
The Cargo Book

Cargo is the Rust package manager. Cargo downloads your Rust package’s
dependencies, compiles your packages, makes distributable packages, and
uploads them to crates.io, the Rust community’s package registry. You can
contribute to this book on GitHub.

Sections

Getting Started

To get started with Cargo, install Cargo (and Rust) and set up your �rst crate.

Cargo Guide

The guide will give you all you need to know about how to use Cargo to develop
Rust packages.

Cargo Reference

The reference covers the details of various areas of Cargo.

Frequently Asked Questions

Getting Started

The Cargo Book https://doc.rust-lang.org/cargo/print.html

� of ��� �/�/��, �:�� PM

To get started with Cargo, install Cargo (and Rust) and set up your �rst crate.

Installation
First steps with Cargo

Installation

Install Rust and Cargo

The easiest way to get Cargo is to install the current stable release of Rust by using
rustup . Installing Rust using rustup will also install cargo .

On Linux and macOS systems, this is done as follows:

It will download a script, and start the installation. If everything goes well, you’ll see
this appear:

On Windows, download and run rustup-init.exe. It will start the installation in a
console and present the above message on success.

After this, you can use the rustup command to also install beta or nightly
channels for Rust and Cargo.

For other installation options and information, visit the install page of the Rust
website.

Build and Install Cargo from Source

Alternatively, you can build Cargo from source.

First Steps with Cargo

$ curl https://sh.rustup.rs -sSf | sh

Rust is installed now. Great!

The Cargo Book https://doc.rust-lang.org/cargo/print.html

� of ��� �/�/��, �:�� PM

To start a new package with Cargo, use cargo new :

Cargo defaults to --bin to make a binary program. To make a library, we'd pass
--lib .

Let’s check out what Cargo has generated for us:

This is all we need to get started. First, let’s check out Cargo.toml :

This is called a manifest, and it contains all of the metadata that Cargo needs to
compile your package.

Here’s what’s in src/main.rs :

Cargo generated a “hello world” for us. Let’s compile it:

And then run it:

$ cargo new hello_world

$ cd hello_world
$ tree .
.
├── Cargo.toml
└── src
 └── main.rs

1 directory, 2 files

[package]
name = "hello_world"
version = "0.1.0"
authors = ["Your Name <you@example.com>"]
edition = "2018"

[dependencies]

fn main() {
println!("Hello, world!");

}

$ cargo build
 Compiling hello_world v0.1.0 (file:///path/to/package/hello_world)

The Cargo Book https://doc.rust-lang.org/cargo/print.html

� of ��� �/�/��, �:�� PM

We can also use cargo run to compile and then run it, all in one step:

Going further

For more details on using Cargo, check out the Cargo Guide

Cargo Guide

This guide will give you all that you need to know about how to use Cargo to
develop Rust packages.

Why Cargo Exists
Creating a New Package
Working on an Existing Cargo Package
Dependencies
Package Layout
Cargo.toml vs Cargo.lock
Tests
Continuous Integration
Cargo Home
Build Cache

Why Cargo Exists

Cargo is a tool that allows Rust packages to declare their various dependencies and
ensure that you’ll always get a repeatable build.

To accomplish this goal, Cargo does four things:

$./target/debug/hello_world
Hello, world!

$ cargo run
 Fresh hello_world v0.1.0 (file:///path/to/package/hello_world)
 Running `target/hello_world`
Hello, world!

The Cargo Book https://doc.rust-lang.org/cargo/print.html

� of ��� �/�/��, �:�� PM

Introduces two metadata �les with various bits of package information.
Fetches and builds your package’s dependencies.
Invokes rustc or another build tool with the correct parameters to build
your package.
Introduces conventions to make working with Rust packages easier.

Creating a New Package

To start a new package with Cargo, use cargo new :

We’re passing --bin because we’re making a binary program: if we were making a
library, we’d pass --lib . This also initializes a new git repository by default. If
you don't want it to do that, pass --vcs none .

Let’s check out what Cargo has generated for us:

Let’s take a closer look at Cargo.toml :

This is called a manifest, and it contains all of the metadata that Cargo needs to
compile your package.

Here’s what’s in src/main.rs :

$ cargo new hello_world --bin

$ cd hello_world
$ tree .
.
├── Cargo.toml
└── src
 └── main.rs

1 directory, 2 files

[package]
name = "hello_world"
version = "0.1.0"
authors = ["Your Name <you@example.com>"]
edition = "2018"

[dependencies]

The Cargo Book https://doc.rust-lang.org/cargo/print.html

� of ��� �/�/��, �:�� PM

Cargo generated a “hello world” for us. Let’s compile it:

And then run it:

We can also use cargo run to compile and then run it, all in one step (You won't
see the Compiling line if you have not made any changes since you last compiled):

You’ll now notice a new �le, Cargo.lock . It contains information about our
dependencies. Since we don’t have any yet, it’s not very interesting.

Once you’re ready for release, you can use cargo build --release to compile
your �les with optimizations turned on:

cargo build --release puts the resulting binary in target/release instead of
target/debug .

Compiling in debug mode is the default for development-- compilation time is
shorter since the compiler doesn't do optimizations, but the code will run slower.
Release mode takes longer to compile, but the code will run faster.

Working on an Existing Cargo Package

If you download an existing package that uses Cargo, it’s really easy to get going.

fn main() {
println!("Hello, world!");

}

$ cargo build
 Compiling hello_world v0.1.0 (file:///path/to/package/hello_world)

$./target/debug/hello_world
Hello, world!

$ cargo run
 Compiling hello_world v0.1.0 (file:///path/to/package/hello_world)
 Running `target/debug/hello_world`
Hello, world!

$ cargo build --release
 Compiling hello_world v0.1.0 (file:///path/to/package/hello_world)

The Cargo Book https://doc.rust-lang.org/cargo/print.html

� of ��� �/�/��, �:�� PM

First, get the package from somewhere. In this example, we’ll use rand cloned
from its repository on GitHub:

To build, use cargo build :

This will fetch all of the dependencies and then build them, along with the package.

Dependencies

crates.io is the Rust community's central package registry that serves as a location
to discover and download packages. cargo is con�gured to use it by default to
�nd requested packages.

To depend on a library hosted on crates.io, add it to your Cargo.toml .

Adding a dependency

If your Cargo.toml doesn't already have a [dependencies] section, add that, then
list the crate name and version that you would like to use. This example adds a
dependency of the time crate:

The version string is a semver version requirement. The specifying dependencies
docs have more information about the options you have here.

If we also wanted to add a dependency on the regex crate, we would not need to
add [dependencies] for each crate listed. Here's what your whole Cargo.toml �le
would look like with dependencies on the time and regex crates:

$ git clone https://github.com/rust-lang-nursery/rand.git
$ cd rand

$ cargo build
 Compiling rand v0.1.0 (file:///path/to/package/rand)

[dependencies]
time = "0.1.12"

The Cargo Book https://doc.rust-lang.org/cargo/print.html

� of ��� �/�/��, �:�� PM

Re-run cargo build , and Cargo will fetch the new dependencies and all of their
dependencies, compile them all, and update the Cargo.lock :

Our Cargo.lock contains the exact information about which revision of all of
these dependencies we used.

Now, if regex gets updated, we will still build with the same revision until we
choose to cargo update .

You can now use the regex library in main.rs .

Running it will show:

[package]
name = "hello_world"
version = "0.1.0"
authors = ["Your Name <you@example.com>"]
edition = "2018"

[dependencies]
time = "0.1.12"
regex = "0.1.41"

$ cargo build
 Updating crates.io index
 Downloading memchr v0.1.5
 Downloading libc v0.1.10
 Downloading regex-syntax v0.2.1
 Downloading memchr v0.1.5
 Downloading aho-corasick v0.3.0
 Downloading regex v0.1.41
 Compiling memchr v0.1.5
 Compiling libc v0.1.10
 Compiling regex-syntax v0.2.1
 Compiling memchr v0.1.5
 Compiling aho-corasick v0.3.0
 Compiling regex v0.1.41
 Compiling hello_world v0.1.0 (file:///path/to/package/hello_world)

use regex::Regex;

fn main() {
let re = Regex::new(r"^\d{4}-\d{2}-\d{2}$").unwrap();
println!("Did our date match? {}", re.is_match("2014-01-01"));

}

The Cargo Book https://doc.rust-lang.org/cargo/print.html

� of ��� �/�/��, �:�� PM

Package Layout

Cargo uses conventions for �le placement to make it easy to dive into a new Cargo
package:

Cargo.toml and Cargo.lock are stored in the root of your package (package
root).
Source code goes in the src directory.
The default library �le is src/lib.rs .
The default executable �le is src/main.rs .
Other executables can be placed in src/bin/*.rs .
Integration tests go in the tests directory (unit tests go in each �le they're
testing).
Examples go in the examples directory.
Benchmarks go in the benches directory.

These are explained in more detail in the manifest description.

Cargo.toml vs Cargo.lock

Cargo.toml and Cargo.lock serve two di�erent purposes. Before we talk about

$ cargo run
 Running `target/hello_world`
Did our date match? true

.
├── Cargo.lock
├── Cargo.toml
├── benches
│ └── large-input.rs
├── examples
│ └── simple.rs
├── src
│ ├── bin
│ │ └── another_executable.rs
│ ├── lib.rs
│ └── main.rs
└── tests
 └── some-integration-tests.rs

The Cargo Book https://doc.rust-lang.org/cargo/print.html

� of ��� �/�/��, �:�� PM

them, here’s a summary:

Cargo.toml is about describing your dependencies in a broad sense, and is
written by you.
Cargo.lock contains exact information about your dependencies. It is

maintained by Cargo and should not be manually edited.

If you’re building a non-end product, such as a rust library that other rust packages
will depend on, put Cargo.lock in your .gitignore . If you’re building an end
product, which are executable like command-line tool or an application, or a
system library with crate-type of staticlib or cdylib , check Cargo.lock into
git . If you're curious about why that is, see "Why do binaries have Cargo.lock in

version control, but not libraries?" in the FAQ.

Let’s dig in a little bit more.

Cargo.toml is a manifest �le in which we can specify a bunch of di�erent
metadata about our package. For example, we can say that we depend on another
package:

This package has a single dependency, on the rand library. We’ve stated in this
case that we’re relying on a particular Git repository that lives on GitHub. Since we
haven’t speci�ed any other information, Cargo assumes that we intend to use the
latest commit on the master branch to build our package.

Sound good? Well, there’s one problem: If you build this package today, and then
you send a copy to me, and I build this package tomorrow, something bad could
happen. There could be more commits to rand in the meantime, and my build
would include new commits while yours would not. Therefore, we would get
di�erent builds. This would be bad because we want reproducible builds.

We could �x this problem by putting a rev line in our Cargo.toml :

[package]
name = "hello_world"
version = "0.1.0"
authors = ["Your Name <you@example.com>"]

[dependencies]
rand = { git = "https://github.com/rust-lang-nursery/rand.git" }

[dependencies]
rand = { git = "https://github.com/rust-lang-nursery/rand.git", rev =
"9f35b8e" }

The Cargo Book https://doc.rust-lang.org/cargo/print.html

�� of ��� �/�/��, �:�� PM

Now our builds will be the same. But there’s a big drawback: now we have to
manually think about SHA-1s every time we want to update our library. This is both
tedious and error prone.

Enter the Cargo.lock . Because of its existence, we don’t need to manually keep
track of the exact revisions: Cargo will do it for us. When we have a manifest like
this:

Cargo will take the latest commit and write that information out into our
Cargo.lock when we build for the �rst time. That �le will look like this:

You can see that there’s a lot more information here, including the exact revision
we used to build. Now when you give your package to someone else, they’ll use the
exact same SHA, even though we didn’t specify it in our Cargo.toml .

When we’re ready to opt in to a new version of the library, Cargo can re-calculate
the dependencies and update things for us:

This will write out a new Cargo.lock with the new version information. Note that
the argument to cargo update is actually a Package ID Speci�cation and rand is
just a short speci�cation.

[package]
name = "hello_world"
version = "0.1.0"
authors = ["Your Name <you@example.com>"]

[dependencies]
rand = { git = "https://github.com/rust-lang-nursery/rand.git" }

[[package]]
name = "hello_world"
version = "0.1.0"
dependencies = [
 "rand 0.1.0 (git+https://github.com/rust-lang-nursery
/rand.git#9f35b8e439eeedd60b9414c58f389bdc6a3284f9)",
]

[[package]]
name = "rand"
version = "0.1.0"
source = "git+https://github.com/rust-lang-nursery
/rand.git#9f35b8e439eeedd60b9414c58f389bdc6a3284f9"

$ cargo update # updates all dependencies
$ cargo update -p rand # updates just “rand”

The Cargo Book https://doc.rust-lang.org/cargo/print.html

�� of ��� �/�/��, �:�� PM

Tests

Cargo can run your tests with the cargo test command. Cargo looks for tests to
run in two places: in each of your src �les and any tests in tests/ . Tests in your
src �les should be unit tests, and tests in tests/ should be integration-style

tests. As such, you’ll need to import your crates into the �les in tests .

Here's an example of running cargo test in our package, which currently has no
tests:

If our package had tests, we would see more output with the correct number of
tests.

You can also run a speci�c test by passing a �lter:

This will run any test with foo in its name.

cargo test runs additional checks as well. For example, it will compile any
examples you’ve included and will also test the examples in your documentation.
Please see the testing guide in the Rust documentation for more details.

Continuous Integration

Travis CI

To test your package on Travis CI, here is a sample .travis.yml �le:

$ cargo test
 Compiling rand v0.1.0 (https://github.com/rust-lang-nursery
/rand.git#9f35b8e)
 Compiling hello_world v0.1.0 (file:///path/to/package/hello_world)
 Running target/test/hello_world-9c2b65bbb79eabce

running 0 tests

test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured; 0 filtered
out

$ cargo test foo

The Cargo Book https://doc.rust-lang.org/cargo/print.html

�� of ��� �/�/��, �:�� PM

This will test all three release channels, but any breakage in nightly will not fail your
overall build. Please see the Travis CI Rust documentation for more information.

GitLab CI

To test your package on GitLab CI, here is a sample .gitlab-ci.yml �le:

This will test on the stable channel and nightly channel, but any breakage in nightly
will not fail your overall build. Please see the GitLab CI for more information.

builds.sr.ht

To test your package on sr.ht, here is a sample .build.yml �le. Be sure to change
<your repo> and <your project> to the repo to clone and the directory where it

was cloned.

language: rust
rust:
 - stable
 - beta
 - nightly
matrix:
 allow_failures:
 - rust: nightly

stages:
 - build

rust-latest:
 stage: build
 image: rust:latest
 script:
 - cargo build --verbose
 - cargo test --verbose

rust-nightly:
 stage: build
 image: rustlang/rust:nightly
 script:
 - cargo build --verbose
 - cargo test --verbose
 allow_failure: true

The Cargo Book https://doc.rust-lang.org/cargo/print.html

�� of ��� �/�/��, �:�� PM

This will test and build documentation on the stable channel and nightly channel,
but any breakage in nightly will not fail your overall build. Please see the
builds.sr.ht documentation for more information.

Cargo Home

The "Cargo home" functions as a download and source cache. When building a
crate, Cargo stores downloaded build dependencies in the Cargo home. You can
alter the location of the Cargo home by setting the CARGO_HOME environmental
variable. The home crate provides an API for getting this location if you need this
information inside your Rust crate. By default, the Cargo home is located in
$HOME/.cargo/ .

Please note that the internal structure of the Cargo home is not stabilized and may
be subject to change at any time.

The Cargo home consists of following components:

image: archlinux
packages:
 - rustup
sources:
 - <your repo>
tasks:
 - setup: |
 rustup toolchain install nightly stable
 cd <your project>/
 rustup run stable cargo fetch
 - stable: |
 rustup default stable
 cd <your project>/
 cargo build --verbose
 cargo test --verbose
 - nightly: |
 rustup default nightly
 cd <your project>/
 cargo build --verbose ||:
 cargo test --verbose ||:
 - docs: |
 cd <your project>/
 rustup run stable cargo doc --no-deps
 rustup run nightly cargo doc --no-deps ||:

The Cargo Book https://doc.rust-lang.org/cargo/print.html

�� of ��� �/�/��, �:�� PM

Files:

config Cargo's global con�guration �le, see the con�g entry in the
reference.
credentials Private login credentials from cargo login in order to log in to

a registry.
.crates.toml This hidden �le contains package information of crates

installed via cargo install . Do NOT edit by hand!

Directories:

bin The bin directory contains executables of crates that were installed via
cargo install or rustup . To be able to make these binaries accessible, add

the path of the directory to your $PATH environment variable.
git Git sources are stored here:

git/db When a crate depends on a git repository, Cargo clones the
repo as a bare repo into this directory and updates it if necessary.
git/checkouts If a git source is used, the required commit of the repo

is checked out from the bare repo inside git/db into this directory. This
provides the compiler with the actual �les contained in the repo of the
commit speci�ed for that dependency. Multiple checkouts of di�erent
commits of the same repo are possible.

registry Packages and metadata of crate registries (such as crates.io) are
located here.

registry/index The index is a bare git repository which contains the
metadata (versions, dependencies etc) of all available crates of a
registry.
registry/cache Downloaded dependencies are stored in the cache.

The crates are compressed gzip archives named with a .crate
extension.
registry/src If a downloaded .crate archive is required by a

package, it is unpacked into registry/src folder where rustc will �nd
the .rs �les.

Caching the Cargo home in CI

To avoid redownloading all crate dependencies during continuous integration, you

The Cargo Book https://doc.rust-lang.org/cargo/print.html

�� of ��� �/�/��, �:�� PM

can cache the $CARGO_HOME directory. However, caching the entire directory is
often ine�cient as it will contain downloaded sources twice. If we depend on a
crate such as serde 1.0.92 and cache the entire $CARGO_HOME we would actually
cache the sources twice, the serde-1.0.92.crate inside registry/cache and the
extracted .rs �les of serde inside registry/src . The can unnecessarily slow
down the build as downloading, extracting, recompressing and reuploading the
cache to the CI servers can take some time.

It should be su�cient to only cache the following directories across builds:

bin/

registry/index/

registry/cache/

git/db/

Vendoring all dependencies of a project

See the cargo vendor subcommand.

Clearing the cache

In theory, you can always remove any part of the cache and Cargo will do its best
to restore sources if a crate needs them either by reextracting an archive or
checking out a bare repo or by simply redownloading the sources from the web.

Alternatively, the cargo-cache crate provides a simple CLI tool to only clear selected
parts of the cache or show sizes of its components in your command-line.

Build cache

Cargo shares build artifacts among all the packages of a single workspace. Today,
Cargo does not share build results across di�erent workspaces, but a similar result
can be achieved by using a third party tool, sccache.

To setup sccache , install it with cargo install sccache and set RUSTC_WRAPPER
environmental variable to sccache before invoking Cargo. If you use bash, it

The Cargo Book https://doc.rust-lang.org/cargo/print.html

�� of ��� �/�/��, �:�� PM

makes sense to add export RUSTC_WRAPPER=sccache to .bashrc . Alternatively,
you can set build.rustc-wrapper in the Cargo con�guration. Refer to sccache
documentation for more details.

Cargo Reference

The reference covers the details of various areas of Cargo.

Specifying Dependencies
The Manifest Format
Con�guration
Environment Variables
Build Scripts
Publishing on crates.io
Package ID Speci�cations
Source Replacement
External Tools
Unstable Features

Specifying Dependencies

Your crates can depend on other libraries from crates.io or other registries, git
repositories, or subdirectories on your local �le system. You can also temporarily
override the location of a dependency — for example, to be able to test out a bug
�x in the dependency that you are working on locally. You can have di�erent
dependencies for di�erent platforms, and dependencies that are only used during
development. Let's take a look at how to do each of these.

Specifying dependencies from crates.io

Cargo is con�gured to look for dependencies on crates.io by default. Only the
name and a version string are required in this case. In the cargo guide, we
speci�ed a dependency on the time crate:

[dependencies]
time = "0.1.12"

The Cargo Book https://doc.rust-lang.org/cargo/print.html

�� of ��� �/�/��, �:�� PM

The string "0.1.12" is a semver version requirement. Since this string does not
have any operators in it, it is interpreted the same way as if we had speci�ed
"^0.1.12" , which is called a caret requirement.

Caret requirements

Caret requirements allow SemVer compatible updates to a speci�ed version. An
update is allowed if the new version number does not modify the left-most non-
zero digit in the major, minor, patch grouping. In this case, if we ran cargo update
-p time , cargo should update us to version 0.1.13 if it is the latest 0.1.z
release, but would not update us to 0.2.0 . If instead we had speci�ed the version
string as ^1.0 , cargo should update to 1.1 if it is the latest 1.y release, but not
2.0 . The version 0.0.x is not considered compatible with any other version.

Here are some more examples of caret requirements and the versions that would
be allowed with them:

This compatibility convention is di�erent from SemVer in the way it treats versions
before 1.0.0. While SemVer says there is no compatibility before 1.0.0, Cargo
considers 0.x.y to be compatible with 0.x.z , where y ≥ z and x > 0 .

Tilde requirements

Tilde requirements specify a minimal version with some ability to update. If you
specify a major, minor, and patch version or only a major and minor version, only
patch-level changes are allowed. If you only specify a major version, then minor-
and patch-level changes are allowed.

~1.2.3 is an example of a tilde requirement.

^1.2.3 := >=1.2.3, <2.0.0
^1.2 := >=1.2.0, <2.0.0
^1 := >=1.0.0, <2.0.0
^0.2.3 := >=0.2.3, <0.3.0
^0.2 := >=0.2.0, <0.3.0
^0.0.3 := >=0.0.3, <0.0.4
^0.0 := >=0.0.0, <0.1.0
^0 := >=0.0.0, <1.0.0

The Cargo Book https://doc.rust-lang.org/cargo/print.html

�� of ��� �/�/��, �:�� PM

Wildcard requirements

Wildcard requirements allow for any version where the wildcard is positioned.

* , 1.* and 1.2.* are examples of wildcard requirements.

Comparison requirements

Comparison requirements allow manually specifying a version range or an exact
version to depend on.

Here are some examples of comparison requirements:

Multiple requirements

As shown in the examples above, multiple version requirements can be separated
with a comma, e.g., >= 1.2, < 1.5 .

Specifying dependencies from other registries

To specify a dependency from a registry other than crates.io, �rst the registry must
be con�gured in a .cargo/config �le. See the registries documentation for more
information. In the dependency, set the registry key to the name of the registry
to use.

~1.2.3 := >=1.2.3, <1.3.0
~1.2 := >=1.2.0, <1.3.0
~1 := >=1.0.0, <2.0.0

* := >=0.0.0
1.* := >=1.0.0, <2.0.0
1.2.* := >=1.2.0, <1.3.0

>= 1.2.0
> 1
< 2
= 1.2.3

The Cargo Book https://doc.rust-lang.org/cargo/print.html

�� of ��� �/�/��, �:�� PM

Specifying dependencies from git repositories

To depend on a library located in a git repository, the minimum information you
need to specify is the location of the repository with the git key:

Cargo will fetch the git repository at this location then look for a Cargo.toml for
the requested crate anywhere inside the git repository (not necessarily at the
root - for example, specifying a member crate name of a workspace and setting
git to the repository containing the workspace).

Since we haven’t speci�ed any other information, Cargo assumes that we intend to
use the latest commit on the master branch to build our package. You can
combine the git key with the rev , tag , or branch keys to specify something
else. Here's an example of specifying that you want to use the latest commit on a
branch named next :

Specifying path dependencies

Over time, our hello_world package from the guide has grown signi�cantly in
size! It’s gotten to the point that we probably want to split out a separate crate for
others to use. To do this Cargo supports path dependencies which are typically
sub-crates that live within one repository. Let’s start o� by making a new crate
inside of our hello_world package:

This will create a new folder hello_utils inside of which a Cargo.toml and src
folder are ready to be con�gured. In order to tell Cargo about this, open up
hello_world/Cargo.toml and add hello_utils to your dependencies:

[dependencies]
some-crate = { version = "1.0", registry = "my-registry" }

[dependencies]
rand = { git = "https://github.com/rust-lang-nursery/rand" }

[dependencies]
rand = { git = "https://github.com/rust-lang-nursery/rand", branch =
"next" }

inside of hello_world/
$ cargo new hello_utils

The Cargo Book https://doc.rust-lang.org/cargo/print.html

�� of ��� �/�/��, �:�� PM

This tells Cargo that we depend on a crate called hello_utils which is found in
the hello_utils folder (relative to the Cargo.toml it’s written in).

And that’s it! The next cargo build will automatically build hello_utils and all of
its own dependencies, and others can also start using the crate as well. However,
crates that use dependencies speci�ed with only a path are not permitted on
crates.io. If we wanted to publish our hello_world crate, we would need to
publish a version of hello_utils to crates.io and specify its version in the
dependencies line as well:

Overriding dependencies

There are a number of methods in Cargo to support overriding dependencies and
otherwise controlling the dependency graph. These options are typically, though,
only available at the workspace level and aren't propagated through dependencies.
In other words, "applications" have the ability to override dependencies but
"libraries" do not.

The desire to override a dependency or otherwise alter some dependencies can
arise through a number of scenarios. Most of them, however, boil down to the
ability to work with a crate before it's been published to crates.io. For example:

A crate you're working on is also used in a much larger application you're
working on, and you'd like to test a bug �x to the library inside of the larger
application.
An upstream crate you don't work on has a new feature or a bug �x on the
master branch of its git repository which you'd like to test out.
You're about to publish a new major version of your crate, but you'd like to
do integration testing across an entire package to ensure the new major
version works.
You've submitted a �x to an upstream crate for a bug you found, but you'd
like to immediately have your application start depending on the �xed
version of the crate to avoid blocking on the bug �x getting merged.

These scenarios are currently all solved with the [patch] manifest section.

[dependencies]
hello_utils = { path = "hello_utils" }

[dependencies]
hello_utils = { path = "hello_utils", version = "0.1.0" }

The Cargo Book https://doc.rust-lang.org/cargo/print.html

�� of ��� �/�/��, �:�� PM

Historically some of these scenarios have been solved with the [replace] section,
but we'll document the [patch] section here.

Testing a bugfix

Let's say you're working with the uuid crate but while you're working on it you
discover a bug. You are, however, quite enterprising so you decide to also try to �x
the bug! Originally your manifest will look like:

First thing we'll do is to clone the uuid repository locally via:

Next we'll edit the manifest of my-library to contain:

Here we declare that we're patching the source crates-io with a new
dependency. This will e�ectively add the local checked out version of uuid to the
crates.io registry for our local package.

Next up we need to ensure that our lock �le is updated to use this new version of
uuid so our package uses the locally checked out copy instead of one from

crates.io. The way [patch] works is that it'll load the dependency at ../path
/to/uuid and then whenever crates.io is queried for versions of uuid it'll also
return the local version.

This means that the version number of the local checkout is signi�cant and will
a�ect whether the patch is used. Our manifest declared uuid = "1.0" which
means we'll only resolve to >= 1.0.0, < 2.0.0 , and Cargo's greedy resolution
algorithm also means that we'll resolve to the maximum version within that range.
Typically this doesn't matter as the version of the git repository will already be
greater or match the maximum version published on crates.io, but it's important to
keep this in mind!

[package]
name = "my-library"
version = "0.1.0"
authors = ["..."]

[dependencies]
uuid = "1.0"

$ git clone https://github.com/rust-lang-nursery/uuid

[patch.crates-io]
uuid = { path = "../path/to/uuid" }

The Cargo Book https://doc.rust-lang.org/cargo/print.html

�� of ��� �/�/��, �:�� PM

In any case, typically all you need to do now is:

And that's it! You're now building with the local version of uuid (note the path in
parentheses in the build output). If you don't see the local path version getting
built then you may need to run cargo update -p uuid --precise $version
where $version is the version of the locally checked out copy of uuid .

Once you've �xed the bug you originally found the next thing you'll want to do is to
likely submit that as a pull request to the uuid crate itself. Once you've done this
then you can also update the [patch] section. The listing inside of [patch] is just
like the [dependencies] section, so once your pull request is merged you could
change your path dependency to:

Working with an unpublished minor version

Let's now shift gears a bit from bug �xes to adding features. While working on my-
library you discover that a whole new feature is needed in the uuid crate.
You've implemented this feature, tested it locally above with [patch] , and
submitted a pull request. Let's go over how you continue to use and test it before
it's actually published.

Let's also say that the current version of uuid on crates.io is 1.0.0 , but since then
the master branch of the git repository has updated to 1.0.1 . This branch
includes your new feature you submitted previously. To use this repository we'll
edit our Cargo.toml to look like

$ cargo build
 Compiling uuid v1.0.0 (.../uuid)
 Compiling my-library v0.1.0 (.../my-library)
 Finished dev [unoptimized + debuginfo] target(s) in 0.32 secs

[patch.crates-io]
uuid = { git = 'https://github.com/rust-lang-nursery/uuid' }

The Cargo Book https://doc.rust-lang.org/cargo/print.html

�� of ��� �/�/��, �:�� PM

Note that our local dependency on uuid has been updated to 1.0.1 as it's what
we'll actually require once the crate is published. This version doesn't exist on
crates.io, though, so we provide it with the [patch] section of the manifest.

Now when our library is built it'll fetch uuid from the git repository and resolve to
1.0.1 inside the repository instead of trying to download a version from crates.io.
Once 1.0.1 is published on crates.io the [patch] section can be deleted.

It's also worth noting that [patch] applies transitively. Let's say you use my-
library in a larger package, such as:

Remember that [patch] is applicable transitively but can only be de�ned at the
top level so we consumers of my-library have to repeat the [patch] section if
necessary. Here, though, the new uuid crate applies to both our dependency on
uuid and the my-library -> uuid dependency. The uuid crate will be resolved

to one version for this entire crate graph, 1.0.1, and it'll be pulled from the git
repository.

Overriding repository URL

In case the dependency you want to override isn't loaded from crates.io , you'll
have to change a bit how you use [patch] :

[package]
name = "my-library"
version = "0.1.0"
authors = ["..."]

[dependencies]
uuid = "1.0.1"

[patch.crates-io]
uuid = { git = 'https://github.com/rust-lang-nursery/uuid' }

[package]
name = "my-binary"
version = "0.1.0"
authors = ["..."]

[dependencies]
my-library = { git = 'https://example.com/git/my-library' }
uuid = "1.0"

[patch.crates-io]
uuid = { git = 'https://github.com/rust-lang-nursery/uuid' }

The Cargo Book https://doc.rust-lang.org/cargo/print.html

�� of ��� �/�/��, �:�� PM

And that's it!

Prepublishing a breaking change

As a �nal scenario, let's take a look at working with a new major version of a crate,
typically accompanied with breaking changes. Sticking with our previous crates,
this means that we're going to be creating version 2.0.0 of the uuid crate. After
we've submitted all changes upstream we can update our manifest for my-
library to look like:

And that's it! Like with the previous example the 2.0.0 version doesn't actually exist
on crates.io but we can still put it in through a git dependency through the usage of
the [patch] section. As a thought exercise let's take another look at the my-
binary manifest from above again as well:

Note that this will actually resolve to two versions of the uuid crate. The my-
binary crate will continue to use the 1.x.y series of the uuid crate but the my-
library crate will use the 2.0.0 version of uuid . This will allow you to gradually
roll out breaking changes to a crate through a dependency graph without being
force to update everything all at once.

[patch."https://github.com/your/repository"]
my-library = { path = "../my-library/path" }

[dependencies]
uuid = "2.0"

[patch.crates-io]
uuid = { git = "https://github.com/rust-lang-nursery/uuid", branch =
"2.0.0" }

[package]
name = "my-binary"
version = "0.1.0"
authors = ["..."]

[dependencies]
my-library = { git = 'https://example.com/git/my-library' }
uuid = "1.0"

[patch.crates-io]
uuid = { git = 'https://github.com/rust-lang-nursery/uuid', branch =
'2.0.0' }

The Cargo Book https://doc.rust-lang.org/cargo/print.html

�� of ��� �/�/��, �:�� PM

Overriding with local dependencies

Sometimes you're only temporarily working on a crate and you don't want to have
to modify Cargo.toml like with the [patch] section above. For this use case
Cargo o�ers a much more limited version of overrides called path overrides.

Path overrides are speci�ed through .cargo/config instead of Cargo.toml , and
you can �nd more documentation about this con�guration. Inside of
.cargo/config you'll specify a key called paths :

This array should be �lled with directories that contain a Cargo.toml . In this
instance, we’re just adding uuid , so it will be the only one that’s overridden. This
path can be either absolute or relative to the directory that contains the .cargo
folder.

Path overrides are more restricted than the [patch] section, however, in that they
cannot change the structure of the dependency graph. When a path replacement
is used then the previous set of dependencies must all match exactly to the new
Cargo.toml speci�cation. For example this means that path overrides cannot be

used to test out adding a dependency to a crate, instead [patch] must be used in
that situation. As a result usage of a path override is typically isolated to quick bug
�xes rather than larger changes.

Note: using a local con�guration to override paths will only work for crates that
have been published to crates.io. You cannot use this feature to tell Cargo how to
�nd local unpublished crates.

Platform specific dependencies

Platform-speci�c dependencies take the same format, but are listed under a
target section. Normally Rust-like #[cfg] syntax will be used to de�ne these

sections:

paths = ["/path/to/uuid"]

The Cargo Book https://doc.rust-lang.org/cargo/print.html

�� of ��� �/�/��, �:�� PM

Like with Rust, the syntax here supports the not , any , and all operators to
combine various cfg name/value pairs.

If you want to know which cfg targets are available on your platform, run rustc
--print=cfg from the command line. If you want to know which cfg targets are
available for another platform, such as 64-bit Windows, run rustc --print=cfg
--target=x86_64-pc-windows-msvc .

Unlike in your Rust source code, you cannot use [target.'cfg(feature =
"my_crate")'.dependencies] to add dependencies based on optional crate
features. Use the [features] section instead.

In addition to #[cfg] syntax, Cargo also supports listing out the full target the
dependencies would apply to:

If you’re using a custom target speci�cation (such as --target foo/bar.json), use
the base �lename without the .json extension:

Development dependencies

[target.'cfg(windows)'.dependencies]
winhttp = "0.4.0"

[target.'cfg(unix)'.dependencies]
openssl = "1.0.1"

[target.'cfg(target_arch = "x86")'.dependencies]
native = { path = "native/i686" }

[target.'cfg(target_arch = "x86_64")'.dependencies]
native = { path = "native/x86_64" }

[target.x86_64-pc-windows-gnu.dependencies]
winhttp = "0.4.0"

[target.i686-unknown-linux-gnu.dependencies]
openssl = "1.0.1"

[target.bar.dependencies]
winhttp = "0.4.0"

[target.my-special-i686-platform.dependencies]
openssl = "1.0.1"
native = { path = "native/i686" }

The Cargo Book https://doc.rust-lang.org/cargo/print.html

�� of ��� �/�/��, �:�� PM

You can add a [dev-dependencies] section to your Cargo.toml whose format is
equivalent to [dependencies] :

Dev-dependencies are not used when compiling a package for building, but are
used for compiling tests, examples, and benchmarks.

These dependencies are not propagated to other packages which depend on this
package.

You can also have target-speci�c development dependencies by using dev-
dependencies in the target section header instead of dependencies . For example:

Build dependencies

You can depend on other Cargo-based crates for use in your build scripts.
Dependencies are declared through the build-dependencies section of the
manifest:

The build script does not have access to the dependencies listed in the
dependencies or dev-dependencies section. Build dependencies will likewise not

be available to the package itself unless listed under the dependencies section as
well. A package itself and its build script are built separately, so their dependencies
need not coincide. Cargo is kept simpler and cleaner by using independent
dependencies for independent purposes.

Choosing features

If a package you depend on o�ers conditional features, you can specify which to
use:

[dev-dependencies]
tempdir = "0.3"

[target.'cfg(unix)'.dev-dependencies]
mio = "0.0.1"

[build-dependencies]
cc = "1.0.3"

The Cargo Book https://doc.rust-lang.org/cargo/print.html

�� of ��� �/�/��, �:�� PM

More information about features can be found in the manifest documentation.

Renaming dependencies in Cargo.toml

When writing a [dependencies] section in Cargo.toml the key you write for a
dependency typically matches up to the name of the crate you import from in the
code. For some projects, though, you may wish to reference the crate with a
di�erent name in the code regardless of how it's published on crates.io. For
example you may wish to:

Avoid the need to use foo as bar in Rust source.
Depend on multiple versions of a crate.
Depend on crates with the same name from di�erent registries.

To support this Cargo supports a package key in the [dependencies] section of
which package should be depended on:

In this example, three crates are now available in your Rust code:

All three of these crates have the package name of foo in their own Cargo.toml ,
so we're explicitly using the package key to inform Cargo that we want the foo
package even though we're calling it something else locally. The package key, if
not speci�ed, defaults to the name of the dependency being requested.

[dependencies.awesome]
version = "1.3.5"
default-features = false # do not include the default features, and
optionally

cherry-pick individual features
features = ["secure-password", "civet"]

[package]
name = "mypackage"
version = "0.0.1"

[dependencies]
foo = "0.1"
bar = { git = "https://github.com/example/project", package = "foo" }
baz = { version = "0.1", registry = "custom", package = "foo" }

extern crate foo; // crates.io
extern crate bar; // git repository
extern crate baz; // registry `custom`

The Cargo Book https://doc.rust-lang.org/cargo/print.html

�� of ��� �/�/��, �:�� PM

Note that if you have an optional dependency like:

you're depending on the crate bar from crates.io, but your crate has a foo
feature instead of a bar feature. That is, names of features take after the name of
the dependency, not the package name, when renamed.

Enabling transitive dependencies works similarly, for example we could add the
following to the above manifest:

The Manifest Format

The Cargo.toml �le for each package is called its manifest. Every manifest �le
consists of one or more sections.

The [package] section

The �rst section in a Cargo.toml is [package] .

The name field

The package name is an identi�er used to refer to the package. It is used when
listed as a dependency in another package, and as the default name of inferred lib
and bin targets.

The name must not be empty, use only alphanumeric characters or - or _ . Note
that cargo new and cargo init impose some additional restrictions on the
package name, such as enforcing that it is a valid Rust identi�er and not a keyword.
crates.io imposes even more restrictions, such as enforcing only ASCII characters,

[dependencies]
foo = { version = "0.1", package = 'bar', optional = true }

[features]
log-debug = ['foo/log-debug'] # using 'bar/log-debug' would be an error!

[package]
name = "hello_world" # the name of the package
version = "0.1.0" # the current version, obeying semver
authors = ["Alice <a@example.com>", "Bob <b@example.com>"]

The Cargo Book https://doc.rust-lang.org/cargo/print.html

�� of ��� �/�/��, �:�� PM

not a reserved name, not a special Windows name such as "nul", is not too long,
etc.

The version field

Cargo bakes in the concept of Semantic Versioning, so make sure you follow some
basic rules:

Before you reach 1.0.0, anything goes, but if you make breaking changes,
increment the minor version. In Rust, breaking changes include adding �elds
to structs or variants to enums.
After 1.0.0, only make breaking changes when you increment the major
version. Don’t break the build.
After 1.0.0, don’t add any new public API (no new pub anything) in patch-level
versions. Always increment the minor version if you add any new pub
structs, traits, �elds, types, functions, methods or anything else.
Use version numbers with three numeric parts such as 1.0.0 rather than 1.0.

The authors field (optional)

The authors �eld lists people or organizations that are considered the "authors"
of the package. The exact meaning is open to interpretation — it may list the
original or primary authors, current maintainers, or owners of the package. These
names will be listed on the crate's page on crates.io. An optional email address
may be included within angled brackets at the end of each author.

The edition field (optional)

You can opt in to a speci�c Rust Edition for your package with the edition key in
Cargo.toml . If you don't specify the edition, it will default to 2015.

The edition key a�ects which edition your package is compiled with. Cargo will
always generate packages via cargo new with the edition key set to the latest
edition. Setting the edition key in [package] will a�ect all targets/crates in the
package, including test suites, benchmarks, binaries, examples, etc.

The build field (optional)

[package]
...
edition = '2018'

The Cargo Book https://doc.rust-lang.org/cargo/print.html

�� of ��� �/�/��, �:�� PM

This �eld speci�es a �le in the package root which is a build script for building
native code. More information can be found in the build script guide.

The default is "build.rs" , which loads the script from a �le named build.rs in
the root of the package. Use build = "custom_build_name.rs" to specify a path
to a di�erent �le or build = false to disable automatic detection of the build
script.

The links field (optional)

This �eld speci�es the name of a native library that is being linked to. More
information can be found in the links section of the build script guide.

The documentation field (optional)

This �eld speci�es a URL to a website hosting the crate's documentation. If no URL
is speci�ed in the manifest �le, crates.io will automatically link your crate to the
corresponding docs.rs page.

Documentation links from speci�c hosts are blacklisted. Hosts are added to the
blacklist if they are known to not be hosting documentation and are possibly of
malicious intent e.g., ad tracking networks. URLs from the following hosts are
blacklisted:

rust-ci.org

Documentation URLs from blacklisted hosts will not appear on crates.io, and may
be replaced by docs.rs links.

The exclude and include fields (optional)

You can explicitly specify that a set of �le patterns should be ignored or included
for the purposes of packaging. The patterns speci�ed in the exclude �eld identify
a set of �les that are not included, and the patterns in include specify �les that

[package]
...
build = "build.rs"

[package]
...
links = "foo"

The Cargo Book https://doc.rust-lang.org/cargo/print.html

�� of ��� �/�/��, �:�� PM

are explicitly included.

The patterns should be gitignore-style patterns. Brie�y:

foo matches any �le or directory with the name foo anywhere in the
package. This is equivalent to the pattern **/foo .
/foo matches any �le or directory with the name foo only in the root of the

package.
foo/ matches any directory with the name foo anywhere in the package.

Common glob patterns like * , ? , and [] are supported:
* matches zero or more characters except / . For example, *.html

matches any �le or directory with the .html extension anywhere in the
package.
? matches any character except / . For example, foo? matches food ,

but not foo .
[] allows for matching a range of characters. For example, [ab]

matches either a or b . [a-z] matches letters a through z.
**/ pre�x matches in any directory. For example, **/foo/bar matches the

�le or directory bar anywhere that is directly under directory foo .
/** su�x matches everything inside. For example, foo/** matches all �les

inside directory foo , including all �les in subdirectories below foo .
/**/ matches zero or more directories. For example, a/**/b matches a/b ,
a/x/b , a/x/y/b , and so on.
! pre�x negates a pattern. For example, a pattern of src/**.rs and
!foo.rs would match all �les with the .rs extension inside the src

directory, except for any �le named foo.rs .

If git is being used for a package, the exclude �eld will be seeded with the
gitignore settings from the repository.

The options are mutually exclusive: setting include will override an exclude .
Note that include must be an exhaustive list of �les as otherwise necessary
source �les may not be included. The package's Cargo.toml is automatically
included.

[package]
...
exclude = ["build/**/*.o", "doc/**/*.html"]

[package]
...
include = ["src/**/*", "Cargo.toml"]

The Cargo Book https://doc.rust-lang.org/cargo/print.html

�� of ��� �/�/��, �:�� PM

The include/exclude list is also used for change tracking in some situations. For
targets built with rustdoc , it is used to determine the list of �les to track to
determine if the target should be rebuilt. If the package has a build script that does
not emit any rerun-if-* directives, then the include/exclude list is used for
tracking if the build script should be re-run if any of those �les change.

The publish field (optional)

The publish �eld can be used to prevent a package from being published to a
package registry (like crates.io) by mistake, for instance to keep a package private in
a company.

The value may also be an array of strings which are registry names that are
allowed to be published to.

The workspace field (optional)

The workspace �eld can be used to con�gure the workspace that this package will
be a member of. If not speci�ed this will be inferred as the �rst Cargo.toml with
[workspace] upwards in the �lesystem.

For more information, see the documentation for the workspace table below.

Package metadata

There are a number of optional metadata �elds also accepted under the
[package] section:

[package]
...
publish = false

[package]
...
publish = ["some-registry-name"]

[package]
...
workspace = "path/to/workspace/root"

The Cargo Book https://doc.rust-lang.org/cargo/print.html

�� of ��� �/�/��, �:�� PM

[package]
...

A short blurb about the package. This is not rendered in any format
when
uploaded to crates.io (aka this is not markdown).
description = "..."

These URLs point to more information about the package. These are
intended to be webviews of the relevant data, not necessarily
compatible
with VCS tools and the like.
documentation = "..."
homepage = "..."
repository = "..."

This points to a file under the package root (relative to this
`Cargo.toml`).
The contents of this file are stored and indexed in the registry.
crates.io will render this file and place the result on the crate's
page.
readme = "..."

This is a list of up to five keywords that describe this crate.
Keywords
are searchable on crates.io, and you may choose any words that would
help someone find this crate.
keywords = ["...", "..."]

This is a list of up to five categories where this crate would fit.
Categories are a fixed list available at crates.io/category_slugs, and
they must match exactly.
categories = ["...", "..."]

This is an SPDX 2.1 license expression for this package. Currently
crates.io will validate the license provided against a whitelist of
known license and exception identifiers from the SPDX license list
3.6. Parentheses are not currently supported.
#
Multiple licenses can be separated with a `/`, although that usage
is deprecated. Instead, use a license expression with AND and OR
operators to get more explicit semantics.
license = "..."

If a package is using a nonstandard license, then this key may be
specified in
lieu of the above key and must point to a file relative to this
manifest
(similar to the readme key).
license-file = "..."

The Cargo Book https://doc.rust-lang.org/cargo/print.html

�� of ��� �/�/��, �:�� PM

Optional specification of badges to be displayed on crates.io.
#
- The badges pertaining to build status that are currently available
are
Appveyor, CircleCI, Cirrus CI, GitLab, Azure DevOps and TravisCI.
- Available badges pertaining to code test coverage are Codecov and
Coveralls.
- There are also maintenance-related badges based on
isitmaintained.com
which state the issue resolution time, percent of open issues, and
future
maintenance intentions.
#
If a `repository` key is required, this refers to a repository in
`user/repo` format.
[badges]

Appveyor: `repository` is required. `branch` is optional; default is
`master`
`service` is optional; valid values are `github` (default),
`bitbucket`, and
`gitlab`; `id` is optional; you can specify the appveyor project id if
you
want to use that instead. `project_name` is optional; use when the
repository
name differs from the appveyor project name.
appveyor = { repository = "...", branch = "master", service = "github" }

Circle CI: `repository` is required. `branch` is optional; default is
`master`
circle-ci = { repository = "...", branch = "master" }

Cirrus CI: `repository` is required. `branch` is optional; default is
`master`
cirrus-ci = { repository = "...", branch = "master" }

GitLab: `repository` is required. `branch` is optional; default is
`master`
gitlab = { repository = "...", branch = "master" }

Azure DevOps: `project` is required. `pipeline` is required. `build`
is optional; default is `1`
Note: project = `organization/project`, pipeline = `name_of_pipeline`,
build = `definitionId`
azure-devops = { project = "...", pipeline = "...", build="2" }

Travis CI: `repository` in format "<user>/<project>" is required.
`branch` is optional; default is `master`
travis-ci = { repository = "...", branch = "master" }

The Cargo Book https://doc.rust-lang.org/cargo/print.html

�� of ��� �/�/��, �:�� PM

The crates.io registry will render the description, display the license, link to the
three URLs and categorize by the keywords. These keys provide useful information

Codecov: `repository` is required. `branch` is optional; default is
`master`
`service` is optional; valid values are `github` (default),
`bitbucket`, and
`gitlab`.
codecov = { repository = "...", branch = "master", service = "github" }

Coveralls: `repository` is required. `branch` is optional; default is
`master`
`service` is optional; valid values are `github` (default) and
`bitbucket`.
coveralls = { repository = "...", branch = "master", service = "github"
}

Is it maintained resolution time: `repository` is required.
is-it-maintained-issue-resolution = { repository = "..." }

Is it maintained percentage of open issues: `repository` is required.
is-it-maintained-open-issues = { repository = "..." }

Maintenance: `status` is required. Available options are:
- `actively-developed`: New features are being added and bugs are
being fixed.
- `passively-maintained`: There are no plans for new features, but the
maintainer intends to
respond to issues that get filed.
- `as-is`: The crate is feature complete, the maintainer does not
intend to continue working on
it or providing support, but it works for the purposes it was
designed for.
- `experimental`: The author wants to share it with the community but
is not intending to meet
anyone's particular use case.
- `looking-for-maintainer`: The current maintainer would like to
transfer the crate to someone
else.
- `deprecated`: The maintainer does not recommend using this crate
(the description of the crate
can describe why, there could be a better solution available or
there could be problems with
the crate that the author does not want to fix).
- `none`: Displays no badge on crates.io, since the maintainer has not
chosen to specify
their intentions, potential crate users will need to investigate on
their own.
maintenance = { status = "..." }

The Cargo Book https://doc.rust-lang.org/cargo/print.html

�� of ��� �/�/��, �:�� PM

to users of the registry and also in�uence the search ranking of a crate. It is highly
discouraged to omit everything in a published crate.

SPDX 2.1 license expressions are documented here. The current version of the
license list is available here, and version 3.6 is available here.

The metadata table (optional)

Cargo by default will warn about unused keys in Cargo.toml to assist in detecting
typos and such. The package.metadata table, however, is completely ignored by
Cargo and will not be warned about. This section can be used for tools which
would like to store package con�guration in Cargo.toml . For example:

The default-run field

The default-run �eld in the [package] section of the manifest can be used to
specify a default binary picked by cargo run . For example, when there is both
src/bin/a.rs and src/bin/b.rs :

Dependency sections

See the specifying dependencies page for information on the [dependencies] ,
[dev-dependencies] , [build-dependencies] , and target-speci�c
[target.*.dependencies] sections.

The [profile.*] sections

The [profile] tables provide a way to customize compiler settings such as

[package]
name = "..."
...

Metadata used when generating an Android APK, for example.
[package.metadata.android]
package-name = "my-awesome-android-app"
assets = "path/to/static"

[package]
default-run = "a"

The Cargo Book https://doc.rust-lang.org/cargo/print.html

�� of ��� �/�/��, �:�� PM

optimizations and debug settings. See the Pro�les chapter for more detail.

The [features] section

Cargo supports features to allow expression of:

conditional compilation options (usable through cfg attributes);
optional dependencies, which enhance a package, but are not required; and
clusters of optional dependencies, such as postgres , that would include the
postgres package, the postgres-macros package, and possibly other

packages (such as development-time mocking libraries, debugging tools, etc.).

A feature of a package is either an optional dependency, or a set of other features.
The format for specifying features is:

The Cargo Book https://doc.rust-lang.org/cargo/print.html

�� of ��� �/�/��, �:�� PM

To use the package awesome :

[package]
name = "awesome"

[features]
The default set of optional packages. Most people will want to use
these
packages, but they are strictly optional. Note that `session` is not a
package
but rather another feature listed in this manifest.
default = ["jquery", "uglifier", "session"]

A feature with no dependencies is used mainly for conditional
compilation,
like `#[cfg(feature = "go-faster")]`.
go-faster = []

The `secure-password` feature depends on the bcrypt package. This
aliasing
will allow people to talk about the feature in a higher-level way and
allow
this package to add more requirements to the feature in the future.
secure-password = ["bcrypt"]

Features can be used to reexport features of other packages. The
`session`
feature of package `awesome` will ensure that the `session` feature of
the
package `cookie` is also enabled.
session = ["cookie/session"]

[dependencies]
These packages are mandatory and form the core of this package’s
distribution.
cookie = "1.2.0"
oauth = "1.1.0"
route-recognizer = "=2.1.0"

A list of all of the optional dependencies, some of which are included
in the
above `features`. They can be opted into by apps.
jquery = { version = "1.0.2", optional = true }
uglifier = { version = "1.5.3", optional = true }
bcrypt = { version = "*", optional = true }
civet = { version = "*", optional = true }

The Cargo Book https://doc.rust-lang.org/cargo/print.html

�� of ��� �/�/��, �:�� PM

Rules

The usage of features is subject to a few rules:

Feature names must not con�ict with other package names in the manifest.
This is because they are opted into via features = [...] , which only has a
single namespace.
With the exception of the default feature, all features are opt-in. To opt out
of the default feature, use default-features = false and cherry-pick
individual features.
Feature groups are not allowed to cyclically depend on one another.
Dev-dependencies cannot be optional.
Features groups can only reference optional dependencies.
When a feature is selected, Cargo will call rustc with --cfg
feature="${feature_name}" . If a feature group is included, it and all of its
individual features will be included. This can be tested in code via
#[cfg(feature = "foo")] .

Note that it is explicitly allowed for features to not actually activate any optional
dependencies. This allows packages to internally enable/disable features without
requiring a new dependency.

Usage in end products

One major use-case for this feature is specifying optional features in end-products.
For example, the Servo package may want to include optional features that people
can enable or disable when they build it.

In that case, Servo will describe features in its Cargo.toml and they can be
enabled using command-line �ags:

Default features could be excluded using --no-default-features .

[dependencies.awesome]
version = "1.3.5"
default-features = false # do not include the default features, and
optionally

cherry-pick individual features
features = ["secure-password", "civet"]

$ cargo build --release --features "shumway pdf"

The Cargo Book https://doc.rust-lang.org/cargo/print.html

�� of ��� �/�/��, �:�� PM

Usage in packages

In most cases, the concept of optional dependency in a library is best expressed as a
separate package that the top-level application depends on.

However, high-level packages, like Iron or Piston, may want the ability to curate a
number of packages for easy installation. The current Cargo system allows them to
curate a number of mandatory dependencies into a single package for easy
installation.

In some cases, packages may want to provide additional curation for optional
dependencies:

grouping a number of low-level optional dependencies together into a single
high-level feature;
specifying packages that are recommended (or suggested) to be included by
users of the package; and
including a feature (like secure-password in the motivating example) that will
only work if an optional dependency is available, and would be di�cult to
implement as a separate package (for example, it may be overly di�cult to
design an IO package to be completely decoupled from OpenSSL, with opt-in
via the inclusion of a separate package).

In almost all cases, it is an antipattern to use these features outside of high-level
packages that are designed for curation. If a feature is optional, it can almost
certainly be expressed as a separate package.

The [workspace] section

Packages can de�ne a workspace which is a set of crates that will all share the
same Cargo.lock and output directory. The [workspace] table can be de�ned as:

[workspace]

Optional key, inferred from path dependencies if not present.
Additional non-path dependencies that should be included must be given
here.
In particular, for a virtual manifest, all members have to be listed.
members = ["path/to/member1", "path/to/member2", "path/to/member3/*"]

Optional key, empty if not present.
exclude = ["path1", "path/to/dir2"]

The Cargo Book https://doc.rust-lang.org/cargo/print.html

�� of ��� �/�/��, �:�� PM

Workspaces were added to Cargo as part of RFC 1525 and have a number of
properties:

A workspace can contain multiple crates where one of them is the root crate.
The root crate's Cargo.toml contains the [workspace] table, but is not
required to have other con�guration.
Whenever any crate in the workspace is compiled, output is placed in the
workspace root (i.e., next to the root crate's Cargo.toml).
The lock �le for all crates in the workspace resides in the workspace root.
The [patch] , [replace] and [profile.*] sections in Cargo.toml are only
recognized in the root crate's manifest, and ignored in member crates'
manifests.

The root crate of a workspace, indicated by the presence of [workspace] in its
manifest, is responsible for de�ning the entire workspace. All path dependencies
residing in the workspace directory become members. You can add additional
packages to the workspace by listing them in the members key. Note that members
of the workspaces listed explicitly will also have their path dependencies included
in the workspace. Sometimes a package may have a lot of workspace members
and it can be onerous to keep up to date. The members list can also use globs to
match multiple paths. Finally, the exclude key can be used to blacklist paths from
being included in a workspace. This can be useful if some path dependencies
aren't desired to be in the workspace at all.

The package.workspace manifest key (described above) is used in member crates
to point at a workspace's root crate. If this key is omitted then it is inferred to be
the �rst crate whose manifest contains [workspace] upwards in the �lesystem.

A crate may either specify package.workspace or specify [workspace] . That is, a
crate cannot both be a root crate in a workspace (contain [workspace]) and also
be a member crate of another workspace (contain package.workspace).

Most of the time workspaces will not need to be dealt with as cargo new and
cargo init will handle workspace con�guration automatically.

Virtual Manifest

In workspace manifests, if the package table is present, the workspace root crate
will be treated as a normal package, as well as a workspace. If the package table is
not present in a workspace manifest, it is called a virtual manifest.

Package selection

The Cargo Book https://doc.rust-lang.org/cargo/print.html

�� of ��� �/�/��, �:�� PM

In a workspace, package-related cargo commands like cargo build apply to
packages selected by -p / --package or --workspace command-line parameters.
When neither is speci�ed, the optional default-members con�guration is used:

When speci�ed, default-members must expand to a subset of members .

When default-members is not speci�ed, the default is the root manifest if it is a
package, or every member manifest (as if --workspace were speci�ed on the
command-line) for virtual workspaces.

The project layout

If your package is an executable, name the main source �le src/main.rs . If it is a
library, name the main source �le src/lib.rs .

Cargo will also treat any �les located in src/bin/*.rs as executables. If your
executable consists of more than just one source �le, you might also use a
directory inside src/bin containing a main.rs �le which will be treated as an
executable with a name of the parent directory.

Your package can optionally contain folders named examples , tests , and
benches , which Cargo will treat as containing examples, integration tests, and

benchmarks respectively. Analogous to bin targets, they may be composed of
single �les or directories with a main.rs �le.

[workspace]
members = ["path/to/member1", "path/to/member2", "path/to/member3/*"]
default-members = ["path/to/member2", "path/to/member3/foo"]

The Cargo Book https://doc.rust-lang.org/cargo/print.html

�� of ��� �/�/��, �:�� PM

To structure your code after you've created the �les and folders for your package,
you should remember to use Rust's module system, which you can read about in
the book.

See Con�guring a target below for more details on manually con�guring target
settings. See Target auto-discovery below for more information on controlling how
Cargo automatically infers targets.

Examples

Files located under examples are example uses of the functionality provided by
the library. When compiled, they are placed in the target/examples directory.

They can compile either as executables (with a main() function) or libraries and
pull in the library by using extern crate <library-name> . They are compiled
when you run your tests to protect them from bitrotting.

You can run individual executable examples with the command cargo run
--example <example-name> .

Specify crate-type to make an example be compiled as a library (additional

▾ src/ # directory containing source files
 lib.rs # the main entry point for libraries and packages
 main.rs # the main entry point for packages producing
executables
 ▾ bin/ # (optional) directory containing additional
executables
 *.rs
 ▾ */ # (optional) directories containing multi-file
executables
 main.rs
▾ examples/ # (optional) examples
 *.rs
 ▾ */ # (optional) directories containing multi-file examples
 main.rs
▾ tests/ # (optional) integration tests
 *.rs
 ▾ */ # (optional) directories containing multi-file tests
 main.rs
▾ benches/ # (optional) benchmarks
 *.rs
 ▾ */ # (optional) directories containing multi-file
benchmarks
 main.rs

The Cargo Book https://doc.rust-lang.org/cargo/print.html

�� of ��� �/�/��, �:�� PM

information about crate types is available in The Rust Reference):

You can build individual library examples with the command cargo build
--example <example-name> .

Tests

When you run cargo test , Cargo will:

compile and run your library’s unit tests, which are in the �les reachable from
lib.rs (naturally, any sections marked with #[cfg(test)] will be

considered at this stage);
compile and run your library’s documentation tests, which are embedded
inside of documentation blocks;
compile and run your library’s integration tests; and
compile your library’s examples.

Integration tests

Each �le in tests/*.rs is an integration test. When you run cargo test , Cargo
will compile each of these �les as a separate crate. The crate can link to your
library by using extern crate <library-name> , like any other code that depends
on it.

Cargo will not automatically compile �les inside subdirectories of tests , but an
integration test can import modules from these directories as usual. For example,
if you want several integration tests to share some code, you can put the shared
code in tests/common/mod.rs and then put mod common; in each of the test �les.

Configuring a target

All of the [[bin]] , [lib] , [[bench]] , [[test]] , and [[example]] sections
support similar con�guration for specifying how a target should be built. The
double-bracket sections like [[bin]] are array-of-table of TOML, which means you
can write more than one [[bin]] section to make several executables in your
crate.

[[example]]
name = "foo"
crate-type = ["staticlib"]

The Cargo Book https://doc.rust-lang.org/cargo/print.html

�� of ��� �/�/��, �:�� PM

The example below uses [lib] , but it also applies to all other sections as well. All
values listed are the defaults for that option unless otherwise speci�ed.

The Cargo Book https://doc.rust-lang.org/cargo/print.html

�� of ��� �/�/��, �:�� PM

[package]
...

[lib]
The name of a target is the name of the library that will be
generated. This
is defaulted to the name of the package, with any dashes replaced
with underscores. (Rust `extern crate` declarations reference this
name;
therefore the value must be a valid Rust identifier to be usable.)
name = "foo"

This field points at where the crate is located, relative to the
`Cargo.toml`.
path = "src/lib.rs"

A flag for enabling unit tests for this target. This is used by `cargo
test`.
test = true

A flag for enabling documentation tests for this target. This is only
relevant
for libraries, it has no effect on other sections. This is used by
`cargo test`.
doctest = true

A flag for enabling benchmarks for this target. This is used by `cargo
bench`.
bench = true

A flag for enabling documentation of this target. This is used by
`cargo doc`.
doc = true

If the target is meant to be a compiler plugin, this field must be set
to true
for Cargo to correctly compile it and make it available for all
dependencies.
plugin = false

If the target is meant to be a "macros 1.1" procedural macro, this
field must
be set to true.
proc-macro = false

If set to false, `cargo test` will omit the `--test` flag to rustc,
which
stops it from generating a test harness. This is useful when the
binary being
built manages the test runner itself.

The Cargo Book https://doc.rust-lang.org/cargo/print.html

�� of ��� �/�/��, �:�� PM

Target auto-discovery

By default, Cargo automatically determines the targets to build based on the layout
of the �les on the �lesystem. The target con�guration tables, such as [lib] ,
[[bin]] , [[test]] , [[bench]] , or [[example]] , can be used to add additional

targets that don't follow the standard directory layout.

The automatic target discovery can be disabled so that only manually con�gured
targets will be built. Setting the keys autobins , autoexamples , autotests , or
autobenches to false in the [package] section will disable auto-discovery of the

corresponding target type.

Disabling automatic discovery should only be needed for specialized situations. For
example, if you have a library where you want a module named bin , this would
present a problem because Cargo would usually attempt to compile anything in
the bin directory as an executable. Here is a sample layout of this scenario:

To prevent Cargo from inferring src/bin/mod.rs as an executable, set autobins
= false in Cargo.toml to disable auto-discovery:

harness = true

If set then a target can be configured to use a different edition than
the
`[package]` is configured to use, perhaps only compiling a library
with the
2018 edition or only compiling one unit test with the 2015 edition. By
default
all targets are compiled with the edition specified in `[package]`.
edition = '2015'

Here's an example of a TOML "array of tables" section, in this case
specifying
a binary target name and path.
[[bin]]
name = "my-cool-binary"
path = "src/my-cool-binary.rs"

├── Cargo.toml
└── src
 ├── lib.rs
 └── bin
 └── mod.rs

The Cargo Book https://doc.rust-lang.org/cargo/print.html

�� of ��� �/�/��, �:�� PM

Note: For packages with the 2015 edition, the default for auto-discovery is
false if at least one target is manually de�ned in Cargo.toml . Beginning

with the 2018 edition, the default is always true .

The required-features field (optional)

The required-features �eld speci�es which features the target needs in order to
be built. If any of the required features are not selected, the target will be skipped.
This is only relevant for the [[bin]] , [[bench]] , [[test]] , and [[example]]
sections, it has no e�ect on [lib] .

Building dynamic or static libraries

If your package produces a library, you can specify which kind of library to build by
explicitly listing the library in your Cargo.toml :

The available options are dylib , rlib , staticlib , cdylib , and proc-macro .

You can read more about the di�erent crate types in the Rust Reference Manual

[package]
…
autobins = false

[features]
...
postgres = []
sqlite = []
tools = []

[[bin]]
...
required-features = ["postgres", "tools"]

...

[lib]
name = "..."
crate-type = ["dylib"] # could be `staticlib` as well

The Cargo Book https://doc.rust-lang.org/cargo/print.html

�� of ��� �/�/��, �:�� PM

The [patch] Section

This section of Cargo.toml can be used to override dependencies with other copies.
The syntax is similar to the [dependencies] section:

The [patch] table is made of dependency-like sub-tables. Each key after [patch]
is a URL of the source that is being patched, or the name of a registry. The name
crates-io may be used to override the default registry crates.io. The �rst
[patch] in the example above demonstrates overriding crates.io, and the second
[patch] demonstrates overriding a git source.

Each entry in these tables is a normal dependency speci�cation, the same as found
in the [dependencies] section of the manifest. The dependencies listed in the
[patch] section are resolved and used to patch the source at the URL speci�ed.

The above manifest snippet patches the crates-io source (e.g. crates.io itself)
with the foo crate and bar crate. It also patches the https://github.com
/example/baz source with a my-branch that comes from elsewhere.

Sources can be patched with versions of crates that do not exist, and they can also
be patched with versions of crates that already exist. If a source is patched with a
crate version that already exists in the source, then the source's original crate is
replaced.

More information about overriding dependencies can be found in the overriding
dependencies section of the documentation and RFC 1969 for the technical
speci�cation of this feature.

Using [patch] with multiple versions

You can patch in multiple versions of the same crate with the package key used to
rename dependencies. For example let's say that the serde crate has a bug�x that
we'd like to use to its 1.* series but we'd also like to prototype using a 2.0.0 version
of serde we have in our git repository. To con�gure this we'd do:

[patch.crates-io]
foo = { git = 'https://github.com/example/foo' }
bar = { path = 'my/local/bar' }

[dependencies.baz]
git = 'https://github.com/example/baz'

[patch.'https://github.com/example/baz']
baz = { git = 'https://github.com/example/patched-baz', branch = 'my-
branch' }

The Cargo Book https://doc.rust-lang.org/cargo/print.html

�� of ��� �/�/��, �:�� PM

The �rst serde = ... directive indicates that serde 1.* should be used from the
git repository (pulling in the bug�x we need) and the second serde2 = ...
directive indicates that the serde package should also be pulled from the v2
branch of https://github.com/example/serde . We're assuming here that
Cargo.toml on that branch mentions version 2.0.0.

Note that when using the package key the serde2 identi�er here is actually
ignored. We simply need a unique name which doesn't con�ict with other patched
crates.

The [replace] Section

This section of Cargo.toml can be used to override dependencies with other copies.
The syntax is similar to the [dependencies] section:

Each key in the [replace] table is a package ID speci�cation, which allows
arbitrarily choosing a node in the dependency graph to override. The value of each
key is the same as the [dependencies] syntax for specifying dependencies, except
that you can't specify features. Note that when a crate is overridden the copy it's
overridden with must have both the same name and version, but it can come from
a di�erent source (e.g., git or a local path).

More information about overriding dependencies can be found in the overriding
dependencies section of the documentation.

Profiles

Pro�les provide a way to alter the compiler settings, in�uencing things like
optimizations and debugging symbols.

Cargo has 4 built-in pro�les: dev , release , test , and bench . It automatically

[patch.crates-io]
serde = { git = 'https://github.com/serde-rs/serde' }
serde2 = { git = 'https://github.com/example/serde', package = 'serde',
branch = 'v2' }

[replace]
"foo:0.1.0" = { git = 'https://github.com/example/foo' }
"bar:1.0.2" = { path = 'my/local/bar' }

The Cargo Book https://doc.rust-lang.org/cargo/print.html

�� of ��� �/�/��, �:�� PM

chooses the pro�le based on which command is being run, the package and target
that is being built, and command-line �ags like --release . The selection process is
described below.

Pro�le settings can be changed in Cargo.toml with the [profile] table. Within
each named pro�le, individual settings can be changed with key/value pairs like
this:

Cargo only looks at the pro�le settings in the Cargo.toml manifest at the root of
the workspace. Pro�le settings de�ned in dependencies will be ignored.

Profile settings

The following is a list of settings that can be controlled in a pro�le.

opt-level

The opt-level setting controls the -C opt-level �ag which controls the level of
optimization. Higher optimization levels may produce faster runtime code at the
expense of longer compiler times. Higher levels may also change and rearrange
the compiled code which may make it harder to use with a debugger.

The valid options are:

0 : no optimizations, also turns on cfg(debug_assertions) .
1 : basic optimizations
2 : some optimizations
3 : all optimizations
"s" : optimize for binary size
"z" : optimize for binary size, but also turn o� loop vectorization.

It is recommended to experiment with di�erent levels to �nd the right balance for
your project. There may be surprising results, such as level 3 being slower than 2 ,
or the "s" and "z" levels not being necessarily smaller. You may also want to
reevaluate your settings over time as newer versions of rustc changes
optimization behavior.

See also Pro�le Guided Optimization for more advanced optimization techniques.

[profile.dev]
opt-level = 1 # Use slightly better optimizations.
overflow-checks = false # Disable integer overflow checks.

The Cargo Book https://doc.rust-lang.org/cargo/print.html

�� of ��� �/�/��, �:�� PM

debug

The debug setting controls the -C debuginfo �ag which controls the amount of
debug information included in the compiled binary.

The valid options are:

0 or false : no debug info at all
1 : line tables only
2 or true : full debug info

debug-assertions

The debug-assertions setting controls the -C debug-assertions �ag which turns
cfg(debug_assertions) conditional compilation on or o�. Debug assertions are

intended to include runtime validation which is only available in
debug/development builds. These may be things that are too expensive or
otherwise undesirable in a release build. Debug assertions enables the
debug_assert! macro in the standard library.

The valid options are:

true : enabled
false : disabled

overflow-checks

The overflow-checks setting controls the -C overflow-checks �ag which
controls the behavior of runtime integer over�ow. When over�ow-checks are
enabled, a panic will occur on over�ow.

The valid options are:

true : enabled
false : disabled

lto

The lto setting controls the -C lto �ag which controls LLVM's link time
optimizations. LTO can produce better optimized code, using whole-program
analysis, at the cost of longer linking time.

The Cargo Book https://doc.rust-lang.org/cargo/print.html

�� of ��� �/�/��, �:�� PM

The valid options are:

false : Performs "thin local LTO" which performs "thin" LTO on the local
crate only across its codegen units. No LTO is performed if codegen units is 1
or opt-level is 0.
true or "fat" : Performs "fat" LTO which attempts to perform optimizations

across all crates within the dependency graph.
"thin" : Performs "thin" LTO. This is similar to "fat", but takes substantially

less time to run while still achieving performance gains similar to "fat".
"off" : Disables LTO.

See also the -C linker-plugin-lto rustc �ag for cross-language LTO.

panic

The panic setting controls the -C panic �ag which controls which panic strategy
to use.

The valid options are:

"unwind" : Unwind the stack upon panic.
"abort" : Terminate the process upon panic.

When set to "unwind" , the actual value depends on the default of the target
platform. For example, the NVPTX platform does not support unwinding, so it
always uses "abort" .

Tests, benchmarks, build scripts, and proc macros ignore the panic setting. The
rustc test harness currently requires unwind behavior. See the panic-abort-
tests unstable �ag which enables abort behavior.

Additionally, when using the abort strategy and building a test, all of the
dependencies will also be forced to built with the unwind strategy.

incremental

The incremental setting controls the -C incremental �ag which controls
whether or not incremental compilation is enabled. Incremental compilation
causes rustc to to save additional information to disk which will be reused when
recompiling the crate, improving re-compile times. The additional information is
stored in the target directory.

The valid options are:

The Cargo Book https://doc.rust-lang.org/cargo/print.html

�� of ��� �/�/��, �:�� PM

true : enabled
false : disabled

Incremental compilation is only used for workspace members and "path"
dependencies.

The incremental value can be overridden globally with the CARGO_INCREMENTAL
environment variable or the build.incremental con�g variable.

codegen-units

The codegen-units setting controls the -C codegen-units �ag which controls
how many "code generation units" a crate will be split into. More code generation
units allows more of a crate to be processed in parallel possibly reducing compile
time, but may produce slower code.

This option takes an integer greater than 0.

This option is ignored if incremental is enabled, in which case rustc uses an
internal heuristic to split the crate.

rpath

The rpath setting controlls the -C rpath �ag which controls whether or not
rpath is enabled.

Default profiles

dev

The dev pro�le is used for normal development and debugging. It is the default
for build commands like cargo build .

The default settings for the dev pro�le are:

The Cargo Book https://doc.rust-lang.org/cargo/print.html

�� of ��� �/�/��, �:�� PM

release

The release pro�le is intended for optimized artifacts used for releases and in
production. This pro�le is used when the --release �ag is used, and is the default
for cargo install .

The default settings for the release pro�le are:

test

The test pro�le is used for building tests, or when benchmarks are built in debug
mode with cargo build .

The default settings for the test pro�le are:

[profile.dev]
opt-level = 0
debug = true
debug-assertions = true
overflow-checks = true
lto = false
panic = 'unwind'
incremental = true
codegen-units = 16 # Note: ignored because `incremental` is enabled.
rpath = false

[profile.release]
opt-level = 3
debug = false
debug-assertions = false
overflow-checks = false
lto = false
panic = 'unwind'
incremental = false
codegen-units = 16
rpath = false

The Cargo Book https://doc.rust-lang.org/cargo/print.html

�� of ��� �/�/��, �:�� PM

bench

The bench pro�le is used for building benchmarks, or when tests are built with the
--release �ag.

The default settings for the bench pro�le are:

Profile selection

The pro�le used depends on the command, the package, the Cargo target, and
command-line �ags like --release .

Build commands like cargo build , cargo rustc , cargo check , and cargo run
default to using the dev pro�le. The --release �ag may be used to switch to the
release pro�le.

The cargo install command defaults to the release pro�le, and may use the
--debug �ag to switch to the dev pro�le.

Test targets are built with the test pro�le by default. The --release �ag switches
tests to the bench pro�le.

[profile.test]
opt-level = 0
debug = 2
debug-assertions = true
overflow-checks = true
lto = false
panic = 'unwind' # This setting is always ignored.
incremental = true
codegen-units = 16 # Note: ignored because `incremental` is enabled.
rpath = false

[profile.bench]
opt-level = 3
debug = false
debug-assertions = false
overflow-checks = false
lto = false
panic = 'unwind' # This setting is always ignored.
incremental = false
codegen-units = 16
rpath = false

The Cargo Book https://doc.rust-lang.org/cargo/print.html

�� of ��� �/�/��, �:�� PM

Bench targets are built with the bench pro�le by default. The cargo build
command can be used to build a bench target with the test pro�le to enable
debugging.

Note that when using the cargo test and cargo bench commands, the
test / bench pro�les only apply to the �nal test executable. Dependencies will

continue to use the dev / release pro�les. Also note that when a library is built for
unit tests, then the library is built with the test pro�le. However, when building
an integration test target, the library target is built with the dev pro�le and linked
into the integration test executable.

Overrides

Pro�le settings can be overridden for speci�c packages and build-time crates. To
override the settings for a speci�c package, use the package table to change the
settings for the named package:

The package name is actually a Package ID Spec, so you can target individual
versions of a package with syntax such as [profile.dev.package."foo:2.1.0"] .

To override the settings for all dependencies (but not any workspace member), use
the "*" package name:

To override the settings for build scripts, proc macros, and their dependencies, use
the build-override table:

Note: When a dependency is both a normal dependency and a build
dependency, Cargo will try to only build it once when --target is not
speci�ed. When using build-override , the dependency may need to be built

The `foo` package will use the -Copt-level=3 flag.
[profile.dev.package.foo]
opt-level = 3

Set the default for dependencies.
[profile.dev.package."*"]
opt-level = 2

Set the settings for build scripts and proc-macros.
[profile.dev.build-override]
opt-level = 3

The Cargo Book https://doc.rust-lang.org/cargo/print.html

�� of ��� �/�/��, �:�� PM

twice, once as a normal dependency and once with the overridden build
settings. This may increase initial build times.

The precedence for which value is used is done in the following order (�rst match
wins):

1. [profile.dev.package.name] — A named package.
2. [profile.dev.package."*"] — For any non-workspace member.
3. [profile.dev.build-override] — Only for build scripts, proc macros, and

their dependencies.
4. [profile.dev] — Settings in Cargo.toml .
5. Default values built-in to Cargo.

Overrides cannot specify the panic , lto , or rpath settings.

Overrides and generics

The location where generic code is instantiated will in�uence the optimization
settings used for that generic code. This can cause subtle interactions when using
pro�le overrides to change the optimization level of a speci�c crate. If you attempt
to raise the optimization level of a dependency which de�nes generic functions,
those generic functions may not be optimized when used in your local crate. This is
because the code may be generated in the crate where it is instantiated, and thus
may use the optimization settings of that crate.

For example, nalgebra is a library which de�nes vectors and matrices making
heavy use of generic parameters. If your local code de�nes concrete nalgebra
types like Vector4<f64> and uses their methods, the corresponding nalgebra code
will be instantiated and built within your crate. Thus, if you attempt to increase the
optimization level of nalgebra using a pro�le override, it may not result in faster
performance.

Further complicating the issue, rustc has some optimizations where it will
attempt to share monomorphized generics between crates. If the opt-level is 2 or
3, then a crate will not use monomorphized generics from other crates, nor will it
export locally de�ned monomorphized items to be shared with other crates. When
experimenting with optimizing dependencies for development, consider trying opt-
level 1, which will apply some optimizations while still allowing monomorphized
items to be shared.

The Cargo Book https://doc.rust-lang.org/cargo/print.html

�� of ��� �/�/��, �:�� PM

Configuration

This document explains how Cargo’s con�guration system works, as well as
available keys or con�guration. For con�guration of a package through its
manifest, see the manifest format.

Hierarchical structure

Cargo allows local con�guration for a particular package as well as global
con�guration. It looks for con�guration �les in the current directory and all parent
directories. If, for example, Cargo were invoked in /projects/foo/bar/baz , then
the following con�guration �les would be probed for and uni�ed in this order:

/projects/foo/bar/baz/.cargo/config

/projects/foo/bar/.cargo/config

/projects/foo/.cargo/config

/projects/.cargo/config

/.cargo/config

$CARGO_HOME/config which defaults to:
Windows: %USERPROFILE%\.cargo\config
Unix: $HOME/.cargo/config

With this structure, you can specify con�guration per-package, and even possibly
check it into version control. You can also specify personal defaults with a
con�guration �le in your home directory.

If a key is speci�ed in multiple con�g �les, the values will get merged together.
Numbers, strings, and booleans will use the value in the deeper con�g directory
taking precedence over ancestor directories, where the home directory is the
lowest priority. Arrays will be joined together.

Configuration format

Con�guration �les are written in the TOML format (like the manifest), with simple
key-value pairs inside of sections (tables). The following is a quick overview of all
settings, with detailed descriptions found below.

The Cargo Book https://doc.rust-lang.org/cargo/print.html

�� of ��� �/�/��, �:�� PM

paths = ["/path/to/override"] # path dependency overrides

[alias] # command aliases
b = "build"
c = "check"
t = "test"
r = "run"
rr = "run --release"
space_example = ["run", "--release", "--", "\"command list\""]

[build]
jobs = 1 # number of parallel jobs, defaults to # of
CPUs
rustc = "rustc" # the rust compiler tool
rustc-wrapper = "…" # run this wrapper instead of `rustc`
rustdoc = "rustdoc" # the doc generator tool
target = "triple" # build for the target triple (ignored by
`cargo install`)
target-dir = "target" # path of where to place all generated
artifacts
rustflags = ["…", "…"] # custom flags to pass to all compiler
invocations
rustdocflags = ["…", "…"] # custom flags to pass to rustdoc
incremental = true # whether or not to enable incremental
compilation
dep-info-basedir = "…" # path for the base directory for targets in
depfiles
pipelining = true # rustc pipelining

[cargo-new]
name = "Your Name" # name to use in `authors` field
email = "you@example.com" # email address to use in `authors` field
vcs = "none" # VCS to use ('git', 'hg', 'pijul', 'fossil',
'none')

[http]
debug = false # HTTP debugging
proxy = "host:port" # HTTP proxy in libcurl format
ssl-version = "tlsv1.3" # TLS version to use
ssl-version.max = "tlsv1.3" # maximum TLS version
ssl-version.min = "tlsv1.1" # minimum TLS version
timeout = 30 # timeout for each HTTP request, in seconds
low-speed-limit = 10 # network timeout threshold (bytes/sec)
cainfo = "cert.pem" # path to Certificate Authority (CA) bundle
check-revoke = true # check for SSL certificate revocation
multiplexing = true # HTTP/2 multiplexing
user-agent = "…" # the user-agent header

[install]
root = "/some/path" # `cargo install` destination directory

The Cargo Book https://doc.rust-lang.org/cargo/print.html

�� of ��� �/�/��, �:�� PM

[net]
retry = 2 # network retries
git-fetch-with-cli = true # use the `git` executable for git
operations
offline = false # do not access the network

[registries.<name>] # registries other than crates.io
index = "…" # URL of the registry index
token = "…" # authentication token for the registry

[registry]
default = "…" # name of the default registry
token = "…" # authentication token for crates.io

[source.<name>] # source definition and replacement
replace-with = "…" # replace this source with the given named source
directory = "…" # path to a directory source
registry = "…" # URL to a registry source
local-registry = "…" # path to a local registry source
git = "…" # URL of a git repository source
branch = "…" # branch name for the git repository
tag = "…" # tag name for the git repository
rev = "…" # revision for the git repository

[target.<triple>]
linker = "…" # linker to use
runner = "…" # wrapper to run executables
rustflags = ["…", "…"] # custom flags for `rustc`

[target.<cfg>]
runner = "…" # wrapper to run executables
rustflags = ["…", "…"] # custom flags for `rustc`

[target.<triple>.<links>] # `links` build script override
rustc-link-lib = ["foo"]
rustc-link-search = ["/path/to/foo"]
rustc-flags = ["-L", "/some/path"]
rustc-cfg = ['key="value"']
rustc-env = {key = "value"}
rustc-cdylib-link-arg = ["…"]
metadata_key1 = "value"
metadata_key2 = "value"

[term]
verbose = false # whether cargo provides verbose output
color = 'auto' # whether cargo colorizes output

The Cargo Book https://doc.rust-lang.org/cargo/print.html

�� of ��� �/�/��, �:�� PM

Environment variables

Cargo can also be con�gured through environment variables in addition to the
TOML con�guration �les. For each con�guration key of the form foo.bar the
environment variable CARGO_FOO_BAR can also be used to de�ne the value. Keys
are converted to uppercase, dots and dashes are converted to underscores. For
example the target.x86_64-unknown-linux-gnu.runner key can also be de�ned
by the CARGO_TARGET_X86_64_UNKNOWN_LINUX_GNU_RUNNER environment variable.

Environment variables will take precedence over TOML con�guration �les.
Currently only integer, boolean, string and some array values are supported to be
de�ned by environment variables. Descriptions below indicate which keys support
environment variables.

In addition to the system above, Cargo recognizes a few other speci�c environment
variables.

Config-relative paths

Paths in con�g �les may be absolute, relative, or a bare name without any path
separators. Paths for executables without a path separator will use the PATH
environment variable to search for the executable. Paths for non-executables will
be relative to where the con�g value is de�ned. For con�g �les, that is relative to
the parent directory of the .cargo directory where the value was de�ned. For
environment variables it is relative to the current working directory.

Credentials

Con�guration values with sensitive information are stored in the
$CARGO_HOME/credentials �le. This �le is automatically created and updated by

Relative path examples.

[target.x86_64-unknown-linux-gnu]
runner = "foo" # Searches `PATH` for `foo`.

[source.vendored-sources]
Directory is relative to the parent where `.cargo/config` is located.
For example, `/my/project/.cargo/config` would result in `/my/project
/vendor`.
directory = "vendor"

The Cargo Book https://doc.rust-lang.org/cargo/print.html

�� of ��� �/�/��, �:�� PM

cargo login . It follows the same format as Cargo con�g �les.

Tokens are used by some Cargo commands such as cargo publish for
authenticating with remote registries. Care should be taken to protect the tokens
and to keep them secret.

As with most other con�g values, tokens may be speci�ed with environment
variables. The token for crates.io may be speci�ed with the CARGO_REGISTRY_TOKEN
environment variable. Tokens for other registries may be speci�ed with
environment variables of the form CARGO_REGISTRIES_<name>_TOKEN where
<name> is the name of the registry in all capital letters.

Configuration keys

This section documents all con�guration keys. The description for keys with
variable parts are annotated with angled brackets like target.<triple> where the
<triple> part can be any target triple like target.x86_64-pc-windows-msvc .

paths

Type: array of strings (paths)
Default: none
Environment: not supported

An array of paths to local packages which are to be used as overrides for
dependencies. For more information see the Specifying Dependencies guide.

[alias]

Type: string or array of strings
Default: see below
Environment: CARGO_ALIAS_<name>

The [alias] table de�nes CLI command aliases. For example, running cargo b is
an alias for running cargo build . Each key in the table is the subcommand, and

[registry]
token = "…" # Access token for crates.io

[registries.<name>]
token = "…" # Access token for the named registry

The Cargo Book https://doc.rust-lang.org/cargo/print.html

�� of ��� �/�/��, �:�� PM

the value is the actual command to run. The value may be an array of strings,
where the �rst element is the command and the following are arguments. It may
also be a string, which will be split on spaces into subcommand and arguments.
The following aliases are built-in to Cargo:

Aliases are not allowed to rede�ne existing built-in commands.

[build]

The [build] table controls build-time operations and compiler settings.

build.jobs

Type: integer
Default: number of logical CPUs
Environment: CARGO_BUILD_JOBS

Sets the maximum number of compiler processes to run in parallel.

Can be overridden with the --jobs CLI option.

build.rustc

Type: string (program path)
Default: "rustc"
Environment: CARGO_BUILD_RUSTC or RUSTC

Sets the executable to use for rustc .

build.rustc-wrapper

Type: string (program path)
Default: none
Environment: CARGO_BUILD_RUSTC_WRAPPER or RUSTC_WRAPPER

Sets a wrapper to execute instead of rustc . The �rst argument passed to the
wrapper is the path to the actual rustc .

[alias]
b = "build"
c = "check"
t = "test"
r = "run"

The Cargo Book https://doc.rust-lang.org/cargo/print.html

�� of ��� �/�/��, �:�� PM

build.rustdoc

Type: string (program path)
Default: "rustdoc"
Environment: CARGO_BUILD_RUSTDOC or RUSTDOC

Sets the executable to use for rustdoc .

build.target

Type: string
Default: host platform
Environment: CARGO_BUILD_TARGET

The default target platform triple to compile to.

This may also be a relative path to a .json target spec �le.

Can be overridden with the --target CLI option.

build.target-dir

Type: string (path)
Default: "target"
Environment: CARGO_BUILD_TARGET_DIR or CARGO_TARGET_DIR

The path to where all compiler output is placed. The default if not speci�ed is a
directory named target located at the root of the workspace.

Can be overridden with the --target-dir CLI option.

build.rustflags

Type: string or array of strings
Default: none
Environment: CARGO_BUILD_RUSTFLAGS or RUSTFLAGS

Extra command-line �ags to pass to rustc . The value may be a array of strings or
a space-separated string.

There are three mutually exclusive sources of extra �ags. They are checked in
order, with the �rst one being used:

1. RUSTFLAGS environment variable.

The Cargo Book https://doc.rust-lang.org/cargo/print.html

�� of ��� �/�/��, �:�� PM

2. All matching target.<triple>.rustflags and target.<cfg>.rustflags
con�g entries joined together.

3. build.rustflags con�g value.

Additional �ags may also be passed with the cargo rustc command.

If the --target �ag (or build.target) is used, then the �ags will only be passed
to the compiler for the target. Things being built for the host, such as build scripts
or proc macros, will not receive the args. Without --target , the �ags will be
passed to all compiler invocations (including build scripts and proc macros)
because dependencies are shared. If you have args that you do not want to pass to
build scripts or proc macros and are building for the host, pass --target with the
host triple.

build.rustdocflags

Type: string or array of strings
Default: none
Environment: CARGO_BUILD_RUSTDOCFLAGS or RUSTDOCFLAGS

Extra command-line �ags to pass to rustdoc . The value may be a array of strings
or a space-separated string.

There are two mutually exclusive sources of extra �ags. They are checked in order,
with the �rst one being used:

1. RUSTDOCFLAGS environment variable.
2. build.rustdocflags con�g value.

Additional �ags may also be passed with the cargo rustdoc command.

build.incremental

Type: bool
Default: from pro�le
Environment: CARGO_BUILD_INCREMENTAL or CARGO_INCREMENTAL

Whether or not to perform incremental compilation. The default if not set is to use
the value from the pro�le. Otherwise this overrides the setting of all pro�les.

The CARGO_INCREMENTAL environment variable can be set to 1 to force enable
incremental compilation for all pro�les, or 0 to disable it. This env var overrides
the con�g setting.

The Cargo Book https://doc.rust-lang.org/cargo/print.html

�� of ��� �/�/��, �:�� PM

build.dep-info-basedir

Type: string (path)
Default: none
Environment: CARGO_BUILD_DEP_INFO_BASEDIR

Strips the given path pre�x from dep info �le paths.

Cargo saves a "dep info" �le with a .d su�x which is a Make�le-like syntax that
indicates all of the �le dependencies required to rebuild the artifact. These are
intended to be used with external build systems so that they can detect if Cargo
needs to be re-executed. The paths in the �le are absolute by default. This con�g
setting can be set to strip the given pre�x from all of the paths for tools that
require relative paths.

The setting itself is a con�g-relative path. So, for example, a value of "." would
strip all paths starting with the parent directory of the .cargo directory.

build.pipelining

Type: boolean
Default: true
Environment: CARGO_BUILD_PIPELINING

Controls whether or not build pipelining is used. This allows Cargo to schedule
overlapping invocations of rustc in parallel when possible.

[cargo-new]

The [cargo-new] table de�nes defaults for the cargo new command.

cargo-new.name

Type: string
Default: from environment
Environment: CARGO_NAME or CARGO_CARGO_NEW_NAME

De�nes the name to use in the authors �eld when creating a new Cargo.toml
�le. If not speci�ed in the con�g, Cargo searches the environment or your git
con�guration as described in the cargo new documentation.

cargo-new.email

The Cargo Book https://doc.rust-lang.org/cargo/print.html

�� of ��� �/�/��, �:�� PM

Type: string
Default: from environment
Environment: CARGO_EMAIL or CARGO_CARGO_NEW_EMAIL

De�nes the email address used in the authors �eld when creating a new
Cargo.toml �le. If not speci�ed in the con�g, Cargo searches the environment or

your git con�guration as described in the cargo new documentation. The email
value may be set to an empty string to prevent Cargo from placing an address in
the authors �eld.

cargo-new.vcs

Type: string
Default: "git" or "none"
Environment: CARGO_CARGO_NEW_VCS

Speci�es the source control system to use for initializing a new repository. Valid
values are git , hg (for Mercurial), pijul , fossil or none to disable this
behavior. Defaults to git , or none if already inside a VCS repository. Can be
overridden with the --vcs CLI option.

[http]

The [http] table de�nes settings for HTTP behavior. This includes fetching crate
dependencies and accessing remote git repositories.

http.debug

Type: boolean
Default: false
Environment: CARGO_HTTP_DEBUG

If true , enables debugging of HTTP requests. The debug information can be seen
by setting the CARGO_LOG=cargo::ops::registry=debug environment variable (or
use trace for even more information).

Be wary when posting logs from this output in a public location. The output may
include headers with authentication tokens which you don't want to leak! Be sure
to review logs before posting them.

http.proxy

The Cargo Book https://doc.rust-lang.org/cargo/print.html

�� of ��� �/�/��, �:�� PM

Type: string
Default: none
Environment: CARGO_HTTP_PROXY or HTTPS_PROXY or https_proxy or
http_proxy

Sets an HTTP and HTTPS proxy to use. The format is in libcurl format as in
[protocol://]host[:port] . If not set, Cargo will also check the http.proxy

setting in your global git con�guration. If none of those are set, the HTTPS_PROXY
or https_proxy environment variables set the proxy for HTTPS requests, and
http_proxy sets it for HTTP requests.

http.timeout

Type: integer
Default: 30
Environment: CARGO_HTTP_TIMEOUT or HTTP_TIMEOUT

Sets the timeout for each HTTP request, in seconds.

http.cainfo

Type: string (path)
Default: none
Environment: CARGO_HTTP_CAINFO

Path to a Certi�cate Authority (CA) bundle �le, used to verify TLS certi�cates. If not
speci�ed, Cargo attempts to use the system certi�cates.

http.check-revoke

Type: boolean
Default: true (Windows) false (all others)
Environment: CARGO_HTTP_CHECK_REVOKE

This determines whether or not TLS certi�cate revocation checks should be
performed. This only works on Windows.

http.ssl-version

Type: string or min/max table
Default: none
Environment: CARGO_HTTP_SSL_VERSION

The Cargo Book https://doc.rust-lang.org/cargo/print.html

�� of ��� �/�/��, �:�� PM

This sets the minimum TLS version to use. It takes a string, with one of the possible
values of "default", "tlsv1", "tlsv1.0", "tlsv1.1", "tlsv1.2", or "tlsv1.3".

This may alternatively take a table with two keys, min and max , which each take a
string value of the same kind that speci�es the minimum and maximum range of
TLS versions to use.

The default is a minimum version of "tlsv1.0" and a max of the newest version
supported on your platform, typically "tlsv1.3".

http.low-speed-limit

Type: integer
Default: 10
Environment: CARGO_HTTP_LOW_SPEED_LIMIT

This setting controls timeout behavior for slow connections. If the average transfer
speed in bytes per second is below the given value for http.timeout seconds
(default 30 seconds), then the connection is considered too slow and Cargo will
abort and retry.

http.multiplexing

Type: boolean
Default: true
Environment: CARGO_HTTP_MULTIPLEXING

When true , Cargo will attempt to use the HTTP2 protocol with multiplexing. This
allows multiple requests to use the same connection, usually improving
performance when fetching multiple �les. If false , Cargo will use HTTP 1.1
without pipelining.

http.user-agent

Type: string
Default: Cargo's version
Environment: CARGO_HTTP_USER_AGENT

Speci�es a custom user-agent header to use. The default if not speci�ed is a string
that includes Cargo's version.

[install]

The Cargo Book https://doc.rust-lang.org/cargo/print.html

�� of ��� �/�/��, �:�� PM

The [install] table de�nes defaults for the cargo install command.

install.root

Type: string (path)
Default: Cargo's home directory
Environment: CARGO_INSTALL_ROOT

Sets the path to the root directory for installing executables for cargo install .
Executables go into a bin directory underneath the root.

The default if not speci�ed is Cargo's home directory (default .cargo in your
home directory).

Can be overridden with the --root command-line option.

[net]

The [net] table controls networking con�guration.

net.retry

Type: integer
Default: 2
Environment: CARGO_NET_RETRY

Number of times to retry possibly spurious network errors.

net.git-fetch-with-cli

Type: boolean
Default: false
Environment: CARGO_NET_GIT_FETCH_WITH_CLI

If this is true , then Cargo will use the git executable to fetch registry indexes
and git dependencies. If false , then it uses a built-in git library.

Setting this to true can be helpful if you have special authentication requirements
that Cargo does not support.

net.offline

Type: boolean

The Cargo Book https://doc.rust-lang.org/cargo/print.html

�� of ��� �/�/��, �:�� PM

Default: false
Environment: CARGO_NET_OFFLINE

If this is true , then Cargo will avoid accessing the network, and attempt to
proceed with locally cached data. If false , Cargo will access the network as
needed, and generate an error if it encounters a network error.

Can be overridden with the --offline command-line option.

[registries]

The [registries] table is used for specifying additional registries. It consists of a
sub-table for each named registry.

registries.<name>.index

Type: string (url)
Default: none
Environment: CARGO_REGISTRIES_<name>_INDEX

Speci�es the URL of the git index for the registry.

registries.<name>.token

Type: string
Default: none
Environment: CARGO_REGISTRIES_<name>_TOKEN

Speci�es the authentication token for the given registry. This value should only
appear in the credentials �le. This is used for registry commands like cargo
publish that require authentication.

Can be overridden with the --token command-line option.

[registry]

The [registry] table controls the default registry used when one is not speci�ed.

registry.index

This value is deprecated and should not be used.

The Cargo Book https://doc.rust-lang.org/cargo/print.html

�� of ��� �/�/��, �:�� PM

registry.default

Type: string
Default: "crates-io"
Environment: CARGO_REGISTRY_DEFAULT

The name of the registry (from the registries table) to use by default for registry
commands like cargo publish .

Can be overridden with the --registry command-line option.

registry.token

Type: string
Default: none
Environment: CARGO_REGISTRY_TOKEN

Speci�es the authentication token for crates.io. This value should only appear in
the credentials �le. This is used for registry commands like cargo publish that
require authentication.

Can be overridden with the --token command-line option.

[source]

The [source] table de�nes the registry sources available. See Source
Replacement for more information. It consists of a sub-table for each named
source. A source should only de�ne one kind (directory, registry, local-registry, or
git).

source.<name>.replace-with

Type: string
Default: none
Environment: not supported

If set, replace this source with the given named source.

source.<name>.directory

Type: string (path)
Default: none
Environment: not supported

The Cargo Book https://doc.rust-lang.org/cargo/print.html

�� of ��� �/�/��, �:�� PM

Sets the path to a directory to use as a directory source.

source.<name>.registry

Type: string (url)
Default: none
Environment: not supported

Sets the URL to use for a registry source.

source.<name>.local-registry

Type: string (path)
Default: none
Environment: not supported

Sets the path to a directory to use as a local registry source.

source.<name>.git

Type: string (url)
Default: none
Environment: not supported

Sets the URL to use for a git repository source.

source.<name>.branch

Type: string
Default: none
Environment: not supported

Sets the branch name to use for a git repository.

If none of branch , tag , or rev is set, defaults to the master branch.

source.<name>.tag

Type: string
Default: none
Environment: not supported

Sets the tag name to use for a git repository.

The Cargo Book https://doc.rust-lang.org/cargo/print.html

�� of ��� �/�/��, �:�� PM

If none of branch , tag , or rev is set, defaults to the master branch.

source.<name>.rev

Type: string
Default: none
Environment: not supported

Sets the revision to use for a git repository.

If none of branch , tag , or rev is set, defaults to the master branch.

[target]

The [target] table is used for specifying settings for speci�c platform targets. It
consists of a sub-table which is either a platform triple or a cfg() expression. The
given values will be used if the target platform matches either the <triple> value
or the <cfg> expression.

cfg values come from those built-in to the compiler (run rustc --print=cfg to
view), values set by build scripts, and extra --cfg �ags passed to rustc (such as
those de�ned in RUSTFLAGS). Do not try to match on debug_assertions or Cargo
features like feature="foo" .

If using a target spec JSON �le, the <triple> value is the �lename stem. For
example --target foo/bar.json would match [target.bar] .

target.<triple>.ar

This option is deprecated and unused.

target.<triple>.linker

Type: string (program path)

[target.thumbv7m-none-eabi]
linker = "arm-none-eabi-gcc"
runner = "my-emulator"
rustflags = ["…", "…"]

[target.'cfg(all(target_arch = "arm", target_os = "none"))']
runner = "my-arm-wrapper"
rustflags = ["…", "…"]

The Cargo Book https://doc.rust-lang.org/cargo/print.html

�� of ��� �/�/��, �:�� PM

Default: none
Environment: CARGO_TARGET_<triple>_LINKER

Speci�es the linker which is passed to rustc (via -C linker) when the <triple>
is being compiled for. By default, the linker is not overridden.

target.<triple>.runner

Type: string or array of strings (program path and args)
Default: none
Environment: CARGO_TARGET_<triple>_RUNNER

If a runner is provided, executables for the target <triple> will be executed by
invoking the speci�ed runner with the actual executable passed as an argument.
This applies to cargo run , cargo test and cargo bench commands. By default,
compiled executables are executed directly.

The value may be an array of strings like ['/path/to/program', 'somearg'] or a
space-separated string like '/path/to/program somearg' . The arguments will be
passed to the runner with the executable to run as the last argument. If the runner
program does not have path separators, it will search PATH for the runner
executable.

target.<cfg>.runner

This is similar to the target runner, but using a cfg() expression. If both a
<triple> and <cfg> runner match, the <triple> will take precedence. It is an

error if more than one <cfg> runner matches the current target.

target.<triple>.rustflags

Type: string or array of strings
Default: none
Environment: CARGO_TARGET_<triple>_RUSTFLAGS

Passes a set of custom �ags to the compiler for this <triple> . The value may be a
array of strings or a space-separated string.

See build.rustflags for more details on the di�erent ways to speci�c extra �ags.

target.<cfg>.rustflags

This is similar to the target rust�ags, but using a cfg() expression. If several

The Cargo Book https://doc.rust-lang.org/cargo/print.html

�� of ��� �/�/��, �:�� PM

<cfg> and <triple> entries match the current target, the �ags are joined
together.

target.<triple>.<links>

The links sub-table provides a way to override a build script. When speci�ed, the
build script for the given links library will not be run, and the given values will be
used instead.

[term]

The [term] table controls terminal output and interaction.

term.verbose

Type: boolean
Default: false
Environment: CARGO_TERM_VERBOSE

Controls whether or not extra detailed messages are displayed by Cargo.

Specifying the --quiet �ag will override and disable verbose output. Specifying
the --verbose �ag will override and force verbose output.

term.color

Type: string
Default: "auto"
Environment: CARGO_TERM_COLOR

Controls whether or not colored output is used in the terminal. Possible values:

auto (default): Automatically detect if color support is available on the

[target.x86_64-unknown-linux-gnu.foo]
rustc-link-lib = ["foo"]
rustc-link-search = ["/path/to/foo"]
rustc-flags = "-L /some/path"
rustc-cfg = ['key="value"']
rustc-env = {key = "value"}
rustc-cdylib-link-arg = ["…"]
metadata_key1 = "value"
metadata_key2 = "value"

The Cargo Book https://doc.rust-lang.org/cargo/print.html

�� of ��� �/�/��, �:�� PM

terminal.
always : Always display colors.
never : Never display colors.

Can be overridden with the --color command-line option.

Environment Variables

Cargo sets and reads a number of environment variables which your code can
detect or override. Here is a list of the variables Cargo sets, organized by when it
interacts with them:

Environment variables Cargo reads

You can override these environment variables to change Cargo's behavior on your
system:

CARGO_HOME — Cargo maintains a local cache of the registry index and of git
checkouts of crates. By default these are stored under $HOME/.cargo
(%USERPROFILE%\.cargo on Windows), but this variable overrides the location
of this directory. Once a crate is cached it is not removed by the clean
command. For more details refer to the guide.
CARGO_TARGET_DIR — Location of where to place all generated artifacts,

relative to the current working directory. See build.target-dir to set via
con�g.
RUSTC — Instead of running rustc , Cargo will execute this speci�ed

compiler instead. See build.rustc to set via con�g.
RUSTC_WRAPPER — Instead of simply running rustc , Cargo will execute this

speci�ed wrapper instead, passing as its commandline arguments the rustc
invocation, with the �rst argument being rustc . Useful to set up a build
cache tool such as sccache . See build.rustc-wrapper to set via con�g.
RUSTDOC — Instead of running rustdoc , Cargo will execute this speci�ed
rustdoc instance instead. See build.rustdoc to set via con�g.
RUSTDOCFLAGS — A space-separated list of custom �ags to pass to all
rustdoc invocations that Cargo performs. In contrast with [cargo rustdoc],

this is useful for passing a �ag to all rustdoc instances. See
build.rustdocflags for some more ways to set �ags.
RUSTFLAGS — A space-separated list of custom �ags to pass to all compiler

invocations that Cargo performs. In contrast with cargo rustc , this is useful

The Cargo Book https://doc.rust-lang.org/cargo/print.html

�� of ��� �/�/��, �:�� PM

for passing a �ag to all compiler instances. See build.rustflags for some
more ways to set �ags.
CARGO_INCREMENTAL — If this is set to 1 then Cargo will force incremental

compilation to be enabled for the current compilation, and when set to 0 it
will force disabling it. If this env var isn't present then cargo's defaults will
otherwise be used. See also build.incremental con�g value.
CARGO_CACHE_RUSTC_INFO — If this is set to 0 then Cargo will not try to cache

compiler version information.
CARGO_NAME — The author name to use for cargo new .
CARGO_EMAIL — The author email to use for cargo new .
HTTPS_PROXY or https_proxy or http_proxy — The HTTP proxy to use, see
http.proxy for more detail.
HTTP_TIMEOUT — The HTTP timeout in seconds, see http.timeout for more

detail.
TERM — If this is set to dumb , it disables the progress bar.
BROWSER — The web browser to execute to open documentation with cargo
doc 's' --open �ag.

Configuration environment variables

Cargo reads environment variables for con�guration values. See the con�guration
chapter for more details. In summary, the supported environment variables are:

CARGO_ALIAS_<name> — Command aliases, see alias .
CARGO_BUILD_JOBS — Number of parallel jobs, see build.jobs .
CARGO_BUILD_RUSTC — The rustc executable, see build.rustc .
CARGO_BUILD_RUSTC_WRAPPER — The rustc wrapper, see build.rustc-
wrapper .
CARGO_BUILD_RUSTDOC — The rustdoc executable, see build.rustdoc .
CARGO_BUILD_TARGET — The default target platform, see build.target .
CARGO_BUILD_TARGET_DIR — The default output directory, see
build.target-dir .
CARGO_BUILD_RUSTFLAGS — Extra rustc �ags, see build.rustflags .
CARGO_BUILD_RUSTDOCFLAGS — Extra rustdoc �ags, see
build.rustdocflags .
CARGO_BUILD_INCREMENTAL — Incremental compilation, see
build.incremental .
CARGO_BUILD_DEP_INFO_BASEDIR — Dep-info relative directory, see
build.dep-info-basedir .
CARGO_BUILD_PIPELINING — Whether or not to use rustc pipelining, see
build.pipelining .

The Cargo Book https://doc.rust-lang.org/cargo/print.html

�� of ��� �/�/��, �:�� PM

CARGO_CARGO_NEW_NAME — The author name to use with cargo new , see
cargo-new.name .
CARGO_CARGO_NEW_EMAIL — The author email to use with cargo new , see
cargo-new.email .
CARGO_CARGO_NEW_VCS — The default source control system with cargo new ,

see cargo-new.vcs .
CARGO_HTTP_DEBUG — Enables HTTP debugging, see http.debug .
CARGO_HTTP_PROXY — Enables HTTP proxy, see http.proxy .
CARGO_HTTP_TIMEOUT — The HTTP timeout, see http.timeout .
CARGO_HTTP_CAINFO — The TLS certi�cate Certi�cate Authority �le, see
http.cainfo .
CARGO_HTTP_CHECK_REVOKE — Disables TLS certi�cate revocation checks, see
http.check-revoke .
CARGO_HTTP_SSL_VERSION — The TLS version to use, see http.ssl-version .
CARGO_HTTP_LOW_SPEED_LIMIT — The HTTP low-speed limit, see http.low-
speed-limit .
CARGO_HTTP_MULTIPLEXING — Whether HTTP/2 multiplexing is used, see
http.multiplexing .
CARGO_HTTP_USER_AGENT — The HTTP user-agent header, see http.user-
agent .
CARGO_INSTALL_ROOT — The default directory for cargo install , see
install.root .
CARGO_NET_RETRY — Number of times to retry network errors, see
net.retry .
CARGO_NET_GIT_FETCH_WITH_CLI — Enables the use of the git executable to

fetch, see net.git-fetch-with-cli .
CARGO_NET_OFFLINE — O�ine mode, see net.offline .
CARGO_REGISTRIES_<name>_INDEX — URL of a registry index, see
registries.<name>.index .
CARGO_REGISTRIES_<name>_TOKEN — Authentication token of a registry, see
registries.<name>.token .
CARGO_REGISTRY_DEFAULT — Default registry for the --registry �ag, see
registry.default .
CARGO_REGISTRY_TOKEN — Authentication token for crates.io, see
registry.token .
CARGO_TARGET_<triple>_LINKER — The linker to use, see target.
<triple>.linker .
CARGO_TARGET_<triple>_RUNNER — The executable runner, see target.
<triple>.runner .
CARGO_TARGET_<triple>_RUSTFLAGS — Extra rustc �ags for a target, see
target.<triple>.rustflags .

The Cargo Book https://doc.rust-lang.org/cargo/print.html

�� of ��� �/�/��, �:�� PM

CARGO_TERM_VERBOSE — The default terminal verbosity, see term.verbose .
CARGO_TERM_COLOR — The default color mode, see term.color .

Environment variables Cargo sets for crates

Cargo exposes these environment variables to your crate when it is compiled. Note
that this applies for running binaries with cargo run and cargo test as well. To
get the value of any of these variables in a Rust program, do this:

version will now contain the value of CARGO_PKG_VERSION .

CARGO - Path to the cargo binary performing the build.
CARGO_MANIFEST_DIR - The directory containing the manifest of your

package.
CARGO_PKG_VERSION - The full version of your package.
CARGO_PKG_VERSION_MAJOR - The major version of your package.
CARGO_PKG_VERSION_MINOR - The minor version of your package.
CARGO_PKG_VERSION_PATCH - The patch version of your package.
CARGO_PKG_VERSION_PRE - The pre-release version of your package.
CARGO_PKG_AUTHORS - Colon separated list of authors from the manifest of

your package.
CARGO_PKG_NAME - The name of your package.
CARGO_PKG_DESCRIPTION - The description from the manifest of your

package.
CARGO_PKG_HOMEPAGE - The home page from the manifest of your package.
CARGO_PKG_REPOSITORY - The repository from the manifest of your package.
OUT_DIR - If the package has a build script, this is set to the folder where the

build script should place its output. See below for more information. (Only set
during compilation.)

Dynamic library paths

Cargo also sets the dynamic library path when compiling and running binaries with
commands like cargo run and cargo test . This helps with locating shared
libraries that are part of the build process. The variable name depends on the
platform:

Windows: PATH

let version = env!("CARGO_PKG_VERSION");

The Cargo Book https://doc.rust-lang.org/cargo/print.html

�� of ��� �/�/��, �:�� PM

macOS: DYLD_FALLBACK_LIBRARY_PATH
Unix: LD_LIBRARY_PATH

The value is extended from the existing value when Cargo starts. macOS has
special consideration where if DYLD_FALLBACK_LIBRARY_PATH is not already set, it
will add the default $HOME/lib:/usr/local/lib:/usr/lib .

Cargo includes the following paths:

Search paths included from any build script with the rustc-link-search
instruction. Paths outside of the target directory are removed. It is the
responsibility of the user running Cargo to properly set the environment if
additional libraries on the system are needed in the search path.
The base output directory, such as target/debug , and the "deps" directory.
This is mostly for legacy support of rustc compiler plugins.
The rustc sysroot library path. This generally is not important to most users.

Environment variables Cargo sets for build scripts

Cargo sets several environment variables when build scripts are run. Because
these variables are not yet set when the build script is compiled, the above
example using env! won't work and instead you'll need to retrieve the values
when the build script is run:

out_dir will now contain the value of OUT_DIR .

CARGO - Path to the cargo binary performing the build.
CARGO_MANIFEST_DIR - The directory containing the manifest for the package

being built (the package containing the build script). Also note that this is the
value of the current working directory of the build script when it starts.
CARGO_MANIFEST_LINKS - the manifest links value.
CARGO_FEATURE_<name> - For each activated feature of the package being

built, this environment variable will be present where <name> is the name of
the feature uppercased and having - translated to _ .
CARGO_CFG_<cfg> - For each con�guration option of the package being built,

this environment variable will contain the value of the con�guration, where
<cfg> is the name of the con�guration uppercased and having - translated

to _ . Boolean con�gurations are present if they are set, and not present

use std::env;
let out_dir = env::var("OUT_DIR").unwrap();

The Cargo Book https://doc.rust-lang.org/cargo/print.html

�� of ��� �/�/��, �:�� PM

otherwise. Con�gurations with multiple values are joined to a single variable
with the values delimited by , . This includes values built-in to the compiler
(which can be seen with rustc --print=cfg) and values set by build scripts
and extra �ags passed to rustc (such as those de�ned in RUSTFLAGS). Some
examples of what these variables are:

CARGO_CFG_UNIX — Set on unix-like platforms.
CARGO_CFG_WINDOWS — Set on windows-like platforms.
CARGO_CFG_TARGET_FAMILY=unix — The target family, either unix or
windows .
CARGO_CFG_TARGET_OS=macos — The target operating system.
CARGO_CFG_TARGET_ARCH=x86_64 — The CPU target architecture.
CARGO_CFG_TARGET_VENDOR=apple — The target vendor.
CARGO_CFG_TARGET_ENV=gnu — The target environment ABI.
CARGO_CFG_TARGET_POINTER_WIDTH=64 — The CPU pointer width.
CARGO_CFG_TARGET_ENDIAN=little — The CPU target endianess.
CARGO_CFG_TARGET_FEATURE=mmx,sse — List of CPU target features

enabled.
OUT_DIR - the folder in which all output should be placed. This folder is inside

the build directory for the package being built, and it is unique for the
package in question.
TARGET - the target triple that is being compiled for. Native code should be

compiled for this triple. See the Target Triple description for more
information.
HOST - the host triple of the rust compiler.
NUM_JOBS - the parallelism speci�ed as the top-level parallelism. This can be

useful to pass a -j parameter to a system like make . Note that care should
be taken when interpreting this environment variable. For historical purposes
this is still provided but recent versions of Cargo, for example, do not need to
run make -j as it'll automatically happen. Cargo implements its own
jobserver and will allow build scripts to inherit this information, so programs
compatible with GNU make jobservers will already have appropriately
con�gured parallelism.
OPT_LEVEL , DEBUG - values of the corresponding variables for the pro�le

currently being built.
PROFILE - release for release builds, debug for other builds.
DEP_<name>_<key> - For more information about this set of environment

variables, see build script documentation about links .
RUSTC , RUSTDOC - the compiler and documentation generator that Cargo has

resolved to use, passed to the build script so it might use it as well.
RUSTC_LINKER - The path to the linker binary that Cargo has resolved to use

for the current target, if speci�ed. The linker can be changed by editing

The Cargo Book https://doc.rust-lang.org/cargo/print.html

�� of ��� �/�/��, �:�� PM

.cargo/config ; see the documentation about cargo con�guration for more
information.

Environment variables Cargo sets for 3rd party subcommands

Cargo exposes this environment variable to 3rd party subcommands (ie. programs
named cargo-foobar placed in $PATH):

CARGO - Path to the cargo binary performing the build.

Build Scripts

Some packages need to compile third-party non-Rust code, for example C libraries.
Other packages need to link to C libraries which can either be located on the
system or possibly need to be built from source. Others still need facilities for
functionality such as code generation before building (think parser generators).

Cargo does not aim to replace other tools that are well-optimized for these tasks,
but it does integrate with them with custom build scripts. Placing a �le named
build.rs in the root of a package will cause Cargo to compile that script and

execute it just before building the package.

Some example use cases of build scripts are:

Building a bundled C library.
Finding a C library on the host system.
Generating a Rust module from a speci�cation.
Performing any platform-speci�c con�guration needed for the crate.

The sections below describe how build scripts work, and the examples chapter

// Example custom build script.
fn main() {

// Tell Cargo that if the given file changes, to rerun this build
script.

println!("cargo:rerun-if-changed=src/hello.c");
// Use the `cc` crate to build a C file and statically link it.

 cc::Build::new()
 .file("src/hello.c")
 .compile("hello");
}

The Cargo Book https://doc.rust-lang.org/cargo/print.html

�� of ��� �/�/��, �:�� PM

shows a variety of examples on how to write scripts.

Note: The package.build manifest key can be used to change the name of
the build script, or disable it entirely.

Life Cycle of a Build Script

Just before a package is built, Cargo will compile a build script into an executable (if
it has not already been built). It will then run the script, which may perform any
number of tasks. The script may communicate with Cargo by printing specially
formated commands pre�xed with cargo: to stdout.

The build script will be rebuilt if any of its source �les or dependencies change.

By default, Cargo will re-run the build script if any of the �les in the package
changes. Typically it is best to use the rerun-if commands, described in the
change detection section below, to narrow the focus of what triggers a build script
to run again.

Once the build script successfully �nishes executing, the rest of the package will be
compiled. Scripts should exit with a non-zero exit code to halt the build if there is
an error, in which case the build script's output will be displayed on the terminal.

Inputs to the Build Script

When the build script is run, there are a number of inputs to the build script, all
passed in the form of environment variables.

In addition to environment variables, the build script’s current directory is the
source directory of the build script’s package.

Outputs of the Build Script

Build scripts may save any output �les in the directory speci�ed in the OUT_DIR
environment variable. Scripts should not modify any �les outside of that directory.

Build scripts communicate with Cargo by printing to stdout. Cargo will interpret
each line that starts with cargo: as an instruction that will in�uence compilation

The Cargo Book https://doc.rust-lang.org/cargo/print.html

�� of ��� �/�/��, �:�� PM

of the package. All other lines are ignored.

The output of the script is hidden from the terminal during normal compilation. If
you would like to see the output directly in your terminal, invoke Cargo as "very
verbose" with the -vv �ag. This only happens when the build script is run. If Cargo
determines nothing has changed, it will not re-run the script, see change detection
below for more.

All the lines printed to stdout by a build script are written to a �le like
target/debug/build/<pkg>/output (the precise location may depend on your

con�guration). The stderr output is also saved in that same directory.

The following is a summary of the instructions that Cargo recognizes, with each
one detailed below.

cargo:rerun-if-changed=PATH — Tells Cargo when to re-run the script.
cargo:rerun-if-env-changed=VAR — Tells Cargo when to re-run the script.
cargo:rustc-link-lib=[KIND=]NAME — Adds a library to link.
cargo:rustc-link-search=[KIND=]PATH — Adds to the library search path.
cargo:rustc-flags=FLAGS — Passes certain �ags to the compiler.
cargo:rustc-cfg=KEY[="VALUE"] — Enables compile-time cfg settings.
cargo:rustc-env=VAR=VALUE — Sets an environment variable.
cargo:rustc-cdylib-link-arg=FLAG — Passes custom �ags to a linker for

cdylib crates.
cargo:warning=MESSAGE — Displays a warning on the terminal.
cargo:KEY=VALUE — Metadata, used by links scripts.

cargo:rustc-link-lib=[KIND=]NAME

The rustc-link-lib instruction tells Cargo to link the given library using the
compiler's -l �ag. This is typically used to link a native library using FFI.

The -l �ag is only passed to the library target of the package, unless there is no
library target, in which case it is passed to all targets. This is done because all other
targets have an implicit dependency on the library target, and the given library to
link should only be included once. This means that if a package has both a library
and a binary target, the library has access to the symbols from the given lib, and
the binary should access them through the library target's public API.

The optional KIND may be one of dylib , static , or framework . See the rustc
book for more detail.

The Cargo Book https://doc.rust-lang.org/cargo/print.html

�� of ��� �/�/��, �:�� PM

cargo:rustc-link-search=[KIND=]PATH

The rustc-link-search instruction tells Cargo to pass the -L �ag to the compiler
to add a directory to the library search path.

The optional KIND may be one of dependency , crate , native , framework , or
all . See the rustc book for more detail.

These paths are also added to the dynamic library search path environment
variable if they are within the OUT_DIR . Depending on this behavior is discouraged
since this makes it di�cult to use the resulting binary. In general, it is best to avoid
creating dynamic libraries in a build script (using existing system libraries is �ne).

cargo:rustc-flags=FLAGS

The rustc-flags instruction tells Cargo to pass the given space-separated �ags to
the compiler. This only allows the -l and -L �ags, and is equivalent to using
rustc-link-lib and rustc-link-search .

cargo:rustc-cfg=KEY[="VALUE"]

The rustc-cfg instruction tells Cargo to pass the given value to the --cfg �ag to
the compiler. This may be used for compile-time detection of features to enable
conditional compilation.

Note that this does not a�ect Cargo's dependency resolution. This cannot be used
to enable an optional dependency, or enable other Cargo features.

Be aware that Cargo features use the form feature="foo" . cfg values passed
with this �ag are not restricted to that form, and may provide just a single
identi�er, or any arbitrary key/value pair. For example, emitting cargo:rustc-
cfg=abc will then allow code to use #[cfg(abc)] (note the lack of feature=). Or
an arbitrary key/value pair may be used with an = symbol like cargo:rustc-
cfg=my_component="foo" . The key should be a Rust identi�er, the value should be
a string.

cargo:rustc-env=VAR=VALUE

The rustc-env instruction tells Cargo to set the given environment variable when
compiling the package. The value can be then retrieved by the env! macro in the
compiled crate. This is useful for embedding additional metadata in crate's code,

The Cargo Book https://doc.rust-lang.org/cargo/print.html

�� of ��� �/�/��, �:�� PM

such as the hash of git HEAD or the unique identi�er of a continuous integration
server.

See also the environment variables automatically included by Cargo.

cargo:rustc-cdylib-link-arg=FLAG

The rustc-cdylib-link-arg instruction tells Cargo to pass the -C link-arg=FLAG
option to the compiler, but only when building a cdylib library target. Its usage is
highly platform speci�c. It is useful to set the shared library version or the runtime-
path.

cargo:warning=MESSAGE

The warning instruction tells Cargo to display a warning after the build script has
�nished running. Warnings are only shown for path dependencies (that is, those
you're working on locally), so for example warnings printed out in crates.io crates
are not emitted by default. The -vv "very verbose" �ag may be used to have Cargo
display warnings for all crates.

Build Dependencies

Build scripts are also allowed to have dependencies on other Cargo-based crates.
Dependencies are declared through the build-dependencies section of the
manifest.

The build script does not have access to the dependencies listed in the
dependencies or dev-dependencies section (they’re not built yet!). Also, build

dependencies are not available to the package itself unless also explicitly added in
the [dependencies] table.

It is recommended to carefully consider each dependency you add, weighing
against the impact on compile time, licensing, maintenance, etc. Cargo will attempt
to reuse a dependency if it is shared between build dependencies and normal
dependencies. However, this is not always possible, for example when cross-
compiling, so keep that in consideration of the impact on compile time.

[build-dependencies]
cc = "1.0.46"

The Cargo Book https://doc.rust-lang.org/cargo/print.html

�� of ��� �/�/��, �:�� PM

Change Detection

When rebuilding a package, Cargo does not necessarily know if the build script
needs to be run again. By default, it takes a conservative approach of always re-
running the build script if any �le within the package is changed. For most cases,
this is not a good choice, so it is recommended that every build script emit at least
one of the rerun-if instructions (described below). If these are emitted, then
Cargo will only re-run the script if the given value has changed.

cargo:rerun-if-changed=PATH

The rerun-if-changed instruction tells Cargo to re-run the build script if the �le at
the given path has changed. Currently, Cargo only uses the �lesystem last-modi�ed
"mtime" timestamp to determine if the �le has changed. It compares against an
internal cached timestamp of when the build script last ran.

If the path points to a directory, it does not automatically traverse the directory for
changes. Only the mtime change of the directory itself is considered (which
corresponds to some types of changes within the directory, depending on
platform). To request a re-run on any changes within an entire directory, print a
line for the directory and separate lines for everything inside it, recursively.

If the build script inherently does not need to re-run under any circumstance, then
emitting cargo:rerun-if-changed=build.rs is a simple way to prevent it from
being re-run. Cargo automatically handles whether or not the script itself needs to
be recompiled, and of course the script will be re-run after it has been recompiled.
Otherwise, specifying build.rs is redundant and unnecessary.

cargo:rerun-if-env-changed=NAME

The rerun-if-env-changed instruction tells Cargo to re-run the build script if the
value of an environment variable of the given name has changed.

Note that the environment variables here are intended for global environment
variables like CC and such, it is not necessary to use this for environment variables
like TARGET that Cargo sets.

The links Manifest Key

The package.links key may be set in the Cargo.toml manifest to declare that the

The Cargo Book https://doc.rust-lang.org/cargo/print.html

�� of ��� �/�/��, �:�� PM

package links with the given native library. The purpose of this manifest key is to
give Cargo an understanding about the set of native dependencies that a package
has, as well as providing a principled system of passing metadata between package
build scripts.

This manifest states that the package links to the libfoo native library. When
using the links key, the package must have a build script, and the build script
should use the rustc-link-lib instruction to link the library.

Primarily, Cargo requires that there is at most one package per links value. In
other words, it is forbidden to have two packages link to the same native library.
This helps prevent duplicate symbols between crates. Note, however, that there
are conventions in place to alleviate this.

As mentioned above in the output format, each build script can generate an
arbitrary set of metadata in the form of key-value pairs. This metadata is passed to
the build scripts of dependent packages. For example, if the package bar
depends on foo , then if foo generates key=value as part of its build script
metadata, then the build script of bar will have the environment variables
DEP_FOO_KEY=value . See the "Using another sys crate" for an example of how

this can be used.

Note that metadata is only passed to immediate dependents, not transitive
dependents.

*-sys Packages

Some Cargo packages that link to system libraries have a naming convention of
having a -sys su�x. Any package named foo-sys should provide two major
pieces of functionality:

The library crate should link to the native library libfoo . This will often
probe the current system for libfoo before resorting to building from
source.
The library crate should provide declarations for functions in libfoo , but
not bindings or higher-level abstractions.

The set of *-sys packages provides a common set of dependencies for linking to

[package]
...
links = "foo"

The Cargo Book https://doc.rust-lang.org/cargo/print.html

�� of ��� �/�/��, �:�� PM

native libraries. There are a number of bene�ts earned from having this
convention of native-library-related packages:

Common dependencies on foo-sys alleviates the rule about one package
per value of links .
Other -sys packages can take advantage of the DEP_NAME_KEY=value
environment variables to better integrate with other packages. See the "Using
another sys crate" example.
A common dependency allows centralizing logic on discovering libfoo itself
(or building it from source).
These dependencies are easily overridable.

It is common to have a companion package without the -sys su�x that provides
a safe, high-level abstractions on top of the sys package. For example, the git2
crate provides a high-level interface to the libgit2-sys crate.

Overriding Build Scripts

If a manifest contains a links key, then Cargo supports overriding the build script
speci�ed with a custom library. The purpose of this functionality is to prevent
running the build script in question altogether and instead supply the metadata
ahead of time.

To override a build script, place the following con�guration in any acceptable Cargo
con�guration location.

With this con�guration, if a package declares that it links to foo then the build
script will not be compiled or run, and the metadata speci�ed will be used instead.

The warning , rerun-if-changed , and rerun-if-env-changed keys should not be
used and will be ignored.

[target.x86_64-unknown-linux-gnu.foo]
rustc-link-lib = ["foo"]
rustc-link-search = ["/path/to/foo"]
rustc-flags = "-L /some/path"
rustc-cfg = ['key="value"']
rustc-env = {key = "value"}
rustc-cdylib-link-arg = ["…"]
metadata_key1 = "value"
metadata_key2 = "value"

The Cargo Book https://doc.rust-lang.org/cargo/print.html

�� of ��� �/�/��, �:�� PM

Jobserver

Cargo and rustc use the jobserver protocol, developed for GNU make, to
coordinate concurrency across processes. It is essentially a semaphore that
controls the number of jobs running concurrently. The concurrency may be set
with the --jobs �ag, which defaults to the number of logical CPUs.

Each build script inherits one job slot from Cargo, and should endeavor to only use
one CPU while it runs. If the script wants to use more CPUs in parallel, it should use
the jobserver crate to coordinate with Cargo.

As an example, the cc crate may enable the optional parallel feature which will
use the jobserver protocol to attempt to build multiple C �les at the same time.

Build Script Examples

The following sections illustrate some examples of writing build scripts.

Some common build script functionality can be found via crates on crates.io. Check
out the build-dependencies keyword to see what is available. The following is a
sample of some popular crates1:

bindgen — Automatically generate Rust FFI bindings to C libraries.
cc — Compiles C/C++/assembly.
pkg-config — Detect system libraries using the pkg-config utility.
cmake — Runs the cmake build tool to build a native library.
autocfg , rustc_version , version_check — These crates provide ways to

implement conditional compilation based on the current rustc such as the
version of the compiler.

1 This list is not an endorsement. Evaluate your dependencies to see which is right for
your project.

Code generation

Some Cargo packages need to have code generated just before they are compiled
for various reasons. Here we’ll walk through a simple example which generates a
library call as part of the build script.

The Cargo Book https://doc.rust-lang.org/cargo/print.html

�� of ��� �/�/��, �:�� PM

First, let’s take a look at the directory structure of this package:

Here we can see that we have a build.rs build script and our binary in main.rs .
This package has a basic manifest:

Let’s see what’s inside the build script:

There’s a couple of points of note here:

The script uses the OUT_DIR environment variable to discover where the
output �les should be located. It can use the process’ current working
directory to �nd where the input �les should be located, but in this case we
don’t have any input �les.
In general, build scripts should not modify any �les outside of OUT_DIR . It

.
├── Cargo.toml
├── build.rs
└── src
 └── main.rs

1 directory, 3 files

Cargo.toml

[package]
name = "hello-from-generated-code"
version = "0.1.0"

// build.rs

use std::env;
use std::fs;
use std::path::Path;

fn main() {
let out_dir = env::var_os("OUT_DIR").unwrap();
let dest_path = Path::new(&out_dir).join("hello.rs");

 fs::write(
 &dest_path,

"pub fn message() -> &'static str {
 \"Hello, World!\"
 }
 "
).unwrap();

println!("cargo:rerun-if-changed=build.rs");
}

The Cargo Book https://doc.rust-lang.org/cargo/print.html

�� of ��� �/�/��, �:�� PM

may seem �ne on the �rst blush, but it does cause problems when you use
such crate as a dependency, because there's an implicit invariant that sources
in .cargo/registry should be immutable. cargo won't allow such scripts
when packaging.
This script is relatively simple as it just writes out a small generated �le. One
could imagine that other more fanciful operations could take place such as
generating a Rust module from a C header �le or another language de�nition,
for example.
The rerun-if-changed instruction tells Cargo that the build script only needs
to re-run if the build script itself changes. Without this line, Cargo will
automatically run the build script if any �le in the package changes. If your
code generation uses some input �les, this is where you would print a list of
each of those �les.

Next, let’s peek at the library itself:

This is where the real magic happens. The library is using the rustc-de�ned
include! macro in combination with the concat! and env! macros to include

the generated �le (hello.rs) into the crate’s compilation.

Using the structure shown here, crates can include any number of generated �les
from the build script itself.

Building a native library

Sometimes it’s necessary to build some native C or C++ code as part of a package.
This is another excellent use case of leveraging the build script to build a native
library before the Rust crate itself. As an example, we’ll create a Rust library which
calls into C to print “Hello, World!”.

Like above, let’s �rst take a look at the package layout:

// src/main.rs

include!(concat!(env!("OUT_DIR"), "/hello.rs"));

fn main() {
println!("{}", message());

}

The Cargo Book https://doc.rust-lang.org/cargo/print.html

�� of ��� �/�/��, �:�� PM

Pretty similar to before! Next, the manifest:

For now we’re not going to use any build dependencies, so let’s take a look at the
build script now:

This build script starts out by compiling our C �le into an object �le (by invoking
gcc) and then converting this object �le into a static library (by invoking ar). The

.
├── Cargo.toml
├── build.rs
└── src
 ├── hello.c
 └── main.rs

1 directory, 4 files

Cargo.toml

[package]
name = "hello-world-from-c"
version = "0.1.0"
edition = "2018"

// build.rs

use std::process::Command;
use std::env;
use std::path::Path;

fn main() {
let out_dir = env::var("OUT_DIR").unwrap();

// Note that there are a number of downsides to this approach, the
comments

// below detail how to improve the portability of these commands.
 Command::new("gcc").args(&["src/hello.c", "-c", "-fPIC", "-o"])
 .arg(&format!("{}/hello.o", out_dir))
 .status().unwrap();
 Command::new("ar").args(&["crus", "libhello.a", "hello.o"])
 .current_dir(&Path::new(&out_dir))
 .status().unwrap();

println!("cargo:rustc-link-search=native={}", out_dir);
println!("cargo:rustc-link-lib=static=hello");
println!("cargo:rerun-if-changed=src/hello.c");

}

The Cargo Book https://doc.rust-lang.org/cargo/print.html

�� of ��� �/�/��, �:�� PM

�nal step is feedback to Cargo itself to say that our output was in out_dir and the
compiler should link the crate to libhello.a statically via the -l static=hello
�ag.

Note that there are a number of drawbacks to this hard-coded approach:

The gcc command itself is not portable across platforms. For example it’s
unlikely that Windows platforms have gcc , and not even all Unix platforms
may have gcc . The ar command is also in a similar situation.
These commands do not take cross-compilation into account. If we’re cross
compiling for a platform such as Android it’s unlikely that gcc will produce
an ARM executable.

Not to fear, though, this is where a build-dependencies entry would help! The
Cargo ecosystem has a number of packages to make this sort of task much easier,
portable, and standardized. Let's try the cc crate from crates.io. First, add it to the
build-dependencies in Cargo.toml :

And rewrite the build script to use this crate:

The cc crate abstracts a range of build script requirements for C code:

It invokes the appropriate compiler (MSVC for windows, gcc for MinGW, cc
for Unix platforms, etc.).
It takes the TARGET variable into account by passing appropriate �ags to the
compiler being used.
Other environment variables, such as OPT_LEVEL , DEBUG , etc., are all handled
automatically.
The stdout output and OUT_DIR locations are also handled by the cc library.

Here we can start to see some of the major bene�ts of farming as much
functionality as possible out to common build dependencies rather than

[build-dependencies]
cc = "1.0"

// build.rs

fn main() {
 cc::Build::new()
 .file("src/hello.c")
 .compile("hello");

println!("cargo:rerun-if-changed=src/hello.c");
}

The Cargo Book https://doc.rust-lang.org/cargo/print.html

�� of ��� �/�/��, �:�� PM

duplicating logic across all build scripts!

Back to the case study though, let’s take a quick look at the contents of the src
directory:

And there we go! This should complete our example of building some C code from
a Cargo package using the build script itself. This also shows why using a build
dependency can be crucial in many situations and even much more concise!

We’ve also seen a brief example of how a build script can use a crate as a
dependency purely for the build process and not for the crate itself at runtime.

Linking to system libraries

This example demonstrates how to link a system library and how the build script is
used to support this use case.

Quite frequently a Rust crate wants to link to a native library provided on the
system to bind its functionality or just use it as part of an implementation detail.
This is quite a nuanced problem when it comes to performing this in a platform-
agnostic fashion. It is best, if possible, to farm out as much of this as possible to
make this as easy as possible for consumers.

// src/hello.c

#include <stdio.h>

void hello() {
printf("Hello, World!\n");

}

// src/main.rs

// Note the lack of the `#[link]` attribute. We’re delegating the
responsibility
// of selecting what to link over to the build script rather than hard-
coding
// it in the source file.
extern { fn hello(); }

fn main() {
unsafe { hello(); }

}

The Cargo Book https://doc.rust-lang.org/cargo/print.html

�� of ��� �/�/��, �:�� PM

For this example, we will be creating a binding to the system's zlib library. This is a
library that is commonly found on most Unix-like systems that provides data
compression. This is already wrapped up in the libz-sys crate, but for this
example, we'll do an extremely simpli�ed version. Check out the source code for
the full example.

To make it easy to �nd the location of the library, we will use the pkg-config
crate. This crate uses the system's pkg-config utility to discover information
about a library. It will automatically tell Cargo what is needed to link the library.
This will likely only work on Unix-like systems with pkg-config installed. Let's start
by setting up the manifest:

Take note that we included the links key in the package table. This tells Cargo
that we are linking to the libz library. See "Using another sys crate" for an
example that will leverage this.

The build script is fairly simple:

Let's round out the example with a basic FFI binding:

Cargo.toml

[package]
name = "libz-sys"
version = "0.1.0"
edition = "2018"
links = "z"

[build-dependencies]
pkg-config = "0.3.16"

// build.rs

fn main() {
 pkg_config::Config::new().probe("zlib").unwrap();

println!("cargo:rerun-if-changed=build.rs");
}

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

Run cargo build -vv to see the output from the build script. On a system with
libz already installed, it may look something like this:

Nice! pkg-config did all the work of �nding the library and telling Cargo where it
is.

It is not unusual for packages to include the source for the library, and build it
statically if it is not found on the system, or if a feature or environment variable is
set. For example, the real libz-sys crate checks the environment variable
LIBZ_SYS_STATIC or the static feature to build it from source instead of using

the system library. Check out the source for a more complete example.

Using another sys crate

When using the links key, crates may set metadata that can be read by other
crates that depend on it. This provides a mechanism to communicate information
between crates. In this example, we'll be creating a C library that makes use of zlib
from the real libz-sys crate.

If you have a C library that depends on zlib, you can leverage the libz-sys crate
to automatically �nd it or build it. This is great for cross-platform support, such as
Windows where zlib is not usually installed. libz-sys sets the include metadata
to tell other packages where to �nd the header �les for zlib. Our build script can
read that metadata with the DEP_Z_INCLUDE environment variable. Here's an

// src/lib.rs

use std::os::raw::{c_uint, c_ulong};

extern "C" {
pub fn crc32(crc: c_ulong, buf: *const u8, len: c_uint) -> c_ulong;

}

#[test]
fn test_crc32() {

let s = "hello";
unsafe {

assert_eq!(crc32(0, s.as_ptr(), s.len() as c_uint), 0x3610a686);
 }
}

[libz-sys 0.1.0] cargo:rustc-link-search=native=/usr/lib
[libz-sys 0.1.0] cargo:rustc-link-lib=z
[libz-sys 0.1.0] cargo:rerun-if-changed=build.rs

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

example:

Here we have included libz-sys which will ensure that there is only one libz
used in the �nal library, and give us access to it from our build script:

With libz-sys doing all the heavy lifting, the C source code may now include the
zlib header, and it should �nd the header, even on systems where it isn't already
installed.

Conditional compilation

A build script may emit rustc-cfg instructions which can enable conditions that
can be checked at compile time. In this example, we'll take a look at how the
openssl crate uses this to support multiple versions of the OpenSSL library.

Cargo.toml

[package]
name = "zuser"
version = "0.1.0"
edition = "2018"

[dependencies]
libz-sys = "1.0.25"

[build-dependencies]
cc = "1.0.46"

// build.rs

fn main() {
let mut cfg = cc::Build::new();

 cfg.file("src/zuser.c");
if let Some(include) = std::env::var_os("DEP_Z_INCLUDE") {

 cfg.include(include);
 }
 cfg.compile("zuser");

println!("cargo:rerun-if-changed=src/zuser.c");
}

// src/zuser.c

#include "zlib.h"

// … rest of code that makes use of zlib.

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

The openssl-sys crate implements building and linking the OpenSSL library. It
supports multiple di�erent implementations (like LibreSSL) and multiple versions.
It makes use of the links key so that it may pass information to other build
scripts. One of the things it passes is the version_number key, which is the version
of OpenSSL that was detected. The code in the build script looks something like
this:

This instruction causes the DEP_OPENSSL_VERSION_NUMBER environment variable to
be set in any crates that directly depend on openssl-sys .

The openssl crate, which provides the higher-level interface, speci�es openssl-
sys as a dependency. The openssl build script can read the version information
generated by the openssl-sys build script with the DEP_OPENSSL_VERSION_NUMBER
environment variable. It uses this to generate some cfg values:

These cfg values can then be used with the cfg attribute or the cfg macro to
conditionally include code. For example, SHA3 support was added in OpenSSL
1.1.1, so it is conditionally excluded for older versions:

println!("cargo:version_number={:x}", openssl_version);

// (portion of build.rs)

if let Ok(version) = env::var("DEP_OPENSSL_VERSION_NUMBER") {
let version = u64::from_str_radix(&version, 16).unwrap();

if version >= 0x1_00_01_00_0 {
println!("cargo:rustc-cfg=ossl101");

 }
if version >= 0x1_00_02_00_0 {

println!("cargo:rustc-cfg=ossl102");
 }

if version >= 0x1_01_00_00_0 {
println!("cargo:rustc-cfg=ossl110");

 }
if version >= 0x1_01_00_07_0 {

println!("cargo:rustc-cfg=ossl110g");
 }

if version >= 0x1_01_01_00_0 {
println!("cargo:rustc-cfg=ossl111");

 }
}

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

Of course, one should be careful when using this, since it makes the resulting
binary even more dependent on the build environment. In this example, if the
binary is distributed to another system, it may not have the exact same shared
libraries, which could cause problems.

Publishing on crates.io

Once you've got a library that you'd like to share with the world, it's time to publish
it on crates.io! Publishing a crate is when a speci�c version is uploaded to be
hosted on crates.io.

Take care when publishing a crate, because a publish is permanent. The version
can never be overwritten, and the code cannot be deleted. There is no limit to the
number of versions which can be published, however.

Before your first publish

First thing’s �rst, you’ll need an account on crates.io to acquire an API token. To do
so, visit the home page and log in via a GitHub account (required for now). After
this, visit your Account Settings page and run the cargo login command
speci�ed.

This command will inform Cargo of your API token and store it locally in your
~/.cargo/credentials . Note that this token is a secret and should not be shared

with anyone else. If it leaks for any reason, you should regenerate it immediately.

Before publishing a new crate

Keep in mind that crate names on crates.io are allocated on a �rst-come-�rst-

// (portion of openssl crate)

#[cfg(ossl111)]
pub fn sha3_224() -> MessageDigest {

unsafe { MessageDigest(ffi::EVP_sha3_224()) }
}

$ cargo login abcdefghijklmnopqrstuvwxyz012345

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

serve basis. Once a crate name is taken, it cannot be used for another crate.

Check out the metadata you can specify in Cargo.toml to ensure your crate can
be discovered more easily! Before publishing, make sure you have �lled out the
following �elds:

authors

license or license-file
description

homepage

documentation

repository

It would also be a good idea to include some keywords and categories , though
they are not required.

If you are publishing a library, you may also want to consult the Rust API
Guidelines.

Packaging a crate

The next step is to package up your crate and upload it to crates.io. For this we’ll
use the cargo publish subcommand. This command performs the following
steps:

1. Perform some veri�cation checks on your package.
2. Compress your source code into a .crate �le.
3. Extract the .crate �le into a temporary directory and verify that it compiles.
4. Upload the .crate �le to crates.io.
5. The registry will perform some additional checks on the uploaded package

before adding it.

It is recommended that you �rst run cargo publish --dry-run (or cargo
package which is equivalent) to ensure there aren't any warnings or errors before
publishing. This will perform the �rst three steps listed above.

You can inspect the generated .crate �le in the target/package directory.
crates.io currently has a 10MB size limit on the .crate �le. You may want to check
the size of the .crate �le to ensure you didn't accidentally package up large
assets that are not required to build your package, such as test data, website
documentation, or code generation. You can check which �les are included with

$ cargo publish --dry-run

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

the following command:

Cargo will automatically ignore �les ignored by your version control system when
packaging, but if you want to specify an extra set of �les to ignore you can use the
exclude key in the manifest:

If you’d rather explicitly list the �les to include, Cargo also supports an include
key, which if set, overrides the exclude key:

Uploading the crate

When you are ready to publish, use the cargo publish command to upload to
crates.io:

And that’s it, you’ve now published your �rst crate!

Publishing a new version of an existing crate

In order to release a new version, change the version value speci�ed in your
Cargo.toml manifest. Keep in mind the semver rules, and consult RFC 1105 for

what constitutes a semver-breaking change. Then run cargo publish as
described above to upload the new version.

$ cargo package --list

[package]
...
exclude = [
 "public/assets/*",
 "videos/*",
]

[package]
...
include = [
 "**/*.rs",
 "Cargo.toml",
]

$ cargo publish

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

Managing a crates.io-based crate

Management of crates is primarily done through the command line cargo tool
rather than the crates.io web interface. For this, there are a few subcommands to
manage a crate.

cargo yank

Occasions may arise where you publish a version of a crate that actually ends up
being broken for one reason or another (syntax error, forgot to include a �le, etc.).
For situations such as this, Cargo supports a “yank” of a version of a crate.

A yank does not delete any code. This feature is not intended for deleting
accidentally uploaded secrets, for example. If that happens, you must reset those
secrets immediately.

The semantics of a yanked version are that no new dependencies can be created
against that version, but all existing dependencies continue to work. One of the
major goals of crates.io is to act as a permanent archive of crates that does not
change over time, and allowing deletion of a version would go against this goal.
Essentially a yank means that all packages with a Cargo.lock will not break, while
any future Cargo.lock �les generated will not list the yanked version.

cargo owner

A crate is often developed by more than one person, or the primary maintainer
may change over time! The owner of a crate is the only person allowed to publish
new versions of the crate, but an owner may designate additional owners.

The owner IDs given to these commands must be GitHub user names or GitHub
teams.

If a user name is given to --add , that user is invited as a “named” owner, with full
rights to the crate. In addition to being able to publish or yank versions of the

$ cargo yank --vers 1.0.1
$ cargo yank --vers 1.0.1 --undo

$ cargo owner --add github-handle
$ cargo owner --remove github-handle
$ cargo owner --add github:rust-lang:owners
$ cargo owner --remove github:rust-lang:owners

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

crate, they have the ability to add or remove owners, including the owner that
made them an owner. Needless to say, you shouldn’t make people you don’t fully
trust into a named owner. In order to become a named owner, a user must have
logged into crates.io previously.

If a team name is given to --add , that team is invited as a “team” owner, with
restricted right to the crate. While they have permission to publish or yank versions
of the crate, they do not have the ability to add or remove owners. In addition to
being more convenient for managing groups of owners, teams are just a bit more
secure against owners becoming malicious.

The syntax for teams is currently github:org:team (see examples above). In order
to invite a team as an owner one must be a member of that team. No such
restriction applies to removing a team as an owner.

GitHub permissions

Team membership is not something GitHub provides simple public access to, and
it is likely for you to encounter the following message when working with them:

It looks like you don’t have permission to query a necessary property from
GitHub to complete this request. You may need to re-authenticate on
crates.io to grant permission to read GitHub org memberships. Just go to
https://crates.io/login.

This is basically a catch-all for “you tried to query a team, and one of the �ve levels
of membership access control denied this”. That is not an exaggeration. GitHub’s
support for team access control is Enterprise Grade.

The most likely cause of this is simply that you last logged in before this feature
was added. We originally requested no permissions from GitHub when
authenticating users, because we didn’t actually ever use the user’s token for
anything other than logging them in. However to query team membership on your
behalf, we now require the read:org scope.

You are free to deny us this scope, and everything that worked before teams were
introduced will keep working. However you will never be able to add a team as an
owner, or publish a crate as a team owner. If you ever attempt to do this, you will
get the error above. You may also see this error if you ever try to publish a crate
that you don’t own at all, but otherwise happens to have a team.

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

If you ever change your mind, or just aren’t sure if crates.io has su�cient
permission, you can always go to https://crates.io/login, which will prompt you for
permission if crates.io doesn’t have all the scopes it would like to.

An additional barrier to querying GitHub is that the organization may be actively
denying third party access. To check this, you can go to:

where :org is the name of the organization (e.g., rust-lang). You may see
something like:

Where you may choose to explicitly remove crates.io from your organization’s
blacklist, or simply press the “Remove Restrictions” button to allow all third party
applications to access this data.

Alternatively, when crates.io requested the read:org scope, you could have
explicitly whitelisted crates.io querying the org in question by pressing the “Grant
Access” button next to its name:

https://github.com/organizations/:org/settings/oauth_application_policy

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

Package ID Specifications

Package ID specifications

Subcommands of Cargo frequently need to refer to a particular package within a
dependency graph for various operations like updating, cleaning, building, etc. To
solve this problem, Cargo supports Package ID Speci�cations. A speci�cation is a
string which is used to uniquely refer to one package within a graph of packages.

Specification grammar

The formal grammar for a Package Id Speci�cation is:

Here, brackets indicate that the contents are optional.

pkgid := pkgname
 | [proto "://"] hostname-and-path ["#" (pkgname | semver)]
pkgname := name [":" semver]

proto := "http" | "git" | ...

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

Example specifications

These could all be references to a package foo version 1.2.3 from the registry at
crates.io

pkgid name version url

foo foo * *

foo:1.2.3 foo 1.2.3 *

crates.io/foo foo * *://crates.io/foo

crates.io/foo#1.2.3 foo 1.2.3 *://crates.io/foo

crates.io/bar#foo:1.2.3 foo 1.2.3 *://crates.io/bar

https://crates.io

/foo#1.2.3
foo 1.2.3 https://crates.io/foo

Brevity of specifications

The goal of this is to enable both succinct and exhaustive syntaxes for referring to
packages in a dependency graph. Ambiguous references may refer to one or more
packages. Most commands generate an error if more than one package could be
referred to with the same speci�cation.

Source Replacement

This document is about replacing the crate index. You can read about overriding
dependencies in the overriding dependencies section of this documentation.

A source is a provider that contains crates that may be included as dependencies
for a package. Cargo supports the ability to replace one source with another to
express strategies such as:

Vendoring - custom sources can be de�ned which represent crates on the
local �lesystem. These sources are subsets of the source that they're
replacing and can be checked into packages if necessary.
Mirroring - sources can be replaced with an equivalent version which acts as
a cache for crates.io itself.

Cargo has a core assumption about source replacement that the source code is
exactly the same from both sources. Note that this also means that a replacement

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

source is not allowed to have crates which are not present in the original source.

As a consequence, source replacement is not appropriate for situations such as
patching a dependency or a private registry. Cargo supports patching
dependencies through the usage of the [replace] key, and private registry
support is described in Registries.

Configuration

Con�guration of replacement sources is done through .cargo/config and the full
set of available keys are:

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

Registry Sources

A "registry source" is one that is the same as crates.io itself. That is, it has an index
served in a git repository which matches the format of the crates.io index. That
repository then has con�guration indicating where to download crates from.

Currently there is not an already-available project for setting up a mirror of

The `source` table is where all keys related to source-replacement
are stored.
[source]

Under the `source` table are a number of other tables whose keys are a
name for the relevant source. For example this section defines a new
source, called `my-vendor-source`, which comes from a directory
located at `vendor` relative to the directory containing this
`.cargo/config`
file
[source.my-vendor-source]
directory = "vendor"

The crates.io default source for crates is available under the name
"crates-io", and here we use the `replace-with` key to indicate that
it's
replaced with our source above.
[source.crates-io]
replace-with = "my-vendor-source"

Each source has its own table where the key is the name of the source
[source.the-source-name]

Indicate that `the-source-name` will be replaced with `another-
source`,
defined elsewhere
replace-with = "another-source"

Several kinds of sources can be specified (described in more detail
below):
registry = "https://example.com/path/to/index"
local-registry = "path/to/registry"
directory = "path/to/vendor"

Git sources can optionally specify a branch/tag/rev as well
git = "https://example.com/path/to/repo"
branch = "master"
tag = "v1.0.1"
rev = "313f44e8"

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

crates.io. Stay tuned though!

Local Registry Sources

A "local registry source" is intended to be a subset of another registry source, but
available on the local �lesystem (aka vendoring). Local registries are downloaded
ahead of time, typically sync'd with a Cargo.lock , and are made up of a set of
*.crate �les and an index like the normal registry is.

The primary way to manage and create local registry sources is through the
cargo-local-registry subcommand, available on crates.io and can be installed

with cargo install cargo-local-registry .

Local registries are contained within one directory and contain a number of
*.crate �les downloaded from crates.io as well as an index directory with the

same format as the crates.io-index project (populated with just entries for the
crates that are present).

Directory Sources

A "directory source" is similar to a local registry source where it contains a number
of crates available on the local �lesystem, suitable for vendoring dependencies.
Directory sources are primarily managed the cargo vendor subcommand.

Directory sources are distinct from local registries though in that they contain the
unpacked version of *.crate �les, making it more suitable in some situations to
check everything into source control. A directory source is just a directory
containing a number of other directories which contain the source code for crates
(the unpacked version of *.crate �les). Currently no restriction is placed on the
name of each directory.

Each crate in a directory source also has an associated metadata �le indicating the
checksum of each �le in the crate to protect against accidental modi�cations.

External tools

One of the goals of Cargo is simple integration with third-party tools, like IDEs and
other build systems. To make integration easier, Cargo has several facilities:

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

a cargo metadata command, which outputs package structure and
dependencies information in JSON,
a --message-format �ag, which outputs information about a particular build,
and
support for custom subcommands.

Information about package structure

You can use cargo metadata command to get information about package
structure and dependencies. See the cargo metadata documentation for details
on the format of the output.

The format is stable and versioned. When calling cargo metadata , you should
pass --format-version �ag explicitly to avoid forward incompatibility hazard.

If you are using Rust, the cargo_metadata crate can be used to parse the output.

JSON messages

When passing --message-format=json , Cargo will output the following
information during the build:

compiler errors and warnings,
produced artifacts,
results of the build scripts (for example, native dependencies).

The output goes to stdout in the JSON object per line format. The reason �eld
distinguishes di�erent kinds of messages.

The --message-format option can also take additional formatting values which
alter the way the JSON messages are computed and rendered. See the description
of the --message-format option in the build command documentation for more
details.

Compiler messages

The "compiler-message" message includes output from the compiler, such as
warnings and errors. See the rustc JSON chapter for details on rustc 's message
format, which is embedded in the following structure:

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

{
/* The "reason" indicates the kind of message. */
"reason": "compiler-message",
/* The Package ID, a unique identifier for referring to the package.

*/
"package_id": "my-package 0.1.0 (path+file:///path/to/my-package)",
/* The Cargo target (lib, bin, example, etc.) that generated the

message. */
"target": {

/* Array of target kinds.
 - lib targets list the `crate-type` values from the
 manifest such as "lib", "rlib", "dylib",
 "proc-macro", etc. (default ["lib"])
 - binary is ["bin"]
 - example is ["example"]
 - integration test is ["test"]
 - benchmark is ["bench"]
 - build script is ["custom-build"]
 */

"kind": [
"lib"

],
/* Array of crate types.

 - lib and example libraries list the `crate-type` values
 from the manifest such as "lib", "rlib", "dylib",
 "proc-macro", etc. (default ["lib"])
 - all other target kinds are ["bin"]
 */

"crate_types": [
"lib"

],
/* The name of the target. */
"name": "my-package",
/* Absolute path to the root source file of the target. */
"src_path": "/path/to/my-package/src/lib.rs",
/* The Rust edition of the target.

 Defaults to the package edition.
 */

"edition": "2018",
/* Array of required features.

 This property is not included if no required features are
set.
 */

"required-features": ["feat1"],
/* Whether or not this target has doc tests enabled, and

 the target is compatible with doc testing.
 */

"doctest": true
 },

/* The message emitted by the compiler.

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

Artifact messages

For every compilation step, a "compiler-artifact" message is emitted with the
following structure:

 See https://doc.rust-lang.org/rustc/json.html for details.
 */

"message": {
/* ... */

 }
}

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

{
/* The "reason" indicates the kind of message. */
"reason": "compiler-artifact",
/* The Package ID, a unique identifier for referring to the package.

*/
"package_id": "my-package 0.1.0 (path+file:///path/to/my-package)",
/* The Cargo target (lib, bin, example, etc.) that generated the

artifacts.
 See the definition above for `compiler-message` for details.
 */

"target": {
"kind": [

"lib"
],

"crate_types": [
"lib"

],
"name": "my-package",
"src_path": "/path/to/my-package/src/lib.rs",
"edition": "2018",
"doctest": true

 },
/* The profile indicates which compiler settings were used. */
"profile": {

/* The optimization level. */
"opt_level": "0",
/* The debug level, an integer of 0, 1, or 2. If `null`, it

implies
 rustc's default of 0.
 */

"debuginfo": 2,
/* Whether or not debug assertions are enabled. */
"debug_assertions": true,
/* Whether or not overflow checks are enabled. */
"overflow_checks": true,
/* Whether or not the `--test` flag is used. */
"test": false

 },
/* Array of features enabled. */
"features": ["feat1", "feat2"],
/* Array of files generated by this step. */
"filenames": [

"/path/to/my-package/target/debug/libmy_package.rlib",
"/path/to/my-package/target/debug/deps/libmy_package-

be9f3faac0a26ef0.rmeta"
],

/* A string of the path to the executable that was created, or null
if
 this step did not generate an executable.
 */

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

Build script output

The "build-script-executed" message includes the parsed output of a build script.
Note that this is emitted even if the build script is not run; it will display the
previously cached value. More details about build script output may be found in
the chapter on build scripts.

"executable": null,
/* Whether or not this step was actually executed.

 When `true`, this means that the pre-existing artifacts were
 up-to-date, and `rustc` was not executed. When `false`, this
means that
 `rustc` was run to generate the artifacts.
 */

"fresh": true
}

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

Custom subcommands

Cargo is designed to be extensible with new subcommands without having to
modify Cargo itself. This is achieved by translating a cargo invocation of the form
cargo (?<command>[^]+) into an invocation of an external tool
cargo-${command} . The external tool must be present in one of the user's $PATH

directories.

{
/* The "reason" indicates the kind of message. */
"reason": "build-script-executed",
/* The Package ID, a unique identifier for referring to the package.

*/
"package_id": "my-package 0.1.0 (path+file:///path/to/my-package)",
/* Array of libraries to link, as indicated by the `cargo:rustc-

link-lib`
 instruction. Note that this may include a "KIND=" prefix in the
string
 where KIND is the library kind.
 */

"linked_libs": ["foo", "static=bar"],
/* Array of paths to include in the library search path, as

indicated by
 the `cargo:rustc-link-search` instruction. Note that this may
include a
 "KIND=" prefix in the string where KIND is the library kind.
 */

"linked_paths": ["/some/path", "native=/another/path"],
/* Array of cfg values to enable, as indicated by the `cargo:rustc-

cfg`
 instruction.
 */

"cfgs": ["cfg1", "cfg2=\"string\""],
/* Array of [KEY, VALUE] arrays of environment variables to set, as

 indicated by the `cargo:rustc-env` instruction.
 */

"env": [
 ["SOME_KEY", "some value"],
 ["ANOTHER_KEY", "another value"]
],

/* A path which is used as a value of `OUT_DIR` environmental
variable
 when compiling current package.
 */

"out_dir": "/some/path/in/target/dir"
}

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

When Cargo invokes a custom subcommand, the �rst argument to the
subcommand will be the �lename of the custom subcommand, as usual. The
second argument will be the subcommand name itself. For example, the second
argument would be ${command} when invoking cargo-${command} . Any additional
arguments on the command line will be forwarded unchanged.

Cargo can also display the help output of a custom subcommand with cargo help
${command} . Cargo assumes that the subcommand will print a help message if its
third argument is --help . So, cargo help ${command} would invoke
cargo-${command} ${command} --help .

Custom subcommands may use the CARGO environment variable to call back to
Cargo. Alternatively, it can link to cargo crate as a library, but this approach has
drawbacks:

Cargo as a library is unstable: the API may change without deprecation
versions of the linked Cargo library may be di�erent from the Cargo binary

Registries

Cargo installs crates and fetches dependencies from a "registry". The default
registry is crates.io. A registry contains an "index" which contains a searchable list
of available crates. A registry may also provide a web API to support publishing
new crates directly from Cargo.

Note: If you are interested in mirroring or vendoring an existing registry, take
a look at Source Replacement.

Using an Alternate Registry

To use a registry other than crates.io, the name and index URL of the registry must
be added to a .cargo/config �le. The registries table has a key for each
registry, for example:

The index key should be a URL to a git repository with the registry's index. A crate

[registries]
my-registry = { index = "https://my-intranet:8080/git/index" }

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

can then depend on a crate from another registry by specifying the registry key
and a value of the registry's name in that dependency's entry in Cargo.toml :

As with most con�g values, the index may be speci�ed with an environment
variable instead of a con�g �le. For example, setting the following environment
variable will accomplish the same thing as de�ning a con�g �le:

Note: crates.io does not accept packages that depend on crates from other
registries.

Publishing to an Alternate Registry

If the registry supports web API access, then packages can be published directly to
the registry from Cargo. Several of Cargo's commands such as cargo publish
take a --registry command-line �ag to indicate which registry to use. For
example, to publish the package in the current directory:

1. cargo login --registry=my-registry
This only needs to be done once. You must enter the secret API token
retrieved from the registry's website. Alternatively the token may be passed
directly to the publish command with the --token command-line �ag or an
environment variable with the name of the registry such as
CARGO_REGISTRIES_MY_REGISTRY_TOKEN .

2. cargo publish --registry=my-registry

Instead of always passing the --registry command-line option, the default
registry may be set in .cargo/config with the registry.default key.

Setting the package.publish key in the Cargo.toml manifest restricts which
registries the package is allowed to be published to. This is useful to prevent
accidentally publishing a closed-source package to crates.io. The value may be a

Sample Cargo.toml
[package]
name = "my-project"
version = "0.1.0"

[dependencies]
other-crate = { version = "1.0", registry = "my-registry" }

CARGO_REGISTRIES_MY_REGISTRY_INDEX=https://my-intranet:8080/git/index

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

list of registry names, for example:

The publish value may also be false to restrict all publishing, which is the same
as an empty list.

The authentication information saved by cargo login is stored in the
credentials �le in the Cargo home directory (default $HOME/.cargo). It has a

separate table for each registry, for example:

Running a Registry

A minimal registry can be implemented by having a git repository that contains an
index, and a server that contains the compressed .crate �les created by cargo
package . Users won't be able to use Cargo to publish to it, but this may be
su�cient for closed environments.

A full-featured registry that supports publishing will additionally need to have a
web API service that conforms to the API used by Cargo. The web API is
documented below.

At this time, there is no widely used software for running a custom registry. There
is interest in documenting projects that implement registry support, or existing
package caches that add support for Cargo.

Index Format

The following de�nes the format of the index. New features are occasionally
added, which are only understood starting with the version of Cargo that
introduced them. Older versions of Cargo may not be able to use packages that
make use of new features. However, the format for older packages should not
change, so older versions of Cargo should be able to use them.

The index is stored in a git repository so that Cargo can e�ciently fetch
incremental updates to the index. In the root of the repository is a �le named

[package]
...
publish = ["my-registry"]

[registries.my-registry]
token = "854DvwSlUwEHtIo3kWy6x7UCPKHfzCmy"

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

config.json which contains JSON information used by Cargo for accessing the
registry. This is an example of what the crates.io con�g �le looks like:

The keys are:

dl : This is the URL for downloading crates listed in the index. The value may
have the markers {crate} and {version} which are replaced with the name
and version of the crate to download. If the markers are not present, then the
value /{crate}/{version}/download is appended to the end.
api : This is the base URL for the web API. This key is optional, but if it is not

speci�ed, commands such as cargo publish will not work. The web API is
described below.

The download endpoint should send the .crate �le for the requested package.
Cargo supports https, http, and �le URLs, HTTP redirects, HTTP1 and HTTP2. The
exact speci�cs of TLS support depend on the platform that Cargo is running on, the
version of Cargo, and how it was compiled.

The rest of the index repository contains one �le for each package, where the
�lename is the name of the package in lowercase. Each version of the package has
a separate line in the �le. The �les are organized in a tier of directories:

Packages with 1 character names are placed in a directory named 1 .
Packages with 2 character names are placed in a directory named 2 .
Packages with 3 character names are placed in the directory 3/{first-
character} where {first-character} is the �rst character of the package
name.
All other packages are stored in directories named {first-two}/{second-
two} where the top directory is the �rst two characters of the package name,
and the next subdirectory is the third and fourth characters of the package
name. For example, cargo would be stored in a �le named ca/rg/cargo .

Note: Although the index �lenames are in lowercase, the �elds that contain
package names in Cargo.toml and the index JSON data are case-sensitive
and may contain upper and lower case characters.

Registries should consider enforcing limitations on package names added to their

{
"dl": "https://crates.io/api/v1/crates",
"api": "https://crates.io"

}

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

index. Cargo itself allows names with any alphanumeric, - , or _ characters.
crates.io imposes its own limitations, including the following:

Only allows ASCII characters.
Only alphanumeric, - , and _ characters.
First character must be alphabetic.
Case-insensitive collision detection.
Prevent di�erences of - vs _ .
Under a speci�c length (max 64).
Rejects reserved names, such as Windows special �lenames like "nul".

Registries should consider incorporating similar restrictions, and consider the
security implications, such as IDN homograph attacks and other concerns in UTR36
and UTS39.

Each line in a package �le contains a JSON object that describes a published
version of the package. The following is a pretty-printed example with comments
explaining the format of the entry.

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

{
// The name of the package.
// This must only contain alphanumeric, `-`, or `_` characters.
"name": "foo",
// The version of the package this row is describing.
// This must be a valid version number according to the Semantic
// Versioning 2.0.0 spec at https://semver.org/.
"vers": "0.1.0",
// Array of direct dependencies of the package.
"deps": [

 {
// Name of the dependency.
// If the dependency is renamed from the original package

name,
// this is the new name. The original package name is stored

in
// the `package` field.
"name": "rand",
// The semver requirement for this dependency.
// This must be a valid version requirement defined at
// https://github.com/steveklabnik/semver#requirements.
"req": "^0.6",
// Array of features (as strings) enabled for this

dependency.
"features": ["i128_support"],
// Boolean of whether or not this is an optional dependency.
"optional": false,
// Boolean of whether or not default features are enabled.
"default_features": true,
// The target platform for the dependency.
// null if not a target dependency.
// Otherwise, a string such as "cfg(windows)".
"target": null,
// The dependency kind.
// "dev", "build", or "normal".
// Note: this is a required field, but a small number of

entries
// exist in the crates.io index with either a missing or

null
// `kind` field due to implementation bugs.
"kind": "normal",
// The URL of the index of the registry where this

dependency is
// from as a string. If not specified or null, it is assumed

the
// dependency is in the current registry.
"registry": null,
// If the dependency is renamed, this is a string of the

actual
// package name. If not specified or null, this dependency

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

The JSON objects should not be modi�ed after they are added except for the
yanked �eld whose value may change at any time.

Web API

A registry may host a web API at the location de�ned in config.json to support
any of the actions listed below.

Cargo includes the Authorization header for requests that require
authentication. The header value is the API token. The server should respond with
a 403 response code if the token is not valid. Users are expected to visit the
registry's website to obtain a token, and Cargo can store the token using the
cargo login command, or by passing the token on the command-line.

Responses use a 200 response code for both success and errors. Cargo looks at
the JSON response to determine if there was success or failure. Failure responses
have a JSON object with the following structure:

is not
// renamed.
"package": null,

 }
],

// A SHA256 checksum of the `.crate` file.
"cksum":

"d867001db0e2b6e0496f9fac96930e2d42233ecd3ca0413e0753d4c7695d289c",
// Set of features defined for the package.
// Each feature maps to an array of features or dependencies it

enables.
"features": {

"extras": ["rand/simd_support"]
 },

// Boolean of whether or not this version has been yanked.
"yanked": false,
// The `links` string value from the package's manifest, or null if

not
// specified. This field is optional and defaults to null.
"links": null

}

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

Servers may also respond with a 404 response code to indicate the requested
resource is not found (for example, an unknown crate name). However, using a
200 response with an errors object allows a registry to provide a more detailed
error message if desired.

For backwards compatibility, servers should ignore any unexpected query
parameters or JSON �elds. If a JSON �eld is missing, it should be assumed to be
null. The endpoints are versioned with the v1 component of the path, and Cargo
is responsible for handling backwards compatibility fallbacks should any be
required in the future.

Cargo sets the following headers for all requests:

Content-Type : application/json
Accept : application/json
User-Agent : The Cargo version such as cargo 1.32.0 (8610973aa
2019-01-02) . This may be modi�ed by the user in a con�guration value.
Added in 1.29.

Publish

Endpoint: /api/v1/crates/new
Method: PUT
Authorization: Included

The publish endpoint is used to publish a new version of a crate. The server should
validate the crate, make it available for download, and add it to the index.

The body of the data sent by Cargo is:

32-bit unsigned little-endian integer of the length of JSON data.
Metadata of the package as a JSON object.
32-bit unsigned little-endian integer of the length of the .crate �le.
The .crate �le.

{
// Array of errors to display to the user.
"errors": [

 {
// The error message as a string.
"detail": "error message text"

 }
]
}

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

The following is a commented example of the JSON object. Some notes of some
restrictions imposed by crates.io are included only to illustrate some suggestions
on types of validation that may be done, and should not be considered as an
exhaustive list of restrictions crates.io imposes.

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

{
// The name of the package.
"name": "foo",
// The version of the package being published.
"vers": "0.1.0",
// Array of direct dependencies of the package.
"deps": [

 {
// Name of the dependency.
// If the dependency is renamed from the original package

name,
// this is the original name. The new package name is stored

in
// the `explicit_name_in_toml` field.
"name": "rand",
// The semver requirement for this dependency.
"version_req": "^0.6",
// Array of features (as strings) enabled for this

dependency.
"features": ["i128_support"],
// Boolean of whether or not this is an optional dependency.
"optional": false,
// Boolean of whether or not default features are enabled.
"default_features": true,
// The target platform for the dependency.
// null if not a target dependency.
// Otherwise, a string such as "cfg(windows)".
"target": null,
// The dependency kind.
// "dev", "build", or "normal".
"kind": "normal",
// The URL of the index of the registry where this

dependency is
// from as a string. If not specified or null, it is assumed

the
// dependency is in the current registry.
"registry": null,
// If the dependency is renamed, this is a string of the new
// package name. If not specified or null, this dependency

is not
// renamed.
"explicit_name_in_toml": null,

 }
],

// Set of features defined for the package.
// Each feature maps to an array of features or dependencies it

enables.
// Cargo does not impose limitations on feature names, but crates.io
// requires alphanumeric ASCII, `_` or `-` characters.
"features": {

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

"extras": ["rand/simd_support"]
 },

// List of strings of the authors.
// May be empty. crates.io requires at least one entry.
"authors": ["Alice <a@example.com>"],
// Description field from the manifest.
// May be null. crates.io requires at least some content.
"description": null,
// String of the URL to the website for this package's

documentation.
// May be null.
"documentation": null,
// String of the URL to the website for this package's home page.
// May be null.
"homepage": null,
// String of the content of the README file.
// May be null.
"readme": null,
// String of a relative path to a README file in the crate.
// May be null.
"readme_file": null,
// Array of strings of keywords for the package.
"keywords": [],
// Array of strings of categories for the package.
"categories": [],
// String of the license for the package.
// May be null. crates.io requires either `license` or

`license_file` to be set.
"license": null,
// String of a relative path to a license file in the crate.
// May be null.
"license_file": null,
// String of the URL to the website for the source repository of

this package.
// May be null.
"repository": null,
// Optional object of "status" badges. Each value is an object of
// arbitrary string to string mappings.
// crates.io has special interpretation of the format of the badges.
"badges": {

"travis-ci": {
"branch": "master",
"repository": "rust-lang/cargo"

 }
 },

// The `links` string value from the package's manifest, or null if
not

// specified. This field is optional and defaults to null.
"links": null,

}

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

A successful response includes the JSON object:

Yank

Endpoint: /api/v1/crates/{crate_name}/{version}/yank
Method: DELETE
Authorization: Included

The yank endpoint will set the yank �eld of the given version of a crate to true in
the index.

A successful response includes the JSON object:

Unyank

Endpoint: /api/v1/crates/{crate_name}/{version}/unyank
Method: PUT
Authorization: Included

The unyank endpoint will set the yank �eld of the given version of a crate to
false in the index.

A successful response includes the JSON object:

{
// Optional object of warnings to display to the user.
"warnings": {

// Array of strings of categories that are invalid and ignored.
"invalid_categories": [],
// Array of strings of badge names that are invalid and ignored.
"invalid_badges": [],
// Array of strings of arbitrary warnings to display to the

user.
"other": []

 }
}

{
// Indicates the delete succeeded, always true.
"ok": true,

}

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

Owners

Cargo does not have an inherent notion of users and owners, but it does provide
the owner command to assist managing who has authorization to control a crate.
It is up to the registry to decide exactly how users and owners are handled. See the
publishing documentation for a description of how crates.io handles owners via
GitHub users and teams.

Owners: List

Endpoint: /api/v1/crates/{crate_name}/owners
Method: GET
Authorization: Included

The owners endpoint returns a list of owners of the crate.

A successful response includes the JSON object:

Owners: Add

Endpoint: /api/v1/crates/{crate_name}/owners
Method: PUT
Authorization: Included

{
// Indicates the delete succeeded, always true.
"ok": true,

}

{
// Array of owners of the crate.
"users": [

 {
// Unique unsigned 32-bit integer of the owner.
"id": 70,
// The unique username of the owner.
"login": "github:rust-lang:core",
// Name of the owner.
// This is optional and may be null.
"name": "Core",

 }
]
}

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

A PUT request will send a request to the registry to add a new owner to a crate. It is
up to the registry how to handle the request. For example, crates.io sends an invite
to the user that they must accept before being added.

The request should include the following JSON object:

A successful response includes the JSON object:

Owners: Remove

Endpoint: /api/v1/crates/{crate_name}/owners
Method: DELETE
Authorization: Included

A DELETE request will remove an owner from a crate. The request should include
the following JSON object:

A successful response includes the JSON object:

Search

Endpoint: /api/v1/crates

{
// Array of `login` strings of owners to add.
"users": ["login_name"]

}

{
// Indicates the add succeeded, always true.
"ok": true,
// A string to be displayed to the user.
"msg": "user ehuss has been invited to be an owner of crate cargo"

}

{
// Array of `login` strings of owners to remove.
"users": ["login_name"]

}

{
// Indicates the remove succeeded, always true.
"ok": true

}

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

Method: GET
Query Parameters:

q : The search query string.
per_page : Number of results, default 10, max 100.

The search request will perform a search for crates, using criteria de�ned on the
server.

A successful response includes the JSON object:

Login

Endpoint: /me

The "login" endpoint is not an actual API request. It exists solely for the cargo
login command to display a URL to instruct a user to visit in a web browser to log
in and retrieve an API token.

Unstable Features

Experimental Cargo features are only available on the nightly channel. You typically
use one of the -Z �ags to enable them. Run cargo -Z help to see a list of �ags
available.

{
// Array of results.
"crates": [

 {
// Name of the crate.
"name": "rand",
// The highest version available.
"max_version": "0.6.1",
// Textual description of the crate.
"description": "Random number generators and other

randomness functionality.\n",
 }
],

"meta": {
// Total number of results available on the server.
"total": 119

 }
}

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

-Z unstable-options is a generic �ag for enabling other unstable command-line
�ags. Options requiring this will be called out below.

Some unstable features will require you to specify the cargo-features key in
Cargo.toml .

no-index-update

Original Issue: #3479
Tracking Issue: #7404

The -Z no-index-update �ag ensures that Cargo does not attempt to update the
registry index. This is intended for tools such as Crater that issue many Cargo
commands, and you want to avoid the network latency for updating the index each
time.

mtime-on-use

Original Issue: #6477
Cache usage meta tracking issue: #7150

The -Z mtime-on-use �ag is an experiment to have Cargo update the mtime of
used �les to make it easier for tools like cargo-sweep to detect which �les are stale.
For many work�ows this needs to be set on all invocations of cargo. To make this
more practical setting the unstable.mtime_on_use �ag in .cargo/config or the
corresponding ENV variable will apply the -Z mtime-on-use to all invocations of
nightly cargo. (the con�g �ag is ignored by stable)

avoid-dev-deps

Original Issue: #4988
Stabilization Issue: #5133

When running commands such as cargo install or cargo build , Cargo
currently requires dev-dependencies to be downloaded, even if they are not used.
The -Z avoid-dev-deps �ag allows Cargo to avoid downloading dev-dependencies
if they are not needed. The Cargo.lock �le will not be generated if dev-
dependencies are skipped.

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

minimal-versions

Original Issue: #4100
Tracking Issue: #5657

Note: It is not recommended to use this feature. Because it enforces minimal
versions for all transitive dependencies, its usefulness is limited since not all
external dependencies declare proper lower version bounds. It is intended
that it will be changed in the future to only enforce minimal versions for
direct dependencies.

When a Cargo.lock �le is generated, the -Z minimal-versions �ag will resolve
the dependencies to the minimum semver version that will satisfy the
requirements (instead of the greatest version).

The intended use-case of this �ag is to check, during continuous integration, that
the versions speci�ed in Cargo.toml are a correct re�ection of the minimum
versions that you are actually using. That is, if Cargo.toml says foo = "1.0.0" that
you don't accidentally depend on features added only in foo 1.5.0 .

out-dir

Original Issue: #4875
Tracking Issue: #6790

This feature allows you to specify the directory where artifacts will be copied to
after they are built. Typically artifacts are only written to the target/release or
target/debug directories. However, determining the exact �lename can be tricky

since you need to parse JSON output. The --out-dir �ag makes it easier to
predictably access the artifacts. Note that the artifacts are copied, so the originals
are still in the target directory. Example:

doctest-xcompile

Tracking Issue: #7040
Tracking Rustc Issue: #64245

cargo +nightly build --out-dir=out -Z unstable-options

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

This �ag changes cargo test 's behavior when handling doctests when a target is
passed. Currently, if a target is passed that is di�erent from the host cargo will
simply skip testing doctests. If this �ag is present, cargo will continue as normal,
passing the tests to doctest, while also passing it a --target option, as well as
enabling -Zunstable-features --enable-per-target-ignores and passing along
information from .cargo/config . See the rustc issue for more information.

Custom named profiles

Tracking Issue: rust-lang/cargo#6988
RFC: #2678

With this feature you can de�ne custom pro�les having new names. With the
custom pro�le enabled, build artifacts can be emitted by default to directories
other than release or debug , based on the custom pro�le's name.

For example:

An inherits key is used in order to receive attributes from other pro�les, so that
a new custom pro�le can be based on the standard dev or release pro�le
presets. Cargo emits errors in case inherits loops are detected. When
considering inheritance hierarchy, all pro�les directly or indirectly inherit from
either from release or from dev .

Valid pro�le names are: must not be empty, use only alphanumeric characters or
- or _ .

Passing --profile with the pro�le's name to various Cargo commands, directs
operations to use the pro�le's attributes. Overrides that are speci�ed in the
pro�les from which the custom pro�le inherits are inherited too.

For example, using cargo build with --profile and the manifest from above:

cargo test --target foo -Zdoctest-xcompile

cargo-features = ["named-profiles"]

[profile.release-lto]
inherits = "release"
lto = true

cargo +nightly build --profile release-lto -Z unstable-options

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

When a custom pro�le is used, build artifcats go to a di�erent target by default. In
the example above, you can expect to see the outputs under target/release-lto .

New dir-name attribute

Some of the paths generated under target/ have resulted in a de-facto "build
protocol", where cargo is invoked as a part of a larger project build. So, to
preserve the existing behavior, there is also a new attribute dir-name , which when
left unspeci�ed, defaults to the name of the pro�le. For example:

Config Profiles

Tracking Issue: rust-lang/rust#48683
RFC: #2282

Pro�les can be speci�ed in .cargo/config �les. The -Z config-profile
command-line �ag is required to use this feature. The format is the same as in a
Cargo.toml manifest. If found in multiple con�g �les, settings will be merged

using the regular con�g hierarchy. Con�g settings take precedence over manifest
settings.

Namespaced features

Original issue: #1286
Tracking Issue: #5565

Currently, it is not possible to have a feature and a dependency with the same
name in the manifest. If you set namespaced-features to true , the namespaces
for features and dependencies are separated. The e�ect of this is that, in the
feature requirements, dependencies have to be pre�xed with crate: . Like this:

[profile.release-lto]
inherits = "release"
dir-name = "lto" # Emits to target/lto instead of target/release-lto
lto = true

[profile.dev]
opt-level = 3

cargo +nightly build -Z config-profile

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

To prevent unnecessary boilerplate from having to explicitly declare features for
each optional dependency, implicit features get created for any optional
dependencies where a feature of the same name is not de�ned. However, if a
feature of the same name as a dependency is de�ned, that feature must include
the dependency as a requirement, as foo = ["crate:foo"] .

Build-plan

Tracking Issue: #5579

The --build-plan argument for the build command will output JSON with
information about which commands would be run without actually executing
anything. This can be useful when integrating with another build tool. Example:

Metabuild

Tracking Issue: rust-lang/rust#49803
RFC: #2196

Metabuild is a feature to have declarative build scripts. Instead of writing a
build.rs script, you specify a list of build dependencies in the metabuild key in
Cargo.toml . A build script is automatically generated that runs each build

dependency in order. Metabuild packages can then read metadata from
Cargo.toml to specify their behavior.

Include cargo-features at the top of Cargo.toml , a metabuild key in the
package , list the dependencies in build-dependencies , and add any metadata

that the metabuild packages require under package.metadata . Example:

[package]
namespaced-features = true

[features]
bar = ["crate:baz", "foo"]
foo = []

[dependencies]
baz = { version = "0.1", optional = true }

cargo +nightly build --build-plan -Z unstable-options

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

Metabuild packages should have a public function called metabuild that performs
the same actions as a regular build.rs script would perform.

public-dependency

Tracking Issue: #44663

The 'public-dependency' feature allows marking dependencies as 'public' or
'private'. When this feature is enabled, additional information is passed to rustc to
allow the 'exported_private_dependencies' lint to function properly.

This requires the appropriate key to be set in cargo-features :

build-std

Tracking Repository: https://github.com/rust-lang/wg-cargo-std-aware

The build-std feature enables Cargo to compile the standard library itself as part
of a crate graph compilation. This feature has also historically been known as "std-
aware Cargo". This feature is still in very early stages of development, and is also a
possible massive feature addition to Cargo. This is a very large feature to
document, even in the minimal form that it exists in today, so if you're curious to
stay up to date you'll want to follow the tracking repository and its set of issues.

cargo-features = ["metabuild"]

[package]
name = "mypackage"
version = "0.0.1"
metabuild = ["foo", "bar"]

[build-dependencies]
foo = "1.0"
bar = "1.0"

[package.metadata.foo]
extra-info = "qwerty"

cargo-features = ["public-dependency"]

[dependencies]
my_dep = { version = "1.2.3", public = true }
private_dep = "2.0.0" # Will be 'private' by default

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

The functionality implemented today is behind a �ag called -Z build-std . This
�ag indicates that Cargo should compile the standard library from source code
using the same pro�le as the main build itself. Note that for this to work you need
to have the source code for the standard library available, and at this time the only
supported method of doing so is to add the rust-src rust rustup component:

It is also required today that the -Z build-std �ag is combined with the
--target �ag. Note that you're not forced to do a cross compilation, you're just

forced to pass --target in one form or another.

Usage looks like:

Here we recompiled the standard library in debug mode with debug assertions
(like src/main.rs is compiled) and everything was linked together at the end.

Using -Z build-std will implicitly compile the stable crates core , std , alloc ,
and proc_macro . If you're using cargo test it will also compile the test crate. If
you're working with an environment which does not support some of these crates,
then you can pass an argument to -Zbuild-std as well:

The value here is a comma-separated list of standard library crates to build.

Requirements

As a summary, a list of requirements today to use -Z build-std are:

You must install libstd's source code through rustup component add rust-
src

You must pass --target
You must use both a nightly Cargo and a nightly rustc

$ rustup component add rust-src --toolchain nightly

$ cargo new foo
$ cd foo
$ cargo +nightly run -Z build-std --target x86_64-unknown-linux-gnu
 Compiling core v0.0.0 (...)
 ...
 Compiling foo v0.1.0 (...)
 Finished dev [unoptimized + debuginfo] target(s) in 21.00s
 Running `target/x86_64-unknown-linux-gnu/debug/foo`
Hello, world!

$ cargo +nightly build -Z build-std=core,alloc

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

The -Z build-std �ag must be passed to all cargo invocations.

Reporting bugs and helping out

The -Z build-std feature is in the very early stages of development! This feature
for Cargo has an extremely long history and is very large in scope, and this is just
the beginning. If you'd like to report bugs please either report them to:

Cargo - https://github.com/rust-lang/cargo/issues/new - for implementation
bugs
The tracking repository - https://github.com/rust-lang/wg-cargo-std-
aware/issues/new - for larger design questions.

Also if you'd like to see a feature that's not yet implemented and/or if something
doesn't quite work the way you'd like it to, feel free to check out the issue tracker
of the tracking repository, and if it's not there please �le a new issue!

timings

Tracking Issue: #7405

The timings feature gives some information about how long each compilation
takes, and tracks concurrency information over time.

The -Ztimings �ag can optionally take a comma-separated list of the following
values:

html — Saves a �le called cargo-timing.html to the current directory with a
report of the compilation. Files are also saved with a timestamp in the
�lename if you want to look at older runs.
info — Displays a message to stdout after each compilation �nishes with

how long it took.
json — Emits some JSON information about timing information.

The default if none are speci�ed is html,info .

Reading the graphs

There are two graphs in the output. The "unit" graph shows the duration of each

cargo +nightly build -Z timings

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

unit over time. A "unit" is a single compiler invocation. There are lines that show
which additional units are "unlocked" when a unit �nishes. That is, it shows the
new units that are now allowed to run because their dependencies are all �nished.
Hover the mouse over a unit to highlight the lines. This can help visualize the
critical path of dependencies. This may change between runs because the units
may �nish in di�erent orders.

The "codegen" times are highlighted in a lavender color. In some cases, build
pipelining allows units to start when their dependencies are performing code
generation. This information is not always displayed (for example, binary units do
not show when code generation starts).

The "custom build" units are build.rs scripts, which when run are highlighted in
orange.

The second graph shows Cargo's concurrency over time. The three lines are:

"Waiting" (red) — This is the number of units waiting for a CPU slot to open.
"Inactive" (blue) — This is the number of units that are waiting for their
dependencies to �nish.
"Active" (green) — This is the number of units currently running.

Note: This does not show the concurrency in the compiler itself. rustc
coordinates with Cargo via the "job server" to stay within the concurrency limit.
This currently mostly applies to the code generation phase.

Tips for addressing compile times:

Look for slow dependencies.
Check if they have features that you may wish to consider disabling.
Consider trying to remove the dependency completely.

Look for a crate being built multiple times with di�erent versions. Try to
remove the older versions from the dependency graph.
Split large crates into smaller pieces.
If there are a large number of crates bottlenecked on a single crate, focus
your attention on improving that one crate to improve parallelism.

binary-dep-depinfo

Tracking rustc issue: #63012

The -Z binary-dep-depinfo �ag causes Cargo to forward the same �ag to rustc
which will then cause rustc to include the paths of all binary dependencies in the

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

"dep info" �le (with the .d extension). Cargo then uses that information for
change-detection (if any binary dependency changes, then the crate will be rebuilt).
The primary use case is for building the compiler itself, which has implicit
dependencies on the standard library that would otherwise be untracked for
change-detection.

panic-abort-tests

The -Z panic-abort-tests �ag will enable nightly support to compile test harness
crates with -Cpanic=abort . Without this �ag Cargo will compile tests, and
everything they depend on, with -Cpanic=unwind because it's the only way test -
the-crate knows how to operate. As of rust-lang/rust#64158, however, the test
crate supports -C panic=abort with a test-per-process, and can help avoid
compiling crate graphs multiple times.

It's currently unclear how this feature will be stabilized in Cargo, but we'd like to
stabilize it somehow!

cargo

NAME

cargo - The Rust package manager

SYNOPSIS

cargo [OPTIONS] COMMAND [ARGS]
cargo [OPTIONS] --version
cargo [OPTIONS] --list
cargo [OPTIONS] --help
cargo [OPTIONS] --explain CODE

DESCRIPTION

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

This program is a package manager and build tool for the Rust language, available
at https://rust-lang.org.

COMMANDS

Build Commands

cargo-bench(1)
Execute benchmarks of a package.

cargo-build(1)
Compile a package.

cargo-check(1)
Check a local package and all of its dependencies for errors.

cargo-clean(1)
Remove artifacts that Cargo has generated in the past.

cargo-doc(1)
Build a package’s documentation.

cargo-fetch(1)
Fetch dependencies of a package from the network.

cargo-�x(1)
Automatically �x lint warnings reported by rustc.

cargo-run(1)
Run a binary or example of the local package.

cargo-rustc(1)
Compile a package, and pass extra options to the compiler.

cargo-rustdoc(1)
Build a package’s documentation, using speci�ed custom �ags.

cargo-test(1)
Execute unit and integration tests of a package.

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

Manifest Commands

cargo-generate-lock�le(1)
Generate Cargo.lock for a project.

cargo-locate-project(1)
Print a JSON representation of a Cargo.toml �le’s location.

cargo-metadata(1)
Output the resolved dependencies of a package, the concrete used versions
including overrides, in machine-readable format.

cargo-pkgid(1)
Print a fully quali�ed package speci�cation.

cargo-update(1)
Update dependencies as recorded in the local lock �le.

cargo-verify-project(1)
Check correctness of crate manifest.

Package Commands

cargo-init(1)
Create a new Cargo package in an existing directory.

cargo-install(1)
Build and install a Rust binary.

cargo-new(1)
Create a new Cargo package.

cargo-search(1)
Search packages in crates.io.

cargo-uninstall(1)
Remove a Rust binary.

Publishing Commands

cargo-login(1)
Save an API token from the registry locally.

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

cargo-owner(1)
Manage the owners of a crate on the registry.

cargo-package(1)
Assemble the local package into a distributable tarball.

cargo-publish(1)
Upload a package to the registry.

cargo-yank(1)
Remove a pushed crate from the index.

General Commands

cargo-help(1)
Display help information about Cargo.

cargo-version(1)
Show version information.

OPTIONS

Special Options

-V
--version

Print version info and exit. If used with --verbose , prints extra information.

--list
List all installed Cargo subcommands. If used with --verbose , prints extra
information.

--explain CODE
Run rustc --explain CODE which will print out a detailed explanation of an
error message (for example, E0004).

Display Options

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

-v
--verbose

Use verbose output. May be speci�ed twice for "very verbose" output which
includes extra output such as dependency warnings and build script output.
May also be speci�ed with the term.verbose con�g value.

-q
--quiet

No output printed to stdout.

--color WHEN
Control when colored output is used. Valid values:

auto (default): Automatically detect if color support is available on the
terminal.
always : Always display colors.
never : Never display colors.

May also be speci�ed with the term.color con�g value.

Manifest Options

--frozen
--locked

Either of these �ags requires that the Cargo.lock �le is up-to-date. If the lock
�le is missing, or it needs to be updated, Cargo will exit with an error. The
--frozen �ag also prevents Cargo from attempting to access the network to

determine if it is out-of-date.

These may be used in environments where you want to assert that the
Cargo.lock �le is up-to-date (such as a CI build) or want to avoid network

access.

--offline
Prevents Cargo from accessing the network for any reason. Without this �ag,
Cargo will stop with an error if it needs to access the network and the
network is not available. With this �ag, Cargo will attempt to proceed without
the network if possible.

Beware that this may result in di�erent dependency resolution than online
mode. Cargo will restrict itself to crates that are downloaded locally, even if
there might be a newer version as indicated in the local copy of the index. See
the cargo-fetch(1) command to download dependencies before going o�ine.

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

May also be speci�ed with the net.offline con�g value.

Common Options

-h
--help

Prints help information.

-Z FLAG…
Unstable (nightly-only) �ags to Cargo. Run cargo -Z help for details.

ENVIRONMENT

See the reference for details on environment variables that Cargo reads.

Exit Status

0
Cargo succeeded.

101
Cargo failed to complete.

FILES

~/.cargo/

Default location for Cargo’s "home" directory where it stores various �les. The
location can be changed with the CARGO_HOME environment variable.

$CARGO_HOME/bin/

Binaries installed by cargo-install(1) will be located here. If using rustup,
executables distributed with Rust are also located here.

$CARGO_HOME/config

The global con�guration �le. See the reference for more information about

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

con�guration �les.

.cargo/config

Cargo automatically searches for a �le named .cargo/config in the current
directory, and all parent directories. These con�guration �les will be merged
with the global con�guration �le.

$CARGO_HOME/credentials

Private authentication information for logging in to a registry.

$CARGO_HOME/registry/

This directory contains cached downloads of the registry index and any
downloaded dependencies.

$CARGO_HOME/git/

This directory contains cached downloads of git dependencies.

Please note that the internal structure of the $CARGO_HOME directory is not stable
yet and may be subject to change.

EXAMPLES

1. Build a local package and all of its dependencies:

2. Build a package with optimizations:

3. Run tests for a cross-compiled target:

4. Create a new package that builds an executable:

5. Create a package in the current directory:

6. Learn about a command’s options and usage:

cargo build

cargo build --release

cargo test --target i686-unknown-linux-gnu

cargo new foobar

mkdir foo && cd foo
cargo init .

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

BUGS

See https://github.com/rust-lang/cargo/issues for issues.

SEE ALSO

rustc(1), rustdoc(1)

Build Commands

cargo bench

NAME

cargo-bench - Execute benchmarks of a package

SYNOPSIS

cargo bench [OPTIONS] [BENCHNAME] [-- BENCH-OPTIONS]

DESCRIPTION

Compile and execute benchmarks.

The benchmark �ltering argument BENCHNAME and all the arguments following the
two dashes (--) are passed to the benchmark binaries and thus to libtest (rustc’s

cargo help clean

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

built in unit-test and micro-benchmarking framework). If you’re passing arguments
to both Cargo and the binary, the ones after -- go to the binary, the ones before
go to Cargo. For details about libtest’s arguments see the output of cargo bench
— --help . As an example, this will run only the benchmark named foo (and skip
other similarly named benchmarks like foobar):

Benchmarks are built with the --test option to rustc which creates an
executable with a main function that automatically runs all functions annotated
with the #[bench] attribute. Cargo passes the --bench �ag to the test harness to
tell it to run only benchmarks.

The libtest harness may be disabled by setting harness = false in the target
manifest settings, in which case your code will need to provide its own main
function to handle running benchmarks.

OPTIONS

Benchmark Options

--no-run
Compile, but don’t run benchmarks.

--no-fail-fast
Run all benchmarks regardless of failure. Without this �ag, Cargo will exit
after the �rst executable fails. The Rust test harness will run all benchmarks
within the executable to completion, this �ag only applies to the executable
as a whole.

Package Selection

By default, when no package selection options are given, the packages selected
depend on the selected manifest �le (based on the current working directory if
--manifest-path is not given). If the manifest is the root of a workspace then the

workspaces default members are selected, otherwise only the package de�ned by
the manifest will be selected.

cargo bench -- foo --exact

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

The default members of a workspace can be set explicitly with the
workspace.default-members key in the root manifest. If this is not set, a virtual

workspace will include all workspace members (equivalent to passing
--workspace), and a non-virtual workspace will include only the root crate itself.

-p SPEC…
--package SPEC…

Benchmark only the speci�ed packages. See cargo-pkgid(1) for the SPEC
format. This �ag may be speci�ed multiple times.

--workspace
Benchmark all members in the workspace.

--all
Deprecated alias for --workspace .

--exclude SPEC…
Exclude the speci�ed packages. Must be used in conjunction with the
--workspace �ag. This �ag may be speci�ed multiple times.

Target Selection

When no target selection options are given, cargo bench will build the following
targets of the selected packages:

lib — used to link with binaries and benchmarks
bins (only if benchmark targets are built and required features are available)
lib as a benchmark
bins as benchmarks
benchmark targets

The default behavior can be changed by setting the bench �ag for the target in the
manifest settings. Setting examples to bench = true will build and run the
example as a benchmark. Setting targets to bench = false will stop them from
being benchmarked by default. Target selection options that take a target by name
ignore the bench �ag and will always benchmark the given target.

Passing target selection �ags will benchmark only the speci�ed targets.

--lib
Benchmark the package’s library.

--bin NAME…

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

Benchmark the speci�ed binary. This �ag may be speci�ed multiple times.

--bins
Benchmark all binary targets.

--example NAME…
Benchmark the speci�ed example. This �ag may be speci�ed multiple times.

--examples
Benchmark all example targets.

--test NAME…
Benchmark the speci�ed integration test. This �ag may be speci�ed multiple
times.

--tests
Benchmark all targets in test mode that have the test = true manifest �ag
set. By default this includes the library and binaries built as unittests, and
integration tests. Be aware that this will also build any required
dependencies, so the lib target may be built twice (once as a unittest, and
once as a dependency for binaries, integration tests, etc.). Targets may be
enabled or disabled by setting the test �ag in the manifest settings for the
target.

--bench NAME…
Benchmark the speci�ed benchmark. This �ag may be speci�ed multiple
times.

--benches
Benchmark all targets in benchmark mode that have the bench = true
manifest �ag set. By default this includes the library and binaries built as
benchmarks, and bench targets. Be aware that this will also build any
required dependencies, so the lib target may be built twice (once as a
benchmark, and once as a dependency for binaries, benchmarks, etc.).
Targets may be enabled or disabled by setting the bench �ag in the manifest
settings for the target.

--all-targets
Benchmark all targets. This is equivalent to specifying --lib --bins
--tests --benches --examples .

Feature Selection

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

When no feature options are given, the default feature is activated for every
selected package.

--features FEATURES
Space or comma separated list of features to activate. These features only
apply to the current directory’s package. Features of direct dependencies may
be enabled with <dep-name>/<feature-name> syntax.

--all-features
Activate all available features of all selected packages.

--no-default-features
Do not activate the default feature of the current directory’s package.

Compilation Options

--target TRIPLE
Benchmark for the given architecture. The default is the host architecture.
The general format of the triple is <arch><sub>-<vendor>-<sys>-<abi> . Run
rustc --print target-list for a list of supported targets.

This may also be speci�ed with the build.target con�g value.

Output Options

--target-dir DIRECTORY
Directory for all generated artifacts and intermediate �les. May also be
speci�ed with the CARGO_TARGET_DIR environment variable, or the
build.target-dir con�g value. Defaults to target in the root of the

workspace.

Display Options

By default the Rust test harness hides output from benchmark execution to keep
results readable. Benchmark output can be recovered (e.g., for debugging) by
passing --nocapture to the benchmark binaries:

cargo bench -- --nocapture

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

-v
--verbose

Use verbose output. May be speci�ed twice for "very verbose" output which
includes extra output such as dependency warnings and build script output.
May also be speci�ed with the term.verbose con�g value.

-q
--quiet

No output printed to stdout.

--color WHEN
Control when colored output is used. Valid values:

auto (default): Automatically detect if color support is available on the
terminal.
always : Always display colors.
never : Never display colors.

May also be speci�ed with the term.color con�g value.

--message-format FMT
The output format for diagnostic messages. Can be speci�ed multiple times
and consists of comma-separated values. Valid values:

human (default): Display in a human-readable text format.
short : Emit shorter, human-readable text messages.
json : Emit JSON messages to stdout. See the reference for more

details.
json-diagnostic-short : Ensure the rendered �eld of JSON messages

contains the "short" rendering from rustc.
json-diagnostic-rendered-ansi : Ensure the rendered �eld of JSON

messages contains embedded ANSI color codes for respecting rustc’s
default color scheme.
json-render-diagnostics : Instruct Cargo to not include rustc

diagnostics in in JSON messages printed, but instead Cargo itself should
render the JSON diagnostics coming from rustc. Cargo’s own JSON
diagnostics and others coming from rustc are still emitted.

Manifest Options

--manifest-path PATH
Path to the Cargo.toml �le. By default, Cargo searches for the Cargo.toml
�le in the current directory or any parent directory.

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

--frozen
--locked

Either of these �ags requires that the Cargo.lock �le is up-to-date. If the lock
�le is missing, or it needs to be updated, Cargo will exit with an error. The
--frozen �ag also prevents Cargo from attempting to access the network to

determine if it is out-of-date.

These may be used in environments where you want to assert that the
Cargo.lock �le is up-to-date (such as a CI build) or want to avoid network

access.

--offline
Prevents Cargo from accessing the network for any reason. Without this �ag,
Cargo will stop with an error if it needs to access the network and the
network is not available. With this �ag, Cargo will attempt to proceed without
the network if possible.

Beware that this may result in di�erent dependency resolution than online
mode. Cargo will restrict itself to crates that are downloaded locally, even if
there might be a newer version as indicated in the local copy of the index. See
the cargo-fetch(1) command to download dependencies before going o�ine.

May also be speci�ed with the net.offline con�g value.

Common Options

-h
--help

Prints help information.

-Z FLAG…
Unstable (nightly-only) �ags to Cargo. Run cargo -Z help for details.

Miscellaneous Options

The --jobs argument a�ects the building of the benchmark executable but does
not a�ect how many threads are used when running the benchmarks. The Rust
test harness runs benchmarks serially in a single thread.

-j N
--jobs N

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

Number of parallel jobs to run. May also be speci�ed with the build.jobs
con�g value. Defaults to the number of CPUs.

PROFILES

Pro�les may be used to con�gure compiler options such as optimization levels and
debug settings. See the reference for more details.

Benchmarks are always built with the bench pro�le. Binary and lib targets are built
separately as benchmarks with the bench pro�le. Library targets are built with the
release pro�les when linked to binaries and benchmarks. Dependencies use the
release pro�le.

If you need a debug build of a benchmark, try building it with cargo-build(1) which
will use the test pro�le which is by default unoptimized and includes debug
information. You can then run the debug-enabled benchmark manually.

ENVIRONMENT

See the reference for details on environment variables that Cargo reads.

Exit Status

0
Cargo succeeded.

101
Cargo failed to complete.

EXAMPLES

1. Build and execute all the benchmarks of the current package:

cargo bench

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

2. Run only a speci�c benchmark within a speci�c benchmark target:

SEE ALSO

cargo(1), cargo-test(1)

cargo build

NAME

cargo-build - Compile the current package

SYNOPSIS

cargo build [OPTIONS]

DESCRIPTION

Compile local packages and all of their dependencies.

OPTIONS

Package Selection

By default, when no package selection options are given, the packages selected
depend on the selected manifest �le (based on the current working directory if
--manifest-path is not given). If the manifest is the root of a workspace then the

cargo bench --bench bench_name -- modname::some_benchmark

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

workspaces default members are selected, otherwise only the package de�ned by
the manifest will be selected.

The default members of a workspace can be set explicitly with the
workspace.default-members key in the root manifest. If this is not set, a virtual

workspace will include all workspace members (equivalent to passing
--workspace), and a non-virtual workspace will include only the root crate itself.

-p SPEC…
--package SPEC…

Build only the speci�ed packages. See cargo-pkgid(1) for the SPEC format.
This �ag may be speci�ed multiple times.

--workspace
Build all members in the workspace.

--all
Deprecated alias for --workspace .

--exclude SPEC…
Exclude the speci�ed packages. Must be used in conjunction with the
--workspace �ag. This �ag may be speci�ed multiple times.

Target Selection

When no target selection options are given, cargo build will build all binary and
library targets of the selected packages. Binaries are skipped if they have
required-features that are missing.

Passing target selection �ags will build only the speci�ed targets.

--lib
Build the package’s library.

--bin NAME…
Build the speci�ed binary. This �ag may be speci�ed multiple times.

--bins
Build all binary targets.

--example NAME…
Build the speci�ed example. This �ag may be speci�ed multiple times.

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

--examples
Build all example targets.

--test NAME…
Build the speci�ed integration test. This �ag may be speci�ed multiple times.

--tests
Build all targets in test mode that have the test = true manifest �ag set. By
default this includes the library and binaries built as unittests, and integration
tests. Be aware that this will also build any required dependencies, so the lib
target may be built twice (once as a unittest, and once as a dependency for
binaries, integration tests, etc.). Targets may be enabled or disabled by
setting the test �ag in the manifest settings for the target.

--bench NAME…
Build the speci�ed benchmark. This �ag may be speci�ed multiple times.

--benches
Build all targets in benchmark mode that have the bench = true manifest
�ag set. By default this includes the library and binaries built as benchmarks,
and bench targets. Be aware that this will also build any required
dependencies, so the lib target may be built twice (once as a benchmark, and
once as a dependency for binaries, benchmarks, etc.). Targets may be
enabled or disabled by setting the bench �ag in the manifest settings for the
target.

--all-targets
Build all targets. This is equivalent to specifying --lib --bins
--tests --benches --examples .

Feature Selection

When no feature options are given, the default feature is activated for every
selected package.

--features FEATURES
Space or comma separated list of features to activate. These features only
apply to the current directory’s package. Features of direct dependencies may
be enabled with <dep-name>/<feature-name> syntax.

--all-features
Activate all available features of all selected packages.

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

--no-default-features
Do not activate the default feature of the current directory’s package.

Compilation Options

--target TRIPLE
Build for the given architecture. The default is the host architecture. The
general format of the triple is <arch><sub>-<vendor>-<sys>-<abi> . Run
rustc --print target-list for a list of supported targets.

This may also be speci�ed with the build.target con�g value.

--release
Build optimized artifacts with the release pro�le. See the PROFILES section
for details on how this a�ects pro�le selection.

Output Options

--target-dir DIRECTORY
Directory for all generated artifacts and intermediate �les. May also be
speci�ed with the CARGO_TARGET_DIR environment variable, or the
build.target-dir con�g value. Defaults to target in the root of the

workspace.

--out-dir DIRECTORY
Copy �nal artifacts to this directory.

This option is unstable and available only on the nightly channel and requires
the -Z unstable-options �ag to enable. See https://github.com/rust-
lang/cargo/issues/6790 for more information.

Display Options

-v
--verbose

Use verbose output. May be speci�ed twice for "very verbose" output which
includes extra output such as dependency warnings and build script output.
May also be speci�ed with the term.verbose con�g value.

-q

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

--quiet
No output printed to stdout.

--color WHEN
Control when colored output is used. Valid values:

auto (default): Automatically detect if color support is available on the
terminal.
always : Always display colors.
never : Never display colors.

May also be speci�ed with the term.color con�g value.

--message-format FMT
The output format for diagnostic messages. Can be speci�ed multiple times
and consists of comma-separated values. Valid values:

human (default): Display in a human-readable text format.
short : Emit shorter, human-readable text messages.
json : Emit JSON messages to stdout. See the reference for more

details.
json-diagnostic-short : Ensure the rendered �eld of JSON messages

contains the "short" rendering from rustc.
json-diagnostic-rendered-ansi : Ensure the rendered �eld of JSON

messages contains embedded ANSI color codes for respecting rustc’s
default color scheme.
json-render-diagnostics : Instruct Cargo to not include rustc

diagnostics in in JSON messages printed, but instead Cargo itself should
render the JSON diagnostics coming from rustc. Cargo’s own JSON
diagnostics and others coming from rustc are still emitted.

--build-plan
Outputs a series of JSON messages to stdout that indicate the commands to
run the build.

This option is unstable and available only on the nightly channel and requires
the -Z unstable-options �ag to enable. See https://github.com/rust-
lang/cargo/issues/5579 for more information.

Manifest Options

--manifest-path PATH
Path to the Cargo.toml �le. By default, Cargo searches for the Cargo.toml

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

�le in the current directory or any parent directory.

--frozen
--locked

Either of these �ags requires that the Cargo.lock �le is up-to-date. If the lock
�le is missing, or it needs to be updated, Cargo will exit with an error. The
--frozen �ag also prevents Cargo from attempting to access the network to

determine if it is out-of-date.

These may be used in environments where you want to assert that the
Cargo.lock �le is up-to-date (such as a CI build) or want to avoid network

access.

--offline
Prevents Cargo from accessing the network for any reason. Without this �ag,
Cargo will stop with an error if it needs to access the network and the
network is not available. With this �ag, Cargo will attempt to proceed without
the network if possible.

Beware that this may result in di�erent dependency resolution than online
mode. Cargo will restrict itself to crates that are downloaded locally, even if
there might be a newer version as indicated in the local copy of the index. See
the cargo-fetch(1) command to download dependencies before going o�ine.

May also be speci�ed with the net.offline con�g value.

Common Options

-h
--help

Prints help information.

-Z FLAG…
Unstable (nightly-only) �ags to Cargo. Run cargo -Z help for details.

Miscellaneous Options

-j N
--jobs N

Number of parallel jobs to run. May also be speci�ed with the build.jobs
con�g value. Defaults to the number of CPUs.

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

PROFILES

Pro�les may be used to con�gure compiler options such as optimization levels and
debug settings. See the reference for more details.

Pro�le selection depends on the target and crate being built. By default the dev or
test pro�les are used. If the --release �ag is given, then the release or bench

pro�les are used.

Target Default Profile --release Profile

lib, bin, example dev release

test, bench, or any target
in "test" or "bench" mode

test bench

Dependencies use the dev / release pro�les.

ENVIRONMENT

See the reference for details on environment variables that Cargo reads.

Exit Status

0
Cargo succeeded.

101
Cargo failed to complete.

EXAMPLES

1. Build the local package and all of its dependencies:

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

2. Build with optimizations:

SEE ALSO

cargo(1), cargo-rustc(1)

cargo check

NAME

cargo-check - Check the current package

SYNOPSIS

cargo check [OPTIONS]

DESCRIPTION

Check a local package and all of its dependencies for errors. This will essentially
compile the packages without performing the �nal step of code generation, which
is faster than running cargo build . The compiler will save metadata �les to disk
so that future runs will reuse them if the source has not been modi�ed.

OPTIONS

cargo build

cargo build --release

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

Package Selection

By default, when no package selection options are given, the packages selected
depend on the selected manifest �le (based on the current working directory if
--manifest-path is not given). If the manifest is the root of a workspace then the

workspaces default members are selected, otherwise only the package de�ned by
the manifest will be selected.

The default members of a workspace can be set explicitly with the
workspace.default-members key in the root manifest. If this is not set, a virtual

workspace will include all workspace members (equivalent to passing
--workspace), and a non-virtual workspace will include only the root crate itself.

-p SPEC…
--package SPEC…

Check only the speci�ed packages. See cargo-pkgid(1) for the SPEC format.
This �ag may be speci�ed multiple times.

--workspace
Check all members in the workspace.

--all
Deprecated alias for --workspace .

--exclude SPEC…
Exclude the speci�ed packages. Must be used in conjunction with the
--workspace �ag. This �ag may be speci�ed multiple times.

Target Selection

When no target selection options are given, cargo check will check all binary and
library targets of the selected packages. Binaries are skipped if they have
required-features that are missing.

Passing target selection �ags will check only the speci�ed targets.

--lib
Check the package’s library.

--bin NAME…
Check the speci�ed binary. This �ag may be speci�ed multiple times.

--bins

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

Check all binary targets.

--example NAME…
Check the speci�ed example. This �ag may be speci�ed multiple times.

--examples
Check all example targets.

--test NAME…
Check the speci�ed integration test. This �ag may be speci�ed multiple times.

--tests
Check all targets in test mode that have the test = true manifest �ag set.
By default this includes the library and binaries built as unittests, and
integration tests. Be aware that this will also build any required
dependencies, so the lib target may be built twice (once as a unittest, and
once as a dependency for binaries, integration tests, etc.). Targets may be
enabled or disabled by setting the test �ag in the manifest settings for the
target.

--bench NAME…
Check the speci�ed benchmark. This �ag may be speci�ed multiple times.

--benches
Check all targets in benchmark mode that have the bench = true manifest
�ag set. By default this includes the library and binaries built as benchmarks,
and bench targets. Be aware that this will also build any required
dependencies, so the lib target may be built twice (once as a benchmark, and
once as a dependency for binaries, benchmarks, etc.). Targets may be
enabled or disabled by setting the bench �ag in the manifest settings for the
target.

--all-targets
Check all targets. This is equivalent to specifying --lib --bins
--tests --benches --examples .

Feature Selection

When no feature options are given, the default feature is activated for every
selected package.

--features FEATURES
Space or comma separated list of features to activate. These features only

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

apply to the current directory’s package. Features of direct dependencies may
be enabled with <dep-name>/<feature-name> syntax.

--all-features
Activate all available features of all selected packages.

--no-default-features
Do not activate the default feature of the current directory’s package.

Compilation Options

--target TRIPLE
Check for the given architecture. The default is the host architecture. The
general format of the triple is <arch><sub>-<vendor>-<sys>-<abi> . Run
rustc --print target-list for a list of supported targets.

This may also be speci�ed with the build.target con�g value.

--release
Check optimized artifacts with the release pro�le. See the PROFILES section
for details on how this a�ects pro�le selection.

--profile NAME
Changes check behavior. Currently only test is supported, which will check
with the #[cfg(test)] attribute enabled. This is useful to have it check unit
tests which are usually excluded via the cfg attribute. This does not change
the actual pro�le used.

Output Options

--target-dir DIRECTORY
Directory for all generated artifacts and intermediate �les. May also be
speci�ed with the CARGO_TARGET_DIR environment variable, or the
build.target-dir con�g value. Defaults to target in the root of the

workspace.

Display Options

-v
--verbose

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

Use verbose output. May be speci�ed twice for "very verbose" output which
includes extra output such as dependency warnings and build script output.
May also be speci�ed with the term.verbose con�g value.

-q
--quiet

No output printed to stdout.

--color WHEN
Control when colored output is used. Valid values:

auto (default): Automatically detect if color support is available on the
terminal.
always : Always display colors.
never : Never display colors.

May also be speci�ed with the term.color con�g value.

--message-format FMT
The output format for diagnostic messages. Can be speci�ed multiple times
and consists of comma-separated values. Valid values:

human (default): Display in a human-readable text format.
short : Emit shorter, human-readable text messages.
json : Emit JSON messages to stdout. See the reference for more

details.
json-diagnostic-short : Ensure the rendered �eld of JSON messages

contains the "short" rendering from rustc.
json-diagnostic-rendered-ansi : Ensure the rendered �eld of JSON

messages contains embedded ANSI color codes for respecting rustc’s
default color scheme.
json-render-diagnostics : Instruct Cargo to not include rustc

diagnostics in in JSON messages printed, but instead Cargo itself should
render the JSON diagnostics coming from rustc. Cargo’s own JSON
diagnostics and others coming from rustc are still emitted.

Manifest Options

--manifest-path PATH
Path to the Cargo.toml �le. By default, Cargo searches for the Cargo.toml
�le in the current directory or any parent directory.

--frozen

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

--locked
Either of these �ags requires that the Cargo.lock �le is up-to-date. If the lock
�le is missing, or it needs to be updated, Cargo will exit with an error. The
--frozen �ag also prevents Cargo from attempting to access the network to

determine if it is out-of-date.

These may be used in environments where you want to assert that the
Cargo.lock �le is up-to-date (such as a CI build) or want to avoid network

access.

--offline
Prevents Cargo from accessing the network for any reason. Without this �ag,
Cargo will stop with an error if it needs to access the network and the
network is not available. With this �ag, Cargo will attempt to proceed without
the network if possible.

Beware that this may result in di�erent dependency resolution than online
mode. Cargo will restrict itself to crates that are downloaded locally, even if
there might be a newer version as indicated in the local copy of the index. See
the cargo-fetch(1) command to download dependencies before going o�ine.

May also be speci�ed with the net.offline con�g value.

Common Options

-h
--help

Prints help information.

-Z FLAG…
Unstable (nightly-only) �ags to Cargo. Run cargo -Z help for details.

Miscellaneous Options

-j N
--jobs N

Number of parallel jobs to run. May also be speci�ed with the build.jobs
con�g value. Defaults to the number of CPUs.

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

PROFILES

Pro�les may be used to con�gure compiler options such as optimization levels and
debug settings. See the reference for more details.

Pro�le selection depends on the target and crate being built. By default the dev or
test pro�les are used. If the --release �ag is given, then the release or bench

pro�les are used.

Target Default Profile --release Profile

lib, bin, example dev release

test, bench, or any target
in "test" or "bench" mode

test bench

Dependencies use the dev / release pro�les.

ENVIRONMENT

See the reference for details on environment variables that Cargo reads.

Exit Status

0
Cargo succeeded.

101
Cargo failed to complete.

EXAMPLES

1. Check the local package for errors:

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

2. Check all targets, including unit tests:

SEE ALSO

cargo(1), cargo-build(1)

cargo clean

NAME

cargo-clean - Remove generated artifacts

SYNOPSIS

cargo clean [OPTIONS]

DESCRIPTION

Remove artifacts from the target directory that Cargo has generated in the past.

With no options, cargo clean will delete the entire target directory.

OPTIONS

cargo check

cargo check --all-targets --profile=test

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

Package Selection

When no packages are selected, all packages and all dependencies in the
workspace are cleaned.

-p SPEC…
--package SPEC…

Clean only the speci�ed packages. This �ag may be speci�ed multiple times.
See cargo-pkgid(1) for the SPEC format.

Clean Options

--doc
This option will cause cargo clean to remove only the doc directory in the
target directory.

--release
Clean all artifacts that were built with the release or bench pro�les.

--target-dir DIRECTORY
Directory for all generated artifacts and intermediate �les. May also be
speci�ed with the CARGO_TARGET_DIR environment variable, or the
build.target-dir con�g value. Defaults to target in the root of the

workspace.

--target TRIPLE
Clean for the given architecture. The default is the host architecture. The
general format of the triple is <arch><sub>-<vendor>-<sys>-<abi> . Run
rustc --print target-list for a list of supported targets.

This may also be speci�ed with the build.target con�g value.

Display Options

-v
--verbose

Use verbose output. May be speci�ed twice for "very verbose" output which
includes extra output such as dependency warnings and build script output.
May also be speci�ed with the term.verbose con�g value.

-q

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

--quiet
No output printed to stdout.

--color WHEN
Control when colored output is used. Valid values:

auto (default): Automatically detect if color support is available on the
terminal.
always : Always display colors.
never : Never display colors.

May also be speci�ed with the term.color con�g value.

Manifest Options

--manifest-path PATH
Path to the Cargo.toml �le. By default, Cargo searches for the Cargo.toml
�le in the current directory or any parent directory.

--frozen
--locked

Either of these �ags requires that the Cargo.lock �le is up-to-date. If the lock
�le is missing, or it needs to be updated, Cargo will exit with an error. The
--frozen �ag also prevents Cargo from attempting to access the network to

determine if it is out-of-date.

These may be used in environments where you want to assert that the
Cargo.lock �le is up-to-date (such as a CI build) or want to avoid network

access.

--offline
Prevents Cargo from accessing the network for any reason. Without this �ag,
Cargo will stop with an error if it needs to access the network and the
network is not available. With this �ag, Cargo will attempt to proceed without
the network if possible.

Beware that this may result in di�erent dependency resolution than online
mode. Cargo will restrict itself to crates that are downloaded locally, even if
there might be a newer version as indicated in the local copy of the index. See
the cargo-fetch(1) command to download dependencies before going o�ine.

May also be speci�ed with the net.offline con�g value.

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

Common Options

-h
--help

Prints help information.

-Z FLAG…
Unstable (nightly-only) �ags to Cargo. Run cargo -Z help for details.

ENVIRONMENT

See the reference for details on environment variables that Cargo reads.

Exit Status

0
Cargo succeeded.

101
Cargo failed to complete.

EXAMPLES

1. Remove the entire target directory:

2. Remove only the release artifacts:

SEE ALSO

cargo(1), cargo-build(1)

cargo clean

cargo clean --release

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

cargo doc

NAME

cargo-doc - Build a package's documentation

SYNOPSIS

cargo doc [OPTIONS]

DESCRIPTION

Build the documentation for the local package and all dependencies. The output is
placed in target/doc in rustdoc’s usual format.

OPTIONS

Documentation Options

--open
Open the docs in a browser after building them. This will use your default
browser unless you de�ne another one in the BROWSER environment variable.

--no-deps
Do not build documentation for dependencies.

--document-private-items
Include non-public items in the documentation.

Package Selection

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

By default, when no package selection options are given, the packages selected
depend on the selected manifest �le (based on the current working directory if
--manifest-path is not given). If the manifest is the root of a workspace then the

workspaces default members are selected, otherwise only the package de�ned by
the manifest will be selected.

The default members of a workspace can be set explicitly with the
workspace.default-members key in the root manifest. If this is not set, a virtual

workspace will include all workspace members (equivalent to passing
--workspace), and a non-virtual workspace will include only the root crate itself.

-p SPEC…
--package SPEC…

Document only the speci�ed packages. See cargo-pkgid(1) for the SPEC
format. This �ag may be speci�ed multiple times.

--workspace
Document all members in the workspace.

--all
Deprecated alias for --workspace .

--exclude SPEC…
Exclude the speci�ed packages. Must be used in conjunction with the
--workspace �ag. This �ag may be speci�ed multiple times.

Target Selection

When no target selection options are given, cargo doc will document all binary
and library targets of the selected package. The binary will be skipped if its name is
the same as the lib target. Binaries are skipped if they have required-features
that are missing.

The default behavior can be changed by setting doc = false for the target in the
manifest settings. Using target selection options will ignore the doc �ag and will
always document the given target.

--lib
Document the package’s library.

--bin NAME…
Document the speci�ed binary. This �ag may be speci�ed multiple times.

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

--bins
Document all binary targets.

Feature Selection

When no feature options are given, the default feature is activated for every
selected package.

--features FEATURES
Space or comma separated list of features to activate. These features only
apply to the current directory’s package. Features of direct dependencies may
be enabled with <dep-name>/<feature-name> syntax.

--all-features
Activate all available features of all selected packages.

--no-default-features
Do not activate the default feature of the current directory’s package.

Compilation Options

--target TRIPLE
Document for the given architecture. The default is the host architecture. The
general format of the triple is <arch><sub>-<vendor>-<sys>-<abi> . Run
rustc --print target-list for a list of supported targets.

This may also be speci�ed with the build.target con�g value.

--release
Document optimized artifacts with the release pro�le. See the PROFILES
section for details on how this a�ects pro�le selection.

Output Options

--target-dir DIRECTORY
Directory for all generated artifacts and intermediate �les. May also be
speci�ed with the CARGO_TARGET_DIR environment variable, or the
build.target-dir con�g value. Defaults to target in the root of the

workspace.

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

Display Options

-v
--verbose

Use verbose output. May be speci�ed twice for "very verbose" output which
includes extra output such as dependency warnings and build script output.
May also be speci�ed with the term.verbose con�g value.

-q
--quiet

No output printed to stdout.

--color WHEN
Control when colored output is used. Valid values:

auto (default): Automatically detect if color support is available on the
terminal.
always : Always display colors.
never : Never display colors.

May also be speci�ed with the term.color con�g value.

--message-format FMT
The output format for diagnostic messages. Can be speci�ed multiple times
and consists of comma-separated values. Valid values:

human (default): Display in a human-readable text format.
short : Emit shorter, human-readable text messages.
json : Emit JSON messages to stdout. See the reference for more

details.
json-diagnostic-short : Ensure the rendered �eld of JSON messages

contains the "short" rendering from rustc.
json-diagnostic-rendered-ansi : Ensure the rendered �eld of JSON

messages contains embedded ANSI color codes for respecting rustc’s
default color scheme.
json-render-diagnostics : Instruct Cargo to not include rustc

diagnostics in in JSON messages printed, but instead Cargo itself should
render the JSON diagnostics coming from rustc. Cargo’s own JSON
diagnostics and others coming from rustc are still emitted.

Manifest Options

--manifest-path PATH

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

Path to the Cargo.toml �le. By default, Cargo searches for the Cargo.toml
�le in the current directory or any parent directory.

--frozen
--locked

Either of these �ags requires that the Cargo.lock �le is up-to-date. If the lock
�le is missing, or it needs to be updated, Cargo will exit with an error. The
--frozen �ag also prevents Cargo from attempting to access the network to

determine if it is out-of-date.

These may be used in environments where you want to assert that the
Cargo.lock �le is up-to-date (such as a CI build) or want to avoid network

access.

--offline
Prevents Cargo from accessing the network for any reason. Without this �ag,
Cargo will stop with an error if it needs to access the network and the
network is not available. With this �ag, Cargo will attempt to proceed without
the network if possible.

Beware that this may result in di�erent dependency resolution than online
mode. Cargo will restrict itself to crates that are downloaded locally, even if
there might be a newer version as indicated in the local copy of the index. See
the cargo-fetch(1) command to download dependencies before going o�ine.

May also be speci�ed with the net.offline con�g value.

Common Options

-h
--help

Prints help information.

-Z FLAG…
Unstable (nightly-only) �ags to Cargo. Run cargo -Z help for details.

Miscellaneous Options

-j N
--jobs N

Number of parallel jobs to run. May also be speci�ed with the build.jobs

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

con�g value. Defaults to the number of CPUs.

PROFILES

Pro�les may be used to con�gure compiler options such as optimization levels and
debug settings. See the reference for more details.

Pro�le selection depends on the target and crate being built. By default the dev or
test pro�les are used. If the --release �ag is given, then the release or bench

pro�les are used.

Target Default Profile --release Profile

lib, bin, example dev release

test, bench, or any target
in "test" or "bench" mode

test bench

Dependencies use the dev / release pro�les.

ENVIRONMENT

See the reference for details on environment variables that Cargo reads.

Exit Status

0
Cargo succeeded.

101
Cargo failed to complete.

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

EXAMPLES

1. Build the local package documentation and its dependencies and output to
target/doc .

SEE ALSO

cargo(1), cargo-rustdoc(1), rustdoc(1)

cargo fetch

NAME

cargo-fetch - Fetch dependencies of a package from the network

SYNOPSIS

cargo fetch [OPTIONS]

DESCRIPTION

If a Cargo.lock �le is available, this command will ensure that all of the git
dependencies and/or registry dependencies are downloaded and locally available.
Subsequent Cargo commands never touch the network after a cargo
fetch unless the lock �le changes.

If the lock �le is not available, then this command will generate the lock �le before
fetching the dependencies.

If --target is not speci�ed, then all target dependencies are fetched.

cargo doc

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

See also the cargo-prefetch plugin which adds a command to download popular
crates. This may be useful if you plan to use Cargo without a network with the
--offline �ag.

OPTIONS

Fetch options

--target TRIPLE
Fetch for the given architecture. The default is the host architecture. The
general format of the triple is <arch><sub>-<vendor>-<sys>-<abi> . Run
rustc --print target-list for a list of supported targets.

This may also be speci�ed with the build.target con�g value.

Display Options

-v
--verbose

Use verbose output. May be speci�ed twice for "very verbose" output which
includes extra output such as dependency warnings and build script output.
May also be speci�ed with the term.verbose con�g value.

-q
--quiet

No output printed to stdout.

--color WHEN
Control when colored output is used. Valid values:

auto (default): Automatically detect if color support is available on the
terminal.
always : Always display colors.
never : Never display colors.

May also be speci�ed with the term.color con�g value.

Manifest Options

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

--manifest-path PATH
Path to the Cargo.toml �le. By default, Cargo searches for the Cargo.toml
�le in the current directory or any parent directory.

--frozen
--locked

Either of these �ags requires that the Cargo.lock �le is up-to-date. If the lock
�le is missing, or it needs to be updated, Cargo will exit with an error. The
--frozen �ag also prevents Cargo from attempting to access the network to

determine if it is out-of-date.

These may be used in environments where you want to assert that the
Cargo.lock �le is up-to-date (such as a CI build) or want to avoid network

access.

--offline
Prevents Cargo from accessing the network for any reason. Without this �ag,
Cargo will stop with an error if it needs to access the network and the
network is not available. With this �ag, Cargo will attempt to proceed without
the network if possible.

Beware that this may result in di�erent dependency resolution than online
mode. Cargo will restrict itself to crates that are downloaded locally, even if
there might be a newer version as indicated in the local copy of the index. See
the cargo-fetch(1) command to download dependencies before going o�ine.

May also be speci�ed with the net.offline con�g value.

Common Options

-h
--help

Prints help information.

-Z FLAG…
Unstable (nightly-only) �ags to Cargo. Run cargo -Z help for details.

ENVIRONMENT

See the reference for details on environment variables that Cargo reads.

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

Exit Status

0
Cargo succeeded.

101
Cargo failed to complete.

EXAMPLES

1. Fetch all dependencies:

SEE ALSO

cargo(1), cargo-update(1), cargo-generate-lock�le(1)

cargo fix

NAME

cargo-�x - Automatically �x lint warnings reported by rustc

SYNOPSIS

cargo fix [OPTIONS]

DESCRIPTION

cargo fetch

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

This Cargo subcommand will automatically take rustc’s suggestions from
diagnostics like warnings and apply them to your source code. This is intended to
help automate tasks that rustc itself already knows how to tell you to �x! The
cargo fix subcommand is also being developed for the Rust 2018 edition to

provide code the ability to easily opt-in to the new edition without having to worry
about any breakage.

Executing cargo fix will under the hood execute cargo-check(1). Any warnings
applicable to your crate will be automatically �xed (if possible) and all remaining
warnings will be displayed when the check process is �nished. For example if you’d
like to prepare for the 2018 edition, you can do so by executing:

which behaves the same as cargo check --all-targets . Similarly if you’d like to
�x code for di�erent platforms you can do:

or if your crate has optional features:

If you encounter any problems with cargo fix or otherwise have any questions
or feature requests please don’t hesitate to �le an issue at https://github.com/rust-
lang/cargo

OPTIONS

Fix options

--broken-code
Fix code even if it already has compiler errors. This is useful if cargo
fix fails to apply the changes. It will apply the changes and leave the broken
code in the working directory for you to inspect and manually �x.

--edition

cargo fix --edition

cargo fix --edition --target x86_64-pc-windows-gnu

cargo fix --edition --no-default-features --features foo

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

Apply changes that will update the code to the latest edition. This will not
update the edition in the Cargo.toml manifest, which must be updated
manually.

--edition-idioms
Apply suggestions that will update code to the preferred style for the current
edition.

--allow-no-vcs
Fix code even if a VCS was not detected.

--allow-dirty
Fix code even if the working directory has changes.

--allow-staged
Fix code even if the working directory has staged changes.

Package Selection

By default, when no package selection options are given, the packages selected
depend on the selected manifest �le (based on the current working directory if
--manifest-path is not given). If the manifest is the root of a workspace then the

workspaces default members are selected, otherwise only the package de�ned by
the manifest will be selected.

The default members of a workspace can be set explicitly with the
workspace.default-members key in the root manifest. If this is not set, a virtual

workspace will include all workspace members (equivalent to passing
--workspace), and a non-virtual workspace will include only the root crate itself.

-p SPEC…
--package SPEC…

Fix only the speci�ed packages. See cargo-pkgid(1) for the SPEC format. This
�ag may be speci�ed multiple times.

--workspace
Fix all members in the workspace.

--all
Deprecated alias for --workspace .

--exclude SPEC…
Exclude the speci�ed packages. Must be used in conjunction with the

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

--workspace �ag. This �ag may be speci�ed multiple times.

Target Selection

When no target selection options are given, cargo fix will �x all targets (--all-
targets implied). Binaries are skipped if they have required-features that are
missing.

Passing target selection �ags will �x only the speci�ed targets.

--lib
Fix the package’s library.

--bin NAME…
Fix the speci�ed binary. This �ag may be speci�ed multiple times.

--bins
Fix all binary targets.

--example NAME…
Fix the speci�ed example. This �ag may be speci�ed multiple times.

--examples
Fix all example targets.

--test NAME…
Fix the speci�ed integration test. This �ag may be speci�ed multiple times.

--tests
Fix all targets in test mode that have the test = true manifest �ag set. By
default this includes the library and binaries built as unittests, and integration
tests. Be aware that this will also build any required dependencies, so the lib
target may be built twice (once as a unittest, and once as a dependency for
binaries, integration tests, etc.). Targets may be enabled or disabled by
setting the test �ag in the manifest settings for the target.

--bench NAME…
Fix the speci�ed benchmark. This �ag may be speci�ed multiple times.

--benches
Fix all targets in benchmark mode that have the bench = true manifest �ag
set. By default this includes the library and binaries built as benchmarks, and
bench targets. Be aware that this will also build any required dependencies,

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

so the lib target may be built twice (once as a benchmark, and once as a
dependency for binaries, benchmarks, etc.). Targets may be enabled or
disabled by setting the bench �ag in the manifest settings for the target.

--all-targets
Fix all targets. This is equivalent to specifying --lib --bins
--tests --benches --examples .

Feature Selection

When no feature options are given, the default feature is activated for every
selected package.

--features FEATURES
Space or comma separated list of features to activate. These features only
apply to the current directory’s package. Features of direct dependencies may
be enabled with <dep-name>/<feature-name> syntax.

--all-features
Activate all available features of all selected packages.

--no-default-features
Do not activate the default feature of the current directory’s package.

Compilation Options

--target TRIPLE
Fix for the given architecture. The default is the host architecture. The general
format of the triple is <arch><sub>-<vendor>-<sys>-<abi> . Run rustc
--print target-list for a list of supported targets.

This may also be speci�ed with the build.target con�g value.

--release
Fix optimized artifacts with the release pro�le. See the PROFILES section for
details on how this a�ects pro�le selection.

--profile NAME
Changes �x behavior. Currently only test is supported, which will �x with
the #[cfg(test)] attribute enabled. This is useful to have it �x unit tests
which are usually excluded via the cfg attribute. This does not change the

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

actual pro�le used.

Output Options

--target-dir DIRECTORY
Directory for all generated artifacts and intermediate �les. May also be
speci�ed with the CARGO_TARGET_DIR environment variable, or the
build.target-dir con�g value. Defaults to target in the root of the

workspace.

Display Options

-v
--verbose

Use verbose output. May be speci�ed twice for "very verbose" output which
includes extra output such as dependency warnings and build script output.
May also be speci�ed with the term.verbose con�g value.

-q
--quiet

No output printed to stdout.

--color WHEN
Control when colored output is used. Valid values:

auto (default): Automatically detect if color support is available on the
terminal.
always : Always display colors.
never : Never display colors.

May also be speci�ed with the term.color con�g value.

--message-format FMT
The output format for diagnostic messages. Can be speci�ed multiple times
and consists of comma-separated values. Valid values:

human (default): Display in a human-readable text format.
short : Emit shorter, human-readable text messages.
json : Emit JSON messages to stdout. See the reference for more

details.
json-diagnostic-short : Ensure the rendered �eld of JSON messages

contains the "short" rendering from rustc.

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

json-diagnostic-rendered-ansi : Ensure the rendered �eld of JSON
messages contains embedded ANSI color codes for respecting rustc’s
default color scheme.
json-render-diagnostics : Instruct Cargo to not include rustc

diagnostics in in JSON messages printed, but instead Cargo itself should
render the JSON diagnostics coming from rustc. Cargo’s own JSON
diagnostics and others coming from rustc are still emitted.

Manifest Options

--manifest-path PATH
Path to the Cargo.toml �le. By default, Cargo searches for the Cargo.toml
�le in the current directory or any parent directory.

--frozen
--locked

Either of these �ags requires that the Cargo.lock �le is up-to-date. If the lock
�le is missing, or it needs to be updated, Cargo will exit with an error. The
--frozen �ag also prevents Cargo from attempting to access the network to

determine if it is out-of-date.

These may be used in environments where you want to assert that the
Cargo.lock �le is up-to-date (such as a CI build) or want to avoid network

access.

--offline
Prevents Cargo from accessing the network for any reason. Without this �ag,
Cargo will stop with an error if it needs to access the network and the
network is not available. With this �ag, Cargo will attempt to proceed without
the network if possible.

Beware that this may result in di�erent dependency resolution than online
mode. Cargo will restrict itself to crates that are downloaded locally, even if
there might be a newer version as indicated in the local copy of the index. See
the cargo-fetch(1) command to download dependencies before going o�ine.

May also be speci�ed with the net.offline con�g value.

Common Options

-h

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

--help
Prints help information.

-Z FLAG…
Unstable (nightly-only) �ags to Cargo. Run cargo -Z help for details.

Miscellaneous Options

-j N
--jobs N

Number of parallel jobs to run. May also be speci�ed with the build.jobs
con�g value. Defaults to the number of CPUs.

PROFILES

Pro�les may be used to con�gure compiler options such as optimization levels and
debug settings. See the reference for more details.

Pro�le selection depends on the target and crate being built. By default the dev or
test pro�les are used. If the --release �ag is given, then the release or bench

pro�les are used.

Target Default Profile --release Profile

lib, bin, example dev release

test, bench, or any target
in "test" or "bench" mode

test bench

Dependencies use the dev / release pro�les.

ENVIRONMENT

See the reference for details on environment variables that Cargo reads.

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

Exit Status

0
Cargo succeeded.

101
Cargo failed to complete.

EXAMPLES

1. Apply compiler suggestions to the local package:

2. Convert a 2015 edition to 2018:

3. Apply suggested idioms for the current edition:

SEE ALSO

cargo(1), cargo-check(1)

cargo run

NAME

cargo-run - Run the current package

SYNOPSIS

cargo fix

cargo fix --edition

cargo fix --edition-idioms

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

cargo run [OPTIONS] [-- ARGS]

DESCRIPTION

Run a binary or example of the local package.

All the arguments following the two dashes (--) are passed to the binary to run. If
you’re passing arguments to both Cargo and the binary, the ones after -- go to
the binary, the ones before go to Cargo.

OPTIONS

Package Selection

By default, the package in the current working directory is selected. The -p �ag
can be used to choose a di�erent package in a workspace.

-p SPEC
--package SPEC

The package to run. See cargo-pkgid(1) for the SPEC format.

Target Selection

When no target selection options are given, cargo run will run the binary target. If
there are multiple binary targets, you must pass a target �ag to choose one. Or,
the default-run �eld may be speci�ed in the [package] section of Cargo.toml
to choose the name of the binary to run by default.

--bin NAME
Run the speci�ed binary.

--example NAME
Run the speci�ed example.

Feature Selection

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

When no feature options are given, the default feature is activated for every
selected package.

--features FEATURES
Space or comma separated list of features to activate. These features only
apply to the current directory’s package. Features of direct dependencies may
be enabled with <dep-name>/<feature-name> syntax.

--all-features
Activate all available features of all selected packages.

--no-default-features
Do not activate the default feature of the current directory’s package.

Compilation Options

--target TRIPLE
Run for the given architecture. The default is the host architecture. The
general format of the triple is <arch><sub>-<vendor>-<sys>-<abi> . Run
rustc --print target-list for a list of supported targets.

This may also be speci�ed with the build.target con�g value.

--release
Run optimized artifacts with the release pro�le. See the PROFILES section
for details on how this a�ects pro�le selection.

Output Options

--target-dir DIRECTORY
Directory for all generated artifacts and intermediate �les. May also be
speci�ed with the CARGO_TARGET_DIR environment variable, or the
build.target-dir con�g value. Defaults to target in the root of the

workspace.

Display Options

-v
--verbose

Use verbose output. May be speci�ed twice for "very verbose" output which

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

includes extra output such as dependency warnings and build script output.
May also be speci�ed with the term.verbose con�g value.

-q
--quiet

No output printed to stdout.

--color WHEN
Control when colored output is used. Valid values:

auto (default): Automatically detect if color support is available on the
terminal.
always : Always display colors.
never : Never display colors.

May also be speci�ed with the term.color con�g value.

--message-format FMT
The output format for diagnostic messages. Can be speci�ed multiple times
and consists of comma-separated values. Valid values:

human (default): Display in a human-readable text format.
short : Emit shorter, human-readable text messages.
json : Emit JSON messages to stdout. See the reference for more

details.
json-diagnostic-short : Ensure the rendered �eld of JSON messages

contains the "short" rendering from rustc.
json-diagnostic-rendered-ansi : Ensure the rendered �eld of JSON

messages contains embedded ANSI color codes for respecting rustc’s
default color scheme.
json-render-diagnostics : Instruct Cargo to not include rustc

diagnostics in in JSON messages printed, but instead Cargo itself should
render the JSON diagnostics coming from rustc. Cargo’s own JSON
diagnostics and others coming from rustc are still emitted.

Manifest Options

--manifest-path PATH
Path to the Cargo.toml �le. By default, Cargo searches for the Cargo.toml
�le in the current directory or any parent directory.

--frozen
--locked

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

Either of these �ags requires that the Cargo.lock �le is up-to-date. If the lock
�le is missing, or it needs to be updated, Cargo will exit with an error. The
--frozen �ag also prevents Cargo from attempting to access the network to

determine if it is out-of-date.

These may be used in environments where you want to assert that the
Cargo.lock �le is up-to-date (such as a CI build) or want to avoid network

access.

--offline
Prevents Cargo from accessing the network for any reason. Without this �ag,
Cargo will stop with an error if it needs to access the network and the
network is not available. With this �ag, Cargo will attempt to proceed without
the network if possible.

Beware that this may result in di�erent dependency resolution than online
mode. Cargo will restrict itself to crates that are downloaded locally, even if
there might be a newer version as indicated in the local copy of the index. See
the cargo-fetch(1) command to download dependencies before going o�ine.

May also be speci�ed with the net.offline con�g value.

Common Options

-h
--help

Prints help information.

-Z FLAG…
Unstable (nightly-only) �ags to Cargo. Run cargo -Z help for details.

Miscellaneous Options

-j N
--jobs N

Number of parallel jobs to run. May also be speci�ed with the build.jobs
con�g value. Defaults to the number of CPUs.

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

PROFILES

Pro�les may be used to con�gure compiler options such as optimization levels and
debug settings. See the reference for more details.

Pro�le selection depends on the target and crate being built. By default the dev or
test pro�les are used. If the --release �ag is given, then the release or bench

pro�les are used.

Target Default Profile --release Profile

lib, bin, example dev release

test, bench, or any target
in "test" or "bench" mode

test bench

Dependencies use the dev / release pro�les.

ENVIRONMENT

See the reference for details on environment variables that Cargo reads.

Exit Status

0
Cargo succeeded.

101
Cargo failed to complete.

EXAMPLES

1. Build the local package and run its main target (assuming only one binary):

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

2. Run an example with extra arguments:

SEE ALSO

cargo(1), cargo-build(1)

cargo rustc

NAME

cargo-rustc - Compile the current package, and pass extra options to the compiler

SYNOPSIS

cargo rustc [OPTIONS] [-- ARGS]

DESCRIPTION

The speci�ed target for the current package (or package speci�ed by -p if
provided) will be compiled along with all of its dependencies. The speci�ed ARGS
will all be passed to the �nal compiler invocation, not any of the dependencies.
Note that the compiler will still unconditionally receive arguments such as -L ,
--extern , and --crate-type , and the speci�ed ARGS will simply be added to the

compiler invocation.

See https://doc.rust-lang.org/rustc/index.html for documentation on rustc �ags.

This command requires that only one target is being compiled when additional

cargo run

cargo run --example exname -- --exoption exarg1 exarg2

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

arguments are provided. If more than one target is available for the current
package the �lters of --lib , --bin , etc, must be used to select which target is
compiled. To pass �ags to all compiler processes spawned by Cargo, use the
RUSTFLAGS environment variable or the build.rustflags con�g value.

OPTIONS

Package Selection

By default, the package in the current working directory is selected. The -p �ag
can be used to choose a di�erent package in a workspace.

-p SPEC
--package SPEC

The package to build. See cargo-pkgid(1) for the SPEC format.

Target Selection

When no target selection options are given, cargo rustc will build all binary and
library targets of the selected package.

Passing target selection �ags will build only the speci�ed targets.

--lib
Build the package’s library.

--bin NAME…
Build the speci�ed binary. This �ag may be speci�ed multiple times.

--bins
Build all binary targets.

--example NAME…
Build the speci�ed example. This �ag may be speci�ed multiple times.

--examples
Build all example targets.

--test NAME…

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

Build the speci�ed integration test. This �ag may be speci�ed multiple times.

--tests
Build all targets in test mode that have the test = true manifest �ag set. By
default this includes the library and binaries built as unittests, and integration
tests. Be aware that this will also build any required dependencies, so the lib
target may be built twice (once as a unittest, and once as a dependency for
binaries, integration tests, etc.). Targets may be enabled or disabled by
setting the test �ag in the manifest settings for the target.

--bench NAME…
Build the speci�ed benchmark. This �ag may be speci�ed multiple times.

--benches
Build all targets in benchmark mode that have the bench = true manifest
�ag set. By default this includes the library and binaries built as benchmarks,
and bench targets. Be aware that this will also build any required
dependencies, so the lib target may be built twice (once as a benchmark, and
once as a dependency for binaries, benchmarks, etc.). Targets may be
enabled or disabled by setting the bench �ag in the manifest settings for the
target.

--all-targets
Build all targets. This is equivalent to specifying --lib --bins
--tests --benches --examples .

Feature Selection

When no feature options are given, the default feature is activated for every
selected package.

--features FEATURES
Space or comma separated list of features to activate. These features only
apply to the current directory’s package. Features of direct dependencies may
be enabled with <dep-name>/<feature-name> syntax.

--all-features
Activate all available features of all selected packages.

--no-default-features
Do not activate the default feature of the current directory’s package.

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

Compilation Options

--target TRIPLE
Build for the given architecture. The default is the host architecture. The
general format of the triple is <arch><sub>-<vendor>-<sys>-<abi> . Run
rustc --print target-list for a list of supported targets.

This may also be speci�ed with the build.target con�g value.

--release
Build optimized artifacts with the release pro�le. See the PROFILES section
for details on how this a�ects pro�le selection.

Output Options

--target-dir DIRECTORY
Directory for all generated artifacts and intermediate �les. May also be
speci�ed with the CARGO_TARGET_DIR environment variable, or the
build.target-dir con�g value. Defaults to target in the root of the

workspace.

Display Options

-v
--verbose

Use verbose output. May be speci�ed twice for "very verbose" output which
includes extra output such as dependency warnings and build script output.
May also be speci�ed with the term.verbose con�g value.

-q
--quiet

No output printed to stdout.

--color WHEN
Control when colored output is used. Valid values:

auto (default): Automatically detect if color support is available on the
terminal.
always : Always display colors.
never : Never display colors.

May also be speci�ed with the term.color con�g value.

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

--message-format FMT
The output format for diagnostic messages. Can be speci�ed multiple times
and consists of comma-separated values. Valid values:

human (default): Display in a human-readable text format.
short : Emit shorter, human-readable text messages.
json : Emit JSON messages to stdout. See the reference for more

details.
json-diagnostic-short : Ensure the rendered �eld of JSON messages

contains the "short" rendering from rustc.
json-diagnostic-rendered-ansi : Ensure the rendered �eld of JSON

messages contains embedded ANSI color codes for respecting rustc’s
default color scheme.
json-render-diagnostics : Instruct Cargo to not include rustc

diagnostics in in JSON messages printed, but instead Cargo itself should
render the JSON diagnostics coming from rustc. Cargo’s own JSON
diagnostics and others coming from rustc are still emitted.

Manifest Options

--manifest-path PATH
Path to the Cargo.toml �le. By default, Cargo searches for the Cargo.toml
�le in the current directory or any parent directory.

--frozen
--locked

Either of these �ags requires that the Cargo.lock �le is up-to-date. If the lock
�le is missing, or it needs to be updated, Cargo will exit with an error. The
--frozen �ag also prevents Cargo from attempting to access the network to

determine if it is out-of-date.

These may be used in environments where you want to assert that the
Cargo.lock �le is up-to-date (such as a CI build) or want to avoid network

access.

--offline
Prevents Cargo from accessing the network for any reason. Without this �ag,
Cargo will stop with an error if it needs to access the network and the
network is not available. With this �ag, Cargo will attempt to proceed without
the network if possible.

Beware that this may result in di�erent dependency resolution than online

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

mode. Cargo will restrict itself to crates that are downloaded locally, even if
there might be a newer version as indicated in the local copy of the index. See
the cargo-fetch(1) command to download dependencies before going o�ine.

May also be speci�ed with the net.offline con�g value.

Common Options

-h
--help

Prints help information.

-Z FLAG…
Unstable (nightly-only) �ags to Cargo. Run cargo -Z help for details.

Miscellaneous Options

-j N
--jobs N

Number of parallel jobs to run. May also be speci�ed with the build.jobs
con�g value. Defaults to the number of CPUs.

PROFILES

Pro�les may be used to con�gure compiler options such as optimization levels and
debug settings. See the reference for more details.

Pro�le selection depends on the target and crate being built. By default the dev or
test pro�les are used. If the --release �ag is given, then the release or bench

pro�les are used.

Target Default Profile --release Profile

lib, bin, example dev release

test, bench, or any target
in "test" or "bench" mode

test bench

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

Dependencies use the dev / release pro�les.

ENVIRONMENT

See the reference for details on environment variables that Cargo reads.

Exit Status

0
Cargo succeeded.

101
Cargo failed to complete.

EXAMPLES

1. Check if your package (not including dependencies) uses unsafe code:

2. Try an experimental �ag on the nightly compiler, such as this which prints the
size of every type:

SEE ALSO

cargo(1), cargo-build(1), rustc(1)

cargo rustdoc

cargo rustc --lib -- -D unsafe-code

cargo rustc --lib -- -Z print-type-sizes

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

NAME

cargo-rustdoc - Build a package's documentation, using speci�ed custom �ags

SYNOPSIS

cargo rustdoc [OPTIONS] [-- ARGS]

DESCRIPTION

The speci�ed target for the current package (or package speci�ed by -p if
provided) will be documented with the speci�ed ARGS being passed to the �nal
rustdoc invocation. Dependencies will not be documented as part of this
command. Note that rustdoc will still unconditionally receive arguments such as
-L , --extern , and --crate-type , and the speci�ed ARGS will simply be added to

the rustdoc invocation.

See https://doc.rust-lang.org/rustdoc/index.html for documentation on rustdoc
�ags.

This command requires that only one target is being compiled when additional
arguments are provided. If more than one target is available for the current
package the �lters of --lib , --bin , etc, must be used to select which target is
compiled. To pass �ags to all rustdoc processes spawned by Cargo, use the
RUSTDOCFLAGS environment variable or the build.rustdocflags con�guration

option.

OPTIONS

Documentation Options

--open
Open the docs in a browser after building them. This will use your default
browser unless you de�ne another one in the BROWSER environment variable.

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

Package Selection

By default, the package in the current working directory is selected. The -p �ag
can be used to choose a di�erent package in a workspace.

-p SPEC
--package SPEC

The package to document. See cargo-pkgid(1) for the SPEC format.

Target Selection

When no target selection options are given, cargo rustdoc will document all
binary and library targets of the selected package. The binary will be skipped if its
name is the same as the lib target. Binaries are skipped if they have required-
features that are missing.

Passing target selection �ags will document only the speci�ed targets.

--lib
Document the package’s library.

--bin NAME…
Document the speci�ed binary. This �ag may be speci�ed multiple times.

--bins
Document all binary targets.

--example NAME…
Document the speci�ed example. This �ag may be speci�ed multiple times.

--examples
Document all example targets.

--test NAME…
Document the speci�ed integration test. This �ag may be speci�ed multiple
times.

--tests
Document all targets in test mode that have the test = true manifest �ag
set. By default this includes the library and binaries built as unittests, and
integration tests. Be aware that this will also build any required
dependencies, so the lib target may be built twice (once as a unittest, and
once as a dependency for binaries, integration tests, etc.). Targets may be

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

enabled or disabled by setting the test �ag in the manifest settings for the
target.

--bench NAME…
Document the speci�ed benchmark. This �ag may be speci�ed multiple
times.

--benches
Document all targets in benchmark mode that have the bench = true
manifest �ag set. By default this includes the library and binaries built as
benchmarks, and bench targets. Be aware that this will also build any
required dependencies, so the lib target may be built twice (once as a
benchmark, and once as a dependency for binaries, benchmarks, etc.).
Targets may be enabled or disabled by setting the bench �ag in the manifest
settings for the target.

--all-targets
Document all targets. This is equivalent to specifying --lib --bins
--tests --benches --examples .

Feature Selection

When no feature options are given, the default feature is activated for every
selected package.

--features FEATURES
Space or comma separated list of features to activate. These features only
apply to the current directory’s package. Features of direct dependencies may
be enabled with <dep-name>/<feature-name> syntax.

--all-features
Activate all available features of all selected packages.

--no-default-features
Do not activate the default feature of the current directory’s package.

Compilation Options

--target TRIPLE
Document for the given architecture. The default is the host architecture. The
general format of the triple is <arch><sub>-<vendor>-<sys>-<abi> . Run

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

rustc --print target-list for a list of supported targets.

This may also be speci�ed with the build.target con�g value.

--release
Document optimized artifacts with the release pro�le. See the PROFILES
section for details on how this a�ects pro�le selection.

Output Options

--target-dir DIRECTORY
Directory for all generated artifacts and intermediate �les. May also be
speci�ed with the CARGO_TARGET_DIR environment variable, or the
build.target-dir con�g value. Defaults to target in the root of the

workspace.

Display Options

-v
--verbose

Use verbose output. May be speci�ed twice for "very verbose" output which
includes extra output such as dependency warnings and build script output.
May also be speci�ed with the term.verbose con�g value.

-q
--quiet

No output printed to stdout.

--color WHEN
Control when colored output is used. Valid values:

auto (default): Automatically detect if color support is available on the
terminal.
always : Always display colors.
never : Never display colors.

May also be speci�ed with the term.color con�g value.

--message-format FMT
The output format for diagnostic messages. Can be speci�ed multiple times
and consists of comma-separated values. Valid values:

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

human (default): Display in a human-readable text format.
short : Emit shorter, human-readable text messages.
json : Emit JSON messages to stdout. See the reference for more

details.
json-diagnostic-short : Ensure the rendered �eld of JSON messages

contains the "short" rendering from rustc.
json-diagnostic-rendered-ansi : Ensure the rendered �eld of JSON

messages contains embedded ANSI color codes for respecting rustc’s
default color scheme.
json-render-diagnostics : Instruct Cargo to not include rustc

diagnostics in in JSON messages printed, but instead Cargo itself should
render the JSON diagnostics coming from rustc. Cargo’s own JSON
diagnostics and others coming from rustc are still emitted.

Manifest Options

--manifest-path PATH
Path to the Cargo.toml �le. By default, Cargo searches for the Cargo.toml
�le in the current directory or any parent directory.

--frozen
--locked

Either of these �ags requires that the Cargo.lock �le is up-to-date. If the lock
�le is missing, or it needs to be updated, Cargo will exit with an error. The
--frozen �ag also prevents Cargo from attempting to access the network to

determine if it is out-of-date.

These may be used in environments where you want to assert that the
Cargo.lock �le is up-to-date (such as a CI build) or want to avoid network

access.

--offline
Prevents Cargo from accessing the network for any reason. Without this �ag,
Cargo will stop with an error if it needs to access the network and the
network is not available. With this �ag, Cargo will attempt to proceed without
the network if possible.

Beware that this may result in di�erent dependency resolution than online
mode. Cargo will restrict itself to crates that are downloaded locally, even if
there might be a newer version as indicated in the local copy of the index. See
the cargo-fetch(1) command to download dependencies before going o�ine.

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

May also be speci�ed with the net.offline con�g value.

Common Options

-h
--help

Prints help information.

-Z FLAG…
Unstable (nightly-only) �ags to Cargo. Run cargo -Z help for details.

Miscellaneous Options

-j N
--jobs N

Number of parallel jobs to run. May also be speci�ed with the build.jobs
con�g value. Defaults to the number of CPUs.

PROFILES

Pro�les may be used to con�gure compiler options such as optimization levels and
debug settings. See the reference for more details.

Pro�le selection depends on the target and crate being built. By default the dev or
test pro�les are used. If the --release �ag is given, then the release or bench

pro�les are used.

Target Default Profile --release Profile

lib, bin, example dev release

test, bench, or any target
in "test" or "bench" mode

test bench

Dependencies use the dev / release pro�les.

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

ENVIRONMENT

See the reference for details on environment variables that Cargo reads.

Exit Status

0
Cargo succeeded.

101
Cargo failed to complete.

EXAMPLES

1. Build documentation with custom CSS included from a given �le:

SEE ALSO

cargo(1), cargo-doc(1), rustdoc(1)

cargo test

NAME

cargo-test - Execute unit and integration tests of a package

SYNOPSIS

cargo rustdoc --lib -- --extend-css extra.css

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

cargo test [OPTIONS] [TESTNAME] [-- TEST-OPTIONS]

DESCRIPTION

Compile and execute unit and integration tests.

The test �ltering argument TESTNAME and all the arguments following the two
dashes (--) are passed to the test binaries and thus to libtest (rustc’s built in unit-
test and micro-benchmarking framework). If you’re passing arguments to both
Cargo and the binary, the ones after -- go to the binary, the ones before go to
Cargo. For details about libtest’s arguments see the output of cargo test —

--help . As an example, this will run all tests with foo in their name on 3 threads
in parallel:

Tests are built with the --test option to rustc which creates an executable with
a main function that automatically runs all functions annotated with the #[test]
attribute in multiple threads. #[bench] annotated functions will also be run with
one iteration to verify that they are functional.

The libtest harness may be disabled by setting harness = false in the target
manifest settings, in which case your code will need to provide its own main
function to handle running tests.

Documentation tests are also run by default, which is handled by rustdoc . It
extracts code samples from documentation comments and executes them. See the
rustdoc book for more information on writing doc tests.

OPTIONS

Test Options

--no-run
Compile, but don’t run tests.

cargo test foo -- --test-threads 3

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

--no-fail-fast
Run all tests regardless of failure. Without this �ag, Cargo will exit after the
�rst executable fails. The Rust test harness will run all tests within the
executable to completion, this �ag only applies to the executable as a whole.

Package Selection

By default, when no package selection options are given, the packages selected
depend on the selected manifest �le (based on the current working directory if
--manifest-path is not given). If the manifest is the root of a workspace then the

workspaces default members are selected, otherwise only the package de�ned by
the manifest will be selected.

The default members of a workspace can be set explicitly with the
workspace.default-members key in the root manifest. If this is not set, a virtual

workspace will include all workspace members (equivalent to passing
--workspace), and a non-virtual workspace will include only the root crate itself.

-p SPEC…
--package SPEC…

Test only the speci�ed packages. See cargo-pkgid(1) for the SPEC format. This
�ag may be speci�ed multiple times.

--workspace
Test all members in the workspace.

--all
Deprecated alias for --workspace .

--exclude SPEC…
Exclude the speci�ed packages. Must be used in conjunction with the
--workspace �ag. This �ag may be speci�ed multiple times.

Target Selection

When no target selection options are given, cargo test will build the following
targets of the selected packages:

lib — used to link with binaries, examples, integration tests, and doc tests
bins (only if integration tests are built and required features are available)
examples — to ensure they compile

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

lib as a unit test
bins as unit tests
integration tests
doc tests for the lib target

The default behavior can be changed by setting the test �ag for the target in the
manifest settings. Setting examples to test = true will build and run the example
as a test. Setting targets to test = false will stop them from being tested by
default. Target selection options that take a target by name ignore the test �ag
and will always test the given target.

Doc tests for libraries may be disabled by setting doctest = false for the library
in the manifest.

Passing target selection �ags will test only the speci�ed targets.

--lib
Test the package’s library.

--bin NAME…
Test the speci�ed binary. This �ag may be speci�ed multiple times.

--bins
Test all binary targets.

--example NAME…
Test the speci�ed example. This �ag may be speci�ed multiple times.

--examples
Test all example targets.

--test NAME…
Test the speci�ed integration test. This �ag may be speci�ed multiple times.

--tests
Test all targets in test mode that have the test = true manifest �ag set. By
default this includes the library and binaries built as unittests, and integration
tests. Be aware that this will also build any required dependencies, so the lib
target may be built twice (once as a unittest, and once as a dependency for
binaries, integration tests, etc.). Targets may be enabled or disabled by
setting the test �ag in the manifest settings for the target.

--bench NAME…
Test the speci�ed benchmark. This �ag may be speci�ed multiple times.

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

--benches
Test all targets in benchmark mode that have the bench = true manifest
�ag set. By default this includes the library and binaries built as benchmarks,
and bench targets. Be aware that this will also build any required
dependencies, so the lib target may be built twice (once as a benchmark, and
once as a dependency for binaries, benchmarks, etc.). Targets may be
enabled or disabled by setting the bench �ag in the manifest settings for the
target.

--all-targets
Test all targets. This is equivalent to specifying --lib --bins
--tests --benches --examples .

--doc
Test only the library’s documentation. This cannot be mixed with other target
options.

Feature Selection

When no feature options are given, the default feature is activated for every
selected package.

--features FEATURES
Space or comma separated list of features to activate. These features only
apply to the current directory’s package. Features of direct dependencies may
be enabled with <dep-name>/<feature-name> syntax.

--all-features
Activate all available features of all selected packages.

--no-default-features
Do not activate the default feature of the current directory’s package.

Compilation Options

--target TRIPLE
Test for the given architecture. The default is the host architecture. The
general format of the triple is <arch><sub>-<vendor>-<sys>-<abi> . Run
rustc --print target-list for a list of supported targets.

This may also be speci�ed with the build.target con�g value.

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

--release
Test optimized artifacts with the release pro�le. See the PROFILES section
for details on how this a�ects pro�le selection.

Output Options

--target-dir DIRECTORY
Directory for all generated artifacts and intermediate �les. May also be
speci�ed with the CARGO_TARGET_DIR environment variable, or the
build.target-dir con�g value. Defaults to target in the root of the

workspace.

Display Options

By default the Rust test harness hides output from test execution to keep results
readable. Test output can be recovered (e.g., for debugging) by passing
--nocapture to the test binaries:

-v
--verbose

Use verbose output. May be speci�ed twice for "very verbose" output which
includes extra output such as dependency warnings and build script output.
May also be speci�ed with the term.verbose con�g value.

-q
--quiet

No output printed to stdout.

--color WHEN
Control when colored output is used. Valid values:

auto (default): Automatically detect if color support is available on the
terminal.
always : Always display colors.
never : Never display colors.

May also be speci�ed with the term.color con�g value.

--message-format FMT

cargo test -- --nocapture

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

The output format for diagnostic messages. Can be speci�ed multiple times
and consists of comma-separated values. Valid values:

human (default): Display in a human-readable text format.
short : Emit shorter, human-readable text messages.
json : Emit JSON messages to stdout. See the reference for more

details.
json-diagnostic-short : Ensure the rendered �eld of JSON messages

contains the "short" rendering from rustc.
json-diagnostic-rendered-ansi : Ensure the rendered �eld of JSON

messages contains embedded ANSI color codes for respecting rustc’s
default color scheme.
json-render-diagnostics : Instruct Cargo to not include rustc

diagnostics in in JSON messages printed, but instead Cargo itself should
render the JSON diagnostics coming from rustc. Cargo’s own JSON
diagnostics and others coming from rustc are still emitted.

Manifest Options

--manifest-path PATH
Path to the Cargo.toml �le. By default, Cargo searches for the Cargo.toml
�le in the current directory or any parent directory.

--frozen
--locked

Either of these �ags requires that the Cargo.lock �le is up-to-date. If the lock
�le is missing, or it needs to be updated, Cargo will exit with an error. The
--frozen �ag also prevents Cargo from attempting to access the network to

determine if it is out-of-date.

These may be used in environments where you want to assert that the
Cargo.lock �le is up-to-date (such as a CI build) or want to avoid network

access.

--offline
Prevents Cargo from accessing the network for any reason. Without this �ag,
Cargo will stop with an error if it needs to access the network and the
network is not available. With this �ag, Cargo will attempt to proceed without
the network if possible.

Beware that this may result in di�erent dependency resolution than online
mode. Cargo will restrict itself to crates that are downloaded locally, even if

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

there might be a newer version as indicated in the local copy of the index. See
the cargo-fetch(1) command to download dependencies before going o�ine.

May also be speci�ed with the net.offline con�g value.

Common Options

-h
--help

Prints help information.

-Z FLAG…
Unstable (nightly-only) �ags to Cargo. Run cargo -Z help for details.

Miscellaneous Options

The --jobs argument a�ects the building of the test executable but does not
a�ect how many threads are used when running the tests. The Rust test harness
includes an option to control the number of threads used:

-j N
--jobs N

Number of parallel jobs to run. May also be speci�ed with the build.jobs
con�g value. Defaults to the number of CPUs.

PROFILES

Pro�les may be used to con�gure compiler options such as optimization levels and
debug settings. See the reference for more details.

Pro�le selection depends on the target and crate being built. By default the dev or
test pro�les are used. If the --release �ag is given, then the release or bench

pro�les are used.

Target Default Profile --release Profile

cargo test -j 2 -- --test-threads=2

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

Target Default Profile --release Profile

lib, bin, example dev release

test, bench, or any target
in "test" or "bench" mode

test bench

Dependencies use the dev / release pro�les.

Unit tests are separate executable artifacts which use the test / bench pro�les.
Example targets are built the same as with cargo build (using the dev / release
pro�les) unless you are building them with the test harness (by setting test =
true in the manifest or using the --example �ag) in which case they use the
test / bench pro�les. Library targets are built with the dev / release pro�les

when linked to an integration test, binary, or doctest.

ENVIRONMENT

See the reference for details on environment variables that Cargo reads.

Exit Status

0
Cargo succeeded.

101
Cargo failed to complete.

EXAMPLES

1. Execute all the unit and integration tests of the current package:

2. Run only a speci�c test within a speci�c integration test:

cargo test

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

SEE ALSO

cargo(1), cargo-bench(1)

Manifest Commands

cargo generate-lockfile

NAME

cargo-generate-lock�le - Generate the lock�le for a package

SYNOPSIS

cargo generate-lockfile [OPTIONS]

DESCRIPTION

This command will create the Cargo.lock lock�le for the current package or
workspace. If the lock�le already exists, it will be rebuilt if there are any manifest
changes or dependency updates.

See also cargo-update(1) which is also capable of creating a Cargo.lock lock�le
and has more options for controlling update behavior.

OPTIONS

cargo test --test int_test_name -- modname::test_name

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

Display Options

-v
--verbose

Use verbose output. May be speci�ed twice for "very verbose" output which
includes extra output such as dependency warnings and build script output.
May also be speci�ed with the term.verbose con�g value.

-q
--quiet

No output printed to stdout.

--color WHEN
Control when colored output is used. Valid values:

auto (default): Automatically detect if color support is available on the
terminal.
always : Always display colors.
never : Never display colors.

May also be speci�ed with the term.color con�g value.

Manifest Options

--manifest-path PATH
Path to the Cargo.toml �le. By default, Cargo searches for the Cargo.toml
�le in the current directory or any parent directory.

--frozen
--locked

Either of these �ags requires that the Cargo.lock �le is up-to-date. If the lock
�le is missing, or it needs to be updated, Cargo will exit with an error. The
--frozen �ag also prevents Cargo from attempting to access the network to

determine if it is out-of-date.

These may be used in environments where you want to assert that the
Cargo.lock �le is up-to-date (such as a CI build) or want to avoid network

access.

--offline
Prevents Cargo from accessing the network for any reason. Without this �ag,
Cargo will stop with an error if it needs to access the network and the
network is not available. With this �ag, Cargo will attempt to proceed without

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

the network if possible.

Beware that this may result in di�erent dependency resolution than online
mode. Cargo will restrict itself to crates that are downloaded locally, even if
there might be a newer version as indicated in the local copy of the index. See
the cargo-fetch(1) command to download dependencies before going o�ine.

May also be speci�ed with the net.offline con�g value.

Common Options

-h
--help

Prints help information.

-Z FLAG…
Unstable (nightly-only) �ags to Cargo. Run cargo -Z help for details.

ENVIRONMENT

See the reference for details on environment variables that Cargo reads.

Exit Status

0
Cargo succeeded.

101
Cargo failed to complete.

EXAMPLES

1. Create or update the lock�le for the current package or workspace:

cargo generate-lockfile

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

SEE ALSO

cargo(1), cargo-update(1)

cargo locate-project

NAME

cargo-locate-project - Print a JSON representation of a Cargo.toml �le's location

SYNOPSIS

cargo locate-project [OPTIONS]

DESCRIPTION

This command will print a JSON object to stdout with the full path to the
Cargo.toml manifest.

See also cargo-metadata(1) which is capable of returning the path to a workspace
root.

OPTIONS

Display Options

-v
--verbose

Use verbose output. May be speci�ed twice for "very verbose" output which
includes extra output such as dependency warnings and build script output.
May also be speci�ed with the term.verbose con�g value.

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

-q
--quiet

No output printed to stdout.

--color WHEN
Control when colored output is used. Valid values:

auto (default): Automatically detect if color support is available on the
terminal.
always : Always display colors.
never : Never display colors.

May also be speci�ed with the term.color con�g value.

Manifest Options

--manifest-path PATH
Path to the Cargo.toml �le. By default, Cargo searches for the Cargo.toml
�le in the current directory or any parent directory.

Common Options

-h
--help

Prints help information.

-Z FLAG…
Unstable (nightly-only) �ags to Cargo. Run cargo -Z help for details.

ENVIRONMENT

See the reference for details on environment variables that Cargo reads.

Exit Status

0
Cargo succeeded.

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

101
Cargo failed to complete.

EXAMPLES

1. Display the path to the manifest based on the current directory:

SEE ALSO

cargo(1), cargo-metadata(1)

cargo metadata

NAME

cargo-metadata - Machine-readable metadata about the current package

SYNOPSIS

cargo metadata [OPTIONS]

DESCRIPTION

Output the resolved dependencies of a package, the concrete used versions
including overrides, in JSON to stdout.

It is recommended to include the --format-version �ag to future-proof your code
to ensure the output is in the format you are expecting.

cargo locate-project

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

See the cargo_metadata crate for a Rust API for reading the metadata.

OUTPUT FORMAT

The output has the following format:

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

{
/* Array of all packages in the workspace.

 It also includes all feature-enabled dependencies unless
--no-deps is used.
 */

"packages": [
 {

/* The name of the package. */
"name": "my-package",
/* The version of the package. */
"version": "0.1.0",
/* The Package ID, a unique identifier for referring to

the package. */
"id": "my-package 0.1.0 (path+file:///path/to/my-

package)",
/* The license value from the manifest, or null. */
"license": "MIT/Apache-2.0",
/* The license-file value from the manifest, or null. */
"license_file": "LICENSE",
/* The description value from the manifest, or null. */
"description": "Package description.",
/* The source ID of the package. This represents where

 a package is retrieved from.
 This is null for path dependencies and workspace
members.
 For other dependencies, it is a string with the
format:
 - "registry+URL" for registry-based dependencies.
 Example: "registry+https://github.com/rust-
lang/crates.io-index"
 - "git+URL" for git-based dependencies.
 Example: "git+https://github.com/rust-
lang/cargo?rev=5e85ba14aaa20f8133863373404cb0af69eeef2c#5e85ba14aaa20f8133863373404cb0a
 */

"source": null,
/* Array of dependencies declared in the package's

manifest. */
"dependencies": [

 {
/* The name of the dependency. */
"name": "bitflags",
/* The source ID of the dependency. May be null,

see
 description for the package source.
 */

"source": "registry+https://github.com/rust-
lang/crates.io-index",

/* The version requirement for the dependency.
 Dependencies without a version requirement

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

have a value of "*".
 */

"req": "^1.0",
/* The dependency kind.

 "dev", "build", or null for a normal
dependency.
 */

"kind": null,
/* If the dependency is renamed, this is the new

name for
 the dependency as a string. null if it is
not renamed.
 */

"rename": null,
/* Boolean of whether or not this is an optional

dependency. */
"optional": false,
/* Boolean of whether or not default features

are enabled. */
"uses_default_features": true,
/* Array of features enabled. */
"features": [],
/* The target platform for the dependency.

 null if not a target dependency.
 */

"target": "cfg(windows)",
/* A string of the URL of the registry this

dependency is from.
 If not specified or null, the dependency is
from the default
 registry (crates.io).
 */

"registry": null
 }
],

/* Array of Cargo targets. */
"targets": [

 {
/* Array of target kinds.

 - lib targets list the `crate-type` values
from the
 manifest such as "lib", "rlib", "dylib",
 "proc-macro", etc. (default ["lib"])
 - binary is ["bin"]
 - example is ["example"]
 - integration test is ["test"]
 - benchmark is ["bench"]
 - build script is ["custom-build"]
 */

"kind": [

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

"bin"
],

/* Array of crate types.
 - lib and example libraries list the `crate-
type` values
 from the manifest such as "lib", "rlib",
"dylib",
 "proc-macro", etc. (default ["lib"])
 - all other target kinds are ["bin"]
 */

"crate_types": [
"bin"

],
/* The name of the target. */
"name": "my-package",
/* Absolute path to the root source file of the

target. */
"src_path": "/path/to/my-package/src/main.rs",
/* The Rust edition of the target.

 Defaults to the package edition.
 */

"edition": "2018",
/* Array of required features.

 This property is not included if no required
features are set.
 */

"required-features": ["feat1"],
/* Whether or not this target has doc tests

enabled, and
 the target is compatible with doc testing.
 */

"doctest": false
 }
],

/* Set of features defined for the package.
 Each feature maps to an array of features or
dependencies it
 enables.
 */

"features": {
"default": [

"feat1"
],

"feat1": [],
"feat2": []

 },
/* Absolute path to this package's manifest. */
"manifest_path": "/path/to/my-package/Cargo.toml",
/* Package metadata.

 This is null if no metadata is specified.

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

 */
"metadata": {

"docs": {
"rs": {

"all-features": true
 }
 }
 },

/* List of registries to which this package may be
published.
 Publishing is unrestricted if null, and forbidden if
an empty array. */

"publish": [
"crates-io"

],
/* Array of authors from the manifest.

 Empty array if no authors specified.
 */

"authors": [
"Jane Doe <user@example.com>"

],
/* Array of categories from the manifest. */
"categories": [

"command-line-utilities"
],

/* Array of keywords from the manifest. */
"keywords": [

"cli"
],

/* The readme value from the manifest or null if not
specified. */

"readme": "README.md",
/* The repository value from the manifest or null if not

specified. */
"repository": "https://github.com/rust-lang/cargo",
/* The default edition of the package.

 Note that individual targets may have different
editions.
 */

"edition": "2018",
/* Optional string that is the name of a native library

the package
 is linking to.
 */

"links": null,
 }
],

/* Array of members of the workspace.
 Each entry is the Package ID for the package.
 */

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

"workspace_members": [
"my-package 0.1.0 (path+file:///path/to/my-package)",

],
// The resolved dependency graph, with the concrete versions and

features
// selected. The set depends on the enabled features.
//
// This is null if --no-deps is specified.
//
// By default, this includes all dependencies for all target

platforms.
// The `--filter-platform` flag may be used to narrow to a

specific
// target triple.
"resolve": {

/* Array of nodes within the dependency graph.
 Each node is a package.
 */

"nodes": [
 {

/* The Package ID of this node. */
"id": "my-package 0.1.0 (path+file:///path/to/my-

package)",
/* The dependencies of this package, an array of

Package IDs. */
"dependencies": [

"bitflags 1.0.4 (registry+https://github.com
/rust-lang/crates.io-index)"
],

/* The dependencies of this package. This is an
alternative to
 "dependencies" which contains additional
information. In
 particular, this handles renamed dependencies.
 */

"deps": [
 {

/* The name of the dependency's library
target.
 If this is a renamed dependency, this is
the new
 name.
 */

"name": "bitflags",
/* The Package ID of the dependency. */
"pkg": "bitflags 1.0.4

(registry+https://github.com/rust-lang/crates.io-index)",
/* Array of dependency kinds. Added in Cargo

1.40. */
"dep_kinds": [

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

OPTIONS

Output Options

--no-deps

 {
/* The dependency kind.

 "dev", "build", or null for a
normal dependency.
 */

"kind": null,
/* The target platform for the

dependency.
 null if not a target dependency.
 */

"target": "cfg(windows)"
 }
]
 }
],

/* Array of features enabled on this package. */
"features": [

"default"
]
 }
],

/* The root package of the workspace.
 This is null if this is a virtual workspace. Otherwise it
is
 the Package ID of the root package.
 */

"root": "my-package 0.1.0 (path+file:///path/to/my-package)"
 },

/* The absolute path to the build directory where Cargo places
its output. */

"target_directory": "/path/to/my-package/target",
/* The version of the schema for this metadata structure.

 This will be changed if incompatible changes are ever made.
 */

"version": 1,
/* The absolute path to the root of the workspace. */
"workspace_root": "/path/to/my-package"

}

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

Output information only about the workspace members and don’t fetch
dependencies.

--format-version VERSION
Specify the version of the output format to use. Currently 1 is the only
possible value.

--filter-platform TRIPLE
This �lters the resolve output to only include dependencies for the given
target triple. Without this �ag, the resolve includes all targets.

Note that the dependencies listed in the "packages" array still includes all
dependencies. Each package de�nition is intended to be an unaltered
reproduction of the information within Cargo.toml .

Feature Selection

When no feature options are given, the default feature is activated for every
selected package.

--features FEATURES
Space or comma separated list of features to activate. These features only
apply to the current directory’s package. Features of direct dependencies may
be enabled with <dep-name>/<feature-name> syntax.

--all-features
Activate all available features of all selected packages.

--no-default-features
Do not activate the default feature of the current directory’s package.

Display Options

-v
--verbose

Use verbose output. May be speci�ed twice for "very verbose" output which
includes extra output such as dependency warnings and build script output.
May also be speci�ed with the term.verbose con�g value.

-q
--quiet

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

No output printed to stdout.

--color WHEN
Control when colored output is used. Valid values:

auto (default): Automatically detect if color support is available on the
terminal.
always : Always display colors.
never : Never display colors.

May also be speci�ed with the term.color con�g value.

Manifest Options

--manifest-path PATH
Path to the Cargo.toml �le. By default, Cargo searches for the Cargo.toml
�le in the current directory or any parent directory.

--frozen
--locked

Either of these �ags requires that the Cargo.lock �le is up-to-date. If the lock
�le is missing, or it needs to be updated, Cargo will exit with an error. The
--frozen �ag also prevents Cargo from attempting to access the network to

determine if it is out-of-date.

These may be used in environments where you want to assert that the
Cargo.lock �le is up-to-date (such as a CI build) or want to avoid network

access.

--offline
Prevents Cargo from accessing the network for any reason. Without this �ag,
Cargo will stop with an error if it needs to access the network and the
network is not available. With this �ag, Cargo will attempt to proceed without
the network if possible.

Beware that this may result in di�erent dependency resolution than online
mode. Cargo will restrict itself to crates that are downloaded locally, even if
there might be a newer version as indicated in the local copy of the index. See
the cargo-fetch(1) command to download dependencies before going o�ine.

May also be speci�ed with the net.offline con�g value.

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

Common Options

-h
--help

Prints help information.

-Z FLAG…
Unstable (nightly-only) �ags to Cargo. Run cargo -Z help for details.

ENVIRONMENT

See the reference for details on environment variables that Cargo reads.

Exit Status

0
Cargo succeeded.

101
Cargo failed to complete.

EXAMPLES

1. Output JSON about the current package:

SEE ALSO

cargo(1)

cargo pkgid

cargo metadata --format-version=1

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

NAME

cargo-pkgid - Print a fully quali�ed package speci�cation

SYNOPSIS

cargo pkgid [OPTIONS] [SPEC]

DESCRIPTION

Given a SPEC argument, print out the fully quali�ed package ID speci�er for a
package or dependency in the current workspace. This command will generate an
error if SPEC is ambiguous as to which package it refers to in the dependency
graph. If no SPEC is given, then the speci�er for the local package is printed.

This command requires that a lock�le is available and dependencies have been
fetched.

A package speci�er consists of a name, version, and source URL. You are allowed
to use partial speci�ers to succinctly match a speci�c package as long as it matches
only one package. The format of a SPEC can be one of the following:

Table 1. SPEC Query Format

SPEC Structure Example SPEC

NAME bitflags

NAME : VERSION bitflags:1.0.4

URL https://github.com/rust-lang/cargo

URL # VERSION https://github.com/rust-lang/cargo#0.33.0

URL # NAME https://github.com/rust-lang/crates.io-

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

SPEC Structure Example SPEC

index#bitflags

URL # NAME : VERSION
https://github.com/rust-lang/cargo#crates-

io:0.21.0

OPTIONS

Package Selection

-p SPEC
--package SPEC

Get the package ID for the given package instead of the current package.

Display Options

-v
--verbose

Use verbose output. May be speci�ed twice for "very verbose" output which
includes extra output such as dependency warnings and build script output.
May also be speci�ed with the term.verbose con�g value.

-q
--quiet

No output printed to stdout.

--color WHEN
Control when colored output is used. Valid values:

auto (default): Automatically detect if color support is available on the
terminal.
always : Always display colors.
never : Never display colors.

May also be speci�ed with the term.color con�g value.

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

Manifest Options

--manifest-path PATH
Path to the Cargo.toml �le. By default, Cargo searches for the Cargo.toml
�le in the current directory or any parent directory.

--frozen
--locked

Either of these �ags requires that the Cargo.lock �le is up-to-date. If the lock
�le is missing, or it needs to be updated, Cargo will exit with an error. The
--frozen �ag also prevents Cargo from attempting to access the network to

determine if it is out-of-date.

These may be used in environments where you want to assert that the
Cargo.lock �le is up-to-date (such as a CI build) or want to avoid network

access.

--offline
Prevents Cargo from accessing the network for any reason. Without this �ag,
Cargo will stop with an error if it needs to access the network and the
network is not available. With this �ag, Cargo will attempt to proceed without
the network if possible.

Beware that this may result in di�erent dependency resolution than online
mode. Cargo will restrict itself to crates that are downloaded locally, even if
there might be a newer version as indicated in the local copy of the index. See
the cargo-fetch(1) command to download dependencies before going o�ine.

May also be speci�ed with the net.offline con�g value.

Common Options

-h
--help

Prints help information.

-Z FLAG…
Unstable (nightly-only) �ags to Cargo. Run cargo -Z help for details.

ENVIRONMENT

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

See the reference for details on environment variables that Cargo reads.

Exit Status

0
Cargo succeeded.

101
Cargo failed to complete.

EXAMPLES

1. Retrieve package speci�cation for foo package:

2. Retrieve package speci�cation for version 1.0.0 of foo :

3. Retrieve package speci�cation for foo from crates.io:

SEE ALSO

cargo(1), cargo-generate-lock�le(1), cargo-metadata(1)

cargo update

NAME

cargo-update - Update dependencies as recorded in the local lock �le

cargo pkgid foo

cargo pkgid foo:1.0.0

cargo pkgid https://github.com/rust-lang/crates.io-
index#foo

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

SYNOPSIS

cargo update [OPTIONS]

DESCRIPTION

This command will update dependencies in the Cargo.lock �le to the latest
version. It requires that the Cargo.lock �le already exists as generated by
commands such as cargo-build(1) or cargo-generate-lock�le(1).

OPTIONS

Update Options

-p SPEC…
--package SPEC…

Update only the speci�ed packages. This �ag may be speci�ed multiple times.
See cargo-pkgid(1) for the SPEC format.

If packages are speci�ed with the -p �ag, then a conservative update of the
lock�le will be performed. This means that only the dependency speci�ed by
SPEC will be updated. Its transitive dependencies will be updated only if SPEC
cannot be updated without updating dependencies. All other dependencies
will remain locked at their currently recorded versions.

If -p is not speci�ed, all dependencies are updated.

--aggressive
When used with -p , dependencies of SPEC are forced to update as well.
Cannot be used with --precise .

--precise PRECISE
When used with -p , allows you to specify a speci�c version number to set
the package to. If the package comes from a git repository, this can be a git
revision (such as a SHA hash or tag).

--dry-run

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

Displays what would be updated, but doesn’t actually write the lock�le.

Display Options

-v
--verbose

Use verbose output. May be speci�ed twice for "very verbose" output which
includes extra output such as dependency warnings and build script output.
May also be speci�ed with the term.verbose con�g value.

-q
--quiet

No output printed to stdout.

--color WHEN
Control when colored output is used. Valid values:

auto (default): Automatically detect if color support is available on the
terminal.
always : Always display colors.
never : Never display colors.

May also be speci�ed with the term.color con�g value.

Manifest Options

--manifest-path PATH
Path to the Cargo.toml �le. By default, Cargo searches for the Cargo.toml
�le in the current directory or any parent directory.

--frozen
--locked

Either of these �ags requires that the Cargo.lock �le is up-to-date. If the lock
�le is missing, or it needs to be updated, Cargo will exit with an error. The
--frozen �ag also prevents Cargo from attempting to access the network to

determine if it is out-of-date.

These may be used in environments where you want to assert that the
Cargo.lock �le is up-to-date (such as a CI build) or want to avoid network

access.

--offline

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

Prevents Cargo from accessing the network for any reason. Without this �ag,
Cargo will stop with an error if it needs to access the network and the
network is not available. With this �ag, Cargo will attempt to proceed without
the network if possible.

Beware that this may result in di�erent dependency resolution than online
mode. Cargo will restrict itself to crates that are downloaded locally, even if
there might be a newer version as indicated in the local copy of the index. See
the cargo-fetch(1) command to download dependencies before going o�ine.

May also be speci�ed with the net.offline con�g value.

Common Options

-h
--help

Prints help information.

-Z FLAG…
Unstable (nightly-only) �ags to Cargo. Run cargo -Z help for details.

ENVIRONMENT

See the reference for details on environment variables that Cargo reads.

Exit Status

0
Cargo succeeded.

101
Cargo failed to complete.

EXAMPLES

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

1. Update all dependencies in the lock�le:

2. Update only speci�c dependencies:

3. Set a speci�c dependency to a speci�c version:

SEE ALSO

cargo(1), cargo-generate-lock�le(1)

cargo vendor

NAME

cargo-vendor - Vendor all dependencies locally

SYNOPSIS

cargo vendor [OPTIONS] [PATH]

DESCRIPTION

This cargo subcommand will vendor all crates.io and git dependencies for a project
into the speci�ed directory at <path> . After this command completes the vendor
directory speci�ed by <path> will contain all remote sources from dependencies
speci�ed. Additional manifests beyond the default one can be speci�ed with the
-s option.

cargo update

cargo update -p foo -p bar

cargo update -p foo --precise 1.2.3

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

The cargo vendor command will also print out the con�guration necessary to use
the vendored sources, which you will need to add to .cargo/config .

OPTIONS

Owner Options

-s MANIFEST
--sync MANIFEST

Specify extra Cargo.toml manifests to workspaces which should also be
vendored and synced to the output.

--no-delete
Don’t delete the "vendor" directory when vendoring, but rather keep all
existing contents of the vendor directory

--respect-source-config
Instead of ignoring [source] con�guration by default in .cargo/config
read it and use it when downloading crates from crates.io, for example

Manifest Options

--manifest-path PATH
Path to the Cargo.toml �le. By default, Cargo searches for the Cargo.toml
�le in the current directory or any parent directory.

Display Options

-v
--verbose

Use verbose output. May be speci�ed twice for "very verbose" output which
includes extra output such as dependency warnings and build script output.
May also be speci�ed with the term.verbose con�g value.

-q
--quiet

No output printed to stdout.

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

--color WHEN
Control when colored output is used. Valid values:

auto (default): Automatically detect if color support is available on the
terminal.
always : Always display colors.
never : Never display colors.

May also be speci�ed with the term.color con�g value.

Common Options

-h
--help

Prints help information.

-Z FLAG…
Unstable (nightly-only) �ags to Cargo. Run cargo -Z help for details.

--frozen
--locked

Either of these �ags requires that the Cargo.lock �le is up-to-date. If the lock
�le is missing, or it needs to be updated, Cargo will exit with an error. The
--frozen �ag also prevents Cargo from attempting to access the network to

determine if it is out-of-date.

These may be used in environments where you want to assert that the
Cargo.lock �le is up-to-date (such as a CI build) or want to avoid network

access.

--offline
Prevents Cargo from accessing the network for any reason. Without this �ag,
Cargo will stop with an error if it needs to access the network and the
network is not available. With this �ag, Cargo will attempt to proceed without
the network if possible.

Beware that this may result in di�erent dependency resolution than online
mode. Cargo will restrict itself to crates that are downloaded locally, even if
there might be a newer version as indicated in the local copy of the index. See
the cargo-fetch(1) command to download dependencies before going o�ine.

May also be speci�ed with the net.offline con�g value.

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

ENVIRONMENT

See the reference for details on environment variables that Cargo reads.

Exit Status

0
Cargo succeeded.

101
Cargo failed to complete.

EXAMPLES

1. Vendor all dependencies into a local "vendor" folder

2. Vendor all dependencies into a local "third-party/vendor" folder

3. Vendor the current workspace as well as another to "vendor"

SEE ALSO

cargo(1)

cargo verify-project

NAME

cargo vendor

cargo vendor third-party/vendor

cargo vendor -s ../path/to/Cargo.toml

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

cargo-verify-project - Check correctness of crate manifest

SYNOPSIS

cargo verify-project [OPTIONS]

DESCRIPTION

This command will parse the local manifest and check its validity. It emits a JSON
object with the result. A successful validation will display:

An invalid workspace will display:

OPTIONS

Display Options

-v
--verbose

Use verbose output. May be speci�ed twice for "very verbose" output which
includes extra output such as dependency warnings and build script output.
May also be speci�ed with the term.verbose con�g value.

-q
--quiet

No output printed to stdout.

--color WHEN
Control when colored output is used. Valid values:

{"success":"true"}

{"invalid":"human-readable error message"}

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

auto (default): Automatically detect if color support is available on the
terminal.
always : Always display colors.
never : Never display colors.

May also be speci�ed with the term.color con�g value.

Manifest Options

--manifest-path PATH
Path to the Cargo.toml �le. By default, Cargo searches for the Cargo.toml
�le in the current directory or any parent directory.

--frozen
--locked

Either of these �ags requires that the Cargo.lock �le is up-to-date. If the lock
�le is missing, or it needs to be updated, Cargo will exit with an error. The
--frozen �ag also prevents Cargo from attempting to access the network to

determine if it is out-of-date.

These may be used in environments where you want to assert that the
Cargo.lock �le is up-to-date (such as a CI build) or want to avoid network

access.

--offline
Prevents Cargo from accessing the network for any reason. Without this �ag,
Cargo will stop with an error if it needs to access the network and the
network is not available. With this �ag, Cargo will attempt to proceed without
the network if possible.

Beware that this may result in di�erent dependency resolution than online
mode. Cargo will restrict itself to crates that are downloaded locally, even if
there might be a newer version as indicated in the local copy of the index. See
the cargo-fetch(1) command to download dependencies before going o�ine.

May also be speci�ed with the net.offline con�g value.

Common Options

-h
--help

Prints help information.

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

-Z FLAG…
Unstable (nightly-only) �ags to Cargo. Run cargo -Z help for details.

ENVIRONMENT

See the reference for details on environment variables that Cargo reads.

Exit Status

0
The workspace is OK.

1
The workspace is invalid.

EXAMPLES

1. Check the current workspace for errors:

SEE ALSO

cargo(1), cargo-package(1)

Package Commands

cargo init

cargo verify-project

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

NAME

cargo-init - Create a new Cargo package in an existing directory

SYNOPSIS

cargo init [OPTIONS] [PATH]

DESCRIPTION

This command will create a new Cargo manifest in the current directory. Give a
path as an argument to create in the given directory.

If there are typically-named Rust source �les already in the directory, those will be
used. If not, then a sample src/main.rs �le will be created, or src/lib.rs if
--lib is passed.

If the directory is not already in a VCS repository, then a new repository is created
(see --vcs below).

The "authors" �eld in the manifest is determined from the environment or
con�guration settings. A name is required and is determined from (�rst match
wins):

cargo-new.name Cargo con�g value
CARGO_NAME environment variable
GIT_AUTHOR_NAME environment variable
GIT_COMMITTER_NAME environment variable
user.name git con�guration value
USER environment variable
USERNAME environment variable
NAME environment variable

The email address is optional and is determined from:

cargo-new.email Cargo con�g value
CARGO_EMAIL environment variable
GIT_AUTHOR_EMAIL environment variable
GIT_COMMITTER_EMAIL environment variable

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

user.email git con�guration value
EMAIL environment variable

See the reference for more information about con�guration �les.

See cargo-new(1) for a similar command which will create a new package in a new
directory.

OPTIONS

Init Options

--bin
Create a package with a binary target (src/main.rs). This is the default
behavior.

--lib
Create a package with a library target (src/lib.rs).

--edition EDITION
Specify the Rust edition to use. Default is 2018. Possible values: 2015, 2018

--name NAME
Set the package name. Defaults to the directory name.

--vcs VCS
Initialize a new VCS repository for the given version control system (git, hg,
pijul, or fossil) or do not initialize any version control at all (none). If not
speci�ed, defaults to git or the con�guration value cargo-new.vcs , or
none if already inside a VCS repository.

--registry REGISTRY
This sets the publish �eld in Cargo.toml to the given registry name which
will restrict publishing only to that registry.

Registry names are de�ned in Cargo con�g �les. If not speci�ed, the default
registry de�ned by the registry.default con�g key is used. If the default
registry is not set and --registry is not used, the publish �eld will not be
set which means that publishing will not be restricted.

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

Display Options

-v
--verbose

Use verbose output. May be speci�ed twice for "very verbose" output which
includes extra output such as dependency warnings and build script output.
May also be speci�ed with the term.verbose con�g value.

-q
--quiet

No output printed to stdout.

--color WHEN
Control when colored output is used. Valid values:

auto (default): Automatically detect if color support is available on the
terminal.
always : Always display colors.
never : Never display colors.

May also be speci�ed with the term.color con�g value.

Common Options

-h
--help

Prints help information.

-Z FLAG…
Unstable (nightly-only) �ags to Cargo. Run cargo -Z help for details.

ENVIRONMENT

See the reference for details on environment variables that Cargo reads.

Exit Status

0

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

Cargo succeeded.

101
Cargo failed to complete.

EXAMPLES

1. Create a binary Cargo package in the current directory:

SEE ALSO

cargo(1), cargo-new(1)

cargo install

NAME

cargo-install - Build and install a Rust binary

SYNOPSIS

cargo install [OPTIONS] CRATE…
cargo install [OPTIONS] --path PATH
cargo install [OPTIONS] --git URL [CRATE…]
cargo install [OPTIONS] --list

DESCRIPTION

cargo init

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

This command manages Cargo’s local set of installed binary crates. Only packages
which have executable [[bin]] or [[example]] targets can be installed, and all
executables are installed into the installation root’s bin folder.

The installation root is determined, in order of precedence:

--root option
CARGO_INSTALL_ROOT environment variable
install.root Cargo con�g value
CARGO_HOME environment variable
$HOME/.cargo

There are multiple sources from which a crate can be installed. The default
location is crates.io but the --git , --path , and --registry �ags can change this
source. If the source contains more than one package (such as crates.io or a git
repository with multiple crates) the CRATE argument is required to indicate which
crate should be installed.

Crates from crates.io can optionally specify the version they wish to install via the
--version �ags, and similarly packages from git repositories can optionally

specify the branch, tag, or revision that should be installed. If a crate has multiple
binaries, the --bin argument can selectively install only one of them, and if you’d
rather install examples the --example argument can be used as well.

If the package is already installed, Cargo will reinstall it if the installed version does
not appear to be up-to-date. If any of the following values change, then Cargo will
reinstall the package:

The package version and source.
The set of binary names installed.
The chosen features.
The release mode (--debug).
The target (--target).

Installing with --path will always build and install, unless there are con�icting
binaries from another package. The --force �ag may be used to force Cargo to
always reinstall the package.

If the source is crates.io or --git then by default the crate will be built in a
temporary target directory. To avoid this, the target directory can be speci�ed by
setting the CARGO_TARGET_DIR environment variable to a relative path. In
particular, this can be useful for caching build artifacts on continuous integration
systems.

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

By default, the Cargo.lock �le that is included with the package will be ignored.
This means that Cargo will recompute which versions of dependencies to use,
possibly using newer versions that have been released since the package was
published. The --locked �ag can be used to force Cargo to use the packaged
Cargo.lock �le if it is available. This may be useful for ensuring reproducible

builds, to use the exact same set of dependencies that were available when the
package was published. It may also be useful if a newer version of a dependency is
published that no longer builds on your system, or has other problems. The
downside to using --locked is that you will not receive any �xes or updates to any
dependency. Note that Cargo did not start publishing Cargo.lock �les until
version 1.37, which means packages published with prior versions will not have a
Cargo.lock �le available.

OPTIONS

Install Options

--vers VERSION
--version VERSION

Specify a version to install. This may be a version requirement, like ~1.2 , to
have Cargo select the newest version from the given requirement. If the
version does not have a requirement operator (such as ^ or ~), then it must
be in the form MAJOR.MINOR.PATCH, and will install exactly that version; it is
not treated as a caret requirement like Cargo dependencies are.

--git URL
Git URL to install the speci�ed crate from.

--branch BRANCH
Branch to use when installing from git.

--tag TAG
Tag to use when installing from git.

--rev SHA
Speci�c commit to use when installing from git.

--path PATH
Filesystem path to local crate to install.

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

--list
List all installed packages and their versions.

-f
--force

Force overwriting existing crates or binaries. This can be used if a package
has installed a binary with the same name as another package. This is also
useful if something has changed on the system that you want to rebuild with,
such as a newer version of rustc .

--no-track
By default, Cargo keeps track of the installed packages with a metadata �le
stored in the installation root directory. This �ag tells Cargo not to use or
create that �le. With this �ag, Cargo will refuse to overwrite any existing �les
unless the --force �ag is used. This also disables Cargo’s ability to protect
against multiple concurrent invocations of Cargo installing at the same time.

--bin NAME…
Install only the speci�ed binary.

--bins
Install all binaries.

--example NAME…
Install only the speci�ed example.

--examples
Install all examples.

--root DIR
Directory to install packages into.

--registry REGISTRY
Name of the registry to use. Registry names are de�ned in Cargo con�g �les.
If not speci�ed, the default registry is used, which is de�ned by the
registry.default con�g key which defaults to crates-io .

Feature Selection

When no feature options are given, the default feature is activated for every
selected package.

--features FEATURES

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

Space or comma separated list of features to activate. These features only
apply to the current directory’s package. Features of direct dependencies may
be enabled with <dep-name>/<feature-name> syntax.

--all-features
Activate all available features of all selected packages.

--no-default-features
Do not activate the default feature of the current directory’s package.

Compilation Options

--target TRIPLE
Install for the given architecture. The default is the host architecture. The
general format of the triple is <arch><sub>-<vendor>-<sys>-<abi> . Run
rustc --print target-list for a list of supported targets.

This may also be speci�ed with the build.target con�g value.

--debug
Build with the dev pro�le instead the release pro�le.

Manifest Options

--frozen
--locked

Either of these �ags requires that the Cargo.lock �le is up-to-date. If the lock
�le is missing, or it needs to be updated, Cargo will exit with an error. The
--frozen �ag also prevents Cargo from attempting to access the network to

determine if it is out-of-date.

These may be used in environments where you want to assert that the
Cargo.lock �le is up-to-date (such as a CI build) or want to avoid network

access.

--offline
Prevents Cargo from accessing the network for any reason. Without this �ag,
Cargo will stop with an error if it needs to access the network and the
network is not available. With this �ag, Cargo will attempt to proceed without
the network if possible.

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

Beware that this may result in di�erent dependency resolution than online
mode. Cargo will restrict itself to crates that are downloaded locally, even if
there might be a newer version as indicated in the local copy of the index. See
the cargo-fetch(1) command to download dependencies before going o�ine.

May also be speci�ed with the net.offline con�g value.

Miscellaneous Options

-j N
--jobs N

Number of parallel jobs to run. May also be speci�ed with the build.jobs
con�g value. Defaults to the number of CPUs.

Display Options

-v
--verbose

Use verbose output. May be speci�ed twice for "very verbose" output which
includes extra output such as dependency warnings and build script output.
May also be speci�ed with the term.verbose con�g value.

-q
--quiet

No output printed to stdout.

--color WHEN
Control when colored output is used. Valid values:

auto (default): Automatically detect if color support is available on the
terminal.
always : Always display colors.
never : Never display colors.

May also be speci�ed with the term.color con�g value.

Common Options

-h
--help

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

Prints help information.

-Z FLAG…
Unstable (nightly-only) �ags to Cargo. Run cargo -Z help for details.

ENVIRONMENT

See the reference for details on environment variables that Cargo reads.

Exit Status

0
Cargo succeeded.

101
Cargo failed to complete.

EXAMPLES

1. Install or upgrade a package from crates.io:

2. Install or reinstall the package in the current directory:

3. View the list of installed packages:

SEE ALSO

cargo(1), cargo-uninstall(1), cargo-search(1), cargo-publish(1)

cargo install ripgrep

cargo install --path .

cargo install --list

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

cargo new

NAME

cargo-new - Create a new Cargo package

SYNOPSIS

cargo new [OPTIONS] PATH

DESCRIPTION

This command will create a new Cargo package in the given directory. This includes
a simple template with a Cargo.toml manifest, sample source �le, and a VCS
ignore �le. If the directory is not already in a VCS repository, then a new repository
is created (see --vcs below).

The "authors" �eld in the manifest is determined from the environment or
con�guration settings. A name is required and is determined from (�rst match
wins):

cargo-new.name Cargo con�g value
CARGO_NAME environment variable
GIT_AUTHOR_NAME environment variable
GIT_COMMITTER_NAME environment variable
user.name git con�guration value
USER environment variable
USERNAME environment variable
NAME environment variable

The email address is optional and is determined from:

cargo-new.email Cargo con�g value
CARGO_EMAIL environment variable
GIT_AUTHOR_EMAIL environment variable

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

GIT_COMMITTER_EMAIL environment variable
user.email git con�guration value
EMAIL environment variable

See the reference for more information about con�guration �les.

See cargo-init(1) for a similar command which will create a new manifest in an
existing directory.

OPTIONS

New Options

--bin
Create a package with a binary target (src/main.rs). This is the default
behavior.

--lib
Create a package with a library target (src/lib.rs).

--edition EDITION
Specify the Rust edition to use. Default is 2018. Possible values: 2015, 2018

--name NAME
Set the package name. Defaults to the directory name.

--vcs VCS
Initialize a new VCS repository for the given version control system (git, hg,
pijul, or fossil) or do not initialize any version control at all (none). If not
speci�ed, defaults to git or the con�guration value cargo-new.vcs , or
none if already inside a VCS repository.

--registry REGISTRY
This sets the publish �eld in Cargo.toml to the given registry name which
will restrict publishing only to that registry.

Registry names are de�ned in Cargo con�g �les. If not speci�ed, the default
registry de�ned by the registry.default con�g key is used. If the default
registry is not set and --registry is not used, the publish �eld will not be
set which means that publishing will not be restricted.

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

Display Options

-v
--verbose

Use verbose output. May be speci�ed twice for "very verbose" output which
includes extra output such as dependency warnings and build script output.
May also be speci�ed with the term.verbose con�g value.

-q
--quiet

No output printed to stdout.

--color WHEN
Control when colored output is used. Valid values:

auto (default): Automatically detect if color support is available on the
terminal.
always : Always display colors.
never : Never display colors.

May also be speci�ed with the term.color con�g value.

Common Options

-h
--help

Prints help information.

-Z FLAG…
Unstable (nightly-only) �ags to Cargo. Run cargo -Z help for details.

ENVIRONMENT

See the reference for details on environment variables that Cargo reads.

Exit Status

0

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

Cargo succeeded.

101
Cargo failed to complete.

EXAMPLES

1. Create a binary Cargo package in the given directory:

SEE ALSO

cargo(1), cargo-init(1)

cargo search

NAME

cargo-search - Search packages in crates.io

SYNOPSIS

cargo search [OPTIONS] [QUERY…]

DESCRIPTION

This performs a textual search for crates on https://crates.io. The matching crates
will be displayed along with their description in TOML format suitable for copying
into a Cargo.toml manifest.

cargo new foo

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

OPTIONS

Search Options

--limit LIMIT
Limit the number of results (default: 10, max: 100).

--index INDEX
The URL of the registry index to use.

--registry REGISTRY
Name of the registry to use. Registry names are de�ned in Cargo con�g �les.
If not speci�ed, the default registry is used, which is de�ned by the
registry.default con�g key which defaults to crates-io .

Display Options

-v
--verbose

Use verbose output. May be speci�ed twice for "very verbose" output which
includes extra output such as dependency warnings and build script output.
May also be speci�ed with the term.verbose con�g value.

-q
--quiet

No output printed to stdout.

--color WHEN
Control when colored output is used. Valid values:

auto (default): Automatically detect if color support is available on the
terminal.
always : Always display colors.
never : Never display colors.

May also be speci�ed with the term.color con�g value.

Common Options

-h

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

--help
Prints help information.

-Z FLAG…
Unstable (nightly-only) �ags to Cargo. Run cargo -Z help for details.

ENVIRONMENT

See the reference for details on environment variables that Cargo reads.

Exit Status

0
Cargo succeeded.

101
Cargo failed to complete.

EXAMPLES

1. Search for a package from crates.io:

SEE ALSO

cargo(1), cargo-install(1), cargo-publish(1)

cargo uninstall

cargo search serde

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

NAME

cargo-uninstall - Remove a Rust binary

SYNOPSIS

cargo uninstall [OPTIONS] [SPEC…]

DESCRIPTION

This command removes a package installed with cargo-install(1). The SPEC
argument is a package ID speci�cation of the package to remove (see cargo-
pkgid(1)).

By default all binaries are removed for a crate but the --bin and --example �ags
can be used to only remove particular binaries.

The installation root is determined, in order of precedence:

--root option
CARGO_INSTALL_ROOT environment variable
install.root Cargo con�g value
CARGO_HOME environment variable
$HOME/.cargo

OPTIONS

Install Options

-p
--package SPEC…

Package to uninstall.

--bin NAME…
Only uninstall the binary NAME.

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

--root DIR
Directory to uninstall packages from.

Display Options

-v
--verbose

Use verbose output. May be speci�ed twice for "very verbose" output which
includes extra output such as dependency warnings and build script output.
May also be speci�ed with the term.verbose con�g value.

-q
--quiet

No output printed to stdout.

--color WHEN
Control when colored output is used. Valid values:

auto (default): Automatically detect if color support is available on the
terminal.
always : Always display colors.
never : Never display colors.

May also be speci�ed with the term.color con�g value.

Common Options

-h
--help

Prints help information.

-Z FLAG…
Unstable (nightly-only) �ags to Cargo. Run cargo -Z help for details.

ENVIRONMENT

See the reference for details on environment variables that Cargo reads.

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

Exit Status

0
Cargo succeeded.

101
Cargo failed to complete.

EXAMPLES

1. Uninstall a previously installed package.

SEE ALSO

cargo(1), cargo-install(1)

Publishing Commands

cargo login

NAME

cargo-login - Save an API token from the registry locally

SYNOPSIS

cargo login [OPTIONS] [TOKEN]

cargo uninstall ripgrep

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

DESCRIPTION

This command will save the API token to disk so that commands that require
authentication, such as cargo-publish(1), will be automatically authenticated. The
token is saved in $CARGO_HOME/credentials . CARGO_HOME defaults to .cargo in
your home directory.

If the TOKEN argument is not speci�ed, it will be read from stdin.

The API token for crates.io may be retrieved from https://crates.io/me.

Take care to keep the token secret, it should not be shared with anyone else.

OPTIONS

Login Options

--registry REGISTRY
Name of the registry to use. Registry names are de�ned in Cargo con�g �les.
If not speci�ed, the default registry is used, which is de�ned by the
registry.default con�g key which defaults to crates-io .

Display Options

-v
--verbose

Use verbose output. May be speci�ed twice for "very verbose" output which
includes extra output such as dependency warnings and build script output.
May also be speci�ed with the term.verbose con�g value.

-q
--quiet

No output printed to stdout.

--color WHEN
Control when colored output is used. Valid values:

auto (default): Automatically detect if color support is available on the

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

terminal.
always : Always display colors.
never : Never display colors.

May also be speci�ed with the term.color con�g value.

Common Options

-h
--help

Prints help information.

-Z FLAG…
Unstable (nightly-only) �ags to Cargo. Run cargo -Z help for details.

ENVIRONMENT

See the reference for details on environment variables that Cargo reads.

Exit Status

0
Cargo succeeded.

101
Cargo failed to complete.

EXAMPLES

1. Save the API token to disk:

cargo login

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

SEE ALSO

cargo(1), cargo-publish(1)

cargo owner

NAME

cargo-owner - Manage the owners of a crate on the registry

SYNOPSIS

cargo owner [OPTIONS] --add LOGIN [CRATE]
cargo owner [OPTIONS] --remove LOGIN [CRATE]
cargo owner [OPTIONS] --list [CRATE]

DESCRIPTION

This command will modify the owners for a crate on the registry. Owners of a crate
can upload new versions and yank old versions. Non-team owners can also modify
the set of owners, so take care!

This command requires you to be authenticated with either the --token option or
using cargo-login(1).

If the crate name is not speci�ed, it will use the package name from the current
directory.

See the reference for more information about owners and publishing.

OPTIONS

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

Owner Options

-a
--add LOGIN…

Invite the given user or team as an owner.

-r
--remove LOGIN…

Remove the given user or team as an owner.

-l
--list

List owners of a crate.

--token TOKEN
API token to use when authenticating. This overrides the token stored in the
credentials �le (which is created by cargo-login(1)).

Cargo con�g environment variables can be used to override the tokens
stored in the credentials �le. The token for crates.io may be speci�ed with the
CARGO_REGISTRY_TOKEN environment variable. Tokens for other registries

may be speci�ed with environment variables of the form
CARGO_REGISTRIES_NAME_TOKEN where NAME is the name of the registry in all

capital letters.

--index INDEX
The URL of the registry index to use.

--registry REGISTRY
Name of the registry to use. Registry names are de�ned in Cargo con�g �les.
If not speci�ed, the default registry is used, which is de�ned by the
registry.default con�g key which defaults to crates-io .

Display Options

-v
--verbose

Use verbose output. May be speci�ed twice for "very verbose" output which
includes extra output such as dependency warnings and build script output.
May also be speci�ed with the term.verbose con�g value.

-q

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

--quiet
No output printed to stdout.

--color WHEN
Control when colored output is used. Valid values:

auto (default): Automatically detect if color support is available on the
terminal.
always : Always display colors.
never : Never display colors.

May also be speci�ed with the term.color con�g value.

Common Options

-h
--help

Prints help information.

-Z FLAG…
Unstable (nightly-only) �ags to Cargo. Run cargo -Z help for details.

ENVIRONMENT

See the reference for details on environment variables that Cargo reads.

Exit Status

0
Cargo succeeded.

101
Cargo failed to complete.

EXAMPLES

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

1. List owners of a package:

2. Invite an owner to a package:

3. Remove an owner from a package:

SEE ALSO

cargo(1), cargo-login(1), cargo-publish(1)

cargo package

NAME

cargo-package - Assemble the local package into a distributable tarball

SYNOPSIS

cargo package [OPTIONS]

DESCRIPTION

This command will create a distributable, compressed .crate �le with the source
code of the package in the current directory. The resulting �le will be stored in the
target/package directory. This performs the following steps:

1. Load and check the current workspace, performing some basic checks.
Path dependencies are not allowed unless they have a version key.

cargo owner --list foo

cargo owner --add username foo

cargo owner --remove username foo

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

Cargo will ignore the path key for dependencies in published packages.
dev-dependencies do not have this restriction.

2. Create the compressed .crate �le.
The original Cargo.toml �le is rewritten and normalized.
[patch] , [replace] , and [workspace] sections are removed from the

manifest.
Cargo.lock is automatically included if the package contains an

executable binary or example target. cargo-install(1) will use the
packaged lock �le if the --locked �ag is used.
A .cargo_vcs_info.json �le is included that contains information
about the current VCS checkout hash if available (not included with
--allow-dirty).

3. Extract the .crate �le and build it to verify it can build.
4. Check that build scripts did not modify any source �les.

The list of �les included can be controlled with the include and exclude �elds in
the manifest.

See the reference for more details about packaging and publishing.

OPTIONS

Package Options

-l
--list

Print �les included in a package without making one.

--no-verify
Don’t verify the contents by building them.

--no-metadata
Ignore warnings about a lack of human-usable metadata (such as the
description or the license).

--allow-dirty
Allow working directories with uncommitted VCS changes to be packaged.

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

Compilation Options

--target TRIPLE
Package for the given architecture. The default is the host architecture. The
general format of the triple is <arch><sub>-<vendor>-<sys>-<abi> . Run
rustc --print target-list for a list of supported targets.

This may also be speci�ed with the build.target con�g value.

--target-dir DIRECTORY
Directory for all generated artifacts and intermediate �les. May also be
speci�ed with the CARGO_TARGET_DIR environment variable, or the
build.target-dir con�g value. Defaults to target in the root of the

workspace.

Feature Selection

When no feature options are given, the default feature is activated for every
selected package.

--features FEATURES
Space or comma separated list of features to activate. These features only
apply to the current directory’s package. Features of direct dependencies may
be enabled with <dep-name>/<feature-name> syntax.

--all-features
Activate all available features of all selected packages.

--no-default-features
Do not activate the default feature of the current directory’s package.

Manifest Options

--manifest-path PATH
Path to the Cargo.toml �le. By default, Cargo searches for the Cargo.toml
�le in the current directory or any parent directory.

--frozen
--locked

Either of these �ags requires that the Cargo.lock �le is up-to-date. If the lock
�le is missing, or it needs to be updated, Cargo will exit with an error. The

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

--frozen �ag also prevents Cargo from attempting to access the network to
determine if it is out-of-date.

These may be used in environments where you want to assert that the
Cargo.lock �le is up-to-date (such as a CI build) or want to avoid network

access.

--offline
Prevents Cargo from accessing the network for any reason. Without this �ag,
Cargo will stop with an error if it needs to access the network and the
network is not available. With this �ag, Cargo will attempt to proceed without
the network if possible.

Beware that this may result in di�erent dependency resolution than online
mode. Cargo will restrict itself to crates that are downloaded locally, even if
there might be a newer version as indicated in the local copy of the index. See
the cargo-fetch(1) command to download dependencies before going o�ine.

May also be speci�ed with the net.offline con�g value.

Miscellaneous Options

-j N
--jobs N

Number of parallel jobs to run. May also be speci�ed with the build.jobs
con�g value. Defaults to the number of CPUs.

Display Options

-v
--verbose

Use verbose output. May be speci�ed twice for "very verbose" output which
includes extra output such as dependency warnings and build script output.
May also be speci�ed with the term.verbose con�g value.

-q
--quiet

No output printed to stdout.

--color WHEN
Control when colored output is used. Valid values:

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

auto (default): Automatically detect if color support is available on the
terminal.
always : Always display colors.
never : Never display colors.

May also be speci�ed with the term.color con�g value.

Common Options

-h
--help

Prints help information.

-Z FLAG…
Unstable (nightly-only) �ags to Cargo. Run cargo -Z help for details.

ENVIRONMENT

See the reference for details on environment variables that Cargo reads.

Exit Status

0
Cargo succeeded.

101
Cargo failed to complete.

EXAMPLES

1. Create a compressed .crate �le of the current package:

cargo package

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

SEE ALSO

cargo(1), cargo-publish(1)

cargo publish

NAME

cargo-publish - Upload a package to the registry

SYNOPSIS

cargo publish [OPTIONS]

DESCRIPTION

This command will create a distributable, compressed .crate �le with the source
code of the package in the current directory and upload it to a registry. The default
registry is https://crates.io. This performs the following steps:

1. Performs a few checks, including:
Checks the package.publish key in the manifest for restrictions on
which registries you are allowed to publish to.

2. Create a .crate �le by following the steps in cargo-package(1).
3. Upload the crate to the registry. Note that the server will perform additional

checks on the crate.

This command requires you to be authenticated with either the --token option or
using cargo-login(1).

See the reference for more details about packaging and publishing.

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

OPTIONS

Publish Options

--dry-run
Perform all checks without uploading.

--token TOKEN
API token to use when authenticating. This overrides the token stored in the
credentials �le (which is created by cargo-login(1)).

Cargo con�g environment variables can be used to override the tokens
stored in the credentials �le. The token for crates.io may be speci�ed with the
CARGO_REGISTRY_TOKEN environment variable. Tokens for other registries

may be speci�ed with environment variables of the form
CARGO_REGISTRIES_NAME_TOKEN where NAME is the name of the registry in all

capital letters.

--no-verify
Don’t verify the contents by building them.

--allow-dirty
Allow working directories with uncommitted VCS changes to be packaged.

--index INDEX
The URL of the registry index to use.

--registry REGISTRY
Name of the registry to use. Registry names are de�ned in Cargo con�g �les.
If not speci�ed, the default registry is used, which is de�ned by the
registry.default con�g key which defaults to crates-io .

Compilation Options

--target TRIPLE
Publish for the given architecture. The default is the host architecture. The
general format of the triple is <arch><sub>-<vendor>-<sys>-<abi> . Run
rustc --print target-list for a list of supported targets.

This may also be speci�ed with the build.target con�g value.

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

--target-dir DIRECTORY
Directory for all generated artifacts and intermediate �les. May also be
speci�ed with the CARGO_TARGET_DIR environment variable, or the
build.target-dir con�g value. Defaults to target in the root of the

workspace.

Feature Selection

When no feature options are given, the default feature is activated for every
selected package.

--features FEATURES
Space or comma separated list of features to activate. These features only
apply to the current directory’s package. Features of direct dependencies may
be enabled with <dep-name>/<feature-name> syntax.

--all-features
Activate all available features of all selected packages.

--no-default-features
Do not activate the default feature of the current directory’s package.

Manifest Options

--manifest-path PATH
Path to the Cargo.toml �le. By default, Cargo searches for the Cargo.toml
�le in the current directory or any parent directory.

--frozen
--locked

Either of these �ags requires that the Cargo.lock �le is up-to-date. If the lock
�le is missing, or it needs to be updated, Cargo will exit with an error. The
--frozen �ag also prevents Cargo from attempting to access the network to

determine if it is out-of-date.

These may be used in environments where you want to assert that the
Cargo.lock �le is up-to-date (such as a CI build) or want to avoid network

access.

--offline
Prevents Cargo from accessing the network for any reason. Without this �ag,

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

Cargo will stop with an error if it needs to access the network and the
network is not available. With this �ag, Cargo will attempt to proceed without
the network if possible.

Beware that this may result in di�erent dependency resolution than online
mode. Cargo will restrict itself to crates that are downloaded locally, even if
there might be a newer version as indicated in the local copy of the index. See
the cargo-fetch(1) command to download dependencies before going o�ine.

May also be speci�ed with the net.offline con�g value.

Miscellaneous Options

-j N
--jobs N

Number of parallel jobs to run. May also be speci�ed with the build.jobs
con�g value. Defaults to the number of CPUs.

Display Options

-v
--verbose

Use verbose output. May be speci�ed twice for "very verbose" output which
includes extra output such as dependency warnings and build script output.
May also be speci�ed with the term.verbose con�g value.

-q
--quiet

No output printed to stdout.

--color WHEN
Control when colored output is used. Valid values:

auto (default): Automatically detect if color support is available on the
terminal.
always : Always display colors.
never : Never display colors.

May also be speci�ed with the term.color con�g value.

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

Common Options

-h
--help

Prints help information.

-Z FLAG…
Unstable (nightly-only) �ags to Cargo. Run cargo -Z help for details.

ENVIRONMENT

See the reference for details on environment variables that Cargo reads.

Exit Status

0
Cargo succeeded.

101
Cargo failed to complete.

EXAMPLES

1. Publish the current package:

SEE ALSO

cargo(1), cargo-package(1), cargo-login(1)

cargo yank

cargo publish

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

NAME

cargo-yank - Remove a pushed crate from the index

SYNOPSIS

cargo yank [OPTIONS] --vers VERSION [CRATE]

DESCRIPTION

The yank command removes a previously published crate’s version from the
server’s index. This command does not delete any data, and the crate will still be
available for download via the registry’s download link.

Note that existing crates locked to a yanked version will still be able to download
the yanked version to use it. Cargo will, however, not allow any new crates to be
locked to any yanked version.

This command requires you to be authenticated with either the --token option or
using cargo-login(1).

If the crate name is not speci�ed, it will use the package name from the current
directory.

OPTIONS

Owner Options

--vers VERSION
The version to yank or un-yank.

--undo
Undo a yank, putting a version back into the index.

--token TOKEN

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

API token to use when authenticating. This overrides the token stored in the
credentials �le (which is created by cargo-login(1)).

Cargo con�g environment variables can be used to override the tokens
stored in the credentials �le. The token for crates.io may be speci�ed with the
CARGO_REGISTRY_TOKEN environment variable. Tokens for other registries

may be speci�ed with environment variables of the form
CARGO_REGISTRIES_NAME_TOKEN where NAME is the name of the registry in all

capital letters.

--index INDEX
The URL of the registry index to use.

--registry REGISTRY
Name of the registry to use. Registry names are de�ned in Cargo con�g �les.
If not speci�ed, the default registry is used, which is de�ned by the
registry.default con�g key which defaults to crates-io .

Display Options

-v
--verbose

Use verbose output. May be speci�ed twice for "very verbose" output which
includes extra output such as dependency warnings and build script output.
May also be speci�ed with the term.verbose con�g value.

-q
--quiet

No output printed to stdout.

--color WHEN
Control when colored output is used. Valid values:

auto (default): Automatically detect if color support is available on the
terminal.
always : Always display colors.
never : Never display colors.

May also be speci�ed with the term.color con�g value.

Common Options

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

-h
--help

Prints help information.

-Z FLAG…
Unstable (nightly-only) �ags to Cargo. Run cargo -Z help for details.

ENVIRONMENT

See the reference for details on environment variables that Cargo reads.

Exit Status

0
Cargo succeeded.

101
Cargo failed to complete.

EXAMPLES

1. Yank a crate from the index:

SEE ALSO

cargo(1), cargo-login(1), cargo-publish(1)

General Commands

cargo yank --vers 1.0.7 foo

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

cargo help

NAME

cargo-help - Get help for a Cargo command

SYNOPSIS

cargo help [SUBCOMMAND]

DESCRIPTION

Prints a help message for the given command.

EXAMPLES

1. Get help for a command:

2. Help is also available with the --help �ag:

SEE ALSO

cargo(1)

cargo version

cargo help build

cargo build --help

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

NAME

cargo-version - Show version information

SYNOPSIS

cargo version [OPTIONS]

DESCRIPTION

Displays the version of Cargo.

OPTIONS

-v
--verbose

Display additional version information.

EXAMPLES

1. Display the version:

2. The version is also available via �ags:

3. Display extra version information:

cargo version

cargo --version
cargo -V

cargo -Vv

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

SEE ALSO

cargo(1)

Frequently Asked Questions

Is the plan to use GitHub as a package repository?

No. The plan for Cargo is to use crates.io, like npm or Rubygems do with npmjs.org
and rubygems.org.

We plan to support git repositories as a source of packages forever, because they
can be used for early development and temporary patches, even when people use
the registry as the primary source of packages.

Why build crates.io rather than use GitHub as a registry?

We think that it’s very important to support multiple ways to download packages,
including downloading from GitHub and copying packages into your package itself.

That said, we think that crates.io o�ers a number of important bene�ts, and will
likely become the primary way that people download packages in Cargo.

For precedent, both Node.js’s npm and Ruby’s bundler support both a central
registry model as well as a Git-based model, and most packages are downloaded
through the registry in those ecosystems, with an important minority of packages
making use of git-based packages.

Some of the advantages that make a central registry popular in other languages
include:

Discoverability. A central registry provides an easy place to look for existing
packages. Combined with tagging, this also makes it possible for a registry to
provide ecosystem-wide information, such as a list of the most popular or
most-depended-on packages.
Speed. A central registry makes it possible to easily fetch just the metadata
for packages quickly and e�ciently, and then to e�ciently download just the
published package, and not other bloat that happens to exist in the

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

repository. This adds up to a signi�cant improvement in the speed of
dependency resolution and fetching. As dependency graphs scale up,
downloading all of the git repositories bogs down fast. Also remember that
not everybody has a high-speed, low-latency Internet connection.

Will Cargo work with C code (or other languages)?

Yes!

Cargo handles compiling Rust code, but we know that many Rust packages link
against C code. We also know that there are decades of tooling built up around
compiling languages other than Rust.

Our solution: Cargo allows a package to specify a script (written in Rust) to run
before invoking rustc . Rust is leveraged to implement platform-speci�c
con�guration and refactor out common build functionality among packages.

Can Cargo be used inside of make (or ninja , or ...)

Indeed. While we intend Cargo to be useful as a standalone way to compile Rust
packages at the top-level, we know that some people will want to invoke Cargo
from other build tools.

We have designed Cargo to work well in those contexts, paying attention to things
like error codes and machine-readable output modes. We still have some work to
do on those fronts, but using Cargo in the context of conventional scripts is
something we designed for from the beginning and will continue to prioritize.

Does Cargo handle multi-platform packages or cross-compilation?

Rust itself provides facilities for con�guring sections of code based on the
platform. Cargo also supports platform-speci�c dependencies, and we plan to
support more per-platform con�guration in Cargo.toml in the future.

In the longer-term, we’re looking at ways to conveniently cross-compile packages
using Cargo.

Does Cargo support environments, like production or test ?

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

We support environments through the use of pro�les to support:

environment-speci�c �ags (like -g --opt-level=0 for development and
--opt-level=3 for production).

environment-speci�c dependencies (like hamcrest for test assertions).
environment-speci�c #[cfg]
a cargo test command

Does Cargo work on Windows?

Yes!

All commits to Cargo are required to pass the local test suite on Windows. If,
however, you �nd a Windows issue, we consider it a bug, so please �le an issue.

Why do binaries have Cargo.lock in version control, but not
libraries?

The purpose of a Cargo.lock is to describe the state of the world at the time of a
successful build. It is then used to provide deterministic builds across whatever
machine is building the package by ensuring that the exact same dependencies are
being compiled.

This property is most desirable from applications and packages which are at the
very end of the dependency chain (binaries). As a result, it is recommended that all
binaries check in their Cargo.lock .

For libraries the situation is somewhat di�erent. A library is not only used by the
library developers, but also any downstream consumers of the library. Users
dependent on the library will not inspect the library’s Cargo.lock (even if it exists).
This is precisely because a library should not be deterministically recompiled for all
users of the library.

If a library ends up being used transitively by several dependencies, it’s likely that
just a single copy of the library is desired (based on semver compatibility). If Cargo
used all of the dependencies' Cargo.lock �les, then multiple copies of the library
could be used, and perhaps even a version con�ict.

In other words, libraries specify semver requirements for their dependencies but
cannot see the full picture. Only end products like binaries have a full picture to
decide what versions of dependencies should be used.

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

Can libraries use * as a version for their dependencies?

As of January 22nd, 2016, crates.io rejects all packages (not just libraries) with
wildcard dependency constraints.

While libraries can, strictly speaking, they should not. A version requirement of *
says “This will work with every version ever,” which is never going to be true.
Libraries should always specify the range that they do work with, even if it’s
something as general as “every 1.x.y version.”

Why Cargo.toml ?

As one of the most frequent interactions with Cargo, the question of why the
con�guration �le is named Cargo.toml arises from time to time. The leading
capital- C was chosen to ensure that the manifest was grouped with other similar
con�guration �les in directory listings. Sorting �les often puts capital letters before
lowercase letters, ensuring �les like Makefile and Cargo.toml are placed
together. The trailing .toml was chosen to emphasize the fact that the �le is in the
TOML con�guration format.

Cargo does not allow other names such as cargo.toml or Cargofile to
emphasize the ease of how a Cargo repository can be identi�ed. An option of
many possible names has historically led to confusion where one case was
handled but others were accidentally forgotten.

How can Cargo work offline?

Cargo is often used in situations with limited or no network access such as
airplanes, CI environments, or embedded in large production deployments. Users
are often surprised when Cargo attempts to fetch resources from the network, and
hence the request for Cargo to work o�ine comes up frequently.

Cargo, at its heart, will not attempt to access the network unless told to do so. That
is, if no crates comes from crates.io, a git repository, or some other network
location, Cargo will never attempt to make a network connection. As a result, if
Cargo attempts to touch the network, then it's because it needs to fetch a required
resource.

Cargo is also quite aggressive about caching information to minimize the amount
of network activity. It will guarantee, for example, that if cargo build (or an

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

equivalent) is run to completion then the next cargo build is guaranteed to not
touch the network so long as Cargo.toml has not been modi�ed in the meantime.
This avoidance of the network boils down to a Cargo.lock existing and a
populated cache of the crates re�ected in the lock �le. If either of these
components are missing, then they're required for the build to succeed and must
be fetched remotely.

As of Rust 1.11.0 Cargo understands a new �ag, --frozen , which is an assertion
that it shouldn't touch the network. When passed, Cargo will immediately return an
error if it would otherwise attempt a network request. The error should include
contextual information about why the network request is being made in the �rst
place to help debug as well. Note that this �ag does not change the behavior of
Cargo, it simply asserts that Cargo shouldn't touch the network as a previous
command has been run to ensure that network activity shouldn't be necessary.

For more information about vendoring, see documentation on source
replacement.

Glossary

Artifact

An artifact is the �le or set of �les created as a result of the compilation process.
This includes linkable libraries and executable binaries.

Crate

Every target in a package is a crate. Crates are either libraries or executable
binaries. It may loosely refer to either the source code of the target, or the
compiled artifact that the target produces. A crate may also refer to a compressed
package fetched from a registry.

Edition

A Rust edition is a developmental landmark of the Rust language. The edition of a
package is speci�ed in the Cargo.toml manifest, and individual targets can specify
which edition they use. See the Edition Guide for more information.

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

Feature

The meaning of feature depends on the context:

A feature is a named �ag which allows for conditional compilation. A feature
can refer to an optional dependency, or an arbitrary name de�ned in a
Cargo.toml manifest that can be checked within source code.

Cargo has unstable feature flags which can be used to enable experimental
behavior of Cargo itself.
The Rust compiler and Rustdoc have their own unstable feature �ags (see The
Unstable Book and The Rustdoc Book).
CPU targets have target features which specify capabilities of a CPU.

Index

The index is the searchable list of crates in a registry.

Lock file

The Cargo.lock lock file is a �le that captures the exact version of every
dependency used in a workspace or package. It is automatically generated by
Cargo. See Cargo.toml vs Cargo.lock.

Manifest

A manifest is a description of a package or a workspace in a �le named
Cargo.toml .

A virtual manifest is a Cargo.toml �le that only describes a workspace, and does
not include a package.

Member

A member is a package that belongs to a workspace.

Package

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

A package is a collection of source �les and a Cargo.toml manifest which
describes the package. A package has a name and version which is used for
specifying dependencies between packages. A package contains multiple targets,
which are either libraries or executable binaries.

The package root is the directory where the package's Cargo.toml manifest is
located.

The package ID specification, or SPEC, is a string used to uniquely reference a
speci�c version of a package from a speci�c source.

Project

Another name for a package.

Registry

A registry is a service that contains a collection of downloadable crates that can be
installed or used as dependencies for a package. The default registry is crates.io.
The registry has an index which contains a list of all crates, and tells Cargo how to
download the crates that are needed.

Source

A source is a provider that contains crates that may be included as dependencies
for a package. There are several kinds of sources:

Registry source — See registry.
Local registry source — A set of crates stored as compressed �les on the
�lesystem. See Local Registry Sources.
Directory source — A set of crates stored as uncompressed �les on the
�lesystem. See Directory Sources.
Path source — An individual package located on the �lesystem (such as a
path dependency) or a set of multiple packages (such as path overrides).
Git source — Packages located in a git repository (such as a git dependency
or git source).

See Source Replacement for more information.

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

Spec

See package ID speci�cation.

Target

The meaning of the term target depends on the context:

Cargo Target — Cargo packages consist of targets which correspond to
artifacts that will be produced. Packages can have library, binary, example,
test, and benchmark targets. The list of targets are con�gured in the
Cargo.toml manifest, often inferred automatically by the directory layout of

the source �les.
Target Directory — Cargo places all built artifacts and intermediate �les in
the target directory. By default this is a directory named target at the
workspace root, or the package root if not using a workspace. The directory
may be changed with the --target-dir command-line option, the
CARGO_TARGET_DIR environment variable, or the build.target-dir con�g

option.
Target Architecture — The OS and machine architecture for the built
artifacts are typically referred to as a target.
Target Triple — A triple is a speci�c format for specifying a target
architecture. Triples may be referred to as a target triple which is the
architecture for the artifact produced, and the host triple which is the
architecture that the compiler is running on. The target triple can be speci�ed
with the --target command-line option or the build.target con�g option.
The general format of the triple is <arch><sub>-<vendor>-<sys>-<abi>
where:

arch = The base CPU architecture, for example x86_64 , i686 , arm ,
thumb , mips , etc.
sub = The CPU sub-architecture, for example arm has v7 , v7s , v5te ,

etc.
vendor = The vendor, for example unknown , apple , pc , linux , etc.
sys = The system name, for example linux , windows , etc. none is

typically used for bare-metal without an OS.
abi = The ABI, for example gnu , android , eabi , etc.

Some parameters may be omitted. Run rustc --print target-list for a
list of supported targets.

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

Test Targets

Cargo test targets generate binaries which help verify proper operation and
correctness of code. There are two types of test artifacts:

Unit test — A unit test is an executable binary compiled directly from a library
or a binary target. It contains the entire contents of the library or binary code,
and runs #[test] annotated functions, intended to verify individual units of
code.
Integration test target — An integration test target is an executable binary
compiled from a test target which is a distinct crate whose source is located in
the tests directory or speci�ed by the [[test]] table in the Cargo.toml
manifest. It is intended to only test the public API of a library, or execute a
binary to verify its operation.

Workspace

A workspace is a collection of one or more packages that share common
dependency resolution (with a shared Cargo.lock), output directory, and various
settings such as pro�les.

A virtual workspace is a workspace where the root Cargo.toml manifest does not
de�ne a package, and only lists the workspace members.

The workspace root is the directory where the workspace's Cargo.toml manifest is
located.

The Cargo Book https://doc.rust-lang.org/cargo/print.html

��� of ��� �/�/��, �:�� PM

