
Introduction
Speed or simplicity? Why not both?

pest is a library for writing plain-text parsers in Rust.

Parsers that use pest are easy to design and maintain due to the use of Parsing
Expression Grammars, or PEGs. And, because of Rust's zero-cost abstractions,
pest parsers can be very fast.

Sample

Here is the complete grammar for a simple calculator developed in a (currently
unwritten) later chapter:

And here is the function that uses that parser to calculate answers:

num = @{ int ~ ("." ~ ASCII_DIGIT*)? ~ (^"e" ~ int)? }
int = { ("+" | "-")? ~ ASCII_DIGIT+ }

operation = _{ add | subtract | multiply | divide | power }
add = { "+" }
subtract = { "-" }
multiply = { "*" }
divide = { "/" }
power = { "^" }

expr = { term ~ (operation ~ term)* }
term = _{ num | "(" ~ expr ~ ")" }

calculation = _{ SOI ~ expr ~ EOI }

WHITESPACE = _{ " " | "\t" }

A thoughtful introduction to the pest parser https://pest.rs/book/print.html

� of �� �/�/��, �:�� PM

About this book

This book provides an overview of pest as well as several example parsers. For
more details of pest 's API, check the documentation.

Note that pest uses some advanced features of the Rust language. For an
introduction to Rust, consult the o�cial Rust book.

Example: CSV
Comma-Separated Values is a very simple text format. CSV �les consist of a list of

lazy_static! {
static ref PREC_CLIMBER: PrecClimber<Rule> = {

use Rule::*;
use Assoc::*;

 PrecClimber::new(vec![
 Operator::new(add, Left) | Operator::new(subtract, Left),
 Operator::new(multiply, Left) | Operator::new(divide, Left),
 Operator::new(power, Right)
])
 };
}

fn eval(expression: Pairs<Rule>) -> f64 {
 PREC_CLIMBER.climb(
 expression,
 |pair: Pair<Rule>| match pair.as_rule() {
 Rule::num => pair.as_str().parse::<f64>().unwrap(),
 Rule::expr => eval(pair.into_inner()),
 _ => unreachable!(),
 },
 |lhs: f64, op: Pair<Rule>, rhs: f64| match op.as_rule() {
 Rule::add => lhs + rhs,
 Rule::subtract => lhs - rhs,
 Rule::multiply => lhs * rhs,
 Rule::divide => lhs / rhs,
 Rule::power => lhs.powf(rhs),
 _ => unreachable!(),
 },
)
}

A thoughtful introduction to the pest parser https://pest.rs/book/print.html

� of �� �/�/��, �:�� PM

records, each on a separate line. Each record is a list of fields separated by commas.

For example, here is a CSV �le with numeric �elds:

Let's write a program that computes the sum of these fields and counts the
number of records.

Setup

Start by initializing a new project using Cargo:

Add the pest and pest_derive crates to the dependencies section in
Cargo.toml :

And �nally bring pest and pest_derive into scope in src/main.rs :

The #[macro_use] attribute is necessary to use pest to generate parsing code!
This is a very important attribute.

Writing the parser

65279,1179403647,1463895090
3.1415927,2.7182817,1.618034
-40,-273.15
13,42
65537

$ cargo init --bin csv-tool
 Created binary (application) project
$ cd csv-tool

[dependencies]
pest = "2.0"
pest_derive = "2.0"

extern crate pest;
#[macro_use]
extern crate pest_derive;

A thoughtful introduction to the pest parser https://pest.rs/book/print.html

� of �� �/�/��, �:�� PM

pest works by compiling a description of a �le format, called a grammar, into Rust
code. Let's write a grammar for a CSV �le that contains numbers. Create a new �le
named src/csv.pest with a single line:

This is a description of every number �eld: each character is either an ASCII digit 0
through 9 , a full stop . , or a hyphen–minus - . The plus sign + indicates that the
pattern can occur one or more times.

Rust needs to know to compile this �le using pest :

If you run cargo doc , you will see that pest has created the function
CSVParser::parse and an enum called Rule with a single variant Rule::field .

Let's test it out! Rewrite main :

Yikes! That's a complicated type! But you can see that the successful parse was Ok ,
while the failed parse was Err . We'll get into the details later.

For now, let's complete the grammar:

field = { (ASCII_DIGIT | "." | "-")+ }

use pest::Parser;

#[derive(Parser)]
#[grammar = "csv.pest"]
pub struct CSVParser;

fn main() {
let successful_parse = CSVParser::parse(Rule::field, "-273.15");
println!("{:?}", successful_parse);

let unsuccessful_parse = CSVParser::parse(Rule::field, "this is not
a number");

println!("{:?}", unsuccessful_parse);
}

$ cargo run
 [...]
Ok([Pair { rule: field, span: Span { str: "-273.15", start: 0, end: 7 },
inner: [] }])
Err(Error { variant: ParsingError { positives: [field], negatives: [] },
location: Pos(0), path: None, line: "this is not a number",
continued_line: None, start: (1, 1), end: None })

A thoughtful introduction to the pest parser https://pest.rs/book/print.html

� of �� �/�/��, �:�� PM

The tilde ~ means "and then", so that "abc" ~ "def" matches abc followed by
def . (For this grammar, "abc" ~ "def" is exactly the same as "abcdef" ,

although this is not true in general; see a later chapter about WHITESPACE .)

In addition to literal strings ("\r\n") and built-ins (ASCII_DIGIT), rules can contain
other rules. For instance, a record is a field , and optionally a comma , and
then another field repeated as many times as necessary. The asterisk * is just
like the plus sign + , except the pattern is optional: it can occur any number of
times at all (zero or more).

There are two more rules that we haven't de�ned: SOI and EOI are two special
rules that match, respectively, the start of input and the end of input. Without EOI ,
the file rule would gladly parse an invalid �le! It would just stop as soon as it
found the �rst invalid character and report a successful parse, possibly consisting
of nothing at all!

The main program loop

Now we're ready to �nish the program. We will use File to read the CSV �le into
memory. We'll also be messy and use expect everywhere.

Next we invoke the parser on the �le. Don't worry about the speci�c types for now.
Just know that we're producing a pest::iterators::Pair that represents the
file rule in our grammar.

field = { (ASCII_DIGIT | "." | "-")+ }
record = { field ~ ("," ~ field)* }
file = { SOI ~ (record ~ ("\r\n" | "\n"))* ~ EOI }

use std::fs;

fn main() {
let unparsed_file = fs::read_to_string("numbers.csv").expect("cannot

read file");

// ...
}

A thoughtful introduction to the pest parser https://pest.rs/book/print.html

� of �� �/�/��, �:�� PM

Finally, we iterate over the record s and field s, while keeping track of the count
and sum, then print those numbers out.

If p is a parse result (a Pair) for a rule in the grammar, then p.into_inner()
returns an iterator over the named sub-rules of that rule. For instance, since the
file rule in our grammar has record as a sub-rule, file.into_inner() returns

an iterator over each parsed record . Similarly, since a record contains field
sub-rules, record.into_inner() returns an iterator over each parsed field .

Done

fn main() {
// ...

let file = CSVParser::parse(Rule::file, &unparsed_file)
 .expect("unsuccessful parse") // unwrap the parse result
 .next().unwrap(); // get and unwrap the `file` rule; never fails

// ...
}

fn main() {
// ...

let mut field_sum: f64 = 0.0;
let mut record_count: u64 = 0;

for record in file.into_inner() {
match record.as_rule() {

 Rule::record => {
 record_count += 1;

for field in record.into_inner() {
 field_sum += field.as_str().parse::<f64>().unwrap();
 }
 }
 Rule::EOI => (),
 _ => unreachable!(),
 }
 }

println!("Sum of fields: {}", field_sum);
println!("Number of records: {}", record_count);

}

A thoughtful introduction to the pest parser https://pest.rs/book/print.html

� of �� �/�/��, �:�� PM

Try it out! Copy the sample CSV at the top of this chapter into a �le called
numbers.csv , then run the program! You should see something like this:

Parser API
pest provides several ways of accessing the results of a successful parse. The

examples below use the following grammar:

Tokens

pest represents successful parses using tokens. Whenever a rule matches, two
tokens are produced: one at the start of the text that the rule matched, and one at
the end. For example, the rule number applied to the string "3130 abc" would
match and produce this pair of tokens:

Note that the rule doesn't match the entire input text. It only matches as much text
as possible, then stops if successful.

A token is like a cursor in the input string. It has a character position in the string,
as well as a reference to the rule that created it.

Nested rules

If a named rule contains another named rule, tokens will be produced for both
rules. For instance, the rule enclosed applied to the string "(..6472..)" would

$ cargo run
 [...]
Sum of fields: 2643429302.327908
Number of records: 5

number = { ASCII_DIGIT+ } // one or more decimal digits
enclosed = { "(.." ~ number ~ "..)" } // for instance, "(..6472..)"
sum = { number ~ " + " ~ number } // for instance, "1362 + 12"

"3130 abc"
 | ^ end(number)
 ^ start(number)

A thoughtful introduction to the pest parser https://pest.rs/book/print.html

� of �� �/�/��, �:�� PM

match and produce these four tokens:

Sometimes, tokens might not occur at distinct character positions. For example,
when parsing the rule sum , the inner number rules share some start and end
positions:

In fact, for a rule that matches empty input, the start and end tokens will be at the
same position!

Interface

Tokens are exposed as the Token enum, which has Start and End variants. You
can get an iterator of Token s by calling tokens on a parse result:

After a successful parse, tokens will occur as nested pairs of matching Start and
End . Both kinds of tokens have two �elds:

rule , which explains which rule generated them; and
pos , which indicates their positions.

A start token's position is the �rst character that the rule matched. An end token's
position is the �rst character that the rule did not match — that is, an end token

"(..6472..)"
 | | | ^ end(enclosed)
 | | ^ end(number)
 | ^ start(number)
 ^ start(enclosed)

"1773 + 1362"
 | | | ^ end(sum)
 | | | ^ end(number)
 | | ^ start(number)
 | ^ end(number)
 ^ start(number)
 ^ start(sum)

let parse_result = Parser::parse(Rule::sum, "1773 + 1362").unwrap();
let tokens = parse_result.tokens();

for token in tokens {
println!("{:?}", token);

}

A thoughtful introduction to the pest parser https://pest.rs/book/print.html

� of �� �/�/��, �:�� PM

refers to a position after the match. If a rule matched the entire input string, the
end token points to an imaginary position after the string.

Pairs

Tokens are not the most convenient interface, however. Usually you will want to
explore the parse tree by considering matching pairs of tokens. For this purpose,
pest provides the Pair type.

A Pair represents a matching pair of tokens, or, equivalently, the spanned text
that a named rule successfully matched. It is commonly used in several ways:

Determining which rule produced the Pair
Using the Pair as a raw &str
Inspecting the inner named sub-rules that produced the Pair

In general, a Pair might have any number of inner rules: zero, one, or more. For
maximum �exibility, Pair::into_inner() returns Pairs , which is an iterator over
each pair.

This means that you can use for loops on parse results, as well as iterator
methods such as map , filter , and collect .

let pair = Parser::parse(Rule::enclosed, "(..6472..) and more text")
 .unwrap().next().unwrap();

assert_eq!(pair.as_rule(), Rule::enclosed);
assert_eq!(pair.as_str(), "(..6472..)");

let inner_rules = pair.into_inner();
println!("{}", inner_rules); // --> [number(3, 7)]

A thoughtful introduction to the pest parser https://pest.rs/book/print.html

� of �� �/�/��, �:�� PM

Pairs iterators are also commonly used via the next method directly. If a rule
consists of a known number of sub-rules (for instance, the rule sum has exactly
two sub-rules), the sub-matches can be extracted with next and unwrap :

Sometimes rules will not have a known number of sub-rules, such as when a sub-
rule is repeated with an asterisk * :

In cases like these it is not possible to call .next().unwrap() , because the number
of sub-rules depends on the input string — it cannot be known at compile time.

The parse method

A pest -derived Parser has a single method parse which returns a
Result< Pairs, Error > . To access the underlying parse tree, it is necessary to

let pairs = Parser::parse(Rule::sum, "1773 + 1362")
 .unwrap().next().unwrap()
 .into_inner();

let numbers = pairs
 .clone()
 .map(|pair| str::parse(pair.as_str()).unwrap())
 .collect::<Vec<i32>>();
assert_eq!(vec![1773, 1362], numbers);

for (found, expected) in pairs.zip(vec!["1773", "1362"]) {
assert_eq!(Rule::number, found.as_rule());
assert_eq!(expected, found.as_str());

}

let parse_result = Parser::parse(Rule::sum, "1773 + 1362")
 .unwrap().next().unwrap();
let mut inner_rules = parse_result.into_inner();

let match1 = inner_rules.next().unwrap();
let match2 = inner_rules.next().unwrap();

assert_eq!(match1.as_str(), "1773");
assert_eq!(match2.as_str(), "1362");

list = { number* }

A thoughtful introduction to the pest parser https://pest.rs/book/print.html

�� of �� �/�/��, �:�� PM

match on or unwrap the result:

Our examples so far have included the calls
Parser::parse(...).unwrap().next().unwrap() . The �rst unwrap turns the

result into a Pairs . If parsing had failed, the program would panic! We only use
unwrap in these examples because we already know that they will parse

successfully.

In the example above, in order to get to the enclosed rule inside of the Pairs , we
use the iterator interface. The next() call returns an Option<Pair> , which we
�nally unwrap to get the Pair for the enclosed rule.

Using Pair and Pairs with a grammar

While the Result from Parser::parse(...) might very well be an error on invalid
input, Pair and Pairs often have more subtle behavior. For instance, with this
grammar:

this function will never panic:

// check whether parse was successful
match Parser::parse(Rule::enclosed, "(..6472..)") {

Ok(mut pairs) => {
let enclosed = pairs.next().unwrap();
// ...

 }
Err(error) => {

// ...
 }
}

number = { ASCII_DIGIT+ }
sum = { number ~ " + " ~ number }

A thoughtful introduction to the pest parser https://pest.rs/book/print.html

�� of �� �/�/��, �:�� PM

str::parse(...).unwrap() is safe because the number rule only ever matches
digits, which str::parse(...) can handle. And pairs.next().unwrap() is safe to
call twice because a sum match always has two sub-matches, which is guaranteed
by the grammar.

Since these sorts of guarantees are awkward to express with Rust types, pest only
provides a few high-level types to represent parse trees. Nevertheless, you should
rely on the meaning of your grammar for properties such as "contains n sub-rules",
"is safe to parse to f32 ", and "never fails to match". Idiomatic pest code uses
unwrap and unreachable! .

Spans and positions

Occasionally, you will want to refer to a matching rule in the context of the raw
source text, rather than the interior text alone. For example, you might want to
print the entire line that contained the match. For this you can use Span and
Position .

A Span is returned from Pair::as_span . Spans have a start position and an end
position (which correspond to the start and end tokens of the rule that made the
pair).

Spans can be decomposed into their start and end Position s, which provide
useful methods for examining the string around that position. For example,
Position::line_col() �nds out the line and column number of a position.

Essentially, a Position is a Token without a rule. In fact, you can use pattern

fn process(pair: Pair<Rule>) -> f64 {
match pair.as_rule() {

 Rule::number => str::parse(pair.as_str()).unwrap(),
 Rule::sum => {

let mut pairs = pair.into_inner();

let num1 = pairs.next().unwrap();
let num2 = pairs.next().unwrap();

 process(num1) + process(num2)
 }
 }
}

A thoughtful introduction to the pest parser https://pest.rs/book/print.html

�� of �� �/�/��, �:�� PM

matching to turn a Token into its component Rule and Position .

Example: INI
INI (short for initialization) �les are simple con�guration �les. Since there is no
standard for the format, we'll write a program that is able to parse this example
�le:

Each line contains a key and value separated by an equals sign; or contains a
section name surrounded by square brackets; or else is blank and has no
meaning.

Whenever a section name appears, the following keys and values belong to that
section, until the next section name. The key–value pairs at the beginning of the �le
belong to an implicit "empty" section.

Writing the grammar

Start by initializing a new project using Cargo, adding the dependencies
pest = "2.0" and pest_derive = "2.0" . Make a new �le, src/ini.pest , to hold

the grammar.

The text of interest in our �le — username , /var/www/example.org , etc. — consists
of only a few characters. Let's make a rule to recognize a single character in that
set. The built-in rule ASCII_ALPHANUMERIC is a shortcut to represent any uppercase

username = noha
password = plain_text
salt = NaCl

[server_1]
interface=eth0
ip=127.0.0.1
document_root=/var/www/example.org

[empty_section]

[second_server]
document_root=/var/www/example.com
ip=
interface=eth1

A thoughtful introduction to the pest parser https://pest.rs/book/print.html

�� of �� �/�/��, �:�� PM

or lowercase ASCII letter, or any digit.

Section names and property keys must not be empty, but property values may be
empty (as in the line ip= above). That is, the former consist of one or more
characters, char+ ; and the latter consist of zero or more characters, char* . We
separate the meaning into two rules:

Now it's easy to express the two kinds of input lines.

Finally, we need a rule to represent an entire input �le. The expression
(section | property)? matches section , property , or else nothing. Using the

built-in rule NEWLINE to match line endings:

To compile the parser into Rust, we need to add the following to src/main.rs :

Program initialization

char = { ASCII_ALPHANUMERIC | "." | "_" | "/" }

name = { char+ }
value = { char* }

section = { "[" ~ name ~ "]" }
property = { name ~ "=" ~ value }

file = {
SOI ~

 ((section | property)? ~ NEWLINE)* ~
EOI

}

extern crate pest;
#[macro_use]
extern crate pest_derive;

use pest::Parser;

#[derive(Parser)]
#[grammar = "ini.pest"]
pub struct INIParser;

A thoughtful introduction to the pest parser https://pest.rs/book/print.html

�� of �� �/�/��, �:�� PM

Now we can read the �le and parse it with pest :

We'll express the properties list using nested HashMap s. The outer hash map will
have section names as keys and section contents (inner hash maps) as values. Each
inner hash map will have property keys and property values. For example, to
access the document_root of server_1 , we could write
properties["server_1"]["document_root"] . The implicit "empty" section will be

represented by a regular section with an empty string "" for the name, so that
properties[""]["salt"] is valid.

Note that the hash map keys and values are all &str , borrowed strings. pest
parsers do not copy the input they parse; they borrow it. All methods for
inspecting a parse result return strings which are borrowed from the original
parsed string.

The main loop

Now we interpret the parse result. We loop through each line of the �le, which is
either a section name or a key–value property pair. If we encounter a section
name, we update a variable. If we encounter a property pair, we obtain a reference

use std::collections::HashMap;
use std::fs;

fn main() {
let unparsed_file = fs::read_to_string("config.ini").expect("cannot

read file");

let file = INIParser::parse(Rule::file, &unparsed_file)
 .expect("unsuccessful parse") // unwrap the parse result
 .next().unwrap(); // get and unwrap the `file` rule; never fails

// ...
}

fn main() {
// ...

let mut properties: HashMap<&str, HashMap<&str, &str>> =
HashMap::new();

// ...
}

A thoughtful introduction to the pest parser https://pest.rs/book/print.html

�� of �� �/�/��, �:�� PM

to the hash map for the current section, then insert the pair into that hash map.

For output, let's simply dump the hash map using the pretty-printed Debug
format.

Whitespace

// ...

let mut current_section_name = "";

for line in file.into_inner() {
match line.as_rule() {

 Rule::section => {
let mut inner_rules = line.into_inner(); // { name }

 current_section_name =
inner_rules.next().unwrap().as_str();
 }
 Rule::property => {

let mut inner_rules = line.into_inner(); // { name ~ "="
~ value }

let name: &str = inner_rules.next().unwrap().as_str();
let value: &str = inner_rules.next().unwrap().as_str();

// Insert an empty inner hash map if the outer hash map
hasn't

// seen this section name before.
let section =

properties.entry(current_section_name).or_default();
 section.insert(name, value);
 }
 Rule::EOI => (),
 _ => unreachable!(),
 }
 }

// ...

fn main() {
// ...

println!("{:#?}", properties);
}

A thoughtful introduction to the pest parser https://pest.rs/book/print.html

�� of �� �/�/��, �:�� PM

If you copy the example INI �le at the top of this chapter into a �le config.ini
and run the program, it will not parse. We have forgotten about the optional
spaces around equals signs!

Handling whitespace can be inconvenient for large grammars. Explicitly writing a
whitespace rule and manually inserting it makes a grammar di�cult to read and

modify. pest provides a solution using the special rule WHITESPACE . If de�ned, it
will be implicitly run, as many times as possible, at every tilde ~ and between
every repetition (for example, * and +). For our INI parser, only spaces are legal
whitespace.

We mark the WHITESPACE rule silent with a leading low line (underscore) _{ ... } .
This way, even if it matches, it won't show up inside other rules. If it weren't silent,
parsing would be much more complicated, since every call to Pairs::next(...)
could potentially return Rule::WHITESPACE instead of the desired next regular
rule.

But wait! Spaces shouldn't be allowed in section names, keys, or values! Currently,
whitespace is automatically inserted between characters in name = { char+ } .
Rules that are whitespace-sensitive need to be marked atomic with a leading at sign
@{ ... } . In atomic rules, automatic whitespace handling is disabled, and interior

rules are silent.

Done

Try it out! Make sure that the �le config.ini exists, then run the program! You
should see something like this:

WHITESPACE = _{ " " }

name = @{ char+ }
value = @{ char* }

A thoughtful introduction to the pest parser https://pest.rs/book/print.html

�� of �� �/�/��, �:�� PM

Grammars
Like many parsing tools, pest operates using a formal grammar that is distinct
from your Rust code. The format that pest uses is called a parsing expression
grammar, or PEG. When building a project, pest automatically compiles the PEG,
located in a separate �le, into a plain Rust function that you can call.

How to activate pest

Most projects will have at least two �les that use pest : the parser (say,
src/parser/mod.rs) and the grammar (src/parser/grammar.pest). Assuming

that they are in the same directory:

Whenever you compile this �le, pest will automatically use the grammar �le to
generate items like this:

$ cargo run
 [...]
{
 "": {
 "password": "plain_text",
 "username": "noha",
 "salt": "NaCl"
 },
 "second_server": {
 "ip": "",
 "document_root": "/var/www/example.com",
 "interface": "eth1"
 },
 "server_1": {
 "interface": "eth0",
 "document_root": "/var/www/example.org",
 "ip": "127.0.0.1"
 }
}

use pest::Parser;

#[derive(Parser)]
#[grammar = "parser/grammar.pest"] // relative to project `src`
struct MyParser;

A thoughtful introduction to the pest parser https://pest.rs/book/print.html

�� of �� �/�/��, �:�� PM

You will never see enum Rules or impl Parser as plain text! The code only exists
during compilation. However, you can use Rules just like any other enum, and
you can use parse(...) through the Pairs interface described in the Parser API
chapter.

Warning about PEGs!

Parsing expression grammars look quite similar to other parsing tools you might
be used to, like regular expressions, BNF grammars, and others (Yacc/Bison, LALR,
CFG). However, PEGs behave subtly di�erently: PEGs are eager, non-backtracking,
ordered, and unambiguous.

Don't be scared if you don't recognize any of the above names! You're already a
step ahead of people who do — when you use pest 's PEGs, you won't be tripped
up by comparisons to other tools.

If you have used other parsing tools before, be sure to read the next section
carefully. We'll mention some common mistakes regarding PEGs.

Parsing expression grammar
Parsing expression grammars (PEGs) are simply a strict representation of the
simple imperative code that you would write if you were writing a parser by hand.

In fact, pest produces code that is quite similar to the pseudo-code in the

pub enum Rules { /* ... */ }

impl Parser for MyParser {
pub fn parse(Rules, &str) -> pest::Pairs { /* ... */ }

}

number = { // To recognize a number...
ASCII_DIGIT+ // take as many ASCII digits as possible (at

least one).
}
expression = { // To recognize an expression...
 number // first try to take a number...
 | "true" // or, if that fails, the string "true".
}

A thoughtful introduction to the pest parser https://pest.rs/book/print.html

�� of �� �/�/��, �:�� PM

comments above.

Eagerness

When a repetition PEG expression is run on an input string,

it runs that expression as many times as it can (matching "eagerly", or "greedily"). It
either succeeds, consuming whatever it matched and passing the remaining input
on to the next step in the parser,

or fails, consuming nothing.

If an expression fails to match, the failure propagates upwards, eventually leading
to a failed parse, unless the failure is "caught" somewhere in the grammar. The
choice operator is one way to "catch" such failures.

Ordered choice

The choice operator, written as a vertical line | , is ordered. The PEG expression
first | second means "try first ; but if it fails, try second instead".

In many cases, the ordering does not matter. For instance, "true" | "false" will

ASCII_DIGIT+ // one or more characters from '0' to '9'

"42 boxes"
 ^ Running ASCII_DIGIT+

"42 boxes"
 ^ Successfully took one or more digits!

" boxes"
 ^ Remaining unparsed input.

"galumphing"
 ^ Running ASCII_DIGIT+
 Failed to take one or more digits!

"galumphing"
 ^ Remaining unparsed input (everything).

A thoughtful introduction to the pest parser https://pest.rs/book/print.html

�� of �� �/�/��, �:�� PM

match either the string "true" or the string "false" (and fail if neither occurs).

However, sometimes the ordering does matter. Consider the PEG expression
"a" | "ab" . You might expect it to match either the string "a" or the string "ab"

. But it will not — the expression means "try "a" ; but if it fails, try "ab" instead". If
you are matching on the string "abc" , "try "a" " will not fail; it will instead match
"a" successfully, leaving "bc" unparsed!

In general, when writing a parser with choices, put the longest or most speci�c
choice �rst, and the shortest or most general choice last.

Non-backtracking

During parsing, a PEG expression either succeeds or fails. If it succeeds, the next
step is performed as usual. But if it fails, the whole expression fails. The engine will
not back up and try again.

Consider this grammar, matching on the string "frumious" :

You might expect this rule to parse any input string that contains at least one
character (equivalent to ANY+). But it will not. Instead, the �rst ANY* will eagerly
eat the entire string — it will succeed. Then, the next ANY will have nothing left, so
it will fail.

In a system with backtracking (like regular expressions), you would back up one
step, "un-eating" a character, and then try again. But PEGs do not do this. In the
rule first ~ second , once first parses successfully, it has consumed some
characters that will never come back. second can only run on the input that

word = { // to recognize a word...
ANY* // take any character, zero or more times...

 ~ ANY // followed by any character
}

"frumious"
 ^ (word)

"frumious"
 ^ (ANY*) Success! Continue to `ANY` with remaining input "".

""
 ^ (ANY) Failure! Expected one character, but found end of string.

A thoughtful introduction to the pest parser https://pest.rs/book/print.html

�� of �� �/�/��, �:�� PM

first did not consume.

Unambiguous

These rules form an elegant and simple system. Every PEG rule is run on the
remainder of the input string, consuming as much input as necessary. Once a rule
is done, the rest of the input is passed on to the rest of the parser.

For instance, the expression ASCII_DIGIT+ , "one or more digits", will always match
the largest sequence of consecutive digits possible. There is no danger of
accidentally having a later rule back up and steal some digits in an unintuitive and
nonlocal way.

This contrasts with other parsing tools, such as regular expressions and CFGs,
where the results of a rule often depend on code some distance away. Indeed, the
famous "shift/reduce con�ict" in LR parsers is not a problem in PEGs.

Don't panic
This all might be a bit counterintuitive at �rst. But as you can see, the basic logic is
very easy and straightforward. You can trivially step through the execution of any
PEG expression.

Try this.
If it succeeds, try the next thing.
Otherwise, try the other thing.

These rules together make PEGs very pleasant tools for writing a parser.

Syntax of pest parsers
pest grammars are lists of rules. Rules are de�ned like this:

(this ~ next_thing) | (other_thing)

A thoughtful introduction to the pest parser https://pest.rs/book/print.html

�� of �� �/�/��, �:�� PM

Since rule names are translated into Rust enum variants, they are not allowed to
be Rust keywords.

The left curly bracket { de�ning a rule can be preceded by symbols that a�ect its
operation:

Expressions

Grammar rules are built from expressions (hence "parsing expression grammar").
These expressions are a terse, formal description of how to parse an input string.

Expressions are composable: they can be built out of other expressions and nested
inside of each other to produce arbitrarily complex rules (although you should
break very complicated expressions into multiple rules to make them easier to
manage).

PEG expressions are suitable for both high-level meaning, like "a function
signature, followed by a function body", and low-level meaning, like "a semicolon,
followed by a line feed". The combining form "followed by", the sequence operator,
is the same in either case.

Terminals

The most basic rule is a literal string in double quotes: "text" .

A string can be case-insensitive (for ASCII characters only) if preceded by a caret:
^"text" .

A single character in a range is written as two single-quoted characters,
separated by two dots: '0'..'9' .

my_rule = { ... }

another_rule = { // comments are preceded by two slashes
 ... // whitespace goes anywhere
}

silent_rule = _{ ... }
atomic_rule = @{ ... }

A thoughtful introduction to the pest parser https://pest.rs/book/print.html

�� of �� �/�/��, �:�� PM

You can match any single character at all with the special rule ANY . This is
equivalent to '\u{00}'..'\u{10FFFF}' , any single Unicode character.

Finally, you can refer to other rules by writing their names directly, and even use
rules recursively:

Sequence

The sequence operator is written as a tilde ~ .

When matching a sequence expression, first is attempted. If first matches
successfully, and_then is attempted next. However, if first fails, the entire
expression fails.

A list of expressions can be chained together with sequences, which indicates that
all of the components must occur, in the speci�ed order.

Ordered choice

The choice operator is written as a vertical line | .

When matching a choice expression, first is attempted. If first matches
successfully, the entire expression succeeds immediately. However, if first fails,
or_else is attempted next.

"a literal string"
^"ASCII case-insensitive string"
'a'..'z'
ANY

my_rule = { "slithy " ~ other_rule }
other_rule = { "toves" }
recursive_rule = { "mimsy " ~ recursive_rule }

first ~ and_then

("abc") ~ (^"def") ~ ('g'..'z') // matches "abcDEFr"

first | or_else

("abc") | (^"def") | ('g'..'z') // matches "DEF"

A thoughtful introduction to the pest parser https://pest.rs/book/print.html

�� of �� �/�/��, �:�� PM

Note that first and or_else are always attempted at the same position, even if
first matched some input before it failed. When encountering a parse failure,

the engine will try the next ordered choice as though no input had been matched.
Failed parses never consume any input.

It is somewhat tempting to borrow terminology and think of this operation as
"alternation" or simply "OR", but this is misleading. The word "choice" is used
speci�cally because the operation is not merely logical "OR".

Repetition

There are two repetition operators: the asterisk * and plus sign + . They are
placed after an expression. The asterisk * indicates that the preceding expression
can occur zero or more times. The plus sign + indicates that the preceding
expression can occur one or more times (it must occur at least once).

The question mark operator ? is similar, except it indicates that the expression is
optional — it can occur zero or one times.

Note that expr* and expr? will always succeed, because they are allowed to
match zero times. For example, "a"* ~ "b"? will succeed even on an empty input
string.

Other numbers of repetitions can be indicated using curly brackets:

start = { "Beware " ~ creature }
creature = {
 ("the " ~ "Jabberwock")
 | ("the " ~ "Jubjub bird")
}

"Beware the Jubjub bird"
 ^ (start) Parses via the second choice of `creature`,
 even though the first choice matched "the " successfully.

("zero" ~ "or" ~ "more")*
 ("one" | "or" | "more")+
 (^"optional")?

A thoughtful introduction to the pest parser https://pest.rs/book/print.html

�� of �� �/�/��, �:�� PM

Thus expr* is equivalent to expr{0, } ; expr+ is equivalent to expr{1, } ; and
expr? is equivalent to expr{0, 1} .

Predicates

Preceding an expression with an ampersand & or exclamation mark ! turns it
into a predicate that never consumes any input. You might know these operators
as "lookahead" or "non-progressing".

The positive predicate, written as an ampersand & , attempts to match its inner
expression. If the inner expression succeeds, parsing continues, but at the same
position as the predicate — &foo ~ bar is thus a kind of "AND" statement: "the
input string must match foo AND bar ". If the inner expression fails, the whole
expression fails too.

The negative predicate, written as an exclamation mark ! , attempts to match its
inner expression. If the inner expression fails, the predicate succeeds and parsing
continues at the same position as the predicate. If the inner expression succeeds,
the predicate fails — !foo ~ bar is thus a kind of "NOT" statement: "the input
string must match bar but NOT foo ".

This leads to the common idiom meaning "any character but":

expr{n} // exactly n repetitions
expr{m, n} // between m and n repetitions, inclusive

expr{, n} // at most n repetitions
expr{m, } // at least m repetitions

A thoughtful introduction to the pest parser https://pest.rs/book/print.html

�� of �� �/�/��, �:�� PM

Operator precedence and grouping (WIP)

The repetition operators asterisk * , plus sign + , and question mark ? apply to
the immediately preceding expression.

Larger expressions can be repeated by surrounding them with parentheses.

Repetition operators have the highest precedence, followed by predicate
operators, the sequence operator, and �nally ordered choice.

not_space_or_tab = {
 !(// if the following text is not

" " // a space
 | "\t" // or a tab
)
 ~ ANY // then consume one character
}

triple_quoted_string = {
"'''"

 ~ triple_quoted_character*
 ~ "'''"
}
triple_quoted_character = {
 !"'''" // if the following text is not three apostrophes
 ~ ANY // then consume one character
}

"One " ~ "or " ~ "more. "+
"One " ~ "or " ~ ("more. "+)
 are equivalent and match
"One or more. more. more. more. "

("One " ~ "or " ~ "more. ")+
 matches
"One or more. One or more. "

A thoughtful introduction to the pest parser https://pest.rs/book/print.html

�� of �� �/�/��, �:�� PM

Start and end of input

The rules SOI and EOI match the start and end of the input string, respectively.
Neither consumes any text. They only indicate whether the parser is currently at
one edge of the input.

For example, to ensure that a rule matches the entire input, where any syntax
error results in a failed parse (rather than a successful but incomplete parse):

Implicit whitespace

Many languages and text formats allow arbitrary whitespace and comments
between logical tokens. For instance, Rust considers 4+5 equivalent to 4 + 5 and
4 /* comment */ + 5 .

The optional rules WHITESPACE and COMMENT implement this behaviour. If either
(or both) are de�ned, they will be implicitly inserted at every sequence and
between every repetition (except in atomic rules).

my_rule = {
"a"* ~ "b"?

 | &"b"+ ~ "a"
}

// equivalent to

my_rule = {
 (("a"*) ~ ("b"?))
 | ((&("b"+)) ~ "a")
}

main = {
SOI

 ~ (...)
 ~ EOI
}

expression = { "4" ~ "+" ~ "5" }
WHITESPACE = _{ " " }
COMMENT = _{ "/*" ~ (!"*/" ~ ANY)* ~ "*/" }

A thoughtful introduction to the pest parser https://pest.rs/book/print.html

�� of �� �/�/��, �:�� PM

As you can see, WHITESPACE and COMMENT are run repeatedly, so they need only
match a single whitespace character or a single comment. The grammar above is
equivalent to:

Note that implicit whitespace is not inserted at the beginning or end of rules — for
instance, expression does not match " 4+5 " . If you want to include implicit
whitespace at the beginning and end of a rule, you will need to sandwich it
between two empty rules (often SOI and EOI as above):

(Be sure to mark the WHITESPACE and COMMENT rules as silent unless you want to
see them included inside other rules!)

Silent and atomic rules

Silent rules are just like normal rules — when run, they function the same way —
except they do not produce pairs or tokens. If a rule is silent, it will never appear in
a parse result.

To make a silent rule, precede the left curly bracket { with a low line (underscore)
_ .

"4+5"
"4 + 5"
"4 + 5"
"4 /* comment */ + 5"

expression = {
"4" ~ (ws | com)*

 ~ "+" ~ (ws | com)*
 ~ "5"
}
ws = _{ " " }
com = _{ "/*" ~ (!"*/" ~ ANY)* ~ "*/" }

WHITESPACE = _{ " " }
expression = { "4" ~ "+" ~ "5" }
main = { SOI ~ expression ~ EOI }

"4+5"
" 4 + 5 "

A thoughtful introduction to the pest parser https://pest.rs/book/print.html

�� of �� �/�/��, �:�� PM

Atomic

pest has two kinds of atomic rules: atomic and compound atomic. To make one,
write the sigil before the left curly bracket { .

Both kinds of atomic rule prevent implicit whitespace: inside an atomic rule, the
tilde ~ means "immediately followed by", and repetition operators (asterisk * and
plus sign +) have no implicit separation. In addition, all other rules called from an
atomic rule are also treated as atomic.

The di�erence between the two is how they produce tokens for inner rules. In an
atomic rule, interior matching rules are silent. By contrast, compound atomic rules
produce inner tokens as normal.

Atomic rules are useful when the text you are parsing ignores whitespace except in
a few cases, such as literal strings. In this instance, you can write WHITESPACE or
COMMENT rules, then make your string-matching rule be atomic.

Non-atomic

Sometimes, you'll want to cancel the e�ects of atomic parsing. For instance, you
might want to have string interpolation with an expression inside, where the inside
expression can still have whitespace like normal.

This is where you use a non-atomic rule. Write an exclamation mark ! in front of
the de�ning curly bracket. The rule will run as non-atomic, whether it is called from
an atomic rule or not.

silent = _{ ... }

atomic = @{ ... }
compound_atomic = ${ ... }

#!/bin/env python3
print(f"The answer is {2 + 4}.")

fstring = @{ "\"" ~ ... }
expr = !{ ... }

A thoughtful introduction to the pest parser https://pest.rs/book/print.html

�� of �� �/�/��, �:�� PM

The stack (WIP)

pest maintains a stack that can be manipulated directly from the grammar. An
expression can be matched and pushed onto the stack with the keyword PUSH ,
then later matched exactly with the keywords PEEK and POP .

Using the stack allows the exact same text to be matched multiple times, rather than
the same pattern.

For example,

In this case, same_pattern will match "ab" , while same_text will not.

One practical use is in parsing Rust "raw string literals", which look like this:

When parsing a raw string, we have to keep track of how many number signs #
occurred before the quotation mark. We can do this using the stack:

same_text = {
PUSH("a" | "b" | "c")

 ~ POP
}
same_pattern = {
 ("a" | "b" | "c")
 ~ ("a" | "b" | "c")
}

const raw_str: &str = r###"
 Some number of number signs # followed by a quotation mark ".

 Quotation marks can be used anywhere inside: """"""""",
 as long as one is not followed by a matching number of number signs,
 which ends the string: "###;

A thoughtful introduction to the pest parser https://pest.rs/book/print.html

�� of �� �/�/��, �:�� PM

Cheat sheet
Syntax Meaning Syntax Meaning

foo = { ...
} regular rule baz = @{

... } atomic

bar = _{
... } silent qux = ${

... }
compound-

atomic

plugh = !{
... } non-atomic

"abc" exact string ^"abc"
case

insensitive

'a'..'z' character range ANY any character

foo ~ bar sequence baz | qux ordered choice

foo* zero or more bar+ one or more

baz? optional qux{n} exactly n

qux{m, n}
between m and n

(inclusive)

&foo positive predicate !bar
negative
predicate

PUSH(baz) match and push

POP match and pop PEEK
match without

pop

raw_string = {
"r" ~ PUSH("#"*) ~ "\"" // push the number signs onto the stack

 ~ raw_string_interior
 ~ "\"" ~ POP // match a quotation mark and the number
signs
}
raw_string_interior = {
 (
 !("\"" ~ PEEK) // unless the next character is a quotation
mark

// followed by the correct amount of number
signs,
 ~ ANY // consume one character
)*
}

A thoughtful introduction to the pest parser https://pest.rs/book/print.html

�� of �� �/�/��, �:�� PM

Built-in rules
Besides ANY , matching any single Unicode character, pest provides several rules
to make parsing text more convenient.

ASCII rules

Among the printable ASCII characters, it is often useful to match alphabetic
characters and numbers. For numbers, pest provides digits in common radixes
(bases):

Built-in rule Equivalent

ASCII_DIGIT '0'..'9'

ASCII_NONZERO_DIGIT '1'..'9'

ASCII_BIN_DIGIT '0'..'1'

ASCII_OCT_DIGIT '0'..'7'

ASCII_HEX_DIGIT '0'..'9' | 'a'..'f' | 'A'..'F'

For alphabetic characters, distinguishing between uppercase and lowercase:

Built-in rule Equivalent

ASCII_ALPHA_LOWER 'a'..'z'

ASCII_ALPHA_UPPER 'A'..'Z'

ASCII_ALPHA 'a'..'z' | 'A'..'Z'

And for miscellaneous use:

Built-in rule Meaning Equivalent

ASCII_ALPHANUMERIC any digit or letter ASCII_DIGIT |
ASCII_ALPHA

NEWLINE
any line feed

format
"\n" | "\r\n" | "\r"

A thoughtful introduction to the pest parser https://pest.rs/book/print.html

�� of �� �/�/��, �:�� PM

Unicode rules

To make it easier to correctly parse arbitrary Unicode text, pest includes a large
number of rules corresponding to Unicode character properties. These rules are
divided into general category and binary property rules.

Unicode characters are partitioned into categories based on their general purpose.
Every character belongs to a single category, in the same way that every ASCII
character is a control character, a digit, a letter, a symbol, or a space.

In addition, every Unicode character has a list of binary properties (true or false)
that it does or does not satisfy. Characters can belong to any number of these
properties, depending on their meaning.

For example, the character "A", "Latin capital letter A", is in the general category
"Uppercase Letter" because its general purpose is being a letter. It has the binary
property "Uppercase" but not "Emoji". By contrast, the character "🅰", "negative
squared Latin capital letter A", is in the general category "Other Symbol" because it
does not generally occur as a letter in text. It has both the binary properties
"Uppercase" and "Emoji".

For more details, consult Chapter 4 of The Unicode Standard.

General categories

Formally, categories are non-overlapping: each Unicode character belongs to
exactly one category, and no category contains another. However, since certain
groups of categories are often useful together, pest exposes the hierarchy of
categories below. For example, the rule CASED_LETTER is not technically a Unicode
general category; it instead matches characters that are UPPERCASE_LETTER or
LOWERCASE_LETTER , which are general categories.

LETTER

CASED_LETTER

UPPERCASE_LETTER

LOWERCASE_LETTER

TITLECASE_LETTER

MODIFIER_LETTER

OTHER_LETTER

MARK

NONSPACING_MARK

A thoughtful introduction to the pest parser https://pest.rs/book/print.html

�� of �� �/�/��, �:�� PM

SPACING_MARK

ENCLOSING_MARK

NUMBER

DECIMAL_NUMBER

LETTER_NUMBER

OTHER_NUMBER

PUNCTUATION

CONNECTOR_PUNCTUATION

DASH_PUNCTUATION

OPEN_PUNCTUATION

CLOSE_PUNCTUATION

INITIAL_PUNCTUATION

FINAL_PUNCTUATION

OTHER_PUNCTUATION

SYMBOL

MATH_SYMBOL

CURRENCY_SYMBOL

MODIFIER_SYMBOL

OTHER_SYMBOL

SEPARATOR

SPACE_SEPARATOR

LINE_SEPARATOR

PARAGRAPH_SEPARATOR

OTHER

CONTROL

FORMAT

SURROGATE

PRIVATE_USE

UNASSIGNED

Binary properties

Many of these properties are used to de�ne Unicode text algorithms, such as the
bidirectional algorithm and the text segmentation algorithm. Such properties are
not likely to be useful for most parsers.

However, the properties XID_START and XID_CONTINUE are particularly notable
because they are de�ned "to assist in the standard treatment of identi�ers", "such
as programming language variables". See Technical Report 31 for more details.

A thoughtful introduction to the pest parser https://pest.rs/book/print.html

�� of �� �/�/��, �:�� PM

ALPHABETIC

BIDI_CONTROL

CASE_IGNORABLE

CASED

CHANGES_WHEN_CASEFOLDED

CHANGES_WHEN_CASEMAPPED

CHANGES_WHEN_LOWERCASED

CHANGES_WHEN_TITLECASED

CHANGES_WHEN_UPPERCASED

DASH

DEFAULT_IGNORABLE_CODE_POINT

DEPRECATED

DIACRITIC

EXTENDER

GRAPHEME_BASE

GRAPHEME_EXTEND

GRAPHEME_LINK

HEX_DIGIT

HYPHEN

IDS_BINARY_OPERATOR

IDS_TRINARY_OPERATOR

ID_CONTINUE

ID_START

IDEOGRAPHIC

JOIN_CONTROL

LOGICAL_ORDER_EXCEPTION

LOWERCASE

MATH

NONCHARACTER_CODE_POINT

OTHER_ALPHABETIC

OTHER_DEFAULT_IGNORABLE_CODE_POINT

OTHER_GRAPHEME_EXTEND

OTHER_ID_CONTINUE

OTHER_ID_START

OTHER_LOWERCASE

OTHER_MATH

OTHER_UPPERCASE

PATTERN_SYNTAX

PATTERN_WHITE_SPACE

A thoughtful introduction to the pest parser https://pest.rs/book/print.html

�� of �� �/�/��, �:�� PM

PREPENDED_CONCATENATION_MARK

QUOTATION_MARK

RADICAL

REGIONAL_INDICATOR

SENTENCE_TERMINAL

SOFT_DOTTED

TERMINAL_PUNCTUATION

UNIFIED_IDEOGRAPH

UPPERCASE

VARIATION_SELECTOR

WHITE_SPACE

XID_CONTINUE

XID_START

Example: JSON
JSON is a popular format for data serialization that is derived from the syntax of
JavaScript. JSON documents are tree-like and potentially recursive — two data
types, objects and arrays, can contain other values, including other objects and
arrays.

Here is an example JSON document:

Let's write a program that parses the JSON to an Rust object, known as an abstract
syntax tree, then serializes the AST back to JSON.

Setup

We'll start by de�ning the AST in Rust. Each JSON data type is represented by an
enum variant.

{
"nesting": { "inner object": {} },
"an array": [1.5, true, null, 1e-6],
"string with escaped double quotes" : "\"quick brown foxes\""

}

A thoughtful introduction to the pest parser https://pest.rs/book/print.html

�� of �� �/�/��, �:�� PM

To avoid copying when deserializing strings, JSONValue borrows strings from the
original unparsed JSON. In order for this to work, we cannot interpret string escape
sequences: the input string "\n" will be represented by
JSONValue::String("\\n") , a Rust string with two characters, even though it

represents a JSON string with just one character.

Let's move on to the serializer. For the sake of clarity, it uses allocated String s
instead of providing an implementation of std::fmt::Display , which would be
more idiomatic.

Note that the function invokes itself recursively in the Object and Array cases.

enum JSONValue<'a> {
 Object(Vec<(&'a str, JSONValue<'a>)>),
 Array(Vec<JSONValue<'a>>),

String(&'a str),
 Number(f64),
 Boolean(bool),
 Null,
}

fn serialize_jsonvalue(val: &JSONValue) -> String {
use JSONValue::*;

match val {
 Object(o) => {

let contents: Vec<_> = o
 .iter()
 .map(|(name, value)|

format!("\"{}\":{}", name,
serialize_jsonvalue(value)))
 .collect();

format!("{{{}}}", contents.join(","))
 }
 Array(a) => {

let contents: Vec<_> =
a.iter().map(serialize_jsonvalue).collect();

format!("[{}]", contents.join(","))
 }

String(s) => format!("\"{}\"", s),
 Number(n) => format!("{}", n),
 Boolean(b) => format!("{}", b),
 Null => format!("null"),
 }
}

A thoughtful introduction to the pest parser https://pest.rs/book/print.html

�� of �� �/�/��, �:�� PM

This pattern appears throughout the parser. The AST creation function iterates
recursively through the parse result, and the grammar has rules which include
themselves.

Writing the grammar

Let's begin with whitespace. JSON whitespace can appear anywhere, except inside
strings (where it must be parsed separately) and between digits in numbers (where
it is not allowed). This makes it a good �t for pest 's implicit whitespace. In
src/json.pest :

The JSON speci�cation includes diagrams for parsing JSON strings. We can write
the grammar directly from that page. Let's write object as a sequence of pair s
separated by commas , .

The object and array rules show how to parse a potentially empty list with
separators. There are two cases: one for an empty list, and one for a list with at
least one element. This is necessary because a trailing comma in an array, such as
in [0, 1,] , is illegal in JSON.

Now we can write value , which represents any single data type. We'll mimic our
AST by writing boolean and null as separate rules.

WHITESPACE = _{ " " | "\t" | "\r" | "\n" }

object = {
"{" ~ "}" |
"{" ~ pair ~ ("," ~ pair)* ~ "}"

}
pair = { string ~ ":" ~ value }

array = {
"[" ~ "]" |
"[" ~ value ~ ("," ~ value)* ~ "]"

}

value = _{ object | array | string | number | boolean | null }

boolean = { "true" | "false" }

null = { "null" }

A thoughtful introduction to the pest parser https://pest.rs/book/print.html

�� of �� �/�/��, �:�� PM

Let's separate the logic for strings into three parts. char is a rule matching any
logical character in the string, including any backslash escape sequence. inner
represents the contents of the string, without the surrounding double quotes.
string matches the inner contents of the string, including the surrounding double

quotes.

The char rule uses the idiom !(...) ~ ANY , which matches any character except
the ones given in parentheses. In this case, any character is legal inside a string,
except for double quote " and backslash \ , which require separate parsing logic.

Because string is marked compound atomic, string token pairs will also
contain a single inner pair. Because inner is marked atomic, no char pairs will
appear inside inner . Since these rules are atomic, no whitespace is permitted
between separate tokens.

Numbers have four logical parts: an optional sign, an integer part, an optional
fractional part, and an optional exponent. We'll mark number atomic so that
whitespace cannot appear between its parts.

We need a �nal rule to represent an entire JSON �le. The only legal contents of a
JSON �le is a single object or array. We'll mark this rule silent, so that a parsed
JSON �le contains only two token pairs: the parsed value itself, and the EOI rule.

AST generation

string = ${ "\"" ~ inner ~ "\"" }
inner = @{ char* }
char = {
 !("\"" | "\\") ~ ANY
 | "\\" ~ ("\"" | "\\" | "/" | "b" | "f" | "n" | "r" | "t")
 | "\\" ~ ("u" ~ ASCII_HEX_DIGIT{4})
}

number = @{
"-"?

 ~ ("0" | ASCII_NONZERO_DIGIT ~ ASCII_DIGIT*)
 ~ ("." ~ ASCII_DIGIT*)?
 ~ (^"e" ~ ("+" | "-")? ~ ASCII_DIGIT+)?
}

json = _{ SOI ~ (object | array) ~ EOI }

A thoughtful introduction to the pest parser https://pest.rs/book/print.html

�� of �� �/�/��, �:�� PM

Let's compile the grammar into Rust.

We'll write a function that handles both parsing and AST generation. Users of the
function can call it on an input string, then use the result returned as either a
JSONValue or a parse error.

Now we need to handle Pair s recursively, depending on the rule. We know that
json is either an object or an array , but these values might contain an object

or an array themselves! The most logical way to handle this is to write an auxiliary
recursive function that parses a Pair into a JSONValue directly.

extern crate pest;
#[macro_use]
extern crate pest_derive;

use pest::Parser;

#[derive(Parser)]
#[grammar = "json.pest"]
struct JSONParser;

use pest::error::Error;

fn parse_json_file(file: &str) -> Result<JSONValue, Error<Rule>> {
let json = JSONParser::parse(Rule::json, file)?.next().unwrap();

// ...
}

A thoughtful introduction to the pest parser https://pest.rs/book/print.html

�� of �� �/�/��, �:�� PM

The object and array cases deserve special attention. The contents of an array
token pair is just a sequence of value s. Since we're working with a Rust iterator,

fn parse_json_file(file: &str) -> Result<JSONValue, Error<Rule>> {
// ...

use pest::iterators::Pair;

fn parse_value(pair: Pair<Rule>) -> JSONValue {
match pair.as_rule() {

 Rule::object => JSONValue::Object(
 pair.into_inner()
 .map(|pair| {

let mut inner_rules = pair.into_inner();
let name = inner_rules

 .next()
 .unwrap()
 .into_inner()
 .next()
 .unwrap()
 .as_str();

let value =
parse_value(inner_rules.next().unwrap());
 (name, value)
 })
 .collect(),
),
 Rule::array =>
JSONValue::Array(pair.into_inner().map(parse_value).collect()),
 Rule::string =>
JSONValue::String(pair.into_inner().next().unwrap().as_str()),
 Rule::number =>
JSONValue::Number(pair.as_str().parse().unwrap()),
 Rule::boolean =>
JSONValue::Boolean(pair.as_str().parse().unwrap()),
 Rule::null => JSONValue::Null,
 Rule::json
 | Rule::EOI
 | Rule::pair
 | Rule::value
 | Rule::inner
 | Rule::char
 | Rule::WHITESPACE => unreachable!(),
 }
 }

// ...
}

A thoughtful introduction to the pest parser https://pest.rs/book/print.html

�� of �� �/�/��, �:�� PM

we can simply map each value to its parsed AST node recursively, then collect them
into a Vec . For object s, the process is similar, except the iterator is over pair s,
from which we need to extract names and values separately.

The number and boolean cases use Rust's str::parse method to convert the
parsed string to the appropriate Rust type. Every legal JSON number can be parsed
directly into a Rust �oating point number!

We run parse_value on the parse result to �nish the conversion.

Finishing

Our main function is now very simple. First, we read the JSON data from a �le
named data.json . Next, we parse the �le contents into a JSON AST. Finally, we
serialize the AST back into a string and print it.

Try it out! Copy the example document at the top of this chapter into data.json ,
then run the program! You should see something like this:

fn parse_json_file(file: &str) -> Result<JSONValue, Error<Rule>> {
// ...

Ok(parse_value(json))
}

use std::fs;

fn main() {
let unparsed_file = fs::read_to_string("data.json").expect("cannot

read file");

let json: JSONValue =
parse_json_file(&unparsed_file).expect("unsuccessful parse");

println!("{}", serialize_jsonvalue(&json));
}

$ cargo run
 [...]
{"nesting":{"inner object":{}},"an array":
[1.5,true,null,0.000001],"string with escaped double quotes":"\"quick
brown foxes\""}

A thoughtful introduction to the pest parser https://pest.rs/book/print.html

�� of �� �/�/��, �:�� PM

Example: The J language
The J language is an array programming language in�uenced by APL. In J,
operations on individual numbers (2 * 3) can just as easily be applied to entire
lists of numbers (2 * 3 4 5 , returning 6 8 10).

Operators in J are referred to as verbs. Verbs are either monadic (taking a single
argument, such as *: 3 , "3 squared") or dyadic (taking two arguments, one on
either side, such as 5 - 4 , "5 minus 4").

Here's an example of a J program:

Using J's interpreter to run the above program yields the following on standard
out:

In this section we'll write a grammar for a subset of J. We'll then walk through a
parser that builds an AST by iterating over the rules that pest gives us. You can
�nd the full source code within this book's repository.

'A string'

*: 1 2 3 4

matrix =: 2 3 $ 5 + 2 3 4 5 6 7
10 * matrix

1 + 10 20 30
1 2 3 + 10

residues =: 2 | 0 1 2 3 4 5 6 7
residues

A string

1 4 9 16

 70 80 90
100 110 120

11 21 31
11 12 13

0 1 0 1 0 1 0 1

A thoughtful introduction to the pest parser https://pest.rs/book/print.html

�� of �� �/�/��, �:�� PM

The grammar

We'll build up a grammar section by section, starting with the program rule:

Each J program contains statements delimited by one or more newlines. Notice the
leading underscore, which tells pest to silence the program rule — we don't want
program to appear as a token in the parse stream, we want the underlying

statements instead.

A statement is simply an expression, and since there's only one such possibility, we
also silence this stmt rule as well, and thus our parser will receive an iterator of
underlying expr s:

An expression can be an assignment to a variable identi�er, a monadic expression,
a dyadic expression, a single string, or an array of terms:

A monadic expression consists of a verb with its sole operand on the right; a dyadic
expression has operands on either side of the verb. Assignment expressions
associate identi�ers with expressions.

In J, there is no operator precedence — evaluation is right-associative (proceeding
from right to left), with parenthesized expressions evaluated �rst.

A list of terms should contain at least one decimal, integer, identi�er, or
parenthesized expression; we care only about those underlying values, so we
make the term rule silent with a leading underscore:

program = _{ SOI ~ "\n"* ~ (stmt ~ "\n"+) * ~ stmt? ~ EOI }

stmt = _{ expr }

expr = {
 assgmtExpr
 | monadicExpr
 | dyadicExpr
 | string
 | terms
}

monadicExpr = { verb ~ expr }

dyadicExpr = { (monadicExpr | terms) ~ verb ~ expr }

assgmtExpr = { ident ~ "=:" ~ expr }

A thoughtful introduction to the pest parser https://pest.rs/book/print.html

�� of �� �/�/��, �:�� PM

A few of J's verbs are de�ned in this grammar; J's full vocabulary is much more
extensive.

Now we can get into lexing rules. Numbers in J are represented as usual, with the
exception that negatives are represented using a leading _ underscore (because
- is a verb that performs negation as a monad and subtraction as a dyad).

Identi�ers in J must start with a letter, but can contain numbers thereafter. Strings
are surrounded by single quotes; quotes themselves can be embedded by
escaping them with an additional quote.

Notice how we use pest 's @ modi�er to make each of these rules atomic,
meaning implicit whitespace is forbidden, and that interior rules (i.e., ASCII_ALPHA
in ident) become silent — when our parser receives any of these tokens, they will
be terminal:

Whitespace in J consists solely of spaces and tabs. Newlines are signi�cant because
they delimit statements, so they are excluded from this rule:

Finally, we must handle comments. Comments in J start with NB. and continue to
the end of the line on which they are found. Critically, we must not consume the
newline at the end of the comment line; this is needed to separate any statement
that might precede the comment from the statement on the succeeding line.

terms = { term+ }

term = _{ decimal | integer | ident | "(" ~ expr ~ ")" }

verb = {
">:" | "*:" | "-" | "%" | "#" | ">."

 | "+" | "*" | "<" | "=" | "^" | "|"
 | ">" | "$"
}

integer = @{ "_"? ~ ASCII_DIGIT+ }

decimal = @{ "_"? ~ ASCII_DIGIT+ ~ "." ~ ASCII_DIGIT* }

ident = @{ ASCII_ALPHA ~ (ASCII_ALPHANUMERIC | "_")* }

string = @{ "'" ~ ("''" | (!"'" ~ ANY))* ~ "'" }

WHITESPACE = _{ " " | "\t" }

COMMENT = _{ "NB." ~ (!"\n" ~ ANY)* }

A thoughtful introduction to the pest parser https://pest.rs/book/print.html

�� of �� �/�/��, �:�� PM

Parsing and AST generation

This section will walk through a parser that uses the grammar above. Library
includes and self-explanatory code are omitted here; you can �nd the parser in its
entirety within this book's repository.

First we'll enumerate the verbs de�ned in our grammar, distinguishing between
monadic and dyadic verbs. These enumerations will be be used as labels in our
AST:

Then we'll enumerate the various kinds of AST nodes:

pub enum MonadicVerb {
 Increment,
 Square,
 Negate,
 Reciprocal,
 Tally,
 Ceiling,
 ShapeOf,
}

pub enum DyadicVerb {
 Plus,
 Times,
 LessThan,
 LargerThan,
 Equal,
 Minus,
 Divide,
 Power,
 Residue,

Copy,
 LargerOf,
 LargerOrEqual,
 Shape,
}

A thoughtful introduction to the pest parser https://pest.rs/book/print.html

�� of �� �/�/��, �:�� PM

To parse top-level statements in a J program, we have the following parse
function that accepts a J program in string form and passes it to pest for parsing.
We get back a sequence of Pair s. As speci�ed in the grammar, a statement can
only consist of an expression, so the match below parses each of those top-level
expressions and wraps them in a Print AST node in keeping with the J
interpreter's REPL behavior:

pub enum AstNode {
 Print(Box<AstNode>),
 Integer(i32),
 DoublePrecisionFloat(f64),
 MonadicOp {
 verb: MonadicVerb,
 expr: Box<AstNode>,
 },
 DyadicOp {
 verb: DyadicVerb,
 lhs: Box<AstNode>,
 rhs: Box<AstNode>,
 },
 Terms(Vec<AstNode>),
 IsGlobal {
 ident: String,
 expr: Box<AstNode>,
 },
 Ident(String),
 Str(CString),
}

pub fn parse(source: &str) -> Result<Vec<AstNode>, Error<Rule>> {
let mut ast = vec![];

let pairs = JParser::parse(Rule::program, source)?;
for pair in pairs {

match pair.as_rule() {
 Rule::expr => {
 ast.push(Print(Box::new(build_ast_from_expr(pair))));
 }
 _ => {}
 }
 }

Ok(ast)
}

A thoughtful introduction to the pest parser https://pest.rs/book/print.html

�� of �� �/�/��, �:�� PM

AST nodes are built from expressions by walking the Pair iterator in lockstep with
the expectations set out in our grammar �le. Common behaviors are abstracted
out into separate functions, such as parse_monadic_verb and parse_dyadic_verb
, and Pair s representing expressions themselves are passed in recursive calls to
build_ast_from_expr :

Dyadic verbs are mapped from their string representations to AST nodes in a
straightforward way:

fn build_ast_from_expr(pair: pest::iterators::Pair<Rule>) -> AstNode {
match pair.as_rule() {

 Rule::expr =>
build_ast_from_expr(pair.into_inner().next().unwrap()),
 Rule::monadicExpr => {

let mut pair = pair.into_inner();
let verb = pair.next().unwrap();
let expr = pair.next().unwrap();
let expr = build_ast_from_expr(expr);

 parse_monadic_verb(verb, expr)
 }

// ... other cases elided here ...
 }
}

A thoughtful introduction to the pest parser https://pest.rs/book/print.html

�� of �� �/�/��, �:�� PM

As are monadic verbs:

Finally, we de�ne a function to process terms such as numbers and strings.
Numbers require some manuevering to handle J's leading underscores
representing negation, but other than that the process is typical:

fn parse_dyadic_verb(pair: pest::iterators::Pair<Rule>, lhs: AstNode,
rhs: AstNode) -> AstNode {
 AstNode::DyadicOp {
 lhs: Box::new(lhs),
 rhs: Box::new(rhs),
 verb: match pair.as_str() {

"+" => DyadicVerb::Plus,
"*" => DyadicVerb::Times,
"-" => DyadicVerb::Minus,
"<" => DyadicVerb::LessThan,
"=" => DyadicVerb::Equal,
">" => DyadicVerb::LargerThan,
"%" => DyadicVerb::Divide,
"^" => DyadicVerb::Power,
"|" => DyadicVerb::Residue,
"#" => DyadicVerb::Copy,
">." => DyadicVerb::LargerOf,
">:" => DyadicVerb::LargerOrEqual,
"$" => DyadicVerb::Shape,

 _ => panic!("Unexpected dyadic verb: {}", pair.as_str()),
 },
 }
}

fn parse_monadic_verb(pair: pest::iterators::Pair<Rule>, expr: AstNode)
-> AstNode {
 AstNode::MonadicOp {
 verb: match pair.as_str() {

">:" => MonadicVerb::Increment,
"*:" => MonadicVerb::Square,
"-" => MonadicVerb::Negate,
"%" => MonadicVerb::Reciprocal,
"#" => MonadicVerb::Tally,
">." => MonadicVerb::Ceiling,
"$" => MonadicVerb::ShapeOf,

 _ => panic!("Unsupported monadic verb: {}", pair.as_str()),
 },
 expr: Box::new(expr),
 }
}

A thoughtful introduction to the pest parser https://pest.rs/book/print.html

�� of �� �/�/��, �:�� PM

Running the Parser

We can now de�ne a main function to pass J programs to our pest -enabled
parser:

Using this code in example.ijs :

fn build_ast_from_term(pair: pest::iterators::Pair<Rule>) -> AstNode {
match pair.as_rule() {

 Rule::integer => {
let istr = pair.as_str();
let (sign, istr) = match &istr[..1] {

"_" => (-1, &istr[1..]),
 _ => (1, &istr[..]),
 };

let integer: i32 = istr.parse().unwrap();
 AstNode::Integer(sign * integer)
 }
 Rule::decimal => {

let dstr = pair.as_str();
let (sign, dstr) = match &dstr[..1] {

"_" => (-1.0, &dstr[1..]),
 _ => (1.0, &dstr[..]),
 };

let mut flt: f64 = dstr.parse().unwrap();
if flt != 0.0 {

// Avoid negative zeroes; only multiply sign by
nonzeroes.
 flt *= sign;
 }
 AstNode::DoublePrecisionFloat(flt)
 }
 Rule::expr => build_ast_from_expr(pair),
 Rule::ident => AstNode::Ident(String::from(pair.as_str())),
 unknown_term => panic!("Unexpected term: {:?}", unknown_term),
 }
}

fn main() {
let unparsed_file = std::fs::read_to_string("example.ijs")

 .expect("cannot read ijs file");
let astnode = parse(&unparsed_file).expect("unsuccessful parse");
println!("{:?}", &astnode);

}

A thoughtful introduction to the pest parser https://pest.rs/book/print.html

�� of �� �/�/��, �:�� PM

We'll get the following abstract syntax tree on stdout when we run the parser:

_2.5 ^ 3
*: 4.8
title =: 'Spinning at the Boundary'
*: _1 2 _3 4
1 2 3 + 10 20 30
1 + 10 20 30
1 2 3 + 10
2 | 0 1 2 3 4 5 6 7
another =: 'It''s Escaped'
3 | 0 1 2 3 4 5 6 7
(2+1)*(2+2)
3 * 2 + 1
1 + 3 % 4
x =: 100
x - 1
y =: x - 1
y

A thoughtful introduction to the pest parser https://pest.rs/book/print.html

�� of �� �/�/��, �:�� PM

Operator precedence (WIP)
This chapter will discuss two methods of dealing with operator precedence:
directly in the PEG grammar, and using a PrecClimber . It will probably also include
an explanation of how precedence climbing works.

$ cargo run
 [...]
[Print(DyadicOp { verb: Power, lhs: DoublePrecisionFloat(-2.5),
 rhs: Integer(3) }),
Print(MonadicOp { verb: Square, expr: DoublePrecisionFloat(4.8) }),
Print(IsGlobal { ident: "title", expr: Str("Spinning at the Boundary")
}),
Print(MonadicOp { verb: Square, expr: Terms([Integer(-1), Integer(2),
 Integer(-3), Integer(4)]) }),
Print(DyadicOp { verb: Plus, lhs: Terms([Integer(1), Integer(2),
Integer(3)]),
 rhs: Terms([Integer(10), Integer(20), Integer(30)]) }),
Print(DyadicOp { verb: Plus, lhs: Integer(1), rhs: Terms([Integer(10),
 Integer(20), Integer(30)]) }),
Print(DyadicOp { verb: Plus, lhs: Terms([Integer(1), Integer(2),
Integer(3)]),
 rhs: Integer(10) }),
Print(DyadicOp { verb: Residue, lhs: Integer(2),
 rhs: Terms([Integer(0), Integer(1), Integer(2), Integer(3),
Integer(4),
 Integer(5), Integer(6), Integer(7)]) }),
Print(IsGlobal { ident: "another", expr: Str("It\'s Escaped") }),
Print(DyadicOp { verb: Residue, lhs: Integer(3), rhs: Terms([Integer(0),
 Integer(1), Integer(2), Integer(3), Integer(4), Integer(5),
 Integer(6), Integer(7)]) }),
Print(DyadicOp { verb: Times, lhs: DyadicOp { verb: Plus, lhs:
Integer(2),
 rhs: Integer(1) }, rhs: DyadicOp { verb: Plus, lhs: Integer(2),
 rhs: Integer(2) } }),
Print(DyadicOp { verb: Times, lhs: Integer(3), rhs: DyadicOp { verb:
Plus,
 lhs: Integer(2), rhs: Integer(1) } }),
Print(DyadicOp { verb: Plus, lhs: Integer(1), rhs: DyadicOp { verb:
Divide,
 lhs: Integer(3), rhs: Integer(4) } }),
Print(IsGlobal { ident: "x", expr: Integer(100) }),
Print(DyadicOp { verb: Minus, lhs: Ident("x"), rhs: Integer(1) }),
Print(IsGlobal { ident: "y", expr: DyadicOp { verb: Minus, lhs:
Ident("x"),
 rhs: Integer(1) } }),
Print(Ident("y"))]

A thoughtful introduction to the pest parser https://pest.rs/book/print.html

�� of �� �/�/��, �:�� PM

Example: Calculator (WIP)
This section will walk through the creation of a simple calculator. It will provide an
example of parsing expressions with operator precedence.

Final project: Awk clone (WIP)
This chapter will walk through the creation of a simple variant of Awk (only loosely
following the POSIX speci�cation). It will probably have several sections. It will
provide an example of a full project based on pest with a manageable grammar, a
straightforward AST, and a fairly simple interpreter.

This Awk clone will support regex patterns, string and numeric variables, most of
the POSIX operators, and some functions. It will not support user-de�ned functions
in the interest of avoiding variable scoping.

A thoughtful introduction to the pest parser https://pest.rs/book/print.html

�� of �� �/�/��, �:�� PM

