-hosted-langs.github.io/book/print.html#the-register-stack
https://rust-hosted-langs.github.io/book/print.html#the-register-stack

The call frame stack

A call frame needs to store three critical data points:

• a pointer to the function being executed

• the return instruction pointer when a nested function is called

• the stack base pointer for the function call

These three items can form a simple struct and we can define an Array<CallFrame> type

for optimum performance.

Global values

To store global values, we have all we need: the Dict type that maps Symbol s to another

value. The VM will, of course, have an abstraction over the internal Dict to enforce

Symbol s only as keys.

Closures

In the classic upvalues implementation from Lua 5, followed also by Crafting Interpreters,

a linked list of upvalues is used to map stack locations to shared variables.

In every respect but one, our implementation will be similar.

In our implementation, we'll use the Dict type that we already have available to do this

mapping of stack locations to shared variables.

As the language and compiler will implement lexical scoping, the compiler will have static

knowledge of the relative stack locations of closed-over variables and can generate the

appropriate bytecode operands for the virtual machine to calculate the absolute stack

locations at runtime. Thus, absolute stack locations can be mapped to Upvalue objects

and so a Dict can be employed to facilitate the mapping. This obviates the need to

implement a linked list data structure.

The compiler must issue instructions to tell the VM when to make a closure data

structure. It can do so, of course, because simple analysis shows whether a function

references nonlocal bindings. A closure data structure as generated by the compiler must

reference the function that will be called and the list of relative stack locations that

correspond to each nonlocal binding.

The VM, when executing the instruction to make a closure, will calculate the absolute

stack locations for each nonlocal binding and create the closure environment - a

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

91 of 123 10/26/23, 19:01

https://rust-hosted-langs.github.io/book/print.html#the-call-frame-stack
https://rust-hosted-langs.github.io/book/print.html#the-call-frame-stack
https://rust-hosted-langs.github.io/book/print.html#global-values
https://rust-hosted-langs.github.io/book/print.html#global-values
https://rust-hosted-langs.github.io/book/print.html#closures
https://rust-hosted-langs.github.io/book/print.html#closures
http://craftinginterpreters.com/closures.html
http://craftinginterpreters.com/closures.html

List<Upvalue> . VM instructions within the function code, as in Lua, indirectly reference

nonlocal bindings by indexing into this environment.

Partial functions

Here is one point where we will introduce a less common construct in our virtual

machine. Functions will be first class, that is they are objects that can be passed around

as values and arguments. On top of that, we'll allow passing insufficient arguments to a

function when it is called. The return value of such an operation will, instead of an error,

be a Partial instance. This value must carry with it the arguments given and a pointer to

the function waiting to be called.

This is insufficient for a fully featured currying implementation but is an interesting

extension to first class functions, especially as it allows us to not require lambdas to be

constructed syntactically every time they might be used.

By that we mean the following: if we have a function (def mul (x y) (* x y)) , to turn

that into a function that multiplies a number by 3 we'd normally have to define a second

function, or lambda, (lambda (x) (mul x 3)) and call it instead. However, with a simple

partial function implementation we can avoid the lambda definition and call (mul 3)

directly, which will collect the function pointer for mul and argument 3 into a Partial

and wait for the final argument before calling into the function mul with both required

arguments.

Note: We can use the same struct for both closures and partial functions. A closure

is a yet-to-be-called function carrying a list of references to values. or a list of values.

A partial is a yet-to-be-called function carrying a list of arguments. They look very

similar, and it's possible, of course, to partially apply arguments to a closure.

Instruction dispatch

In dispatch, one optimal outcome is to minimize the machine code overhead between

each VM instruction code. This overhead, where the next VM instruction is fetched,

decoded and mapped to the entry point of the instruction code, is the dispatch code. The

other axis of optimization is code ergonomics.

Prior research into implementing dispatch in Rust concludes that simple switch-style

dispatch is the only cross-platform construct we can reasonably make use of. Other

mechanisms come with undesirable complexity or are platform dependent. For the most

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

92 of 123 10/26/23, 19:01

https://rust-hosted-langs.github.io/book/print.html#partial-functions
https://rust-hosted-langs.github.io/book/print.html#partial-functions
https://rust-hosted-langs.github.io/book/print.html#instruction-dispatch
https://rust-hosted-langs.github.io/book/print.html#instruction-dispatch
https://pliniker.github.io/post/dispatchers/
https://pliniker.github.io/post/dispatchers/

part, with modern CPU branch prediction, the overhead of switch dispatch is small.

What this looks like: a single match expression with a pattern to represent each bytecode

discriminant, all wrapped in a loop. To illustrate:

That's it!

Next we'll look at the counterpart of VM design - compiler design.

Virtual Machine: Implementation

In this chapter we'll dive into some of the more interesting and important

implementation details of our virtual machine.

To begin with, we'll lay out a struct for a single thread of execution. This struct should

contain everything needed to execute the output of the compiler.

Here we see every data structure needed to represent:

• function call frames

• stack values

loop {
let opcode = get_next_opcode();
match opcode {

 Opcode::Add(a, x, y) => { ... },
 Opcode::Call(f, r, p) => { ... },
 }
}

pub struct Thread {
/// An array of CallFrames

 frames: CellPtr<CallFrameList>,
/// An array of pointers any object type

 stack: CellPtr<List>,
/// The current stack base pointer

 stack_base: Cell<ArraySize>,
/// A dict that should only contain Number keys and Upvalue values. This

is a mapping of
/// absolute stack indeces to Upvalue objects where stack values are

closed over.
 upvalues: CellPtr<Dict>,

/// A dict that should only contain Symbol keys but any type as values
 globals: CellPtr<Dict>,

/// The current instruction location
 instr: CellPtr<InstructionStream>,
}

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

93 of 123 10/26/23, 19:01

https://rust-hosted-langs.github.io/book/print.html#thats-it
https://rust-hosted-langs.github.io/book/print.html#thats-it
https://rust-hosted-langs.github.io/book/print.html#virtual-machine-implementation
https://rust-hosted-langs.github.io/book/print.html#virtual-machine-implementation

• closed-over stack values (Upvalues)

• global values

• bytecode to execute

The VM's primary operation is to iterate through instructions, executing each in

sequence. The outermost control struture is, therefore, a loop containing a match

expression.

Here is a code extract of the opening lines of this match operation. The function shown is

a member of the Thread struct. It evaluates the next instruction and is called in a loop by

an outer function. We'll look at several extracts from this function in this chapter.

The function obtains a slice view of the register stack, then narrows that down to a 256

register window for the current function.

Then it fetches the next opcode and using match , decodes it.

Let's take a closer look at the stack.

The stack

While some runtimes and compilers, particularly low-level languages, have a single stack

/// Execute the next instruction in the current instruction stream
fn eval_next_instr<'guard>(

 &self,
 mem: &'guard MutatorView,
) -> Result<EvalStatus<'guard>, RuntimeError> {

// TODO not all these locals are required in every opcode - optimize
and get them only

// where needed
let frames = self.frames.get(mem);
let stack = self.stack.get(mem);
let globals = self.globals.get(mem);
let instr = self.instr.get(mem);

// Establish a 256-register window into the stack from the stack base
 stack.access_slice(mem, |full_stack| {

let stack_base = self.stack_base.get() as usize;
let window = &mut full_stack[stack_base..stack_base + 256];

// Fetch the next instruction and identify it
let opcode = instr.get_next_opcode(mem)?;

match opcode {
// Do nothing.

 Opcode::NoOp => return Ok(EvalStatus::Pending),

 ...

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

94 of 123 10/26/23, 19:01

https://rust-hosted-langs.github.io/book/print.html#the-stack-1
https://rust-hosted-langs.github.io/book/print.html#the-stack-1

that represents both function call information and local variables, our high-level runtime

splits the stack into:

1. a stack of CallFrame objects containing function call and return information

2. and a register stack for local variables.

Let's look at each in turn.

The register stack

In our Thread struct, the register stack is represented by the two members:

Remember that the List type is defined as Array<TaggedCellPtr> and is therefore an

array of tagged pointers. Thus, the register stack is a homogenous array of word sized

values that are pointers to objects on the heap or values that can be inlined in the tagged

pointer word.

We also have a stack_base variable to quickly retrieve the offset into stack that

indicates the beginning of the window of 256 registers that the current function has for

it's local variables.

The call frame stack

In our Thread struct, the call frame stack is represented by the members:

A CallFrame and an array of them are defined as:

pub struct Thread {
 ...
 stack: CellPtr<List>,
 stack_base: Cell<ArraySize>,
 ...
}

pub struct Thread {
 ...
 frames: CellPtr<CallFrameList>,
 instr: CellPtr<InstructionStream>,
 ...
}

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

95 of 123 10/26/23, 19:01

https://rust-hosted-langs.github.io/book/print.html#the-register-stack-1
https://rust-hosted-langs.github.io/book/print.html#the-register-stack-1
https://rust-hosted-langs.github.io/book/print.html#the-call-frame-stack-1
https://rust-hosted-langs.github.io/book/print.html#the-call-frame-stack-1

A CallFrame contains all the information needed to resume a function when a nested

function call returns:

• a Function object, which references the Bytecode comprising the function

• the return instruction pointer

• the stack base index for the function's stack register window

On every function call, a CallFrame instance is pushed on to the Thread 's frames stack

and on every return from a function, the top CallFrame is popped off the stack.

Additionally, we keep a pointer to the current executing function (the function

represented by the top CallFrame) with the member instr:

CellPtr<InstructionStream> .

For a review of the definition of InstructionStream see the bytecode chapter where we

defined it as a pair of values - a ByteCode reference and a pointer to the next Opcode to

fetch.

The VM keeps the InstructionStream object pointing at the same ByteCode object as is

pointed at by the Function in the CallFrame at the top of the call frame stack. Thus,

when a call frame is popped off the stack, the InstructionStream is updated with the

ByteCode and instruction pointer from the CallFrame at the new stack top; and similarly

when a function is called into and a new CallFrame is pushed on to the stack.

Functions and function calls

Function objects

Since we've mentioned Function objects above, let's now have a look at the definition.

#[derive(Clone)]
pub struct CallFrame {

/// Pointer to the Function being executed
 function: CellPtr<Function>,

/// Return IP when returning from a nested function call
 ip: Cell<ArraySize>,

/// Stack base - index into the register stack where register window for
this function begins
 base: ArraySize,
}

pub type CallFrameList = Array<CallFrame>;

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

96 of 123 10/26/23, 19:01

https://rust-hosted-langs.github.io/book/chapter-interp-bytecode.html
https://rust-hosted-langs.github.io/book/chapter-interp-bytecode.html
https://rust-hosted-langs.github.io/book/print.html#functions-and-function-calls
https://rust-hosted-langs.github.io/book/print.html#functions-and-function-calls
https://rust-hosted-langs.github.io/book/print.html#function-objects
https://rust-hosted-langs.github.io/book/print.html#function-objects

Instances of Function are produced by the compiler, one for each function definition

that is compiled, including nested function definitions.

A Function object is a simple collection of values, some of which may be nil . Any

member represented by a TaggedCellPtr may, of course, contain a nil value.

Thus the function may be anonymous, represented by a nil name value.

While the function name is optional, the parameter names are always included. Though

they do not need to be known in order to execute the function, they are useful for

representing the function in string form if the programmer needs to introspect a function

object.

Members that are required to execute the function are the arity, the ByteCode and any

nonlocal references.

Nonlocal references are an optional list of (relative_stack_frame, register) tuples,

provided by the compiler, that are needed to locate nonlocal variables on the register

stack. These are, of course, a key component of implementing closures.

We'll talk about closures shortly, but before we do, we'll extend Function s with partial

application of arguments.

Partial functions

A partial function application takes a subset of the arguments required to make a

function call. These arguments must be stored for later.

Thus, a Partial object references the Function to be called and a list of arguments to

give it when the call is finally executed.

#[derive(Clone)]
pub struct Function {

/// name could be a Symbol, or nil if it is an anonymous fn
 name: TaggedCellPtr,

/// Number of arguments required to activate the function
 arity: u8,

/// Instructions comprising the function code
 code: CellPtr<ByteCode>,

/// Param names are stored for introspection of a function signature
 param_names: CellPtr<List>,

/// List of (CallFrame-index: u8 | Window-index: u8) relative offsets
from this function's

/// declaration where nonlocal variables will be found. Needed when
creating a closure. May be

/// nil
 nonlocal_refs: TaggedCellPtr,
}

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

97 of 123 10/26/23, 19:01

https://rust-hosted-langs.github.io/book/print.html#partial-functions-1
https://rust-hosted-langs.github.io/book/print.html#partial-functions-1

Below is the definition of Partial . Note that it also contains a possible closure

environment which, again, we'll arrive at momentarily.

The arity and used members indicate how many arguments are expected and how

many have been given. These are provided directly in this struct rather than requiring

dereferencing the arity on the Function object and the length of the args list. This is

for convenience and performance.

Each time more arguments are added to a Partial , a new Partial instance must be

allocated and the existing arguments copied over. A Partial object, once created, is

immutable.

Closures

Closures and partial applications have, at an abstract level, something in common: they

both reference values that the function will need when it is finally called.

It's also possible, of course, to have a partially applied closure.

We can extend the Partial definition with a closure environment so that we can use the

same object type everywhere to represent a function pointer, applied arguments and

closure environment as needed.

Compiling a closure

The compiler, because it keeps track of variable names and scopes, knows when a

Function references nonlocal variables. After such a function is defined, the compiler

emits a MakeClosure instruction.

Referencing the stack with upvalues

The VM, when it executes MakeClosure , creates a new Partial object. It then iterates

#[derive(Clone)]
pub struct Partial {

/// Remaining number of arguments required to activate the function
 arity: u8,

/// Number of arguments already applied
 used: u8,

/// List of argument values already applied
 args: CellPtr<List>,

/// Closure environment - must be either nil or a List of Upvalues
 env: TaggedCellPtr,

/// Function that will be activated when all arguments are applied
 func: CellPtr<Function>,
}

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

98 of 123 10/26/23, 19:01

https://rust-hosted-langs.github.io/book/print.html#closures-1
https://rust-hosted-langs.github.io/book/print.html#closures-1
https://rust-hosted-langs.github.io/book/print.html#compiling-a-closure
https://rust-hosted-langs.github.io/book/print.html#compiling-a-closure
https://rust-hosted-langs.github.io/book/print.html#referencing-the-stack-with-upvalues
https://rust-hosted-langs.github.io/book/print.html#referencing-the-stack-with-upvalues

over the list of nonlocal references and allocates an Upvalue object for each, which are

added to the env member on the Partial object.

The below code extract is from the function Thread::eval_next_instr() in the

MakeClosure instruction decode and execution block.

The two operands of the MakeClosure operation - dest and function - are registers.

function points at the Function to be given an environment and made into a closure

Partial instance; the pointer to this instance will be written to the dest register.

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

99 of 123 10/26/23, 19:01

// This operation should be generated by the compiler after a
function definition

// inside another function but only if the nested function
refers to nonlocal

// variables.
// The result of this operation is a Partial with a closure

environment
 Opcode::MakeClosure { dest, function } => {

// 1. iter over function nonlocals
// - calculate absolute stack offset for each
// - find existing or create new Upvalue for each
// - create closure environment with list of Upvalues
// 2. create new Partial with environment
// 3. set dest to Partial
let function_ptr = window[function as usize].get(mem);
if let Value::Function(f) = *function_ptr {

let nonlocals = f.nonlocals(mem);
// Create an environment array for upvalues
let env = List::alloc_with_capacity(mem,

nonlocals.length())?;

// Iter over function nonlocals, calculating absolute
stack offset for each
 nonlocals.access_slice(mem, |nonlocals| -> Result<(),
RuntimeError> {

for compound in nonlocals {
// extract 8 bit register and call frame

values from 16 bit nonlocal
// descriptors
let frame_offset = (*compound >> 8) as

ArraySize;
let window_offset = (*compound & 0xff) as

ArraySize;

// look back frame_offset frames and add the
register number to

// calculate the absolute stack position of
the value

let frame = frames.get(mem, frames.length() -
frame_offset)?;

let location = frame.base + window_offset;

// look up, or create, the Upvalue for the
location, and add it to

// the environment
let (_, upvalue) =

self.upvalue_lookup_or_alloc(mem, location)?;
 StackAnyContainer::push(&*env, mem,
upvalue.as_tagged(mem))?;
 }

Ok(())
 })?;

// Instantiate a Partial function application from
the closure environment

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

100 of 123 10/26/23, 19:01

The Upvalue struct itself is defined as:

An Upvalue is an object that references an absolute register stack location (that is the

location member.)

The initial value of closed is false . In this state, the location on the stack that contains

the variable must be a valid location. That is, the stack can not have been unwound yet. If

the closure is called, Upvalue s in this state are simply an indirection between the

function and the variable on the register stack.

The compiler is able to keep track of variables and whether they are closed over. It emits

bytecode instructions to close Upvalue objects when variables on the stack go out of

scope.

This instruction, CloseUpvalues , copies the variable from the register stack to the value

member of the Upvalue object and sets closed to true .

From then on, when the closure reads or writes to this variable, the value on the Upvalue

object is modified rather than the location on the register stack.

Global values

// and set the destination register
let partial = Partial::alloc(mem, f, Some(env),

&[])?;
 window[dest as usize].set(partial.as_tagged(mem));
 } else {

return Err(err_eval("Cannot make a closure from a
non-Function type"));
 }
 }

#[derive(Clone)]
pub struct Upvalue {

// Upvalue location can't be a pointer because it would be a pointer into
the dynamically

// alloocated stack List - the pointer would be invalidated if the stack
gets reallocated.
 value: TaggedCellPtr,
 closed: Cell<bool>,
 location: ArraySize,
}

pub struct Thread {
 ...
 globals: CellPtr<Dict>,
 ...
}

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

101 of 123 10/26/23, 19:01

https://rust-hosted-langs.github.io/book/print.html#global-values-1
https://rust-hosted-langs.github.io/book/print.html#global-values-1

The outermost scope of a program's values and functions are the global values. We can

manage these with an instance of a Dict . While a Dict can use any hashable value as a

key, internally the VM will only allow Symbol s to be keys. That is, globals must be named

objects.

Next...

Let's dive into the compiler!

Compiler: Design

Drawing from the VM design, the compiler must support the following language

constructs:

• function definitions

• anonymous functions

• function calls

• lexical scoping

• closures

• local variables

• global variables

• expressions

This is a minimally critical set of features that any further language constructs can be built

on while ensuring that our compiler remains easy to understand for the purposes of this

book.

Our parser, recall, reads in s-expression syntax and produces a nested Pair and Symbol

based abstract syntax tree. Adding other types - integers, strings, arrays etc - is mostly a

matter of expanding the parser. The compiler as described here, being for a dynamically

typed language, will support them without refactoring.

Eval/apply

Our compiler design is based on the eval/apply pattern.

In this pattern we recursively descend into the Pair AST, calling eval on the root node of

the expression to be compiled.

Eval is, of course, short for "evaluate" - we want to evaluate the given expression. In the

case of a compiler, we don't want the result yet, rather the sequence of instructions that

will generate the result.

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

102 of 123 10/26/23, 19:01

https://rust-hosted-langs.github.io/book/print.html#next
https://rust-hosted-langs.github.io/book/print.html#next
https://rust-hosted-langs.github.io/book/print.html#compiler-design
https://rust-hosted-langs.github.io/book/print.html#compiler-design
https://rust-hosted-langs.github.io/book/chapter-interp-vm-design.html
https://rust-hosted-langs.github.io/book/chapter-interp-vm-design.html
https://rust-hosted-langs.github.io/book/chapter-interp-parsing.html
https://rust-hosted-langs.github.io/book/chapter-interp-parsing.html
https://rust-hosted-langs.github.io/book/print.html#evalapply
https://rust-hosted-langs.github.io/book/print.html#evalapply

More concretely, eval looks at the node in the AST it is given and if it resolves to fetching a

value for a variable, it generates that instruction; otherwise if it is a compound

expression, the arguments are evaluated and then the function and arguments are

passed to apply, which generates appropriate function call instructions.

Designing an Eval function

Eval looks at the given node and attempts to generate an instruction for it that would

resolve the node to a value - that is, evaluate it.

Symbols

If the node is a special symbol, such as nil or true , then it is treated as a literal and an

instruction is generated to load that literal symbol into the next available register.

Otherwise if the node is any other symbol, it is assumed to be bound to a value (it must

be a variable) and an instruction is generated for fetching the value into a register.

Variables come in three kinds: local, nonlocal or global.

Local: the symbol has been declared earlier in the expression (either it is a function

parameter or it was declared using let) and the compiler already has a record of it. The

symbol is already associated with a local register index and a simple register copy

instruction is generated.

Nonlocal: the symbol has been bound in a parent nesting function. Again, the compiler

already has a record of the declaration, which register is associated with the symbol and

which relative call frame will contain that register. An upvalue lookup instruction is

generated.

Global: if the symbol isn't found as a local binding or a nonlocal binding, it is assumed to

be a global, and a late-binding global lookup instruction is generated. In the event the

programmer has misspelled a variable name, this is possibly the instruction that will be

generated and the programmer will see an unknown-variable error at runtime.

Expressions and function calls

When eval is passed a Pair , this represents the beginning of an expression, a function

call. A composition of things.

In s-expression syntax, all expressions and function calls looks like (function_name arg1

arg2) . That is parsed into a Pair tree, which takes the form:

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

103 of 123 10/26/23, 19:01

https://rust-hosted-langs.github.io/book/print.html#designing-an-eval-function
https://rust-hosted-langs.github.io/book/print.html#designing-an-eval-function
https://rust-hosted-langs.github.io/book/print.html#symbols
https://rust-hosted-langs.github.io/book/print.html#symbols
https://rust-hosted-langs.github.io/book/print.html#expressions-and-function-calls
https://rust-hosted-langs.github.io/book/print.html#expressions-and-function-calls

It is apply's job to handle this case, so eval extracts the first and second values from the

outermost Pair and passes them into apply. In more general terms, eval calls apply with

the function name and the argument list and leaves the rest up to apply.

Designing an Apply function

Apply takes a function name and a list of arguments. First it recurses into eval for each

argument expression, then generates instructions to call the function with the argument

results.

Calling functions

Functions are either built into to the language and VM or are library/user-defined

functions composed of other functions.

In every case, the simplified pattern for function calls is:

• allocate a register to write the return value into

• eval each of the arguments in sequence, allocating their resulting values into

consequent registers

• compile the function call opcode, giving it the number of argument registers it

should expect

Compiling a call to a builtin function might translate directly to a dedicated bytecode

operation. For example, querying whether a value is nil with builtin function nil?

compiles 1:1 to a bytecode operation that directly represents that query.

Compiling a call to a user defined function is a more involved. In it's more general form,

supporting first class functions and closures, a function call requires two additional

pointers to be placed in registers. The complete function call register allocation looks like

this:

Register Use

0 reserved for return value

Pair(
 Symbol(function_name),
 Pair(
 Symbol(arg1),
 Pair(
 Symbol(arg2),
 nil
)
)
)

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

104 of 123 10/26/23, 19:01

https://rust-hosted-langs.github.io/book/print.html#designing-an-apply-function
https://rust-hosted-langs.github.io/book/print.html#designing-an-apply-function
https://rust-hosted-langs.github.io/book/print.html#calling-functions
https://rust-hosted-langs.github.io/book/print.html#calling-functions

Register Use

1 reserved for closure environment pointer

2 first argument

3 second argument

...

n function pointer

If a closure is called, the closure object itself contains a pointer to it's environment and

the function to call and those pointers can be copied over to registers. Otherwise, the

closure environment pointer will be a nil pointer.

The VM, when entering a new function, will represent the return value register always as

the zeroth register.

When the function call returns, all registers except the return value are discarded.

Compiling functions

Let's look at a simple function definition:

This function has a name is_true , takes one argument x and evaluates one expression

(is? x true) .

The same function may be written without a name:

Compiling a function requires a few inputs:

• an optional reference to a parent nesting function

• an optional function name

• a list of argument names

• a list of expressions that will compute the return value

The desired output is a data structure that combines:

• the optional function name

• the argument names

• the compiled bytecode

First, a scope structure is established. A scope is a lexical block in which variables are

bound and unbound. In the compiler, this structure is simply a mapping of variable name

(def is_true (x)
 (is? x true))

(lambda (x) (is? x true))

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

105 of 123 10/26/23, 19:01

https://rust-hosted-langs.github.io/book/print.html#compiling-functions
https://rust-hosted-langs.github.io/book/print.html#compiling-functions

to the register number that contains the value.

The first variables to be bound in the function's scope are the argument names. The

compiler, given the list of argument names to the function and the order in which the

arguments are given, associates each argument name with the register number that will

contain it's value. As we saw above, these are predictably and reliably registers 2 and

upward, one for each argument.

A scope may have a parent scope if the function is defined within another function. This is

how nonlocal variable references will be looked up. We will go further into that when we

discuss closures.

The second step is to eval each expression in the function, assigning the result to register

0, the preallocated return value register. The result of compiling each expression via eval

is bytecode.

Thirdly and finally, a function object is instantiated, given it's name, the argument names

and the bytecode.

Compiling closures

During compilation of the expressions within a function, if any of those expressions

reference nonlocal variables (that is, variables not declared within the scope of the

function) then the function object needs additional data to describe how to access those

nonlocal variables at runtime.

In the below example, the anonymous inner function references the parameter n to the

outer function, n . When the inner function is returned, the value of n must be carried

with it even after the stack scope of the outer function is popped and later overwritten

with values for other functions.

Eval, when presented with a symbol to evaluate that has not been declared in the

function scope, searches outer scopes next. If a binding is found in an outer scope, a

nonlocal reference is added to the function's local scope that points to the outer scope

and a GetUpvalue instruction is compiled.

This nonlocal reference is a combination of two values: a count of stack frames to skip

over to find the outer scope variable and the register offset in that stack frame.

Non-local references are added to the function object that is returned by the function

compiler. The VM will use these to identify the absolute location on the stack where a

nonlocal variable should be read from and create upvalue objects at runtime when a

(def make_adder (n)
 (lambda (x) (+ x n))
)

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

106 of 123 10/26/23, 19:01

https://rust-hosted-langs.github.io/book/print.html#compiling-closures
https://rust-hosted-langs.github.io/book/print.html#compiling-closures

variable is closed over.

Compiling let

Let is the declaration of variables and assigning values: the binding of values, or the

results of expressions, to symbols. Secondly, it provides space to evaluate expressions

that incorporate those variables.

Here we bind the result of (make_adder 3) - a function - to the symbol add_3 and then

call add_3 with argument 4 .

The result of the entire let expression should be 7 .

Compiling let simply introduces additional scopes within a function scope. That is,

instead of a function containing a single scope for all it's variables, scopes are nested. A

stack of scopes is needed, with the parameters occupying the outermost scope.

First a new scope is pushed on to the scope stack and each symbol being bound is added

to the new scope.

To generate code, a result register is reserved and a register for each binding is reserved.

Finally, each expression is evaluated and the scope is popped, removing the bindings

from view.

Register allocation

A function call may make use of no more than 256 registers. Recall from earlier that the

0th register is reserved for the function return value and subsequent registers are

reserved for the function arguments.

Beyond these initial registers the compiler uses a simple strategy in register allocation: if

a variable (a parameter or a let binding) is declared, it is allocated a register based on a

stack discipline. Thus, variables are essentially pushed and popped off the register stack

as they come into and out of scope.

This strategy primarily ensures code simplicity - there is no register allocation

optimization.

(let ((add_3 (make_adder 3)))
 (add_3 4))

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

107 of 123 10/26/23, 19:01

https://rust-hosted-langs.github.io/book/print.html#compiling-let
https://rust-hosted-langs.github.io/book/print.html#compiling-let
https://rust-hosted-langs.github.io/book/print.html#register-allocation
https://rust-hosted-langs.github.io/book/print.html#register-allocation

C'est tout!

That covers the VM and compiler design at an overview level. We've glossed over a lot of

detail but the next chapters will expose the implementation detail. Get ready!

Compiler: Implementation

Before we get into eval and apply let's consider how we will support variables and lexical

scoping.

Variables and Scopes

As seen in the previous chapter, variable accesses come in three types, as far as the

compiler and VM are concerned: local, nonlocal and global. Each access uses a different

bytecode operation, and so the compiler must be able to determine what operations to

emit at compile time.

Given that we have named function parameters and let , we have syntax for explicit

variable declaration within function definitions. This means that we can easily keep track

of whether a variable reference is local, nonlocal or global.

If a variable wasn't declared as a parameter or in a let block, it must be global and

global variables are accessed dynamically by name.

As far as local and nonlocal variables are concerned, the VM does not care about or

consider their names. At the VM level, local and nonlocal variables are numbered

registers. That is, each function's local variables are mapped to a register numbered

between 2 and 255. The compiler must generate the mapping from variable names to

register numbers.

For generating and maintaining mappings, we need data structures for keeping track of:

• function local variables and their mappings to register numbers

• references to nonlocal variables and their relative stack offsets

• nested scopes within functions

Named variables

Our first data structure will define a register based variable:

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

108 of 123 10/26/23, 19:01

https://rust-hosted-langs.github.io/book/print.html#cest-tout
https://rust-hosted-langs.github.io/book/print.html#cest-tout
https://rust-hosted-langs.github.io/book/print.html#compiler-implementation
https://rust-hosted-langs.github.io/book/print.html#compiler-implementation
https://rust-hosted-langs.github.io/book/print.html#variables-and-scopes
https://rust-hosted-langs.github.io/book/print.html#variables-and-scopes
https://rust-hosted-langs.github.io/book/print.html#named-variables
https://rust-hosted-langs.github.io/book/print.html#named-variables

For every named, non-global variable (created by defining function parameters and let

blocks) a Variable instance is created in the compiler.

The member closed_over defaults to false . If the compiler detects that the variable

must escape the stack as part of a closure, this flag will be flipped to true (it cannot be

set back to false .)

Scope structure

The data structures that manage nesting of scopes and looking up a Variable by name

are defined here.

/// A variable is a named register. It has compile time metadata about how it
is used by closures.
struct Variable {
 register: Register,
 closed_over: Cell<bool>,
}

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

109 of 123 10/26/23, 19:01

https://rust-hosted-langs.github.io/book/print.html#scope-structure
https://rust-hosted-langs.github.io/book/print.html#scope-structure

For every function defined, the compiler maintains an instance of the type Variables .

Each function's Variables has a stack of Scope instances, each of which has it's own set

of name to Variable register number mappings. The outermost Scope contains the

mapping of function parameters to registers.

A nested function's Variables , when the function refers to a nesting function's variable,

builds a mapping of nonlocal variable name to relative stack position of that variable. This

is a NonLocal - a relative stack frame offset and the register number within that stack

frame of the variable.

In summary, under these definitions:

• A Nonlocal instance caches a relative stack location of a nonlocal variable for

compiling upvalues

• Scope manages the mapping of a variable name to the Variable register number

within a single scope

• Variables maintains all the nested scopes for a function during compilation and

/// A Scope contains a set of local variable to register bindings
struct Scope {

/// symbol -> variable mapping
 bindings: HashMap<String, Variable>,
}

/// A nonlocal reference will turn in to an Upvalue at VM runtime.
/// This struct stores the non-zero frame offset and register values of a
parent function call
/// frame where a binding will be located.
struct Nonlocal {
 upvalue_id: u8,
 frame_offset: u8,
 frame_register: u8,
}

/// A Variables instance represents a set of nested variable binding scopes
for a single function
/// definition.
struct Variables<'parent> {

/// The parent function's variables.
 parent: Option<&'parent Variables<'parent>>,

/// Nested scopes, starting with parameters/arguments on the outermost
scope and let scopes on

/// the inside.
 scopes: Vec<Scope>,

/// Mapping of referenced nonlocal nonglobal variables and their upvalue
indexes and where to

/// find them on the stack.
 nonlocals: RefCell<HashMap<String, Nonlocal>>,

/// The next upvalue index to assign when a new nonlocal is encountered.
 next_upvalue: Cell<u8>,
}

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

110 of 123 10/26/23, 19:01

caches all the nonlocal references. It also keeps a reference to a parent nesting

function if there is one, in order to handle lexically scoped lookups.

Retrieving named variables

Whenever a variable is referenced in source code, the mapping to it's register must be

looked up. The result of a lookup is Option<Binding> .

The lookup process checks the local function scopes first.

If the variable is found to be declared there, Some(Local) enum variant is returned. In

terms of bytecode, this will translate to a direct register reference.

Next, any outer function scopes are searched. If the variable is found in any outer scope,

Some(Upvalue) variant is returned. The compiler will emit instructions to copy the value

refered to by the upvalue into a function-local temporary register.

If the lookup for the variable returns None , a global lookup instruction is emitted that will

dynamically look up the variable name in the global namespace and copy the result into a

function-local temporary register or raise an error if the binding does not exist.

Evaluation

We've just somewhat described what happens in the lower levels of eval. Let's finish the

job and put eval in a code context. Here is the definition of a function compilation data

structure:

/// A binding can be either local or via an upvalue depending on how a
closure refers to it.
#[derive(Copy, Clone, PartialEq)]
enum Binding {

/// An local variable is local to a function scope
 Local(Register),

/// An Upvalue is an indirection for pointing at a nonlocal variable on
the stack
 Upvalue(UpvalueId),
}

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

111 of 123 10/26/23, 19:01

https://rust-hosted-langs.github.io/book/print.html#retrieving-named-variables
https://rust-hosted-langs.github.io/book/print.html#retrieving-named-variables
https://rust-hosted-langs.github.io/book/print.html#evaluation
https://rust-hosted-langs.github.io/book/print.html#evaluation

The two interesting members are

• bytecode , which is an instance of ByteCode

• vars , an instance of Variables which we've described above. This instance will be

the outermost scope of the let or function block being compiled.

The main entrypoint to this structure is the function compile_function() :

This function will set up a Variables scope with the given parameters and call into

function compile_eval() for each expression in the function. The full definition of

compile_eval() is below, and we'll go into the details of compile_function() later.

struct Compiler<'parent> {
 bytecode: CellPtr<ByteCode>,

/// Next available register slot.
 next_reg: Register,

/// Optional function name
 name: Option<String>,

/// Function-local nested scopes bindings list (including parameters at
outer level)
 vars: Variables<'parent>,
}

fn compile_function<'guard>(
mut self,

 mem: &'guard MutatorView,
 name: TaggedScopedPtr<'guard>,
 params: &[TaggedScopedPtr<'guard>],
 exprs: &[TaggedScopedPtr<'guard>],
) -> Result<ScopedPtr<'guard, Function>, RuntimeError> {
 ...
 }

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

112 of 123 10/26/23, 19:01

https://rust-hosted-langs.github.io/book/chapter-interp-bytecode.html
https://rust-hosted-langs.github.io/book/chapter-interp-bytecode.html

fn compile_eval<'guard>(
 &mut self,
 mem: &'guard MutatorView,
 ast_node: TaggedScopedPtr<'guard>,
) -> Result<Register, RuntimeError> {

match *ast_node {
 Value::Pair(p) => self.compile_apply(mem, p.first.get(mem),
p.second.get(mem)),
 Value::Symbol(s) => {

match s.as_str(mem) {
"nil" => {

let dest = self.acquire_reg();
self.push(mem, Opcode::LoadNil { dest })?;
Ok(dest)

 }

"true" => self.push_load_literal(mem,
mem.lookup_sym("true")),

// Search scopes for a binding; if none do a global
lookup
 _ => {

match self.vars.lookup_binding(ast_node)? {
Some(Binding::Local(register)) => Ok(register),

Some(Binding::Upvalue(upvalue_id)) => {
// Retrieve the value via Upvalue indirection
let dest = self.acquire_reg();
self.push(

 mem,
 Opcode::GetUpvalue {
 dest,
 src: upvalue_id,
 },
)?;

Ok(dest)
 }

None => {
// Otherwise do a late-binding global lookup
let name = self.push_load_literal(mem,

ast_node)?;
let dest = name; // reuse the register
self.push(mem, Opcode::LoadGlobal { dest,

name })?;
Ok(dest)

 }
 }
 }
 }
 }

 _ => self.push_load_literal(mem, ast_node),
 }
 }

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

113 of 123 10/26/23, 19:01

Note that the return type is Result<Register, RuntimeError> . That is, a successful eval

will return a register where the result will be stored at runtime.

In the function body, the match branches fall into three categories:

• keywords literals (nil , true)

• all other literals

• named variables represented by Symbol s

What's in the evaluation of the Symbol AST type? Locals, nonlocals and globals!

We can see the generation of special opcodes for retrieving nonlocal and global values

here, whereas a local will resolve directly to an existing register without the need to

generate any additional opcodes.

Application

To evaluate a function call, we switch over to apply:

This is the evaluation of the Pair AST type. This represents, visually, the syntax

(function_name arg1 arg2 argN) which is, of course, a function call. Eval cannot tell us

the value of a function call, the function must be applied to it's arguments first. Into apply

we recurse.

The first argument to compile_apply() is the function name Symbol , the second

argument is the list of function arguments.

Since we included the full compile_eval() function earlier, it wouldn't be fair to leave out

the definition of compile_apply() . Here it is:

match *ast_node {
 ...

 Value::Pair(p) => self.compile_apply(mem, p.first.get(mem),
p.second.get(mem)),

 ...
 }

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

114 of 123 10/26/23, 19:01

https://rust-hosted-langs.github.io/book/print.html#application
https://rust-hosted-langs.github.io/book/print.html#application

The function parameter is expected to be a Symbol , that is, have a name represented

by a Symbol . Thus, the function is match ed on the Symbol .

Caling nil?

Let's follow the compilation of a simple function: nil? . This is where we'll start seeing

some of the deeper details of compilation, such as register allocation and

fn compile_apply<'guard>(
 &mut self,
 mem: &'guard MutatorView,
 function: TaggedScopedPtr<'guard>,
 args: TaggedScopedPtr<'guard>,
) -> Result<Register, RuntimeError> {

match *function {
 Value::Symbol(s) => match s.as_str(mem) {

"quote" => self.push_load_literal(mem, value_from_1_pair(mem,
args)?),

"atom?" => self.push_op2(mem, args, |dest, test|
Opcode::IsAtom { dest, test }),

"nil?" => self.push_op2(mem, args, |dest, test| Opcode::IsNil
{ dest, test }),

"car" => self.push_op2(mem, args, |dest, reg|
Opcode::FirstOfPair { dest, reg }),

"cdr" => self.push_op2(mem, args, |dest, reg|
Opcode::SecondOfPair { dest, reg }),

"cons" => self.push_op3(mem, args, |dest, reg1, reg2|
Opcode::MakePair {
 dest,
 reg1,
 reg2,
 }),

"cond" => self.compile_apply_cond(mem, args),
"is?" => self.push_op3(mem, args, |dest, test1, test2|

Opcode::IsIdentical {
 dest,
 test1,
 test2,
 }),

"set" => self.compile_apply_assign(mem, args),
"def" => self.compile_named_function(mem, args),
"lambda" => self.compile_anonymous_function(mem, args),
"\\" => self.compile_anonymous_function(mem, args),
"let" => self.compile_apply_let(mem, args),

 _ => self.compile_apply_call(mem, function, args),
 },

// Here we allow the value in the function position to be
evaluated dynamically
 _ => self.compile_apply_call(mem, function, args),
 }
 }

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

115 of 123 10/26/23, 19:01

https://rust-hosted-langs.github.io/book/print.html#caling-nil
https://rust-hosted-langs.github.io/book/print.html#caling-nil

The function nil? takes a single argument and returns:

• the Symbol for true if the value of the argument is nil

• nil if the argument is not nil .

In compiling this function call, a single bytecode opcode will be pushed on to the

ByteCode array. This is done in the Compiler::push_op2() function. It is named

push_op2 because the opcode takes two operands: an argument register and a result

destination register. This function is used to compile all simple function calls that follow

the pattern of one argument, one result value. Here is push_op2() :

Let's break the function body down, line by line:

1. let result = self.acquire_reg();

◦ self.acquire_reg() : is called to get an unused register. In this case, we need

a register to store the result value in. This register acquisition follows a stack

approach. Registers are acquired (pushed on to the stack window) as new

variables are declared within a scope, and popped when the scope is exited.

◦ The type of result is Register which is an alias for u8 - an unsigned int

from 0 to 255.

2. let reg1 = self.compile_eval(mem, value_from_1_pair(mem, params)?)?;

◦ value_from_1_pair(mem, params)? : inspects the argument list and returns

the argument if there is a single one, otherwise returns an error.

◦ self.compile_eval(mem, <arg>)? : recurses into the argument to compile it

down to a something that can be applied to the function call.

◦ let reg1 = <value>; : where reg1 will be the argument register to the

 ...
"nil?" => self.push_op2(mem, args, |dest, test| Opcode::IsNil

{ dest, test }),
 ...

fn push_op2<'guard, F>(
 &mut self,
 mem: &'guard MutatorView,
 params: TaggedScopedPtr<'guard>,
 f: F,
) -> Result<Register, RuntimeError>

where
 F: Fn(Register, Register) -> Opcode,
 {

let result = self.acquire_reg();
let reg1 = self.compile_eval(mem, value_from_1_pair(mem, params)?)?;
self.bytecode.get(mem).push(mem, f(result, reg1))?;
Ok(result)

 }

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

116 of 123 10/26/23, 19:01

opcode.

3. self.bytecode.get(mem).push(mem, f(result, reg1))?;

◦ f(result, reg1) : calls function f that will return the opcode with operands

applied in ByteCode format.

◦ In the case of calling nil? , the argument f is:

▪ |dest, test| Opcode::IsNil { dest, test }

◦ self.bytecode.get(mem).push(mem, <opcode>)?; : gets the ByteCode

reference and pushes the opcode on to the end of the bytecode array.

4. Ok(result)

◦ the result register is returned to the compile_apply() function

... and compile_apply() itself returns the result register to it's caller.

The pattern for compiling function application, more generally, is this:

• acquire a result register

• acquire any temporary intermediate result registers

• recurse into arguments to compile them first

• emit bytecode for the function, pushing opcodes on to the bytecode array and

putting the final result in the result register

• release any intermediate registers

• return the result register number

Compiling nil? was hopefully quite simple. Let's look at something much more involved,

now.

Compiling anonymous functions

An anonymous function is defined, syntactically, as:

There are 0 or more parameters and 1 or more expresssions in the body of the function.

The last expression of the body provides the return value.

Function compilation is initiated by apply. This is because a function is a compound

expression and cannot be reduced to a value by a single eval. Here's the line in

compile_apply() that calls anonymous function compilation:

(lambda (param1 param2)
 (expr1)
 (expr2)
 (return-expr))

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

117 of 123 10/26/23, 19:01

https://rust-hosted-langs.github.io/book/print.html#compiling-anonymous-functions
https://rust-hosted-langs.github.io/book/print.html#compiling-anonymous-functions

Let's look at the type signature of compile_anonymous_function() :

The params parameter will be expected to be a Pair list: firstly, a list of parameter

names, followed by function body expressions.

The return value from is the same as all the other compilation functions so far:

Result<Register> . The compiled code will return a pointer to the function object in a

register.

Here is the function in full:

 ...
"lambda" => self.compile_anonymous_function(mem, args),

 ...

fn compile_anonymous_function<'guard>(
 &mut self,
 mem: &'guard MutatorView,
 params: TaggedScopedPtr<'guard>,
) -> Result<Register, RuntimeError> {

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

118 of 123 10/26/23, 19:01

After converting Pair lists to Vec s for convenience (wherein parameter names and

function body expressions are separated) the process calls into function

compile_function() , which brings us full circle to eval.

In compile_function() , below:

1. a Scope is instantiated and the parameters are pushed on to this outermost scope.

fn compile_anonymous_function<'guard>(
 &mut self,
 mem: &'guard MutatorView,
 params: TaggedScopedPtr<'guard>,
) -> Result<Register, RuntimeError> {

let items = vec_from_pairs(mem, params)?;

if items.len() < 2 {
return Err(err_eval(

"An anonymous function definition must have at least (lambda
(params) expr)",
));
 }

// a function consists of (name (params) expr1 .. exprn)
let fn_params = vec_from_pairs(mem, items[0])?;
let fn_exprs = &items[1..];

// compile the function to a Function object
let fn_object = compile_function(mem, Some(&self.vars), mem.nil(),

&fn_params, fn_exprs)?;

// load the function object as a literal
let dest = self.push_load_literal(mem, fn_object)?;

// if fn_object has nonlocal refs, compile a MakeClosure instruction
in addition, replacing

// the Function register with a Partial with a closure environment
match *fn_object {

 Value::Function(f) => {
if f.is_closure() {

self.push(
 mem,
 Opcode::MakeClosure {
 function: dest,
 dest,
 },
)?;
 }
 }

// 's gotta be a function
 _ => unreachable!(),
 }

Ok(dest)
 }

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

119 of 123 10/26/23, 19:01

2. the function body expressions are iterated over, eval-ing each one

3. any upvalues that will be closed over as the compiled-function exits and goes out of

scope have upvalue instructions generated

4. a Function object is returned with all details necessary to running the function in

the VM environment

Here is compile_function() :

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

120 of 123 10/26/23, 19:01

fn compile_function<'guard>(
mut self,

 mem: &'guard MutatorView,
 name: TaggedScopedPtr<'guard>,
 params: &[TaggedScopedPtr<'guard>],
 exprs: &[TaggedScopedPtr<'guard>],
) -> Result<ScopedPtr<'guard, Function>, RuntimeError> {

// validate function name
self.name = match *name {

 Value::Symbol(s) => Some(String::from(s.as_str(mem))),
 Value::Nil => None,
 _ => {

return Err(err_eval(
"A function name may be nil (anonymous) or a symbol

(named)",
))
 }
 };

let fn_name = name;

// validate arity
if params.len() > 254 {

return Err(err_eval("A function cannot have more than 254
parameters"));
 }

// put params into a list for the Function object
let fn_params = List::from_slice(mem, params)?;

// also assign params to the first level function scope and give each
one a register

let mut param_scope = Scope::new();
self.next_reg = param_scope.push_bindings(params, self.next_reg)?;
self.vars.scopes.push(param_scope);

// validate expression list
if exprs.len() == 0 {

return Err(err_eval("A function must have at least one
expression"));
 }

// compile expressions
let mut result_reg = 0;
for expr in exprs.iter() {

 result_reg = self.compile_eval(mem, *expr)?;
 }

// pop parameter scope
let closing_instructions = self.vars.pop_scope();
for opcode in &closing_instructions {

self.push(mem, *opcode)?;
 }

// finish with a return
let fn_bytecode = self.bytecode.get(mem);

 fn_bytecode.push(mem, Opcode::Return { reg: result_reg })?;

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

121 of 123 10/26/23, 19:01

Note that in addition to generating upvalue instructions as the compiled-function goes

out of scope, the calling compiler function compile_anonymous_function() will issue a

MakeClosure opcode such that a closure object is put in the return register rather than a

direct Function object reference.

In our language, a closure object is represented by the Partial data structure

• a struct that represents a Function object pointer plus closed over values and/or

partially applied arguments. This data structure was described in the chapter Virtual

Machine: Implementation.

Thus ends our tour of our interpreter.

Concluding remarks

In this section, we've looked at a ground-up compiler and virtual machine implementation

within a memory-safe allocation system.

There is, of course, much more to explore in the VM and compiler source code. The

reader is encouraged to experiment with running and modifying the source.

404 - this chapter has not yet been

written

404 - this chapter has not yet been

written

404 - this chapter has not yet been

written

let fn_nonlocals = self.vars.get_nonlocals(mem)?;

Ok(Function::alloc(
 mem,
 fn_name,
 fn_params,
 fn_bytecode,
 fn_nonlocals,
)?)
 }

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

122 of 123 10/26/23, 19:01

https://rust-hosted-langs.github.io/book/chapter-interp-vm-impl.html
https://rust-hosted-langs.github.io/book/chapter-interp-vm-impl.html
https://rust-hosted-langs.github.io/book/chapter-interp-vm-impl.html
https://rust-hosted-langs.github.io/book/chapter-interp-vm-impl.html
https://rust-hosted-langs.github.io/book/print.html#concluding-remarks
https://rust-hosted-langs.github.io/book/print.html#concluding-remarks
https://rust-hosted-langs.github.io/book/print.html#404---this-chapter-has-not-yet-been-written
https://rust-hosted-langs.github.io/book/print.html#404---this-chapter-has-not-yet-been-written
https://rust-hosted-langs.github.io/book/print.html#404---this-chapter-has-not-yet-been-written
https://rust-hosted-langs.github.io/book/print.html#404---this-chapter-has-not-yet-been-written
https://rust-hosted-langs.github.io/book/print.html#404---this-chapter-has-not-yet-been-written-1
https://rust-hosted-langs.github.io/book/print.html#404---this-chapter-has-not-yet-been-written-1
https://rust-hosted-langs.github.io/book/print.html#404---this-chapter-has-not-yet-been-written-1
https://rust-hosted-langs.github.io/book/print.html#404---this-chapter-has-not-yet-been-written-1
https://rust-hosted-langs.github.io/book/print.html#404---this-chapter-has-not-yet-been-written-2
https://rust-hosted-langs.github.io/book/print.html#404---this-chapter-has-not-yet-been-written-2
https://rust-hosted-langs.github.io/book/print.html#404---this-chapter-has-not-yet-been-written-2
https://rust-hosted-langs.github.io/book/print.html#404---this-chapter-has-not-yet-been-written-2

404 - this chapter has not yet been

written

Writing Interpreters in Rust: a Guide https://rust-hosted-langs.github.io/book/print.html

123 of 123 10/26/23, 19:01

https://rust-hosted-langs.github.io/book/print.html#404---this-chapter-has-not-yet-been-written-3
https://rust-hosted-langs.github.io/book/print.html#404---this-chapter-has-not-yet-been-written-3
https://rust-hosted-langs.github.io/book/print.html#404---this-chapter-has-not-yet-been-written-3
https://rust-hosted-langs.github.io/book/print.html#404---this-chapter-has-not-yet-been-written-3

