
Introduction

This book serves as high-level documentation for async-std and a way of learning
async programming in Rust through it. As such, it focuses on the async-std API
and the task model it gives you.

Please note that the Rust project provides its own book on asynchronous
programming, called "Asynchronous Programming in Rust", which we highly
recommend reading along with this book, as it provides a di�erent, wider view on
the topic.

Welcome to async-std
async-std , along with its supporting libraries, is a library making your life in async

programming easier. It provides fundamental implementations for downstream
libraries and applications alike. The name re�ects the approach of this library: it is
as closely modeled to the Rust main standard library as possible, replacing all
components by async counterparts.

async-std provides an interface to all important primitives: �lesystem operations,
network operations and concurrency basics like timers. It also exposes a task in a
model similar to the thread module found in the Rust standard lib. But it does not
only include I/O primitives, but also async/await compatible versions of primitives
like Mutex .

std::future and futures-rs
Rust has two kinds of types commonly referred to as Future :

the �rst is std::future::Future from Rust’s standard library.

Async programming in Rust with async-std https://book.async.rs/print.html

� of �� �/�/��, �:�� PM

the second is futures::future::Future from the futures-rs crate.

The future de�ned in the futures-rs crate was the original implementation of the
type. To enable the async/await syntax, the core Future trait was moved into
Rust’s standard library and became std::future::Future . In some sense, the
std::future::Future can be seen as a minimal subset of
futures::future::Future .

It is critical to understand the di�erence between std::future::Future and
futures::future::Future , and the approach that async-std takes towards

them. In itself, std::future::Future is not something you want to interact with as
a user—except by calling .await on it. The inner workings of
std::future::Future are mostly of interest to people implementing Future .

Make no mistake—this is very useful! Most of the functionality that used to be
de�ned on Future itself has been moved to an extension trait called FuturesExt .
From this information, you might be able to infer that the futures library serves
as an extension to the core Rust async features.

In the same tradition as futures , async-std re-exports the core
std::future::Future type. You can actively opt into the extensions provided by

the futures crate by adding it to your Cargo.toml and importing FuturesExt .

Interfaces and Stability

async-std aims to be a stable and reliable library, at the level of the Rust standard
library. This also means that we don't rely on the futures library for our interface.
Yet, we appreciate that many users have come to like the conveniences that
futures-rs brings. For that reason, async-std implements all futures traits for

its types.

Luckily, the approach from above gives you full �exibility. If you care about stability
a lot, you can just use async-std as is. If you prefer the futures library interfaces,
you link those in. Both uses are �rst class.

async_std::future

There’s some support functions that we see as important for working with futures

Async programming in Rust with async-std https://book.async.rs/print.html

� of �� �/�/��, �:�� PM

of any kind. These can be found in the async_std::future module and are
covered by our stability guarantees.

Streams and Read/Write/Seek/BufRead traits

Due to limitations of the Rust compiler, those are currently implemented in
async_std , but cannot be implemented by users themselves.

Stability and SemVer
async-std follows https://semver.org/.

In short: we are versioning our software as MAJOR.MINOR.PATCH . We increase the:

MAJOR version when there are incompatible API changes,
MINOR version when we introduce functionality in a backwards-compatible
manner
PATCH version when we make backwards-compatible bug �xes

We will provide migration documentation between major versions.

Future expectations

async-std uses its own implementations of the following concepts:

Read

Write

Seek

BufRead

Stream

For integration with the ecosystem, all types implementing these traits also have
an implementation of the corresponding interfaces in the futures-rs library.
Please note that our SemVer guarantees don't extend to usage of those interfaces.
We expect those to be conservatively updated and in lockstep.

Async programming in Rust with async-std https://book.async.rs/print.html

� of �� �/�/��, �:�� PM

Minimum version policy

The current tentative policy is that the minimum Rust version required to use this
crate can be increased in minor version updates. For example, if async-std 1.0
requires Rust 1.37.0, then async-std 1.0.z for all values of z will also require Rust
1.37.0 or newer. However, async-std 1.y for y > 0 may require a newer minimum
version of Rust.

In general, this crate will be conservative with respect to the minimum supported
version of Rust. With async/await being a new feature though, we will track
changes in a measured pace initially.

Security fixes

Security �xes will be applied to all minor branches of this library in all supported
major revisions. This policy might change in the future, in which case we give a
notice at least 3 months ahead.

Credits

This policy is based on BurntSushi's regex crate.

Async concepts using async-std
Rust Futures have the reputation of being hard. We don't think this is the case.
They are, in our opinion, one of the easiest concurrency concepts around and have
an intuitive explanation.

However, there are good reasons for that perception. Futures have three concepts
at their base that seem to be a constant source of confusion: deferred
computation, asynchronicity and independence of execution strategy.

These concepts are not hard, but something many people are not used to. This
base confusion is ampli�ed by many implementations oriented on details. Most
explanations of these implementations also target advanced users, and can be
hard for beginners. We try to provide both easy-to-understand primitives and
approachable overviews of the concepts.

Async programming in Rust with async-std https://book.async.rs/print.html

� of �� �/�/��, �:�� PM

Futures are a concept that abstracts over how code is run. By themselves, they do
nothing. This is a weird concept in an imperative language, where usually one thing
happens after the other - right now.

So how do Futures run? You decide! Futures do nothing without the piece of code
executing them. This part is called an executor. An executor decides when and how to
execute your futures. The async-std::task module provides you with an
interface to such an executor.

Let's start with a little bit of motivation, though.

Futures
A notable point about Rust is fearless concurrency. That is the notion that you
should be empowered to do concurrent things, without giving up safety. Also, Rust
being a low-level language, it's about fearless concurrency without picking a specific
implementation strategy. This means we must abstract over the strategy, to allow
choice later, if we want to have any way to share code between users of di�erent
strategies.

Futures abstract over computation. They describe the "what", independent of the
"where" and the "when". For that, they aim to break code into small, composable
actions that can then be executed by a part of our system. Let's take a tour
through what it means to compute things to �nd where we can abstract.

Send and Sync

Luckily, concurrent Rust already has two well-known and e�ective concepts
abstracting over sharing between concurrent parts of a program: Send and Sync .
Notably, both the Send and Sync traits abstract over strategies of concurrent
work, compose neatly, and don't prescribe an implementation.

As a quick summary:

Send abstracts over passing data in a computation to another concurrent
computation (let's call it the receiver), losing access to it on the sender side. In
many programming languages, this strategy is commonly implemented, but
missing support from the language side, and expects you to enforce the
"losing access" behaviour yourself. This is a regular source of bugs: senders
keeping handles to sent things around and maybe even working with them

Async programming in Rust with async-std https://book.async.rs/print.html

� of �� �/�/��, �:�� PM

after sending. Rust mitigates this problem by making this behaviour known.
Types can be Send or not (by implementing the appropriate marker trait),
allowing or disallowing sending them around, and the ownership and
borrowing rules prevent subsequent access.

Sync is about sharing data between two concurrent parts of a program. This
is another common pattern: as writing to a memory location or reading while
another party is writing is inherently unsafe, this access needs to be
moderated through synchronisation.1 There are many common ways for two
parties to agree on not using the same part in memory at the same time, for
example mutexes and spinlocks. Again, Rust gives you the option of (safely!)
not caring. Rust gives you the ability to express that something needs
synchronisation while not being speci�c about the how.

Note how we avoided any word like "thread", but instead opted for "computation".
The full power of Send and Sync is that they relieve you of the burden of knowing
what shares. At the point of implementation, you only need to know which method
of sharing is appropriate for the type at hand. This keeps reasoning local and is not
in�uenced by whatever implementation the user of that type later uses.

Send and Sync can be composed in interesting fashions, but that's beyond the
scope here. You can �nd examples in the Rust Book.

To sum up: Rust gives us the ability to safely abstract over important properties of
concurrent programs, their data sharing. It does so in a very lightweight fashion;
the language itself only knows about the two markers Send and Sync and helps
us a little by deriving them itself, when possible. The rest is a library concern.

An easy view of computation

While computation is a subject to write a whole book about, a very simpli�ed view
su�ces for us: A sequence of composable operations which can branch based on a
decision, run to succession and yield a result or yield an error

Deferring computation

As mentioned above, Send and Sync are about data. But programs are not only
about data, they also talk about computing the data. And that's what Futures do.

Async programming in Rust with async-std https://book.async.rs/print.html

� of �� �/�/��, �:�� PM

We are going to have a close look at how that works in the next chapter. Let's look
at what Futures allow us to express, in English. Futures go from this plan:

Do X
If X succeeded, do Y

towards:

Start doing X
Once X succeeds, start doing Y

Remember the talk about "deferred computation" in the intro? That's all it is.
Instead of telling the computer what to execute and decide upon now, you tell it
what to start doing and how to react on potential events in the... well... Future .

Orienting towards the beginning

Let's have a look at a simple function, speci�cally the return value:

You can call that at any time, so you are in full control on when you call it. But
here's the problem: the moment you call it, you transfer control to the called
function until it returns a value - eventually. Note that this return value talks about
the past. The past has a drawback: all decisions have been made. It has an
advantage: the outcome is visible. We can unwrap the results of the program's past
computation, and then decide what to do with it.

But we wanted to abstract over computation and let someone else choose how to
run it. That's fundamentally incompatible with looking at the results of previous
computation all the time. So, let's �nd a type that describes a computation without
running it. Let's look at the function again:

fn read_file(path: &str) -> io::Result<String> {
let mut file = File::open(path)?;
let mut contents = String::new();

 file.read_to_string(&mut contents)?;
Ok(contents)

}

Async programming in Rust with async-std https://book.async.rs/print.html

� of �� �/�/��, �:�� PM

Speaking in terms of time, we can only take action before calling the function or
after the function returned. This is not desirable, as it takes from us the ability to
do something while it runs. When working with parallel code, this would take from
us the ability to start a parallel task while the �rst runs (because we gave away
control).

This is the moment where we could reach for threads. But threads are a very
speci�c concurrency primitive and we said that we are searching for an
abstraction.

What we are searching for is something that represents ongoing work towards a
result in the future. Whenever we say "something" in Rust, we almost always mean
a trait. Let's start with an incomplete de�nition of the Future trait:

Looking at it closely, we see the following:

It is generic over the Output .
It provides a function called poll , which allows us to check on the state of
the current computation.
(Ignore Pin and Context for now, you don't need them for high-level
understanding.)

Every call to poll() can result in one of these two cases:

1. The computation is done, poll will return Poll::Ready
2. The computation has not �nished executing, it will return Poll::Pending

This allows us to externally check if a Future still has un�nished work, or is �nally
done and can give us the value. The most simple (but not e�cient) way would be to
just constantly poll futures in a loop. There are optimisations possible, and this is

fn read_file(path: &str) -> io::Result<String> {
let mut file = File::open(path)?;
let mut contents = String::new();

 file.read_to_string(&mut contents)?;
Ok(contents)

}

trait Future {
type Output;
fn poll(self: Pin<&mut Self>, cx: &mut Context) ->

Poll<Self::Output>;
}

Async programming in Rust with async-std https://book.async.rs/print.html

� of �� �/�/��, �:�� PM

what a good runtime does for you. Note that calling poll again after case 1
happened may result in confusing behaviour. See the futures-docs for details.

Async

While the Future trait has existed in Rust for a while, it was inconvenient to build
and describe them. For this, Rust now has a special syntax: async . The example
from above, implemented with async-std , would look like this:

Amazingly little di�erence, right? All we did is label the function async and insert 2
special commands: .await .

This async function sets up a deferred computation. When this function is called,
it will produce a Future<Output = io::Result<String>> instead of immediately
returning a io::Result<String> . (Or, more precisely, generate a type for you that
implements Future<Output = io::Result<String>> .)

What does .await do?

The .await post�x does exactly what it says on the tin: the moment you use it, the
code will wait until the requested action (e.g. opening a �le or reading all data in it)
is �nished. The .await? is not special, it's just the application of the ? operator to
the result of .await . So, what is gained over the initial code example? We're
getting futures and then immediately waiting for them?

The .await points act as a marker. Here, the code will wait for a Future to
produce its value. How will a future �nish? You don't need to care! The marker
allows the component (usually called the “runtime”) in charge of executing this
piece of code to take care of all the other things it has to do while the computation
�nishes. It will come back to this point when the operation you are doing in the

async fn read_file(path: &str) -> io::Result<String> {
let mut file = File::open(path).await?;
let mut contents = String::new();

 file.read_to_string(&mut contents).await?;
Ok(contents)

}

Async programming in Rust with async-std https://book.async.rs/print.html

� of �� �/�/��, �:�� PM

background is done. This is why this style of programming is also called evented
programming. We are waiting for things to happen (e.g. a �le to be opened) and then
react (by starting to read).

When executing 2 or more of these functions at the same time, our runtime
system is then able to �ll the wait time with handling all the other events currently
going on.

Conclusion

Working from values, we searched for something that expresses working towards a
value available later. From there, we talked about the concept of polling.

A Future is any data type that does not represent a value, but the ability to
produce a value at some point in the future. Implementations of this are very varied
and detailed depending on use-case, but the interface is simple.

Next, we will introduce you to tasks , which we will use to actually run Futures.

1 Two parties reading while it is guaranteed that no one is writing is always safe.

Tasks
Now that we know what Futures are, we want to run them!

In async-std , the tasks module is responsible for this. The simplest way is using
the block_on function:

Async programming in Rust with async-std https://book.async.rs/print.html

�� of �� �/�/��, �:�� PM

This asks the runtime baked into async_std to execute the code that reads a �le.
Let's go one by one, though, inside to outside.

This is an async block. Async blocks are necessary to call async functions, and will
instruct the compiler to include all the relevant instructions to do so. In Rust, all
blocks return a value and async blocks happen to return a value of the kind
Future .

But let's get to the interesting part:

spawn takes a Future and starts running it on a Task . It returns a JoinHandle .
Futures in Rust are sometimes called cold Futures. You need something that starts

use async_std::{fs::File, io, prelude::*, task};

async fn read_file(path: &str) -> io::Result<String> {
let mut file = File::open(path).await?;
let mut contents = String::new();

 file.read_to_string(&mut contents).await?;
Ok(contents)

}

fn main() {
let reader_task = task::spawn(async {

let result = read_file("data.csv").await;
match result {

Ok(s) => println!("{}", s),
Err(e) => println!("Error reading file: {:?}", e)

 }
 });

println!("Started task!");
 task::block_on(reader_task);

println!("Stopped task!");
}

async {
let result = read_file("data.csv").await;
match result {

Ok(s) => println!("{}", s),
Err(e) => println!("Error reading file: {:?}", e)

 }
};

task::spawn(async { });

Async programming in Rust with async-std https://book.async.rs/print.html

�� of �� �/�/��, �:�� PM

running them. To run a Future, there may be some additional bookkeeping
required, e.g. whether it's running or �nished, where it is being placed in memory
and what the current state is. This bookkeeping part is abstracted away in a Task .

A Task is similar to a Thread , with some minor di�erences: it will be scheduled by
the program instead of the operating system kernel, and if it encounters a point
where it needs to wait, the program itself is responsible for waking it up again.
We'll talk a little bit about that later. An async_std task can also have a name and
an ID, just like a thread.

For now, it is enough to know that once you have spawn ed a task, it will continue
running in the background. The JoinHandle is itself a future that will �nish once
the Task has run to conclusion. Much like with threads and the join function,
we can now call block_on on the handle to block the program (or the calling
thread, to be speci�c) and wait for it to �nish.

Tasks in async_std

Tasks in async_std are one of the core abstractions. Much like Rust's thread s,
they provide some practical functionality over the raw concept. Tasks have a
relationship to the runtime, but they are in themselves separate. async_std tasks
have a number of desirable properties:

They are allocated in one single allocation
All tasks have a backchannel, which allows them to propagate results and
errors to the spawning task through the JoinHandle
They carry useful metadata for debugging
They support task local storage

async_std s task API handles setup and teardown of a backing runtime for you
and doesn't rely on a runtime being explicitly started.

Blocking

Task s are assumed to run concurrently, potentially by sharing a thread of
execution. This means that operations blocking an operating system thread, such as
std::thread::sleep or io function from Rust's std library will stop execution of all

tasks sharing this thread. Other libraries (such as database drivers) have similar

Async programming in Rust with async-std https://book.async.rs/print.html

�� of �� �/�/��, �:�� PM

behaviour. Note that blocking the current thread is not in and of itself bad
behaviour, just something that does not mix well with the concurrent execution
model of async-std . Essentially, never do this:

If you want to mix operation kinds, consider putting such blocking operations on a
separate thread .

Errors and panics

Tasks report errors through normal patterns: If they are fallible, their Output
should be of kind Result<T,E> .

In case of panic , behaviour di�ers depending on whether there's a reasonable
part that addresses the panic . If not, the program aborts.

In practice, that means that block_on propagates panics to the blocking
component:

While panicing a spawned task will abort:

fn main() {
 task::block_on(async {

// this is std::fs, which blocks
 std::fs::read_to_string("test_file");
 })
}

fn main() {
 task::block_on(async {

panic!("test");
 });
}

thread 'async-task-driver' panicked at 'test', examples/panic.rs:8:9
note: run with `RUST_BACKTRACE=1` environment variable to display a
backtrace.

Async programming in Rust with async-std https://book.async.rs/print.html

�� of �� �/�/��, �:�� PM

That might seem odd at �rst, but the other option would be to silently ignore
panics in spawned tasks. The current behaviour can be changed by catching panics
in the spawned task and reacting with custom behaviour. This gives users the
choice of panic handling strategy.

Conclusion

async_std comes with a useful Task type that works with an API similar to
std::thread . It covers error and panic behaviour in a structured and de�ned way.

Tasks are separate concurrent units and sometimes they need to communicate.
That's where Stream s come in.

TODO: Async read/write

TODO: Streams

Tutorial: Writing a chat
Nothing is simpler than creating a chat server, right? Not quite, chat servers expose
you to all the fun of asynchronous programming:

How will the server handle clients connecting concurrently?

How will it handle them disconnecting?

task::spawn(async {
panic!("test");

});

task::block_on(async {
 task::sleep(Duration::from_millis(10000)).await;
})

thread 'async-task-driver' panicked at 'test', examples/panic.rs:8:9
note: run with `RUST_BACKTRACE=1` environment variable to display a
backtrace.
Aborted (core dumped)

Async programming in Rust with async-std https://book.async.rs/print.html

�� of �� �/�/��, �:�� PM

How will it distribute the messages?

This tutorial explains how to write a chat server in async-std .

You can also �nd the tutorial in our repository.

Specification and Getting Started

Specification

The chat uses a simple text protocol over TCP. The protocol consists of utf-8
messages, separated by \n .

The client connects to the server and sends login as a �rst line. After that, the client
can send messages to other clients using the following syntax:

Each of the speci�ed clients then receives a from login: message message.

A possible session might look like this

The main challenge for the chat server is keeping track of many concurrent
connections. The main challenge for the chat client is managing concurrent
outgoing messages, incoming messages and user's typing.

Getting Started

Let's create a new Cargo project:

login1, login2, ... loginN: message

On Alice's computer: | On Bob's computer:

> alice | > bob
> bob: hello < from alice: hello
 | > alice, bob: hi!
 < from bob: hi!
< from bob: hi! |

Async programming in Rust with async-std https://book.async.rs/print.html

�� of �� �/�/��, �:�� PM

Add the following lines to Cargo.toml :

Writing an Accept Loop

Let's implement the sca�old of the server: a loop that binds a TCP socket to an
address and starts accepting connections.

First of all, let's add required import boilerplate:

1. prelude re-exports some traits required to work with futures and streams.
2. The task module roughly corresponds to the std::thread module, but

tasks are much lighter weight. A single thread can run many tasks.
3. For the socket type, we use TcpListener from async_std , which is just like

std::net::TcpListener , but is non-blocking and uses async API.
4. We will skip implementing comprehensive error handling in this example. To

propagate the errors, we will use a boxed error trait object. Do you know that
there's From<&'_ str> for Box<dyn Error> implementation in stdlib, which
allows you to use strings with ? operator?

Now we can write the server's accept loop:

$ cargo new a-chat
$ cd a-chat

[dependencies]
futures = "0.3.0"
async-std = "1"

use async_std::{
 prelude::*, // 1
 task, // 2
 net::{TcpListener, ToSocketAddrs}, // 3
};

type Result<T> = std::result::Result<T, Box<dyn std::error::Error + Send
+ Sync>>; // 4

Async programming in Rust with async-std https://book.async.rs/print.html

�� of �� �/�/��, �:�� PM

1. We mark the accept_loop function as async , which allows us to use .await
syntax inside.

2. TcpListener::bind call returns a future, which we .await to extract the
Result , and then ? to get a TcpListener . Note how .await and ? work

nicely together. This is exactly how std::net::TcpListener works, but with
.await added. Mirroring API of std is an explicit design goal of async_std .

3. Here, we would like to iterate incoming sockets, just how one would do in
std :

Unfortunately this doesn't quite work with async yet, because there's no support
for async for-loops in the language yet. For this reason we have to implement the
loop manually, by using while let Some(item) = iter.next().await pattern.

Finally, let's add main:

The crucial thing to realise that is in Rust, unlike other languages, calling an async
function does not run any code. Async functions only construct futures, which are
inert state machines. To start stepping through the future state-machine in an
async function, you should use .await . In a non-async function, a way to execute
a future is to hand it to the executor. In this case, we use task::block_on to
execute a future on the current thread and block until it's done.

async fn accept_loop(addr: impl ToSocketAddrs) -> Result<()> { // 1

let listener = TcpListener::bind(addr).await?; // 2
let mut incoming = listener.incoming();
while let Some(stream) = incoming.next().await { // 3

// TODO
 }

Ok(())
}

let listener: std::net::TcpListener = unimplemented!();
for stream in listener.incoming() {
}

// main
fn run() -> Result<()> {

let fut = accept_loop("127.0.0.1:8080");
 task::block_on(fut)
}

Async programming in Rust with async-std https://book.async.rs/print.html

�� of �� �/�/��, �:�� PM

Receiving messages

Let's implement the receiving part of the protocol. We need to:

1. split incoming TcpStream on \n and decode bytes as utf-8
2. interpret the �rst line as a login
3. parse the rest of the lines as a login: message

use async_std::{
 io::BufReader,
 net::TcpStream,
};

async fn accept_loop(addr: impl ToSocketAddrs) -> Result<()> {
let listener = TcpListener::bind(addr).await?;
let mut incoming = listener.incoming();
while let Some(stream) = incoming.next().await {

let stream = stream?;
println!("Accepting from: {}", stream.peer_addr()?);
let _handle = task::spawn(connection_loop(stream)); // 1

 }
Ok(())

}

async fn connection_loop(stream: TcpStream) -> Result<()> {
let reader = BufReader::new(&stream); // 2
let mut lines = reader.lines();

let name = match lines.next().await { // 3
None => Err("peer disconnected immediately")?,
Some(line) => line?,

 };
println!("name = {}", name);

while let Some(line) = lines.next().await { // 4
let line = line?;
let (dest, msg) = match line.find(':') { // 5

None => continue,
Some(idx) => (&line[..idx], line[idx + 1 ..].trim()),

 };
let dest: Vec<String> = dest.split(',').map(|name|

name.trim().to_string()).collect();
let msg: String = msg.to_string();

 }
Ok(())

}

Async programming in Rust with async-std https://book.async.rs/print.html

�� of �� �/�/��, �:�� PM

1. We use task::spawn function to spawn an independent task for working
with each client. That is, after accepting the client the accept_loop
immediately starts waiting for the next one. This is the core bene�t of event-
driven architecture: we serve many clients concurrently, without spending
many hardware threads.

2. Luckily, the "split byte stream into lines" functionality is already implemented.
.lines() call returns a stream of String 's.

3. We get the �rst line -- login

4. And, once again, we implement a manual async for loop.

5. Finally, we parse each line into a list of destination logins and the message
itself.

Managing Errors

One serious problem in the above solution is that, while we correctly propagate
errors in the connection_loop , we just drop the error on the �oor afterwards!
That is, task::spawn does not return an error immediately (it can't, it needs to run
the future to completion �rst), only after it is joined. We can "�x" it by waiting for
the task to be joined, like this:

The .await waits until the client �nishes, and ? propagates the result.

There are two problems with this solution however! First, because we immediately
await the client, we can only handle one client at time, and that completely defeats
the purpose of async! Second, if a client encounters an IO error, the whole server
immediately exits. That is, a �aky internet connection of one peer brings down the
whole chat room!

A correct way to handle client errors in this case is log them, and continue serving
other clients. So let's use a helper function for this:

let handle = task::spawn(connection_loop(stream));
handle.await

Async programming in Rust with async-std https://book.async.rs/print.html

�� of �� �/�/��, �:�� PM

Sending Messages

Now it's time to implement the other half -- sending messages. A most obvious way
to implement sending is to give each connection_loop access to the write half of
TcpStream of each other clients. That way, a client can directly .write_all a

message to recipients. However, this would be wrong: if Alice sends bob: foo , and
Charley sends bob: bar , Bob might actually receive fobaor . Sending a message
over a socket might require several syscalls, so two concurrent .write_all 's
might interfere with each other!

As a rule of thumb, only a single task should write to each TcpStream . So let's
create a connection_writer_loop task which receives messages over a channel
and writes them to the socket. This task would be the point of serialization of
messages. if Alice and Charley send two messages to Bob at the same time, Bob
will see the messages in the same order as they arrive in the channel.

fn spawn_and_log_error<F>(fut: F) -> task::JoinHandle<()>
where
 F: Future<Output = Result<()>> + Send + 'static,
{
 task::spawn(async move {

if let Err(e) = fut.await {
 eprintln!("{}", e)
 }
 })
}

Async programming in Rust with async-std https://book.async.rs/print.html

�� of �� �/�/��, �:�� PM

1. We will use channels from the futures crate.
2. For simplicity, we will use unbounded channels, and won't be discussing

backpressure in this tutorial.
3. As connection_loop and connection_writer_loop share the same

TcpStream , we need to put it into an Arc . Note that because client only
reads from the stream and connection_writer_loop only writes to the
stream, we don't get a race here.

Connecting Readers and Writers

So how do we make sure that messages read in connection_loop �ow into the
relevant connection_writer_loop ? We should somehow maintain a
peers: HashMap<String, Sender<String>> map which allows a client to �nd

destination channels. However, this map would be a bit of shared mutable state,
so we'll have to wrap an RwLock over it and answer tough questions of what
should happen if the client joins at the same moment as it receives a message.

One trick to make reasoning about state simpler comes from the actor model. We
can create a dedicated broker task which owns the peers map and communicates
with other tasks using channels. By hiding peers inside such an "actor" task, we
remove the need for mutexes and also make the serialization point explicit. The
order of events "Bob sends message to Alice" and "Alice joins" is determined by the
order of the corresponding events in the broker's event queue.

use futures::channel::mpsc; // 1
use futures::sink::SinkExt;
use std::sync::Arc;

type Sender<T> = mpsc::UnboundedSender<T>; // 2
type Receiver<T> = mpsc::UnboundedReceiver<T>;

async fn connection_writer_loop(
mut messages: Receiver<String>,

 stream: Arc<TcpStream>, // 3
) -> Result<()> {

let mut stream = &*stream;
while let Some(msg) = messages.next().await {

 stream.write_all(msg.as_bytes()).await?;
 }

Ok(())
}

Async programming in Rust with async-std https://book.async.rs/print.html

�� of �� �/�/��, �:�� PM

1. The broker task should handle two types of events: a message or an arrival of

use std::collections::hash_map::{Entry, HashMap};

#[derive(Debug)]
enum Event { // 1
 NewPeer {
 name: String,
 stream: Arc<TcpStream>,
 },
 Message {
 from: String,
 to: Vec<String>,
 msg: String,
 },
}

async fn broker_loop(mut events: Receiver<Event>) -> Result<()> {
let mut peers: HashMap<String, Sender<String>> = HashMap::new(); //

2

while let Some(event) = events.next().await {
match event {

 Event::Message { from, to, msg } => { // 3
for addr in to {

if let Some(peer) = peers.get_mut(&addr) {
let msg = format!("from {}: {}\n", from, msg);

 peer.send(msg).await?
 }
 }
 }
 Event::NewPeer { name, stream } => {

match peers.entry(name) {
 Entry::Occupied(..) => (),
 Entry::Vacant(entry) => {

let (client_sender, client_receiver) =
mpsc::unbounded();
 entry.insert(client_sender); // 4

spawn_and_log_error(connection_writer_loop(client_receiver, stream)); //
5
 }
 }
 }
 }
 }

Ok(())
}

Async programming in Rust with async-std https://book.async.rs/print.html

�� of �� �/�/��, �:�� PM

a new peer.
2. The internal state of the broker is a HashMap . Note how we don't need a

Mutex here and can con�dently say, at each iteration of the broker's loop,
what is the current set of peers

3. To handle a message, we send it over a channel to each destination
4. To handle a new peer, we �rst register it in the peer's map ...
5. ... and then spawn a dedicated task to actually write the messages to the

socket.

All Together

At this point, we only need to start the broker to get a fully-functioning (in the
happy case!) chat:

Async programming in Rust with async-std https://book.async.rs/print.html

�� of �� �/�/��, �:�� PM

use async_std::{
 io::BufReader,
 net::{TcpListener, TcpStream, ToSocketAddrs},
 prelude::*,
 task,
};
use futures::channel::mpsc;
use futures::sink::SinkExt;
use std::{
 collections::hash_map::{HashMap, Entry},
 sync::Arc,
};

type Result<T> = std::result::Result<T, Box<dyn std::error::Error + Send
+ Sync>>;
type Sender<T> = mpsc::UnboundedSender<T>;
type Receiver<T> = mpsc::UnboundedReceiver<T>;

// main
fn run() -> Result<()> {
 task::block_on(accept_loop("127.0.0.1:8080"))
}

fn spawn_and_log_error<F>(fut: F) -> task::JoinHandle<()>
where
 F: Future<Output = Result<()>> + Send + 'static,
{
 task::spawn(async move {

if let Err(e) = fut.await {
 eprintln!("{}", e)
 }
 })
}

async fn accept_loop(addr: impl ToSocketAddrs) -> Result<()> {
let listener = TcpListener::bind(addr).await?;

let (broker_sender, broker_receiver) = mpsc::unbounded(); // 1
let _broker_handle = task::spawn(broker_loop(broker_receiver));
let mut incoming = listener.incoming();
while let Some(stream) = incoming.next().await {

let stream = stream?;
println!("Accepting from: {}", stream.peer_addr()?);

 spawn_and_log_error(connection_loop(broker_sender.clone(),
stream));
 }

Ok(())
}

Async programming in Rust with async-std https://book.async.rs/print.html

�� of �� �/�/��, �:�� PM

async fn connection_loop(mut broker: Sender<Event>, stream: TcpStream)
-> Result<()> {

let stream = Arc::new(stream); // 2
let reader = BufReader::new(&*stream);
let mut lines = reader.lines();

let name = match lines.next().await {
None => Err("peer disconnected immediately")?,
Some(line) => line?,

 };
 broker.send(Event::NewPeer { name: name.clone(), stream:
Arc::clone(&stream) }).await // 3
 .unwrap();

while let Some(line) = lines.next().await {
let line = line?;
let (dest, msg) = match line.find(':') {

None => continue,
Some(idx) => (&line[..idx], line[idx + 1 ..].trim()),

 };
let dest: Vec<String> = dest.split(',').map(|name|

name.trim().to_string()).collect();
let msg: String = msg.to_string();

 broker.send(Event::Message { // 4
 from: name.clone(),
 to: dest,
 msg,
 }).await.unwrap();
 }

Ok(())
}

async fn connection_writer_loop(
mut messages: Receiver<String>,

 stream: Arc<TcpStream>,
) -> Result<()> {

let mut stream = &*stream;
while let Some(msg) = messages.next().await {

 stream.write_all(msg.as_bytes()).await?;
 }

Ok(())
}

#[derive(Debug)]
enum Event {
 NewPeer {
 name: String,
 stream: Arc<TcpStream>,
 },

Async programming in Rust with async-std https://book.async.rs/print.html

�� of �� �/�/��, �:�� PM

1. Inside the accept_loop , we create the broker's channel and task .
2. Inside connection_loop , we need to wrap TcpStream into an Arc , to be

able to share it with the connection_writer_loop .
3. On login, we notify the broker. Note that we .unwrap on send: broker should

outlive all the clients and if that's not the case the broker probably panicked,
so we can escalate the panic as well.

4. Similarly, we forward parsed messages to the broker, assuming that it is alive.

 Message {
 from: String,
 to: Vec<String>,
 msg: String,
 },
}

async fn broker_loop(mut events: Receiver<Event>) -> Result<()> {
let mut peers: HashMap<String, Sender<String>> = HashMap::new();

while let Some(event) = events.next().await {
match event {

 Event::Message { from, to, msg } => {
for addr in to {

if let Some(peer) = peers.get_mut(&addr) {
let msg = format!("from {}: {}\n", from, msg);

 peer.send(msg).await?
 }
 }
 }
 Event::NewPeer { name, stream} => {

match peers.entry(name) {
 Entry::Occupied(..) => (),
 Entry::Vacant(entry) => {

let (client_sender, client_receiver) =
mpsc::unbounded();
 entry.insert(client_sender); // 4

spawn_and_log_error(connection_writer_loop(client_receiver, stream)); //
5
 }
 }
 }
 }
 }

Ok(())
}

Async programming in Rust with async-std https://book.async.rs/print.html

�� of �� �/�/��, �:�� PM

Clean Shutdown

One of the problems of the current implementation is that it doesn't handle
graceful shutdown. If we break from the accept loop for some reason, all in-�ight
tasks are just dropped on the �oor. A more correct shutdown sequence would be:

1. Stop accepting new clients
2. Deliver all pending messages
3. Exit the process

A clean shutdown in a channel based architecture is easy, although it can appear a
magic trick at �rst. In Rust, receiver side of a channel is closed as soon as all
senders are dropped. That is, as soon as producers exit and drop their senders,
the rest of the system shuts down naturally. In async_std this translates to two
rules:

1. Make sure that channels form an acyclic graph.
2. Take care to wait, in the correct order, until intermediate layers of the system

process pending messages.

In a-chat , we already have an unidirectional �ow of messages:
reader -> broker -> writer . However, we never wait for broker and writers,

which might cause some messages to get dropped. Let's add waiting to the server:

And to the broker:

async fn accept_loop(addr: impl ToSocketAddrs) -> Result<()> {
let listener = TcpListener::bind(addr).await?;

let (broker_sender, broker_receiver) = mpsc::unbounded();
let broker_handle = task::spawn(broker_loop(broker_receiver));
let mut incoming = listener.incoming();
while let Some(stream) = incoming.next().await {

let stream = stream?;
println!("Accepting from: {}", stream.peer_addr()?);

 spawn_and_log_error(connection_loop(broker_sender.clone(),
stream));
 }

drop(broker_sender); // 1
 broker_handle.await?; // 5

Ok(())
}

Async programming in Rust with async-std https://book.async.rs/print.html

�� of �� �/�/��, �:�� PM

Notice what happens with all of the channels once we exit the accept loop:

1. First, we drop the main broker's sender. That way when the readers are done,
there's no sender for the broker's channel, and the chanel closes.

2. Next, the broker exits while let Some(event) = events.next().await loop.
3. It's crucial that, at this stage, we drop the peers map. This drops writer's

senders.
4. Now we can join all of the writers.
5. Finally, we join the broker, which also guarantees that all the writes have

terminated.

async fn broker_loop(mut events: Receiver<Event>) -> Result<()> {
let mut writers = Vec::new();
let mut peers: HashMap<String, Sender<String>> = HashMap::new();
while let Some(event) = events.next().await { // 2

match event {
 Event::Message { from, to, msg } => {

for addr in to {
if let Some(peer) = peers.get_mut(&addr) {

let msg = format!("from {}: {}\n", from, msg);
 peer.send(msg).await?
 }
 }
 }
 Event::NewPeer { name, stream} => {

match peers.entry(name) {
 Entry::Occupied(..) => (),
 Entry::Vacant(entry) => {

let (client_sender, client_receiver) =
mpsc::unbounded();
 entry.insert(client_sender);

let handle =
spawn_and_log_error(connection_writer_loop(client_receiver, stream));
 writers.push(handle); // 4
 }
 }
 }
 }
 }

drop(peers); // 3
for writer in writers { // 4

 writer.await;
 }

Ok(())
}

Async programming in Rust with async-std https://book.async.rs/print.html

�� of �� �/�/��, �:�� PM

Handling Disconnections

Currently, we only ever add new peers to the map. This is clearly wrong: if a peer
closes connection to the chat, we should not try to send any more messages to it.

One subtlety with handling disconnection is that we can detect it either in the
reader's task, or in the writer's task. The most obvious solution here is to just
remove the peer from the peers map in both cases, but this would be wrong. If
both read and write fail, we'll remove the peer twice, but it can be the case that the
peer reconnected between the two failures! To �x this, we will only remove the
peer when the write side �nishes. If the read side �nishes we will notify the write
side that it should stop as well. That is, we need to add an ability to signal
shutdown for the writer task.

One way to approach this is a shutdown: Receiver<()> channel. There's a more
minimal solution however, which makes clever use of RAII. Closing a channel is a
synchronization event, so we don't need to send a shutdown message, we can just
drop the sender. This way, we statically guarantee that we issue shutdown exactly
once, even if we early return via ? or panic.

First, let's add a shutdown channel to the connection_loop :

Async programming in Rust with async-std https://book.async.rs/print.html

�� of �� �/�/��, �:�� PM

1. To enforce that no messages are sent along the shutdown channel, we use an
uninhabited type.

2. We pass the shutdown channel to the writer task.
3. In the reader, we create a _shutdown_sender whose only purpose is to get

dropped.

In the connection_writer_loop , we now need to choose between shutdown and
message channels. We use the select macro for this purpose:

#[derive(Debug)]
enum Void {} // 1

#[derive(Debug)]
enum Event {
 NewPeer {
 name: String,
 stream: Arc<TcpStream>,
 shutdown: Receiver<Void>, // 2
 },
 Message {
 from: String,
 to: Vec<String>,
 msg: String,
 },
}

async fn connection_loop(mut broker: Sender<Event>, stream:
Arc<TcpStream>) -> Result<()> {

// ...
let (_shutdown_sender, shutdown_receiver) = mpsc::unbounded::

<Void>(); // 3
 broker.send(Event::NewPeer {
 name: name.clone(),
 stream: Arc::clone(&stream),
 shutdown: shutdown_receiver,
 }).await.unwrap();

// ...
}

Async programming in Rust with async-std https://book.async.rs/print.html

�� of �� �/�/��, �:�� PM

1. We add shutdown channel as an argument.
2. Because of select , we can't use a while let loop, so we desugar it further

into a loop .
3. In the shutdown case we use match void {} as a statically-checked

unreachable!() .

Another problem is that between the moment we detect disconnection in
connection_writer_loop and the moment when we actually remove the peer

from the peers map, new messages might be pushed into the peer's channel. To
not lose these messages completely, we'll return the messages channel back to the
broker. This also allows us to establish a useful invariant that the message channel
strictly outlives the peer in the peers map, and makes the broker itself infallible.

Final Code

The �nal code looks like this:

use futures::{select, FutureExt};

async fn connection_writer_loop(
 messages: &mut Receiver<String>,
 stream: Arc<TcpStream>,
 shutdown: Receiver<Void>, // 1
) -> Result<()> {

let mut stream = &*stream;
let mut messages = messages.fuse();
let mut shutdown = shutdown.fuse();
loop { // 2

select! {
 msg = messages.next().fuse() => match msg {

Some(msg) => stream.write_all(msg.as_bytes()).await?,
None => break,

 },
 void = shutdown.next().fuse() => match void {

Some(void) => match void {}, // 3
None => break,

 }
 }
 }

Ok(())
}

Async programming in Rust with async-std https://book.async.rs/print.html

�� of �� �/�/��, �:�� PM

use async_std::{
 io::BufReader,
 net::{TcpListener, TcpStream, ToSocketAddrs},
 prelude::*,
 task,
};
use futures::channel::mpsc;
use futures::sink::SinkExt;
use futures::{select, FutureExt};
use std::{
 collections::hash_map::{Entry, HashMap},
 future::Future,
 sync::Arc,
};

type Result<T> = std::result::Result<T, Box<dyn std::error::Error + Send
+ Sync>>;
type Sender<T> = mpsc::UnboundedSender<T>;
type Receiver<T> = mpsc::UnboundedReceiver<T>;

#[derive(Debug)]
enum Void {}

// main
fn run() -> Result<()> {
 task::block_on(accept_loop("127.0.0.1:8080"))
}

async fn accept_loop(addr: impl ToSocketAddrs) -> Result<()> {
let listener = TcpListener::bind(addr).await?;
let (broker_sender, broker_receiver) = mpsc::unbounded();
let broker_handle = task::spawn(broker_loop(broker_receiver));
let mut incoming = listener.incoming();
while let Some(stream) = incoming.next().await {

let stream = stream?;
println!("Accepting from: {}", stream.peer_addr()?);

 spawn_and_log_error(connection_loop(broker_sender.clone(),
stream));
 }

drop(broker_sender);
 broker_handle.await;

Ok(())
}

async fn connection_loop(mut broker: Sender<Event>, stream: TcpStream)
-> Result<()> {

let stream = Arc::new(stream);
let reader = BufReader::new(&*stream);
let mut lines = reader.lines();

Async programming in Rust with async-std https://book.async.rs/print.html

�� of �� �/�/��, �:�� PM

let name = match lines.next().await {
None => Err("peer disconnected immediately")?,
Some(line) => line?,

 };
let (_shutdown_sender, shutdown_receiver) = mpsc::unbounded::

<Void>();
 broker.send(Event::NewPeer {
 name: name.clone(),
 stream: Arc::clone(&stream),
 shutdown: shutdown_receiver,
 }).await.unwrap();

while let Some(line) = lines.next().await {
let line = line?;
let (dest, msg) = match line.find(':') {

None => continue,
Some(idx) => (&line[..idx], line[idx + 1 ..].trim()),

 };
let dest: Vec<String> = dest.split(',').map(|name|

name.trim().to_string()).collect();
let msg: String = msg.trim().to_string();

 broker.send(Event::Message {
 from: name.clone(),
 to: dest,
 msg,
 }).await.unwrap();
 }

Ok(())
}

async fn connection_writer_loop(
 messages: &mut Receiver<String>,
 stream: Arc<TcpStream>,
 shutdown: Receiver<Void>,
) -> Result<()> {

let mut stream = &*stream;
let mut messages = messages.fuse();
let mut shutdown = shutdown.fuse();
loop {

select! {
 msg = messages.next().fuse() => match msg {

Some(msg) => stream.write_all(msg.as_bytes()).await?,
None => break,

 },
 void = shutdown.next().fuse() => match void {

Some(void) => match void {},
None => break,

Async programming in Rust with async-std https://book.async.rs/print.html

�� of �� �/�/��, �:�� PM

 }
 }
 }

Ok(())
}

#[derive(Debug)]
enum Event {
 NewPeer {
 name: String,
 stream: Arc<TcpStream>,
 shutdown: Receiver<Void>,
 },
 Message {
 from: String,
 to: Vec<String>,
 msg: String,
 },
}

async fn broker_loop(events: Receiver<Event>) {
let (disconnect_sender, mut disconnect_receiver) = // 1

 mpsc::unbounded::<(String, Receiver<String>)>();
let mut peers: HashMap<String, Sender<String>> = HashMap::new();
let mut events = events.fuse();
loop {

let event = select! {
 event = events.next().fuse() => match event {

None => break, // 2
Some(event) => event,

 },
 disconnect = disconnect_receiver.next().fuse() => {

let (name, _pending_messages) = disconnect.unwrap(); //
3

assert!(peers.remove(&name).is_some());
continue;

 },
 };

match event {
 Event::Message { from, to, msg } => {

for addr in to {
if let Some(peer) = peers.get_mut(&addr) {

let msg = format!("from {}: {}\n", from, msg);
 peer.send(msg).await
 .unwrap() // 6
 }
 }
 }
 Event::NewPeer { name, stream, shutdown } => {

match peers.entry(name.clone()) {

Async programming in Rust with async-std https://book.async.rs/print.html

�� of �� �/�/��, �:�� PM

1. In the broker, we create a channel to reap disconnected peers and their
undelivered messages.

2. The broker's main loop exits when the input events channel is exhausted
(that is, when all readers exit).

3. Because broker itself holds a disconnect_sender , we know that the
disconnections channel can't be fully drained in the main loop.

4. We send peer's name and pending messages to the disconnections channel
in both the happy and the not-so-happy path. Again, we can safely unwrap
because the broker outlives writers.

5. We drop peers map to close writers' messages channel and shut down the

 Entry::Occupied(..) => (),
 Entry::Vacant(entry) => {

let (client_sender, mut client_receiver) =
mpsc::unbounded();
 entry.insert(client_sender);

let mut disconnect_sender =
disconnect_sender.clone();
 spawn_and_log_error(async move {

let res = connection_writer_loop(&mut
client_receiver, stream, shutdown).await;
 disconnect_sender.send((name,
client_receiver)).await // 4
 .unwrap();
 res
 });
 }
 }
 }
 }
 }

drop(peers); // 5
drop(disconnect_sender); // 6
while let Some((_name, _pending_messages)) =

disconnect_receiver.next().await {
 }
}

fn spawn_and_log_error<F>(fut: F) -> task::JoinHandle<()>
where
 F: Future<Output = Result<()>> + Send + 'static,
{
 task::spawn(async move {

if let Err(e) = fut.await {
 eprintln!("{}", e)
 }
 })
}

Async programming in Rust with async-std https://book.async.rs/print.html

�� of �� �/�/��, �:�� PM

writers for sure. It is not strictly necessary in the current setup, where the
broker waits for readers' shutdown anyway. However, if we add a server-
initiated shutdown (for example, kbd:[ctrl+c] handling), this will be a way for
the broker to shutdown the writers.

6. Finally, we close and drain the disconnections channel.

Implementing a client

Since the protocol is line-based, implementing a client for the chat is
straightforward:

Lines read from stdin should be sent over the socket.
Lines read from the socket should be echoed to stdout.

Although async does not signi�cantly a�ect client performance (as unlike the
server, the client interacts solely with one user and only needs limited
concurrency), async is still useful for managing concurrency!

The client has to read from stdin and the socket simultaneously. Programming this
with threads is cumbersome, especially when implementing a clean shutdown.
With async, the select! macro is all that is needed.

Async programming in Rust with async-std https://book.async.rs/print.html

�� of �� �/�/��, �:�� PM

1. Here we split TcpStream into read and write halves: there's
impl AsyncRead for &'_ TcpStream , just like the one in std.

2. We create a stream of lines for both the socket and stdin.

use async_std::{
 io::{stdin, BufReader},
 net::{TcpStream, ToSocketAddrs},
 prelude::*,
 task,
};
use futures::{select, FutureExt};

type Result<T> = std::result::Result<T, Box<dyn std::error::Error + Send
+ Sync>>;

// main
fn run() -> Result<()> {
 task::block_on(try_run("127.0.0.1:8080"))
}

async fn try_run(addr: impl ToSocketAddrs) -> Result<()> {
let stream = TcpStream::connect(addr).await?;
let (reader, mut writer) = (&stream, &stream); // 1
let mut lines_from_server = BufReader::new(reader).lines().fuse();

// 2
let mut lines_from_stdin = BufReader::new(stdin()).lines().fuse();

// 2
loop {

select! { // 3
 line = lines_from_server.next().fuse() => match line {

Some(line) => {
let line = line?;
println!("{}", line);

 },
None => break,

 },
 line = lines_from_stdin.next().fuse() => match line {

Some(line) => {
let line = line?;

 writer.write_all(line.as_bytes()).await?;
 writer.write_all(b"\n").await?;
 }

None => break,
 }
 }
 }

Ok(())
}

Async programming in Rust with async-std https://book.async.rs/print.html

�� of �� �/�/��, �:�� PM

3. In the main select loop, we print the lines we receive from the server and
send the lines we read from the console.

Patterns
This section documents small, useful patterns.

It is intended to be read at a glance, allowing you to get back when you have a
problem.

Small Patterns
A collection of small, useful patterns.

Splitting streams

async-std doesn't provide a split() method on io handles. Instead, splitting a
stream into a read and write half can be done like this:

Production-Ready Accept Loop
A production-ready accept loop needs the following things:

1. Handling errors
2. Limiting the number of simultanteous connections to avoid deny-of-service

(DoS) attacks

Handling errors

use async_std::{io, net::TcpStream};
async fn echo(stream: TcpStream) {

let (reader, writer) = &mut (&stream, &stream);
 io::copy(reader, writer).await;
}

Async programming in Rust with async-std https://book.async.rs/print.html

�� of �� �/�/��, �:�� PM

There are two kinds of errors in an accept loop:

1. Per-connection errors. The system uses them to notify that there was a
connection in the queue and it's dropped by the peer. Subsequent
connections can be already queued so next connection must be accepted
immediately.

2. Resource shortages. When these are encountered it doesn't make sense to
accept the next socket immediately. But the listener stays active, so you
server should try to accept socket later.

Here is the example of a per-connection error (printed in normal and debug
mode):

And the following is the most common example of a resource shortage error:

Testing Application

To test your application for these errors try the following (this works on unixes
only).

Lower limits and start the application:

Then in another console run the wrk benchmark tool:

Error: Connection reset by peer (os error 104)
Error: Os { code: 104, kind: ConnectionReset, message: "Connection reset
by peer" }

Error: Too many open files (os error 24)
Error: Os { code: 24, kind: Other, message: "Too many open files" }

$ ulimit -n 100
$ cargo run --example your_app
 Compiling your_app v0.1.0 (/work)
 Finished dev [unoptimized + debuginfo] target(s) in 5.47s
 Running `target/debug/examples/your_app`
Server is listening on: http://127.0.0.1:1234

Async programming in Rust with async-std https://book.async.rs/print.html

�� of �� �/�/��, �:�� PM

Important is to check the following things:

1. The application doesn't crash on error (but may log errors, see below)
2. It's possible to connect to the application again once load is stopped (few

seconds after wrk). This is what telnet does in example above, make sure it
prints Connected to <hostname> .

3. The Too many open files error is logged in the appropriate log. This
requires to set "maximum number of simultaneous connections" parameter
(see below) of your application to a value greater then 100 for this example.

4. Check CPU usage of the app while doing a test. It should not occupy 100% of
a single CPU core (it's unlikely that you can exhaust CPU by 1000 connections
in Rust, so this means error handling is not right).

Testing non-HTTP applications

If it's possible, use the appropriate benchmark tool and set the appropriate
number of connections. For example redis-benchmark has a -c parameter for
that, if you implement redis protocol.

Alternatively, can still use wrk , just make sure that connection is not immediately
closed. If it is, put a temporary timeout before handing the connection to the
protocol handler, like this:

1. Make sure the sleep coroutine is inside the spawned task, not in the loop.

Handling Errors Manually

$ wrk -c 1000 http://127.0.0.1:1234
Running 10s test @ http://localhost:8080/
 2 threads and 1000 connections
$ telnet localhost 1234
Trying ::1...
Connected to localhost.

while let Some(stream) = incoming.next().await {
 task::spawn(async {
 task::sleep(Duration::from_secs(10)).await; // 1
 connection_loop(stream).await;
 });
}

Async programming in Rust with async-std https://book.async.rs/print.html

�� of �� �/�/��, �:�� PM

Here is how basic accept loop could look like:

1. Ignore per-connection errors.
2. Sleep and continue on resource shortage.
3. It's important to log the message, because these errors commonly mean the

miscon�guration of the system and are helpful for operations people running
the application.

Be sure to test your application.

External Crates

The crate async-listen has a helper to achieve this task:

async fn accept_loop(addr: impl ToSocketAddrs) -> Result<()> {
let listener = TcpListener::bind(addr).await?;
let mut incoming = listener.incoming();
while let Some(result) = incoming.next().await {

let stream = match stream {
Err(ref e) if is_connection_error(e) => continue, // 1
Err(e) => {

 eprintln!("Error: {}. Pausing for 500ms."); // 3
 task::sleep(Duration::from_millis(500)).await; // 2

continue;
 }

Ok(s) => s,
 };

// body
 }

Ok(())
}

Async programming in Rust with async-std https://book.async.rs/print.html

�� of �� �/�/��, �:�� PM

1. Logs resource shortages (async-listen calls them warnings). If you use log
crate or any other in your app this should go to the log.

2. Stream yields sockets without Result wrapper after handle_errors because
all errors are already handled.

3. Together with the error we print a hint, which explains some errors for end
users. For example, it recommends increasing open �le limit and gives a link.

Be sure to test your application.

Connections Limit

Even if you've applied everything described in Handling Errors section, there is still
a problem.

Let's imagine you have a server that needs to open a �le to process client request.
At some point, you might encounter the following situation:

1. There are as many client connection as max �le descriptors allowed for the
application.

2. Listener gets Too many open files error so it sleeps.
3. Some client sends a request via the previously open connection.
4. Opening a �le to serve request fails, because of the same

use async_listen::{ListenExt, error_hint};

async fn accept_loop(addr: impl ToSocketAddrs) -> Result<()> {

let listener = TcpListener::bind(addr).await?;
let mut incoming = listener

 .incoming()
 .log_warnings(log_accept_error) // 1
 .handle_errors(Duration::from_millis(500));

while let Some(socket) = incoming.next().await { // 2
// body

 }
Ok(())

}

fn log_accept_error(e: &io::Error) {
 eprintln!("Error: {}. Listener paused for 0.5s. {}", e,
error_hint(e)) // 3
}

Async programming in Rust with async-std https://book.async.rs/print.html

�� of �� �/�/��, �:�� PM

Too many open files error, until some other client drops a connection.

There are many more possible situations, this is just a small illustation that limiting
number of connections is very useful. Generally, it's one of the ways to control
resources used by a server and avoiding some kinds of deny of service (DoS)
attacks.

async-listen crate

Limiting maximum number of simultaneous connections with async-listen looks
like the following:

1. We need to handle errors �rst, because backpressure helper expects stream
of TcpStream rather than Result .

2. The token yielded by a new stream is what is counted by backpressure
helper. I.e. if you drop a token, new connection can be established.

3. We give the connection loop a reference to token to bind token's lifetime to
the lifetime of the connection.

4. The token itsellf in the function can be ignored, hence _token

Be sure to test this behavior.

use async_listen::{ListenExt, Token, error_hint};

async fn accept_loop(addr: impl ToSocketAddrs) -> Result<()> {

let listener = TcpListener::bind(addr).await?;
let mut incoming = listener

 .incoming()
 .log_warnings(log_accept_error)
 .handle_errors(Duration::from_millis(500)) // 1
 .backpressure(100);

while let Some((token, socket)) = incoming.next().await { // 2
 task::spawn(async move {
 connection_loop(&token, stream).await; // 3
 });
 }

Ok(())
}
async fn connection_loop(_token: &Token, stream: TcpStream) { // 4

// ...
}

Async programming in Rust with async-std https://book.async.rs/print.html

�� of �� �/�/��, �:�� PM

Security
Writing a highly perfomant async core library is a task involving some instances of
unsafe code.

We take great care in vetting all unsafe code included in async-std and do follow
generally accepted practices.

In the case that you �nd a security-related bug in our library, please get in touch
with our security contact.

Patches improving the resilience of the library or the testing setup are happily
accepted on our github org.

Policy
Safety is one of the core principles of what we do, and to that end, we would like to
ensure that async-std has a secure implementation. Thank you for taking the time
to responsibly disclose any issues you �nd.

All security bugs in async-std distribution should be reported by email to
�orian.gilcher@ferrous-systems.com. This list is delivered to a small security team.
Your email will be acknowledged within 24 hours, and you’ll receive a more
detailed response to your email within 48 hours indicating the next steps in
handling your report. If you would like, you can encrypt your report using our
public key. This key is also On MIT’s keyserver and reproduced below.

Be sure to use a descriptive subject line to avoid having your report be missed.
After the initial reply to your report, the security team will endeavor to keep you
informed of the progress being made towards a �x and full announcement. As
recommended by RFPolicy, these updates will be sent at least every �ve days. In
reality, this is more likely to be every 24-48 hours.

If you have not received a reply to your email within 48 hours, or have not heard
from the security team for the past �ve days, there are a few steps you can take (in
order):

Post on our Community forums

Please note that the discussion forums are public areas. When escalating in these
venues, please do not discuss your issue. Simply say that you’re trying to get a hold
of someone from the security team.

Async programming in Rust with async-std https://book.async.rs/print.html

�� of �� �/�/��, �:�� PM

Disclosure policy

The async-std project has a 5 step disclosure process.

The security report is received and is assigned a primary handler. This person
will coordinate the �x and release process.
The problem is con�rmed and a list of all a�ected versions is determined.
Code is audited to �nd any potential similar problems.
Fixes are prepared for all releases which are still under maintenance. These
�xes are not committed to the public repository but rather held locally
pending the announcement.
On the embargo date, the changes are pushed to the public repository and
new builds are deployed to crates.io. Within 6 hours, a copy of the advisory
will be published on the the async.rs blog.

This process can take some time, especially when coordination is required with
maintainers of other projects. Every e�ort will be made to handle the bug in as
timely a manner as possible, however it's important that we follow the release
process above to ensure that the disclosure is handled in a consistent manner.

Credits

This policy is adapted from the Rust project security policy.

PGP Key

Async programming in Rust with async-std https://book.async.rs/print.html

�� of �� �/�/��, �:�� PM

Glossary

blocking

"blocked" generally refers to conditions that keep a task from doing its work. For
example, it might need data to be sent by a client before continuing. When tasks
become blocked, usually, other tasks are scheduled.

Sometimes you hear that you should never call "blocking functions" in an async
context. What this refers to is functions that block the current thread and do not
yield control back. This keeps the executor from using this thread to schedule
another task.

-----BEGIN PGP PUBLIC KEY BLOCK-----

mQENBF1Wu/ABCADJaGt4HwSlqKB9BGHWYKZj/6mTMbmc29vsEOcCSQKo6myCf9zc
sasWAttep4FAUDX+MJhVbBTSq9M1YVxp33Qh5AF0t9SnJZnbI+BZuGawcHDL01xE
bE+8bcA2+szeTTUZCeWwsaoTd/2qmQKvpUCBQp7uBs/ITO/I2q7+xCGXaOHZwUKc
H8SUBLd35nYFtjXAeejoZVkqG2qEjrc9bkZAwxFXi7Fw94QdkNLaCjNfKxZON/qP
A3WOpyWPr3ERk5C5prjEAvrW8kdqpTRjdmzQjsr8UEXb5GGEOo93N4OLZVQ2mXt9
dfn++GOnOk7sTxvfiDH8Ru5o4zCtKgO+r5/LABEBAAG0UkZsb3JpYW4gR2lsY2hl
ciAoU2VjdXJpdHkgY29udGFjdCBhc3luYy1zdGQpIDxmbG9yaWFuLmdpbGNoZXJA
ZmVycm91cy1zeXN0ZW1zLmNvbT6JATgEEwECACIFAl1Wu/ACGwMGCwkIBwMCBhUI
AgkKCwQWAgMBAh4BAheAAAoJEACXY97PwLtSc0AH/18yvrElVOkG0ADWX7l+JKHH
nMQtYj0Auop8d6TuKBbpwtYhwELrQoITDMV7f2XEnchNsvYxAyBZhIISmXeJboE1
KzZD1O+4QPXRcXhj+QNsKQ680mrgZXgAI2Y4ptIW9Vyw3jiHu/ZVopvDAt4li+up
3fRJGPAvGu+tclpJmA+Xam23cDj89M7/wHHgKIyT59WgFwyCgibL+NHKwg2Unzou
9uyZQnq6hf62sQTWEZIAr9BQpKmluplNIJHDeECWzZoE9ucE2ZXsq5pq9qojsAMK
yRdaFdpBcD/AxtrTKFeXGS7X7LqaljY/IFBEdJOqVNWpqSLjGWqjSLIEsc1AB0K5
AQ0EXVa78AEIAJMxBOEEW+2c3CcjFuUfcRsoBsFH3Vk+GwCbjIpNHq/eAvS1yy2L
u10U5CcT5Xb6be3AeCYv00ZHVbEi6VwoauVCSX8qDjhVzQxvNLgQ1SduobjyF6t8
3M/wTija6NvMKszyw1l2oHepxSMLej1m49DyCDFNiZm5rjQcYnFT4J71syxViqHF
v2fWCheTrHP3wfBAt5zyDet7IZd/EhYAK6xXEwr9nBPjfbaVexm2B8K6hOPNj0Bp
OKm4rcOj7JYlcxrwhMvNnwEue7MqH1oXAsoaC1BW+qs4acp/hHpesweL6Rcg1pED
OJUQd3UvRsqRK0EsorDu0oj5wt6Qp3ZEbPMAEQEAAYkBHwQYAQIACQUCXVa78AIb
DAAKCRAAl2Pez8C7Uv8bB/9scRm2wvzHLbFtcEHaHvlKO1yYfSVqKqJzIKHc7pM2
+szM8JVRTxAbzK5Xih9SB5xlekixxO2UCJI5DkJ/ir/RCcg+/CAQ8iLm2UcYAgJD
TocKiR5gjNAvUDI4tMrDLLdF+7+RCQGc7HBSxFiNBJVGAztGVh1+cQ0zaCX6Tt33
1EQtyRcPID0m6+ip5tCJN0dILC0YcwzXGrSgjB03JqItIyJEucdQz6UB84TIAGku
JJl4tktgD9T7Rb5uzRhHCSbLy89DQVvCcKD4B94ffuDW3HO8n8utDusOiZuG4BUf
WdFy6/gTLNiFbTzkq1BBJQMN1nBwGs1sn63RRgjumZ1N
=dIcF
-----END PGP PUBLIC KEY BLOCK-----

Async programming in Rust with async-std https://book.async.rs/print.html

�� of �� �/�/��, �:�� PM

