
Getting Started
Welcome to Asynchronous Programming in Rust! If you're looking to start writing
asynchronous Rust code, you've come to the right place. Whether you're building a
web server, a database, or an operating system, this book will show you how to
use Rust's asynchronous programming tools to get the most out of your hardware.

What This Book Covers

This book aims to be a comprehensive, up-to-date guide to using Rust's async
language features and libraries, appropriate for beginners and old hands alike.

The early chapters provide an introduction to async programming in general,
and to Rust's particular take on it.

The middle chapters discuss key utilities and control-�ow tools you can use
when writing async code, and describe best-practices for structuring libraries
and applications to maximize performance and reusability.

The last section of the book covers the broader async ecosystem, and
provides a number of examples of how to accomplish common tasks.

With that out of the way, let's explore the exciting world of Asynchronous
Programming in Rust!

Why Async?
We all love how Rust allows us to write fast, safe software. But why write
asynchronous code?

Asynchronous code allows us to run multiple tasks concurrently on the same OS
thread. In a typical threaded application, if you wanted to download two di�erent
webpages at the same time, you would spread the work across two di�erent
threads, like this:

Asynchronous Programming in Rust https://rust-lang.github.io/async-book/print.html

� of �� �/�/��, �:�� PM

This works �ne for many applications-- after all, threads were designed to do just
this: run multiple di�erent tasks at once. However, they also come with some
limitations. There's a lot of overhead involved in the process of switching between
di�erent threads and sharing data between threads. Even a thread which just sits
and does nothing uses up valuable system resources. These are the costs that
asynchronous code is designed to eliminate. We can rewrite the function above
using Rust's async / .await notation, which will allow us to run multiple tasks at
once without creating multiple threads:

Overall, asynchronous applications have the potential to be much faster and use
fewer resources than a corresponding threaded implementation. However, there is
a cost. Threads are natively supported by the operating system, and using them
doesn't require any special programming model-- any function can create a thread,
and calling a function that uses threads is usually just as easy as calling any normal
function. However, asynchronous functions require special support from the
language or libraries. In Rust, async fn creates an asynchronous function which
returns a Future . To execute the body of the function, the returned Future must
be run to completion.

It's important to remember that traditional threaded applications can be quite
e�ective, and that Rust's small memory footprint and predictability mean that you
can get far without ever using async . The increased complexity of the
asynchronous programming model isn't always worth it, and it's important to

fn get_two_sites() {
// Spawn two threads to do work.
let thread_one = thread::spawn(|| download("https://www.foo.com"));
let thread_two = thread::spawn(|| download("https://www.bar.com"));

// Wait for both threads to complete.
 thread_one.join().expect("thread one panicked");
 thread_two.join().expect("thread two panicked");
}

async fn get_two_sites_async() {
// Create two different "futures" which, when run to completion,
// will asynchronously download the webpages.
let future_one = download_async("https://www.foo.com");
let future_two = download_async("https://www.bar.com");

// Run both futures to completion at the same time.
 join!(future_one, future_two);
}

Asynchronous Programming in Rust https://rust-lang.github.io/async-book/print.html

� of �� �/�/��, �:�� PM

consider whether your application would be better served by using a simpler
threaded model.

The State of Asynchronous Rust
The asynchronous Rust ecosystem has undergone a lot of evolution over time, so it
can be hard to know what tools to use, what libraries to invest in, or what
documentation to read. However, the Future trait inside the standard library and
the async / await language feature has recently been stabilized. The ecosystem as
a whole is therefore in the midst of migrating to the newly-stabilized API, after
which point churn will be signi�cantly reduced.

At the moment, however, the ecosystem is still undergoing rapid development and
the asynchronous Rust experience is unpolished. Most libraries still use the 0.1
de�nitions of the futures crate, meaning that to interoperate developers
frequently need to reach for the compat functionality from the 0.3 futures crate.
The async / await language feature is still new. Important extensions like async
fn syntax in trait methods are still unimplemented, and the current compiler error
messages can be di�cult to parse.

That said, Rust is well on its way to having some of the most performant and
ergonomic support for asynchronous programming around, and if you're not
afraid of doing some spelunking, enjoy your dive into the world of asynchronous
programming in Rust!

async / .await Primer
async / .await is Rust's built-in tool for writing asynchronous functions that look

like synchronous code. async transforms a block of code into a state machine that
implements a trait called Future . Whereas calling a blocking function in a
synchronous method would block the whole thread, blocked Future s will yield
control of the thread, allowing other Future s to run.

To create an asynchronous function, you can use the async fn syntax:

The value returned by async fn is a Future . For anything to happen, the Future
needs to be run on an executor.

async fn do_something() { ... }

Asynchronous Programming in Rust https://rust-lang.github.io/async-book/print.html

� of �� �/�/��, �:�� PM

Inside an async fn , you can use .await to wait for the completion of another
type that implements the Future trait, such as the output of another async fn .
Unlike block_on , .await doesn't block the current thread, but instead
asynchronously waits for the future to complete, allowing other tasks to run if the
future is currently unable to make progress.

For example, imagine that we have three async fn : learn_song , sing_song , and
dance :

One way to do learn, sing, and dance would be to block on each of these
individually:

However, we're not giving the best performance possible this way-- we're only ever
doing one thing at once! Clearly we have to learn the song before we can sing it,
but it's possible to dance at the same time as learning and singing the song. To do
this, we can create two separate async fn which can be run concurrently:

// `block_on` blocks the current thread until the provided future has
run to
// completion. Other executors provide more complex behavior, like
scheduling
// multiple futures onto the same thread.
use futures::executor::block_on;

async fn hello_world() {
println!("hello, world!");

}

fn main() {
let future = hello_world(); // Nothing is printed

 block_on(future); // `future` is run and "hello, world!" is printed
}

async fn learn_song() -> Song { ... }
async fn sing_song(song: Song) { ... }
async fn dance() { ... }

fn main() {
let song = block_on(learn_song());

 block_on(sing_song(song));
 block_on(dance());
}

Asynchronous Programming in Rust https://rust-lang.github.io/async-book/print.html

� of �� �/�/��, �:�� PM

In this example, learning the song must happen before singing the song, but both
learning and singing can happen at the same time as dancing. If we used
block_on(learn_song()) rather than learn_song().await in learn_and_sing ,

the thread wouldn't be able to do anything else while learn_song was running.
This would make it impossible to dance at the same time. By .await -ing the
learn_song future, we allow other tasks to take over the current thread if
learn_song is blocked. This makes it possible to run multiple futures to

completion concurrently on the same thread.

Now that you've learned the basics of async / await , let's try out an example.

Applied: Simple HTTP Server
Let's use async / .await to build an echo server!

To start, run rustup update stable to make sure you've got stable Rust 1.39 or
newer. Once you've done that, run cargo new async-await-echo to create a new

async fn learn_and_sing() {
// Wait until the song has been learned before singing it.
// We use `.await` here rather than `block_on` to prevent blocking

the
// thread, which makes it possible to `dance` at the same time.
let song = learn_song().await;

 sing_song(song).await;
}

async fn async_main() {
let f1 = learn_and_sing();
let f2 = dance();

// `join!` is like `.await` but can wait for multiple futures
concurrently.

// If we're temporarily blocked in the `learn_and_sing` future, the
`dance`

// future will take over the current thread. If `dance` becomes
blocked,

// `learn_and_sing` can take back over. If both futures are blocked,
then

// `async_main` is blocked and will yield to the executor.
 futures::join!(f1, f2);
}

fn main() {
 block_on(async_main());
}

Asynchronous Programming in Rust https://rust-lang.github.io/async-book/print.html

� of �� �/�/��, �:�� PM

project, and open up the resulting async-await-echo folder.

Let's add some dependencies to the Cargo.toml �le:

Now that we've got our dependencies out of the way, let's start writing some code.
We have some imports to add:

[dependencies]
The latest version of the "futures" library, which has lots of
utilities
for writing async code. Enable the "compat" feature to include the
functions for using futures 0.3 and async/await with the Hyper
library,
which use futures 0.1.
futures = { version = "0.3", features = ["compat"] }

Hyper is an asynchronous HTTP library. We'll use it to power our HTTP
server and to make HTTP requests.
hyper = "0.12.9"

Asynchronous Programming in Rust https://rust-lang.github.io/async-book/print.html

� of �� �/�/��, �:�� PM

Once the imports are out of the way, we can start putting together the boilerplate
to allow us to serve requests:

use {
 hyper::{

// Miscellaneous types from Hyper for working with HTTP.
 Body, Client, Request, Response, Server, Uri,

// This function turns a closure which returns a future into an
// implementation of the the Hyper `Service` trait, which is an
// asynchronous function from a generic `Request` to a

`Response`.
 service::service_fn,

// A function which runs a future to completion using the Hyper
runtime.
 rt::run,
 },
 futures::{

// Extension trait for futures 0.1 futures, adding the
`.compat()` method

// which allows us to use `.await` on 0.1 futures.
 compat::Future01CompatExt,

// Extension traits providing additional methods on futures.
// `FutureExt` adds methods that work for all futures, whereas
// `TryFutureExt` adds methods to futures that return `Result`

types.
 future::{FutureExt, TryFutureExt},
 },
 std::net::SocketAddr,
};

Asynchronous Programming in Rust https://rust-lang.github.io/async-book/print.html

� of �� �/�/��, �:�� PM

async fn serve_req(_req: Request<Body>) -> Result<Response<Body>,
hyper::Error> {

// Always return successfully with a response containing a body with
// a friendly greeting ;)
Ok(Response::new(Body::from("hello, world!")))

}

async fn run_server(addr: SocketAddr) {
println!("Listening on http://{}", addr);

// Create a server bound on the provided address
let serve_future = Server::bind(&addr)

// Serve requests using our `async serve_req` function.
// `serve` takes a closure which returns a type implementing the
// `Service` trait. `service_fn` returns a value implementing

the
// `Service` trait, and accepts a closure which goes from

request
// to a future of the response. To use our `serve_req` function

with
// Hyper, we have to box it and put it in a compatability
// wrapper to go from a futures 0.3 future (the kind returned by
// `async fn`) to a futures 0.1 future (the kind used by Hyper).

 .serve(|| service_fn(|req| serve_req(req).boxed().compat()));

// Wait for the server to complete serving or exit with an error.
// If an error occurred, print it to stderr.
if let Err(e) = serve_future.compat().await {

 eprintln!("server error: {}", e);
 }
}

fn main() {
// Set the address to run our socket on.
let addr = SocketAddr::from(([127, 0, 0, 1], 3000));

// Call our `run_server` function, which returns a future.
// As with every `async fn`, for `run_server` to do anything,
// the returned future needs to be run. Additionally,
// we need to convert the returned future from a futures 0.3 future

into a
// futures 0.1 future.
let futures_03_future = run_server(addr);
let futures_01_future =

futures_03_future.unit_error().boxed().compat();

// Finally, we can run the future to completion using the `run`
function

// provided by Hyper.
 run(futures_01_future);

Asynchronous Programming in Rust https://rust-lang.github.io/async-book/print.html

� of �� �/�/��, �:�� PM

If you cargo run now, you should see the message "Listening on
http://127.0.0.1:3000" printed on your terminal. If you open that URL in your
browser of choice, you'll see "hello, world!" appear in your browser.
Congratulations! You just wrote your �rst asynchronous webserver in Rust.

You can also inspect the request itself, which contains information such as the
request URI, HTTP version, headers, and other metadata. For example, we can
print out the URI of the request like this:

You may have noticed that we're not yet doing anything asynchronous when
handling the request-- we just respond immediately, so we're not taking advantage
of the �exibility that async fn gives us. Rather than just returning a static
message, let's try proxying the user's request to another website using Hyper's
HTTP client.

We start by parsing out the URL we want to request:

Then we can create a new hyper::Client and use it to make a GET request,
returning the response to the user:

Client::get returns a hyper::client::FutureResponse , which implements
Future<Output = Result<Response, Error>> (or Future<Item = Response,
Error = Error> in futures 0.1 terms). When we .await that future, an HTTP
request is sent out, the current task is suspended, and the task is queued to be
continued once a response has become available.

Now, if you cargo run and open http://127.0.0.1:3000/foo in your browser,
you'll see the Rust homepage, and the following terminal output:

}

println!("Got request at {:?}", req.uri());

let url_str = "http://www.rust-lang.org/en-US/";
let url = url_str.parse::<Uri>().expect("failed to parse URL");

let res = Client::new().get(url).compat().await;
// Return the result of the request directly to the user
println!("request finished-- returning response");
res

Asynchronous Programming in Rust https://rust-lang.github.io/async-book/print.html

� of �� �/�/��, �:�� PM

Congratulations! You just proxied an HTTP request.

Under the Hood: Executing Future s
and Tasks
In this section, we'll cover the underlying structure of how Future s and
asynchronous tasks are scheduled. If you're only interested in learning how to
write higher-level code that uses existing Future types and aren't interested in the
details of how Future types work, you can skip ahead to the async / await
chapter. However, several of the topics discussed in this chapter are useful for
understanding how async / await code works, understanding the runtime and
performance properties of async / await code, and building new asynchronous
primitives. If you decide to skip this section now, you may want to bookmark it to
revisit in the future.

Now, with that out of the, way, let's talk about the Future trait.

The Future Trait
The Future trait is at the center of asynchronous programming in Rust. A Future
is an asynchronous computation that can produce a value (although that value
may be empty, e.g. ()). A simplified version of the future trait might look
something like this:

Futures can be advanced by calling the poll function, which will drive the future

Listening on http://127.0.0.1:3000
Got request at /foo
making request to http://www.rust-lang.org/en-US/
request finished-- returning response

trait SimpleFuture {
type Output;
fn poll(&mut self, wake: fn()) -> Poll<Self::Output>;

}

enum Poll<T> {
 Ready(T),
 Pending,
}

Asynchronous Programming in Rust https://rust-lang.github.io/async-book/print.html

�� of �� �/�/��, �:�� PM

as far towards completion as possible. If the future completes, it returns
Poll::Ready(result) . If the future is not able to complete yet, it returns
Poll::Pending and arranges for the wake() function to be called when the
Future is ready to make more progress. When wake() is called, the executor

driving the Future will call poll again so that the Future can make more
progress.

Without wake() , the executor would have no way of knowing when a particular
future could make progress, and would have to be constantly polling every future.
With wake() , the executor knows exactly which futures are ready to be poll ed.

For example, consider the case where we want to read from a socket that may or
may not have data available already. If there is data, we can read it in and return
Poll::Ready(data) , but if no data is ready, our future is blocked and can no

longer make progress. When no data is available, we must register wake to be
called when data becomes ready on the socket, which will tell the executor that our
future is ready to make progress. A simple SocketRead future might look
something like this:

pub struct SocketRead<'a> {
 socket: &'a Socket,
}

impl SimpleFuture for SocketRead<'_> {
type Output = Vec<u8>;

fn poll(&mut self, wake: fn()) -> Poll<Self::Output> {
if self.socket.has_data_to_read() {

// The socket has data-- read it into a buffer and return
it.
 Poll::Ready(self.socket.read_buf())
 } else {

// The socket does not yet have data.
//
// Arrange for `wake` to be called once data is available.
// When data becomes available, `wake` will be called, and

the
// user of this `Future` will know to call `poll` again and
// receive data.
self.socket.set_readable_callback(wake);

 Poll::Pending
 }
 }
}

Asynchronous Programming in Rust https://rust-lang.github.io/async-book/print.html

�� of �� �/�/��, �:�� PM

This model of Future s allows for composing together multiple asynchronous
operations without needing intermediate allocations. Running multiple futures at
once or chaining futures together can be implemented via allocation-free state
machines, like this:

Asynchronous Programming in Rust https://rust-lang.github.io/async-book/print.html

�� of �� �/�/��, �:�� PM

/// A SimpleFuture that runs two other futures to completion
concurrently.
///
/// Concurrency is achieved via the fact that calls to `poll` each
future
/// may be interleaved, allowing each future to advance itself at its
own pace.
pub struct Join<FutureA, FutureB> {

// Each field may contain a future that should be run to completion.
// If the future has already completed, the field is set to `None`.
// This prevents us from polling a future after it has completed,

which
// would violate the contract of the `Future` trait.

 a: Option<FutureA>,
 b: Option<FutureB>,
}

impl<FutureA, FutureB> SimpleFuture for Join<FutureA, FutureB>
where
 FutureA: SimpleFuture<Output = ()>,
 FutureB: SimpleFuture<Output = ()>,
{

type Output = ();
fn poll(&mut self, wake: fn()) -> Poll<Self::Output> {

// Attempt to complete future `a`.
if let Some(a) = &mut self.a {

if let Poll::Ready(()) = a.poll(wake) {
self.a.take();

 }
 }

// Attempt to complete future `b`.
if let Some(b) = &mut self.b {

if let Poll::Ready(()) = b.poll(wake) {
self.b.take();

 }
 }

if self.a.is_none() && self.b.is_none() {
// Both futures have completed-- we can return successfully

 Poll::Ready(())
 } else {

// One or both futures returned `Poll::Pending` and still
have

// work to do. They will call `wake()` when progress can be
made.
 Poll::Pending
 }
 }

Asynchronous Programming in Rust https://rust-lang.github.io/async-book/print.html

�� of �� �/�/��, �:�� PM

This shows how multiple futures can be run simultaneously without needing
separate allocations, allowing for more e�cient asynchronous programs. Similarly,
multiple sequential futures can be run one after another, like this:

These examples show how the Future trait can be used to express asynchronous
control �ow without requiring multiple allocated objects and deeply nested
callbacks. With the basic control-�ow out of the way, let's talk about the real
Future trait and how it is di�erent.

}

/// A SimpleFuture that runs two futures to completion, one after
another.
//
// Note: for the purposes of this simple example, `AndThenFut` assumes
both
// the first and second futures are available at creation-time. The real
// `AndThen` combinator allows creating the second future based on the
output
// of the first future, like `get_breakfast.and_then(|food| eat(food))`.
pub struct AndThenFut<FutureA, FutureB> {
 first: Option<FutureA>,
 second: FutureB,
}

impl<FutureA, FutureB> SimpleFuture for AndThenFut<FutureA, FutureB>
where
 FutureA: SimpleFuture<Output = ()>,
 FutureB: SimpleFuture<Output = ()>,
{

type Output = ();
fn poll(&mut self, wake: fn()) -> Poll<Self::Output> {

if let Some(first) = &mut self.first {
match first.poll(wake) {

// We've completed the first future-- remove it and
start on

// the second!
 Poll::Ready(()) => self.first.take(),

// We couldn't yet complete the first future.
 Poll::Pending => return Poll::Pending,
 };
 }

// Now that the first future is done, attempt to complete the
second.

self.second.poll(wake)
 }
}

Asynchronous Programming in Rust https://rust-lang.github.io/async-book/print.html

�� of �� �/�/��, �:�� PM

The �rst change you'll notice is that our self type is no longer &mut self , but has
changed to Pin<&mut Self> . We'll talk more about pinning in a later section, but
for now know that it allows us to create futures that are immovable. Immovable
objects can store pointers between their �elds, e.g. struct MyFut { a: i32,
ptr_to_a: *const i32 } . Pinning is necessary to enable async/await.

Secondly, wake: fn() has changed to &mut Context<'_> . In SimpleFuture , we
used a call to a function pointer (fn()) to tell the future executor that the future in
question should be polled. However, since fn() is just a function pointer, it can't
store any data about which Future called wake .

In a real-world scenario, a complex application like a web server may have
thousands of di�erent connections whose wakeups should all be managed
separately. The Context type solves this by providing access to a value of type
Waker , which can be used to wake up a speci�c task.

Task Wakeups with Waker
It's common that futures aren't able to complete the �rst time they are poll ed.
When this happens, the future needs to ensure that it is polled again once it is
ready to make more progress. This is done with the Waker type.

Each time a future is polled, it is polled as part of a "task". Tasks are the top-level
futures that have been submitted to an executor.

Waker provides a wake() method that can be used to tell the executor that the
associated task should be awoken. When wake() is called, the executor knows
that the task associated with the Waker is ready to make progress, and its future
should be polled again.

Waker also implements clone() so that it can be copied around and stored.

Let's try implementing a simple timer future using Waker .

trait Future {
type Output;
fn poll(

// Note the change from `&mut self` to `Pin<&mut Self>`:
self: Pin<&mut Self>,
// and the change from `wake: fn()` to `cx: &mut Context<'_>`:

 cx: &mut Context<'_>,
) -> Poll<Self::Output>;
}

Asynchronous Programming in Rust https://rust-lang.github.io/async-book/print.html

�� of �� �/�/��, �:�� PM

Applied: Build a Timer

For the sake of the example, we'll just spin up a new thread when the timer is
created, sleep for the required time, and then signal the timer future when the
time window has elapsed.

Here are the imports we'll need to get started:

Let's start by de�ning the future type itself. Our future needs a way for the thread
to communicate that the timer has elapsed and the future should complete. We'll
use a shared Arc<Mutex<..>> value to communicate between the thread and the
future.

Now, let's actually write the Future implementation!

use {
 std::{
 future::Future,
 pin::Pin,
 sync::{Arc, Mutex},
 task::{Context, Poll, Waker},
 thread,
 time::Duration,
 },
};

pub struct TimerFuture {
 shared_state: Arc<Mutex<SharedState>>,
}

/// Shared state between the future and the waiting thread
struct SharedState {

/// Whether or not the sleep time has elapsed
 completed: bool,

/// The waker for the task that `TimerFuture` is running on.
/// The thread can use this after setting `completed = true` to tell
/// `TimerFuture`'s task to wake up, see that `completed = true`,

and
/// move forward.

 waker: Option<Waker>,
}

Asynchronous Programming in Rust https://rust-lang.github.io/async-book/print.html

�� of �� �/�/��, �:�� PM

Pretty simple, right? If the thread has set shared_state.completed = true , we're
done! Otherwise, we clone the Waker for the current task and pass it to
shared_state.waker so that the thread can wake the task back up.

Importantly, we have to update the Waker every time the future is polled because
the future may have moved to a di�erent task with a di�erent Waker . This will
happen when futures are passed around between tasks after being polled.

Finally, we need the API to actually construct the timer and start the thread:

impl Future for TimerFuture {
type Output = ();
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) ->

Poll<Self::Output> {
// Look at the shared state to see if the timer has already

completed.
let mut shared_state = self.shared_state.lock().unwrap();
if shared_state.completed {

 Poll::Ready(())
 } else {

// Set waker so that the thread can wake up the current task
// when the timer has completed, ensuring that the future is

polled
// again and sees that `completed = true`.
//
// It's tempting to do this once rather than repeatedly

cloning
// the waker each time. However, the `TimerFuture` can move

between
// tasks on the executor, which could cause a stale waker

pointing
// to the wrong task, preventing `TimerFuture` from waking

up
// correctly.
//
// N.B. it's possible to check for this using the

`Waker::will_wake`
// function, but we omit that here to keep things simple.

 shared_state.waker = Some(cx.waker().clone());
 Poll::Pending
 }
 }
}

Asynchronous Programming in Rust https://rust-lang.github.io/async-book/print.html

�� of �� �/�/��, �:�� PM

Woot! That's all we need to build a simple timer future. Now, if only we had an
executor to run the future on...

Applied: Build an Executor
Rust's Future s are lazy: they won't do anything unless actively driven to
completion. One way to drive a future to completion is to .await it inside an
async function, but that just pushes the problem one level up: who will run the

futures returned from the top-level async functions? The answer is that we need a
Future executor.

Future executors take a set of top-level Future s and run them to completion by
calling poll whenever the Future can make progress. Typically, an executor will
poll a future once to start o�. When Future s indicate that they are ready to

make progress by calling wake() , they are placed back onto a queue and poll is
called again, repeating until the Future has completed.

impl TimerFuture {
/// Create a new `TimerFuture` which will complete after the

provided
/// timeout.
pub fn new(duration: Duration) -> Self {

let shared_state = Arc::new(Mutex::new(SharedState {
 completed: false,
 waker: None,
 }));

// Spawn the new thread
let thread_shared_state = shared_state.clone();

 thread::spawn(move || {
 thread::sleep(duration);

let mut shared_state = thread_shared_state.lock().unwrap();
// Signal that the timer has completed and wake up the last
// task on which the future was polled, if one exists.

 shared_state.completed = true;
if let Some(waker) = shared_state.waker.take() {

 waker.wake()
 }
 });

 TimerFuture { shared_state }
 }
}

Asynchronous Programming in Rust https://rust-lang.github.io/async-book/print.html

�� of �� �/�/��, �:�� PM

In this section, we'll write our own simple executor capable of running a large
number of top-level futures to completion concurrently.

For this example, we depend on the futures crate for the ArcWake trait, which
provides an easy way to construct a Waker .

Next, we need the following imports at the top of src/main.rs :

Our executor will work by sending tasks to run over a channel. The executor will
pull events o� of the channel and run them. When a task is ready to do more work
(is awoken), it can schedule itself to be polled again by putting itself back onto the
channel.

In this design, the executor itself just needs the receiving end of the task channel.
The user will get a sending end so that they can spawn new futures. Tasks
themselves are just futures that can reschedule themselves, so we'll store them as
a future paired with a sender that the task can use to requeue itself.

[package]
name = "xyz"
version = "0.1.0"
authors = ["XYZ Author"]
edition = "2018"

[dependencies]
futures-preview = "=0.3.0-alpha.17"

use {
 futures::{
 future::{FutureExt, BoxFuture},
 task::{ArcWake, waker_ref},
 },
 std::{
 future::Future,
 sync::{Arc, Mutex},
 sync::mpsc::{sync_channel, SyncSender, Receiver},
 task::{Context, Poll},
 time::Duration,
 },

// The timer we wrote in the previous section:
 timer_future::TimerFuture,
};

Asynchronous Programming in Rust https://rust-lang.github.io/async-book/print.html

�� of �� �/�/��, �:�� PM

Let's also add a method to spawner to make it easy to spawn new futures. This
method will take a future type, box it and put it in a FutureObj, and create a new
Arc<Task> with it inside which can be enqueued onto the executor.

/// Task executor that receives tasks off of a channel and runs them.
struct Executor {
 ready_queue: Receiver<Arc<Task>>,
}

/// `Spawner` spawns new futures onto the task channel.
#[derive(Clone)]
struct Spawner {
 task_sender: SyncSender<Arc<Task>>,
}

/// A future that can reschedule itself to be polled by an `Executor`.
struct Task {

/// In-progress future that should be pushed to completion.
///
/// The `Mutex` is not necessary for correctness, since we only have
/// one thread executing tasks at once. However, Rust isn't smart
/// enough to know that `future` is only mutated from one thread,
/// so we need use the `Mutex` to prove thread-safety. A production
/// executor would not need this, and could use `UnsafeCell`

instead.
 future: Mutex<Option<BoxFuture<'static, ()>>>,

/// Handle to place the task itself back onto the task queue.
 task_sender: SyncSender<Arc<Task>>,
}

fn new_executor_and_spawner() -> (Executor, Spawner) {
// Maximum number of tasks to allow queueing in the channel at once.
// This is just to make `sync_channel` happy, and wouldn't be

present in
// a real executor.
const MAX_QUEUED_TASKS: usize = 10_000;
let (task_sender, ready_queue) = sync_channel(MAX_QUEUED_TASKS);

 (Executor { ready_queue }, Spawner { task_sender })
}

Asynchronous Programming in Rust https://rust-lang.github.io/async-book/print.html

�� of �� �/�/��, �:�� PM

To poll futures, we'll need to create a Waker . As discussed in the task wakeups
section, Waker s are responsible for scheduling a task to be polled again once
wake is called. Remember that Waker s tell the executor exactly which task has

become ready, allowing them to poll just the futures that are ready to make
progress. The easiest way to create a new Waker is by implementing the ArcWake
trait and then using the waker_ref or .into_waker() functions to turn an
Arc<impl ArcWake> into a Waker . Let's implement ArcWake for our tasks to allow

them to be turned into Waker s and awoken:

When a Waker is created from an Arc<Task> , calling wake() on it will cause a
copy of the Arc to be sent onto the task channel. Our executor then needs to pick
up the task and poll it. Let's implement that:

impl Spawner {
fn spawn(&self, future: impl Future<Output = ()> + 'static + Send) {

let future = future.boxed();
let task = Arc::new(Task {

 future: Mutex::new(Some(future)),
 task_sender: self.task_sender.clone(),
 });

self.task_sender.send(task).expect("too many tasks queued");
 }
}

impl ArcWake for Task {
fn wake_by_ref(arc_self: &Arc<Self>) {

// Implement `wake` by sending this task back onto the task
channel

// so that it will be polled again by the executor.
let cloned = arc_self.clone();

 arc_self.task_sender.send(cloned).expect("too many tasks
queued");
 }
}

Asynchronous Programming in Rust https://rust-lang.github.io/async-book/print.html

�� of �� �/�/��, �:�� PM

Congratulations! We now have a working futures executor. We can even use it to
run async/.await code and custom futures, such as the TimerFuture we wrote
earlier:

impl Executor {
fn run(&self) {

while let Ok(task) = self.ready_queue.recv() {
// Take the future, and if it has not yet completed (is

still Some),
// poll it in an attempt to complete it.
let mut future_slot = task.future.lock().unwrap();
if let Some(mut future) = future_slot.take() {

// Create a `LocalWaker` from the task itself
let waker = waker_ref(&task);
let context = &mut Context::from_waker(&*waker);
// `BoxFuture<T>` is a type alias for
// `Pin<Box<dyn Future<Output = T> + Send + 'static>>`.
// We can get a `Pin<&mut dyn Future + Send + 'static>`
// from it by calling the `Pin::as_mut` method.
if let Poll::Pending = future.as_mut().poll(context) {

// We're not done processing the future, so put it
// back in its task to be run again in the future.

 *future_slot = Some(future);
 }
 }
 }
 }
}

Asynchronous Programming in Rust https://rust-lang.github.io/async-book/print.html

�� of �� �/�/��, �:�� PM

Executors and System IO
In the previous section on The Future Trait, we discussed this example of a future
that performed an asynchronous read on a socket:

fn main() {
let (executor, spawner) = new_executor_and_spawner();

// Spawn a task to print before and after waiting on a timer.
 spawner.spawn(async {

println!("howdy!");
// Wait for our timer future to complete after two seconds.

 TimerFuture::new(Duration::new(2, 0)).await;
println!("done!");

 });

// Drop the spawner so that our executor knows it is finished and
won't

// receive more incoming tasks to run.
drop(spawner);

// Run the executor until the task queue is empty.
// This will print "howdy!", pause, and then print "done!".

 executor.run();
}

Asynchronous Programming in Rust https://rust-lang.github.io/async-book/print.html

�� of �� �/�/��, �:�� PM

This future will read available data on a socket, and if no data is available, it will
yield to the executor, requesting that its task be awoken when the socket becomes
readable again. However, it's not clear from this example how the Socket type is
implemented, and in particular it isn't obvious how the set_readable_callback
function works. How can we arrange for lw.wake() to be called once the socket
becomes readable? One option would be to have a thread that continually checks
whether socket is readable, calling wake() when appropriate. However, this
would be quite ine�cient, requiring a separate thread for each blocked IO future.
This would greatly reduce the e�ciency of our async code.

In practice, this problem is solved through integration with an IO-aware system
blocking primitive, such as epoll on Linux, kqueue on FreeBSD and Mac OS, IOCP
on Windows, and port s on Fuchsia (all of which are exposed through the cross-
platform Rust crate mio). These primitives all allow a thread to block on multiple
asynchronous IO events, returning once one of the events completes. In practice,
these APIs usually look something like this:

pub struct SocketRead<'a> {
 socket: &'a Socket,
}

impl SimpleFuture for SocketRead<'_> {
type Output = Vec<u8>;

fn poll(&mut self, wake: fn()) -> Poll<Self::Output> {
if self.socket.has_data_to_read() {

// The socket has data-- read it into a buffer and return
it.
 Poll::Ready(self.socket.read_buf())
 } else {

// The socket does not yet have data.
//
// Arrange for `wake` to be called once data is available.
// When data becomes available, `wake` will be called, and

the
// user of this `Future` will know to call `poll` again and
// receive data.
self.socket.set_readable_callback(wake);

 Poll::Pending
 }
 }
}

Asynchronous Programming in Rust https://rust-lang.github.io/async-book/print.html

�� of �� �/�/��, �:�� PM

struct IoBlocker {
 ...
}

struct Event {
// An ID uniquely identifying the event that occurred and was

listened for.
 id: usize,

// A set of signals to wait for, or which occurred.
 signals: Signals,
}

impl IoBlocker {
/// Create a new collection of asynchronous IO events to block on.
fn new() -> Self { ... }

/// Express an interest in a particular IO event.
fn add_io_event_interest(

 &self,

/// The object on which the event will occur
 io_object: &IoObject,

/// A set of signals that may appear on the `io_object` for
/// which an event should be triggered, paired with
/// an ID to give to events that result from this interest.

 event: Event,
) { ... }

/// Block until one of the events occurs.
fn block(&self) -> Event { ... }

}

let mut io_blocker = IoBlocker::new();
io_blocker.add_io_event_interest(
 &socket_1,
 Event { id: 1, signals: READABLE },
);
io_blocker.add_io_event_interest(
 &socket_2,
 Event { id: 2, signals: READABLE | WRITABLE },
);
let event = io_blocker.block();

// prints e.g. "Socket 1 is now READABLE" if socket one became readable.
println!("Socket {:?} is now {:?}", event.id, event.signals);

Asynchronous Programming in Rust https://rust-lang.github.io/async-book/print.html

�� of �� �/�/��, �:�� PM

Futures executors can use these primitives to provide asynchronous IO objects
such as sockets that can con�gure callbacks to be run when a particular IO event
occurs. In the case of our SocketRead example above, the
Socket::set_readable_callback function might look like the following

pseudocode:

We can now have just one executor thread which can receive and dispatch any IO
event to the appropriate Waker , which will wake up the corresponding task,
allowing the executor to drive more tasks to completion before returning to check
for more IO events (and the cycle continues...).

async / .await
In the �rst chapter, we took a brief look at async / .await and used it to build a
simple server. This chapter will discuss async / .await in greater detail, explaining
how it works and how async code di�ers from traditional Rust programs.

async / .await are special pieces of Rust syntax that make it possible to yield
control of the current thread rather than blocking, allowing other code to make
progress while waiting on an operation to complete.

impl Socket {
fn set_readable_callback(&self, waker: Waker) {

// `local_executor` is a reference to the local executor.
// this could be provided at creation of the socket, but in

practice
// many executor implementations pass it down through thread

local
// storage for convenience.
let local_executor = self.local_executor;

// Unique ID for this IO object.
let id = self.id;

// Store the local waker in the executor's map so that it can be
called

// once the IO event arrives.
 local_executor.event_map.insert(id, waker);
 local_executor.add_io_event_interest(
 &self.socket_file_descriptor,
 Event { id, signals: READABLE },
);
 }
}

Asynchronous Programming in Rust https://rust-lang.github.io/async-book/print.html

�� of �� �/�/��, �:�� PM

There are two main ways to use async : async fn and async blocks. Each returns
a value that implements the Future trait:

As we saw in the �rst chapter, async bodies and other futures are lazy: they do
nothing until they are run. The most common way to run a Future is to .await it.
When .await is called on a Future , it will attempt to run it to completion. If the
Future is blocked, it will yield control of the current thread. When more progress

can be made, the Future will be picked up by the executor and will resume
running, allowing the .await to resolve.

async Lifetimes

Unlike traditional functions, async fn s which take references or other
non- 'static arguments return a Future which is bounded by the lifetime of the
arguments:

This means that the future returned from an async fn must be .await ed while
its non- 'static arguments are still valid. In the common case of .await ing the
future immediately after calling the function (as in foo(&x).await) this is not an

// `foo()` returns a type that implements `Future<Output = u8>`.
// `foo().await` will result in a value of type `u8`.
async fn foo() -> u8 { 5 }

fn bar() -> impl Future<Output = u8> {
// This `async` block results in a type that implements
// `Future<Output = u8>`.
async {

let x: u8 = foo().await;
 x + 5
 }
}

// This function:
async fn foo(x: &u8) -> u8 { *x }

// Is equivalent to this function:
fn foo_expanded<'a>(x: &'a u8) -> impl Future<Output = u8> + 'a {

async move { *x }
}

Asynchronous Programming in Rust https://rust-lang.github.io/async-book/print.html

�� of �� �/�/��, �:�� PM

issue. However, if storing the future or sending it over to another task or thread,
this may be an issue.

One common workaround for turning an async fn with references-as-arguments
into a 'static future is to bundle the arguments with the call to the async fn
inside an async block:

By moving the argument into the async block, we extend its lifetime to match that
of the Future returned from the call to good .

async move

async blocks and closures allow the move keyword, much like normal closures. An
async move block will take ownership of the variables it references, allowing it to

outlive the current scope, but giving up the ability to share those variables with
other code:

fn bad() -> impl Future<Output = u8> {
let x = 5;

 borrow_x(&x) // ERROR: `x` does not live long enough
}

fn good() -> impl Future<Output = u8> {
async {

let x = 5;
 borrow_x(&x).await
 }
}

Asynchronous Programming in Rust https://rust-lang.github.io/async-book/print.html

�� of �� �/�/��, �:�� PM

.await ing on a Multithreaded Executor

Note that, when using a multithreaded Future executor, a Future may move
between threads, so any variables used in async bodies must be able to travel
between threads, as any .await can potentially result in a switch to a new thread.

This means that it is not safe to use Rc , &RefCell or any other types that don't

/// `async` block:
///
/// Multiple different `async` blocks can access the same local variable
/// so long as they're executed within the variable's scope
async fn blocks() {

let my_string = "foo".to_string();

let future_one = async {
// ...
println!("{}", my_string);

 };

let future_two = async {
// ...
println!("{}", my_string);

 };

// Run both futures to completion, printing "foo" twice:
let ((), ()) = futures::join!(future_one, future_two);

}

/// `async move` block:
///
/// Only one `async move` block can access the same captured variable,
since
/// captures are moved into the `Future` generated by the `async move`
block.
/// However, this allows the `Future` to outlive the original scope of
the
/// variable:
fn move_block() -> impl Future<Output = ()> {

let my_string = "foo".to_string();
async move {

// ...
println!("{}", my_string);

 }
}

Asynchronous Programming in Rust https://rust-lang.github.io/async-book/print.html

�� of �� �/�/��, �:�� PM

implement the Send trait, including references to types that don't implement the
Sync trait.

(Caveat: it is possible to use these types so long as they aren't in scope during a call
to .await .)

Similarly, it isn't a good idea to hold a traditional non-futures-aware lock across an
.await , as it can cause the threadpool to lock up: one task could take out a lock,
.await and yield to the executor, allowing another task to attempt to take the lock

and cause a deadlock. To avoid this, use the Mutex in futures::lock rather than
the one from std::sync .

Pinning
To poll futures, they must be pinned using a special type called Pin<T> . If you read
the explanation of the Future trait in the previous section "Executing Future s
and Tasks", you'll recognise Pin from the self: Pin<&mut Self> in the
Future:poll method's de�nition. But what does it mean, and why do we need it?

Why Pinning

Pinning makes it possible to guarantee that an object won't ever be moved. To
understand why this is necessary, we need to remember how async / .await
works. Consider the following code:

Under the hood, this creates an anonymous type that implements Future ,
providing a poll method that looks something like this:

let fut_one = ...;
let fut_two = ...;
async move {
 fut_one.await;
 fut_two.await;
}

Asynchronous Programming in Rust https://rust-lang.github.io/async-book/print.html

�� of �� �/�/��, �:�� PM

When poll is �rst called, it will poll fut_one . If fut_one can't complete,
AsyncFuture::poll will return. Future calls to poll will pick up where the

previous one left o�. This process continues until the future is able to successfully
complete.

However, what happens if we have an async block that uses references? For
example:

// The `Future` type generated by our `async { ... }` block
struct AsyncFuture {
 fut_one: FutOne,
 fut_two: FutTwo,
 state: State,
}

// List of states our `async` block can be in
enum State {
 AwaitingFutOne,
 AwaitingFutTwo,
 Done,
}

impl Future for AsyncFuture {
type Output = ();

fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<()>
{

loop {
match self.state {

 State::AwaitingFutOne => match self.fut_one.poll(..) {
 Poll::Ready(()) => self.state =
State::AwaitingFutTwo,
 Poll::Pending => return Poll::Pending,
 }
 State::AwaitingFutTwo => match self.fut_two.poll(..) {
 Poll::Ready(()) => self.state = State::Done,
 Poll::Pending => return Poll::Pending,
 }
 State::Done => return Poll::Ready(()),
 }
 }
 }
}

Asynchronous Programming in Rust https://rust-lang.github.io/async-book/print.html

�� of �� �/�/��, �:�� PM

What struct does this compile down to?

Here, the ReadIntoBuf future holds a reference into the other �eld of our
structure, x . However, if AsyncFuture is moved, the location of x will move as
well, invalidating the pointer stored in read_into_buf_fut.buf .

Pinning futures to a particular spot in memory prevents this problem, making it
safe to create references to values inside an async block.

How to Use Pinning

The Pin type wraps pointer types, guaranteeing that the values behind the
pointer won't be moved. For example, Pin<&mut T> , Pin<&T> , Pin<Box<T>> all
guarantee that T won't be moved.

Most types don't have a problem being moved. These types implement a trait
called Unpin . Pointers to Unpin types can be freely placed into or taken out of
Pin . For example, u8 is Unpin , so Pin<&mut u8> behaves just like a normal
&mut u8 .

Some functions require the futures they work with to be Unpin . To use a Future
or Stream that isn't Unpin with a function that requires Unpin types, you'll �rst
have to pin the value using either Box::pin (to create a Pin<Box<T>>) or the
pin_utils::pin_mut! macro (to create a Pin<&mut T>). Pin<Box<Fut>> and
Pin<&mut Fut> can both be used as futures, and both implement Unpin .

async {
let mut x = [0; 128];
let read_into_buf_fut = read_into_buf(&mut x);

 read_into_buf_fut.await;
println!("{:?}", x);

}

struct ReadIntoBuf<'a> {
 buf: &'a mut [u8], // points to `x` below
}

struct AsyncFuture {
 x: [u8; 128],
 read_into_buf_fut: ReadIntoBuf<'what_lifetime?>,
}

Asynchronous Programming in Rust https://rust-lang.github.io/async-book/print.html

�� of �� �/�/��, �:�� PM

For example:

The Stream Trait
The Stream trait is similar to Future but can yield multiple values before
completing, similar to the Iterator trait from the standard library:

One common example of a Stream is the Receiver for the channel type from the
futures crate. It will yield Some(val) every time a value is sent from the Sender

end, and will yield None once the Sender has been dropped and all pending
messages have been received:

use pin_utils::pin_mut; // `pin_utils` is a handy crate available on
crates.io

// A function which takes a `Future` that implements `Unpin`.
fn execute_unpin_future(x: impl Future<Output = ()> + Unpin) { ... }

let fut = async { ... };
execute_unpin_future(fut); // Error: `fut` does not implement `Unpin`
trait

// Pinning with `Box`:
let fut = async { ... };
let fut = Box::pin(fut);
execute_unpin_future(fut); // OK

// Pinning with `pin_mut!`:
let fut = async { ... };
pin_mut!(fut);
execute_unpin_future(fut); // OK

trait Stream {
/// The type of the value yielded by the stream.
type Item;

/// Attempt to resolve the next item in the stream.
/// Retuns `Poll::Pending` if not ready, `Poll::Ready(Some(x))` if a

value
/// is ready, and `Poll::Ready(None)` if the stream has completed.
fn poll_next(self: Pin<&mut Self>, cx: &mut Context<'_>)

 -> Poll<Option<Self::Item>>;
}

Asynchronous Programming in Rust https://rust-lang.github.io/async-book/print.html

�� of �� �/�/��, �:�� PM

Iteration and Concurrency
Similar to synchronous Iterator s, there are many di�erent ways to iterate over
and process the values in a Stream . There are combinator-style methods such as
map , filter , and fold , and their early-exit-on-error cousins try_map ,
try_filter , and try_fold .

Unfortunately, for loops are not usable with Stream s, but for imperative-style
code, while let and the next / try_next functions can be used:

async fn send_recv() {
const BUFFER_SIZE: usize = 10;
let (mut tx, mut rx) = mpsc::channel::<i32>(BUFFER_SIZE);

 tx.send(1).await.unwrap();
 tx.send(2).await.unwrap();

drop(tx);

// `StreamExt::next` is similar to `Iterator::next`, but returns a
// type that implements `Future<Output = Option<T>>`.
assert_eq!(Some(1), rx.next().await);
assert_eq!(Some(2), rx.next().await);
assert_eq!(None, rx.next().await);

}

Asynchronous Programming in Rust https://rust-lang.github.io/async-book/print.html

�� of �� �/�/��, �:�� PM

However, if we're just processing one element at a time, we're potentially leaving
behind opportunity for concurrency, which is, after all, why we're writing async
code in the �rst place. To process multiple items from a stream concurrently, use
the for_each_concurrent and try_for_each_concurrent methods:

Executing Multiple Futures at a Time

async fn sum_with_next(mut stream: Pin<&mut dyn Stream<Item = i32>>) ->
i32 {

use futures::stream::StreamExt; // for `next`
let mut sum = 0;
while let Some(item) = stream.next().await {

 sum += item;
 }
 sum
}

async fn sum_with_try_next(
mut stream: Pin<&mut dyn Stream<Item = Result<i32, io::Error>>>,

) -> Result<i32, io::Error> {
use futures::stream::TryStreamExt; // for `try_next`
let mut sum = 0;
while let Some(item) = stream.try_next().await? {

 sum += item;
 }

Ok(sum)
}

async fn jump_around(
mut stream: Pin<&mut dyn Stream<Item = Result<u8, io::Error>>>,

) -> Result<(), io::Error> {
use futures::stream::TryStreamExt; // for `try_for_each_concurrent`
const MAX_CONCURRENT_JUMPERS: usize = 100;

 stream.try_for_each_concurrent(MAX_CONCURRENT_JUMPERS, |num| async
move {
 jump_n_times(num).await?;
 report_n_jumps(num).await?;

Ok(())
 }).await?;

Ok(())
}

Asynchronous Programming in Rust https://rust-lang.github.io/async-book/print.html

�� of �� �/�/��, �:�� PM

Up until now, we've mostly executed futures by using .await , which blocks the
current task until a particular Future completes. However, real asynchronous
applications often need to execute several di�erent operations concurrently.

Executing Multiple Futures at a Time
In this chapter, we'll cover some ways to execute multiple asynchronous
operations at the same time:

join! : waits for futures to all complete
select! : waits for one of several futures to complete

Spawning: creates a top-level task which ambiently runs a future to
completion
FuturesUnordered : a group of futures which yields the result of each

subfuture

join!

The futures::join macro makes it possible to wait for multiple di�erent futures
to complete while executing them all concurrently.

join!

When performing multiple asynchronous operations, it's tempting to simply
.await them in a series:

However, this will be slower than necessary, since it won't start trying to
get_music until after get_book has completed. In some other languages, futures

are ambiently run to completion, so two operations can be run concurrently by
�rst calling the each async fn to start the futures, and then awaiting them both:

async fn get_book_and_music() -> (Book, Music) {
let book = get_book().await;
let music = get_music().await;

 (book, music)
}

Asynchronous Programming in Rust https://rust-lang.github.io/async-book/print.html

�� of �� �/�/��, �:�� PM

However, Rust futures won't do any work until they're actively .await ed. This
means that the two code snippets above will both run book_future and
music_future in series rather than running them concurrently. To correctly run

the two futures concurrently, use futures::join! :

The value returned by join! is a tuple containing the output of each Future
passed in.

try_join!

For futures which return Result , consider using try_join! rather than join! .
Since join! only completes once all subfutures have completed, it'll continue
processing other futures even after one of its subfutures has returned an Err .

Unlike join! , try_join! will complete immediately if one of the subfutures
returns an error.

// WRONG -- don't do this
async fn get_book_and_music() -> (Book, Music) {

let book_future = get_book();
let music_future = get_music();

 (book_future.await, music_future.await)
}

use futures::join;

async fn get_book_and_music() -> (Book, Music) {
let book_fut = get_book();
let music_fut = get_music();

 join!(book_fut, music_fut)
}

Asynchronous Programming in Rust https://rust-lang.github.io/async-book/print.html

�� of �� �/�/��, �:�� PM

Note that the futures passed to try_join! must all have the same error type.
Consider using the .map_err(|e| ...) and .err_into() functions from
futures::future::TryFutureExt to consolidate the error types:

select!

The futures::select macro runs multiple futures simultaneously, allowing the
user to respond as soon as any future completes.

use futures::try_join;

async fn get_book() -> Result<Book, String> { /* ... */ Ok(Book) }
async fn get_music() -> Result<Music, String> { /* ... */ Ok(Music) }

async fn get_book_and_music() -> Result<(Book, Music), String> {
let book_fut = get_book();
let music_fut = get_music();

 try_join!(book_fut, music_fut)
}

use futures::{
 future::TryFutureExt,
 try_join,
};

async fn get_book() -> Result<Book, ()> { /* ... */ Ok(Book) }
async fn get_music() -> Result<Music, String> { /* ... */ Ok(Music) }

async fn get_book_and_music() -> Result<(Book, Music), String> {
let book_fut = get_book().map_err(|()| "Unable to get

book".to_string());
let music_fut = get_music();

 try_join!(book_fut, music_fut)
}

Asynchronous Programming in Rust https://rust-lang.github.io/async-book/print.html

�� of �� �/�/��, �:�� PM

The function above will run both t1 and t2 concurrently. When either t1 or t2
�nishes, the corresponding handler will call println! , and the function will end
without completing the remaining task.

The basic syntax for select is <pattern> = <expression> => <code>, , repeated
for as many futures as you would like to select over.

default => ... and complete => ...

select also supports default and complete branches.

A default branch will run if none of the futures being select ed over are yet
complete. A select with a default branch will therefore always return
immediately, since default will be run if none of the other futures are ready.

complete branches can be used to handle the case where all futures being
select ed over have completed and will no longer make progress. This is often

handy when looping over a select! .

use futures::{
 future::FutureExt, // for `.fuse()`
 pin_mut,
 select,
};

async fn task_one() { /* ... */ }
async fn task_two() { /* ... */ }

async fn race_tasks() {
let t1 = task_one().fuse();
let t2 = task_two().fuse();

 pin_mut!(t1, t2);

select! {
 () = t1 => println!("task one completed first"),
 () = t2 => println!("task two completed first"),
 }
}

Asynchronous Programming in Rust https://rust-lang.github.io/async-book/print.html

�� of �� �/�/��, �:�� PM

Interaction with Unpin and FusedFuture

One thing you may have noticed in the �rst example above is that we had to call
.fuse() on the futures returned by the two async fn s, as well as pinning them

with pin_mut . Both of these calls are necessary because the futures used in
select must implement both the Unpin trait and the FusedFuture trait.

Unpin is necessary because the futures used by select are not taken by value,
but by mutable reference. By not taking ownership of the future, uncompleted
futures can be used again after the call to select .

Similarly, the FusedFuture trait is required because select must not poll a future
after it has completed. FusedFuture is implemented by futures which track
whether or not they have completed. This makes it possible to use select in a
loop, only polling the futures which still have yet to complete. This can be seen in
the example above, where a_fut or b_fut will have completed the second time
through the loop. Because the future returned by future::ready implements
FusedFuture , it's able to tell select not to poll it again.

Note that streams have a corresponding FusedStream trait. Streams which
implement this trait or have been wrapped using .fuse() will yield FusedFuture
futures from their .next() / .try_next() combinators.

use futures::{future, select};

async fn count() {
let mut a_fut = future::ready(4);
let mut b_fut = future::ready(6);
let mut total = 0;

loop {
select! {

 a = a_fut => total += a,
 b = b_fut => total += b,
 complete => break,
 default => unreachable!(), // never runs (futures are ready,
then complete)
 };
 }

assert_eq!(total, 10);
}

Asynchronous Programming in Rust https://rust-lang.github.io/async-book/print.html

�� of �� �/�/��, �:�� PM

Concurrent tasks in a select loop with Fuse and
FuturesUnordered

One somewhat hard-to-discover but handy function is Fuse::terminated() , which
allows constructing an empty future which is already terminated, and can later be
�lled in with a future that needs to be run.

This can be handy when there's a task that needs to be run during a select loop
but which is created inside the select loop itself.

Note the use of the .select_next_some() function. This can be used with select
to only run the branch for Some(_) values returned from the stream, ignoring
None s.

use futures::{
 stream::{Stream, StreamExt, FusedStream},
 select,
};

async fn add_two_streams(
mut s1: impl Stream<Item = u8> + FusedStream + Unpin,
mut s2: impl Stream<Item = u8> + FusedStream + Unpin,

) -> u8 {
let mut total = 0;

loop {
let item = select! {

 x = s1.next() => x,
 x = s2.next() => x,
 complete => break,
 };

if let Some(next_num) = item {
 total += next_num;
 }
 }

 total
}

Asynchronous Programming in Rust https://rust-lang.github.io/async-book/print.html

�� of �� �/�/��, �:�� PM

When many copies of the same future need to be run simultaneously, use the
FuturesUnordered type. The following example is similar to the one above, but will

run each copy of run_on_new_num_fut to completion, rather than aborting them
when a new one is created. It will also print out a value returned by

use futures::{
 future::{Fuse, FusedFuture, FutureExt},
 stream::{FusedStream, Stream, StreamExt},
 pin_mut,
 select,
};

async fn get_new_num() -> u8 { /* ... */ 5 }

async fn run_on_new_num(_: u8) { /* ... */ }

async fn run_loop(
mut interval_timer: impl Stream<Item = ()> + FusedStream + Unpin,

 starting_num: u8,
) {

let run_on_new_num_fut = run_on_new_num(starting_num).fuse();
let get_new_num_fut = Fuse::terminated();

 pin_mut!(run_on_new_num_fut, get_new_num_fut);
loop {

select! {
 () = interval_timer.select_next_some() => {

// The timer has elapsed. Start a new `get_new_num_fut`
// if one was not already running.
if get_new_num_fut.is_terminated() {

 get_new_num_fut.set(get_new_num().fuse());
 }
 },
 new_num = get_new_num_fut => {

// A new number has arrived-- start a new
`run_on_new_num_fut`,

// dropping the old one.
 run_on_new_num_fut.set(run_on_new_num(new_num).fuse());
 },

// Run the `run_on_new_num_fut`
 () = run_on_new_num_fut => {},

// panic if everything completed, since the `interval_timer`
should

// keep yielding values indefinitely.
 complete => panic!("`interval_timer` completed
unexpectedly"),
 }
 }
}

Asynchronous Programming in Rust https://rust-lang.github.io/async-book/print.html

�� of �� �/�/��, �:�� PM

run_on_new_num_fut .

Asynchronous Programming in Rust https://rust-lang.github.io/async-book/print.html

�� of �� �/�/��, �:�� PM

use futures::{
 future::{Fuse, FusedFuture, FutureExt},
 stream::{FusedStream, FuturesUnordered, Stream, StreamExt},
 pin_mut,
 select,
};

async fn get_new_num() -> u8 { /* ... */ 5 }

async fn run_on_new_num(_: u8) -> u8 { /* ... */ 5 }

// Runs `run_on_new_num` with the latest number
// retrieved from `get_new_num`.
//
// `get_new_num` is re-run every time a timer elapses,
// immediately cancelling the currently running
// `run_on_new_num` and replacing it with the newly
// returned value.
async fn run_loop(

mut interval_timer: impl Stream<Item = ()> + FusedStream + Unpin,
 starting_num: u8,
) {

let mut run_on_new_num_futs = FuturesUnordered::new();
 run_on_new_num_futs.push(run_on_new_num(starting_num));

let get_new_num_fut = Fuse::terminated();
 pin_mut!(get_new_num_fut);

loop {
select! {

 () = interval_timer.select_next_some() => {
// The timer has elapsed. Start a new `get_new_num_fut`
// if one was not already running.
if get_new_num_fut.is_terminated() {

 get_new_num_fut.set(get_new_num().fuse());
 }
 },
 new_num = get_new_num_fut => {

// A new number has arrived-- start a new
`run_on_new_num_fut`.
 run_on_new_num_futs.push(run_on_new_num(new_num));
 },

// Run the `run_on_new_num_futs` and check if any have
completed
 res = run_on_new_num_futs.select_next_some() => {

println!("run_on_new_num_fut returned {:?}", res);
 },

// panic if everything completed, since the `interval_timer`
should

// keep yielding values indefinitely.
 complete => panic!("`interval_timer` completed

Asynchronous Programming in Rust https://rust-lang.github.io/async-book/print.html

�� of �� �/�/��, �:�� PM

Workarounds to Know and Love
Rust's async support is still fairly new, and there are a handful of highly-requested
features still under active development, as well as some subpar diagnostics. This
chapter will discuss some common pain points and explain how to work around
them.

Return Type Errors
In a typical Rust function, returning a value of the wrong type will result in an error
that looks something like this:

However, the current async fn support doesn't know to "trust" the return type
written in the function signature, causing mismatched or even reversed-sounding
errors. For example, the function async fn foo() { "foo" } results in this error:

unexpectedly"),
 }
 }
}

error[E0308]: mismatched types
 --> src/main.rs:2:12
 |
1 | fn foo() {
 | - expected `()` because of default return type
2 | return "foo"
 | ^^^^^ expected (), found reference
 |
 = note: expected type `()`
 found type `&'static str`

Asynchronous Programming in Rust https://rust-lang.github.io/async-book/print.html

�� of �� �/�/��, �:�� PM

The error says that it expected &str and found () , which is actually the exact
opposite of what you'd want. This is because the compiler is incorrectly trusting
the function body to return the correct type.

The workaround for this issue is to recognize that errors pointing to the function
signature with the message "expected SomeType , found OtherType " usually
indicate that one or more return sites are incorrect.

A �x to this issue is being tracked in this bug.

Box<dyn Trait>

Similarly, because the return type from the function signature is not propagated
down correctly, values returned from async fn aren't correctly coerced to their
expected type.

In practice, this means that returning Box<dyn Trait> objects from an async fn
requires manually as -casting from Box<MyType> to Box<dyn Trait> .

This code will result in an error:

This issue can be worked around by manually casting using as :

error[E0271]: type mismatch resolving `<impl std::future::Future as
std::future::Future>::Output == ()`
 --> src/lib.rs:1:16
 |
1 | async fn foo() {
 | ^ expected &str, found ()
 |
 = note: expected type `&str`
 found type `()`
 = note: the return type of a function must have a statically known
size

async fn x() -> Box<dyn std::fmt::Display> {
 Box::new("foo")
}

async fn x() -> Box<dyn std::fmt::Display> {
 Box::new("foo") as Box<dyn std::fmt::Display>
}

Asynchronous Programming in Rust https://rust-lang.github.io/async-book/print.html

�� of �� �/�/��, �:�� PM

A �x to this issue is being tracked in this bug.

? in async Blocks
Just as in async fn , it's common to use ? inside async blocks. However, the
return type of async blocks isn't explicitly stated. This can cause the compiler to
fail to infer the error type of the async block.

For example, this code:

will trigger this error:

Unfortunately, there's currently no way to "give fut a type", nor a way to explicitly
specify the return type of an async block. To work around this, use the "turbo�sh"
operator to supply the success and error types for the async block:

Send Approximation
Some async fn state machines are safe to be sent across threads, while others
are not. Whether or not an async fn Future is Send is determined by whether a
non- Send type is held across an .await point. The compiler does its best to

let fut = async {
 foo().await?;
 bar().await?;

Ok(())
};

error[E0282]: type annotations needed
 --> src/main.rs:5:9
 |
4 | let fut = async {
 | --- consider giving `fut` a type
5 | foo().await?;
 | ^^^^^^^^^^^^ cannot infer type

let fut = async {
 foo().await?;
 bar().await?;
 Ok::<(), MyError>(()) // <- note the explicit type annotation here
};

Asynchronous Programming in Rust https://rust-lang.github.io/async-book/print.html

�� of �� �/�/��, �:�� PM

approximate when values may be held across an .await point, but this analysis is
too conservative in a number of places today.

For example, consider a simple non- Send type, perhaps a type which contains an
Rc :

Variables of type NotSend can brie�y appear as temporaries in async fn s even
when the resulting Future type returned by the async fn must be Send :

However, if we change foo to store NotSend in a variable, this example no longer
compiles:

use std::rc::Rc;

#[derive(Default)]
struct NotSend(Rc<()>);

async fn bar() {}
async fn foo() {
 NotSend::default();
 bar().await;
}

fn require_send(_: impl Send) {}

fn main() {
 require_send(foo());
}

async fn foo() {
let x = NotSend::default();

 bar().await;
}

Asynchronous Programming in Rust https://rust-lang.github.io/async-book/print.html

�� of �� �/�/��, �:�� PM

This error is correct. If we store x into a variable, it won't be dropped until after
the .await , at which point the async fn may be running on a di�erent thread.
Since Rc is not Send , allowing it to travel across threads would be unsound. One
simple solution to this would be to drop the Rc before the .await , but
unfortunately that does not work today.

In order to successfully work around this issue, you may have to introduce a block
scope encapsulating any non- Send variables. This makes it easier for the compiler
to tell that these variables do not live across an .await point.

error[E0277]: `std::rc::Rc<()>` cannot be sent between threads safely
 --> src/main.rs:15:5
 |
15 | require_send(foo());
 | ^^^^^^^^^^^^ `std::rc::Rc<()>` cannot be sent between threads
safely
 |
 = help: within `impl std::future::Future`, the trait
`std::marker::Send` is not implemented for `std::rc::Rc<()>`
 = note: required because it appears within the type `NotSend`
 = note: required because it appears within the type `{NotSend, impl
std::future::Future, ()}`
 = note: required because it appears within the type `[static
generator@src/main.rs:7:16: 10:2 {NotSend, impl std::future::Future,
()}]`
 = note: required because it appears within the type
`std::future::GenFuture<[static generator@src/main.rs:7:16: 10:2
{NotSend, impl std::future::Future, ()}]>`
 = note: required because it appears within the type `impl
std::future::Future`
 = note: required because it appears within the type `impl
std::future::Future`
note: required by `require_send`
 --> src/main.rs:12:1
 |
12 | fn require_send(_: impl Send) {}
 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

error: aborting due to previous error

For more information about this error, try `rustc --explain E0277`.

Asynchronous Programming in Rust https://rust-lang.github.io/async-book/print.html

�� of �� �/�/��, �:�� PM

Recursion
Internally, async fn creates a state machine type containing each sub- Future
being .await ed. This makes recursive async fn s a little tricky, since the resulting
state machine type has to contain itself:

This won't work-- we've created an in�nitely-sized type! The compiler will complain:

async fn foo() {
 {

let x = NotSend::default();
 }
 bar().await;
}

// This function:
async fn foo() {
 step_one().await;
 step_two().await;
}
// generates a type like this:
enum Foo {
 First(StepOne),
 Second(StepTwo),
}

// So this function:
async fn recursive() {
 recursive().await;
 recursive().await;
}

// generates a type like this:
enum Recursive {
 First(Recursive),
 Second(Recursive),
}

Asynchronous Programming in Rust https://rust-lang.github.io/async-book/print.html

�� of �� �/�/��, �:�� PM

In order to allow this, we have to introduce an indirection using Box .
Unfortunately, compiler limitations mean that just wrapping the calls to
recursive() in Box::pin isn't enough. To make this work, we have to make
recursive into a non- async function which returns a .boxed() async block:

async in Traits
Currently, async fn cannot be used in traits. The reasons for this are somewhat
complex, but there are plans to remove this restriction in the future.

In the meantime, however, this can be worked around using the async_trait
crate from crates.io.

Note that using these trait methods will result in a heap allocation per-function-
call. This is not a signi�cant cost for the vast majority of applications, but should be
considered when deciding whether to use this functionality in the public API of a
low-level function that is expected to be called millions of times a second.

error[E0733]: recursion in an `async fn` requires boxing
 --> src/lib.rs:1:22
 |
1 | async fn recursive() {
 | ^ an `async fn` cannot invoke itself directly
 |
 = note: a recursive `async fn` must be rewritten to return a boxed
future.

use futures::future::{BoxFuture, FutureExt};

fn recursive() -> BoxFuture<'static, ()> {
async move {

 recursive().await;
 recursive().await;
 }.boxed()
}

Asynchronous Programming in Rust https://rust-lang.github.io/async-book/print.html

�� of �� �/�/��, �:�� PM

