
Reth Book

Documentation for Reth users and developers.

chat 172 Online

Reth (short for Rust Ethereum, pronunciation) is an Ethereum full node

implementation that is focused on being user-friendly, highly modular, as well as

being fast and efficient.

What is this about?

Reth is an execution layer (EL) implementation that is compatible with all Ethereum

consensus layer (CL) implementations that support the Engine API.

It is originally built and driven forward by Paradigm, and is licensed under the Apache and

MIT licenses.

As a full Ethereum node, Reth allows users to connect to the Ethereum network and

interact with the Ethereum blockchain.

This includes sending and receiving transactions, querying logs and traces, as well as

accessing and interacting with smart contracts.

Building a successful Ethereum node requires creating a high-quality implementation that

is both secure and efficient, as well as being easy to use on consumer hardware. It also

requires building a strong community of contributors who can help support and improve

the software.

reth Book https://paradigmxyz.github.io/reth/print.html

1 of 136 10/26/23, 15:08

https://paradigmxyz.github.io/reth/print.html#reth-book
https://paradigmxyz.github.io/reth/print.html#reth-book
https://t.me/paradigm_reth
https://t.me/paradigm_reth
https://twitter.com/kelvinfichter/status/1597653609411268608
https://twitter.com/kelvinfichter/status/1597653609411268608
https://paradigmxyz.github.io/reth/print.html#what-is-this-about
https://paradigmxyz.github.io/reth/print.html#what-is-this-about
https://github.com/paradigmxyz/reth/
https://github.com/paradigmxyz/reth/
https://github.com/ethereum/execution-apis/tree/59e3a719021f48c1ef5653840e3ea5750e6af693/src/engine
https://github.com/ethereum/execution-apis/tree/59e3a719021f48c1ef5653840e3ea5750e6af693/src/engine
https://paradigm.xyz/
https://paradigm.xyz/

What are the goals of Reth?

1. Modularity

Every component of Reth is built to be used as a library: well-tested, heavily documented

and benchmarked. We envision that developers will import the node's crates, mix and

match, and innovate on top of them.

Examples of such usage include, but are not limited to, spinning up standalone P2P

networks, talking directly to a node's database, or "unbundling" the node into the

components you need.

To achieve that, we are licensing Reth under the Apache/MIT permissive license.

2. Performance

Reth aims to be fast, so we used Rust and the Erigon staged-sync node architecture.

We also use our Ethereum libraries (including ethers-rs and revm) which we’ve battle-

tested and optimized via Foundry.

3. Free for anyone to use any way they want

Reth is free open source software, built for the community, by the community.

By licensing the software under the Apache/MIT license, we want developers to use it

without being bound by business licenses, or having to think about the implications of

GPL-like licenses.

4. Client Diversity

The Ethereum protocol becomes more antifragile when no node implementation

dominates. This ensures that if there's a software bug, the network does not finalize a

bad block. By building a new client, we hope to contribute to Ethereum's antifragility.

5. Used by a wide demographic

We want to solve for node operators that care about fast historical queries, but also for

hobbyists who cannot operate on large hardware.

We also want to support teams and individuals who want both sync from genesis and via

"fast sync".

We envision that Reth will be configurable enough for the tradeoffs that each team faces.

Who is this for?

reth Book https://paradigmxyz.github.io/reth/print.html

2 of 136 10/26/23, 15:08

https://paradigmxyz.github.io/reth/print.html#what-are-the-goals-of-reth
https://paradigmxyz.github.io/reth/print.html#what-are-the-goals-of-reth
https://erigon.substack.com/p/erigon-stage-sync-and-control-flows
https://erigon.substack.com/p/erigon-stage-sync-and-control-flows
https://github.com/gakonst/ethers-rs/
https://github.com/gakonst/ethers-rs/
https://github.com/bluealloy/revm/
https://github.com/bluealloy/revm/
https://github.com/foundry-rs/foundry/
https://github.com/foundry-rs/foundry/
https://paradigmxyz.github.io/reth/print.html#who-is-this-for
https://paradigmxyz.github.io/reth/print.html#who-is-this-for

Reth is a new Ethereum full node that allows users to sync and interact with the entire

blockchain, including its historical state if in archive mode.

• Full node: It can be used as a full node, which stores and processes the entire

blockchain, validates blocks and transactions, and participates in the consensus

process.

• Archive node: It can also be used as an archive node, which stores the entire history

of the blockchain and is useful for applications that need access to historical data.

As a data engineer/analyst, or as a data indexer, you'll want to use Archive mode. For all

other use cases where historical access is not needed, you can use Full mode.

Is this secure?

Reth implements the specification of Ethereum as defined in the ethereum/execution-

specs repository. To make sure the node is built securely, we run the following tests:

1. EVM state tests are run on every Revm Pull Request

2. Hive tests are run every 24 hours in the main Reth repository.

3. We regularly re-sync multiple nodes from scratch.

4. We operate multiple nodes at the tip of Ethereum mainnet and various testnets.

5. We extensively unit test, fuzz test and document all our code, while also restricting

PRs with aggressive lint rules.

We intend to also audit / fuzz the EVM & parts of the codebase. Please reach out if you're

interested in collaborating on securing this codebase.

Sections

Here are some useful sections to jump to:

• Install Reth by following the guide.

• Sync your node on any official network.

• View statistics and metrics about your node.

• Query the JSON-RPC using Foundry's cast or curl .

• Set up your development environment and contribute!

����� About this book

The book is continuously rendered here! You can contribute to this book on GitHub.

reth Book https://paradigmxyz.github.io/reth/print.html

3 of 136 10/26/23, 15:08

https://paradigmxyz.github.io/reth/print.html#is-this-secure
https://paradigmxyz.github.io/reth/print.html#is-this-secure
https://github.com/ethereum/execution-specs/
https://github.com/ethereum/execution-specs/
https://github.com/ethereum/execution-specs/
https://github.com/ethereum/execution-specs/
https://github.com/bluealloy/revm/blob/main/.github/workflows/ethereum-tests.yml
https://github.com/bluealloy/revm/blob/main/.github/workflows/ethereum-tests.yml
https://github.com/paradigmxyz/reth/blob/main/.github/workflows/hive.yml
https://github.com/paradigmxyz/reth/blob/main/.github/workflows/hive.yml
https://paradigmxyz.github.io/reth/print.html#sections
https://paradigmxyz.github.io/reth/print.html#sections
https://paradigmxyz.github.io/reth/installation/installation.html
https://paradigmxyz.github.io/reth/installation/installation.html
https://paradigmxyz.github.io/reth/run/run-a-node.html
https://paradigmxyz.github.io/reth/run/run-a-node.html
https://paradigmxyz.github.io/reth/run/observability.html
https://paradigmxyz.github.io/reth/run/observability.html
https://paradigmxyz.github.io/reth/jsonrpc/intro.html
https://paradigmxyz.github.io/reth/jsonrpc/intro.html
https://paradigmxyz.github.io/reth/developers/contribute.html
https://paradigmxyz.github.io/reth/developers/contribute.html
https://paradigmxyz.github.io/reth/
https://paradigmxyz.github.io/reth/
https://github.com/paradigmxyz/reth/tree/main/book
https://github.com/paradigmxyz/reth/tree/main/book

Installation

Reth runs on Linux and macOS (Windows tracked).

There are three core methods to obtain Reth:

• Pre-built binaries

• Docker images

• Building from source.

Hardware Requirements

The hardware requirements for running Reth depend on the node configuration and can

change over time as the network grows or new features are implemented.

The most important requirement is by far the disk, whereas CPU and RAM requirements

are relatively flexible.

Archive Node Full Node

Disk
At least 2.2TB (TLC NVMe

recommended)

At least 1TB (TLC NVMe

recommended)

Memory 8GB+ 8GB+

CPU
Higher clock speed over core

count

Higher clock speeds over core

count

Bandwidth Stable 24Mbps+ Stable 24Mbps+

QLC and TLC

It is crucial to understand the difference between QLC and TLC NVMe drives when

considering the disk requirement.

QLC (Quad-Level Cell) NVMe drives utilize four bits of data per cell, allowing for higher

storage density and lower manufacturing costs. However, this increased density comes at

the expense of performance. QLC drives have slower read and write speeds compared to

TLC drives. They also have a lower endurance, meaning they may have a shorter lifespan

and be less suitable for heavy workloads or constant data rewriting.

TLC (Triple-Level Cell) NVMe drives, on the other hand, use three bits of data per cell.

While they have a slightly lower storage density compared to QLC drives, TLC drives offer

faster performance. They typically have higher read and write speeds, making them more

suitable for demanding tasks such as data-intensive applications, gaming, and multimedia

reth Book https://paradigmxyz.github.io/reth/print.html

4 of 136 10/26/23, 15:08

https://paradigmxyz.github.io/reth/print.html#installation
https://paradigmxyz.github.io/reth/print.html#installation
https://paradigmxyz.github.io/reth/installation/binaries.html
https://paradigmxyz.github.io/reth/installation/binaries.html
https://paradigmxyz.github.io/reth/installation/docker.html
https://paradigmxyz.github.io/reth/installation/docker.html
https://paradigmxyz.github.io/reth/installation/source.html
https://paradigmxyz.github.io/reth/installation/source.html
https://paradigmxyz.github.io/reth/print.html#hardware-requirements
https://paradigmxyz.github.io/reth/print.html#hardware-requirements
https://paradigmxyz.github.io/reth/print.html#qlc-and-tlc
https://paradigmxyz.github.io/reth/print.html#qlc-and-tlc

editing. TLC drives also tend to have a higher endurance, making them more durable and

longer-lasting.

Prior to purchasing an NVMe drive, it is advisable to research and determine whether the

disk will be based on QLC or TLC technology. An overview of recommended and not-so-

recommended NVMe boards can be found at here.

Disk

There are multiple types of disks to sync Reth, with varying size requirements, depending

on the syncing mode. As of October 2023 at block number 18.3M:

• Archive Node: At least 2.2TB is required

• Full Node: At least 1TB is required

NVMe drives are recommended for the best performance, with SSDs being a cheaper

alternative. HDDs are the cheapest option, but they will take the longest to sync, and are

not recommended.

As of July 2023, syncing an Ethereum mainnet node to block 17.7M on NVMe drives takes

about 50 hours, while on a GCP "Persistent SSD" it takes around 5 days.

Note

It is highly recommended to choose a TLC drive when using NVMe, and not a QLC

drive. See the note above. A list of recommended drives can be found here.

CPU

Most of the time during syncing is spent executing transactions, which is a single-

threaded operation due to potential state dependencies of a transaction on previous

ones.

As a result, the number of cores matters less, but in general higher clock speeds are

better. More cores are better for parallelizable stages (like sender recovery or bodies

downloading), but these stages are not the primary bottleneck for syncing.

Memory

It is recommended to use at least 8GB of RAM.

Most of Reth's components tend to consume a low amount of memory, unless you are

reth Book https://paradigmxyz.github.io/reth/print.html

5 of 136 10/26/23, 15:08

https://gist.github.com/yorickdowne/f3a3e79a573bf35767cd002cc977b038
https://gist.github.com/yorickdowne/f3a3e79a573bf35767cd002cc977b038
https://paradigmxyz.github.io/reth/print.html#disk
https://paradigmxyz.github.io/reth/print.html#disk
https://paradigmxyz.github.io/reth/installation/installation.html#qlc-and-tlc
https://paradigmxyz.github.io/reth/installation/installation.html#qlc-and-tlc
https://gist.github.com/yorickdowne/f3a3e79a573bf35767cd002cc977b038
https://gist.github.com/yorickdowne/f3a3e79a573bf35767cd002cc977b038
https://paradigmxyz.github.io/reth/print.html#cpu
https://paradigmxyz.github.io/reth/print.html#cpu
https://github.com/paradigmxyz/reth/blob/main/docs/crates/stages.md
https://github.com/paradigmxyz/reth/blob/main/docs/crates/stages.md
https://paradigmxyz.github.io/reth/print.html#memory
https://paradigmxyz.github.io/reth/print.html#memory

under heavy RPC load, so this should matter less than the other requirements.

Higher memory is generally better as it allows for better caching, resulting in less stress

on the disk.

Bandwidth

A stable and dependable internet connection is crucial for both syncing a node from

genesis and for keeping up with the chain's tip.

Note that due to Reth's staged sync, you only need an internet connection for the

Headers and Bodies stages. This means that the first 1-3 hours (depending on your

internet connection) will be online, downloading all necessary data, and the rest will be

done offline and does not require an internet connection.

Once you're synced to the tip you will need a reliable connection, especially if you're

operating a validator. A 24Mbps connection is recommended, but you can probably get

away with less. Make sure your ISP does not cap your bandwidth.

What hardware can I get?

If you are buying your own NVMe SSD, please consult this hardware comparison which is

being actively maintained. We recommend against buying DRAM-less or QLC devices as

these are noticeably slower.

All our benchmarks have been produced on Latitude.sh, a bare metal provider. We use

c3.large.x86 boxes, and also recommend trying the s2.small.x86 box for pruned/full

nodes. So far our experience has been smooth with some users reporting that the NVMEs

there outperform AWS NVMEs by 3x or more. We're excited for more Reth nodes on

Latitude.sh, so for a limited time you can use RETH400 for a $250 discount. Run a node

now!

reth Book https://paradigmxyz.github.io/reth/print.html

6 of 136 10/26/23, 15:08

https://paradigmxyz.github.io/reth/print.html#bandwidth
https://paradigmxyz.github.io/reth/print.html#bandwidth
https://paradigmxyz.github.io/reth/print.html#what-hardware-can-i-get
https://paradigmxyz.github.io/reth/print.html#what-hardware-can-i-get
https://gist.github.com/yorickdowne/f3a3e79a573bf35767cd002cc977b038
https://gist.github.com/yorickdowne/f3a3e79a573bf35767cd002cc977b038
https://www.latitude.sh/
https://www.latitude.sh/
https://metal.new/reth
https://metal.new/reth
https://metal.new/reth
https://metal.new/reth

Binaries

Archives of precompiled binaries of reth are available for Windows, macOS and

Linux. They are static executables. Users of platforms not explicitly listed below should

download one of these archives.

If you use macOS Homebrew or Linuxbrew, you can install Reth from Paradigm's

homebrew tap:

If you use Arch Linux you can install stable Reth from the AUR using an AUR helper (paru

as an example here):

brew install paradigmxyz/brew/reth

paru -S reth # Stable
paru -S reth-git # Unstable (git)

reth Book https://paradigmxyz.github.io/reth/print.html

7 of 136 10/26/23, 15:08

https://paradigmxyz.github.io/reth/print.html#binaries
https://paradigmxyz.github.io/reth/print.html#binaries
https://github.com/paradigmxyz/reth/releases
https://github.com/paradigmxyz/reth/releases
https://github.com/paradigmxyz/reth/releases
https://github.com/paradigmxyz/reth/releases
https://github.com/paradigmxyz/reth/releases
https://github.com/paradigmxyz/reth/releases
https://wiki.archlinux.org/title/AUR_helpers
https://wiki.archlinux.org/title/AUR_helpers
https://github.com/Morganamilo/paru
https://github.com/Morganamilo/paru

Docker

There are two ways to obtain a Reth Docker image:

1. GitHub

2. Building it from source

Once you have obtained the Docker image, proceed to Using the Docker image.

Note

Reth requires Docker Engine version 20.10.10 or higher due to missing support for

the clone3 syscall in previous versions.

GitHub

Reth docker images for both x86_64 and ARM64 machines are published with every

release of reth on GitHub Container Registry.

You can obtain the latest image with:

Or a specific version (e.g. v0.0.1) with:

You can test the image with:

If you can see the latest Reth release version, then you've successfully installed Reth via

Docker.

Building the Docker image

To build the image from source, navigate to the root of the repository and run:

docker pull ghcr.io/paradigmxyz/reth

docker pull ghcr.io/paradigmxyz/reth:v0.0.1

docker run --rm ghcr.io/paradigmxyz/reth --version

docker build . -t reth:local

reth Book https://paradigmxyz.github.io/reth/print.html

8 of 136 10/26/23, 15:08

https://paradigmxyz.github.io/reth/print.html#docker
https://paradigmxyz.github.io/reth/print.html#docker
https://paradigmxyz.github.io/reth/installation/docker.html#github
https://paradigmxyz.github.io/reth/installation/docker.html#github
https://paradigmxyz.github.io/reth/installation/docker.html#building-the-docker-image
https://paradigmxyz.github.io/reth/installation/docker.html#building-the-docker-image
https://paradigmxyz.github.io/reth/installation/docker.html#using-the-docker-image
https://paradigmxyz.github.io/reth/installation/docker.html#using-the-docker-image
https://docs.docker.com/engine/release-notes/20.10/#201010
https://docs.docker.com/engine/release-notes/20.10/#201010
https://paradigmxyz.github.io/reth/print.html#github
https://paradigmxyz.github.io/reth/print.html#github
https://github.com/paradigmxyz/reth/releases
https://github.com/paradigmxyz/reth/releases
https://paradigmxyz.github.io/reth/print.html#building-the-docker-image
https://paradigmxyz.github.io/reth/print.html#building-the-docker-image

The build will likely take several minutes. Once it's built, test it with:

Using the Docker image

There are two ways to use the Docker image:

1. Using Docker

2. Using Docker Compose

Using Plain Docker

To run Reth with Docker, run:

The above command will create a container named reth and a named volume called

rethdata for data persistence. It will also expose the 30303 port (TCP and UDP) for

peering with other nodes and the 9001 port for metrics.

It will use the local image reth:local . If you want to use the GitHub Container Registry

remote image, use ghcr.io/paradigmxyz/reth with your preferred tag.

Using Docker Compose

To run Reth with Docker Compose, run the following command from a shell inside the

root directory of this repository:

Note

docker run reth:local --version

docker run \
 -v rethdata:/root/.local/share/reth/mainnet/db \
 -d \
 -p 9001:9001 \
 -p 30303:30303 \
 -p 30303:30303/udp \
 --name reth \
 reth:local \
 node \
 --metrics 0.0.0.0:9001

./etc/generate-jwt.sh
docker compose -f etc/docker-compose.yml -f etc/lighthouse.yml up -d

reth Book https://paradigmxyz.github.io/reth/print.html

9 of 136 10/26/23, 15:08

https://paradigmxyz.github.io/reth/print.html#using-the-docker-image
https://paradigmxyz.github.io/reth/print.html#using-the-docker-image
https://paradigmxyz.github.io/reth/installation/docker.html#using-plain-docker
https://paradigmxyz.github.io/reth/installation/docker.html#using-plain-docker
https://paradigmxyz.github.io/reth/installation/docker.html#using-docker-compose
https://paradigmxyz.github.io/reth/installation/docker.html#using-docker-compose
https://paradigmxyz.github.io/reth/print.html#using-plain-docker
https://paradigmxyz.github.io/reth/print.html#using-plain-docker
https://paradigmxyz.github.io/reth/print.html#using-docker-compose
https://paradigmxyz.github.io/reth/print.html#using-docker-compose

If you want to run Reth with a CL that is not Lighthouse:

• The JWT for the consensus client can be found at etc/jwttoken/jwt.hex in

this repository, after the etc/generate-jwt.sh script is run

• The Reth Engine API is accessible on localhost:8551

To check if Reth is running correctly, run:

The default docker-compose.yml file will create three containers:

• Reth

• Prometheus

• Grafana

The optional lighthouse.yml file will create two containers:

• Lighthouse

• ethereum-metrics-exporter

Grafana will be exposed on localhost:3000 and accessible via default credentials

(username and password is admin), with two available dashboards:

• reth

• Ethereum Metrics Exporter (works only if Lighthouse is also running)

Interacting with Reth inside Docker

To interact with Reth you must first open a shell inside the Reth container by running:

If Reth is running with Docker Compose, replace reth with reth-reth-1 in the

above command

Refer to the CLI docs to interact with Reth once inside the Reth container.

docker compose -f etc/docker-compose.yml -f etc/lighthouse.yml logs -f reth

docker exec -it reth bash

reth Book https://paradigmxyz.github.io/reth/print.html

10 of 136 10/26/23, 15:08

https://github.com/ethpandaops/ethereum-metrics-exporter
https://github.com/ethpandaops/ethereum-metrics-exporter
https://github.com/ethpandaops/ethereum-metrics-exporter
https://paradigmxyz.github.io/reth/print.html#interacting-with-reth-inside-docker
https://paradigmxyz.github.io/reth/print.html#interacting-with-reth-inside-docker
https://paradigmxyz.github.io/reth/cli/cli.html
https://paradigmxyz.github.io/reth/cli/cli.html

Build from Source

You can build Reth on Linux, macOS, Windows, and Windows WSL2.

Note

Reth does not work on Windows WSL1.

Dependencies

First, install Rust using rustup：

The rustup installer provides an easy way to update the Rust compiler, and works on all

platforms.

Tips

• During installation, when prompted, enter 1 for the default installation.

• After Rust installation completes, try running cargo version . If it cannot be

found, run source $HOME/.cargo/env . After that, running cargo version

should return the version, for example cargo 1.68.2 .

• It's generally advisable to append source $HOME/.cargo/env to ~/.bashrc .

With Rust installed, follow the instructions below to install dependencies relevant to your

operating system:

• Ubuntu: apt-get install libclang-dev pkg-config build-essential

• macOS: brew install llvm pkg-config

• Windows: choco install llvm or winget install LLVM.LLVM

These are needed to build bindings for Reth's database.

Build Reth

With Rust and the dependencies installed, you're ready to build Reth. First, clone the

repository:

curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh

reth Book https://paradigmxyz.github.io/reth/print.html

11 of 136 10/26/23, 15:08

https://paradigmxyz.github.io/reth/print.html#build-from-source
https://paradigmxyz.github.io/reth/print.html#build-from-source
https://paradigmxyz.github.io/reth/print.html#dependencies
https://paradigmxyz.github.io/reth/print.html#dependencies
https://rustup.rs/
https://rustup.rs/
https://paradigmxyz.github.io/reth/print.html#build-reth
https://paradigmxyz.github.io/reth/print.html#build-reth

Then, install Reth into your PATH directly via:

The binary will now be accessible as reth via the command line, and exist under your

default .cargo/bin folder.

Alternatively, you can build yourself with:

This will place the reth binary under ./target/release/reth , and you can copy it to your

directory of preference after that.

Compilation may take around 10 minutes. Installation was successful if reth --help

displays the command-line documentation.

If you run into any issues, please check the Troubleshooting section, or reach out to us on

Telegram.

Update Reth

You can update Reth to a specific version by running the commands below.

The reth directory will be the location you cloned reth to during the installation process.

${VERSION} will be the version you wish to build in the format vX.X.X .

Optimizations

Profiles

You can customise the compiler settings used to compile Reth via Cargo profiles.

Reth includes several profiles which can be selected via the Cargo flag --profile .

git clone https://github.com/paradigmxyz/reth
cd reth

cargo install --locked --path bin/reth --bin reth

cargo build --release

cd reth
git fetch
git checkout ${VERSION}
cargo build --release

reth Book https://paradigmxyz.github.io/reth/print.html

12 of 136 10/26/23, 15:08

https://paradigmxyz.github.io/reth/cli/cli.html
https://paradigmxyz.github.io/reth/cli/cli.html
https://paradigmxyz.github.io/reth/installation/source.html#troubleshooting
https://paradigmxyz.github.io/reth/installation/source.html#troubleshooting
https://t.me/paradigm_reth
https://t.me/paradigm_reth
https://paradigmxyz.github.io/reth/print.html#update-reth
https://paradigmxyz.github.io/reth/print.html#update-reth
https://paradigmxyz.github.io/reth/print.html#optimizations
https://paradigmxyz.github.io/reth/print.html#optimizations
https://doc.rust-lang.org/cargo/reference/profiles.html
https://doc.rust-lang.org/cargo/reference/profiles.html

• release : default for source builds, enables most optimisations while not taking too

long to compile.

• maxperf : default for binary releases, enables aggressive optimisations including full

LTO. Although compiling with this profile improves some benchmarks by around

20% compared to release , it imposes a significant cost at compile time and is only

recommended if you have a fast CPU.

Rust compiler flags

You can also use RUSTFLAGS="-C target-cpu=native" to enable CPU-specific

optimisations. In order to get the highest performance out of your build:

Features

Finally, some features may improve performance on your system, most notably

jemalloc , which replaces the default memory allocator used by reth.

You can enable features by passing them to the --features Cargo flag.

Note

The jemalloc feature is unstable on Windows due to jemallocator itself.

Troubleshooting

Command is not found

Reth will be installed to CARGO_HOME or $HOME/.cargo . This directory needs to be on your

PATH before you can run $ reth .

See "Configuring the PATH environment variable" for more information.

Compilation error

Make sure you are running the latest version of Rust. If you have installed Rust using

rustup, simply run rustup update .

If you can't install the latest version of Rust you can instead compile using the Minimum

RUSTFLAGS="-C target-cpu=native" cargo build --profile maxperf

reth Book https://paradigmxyz.github.io/reth/print.html

13 of 136 10/26/23, 15:08

https://paradigmxyz.github.io/reth/print.html#troubleshooting
https://paradigmxyz.github.io/reth/print.html#troubleshooting
https://paradigmxyz.github.io/reth/print.html#command-is-not-found
https://paradigmxyz.github.io/reth/print.html#command-is-not-found
https://www.rust-lang.org/tools/install
https://www.rust-lang.org/tools/install
https://www.rust-lang.org/tools/install
https://www.rust-lang.org/tools/install
https://www.rust-lang.org/tools/install
https://paradigmxyz.github.io/reth/print.html#compilation-error
https://paradigmxyz.github.io/reth/print.html#compilation-error

Supported Rust Version (MSRV) which is listed under the rust-version key in Reth's

Cargo.toml.

If compilation fails with (signal: 9, SIGKILL: kill) , this could mean your machine ran

out of memory during compilation. If you are on Docker, consider increasing the memory

of the container, or use a pre-built binary.

If compilation fails with error: linking with cc failed: exit code: 1 , try running

cargo clean .

(Thanks to Sigma Prime for this section from their Lighthouse book!)

Bus error (WSL2)

In WSL 2 on Windows, the default virtual disk size is set to 1TB.

You must increase the allocated disk size for your WSL2 instance before syncing reth.

You can follow the instructions here: how to expand the size of your WSL2 virtual hard

disk.

reth Book https://paradigmxyz.github.io/reth/print.html

14 of 136 10/26/23, 15:08

https://github.com/paradigmxyz/reth/blob/main/Cargo.toml
https://github.com/paradigmxyz/reth/blob/main/Cargo.toml
https://paradigmxyz.github.io/reth/installation/binaries.html
https://paradigmxyz.github.io/reth/installation/binaries.html
https://lighthouse-book.sigmaprime.io/installation.html
https://lighthouse-book.sigmaprime.io/installation.html
https://paradigmxyz.github.io/reth/print.html#bus-error-wsl2
https://paradigmxyz.github.io/reth/print.html#bus-error-wsl2
https://learn.microsoft.com/en-us/windows/wsl/disk-space#how-to-expand-the-size-of-your-wsl-2-virtual-hard-disk
https://learn.microsoft.com/en-us/windows/wsl/disk-space#how-to-expand-the-size-of-your-wsl-2-virtual-hard-disk
https://learn.microsoft.com/en-us/windows/wsl/disk-space#how-to-expand-the-size-of-your-wsl-2-virtual-hard-disk
https://learn.microsoft.com/en-us/windows/wsl/disk-space#how-to-expand-the-size-of-your-wsl-2-virtual-hard-disk

Building for ARM devices

Reth can be built for and run on ARM devices, but there are a few things to take into

considerations before.

CPU Architecture

First, you must have a 64-bit CPU and Operating System, otherwise some of the project

dependencies will not be able to compile or be executed.

Memory Layout on AArch64

Then, you must setup the virtual memory layout in such a way that the user space is

sufficiently large. From the Linux Kernel documentation, you can see that the memory

layout with 4KB pages and a level-3 translation table limits the user space to 512GB,

which is too low for Reth to sync on Ethereum mainnet.

ARM Board Virtual Memory Limitation

Issue Description

Some ARM boards are equipped with only 3-level paging, which imposes a virtual

memory limitation of 256GB for user space on Linux. This limitation can be a challenge

for running applications like "reth", as the MDBX (Memory-mapped Database eXtreme)

library requires a larger virtual memory allocation by design.

Understanding the Limitation

To determine if a specific ARM board is affected by this virtual memory limitation:

1. Check Specifications: When considering an ARM board, review its specifications for

information on paging levels. Boards with 3-level paging may have a 256GB virtual

memory limit.

2. Manufacturer Documentation: Consult the official ARM board documentation for

details on supported paging levels.

reth Book https://paradigmxyz.github.io/reth/print.html

15 of 136 10/26/23, 15:08

https://paradigmxyz.github.io/reth/print.html#building-for-arm-devices
https://paradigmxyz.github.io/reth/print.html#building-for-arm-devices
https://paradigmxyz.github.io/reth/print.html#cpu-architecture
https://paradigmxyz.github.io/reth/print.html#cpu-architecture
https://paradigmxyz.github.io/reth/print.html#memory-layout-on-aarch64
https://paradigmxyz.github.io/reth/print.html#memory-layout-on-aarch64
https://www.kernel.org/doc/html/v5.3/arm64/memory.html#:%7E:text=AArch64%20Linux%20uses%20either%203,for%20both%20user%20and%20kernel.
https://www.kernel.org/doc/html/v5.3/arm64/memory.html#:%7E:text=AArch64%20Linux%20uses%20either%203,for%20both%20user%20and%20kernel.
https://paradigmxyz.github.io/reth/print.html#arm-board-virtual-memory-limitation
https://paradigmxyz.github.io/reth/print.html#arm-board-virtual-memory-limitation
https://paradigmxyz.github.io/reth/print.html#issue-description
https://paradigmxyz.github.io/reth/print.html#issue-description
https://paradigmxyz.github.io/reth/print.html#understanding-the-limitation
https://paradigmxyz.github.io/reth/print.html#understanding-the-limitation

3. Community Discussions: Search online ARM and Linux forums for insights into

virtual memory limitations of specific boards.

Additional Context

According to MDBX documentation, changing this upper bound, which dictates the

maximum size the database can reach, is a costly operation. Therefore, a reasonably

large value was chosen. Given that the upper bound is currently set to 4TB, the

assumption was that growth to 3TB might occur relatively soon. If the upper bound size is

set to only 342GB, then "reth" cannot store more than 342GB of data, which is insufficient

for a full sync.

It's worth noting that on x86_64 architecture, there is a 48-bit address space divided in

half between user space and the kernel, providing each with 128TB of address space. In

contrast, AArch64 architecture features a user space address space of 512GB and a

kernel address space of 256TB.

Some newer versions of ARM architecture offer support for Large Virtual Address space,

but enabling this requires running with a 64KB page size. The specifics of how to enable

this functionality might vary.

Additional Resources

• ARM developer documentation

• ARM Community Forums

Build Reth

If both your CPU architecture and the memory layout are valid, the instructions for

building Reth will not differ from the standard process.

Troubleshooting

If you ever need to recompile the Linux Kernel because the official OS images for

your ARM board don't have the right memory layout configuration, you can use the

Armbian build framework.

reth Book https://paradigmxyz.github.io/reth/print.html

16 of 136 10/26/23, 15:08

https://paradigmxyz.github.io/reth/print.html#additional-context
https://paradigmxyz.github.io/reth/print.html#additional-context
https://paradigmxyz.github.io/reth/print.html#additional-resources
https://paradigmxyz.github.io/reth/print.html#additional-resources
https://developer.arm.com/documentation/ddi0406/cb/Appendixes/ARMv4-and-ARMv5-Differences/System-level-memory-model/Virtual-memory-support
https://developer.arm.com/documentation/ddi0406/cb/Appendixes/ARMv4-and-ARMv5-Differences/System-level-memory-model/Virtual-memory-support
https://community.arm.com/
https://community.arm.com/
https://paradigmxyz.github.io/reth/print.html#build-reth-1
https://paradigmxyz.github.io/reth/print.html#build-reth-1
https://paradigmxyz.github.io/reth/installation/source.html
https://paradigmxyz.github.io/reth/installation/source.html
https://paradigmxyz.github.io/reth/print.html#troubleshooting-1
https://paradigmxyz.github.io/reth/print.html#troubleshooting-1
https://github.com/armbian/build
https://github.com/armbian/build
https://github.com/armbian/build
https://github.com/armbian/build

Failed to open database

This error is documented here.

This error is raised whenever MBDX can not open a database due to the limitations

imposed by the memory layout of your kernel. If the user space is limited to 512GB, the

database will not be able to grow below this size.

You will need to recompile the Linux Kernel to fix the issue.

A simple and safe approach to achieve this is to use the Armbian build framework to

create a new image of the OS that will be flashed to a storage device of your choice - an

SD card for example - with the following kernel feature values:

• Page Size: 64 KB

• Virtual Address Space Size: 48 Bits

To be able to build an Armbian image and set those values, you will need to:

• Clone the Armbian build framework repository

• Run the compile script with the following parameters:

• From there, you will be able to select the target board, the OS release and branch.

Then, once you get in the Kernel Configuration screen, select the Kernel Features

options and set the previous values accordingly.

• Wait for the process to finish, plug your storage device into your board and start it.

You can now download or install Reth and it should work properly.

git clone https://github.com/armbian/build
cd build

./compile.sh \
BUILD_MINIMAL=yes \
BUILD_DESKTOP=no \
KERNEL_CONFIGURE=yes \
CARD_DEVICE="/dev/sdX" # Replace sdX with your own storage device

reth Book https://paradigmxyz.github.io/reth/print.html

17 of 136 10/26/23, 15:08

https://paradigmxyz.github.io/reth/print.html#failed-to-open-database
https://paradigmxyz.github.io/reth/print.html#failed-to-open-database
https://github.com/paradigmxyz/reth/issues/2211
https://github.com/paradigmxyz/reth/issues/2211

Update Priorities

When publishing releases, reth will include an "Update Priority" section in the release

notes, in the same manner Lighthouse does.

The "Update Priority" section will include a table which may appear like so:

User Class Priority

Payload Builders Medium Priority

Non-Payload Builders Low Priority

To understand this table, the following terms are important:

• Payload builders are those who use reth to build and validate payloads.

• Non-payload builders are those who run reth for other purposes (e.g., data analysis,

RPC or applications).

• High priority updates should be completed as soon as possible (e.g., hours or days).

• Medium priority updates should be completed at the next convenience (e.g., days or

a week).

• Low priority updates should be completed in the next routine update cycle (e.g., two

weeks).

reth Book https://paradigmxyz.github.io/reth/print.html

18 of 136 10/26/23, 15:08

https://paradigmxyz.github.io/reth/print.html#update-priorities
https://paradigmxyz.github.io/reth/print.html#update-priorities

Run a Node

Congratulations, now that you have installed Reth, it's time to run it!

In this chapter we'll go through a few different topics you'll encounter when running Reth,

including:

1. Running on mainnet or official testnets

2. Logs and Observability

3. Configuring reth.toml

4. Transaction types

5. Pruning & Full Node

6. Ports

7. Troubleshooting

In the future, we also intend to support the OP Stack, which will allow you to run Reth as a

Layer 2 client. More there soon!

reth Book https://paradigmxyz.github.io/reth/print.html

19 of 136 10/26/23, 15:08

https://paradigmxyz.github.io/reth/print.html#run-a-node
https://paradigmxyz.github.io/reth/print.html#run-a-node
https://paradigmxyz.github.io/reth/run/mainnet.html
https://paradigmxyz.github.io/reth/run/mainnet.html
https://paradigmxyz.github.io/reth/run/observability.html
https://paradigmxyz.github.io/reth/run/observability.html
https://paradigmxyz.github.io/reth/run/config.html
https://paradigmxyz.github.io/reth/run/config.html
https://paradigmxyz.github.io/reth/run/transactions.html
https://paradigmxyz.github.io/reth/run/transactions.html
https://paradigmxyz.github.io/reth/run/pruning.html
https://paradigmxyz.github.io/reth/run/pruning.html
https://paradigmxyz.github.io/reth/run/ports.html
https://paradigmxyz.github.io/reth/run/ports.html
https://paradigmxyz.github.io/reth/run/troubleshooting.html
https://paradigmxyz.github.io/reth/run/troubleshooting.html
https://stack.optimism.io/docs/understand/explainer/
https://stack.optimism.io/docs/understand/explainer/

Running Reth on Ethereum Mainnet or

testnets

Reth is an execution client. After Ethereum's transition to Proof of Stake (aka the Merge) it

became required to run a consensus client along your execution client in order to sync into

any "post-Merge" network. This is because the Ethereum execution layer now outsources

consensus to a separate component, known as the consensus client.

Consensus clients decide what blocks are part of the chain, while execution clients only

validate that transactions and blocks are valid in themselves and with respect to the

world state. In other words, execution clients execute blocks and transactions and check

their validity, while consensus clients determine which valid blocks should be part of the

chain. Therefore, running a consensus client in parallel with the execution client is

necessary to ensure synchronization and participation in the network.

By running both an execution client like Reth and a consensus client, such as Lighthouse

��������������� (which we will assume for this guide), you can effectively contribute to the Ethereum

network and participate in the consensus process, even if you don't intend to run

validators.

Client Role

Execution Validates transactions and blocks

(checks their validity and global state)

Consensus Determines which blocks are part of the chain

(makes consensus decisions)

Running the Reth Node

First, ensure that you have Reth installed by following the installation instructions.

Now, to start the archive node, run:

And to start the full node, run:

On differences between archive and full nodes, see Pruning & Full Node section.

RUST_LOG=info reth node

RUST_LOG=info reth node --full

reth Book https://paradigmxyz.github.io/reth/print.html

20 of 136 10/26/23, 15:08

https://paradigmxyz.github.io/reth/print.html#running-reth-on-ethereum-mainnet-or-testnets
https://paradigmxyz.github.io/reth/print.html#running-reth-on-ethereum-mainnet-or-testnets
https://paradigmxyz.github.io/reth/print.html#running-reth-on-ethereum-mainnet-or-testnets
https://paradigmxyz.github.io/reth/print.html#running-reth-on-ethereum-mainnet-or-testnets
https://ethereum.org/en/developers/docs/nodes-and-clients/#execution-clients
https://ethereum.org/en/developers/docs/nodes-and-clients/#execution-clients
https://ethereum.org/en/developers/docs/nodes-and-clients/#execution-clients
https://ethereum.org/en/developers/docs/nodes-and-clients/#consensus-clients
https://ethereum.org/en/developers/docs/nodes-and-clients/#consensus-clients
https://ethereum.org/en/developers/docs/nodes-and-clients/#consensus-clients
https://paradigmxyz.github.io/reth/print.html#running-the-reth-node
https://paradigmxyz.github.io/reth/print.html#running-the-reth-node
https://paradigmxyz.github.io/reth/installation/installation.html
https://paradigmxyz.github.io/reth/installation/installation.html
https://paradigmxyz.github.io/reth/run/pruning.html#basic-concepts
https://paradigmxyz.github.io/reth/run/pruning.html#basic-concepts

Note that these commands will not open any HTTP/WS ports by default. You can

change this by adding the --http , --ws flags, respectively and using the

--http.api and --ws.api flags to enable various JSON-RPC APIs. For more

commands, see the reth node CLI reference.

The EL <> CL communication happens over the Engine API, which is by default exposed at

http://localhost:8551 . The connection is authenticated over JWT using a JWT secret

which is auto-generated by Reth and placed in a file called jwt.hex in the data directory,

which on Linux by default is $HOME/.local/share/reth/ (/Users/<NAME>/Library

/Application Support/reth/mainnet/jwt.hex in Mac).

You can override this path using the --authrpc.jwtsecret option. You MUST use the

same JWT secret in BOTH Reth and the chosen Consensus Layer. If you want to override

the address or port, you can use the --authrpc.addr and --authrpc.port options,

respectively.

So one might do:

At this point, our Reth node has started discovery, and even discovered some new peers.

But it will not start syncing until you spin up the consensus layer!

Running the Consensus Layer

First, make sure you have Lighthouse installed. Sigma Prime provides excellent

installation and node operation instructions.

Assuming you have done that, run:

If you don't intend on running validators on your node you can add:

The --checkpoint-sync-url argument value can be replaced with any checkpoint sync

RUST_LOG=info reth node \
 --authrpc.jwtsecret /path/to/secret \
 --authrpc.addr 127.0.0.1 \
 --authrpc.port 8551

RUST_LOG=info lighthouse bn \
 --checkpoint-sync-url https://mainnet.checkpoint.sigp.io \
 --execution-endpoint http://localhost:8551 \
 --execution-jwt /path/to/secret

 --disable-deposit-contract-sync

reth Book https://paradigmxyz.github.io/reth/print.html

21 of 136 10/26/23, 15:08

https://paradigmxyz.github.io/reth/jsonrpc/intro.html
https://paradigmxyz.github.io/reth/jsonrpc/intro.html
https://paradigmxyz.github.io/reth/cli/node.html
https://paradigmxyz.github.io/reth/cli/node.html
https://paradigmxyz.github.io/reth/cli/node.html
https://paradigmxyz.github.io/reth/cli/node.html
https://github.com/ethereum/execution-apis/blob/main/src/engine/common.md
https://github.com/ethereum/execution-apis/blob/main/src/engine/common.md
https://paradigmxyz.github.io/reth/print.html#running-the-consensus-layer
https://paradigmxyz.github.io/reth/print.html#running-the-consensus-layer
https://lighthouse-book.sigmaprime.io/installation.html
https://lighthouse-book.sigmaprime.io/installation.html
https://lighthouse-book.sigmaprime.io/run_a_node.html
https://lighthouse-book.sigmaprime.io/run_a_node.html

endpoint from a community maintained list.

Your Reth node should start receiving "fork choice updated" messages, and begin syncing

the chain.

Verify the chain is growing

You can easily verify that by inspecting the logs, and seeing that headers are arriving in

Reth. Sit back now and wait for the stages to run! In the meantime, consider setting up

observability to monitor your node's health or test the JSON RPC API.

Running without a Consensus Layer

We provide a method for running Reth without a Consensus Layer via the --debug.tip

<HASH> parameter. If you provide that to your node, it will simulate sending a

engine_forkChoiceUpdated message once and will trigger syncing to the provided block

hash. This is useful for testing and debugging purposes, but in order to have a node that

can keep up with the tip you'll need to run a CL alongside it. At the moment we have no

plans of including a Consensus Layer implementation in Reth, and we are open to

including light clients other methods of syncing like importing Lighthouse as a library.

reth Book https://paradigmxyz.github.io/reth/print.html

22 of 136 10/26/23, 15:08

https://eth-clients.github.io/checkpoint-sync-endpoints/#mainnet
https://eth-clients.github.io/checkpoint-sync-endpoints/#mainnet
https://paradigmxyz.github.io/reth/print.html#verify-the-chain-is-growing
https://paradigmxyz.github.io/reth/print.html#verify-the-chain-is-growing
https://paradigmxyz.github.io/reth/run/observability.html
https://paradigmxyz.github.io/reth/run/observability.html
https://paradigmxyz.github.io/reth/jsonrpc/intro.html
https://paradigmxyz.github.io/reth/jsonrpc/intro.html
https://paradigmxyz.github.io/reth/print.html#running-without-a-consensus-layer
https://paradigmxyz.github.io/reth/print.html#running-without-a-consensus-layer

Run Reth in a private testnet using

Kurtosis

For those who need a private testnet to validate functionality or scale with Reth.

Using Docker locally

This guide uses Kurtosis' ethereum-package and assumes you have Kurtosis and Docker

installed and have Docker already running on your machine.

• Go here to install Kurtosis

• Go here to install Docker

The ethereum-package is a package for a general purpose Ethereum testnet definition

used for instantiating private testnets at any scale over Docker or Kubernetes, locally or in

the cloud. This guide will go through how to spin up a local private testnet with Reth

various CL clients locally. Specifically, you will instantiate a 2-node network over Docker

with Reth/Lighthouse and Reth/Teku client combinations.

To see all possible configurations and flags you can use, including metrics and

observability tools (e.g. Grafana, Prometheus, etc), go here.

Genesis data will be generated using this genesis-generator to be used to bootstrap the

EL and CL clients for each node. The end result will be a private testnet with nodes

deployed as Docker containers in an ephemeral, isolated environment on your machine

called an enclave. Read more about how the ethereum-package works by going here.

Step 1: Define the parameters and shape of your private network

First, in your home directory, create a file with the name network_params.json with the

following contents:

reth Book https://paradigmxyz.github.io/reth/print.html

23 of 136 10/26/23, 15:08

https://paradigmxyz.github.io/reth/print.html#run-reth-in-a-private-testnet-using-kurtosis
https://paradigmxyz.github.io/reth/print.html#run-reth-in-a-private-testnet-using-kurtosis
https://paradigmxyz.github.io/reth/print.html#run-reth-in-a-private-testnet-using-kurtosis
https://paradigmxyz.github.io/reth/print.html#run-reth-in-a-private-testnet-using-kurtosis
https://paradigmxyz.github.io/reth/print.html#using-docker-locally
https://paradigmxyz.github.io/reth/print.html#using-docker-locally
https://github.com/kurtosis-tech/ethereum-package
https://github.com/kurtosis-tech/ethereum-package
https://docs.kurtosis.com/install/
https://docs.kurtosis.com/install/
https://docs.docker.com/get-docker/
https://docs.docker.com/get-docker/
https://github.com/kurtosis-tech/ethereum-package
https://github.com/kurtosis-tech/ethereum-package
https://github.com/kurtosis-tech/ethereum-package
https://docs.kurtosis.com/concepts-reference/packages
https://docs.kurtosis.com/concepts-reference/packages
https://github.com/kurtosis-tech/ethereum-package#configuration
https://github.com/kurtosis-tech/ethereum-package#configuration
https://github.com/ethpandaops/ethereum-genesis-generator
https://github.com/ethpandaops/ethereum-genesis-generator
https://docs.kurtosis.com/concepts-reference/enclaves/
https://docs.kurtosis.com/concepts-reference/enclaves/
https://github.com/kurtosis-tech/ethereum-package/
https://github.com/kurtosis-tech/ethereum-package/
https://paradigmxyz.github.io/reth/print.html#step-1-define-the-parameters-and-shape-of-your-private-network
https://paradigmxyz.github.io/reth/print.html#step-1-define-the-parameters-and-shape-of-your-private-network

Step 2: Spin up your network

Next, run the following command from your command line:

Kurtosis will spin up an enclave (i.e an ephemeral, isolated environment) and begin to

configure and instantiate the nodes in your network. In the end, Kurtosis will print the

services running in your enclave that form your private testnet alongside all the container

ports and files that were generated & used to start up the private testnet. Here is a

sample output:

{
"participants": [

 {
"el_client_type": "reth",
"el_client_image": "ghcr.io/paradigmxyz/reth",
"cl_client_type": "lighthouse",
"cl_client_image": "sigp/lighthouse:latest",
"count": 1

 },
 {

"el_client_type": "reth",
"el_client_image": "ghcr.io/paradigmxyz/reth",
"cl_client_type": "teku",
"cl_client_image": "consensys/teku:latest",
"count": 1

 }
],
"launch_additional_services": false

}

kurtosis run github.com/kurtosis-tech/ethereum-package --args-file
~/network_params.json

reth Book https://paradigmxyz.github.io/reth/print.html

24 of 136 10/26/23, 15:08

https://paradigmxyz.github.io/reth/print.html#step-2-spin-up-your-network
https://paradigmxyz.github.io/reth/print.html#step-2-spin-up-your-network
https://docs.kurtosis.com/concepts-reference/enclaves
https://docs.kurtosis.com/concepts-reference/enclaves

INFO[2023-08-21T18:22:18-04:00]
==
INFO[2023-08-21T18:22:18-04:00] || Created enclave: silky-swamp
||
INFO[2023-08-21T18:22:18-04:00]
==
Name: silky-swamp
UUID: 3df730c66123
Status: RUNNING
Creation Time: Mon, 21 Aug 2023 18:21:32 EDT

=== Files Artifacts
===
UUID Name
c168ec4468f6 1-lighthouse-reth-0-63
61f821e2cfd5 2-teku-reth-64-127
e6f94fdac1b8 cl-genesis-data
e6b57828d099 el-genesis-data
1fb632573a2e genesis-generation-config-cl
b8917e497980 genesis-generation-config-el
6fd8c5be336a geth-prefunded-keys
6ab83723b4bd prysm-password

== User Services
==
UUID Name Ports
Status
95386198d3f9 cl-1-lighthouse-reth http: 4000/tcp ->
http://127.0.0.1:64947 RUNNING
 metrics: 5054/tcp
-> http://127.0.0.1:64948
 tcp-discovery:
9000/tcp -> 127.0.0.1:64949
 udp-discovery:
9000/udp -> 127.0.0.1:60303
5f5cc4cf639a cl-1-lighthouse-reth-validator http: 5042/tcp ->
127.0.0.1:64950 RUNNING
 metrics: 5064/tcp
-> http://127.0.0.1:64951
27e1cfaddc72 cl-2-teku-reth http: 4000/tcp ->
127.0.0.1:64954 RUNNING
 metrics: 8008/tcp
-> 127.0.0.1:64952
 tcp-discovery:
9000/tcp -> 127.0.0.1:64953
 udp-discovery:
9000/udp -> 127.0.0.1:53749
b454497fbec8 el-1-reth-lighthouse engine-rpc:
8551/tcp -> 127.0.0.1:64941 RUNNING
 metrics: 9001/tcp
-> 127.0.0.1:64937
 rpc: 8545/tcp ->
127.0.0.1:64939
 tcp-discovery:
30303/tcp -> 127.0.0.1:64938
 udp-discovery:

reth Book https://paradigmxyz.github.io/reth/print.html

25 of 136 10/26/23, 15:08

Great! You now have a private network with 2 full Ethereum nodes on your local machine

over Docker - one that is a Reth/Lighthouse pair and another that is Reth/Teku. Check out

the Kurtosis docs to learn about the various ways you can interact with and inspect your

network.

Using Kurtosis on Kubernetes

Kurtosis packages are portable and reproducible, meaning they will work the same way

over Docker or Kubernetes, locally or on remote infrastructure. For use cases that require

a larger scale, Kurtosis can be deployed on Kubernetes by following these docs here.

Running the network with additional services

The ethereum-package comes with many optional flags and arguments you can enable

for your private network. Some include:

• A Grafana + Prometheus instance

• A transaction spammer called tx-fuzz

• A network metrics collector

• Flashbot's mev-boost implementation of PBS (to test/simulate MEV workflows)

Questions?

30303/udp -> 127.0.0.1:55861
 ws: 8546/tcp ->
127.0.0.1:64940
03a2ef13c99b el-2-reth-teku engine-rpc:
8551/tcp -> 127.0.0.1:64945 RUNNING
 metrics: 9001/tcp
-> 127.0.0.1:64946
 rpc: 8545/tcp ->
127.0.0.1:64943
 tcp-discovery:
30303/tcp -> 127.0.0.1:64942
 udp-discovery:
30303/udp -> 127.0.0.1:64186
 ws: 8546/tcp ->
127.0.0.1:64944
5c199b334236 prelaunch-data-generator-cl-genesis-data <none>
RUNNING
46829c4bd8b0 prelaunch-data-generator-el-genesis-data <none>
RUNNING

reth Book https://paradigmxyz.github.io/reth/print.html

26 of 136 10/26/23, 15:08

https://docs.kurtosis.com/cli
https://docs.kurtosis.com/cli
https://paradigmxyz.github.io/reth/print.html#using-kurtosis-on-kubernetes
https://paradigmxyz.github.io/reth/print.html#using-kurtosis-on-kubernetes
https://docs.kurtosis.com/k8s/
https://docs.kurtosis.com/k8s/
https://paradigmxyz.github.io/reth/print.html#running-the-network-with-additional-services
https://paradigmxyz.github.io/reth/print.html#running-the-network-with-additional-services
https://github.com/kurtosis-tech/ethereum-package
https://github.com/kurtosis-tech/ethereum-package
https://github.com/kurtosis-tech/ethereum-package
https://github.com/MariusVanDerWijden/tx-fuzz
https://github.com/MariusVanDerWijden/tx-fuzz
https://github.com/MariusVanDerWijden/tx-fuzz
https://github.com/dapplion/beacon-metrics-gazer
https://github.com/dapplion/beacon-metrics-gazer
https://paradigmxyz.github.io/reth/print.html#questions
https://paradigmxyz.github.io/reth/print.html#questions

Please reach out to the Kurtosis discord should you have any questions about how to use

the ethereum-package for your private testnet needs. Thanks!

reth Book https://paradigmxyz.github.io/reth/print.html

27 of 136 10/26/23, 15:08

https://discord.com/invite/6Jjp9c89z9
https://discord.com/invite/6Jjp9c89z9

Observability with Prometheus & Grafana

Reth exposes a number of metrics, which are listed here. We can serve them from an

HTTP endpoint by adding the --metrics flag:

Now, as the node is running, you can curl the endpoint you provided to the --metrics

flag to get a text dump of the metrics at that time:

The response from this is quite descriptive, but it can be a bit verbose. Plus, it's just a

snapshot of the metrics at the time that you curl ed the endpoint.

You can run the following command in a separate terminal to periodically poll the

endpoint, and just print the values (without the header text) to the terminal:

We're finally getting somewhere! As a final step, though, wouldn't it be great to see how

these metrics progress over time (and generally, in a GUI)?

Prometheus & Grafana

We're going to be using Prometheus to collect metrics off of the endpoint we set up, and

use Grafana to scrape the metrics from Prometheus and define a dashboard with them.

Let's begin by installing both Prometheus and Grafana, which one can do with e.g.

Homebrew:

Then, kick off the Prometheus and Grafana services:

This will start a Prometheus service which by default scrapes itself about the current

instance. So you'll need to change its config to hit your Reth nodes metrics endpoint at

localhost:9001 which you set using the --metrics flag.

RUST_LOG=info reth node --metrics 127.0.0.1:9001

curl 127.0.0.1:9001

while true; do date; curl -s localhost:9001 | grep -Ev '^(#|$)' | sort; echo;
sleep 10; done

brew update
brew install prometheus
brew install grafana

brew services start prometheus
brew services start grafana

reth Book https://paradigmxyz.github.io/reth/print.html

28 of 136 10/26/23, 15:08

https://paradigmxyz.github.io/reth/print.html#observability-with-prometheus--grafana
https://paradigmxyz.github.io/reth/print.html#observability-with-prometheus--grafana
https://github.com/paradigmxyz/reth/blob/main/docs/design/metrics.md#current-metrics
https://github.com/paradigmxyz/reth/blob/main/docs/design/metrics.md#current-metrics
https://paradigmxyz.github.io/reth/print.html#prometheus--grafana
https://paradigmxyz.github.io/reth/print.html#prometheus--grafana
https://prometheus.io/docs/introduction/first_steps/#:%7E:text=The%20job%20contains%20a%20single,%3A%2F%2Flocalhost%3A9090%2Fmetrics.
https://prometheus.io/docs/introduction/first_steps/#:%7E:text=The%20job%20contains%20a%20single,%3A%2F%2Flocalhost%3A9090%2Fmetrics.
https://prometheus.io/docs/introduction/first_steps/#:%7E:text=The%20job%20contains%20a%20single,%3A%2F%2Flocalhost%3A9090%2Fmetrics.
https://prometheus.io/docs/introduction/first_steps/#:%7E:text=The%20job%20contains%20a%20single,%3A%2F%2Flocalhost%3A9090%2Fmetrics.

You can find an example config for the Prometheus service in the repo here:

etc/prometheus/prometheus.yml

Depending on your installation you may find the config for your Prometheus service at:

• OSX: /opt/homebrew/etc/prometheus.yml

• Linuxbrew: /home/linuxbrew/.linuxbrew/etc/prometheus.yml

• Others: /usr/local/etc/prometheus/prometheus.yml

Next, open up "localhost:3000" in your browser, which is the default URL for Grafana.

Here, "admin" is the default for both the username and password.

Once you've logged in, click on the gear icon in the lower left, and select "Data Sources".

Click on "Add data source", and select "Prometheus" as the type. In the HTTP URL field,

enter http://localhost:9090 . Finally, click "Save & Test".

As this might be a point of confusion, localhost:9001 , which we supplied to --metrics ,

is the endpoint that Reth exposes, from which Prometheus collects metrics. Prometheus

then exposes localhost:9090 (by default) for other services (such as Grafana) to

consume Prometheus metrics.

To configure the dashboard in Grafana, click on the squares icon in the upper left, and

click on "New", then "Import". From there, click on "Upload JSON file", and select the

example file in reth/etc/grafana/dashboards/overview.json . Finally, select the

Prometheus data source you just created, and click "Import".

And voilá, you should see your dashboard! If you're not yet connected to any peers, the

dashboard will look like it's in an empty state, but once you are, you should see it start

populating with data.

Conclusion

In this runbook, we took you through starting the node, exposing different log levels,

exporting metrics, and finally viewing those metrics in a Grafana dashboard.

This will all be very useful to you, whether you're simply running a home node and want

to keep an eye on its performance, or if you're a contributor and want to see the effect

that your (or others') changes have on Reth's operations.

reth Book https://paradigmxyz.github.io/reth/print.html

29 of 136 10/26/23, 15:08

https://github.com/paradigmxyz/reth/blob/main/etc/prometheus/prometheus.yml
https://github.com/paradigmxyz/reth/blob/main/etc/prometheus/prometheus.yml
https://github.com/paradigmxyz/reth/blob/main/etc/prometheus/prometheus.yml
https://github.com/paradigmxyz/reth/blob/main/etc/grafana/dashboards/overview.json
https://github.com/paradigmxyz/reth/blob/main/etc/grafana/dashboards/overview.json
https://github.com/paradigmxyz/reth/blob/main/etc/grafana/dashboards/overview.json
https://paradigmxyz.github.io/reth/print.html#conclusion
https://paradigmxyz.github.io/reth/print.html#conclusion

Configuring Reth

Reth places a configuration file named reth.toml in the data directory specified when

starting the node. It is written in the TOML format.

The default data directory is platform dependent:

• Linux: $XDG_DATA_HOME/reth/ or $HOME/.local/share/reth/

• Windows: {FOLDERID_RoamingAppData}/reth/

• macOS: $HOME/Library/Application Support/reth/

The configuration file contains the following sections:

• [stages] -- Configuration of the individual sync stages

◦ headers

◦ total_difficulty

◦ bodies

◦ sender_recovery

◦ execution

◦ account_hashing

◦ storage_hashing

◦ merkle

◦ transaction_lookup

◦ index_account_history

◦ index_storage_history

• [peers]

◦ connection_info

◦ reputation_weights

◦ backoff_durations

• [sessions]

• [prune]

The [stages] section

The stages section is used to configure how individual stages in reth behave, which has a

direct impact on resource utilization and sync speed.

The defaults shipped with Reth try to be relatively reasonable, but may not be optimal for

your specific set of hardware.

reth Book https://paradigmxyz.github.io/reth/print.html

30 of 136 10/26/23, 15:08

https://paradigmxyz.github.io/reth/print.html#configuring-reth
https://paradigmxyz.github.io/reth/print.html#configuring-reth
https://toml.io/
https://toml.io/
https://paradigmxyz.github.io/reth/run/config.html#the-stages-section
https://paradigmxyz.github.io/reth/run/config.html#the-stages-section
https://paradigmxyz.github.io/reth/run/config.html#the-stages-section
https://paradigmxyz.github.io/reth/run/config.html#headers
https://paradigmxyz.github.io/reth/run/config.html#headers
https://paradigmxyz.github.io/reth/run/config.html#headers
https://paradigmxyz.github.io/reth/run/config.html#total_difficulty
https://paradigmxyz.github.io/reth/run/config.html#total_difficulty
https://paradigmxyz.github.io/reth/run/config.html#total_difficulty
https://paradigmxyz.github.io/reth/run/config.html#bodies
https://paradigmxyz.github.io/reth/run/config.html#bodies
https://paradigmxyz.github.io/reth/run/config.html#bodies
https://paradigmxyz.github.io/reth/run/config.html#sender_recovery
https://paradigmxyz.github.io/reth/run/config.html#sender_recovery
https://paradigmxyz.github.io/reth/run/config.html#sender_recovery
https://paradigmxyz.github.io/reth/run/config.html#execution
https://paradigmxyz.github.io/reth/run/config.html#execution
https://paradigmxyz.github.io/reth/run/config.html#execution
https://paradigmxyz.github.io/reth/run/config.html#account_hashing
https://paradigmxyz.github.io/reth/run/config.html#account_hashing
https://paradigmxyz.github.io/reth/run/config.html#account_hashing
https://paradigmxyz.github.io/reth/run/config.html#storage_hashing
https://paradigmxyz.github.io/reth/run/config.html#storage_hashing
https://paradigmxyz.github.io/reth/run/config.html#storage_hashing
https://paradigmxyz.github.io/reth/run/config.html#merkle
https://paradigmxyz.github.io/reth/run/config.html#merkle
https://paradigmxyz.github.io/reth/run/config.html#merkle
https://paradigmxyz.github.io/reth/run/config.html#transaction_lookup
https://paradigmxyz.github.io/reth/run/config.html#transaction_lookup
https://paradigmxyz.github.io/reth/run/config.html#transaction_lookup
https://paradigmxyz.github.io/reth/run/config.html#index_account_history
https://paradigmxyz.github.io/reth/run/config.html#index_account_history
https://paradigmxyz.github.io/reth/run/config.html#index_account_history
https://paradigmxyz.github.io/reth/run/config.html#index_storage_history
https://paradigmxyz.github.io/reth/run/config.html#index_storage_history
https://paradigmxyz.github.io/reth/run/config.html#index_storage_history
https://paradigmxyz.github.io/reth/run/config.html#the-peers-section
https://paradigmxyz.github.io/reth/run/config.html#the-peers-section
https://paradigmxyz.github.io/reth/run/config.html#the-peers-section
https://paradigmxyz.github.io/reth/run/config.html#connection_info
https://paradigmxyz.github.io/reth/run/config.html#connection_info
https://paradigmxyz.github.io/reth/run/config.html#connection_info
https://paradigmxyz.github.io/reth/run/config.html#reputation_weights
https://paradigmxyz.github.io/reth/run/config.html#reputation_weights
https://paradigmxyz.github.io/reth/run/config.html#reputation_weights
https://paradigmxyz.github.io/reth/run/config.html#backoff_durations
https://paradigmxyz.github.io/reth/run/config.html#backoff_durations
https://paradigmxyz.github.io/reth/run/config.html#backoff_durations
https://paradigmxyz.github.io/reth/run/config.html#the-sessions-section
https://paradigmxyz.github.io/reth/run/config.html#the-sessions-section
https://paradigmxyz.github.io/reth/run/config.html#the-sessions-section
https://paradigmxyz.github.io/reth/run/config.html#the-prune-section
https://paradigmxyz.github.io/reth/run/config.html#the-prune-section
https://paradigmxyz.github.io/reth/run/config.html#the-prune-section
https://paradigmxyz.github.io/reth/print.html#the-stages-section
https://paradigmxyz.github.io/reth/print.html#the-stages-section
https://paradigmxyz.github.io/reth/print.html#the-stages-section
https://paradigmxyz.github.io/reth/print.html#the-stages-section
https://paradigmxyz.github.io/reth/print.html#the-stages-section

headers

The headers section controls both the behavior of the header stage, which download

historical headers, as well as the primary downloader that fetches headers over P2P.

total_difficulty

The total difficulty stage calculates the total difficulty reached for each header in the

chain.

bodies

The bodies section controls both the behavior of the bodies stage, which download

[stages.headers]
The minimum and maximum number of concurrent requests to have in flight at
a time.
#
The downloader uses these as best effort targets, which means that the
number
of requests may be outside of these thresholds within a reasonable degree.
#
Increase these for faster sync speeds at the cost of additional bandwidth
and memory
downloader_max_concurrent_requests = 100
downloader_min_concurrent_requests = 5
The maximum number of responses to buffer in the downloader at any one
time.
#
If the buffer is full, no more requests will be sent until room opens up.
#
Increase the value for a larger buffer at the cost of additional memory
consumption
downloader_max_buffered_responses = 100
The maximum number of headers to request from a peer at a time.
downloader_request_limit = 1000
The amount of headers to persist to disk at a time.
#
Lower thresholds correspond to more frequent disk I/O (writes),
but lowers memory usage
commit_threshold = 10000

[stages.total_difficulty]
The amount of headers to calculate the total difficulty for
before writing the results to disk.
#
Lower thresholds correspond to more frequent disk I/O (writes),
but lowers memory usage
commit_threshold = 100000

reth Book https://paradigmxyz.github.io/reth/print.html

31 of 136 10/26/23, 15:08

https://paradigmxyz.github.io/reth/print.html#headers
https://paradigmxyz.github.io/reth/print.html#headers
https://paradigmxyz.github.io/reth/print.html#headers
https://paradigmxyz.github.io/reth/print.html#total_difficulty
https://paradigmxyz.github.io/reth/print.html#total_difficulty
https://paradigmxyz.github.io/reth/print.html#total_difficulty
https://paradigmxyz.github.io/reth/print.html#bodies
https://paradigmxyz.github.io/reth/print.html#bodies
https://paradigmxyz.github.io/reth/print.html#bodies

historical block bodies, as well as the primary downloader that fetches block bodies over

P2P.

sender_recovery

The sender recovery stage recovers the address of transaction senders using transaction

signatures.

execution

The execution stage executes historical transactions. This stage is generally very I/O and

[stages.bodies]
The maximum number of bodies to request from a peer at a time.
downloader_request_limit = 200
The maximum amount of bodies to download before writing them to disk.
#
A lower value means more frequent disk I/O (writes), but also
lowers memory usage.
downloader_stream_batch_size = 1000
The size of the internal block buffer in bytes.
#
A bigger buffer means that bandwidth can be saturated for longer periods,
but also increases memory consumption.
#
If the buffer is full, no more requests will be made to peers until
space is made for new blocks in the buffer.
#
Defaults to around 2GB.
downloader_max_buffered_blocks_size_bytes = 2147483648
The minimum and maximum number of concurrent requests to have in flight at
a time.
#
The downloader uses these as best effort targets, which means that the
number
of requests may be outside of these thresholds within a reasonable degree.
#
Increase these for faster sync speeds at the cost of additional bandwidth
and memory
downloader_min_concurrent_requests = 5
downloader_max_concurrent_requests = 100

[stages.sender_recovery]
The amount of transactions to recover senders for before
writing the results to disk.
#
Lower thresholds correspond to more frequent disk I/O (writes),
but lowers memory usage
commit_threshold = 100000

reth Book https://paradigmxyz.github.io/reth/print.html

32 of 136 10/26/23, 15:08

https://paradigmxyz.github.io/reth/print.html#sender_recovery
https://paradigmxyz.github.io/reth/print.html#sender_recovery
https://paradigmxyz.github.io/reth/print.html#sender_recovery
https://paradigmxyz.github.io/reth/print.html#execution
https://paradigmxyz.github.io/reth/print.html#execution
https://paradigmxyz.github.io/reth/print.html#execution

memory intensive, since executing transactions involves reading block headers,

transactions, accounts and account storage.

Each executed transaction also generates a number of changesets, and mutates the

current state of accounts and storage.

For this reason, there are two ways to control how much work to perform before the

results are written to disk.

Either one of max_blocks or max_changes must be specified, and both can also be

specified at the same time:

• If only max_blocks is specified, reth will execute (up to) that amount of blocks

before writing to disk.

• If only max_changes is specified, reth will execute as many blocks as possible until

the target amount of state transitions have occurred before writing to disk.

• If both are specified, then the first threshold to be hit will determine when the

results are written to disk.

Lower values correspond to more frequent disk writes, but also lower memory

consumption. A lower value also negatively impacts sync speed, since reth keeps a cache

around for the entire duration of blocks executed in the same range.

account_hashing

The account hashing stage builds a secondary table of accounts, where the key is the

hash of the address instead of the raw address.

This is used to later compute the state root.

[stages.execution]
The maximum amount of blocks to execute before writing the results to disk.
max_blocks = 500000
The maximum amount of account and storage changes to collect before writing
the results to disk.
max_changes = 5000000

[stages.account_hashing]
The threshold in number of blocks before the stage starts from scratch
and re-hashes all accounts as opposed to just the accounts that changed.
clean_threshold = 500000
The amount of accounts to process before writing the results to disk.
#
Lower thresholds correspond to more frequent disk I/O (writes),
but lowers memory usage
commit_threshold = 100000

reth Book https://paradigmxyz.github.io/reth/print.html

33 of 136 10/26/23, 15:08

https://paradigmxyz.github.io/reth/print.html#account_hashing
https://paradigmxyz.github.io/reth/print.html#account_hashing
https://paradigmxyz.github.io/reth/print.html#account_hashing

storage_hashing

The storage hashing stage builds a secondary table of account storages, where the key is

the hash of the address and the slot, instead of the raw address and slot.

This is used to later compute the state root.

merkle

The merkle stage uses the indexes built in the hashing stages (storage and account

hashing) to compute the state root of the latest block.

transaction_lookup

The transaction lookup stage builds an index of transaction hashes to their sequential

transaction ID.

index_account_history

The account history indexing stage builds an index of what blocks a particular account

[stages.storage_hashing]
The threshold in number of blocks before the stage starts from scratch
and re-hashes all storages as opposed to just the storages that changed.
clean_threshold = 500000
The amount of storage slots to process before writing the results to disk.
#
Lower thresholds correspond to more frequent disk I/O (writes),
but lowers memory usage
commit_threshold = 100000

[stages.merkle]
The threshold in number of blocks before the stage starts from scratch
and re-computes the state root, discarding the trie that has already been
built,
as opposed to incrementally updating the trie.
clean_threshold = 50000

[stages.transaction_lookup]
The maximum number of transactions to process before writing the results to
disk.
#
Lower thresholds correspond to more frequent disk I/O (writes),
but lowers memory usage
commit_threshold = 5000000

reth Book https://paradigmxyz.github.io/reth/print.html

34 of 136 10/26/23, 15:08

https://paradigmxyz.github.io/reth/print.html#storage_hashing
https://paradigmxyz.github.io/reth/print.html#storage_hashing
https://paradigmxyz.github.io/reth/print.html#storage_hashing
https://paradigmxyz.github.io/reth/print.html#merkle
https://paradigmxyz.github.io/reth/print.html#merkle
https://paradigmxyz.github.io/reth/print.html#merkle
https://paradigmxyz.github.io/reth/print.html#transaction_lookup
https://paradigmxyz.github.io/reth/print.html#transaction_lookup
https://paradigmxyz.github.io/reth/print.html#transaction_lookup
https://paradigmxyz.github.io/reth/print.html#index_account_history
https://paradigmxyz.github.io/reth/print.html#index_account_history
https://paradigmxyz.github.io/reth/print.html#index_account_history

changed.

index_storage_history

The storage history indexing stage builds an index of what blocks a particular storage slot

changed.

The [peers] section

The peers section is used to configure how the networking component of reth establishes

and maintains connections to peers.

In the top level of the section you can configure trusted nodes, and how often reth will try

to connect to new peers.

connection_info

This section configures how many peers reth will connect to.

[stages.index_account_history]
The maximum amount of blocks to process before writing the results to disk.
#
Lower thresholds correspond to more frequent disk I/O (writes),
but lowers memory usage
commit_threshold = 100000

[stages.index_storage_history]
The maximum amount of blocks to process before writing the results to disk.
#
Lower thresholds correspond to more frequent disk I/O (writes),
but lowers memory usage
commit_threshold = 100000

[peers]
How often reth will attempt to make outgoing connections,
if there is room for more peers
refill_slots_interval = '1s'
A list of ENRs for trusted peers, which are peers reth will always try to
connect to.
trusted_nodes = []
Whether reth will only attempt to connect to the peers specified above,
or if it will connect to other peers in the network
connect_trusted_nodes_only = false
The duration for which a badly behaving peer is banned
ban_duration = '12h'

reth Book https://paradigmxyz.github.io/reth/print.html

35 of 136 10/26/23, 15:08

https://paradigmxyz.github.io/reth/print.html#index_storage_history
https://paradigmxyz.github.io/reth/print.html#index_storage_history
https://paradigmxyz.github.io/reth/print.html#index_storage_history
https://paradigmxyz.github.io/reth/print.html#the-peers-section
https://paradigmxyz.github.io/reth/print.html#the-peers-section
https://paradigmxyz.github.io/reth/print.html#the-peers-section
https://paradigmxyz.github.io/reth/print.html#the-peers-section
https://paradigmxyz.github.io/reth/print.html#the-peers-section
https://paradigmxyz.github.io/reth/print.html#connection_info
https://paradigmxyz.github.io/reth/print.html#connection_info
https://paradigmxyz.github.io/reth/print.html#connection_info

reputation_weights

This section configures the penalty for various offences peers can commit.

All peers start out with a reputation of 0, which increases over time as the peer stays

connected to us.

If the peer misbehaves, various penalties are exacted to their reputation, and if it falls

below a certain threshold (currently 50 * -1024), reth will disconnect and ban the peer

temporarily (except for protocol violations which constitute a permanent ban).

backoff_durations

If reth fails to establish a connection to a peer, it will not re-attempt for some amount of

time, depending on the reason the connection failed.

The [sessions] section

The sessions section configures the internal behavior of a single peer-to-peer connection.

You can configure the session buffer sizes, which limits the amount of pending events

(incoming messages) and commands (outgoing messages) each session can hold before it

[peers.connection_info]
The maximum number of outbound peers (peers we connect to)
max_outbound = 100
The maximum number of inbound peers (peers that connect to us)
max_inbound = 30

[peers.reputation_weights]
bad_message = -16384
bad_block = -16384
bad_transactions = -16384
already_seen_transactions = 0
timeout = -4096
bad_protocol = -2147483648
failed_to_connect = -25600
dropped = -4096

[peers.backoff_durations]
low = '30s'
medium = '3m'
high = '15m'
max = '1h'

reth Book https://paradigmxyz.github.io/reth/print.html

36 of 136 10/26/23, 15:08

https://paradigmxyz.github.io/reth/print.html#reputation_weights
https://paradigmxyz.github.io/reth/print.html#reputation_weights
https://paradigmxyz.github.io/reth/print.html#reputation_weights
https://paradigmxyz.github.io/reth/print.html#backoff_durations
https://paradigmxyz.github.io/reth/print.html#backoff_durations
https://paradigmxyz.github.io/reth/print.html#backoff_durations
https://paradigmxyz.github.io/reth/print.html#the-sessions-section
https://paradigmxyz.github.io/reth/print.html#the-sessions-section
https://paradigmxyz.github.io/reth/print.html#the-sessions-section
https://paradigmxyz.github.io/reth/print.html#the-sessions-section
https://paradigmxyz.github.io/reth/print.html#the-sessions-section

will start to ignore messages.

Note

These buffers are allocated per peer, which means that increasing the buffer sizes

can have large impact on memory consumption.

You can also configure request timeouts:

The [prune] section

The prune section configures the pruning configuration.

You can configure the pruning of different segments of the data independently of others.

For any unspecified segments, the default setting is no pruning.

Default config

No pruning, run as archive node.

Example of the custom pruning configuration

This configuration will:

• Run pruning every 5 blocks

• Continuously prune all transaction senders, account history and storage history

before the block head-100_000 , i.e. keep the data for the last 100_000 blocks

• Prune all receipts before the block 1920000, i.e. keep receipts from the block

[sessions]
session_command_buffer = 32
session_event_buffer = 260

[sessions.initial_internal_request_timeout]
secs = 20
nanos = 0

The amount of time before the peer will be penalized for
being in violation of the protocol. This exacts a permaban on the peer.
[sessions.protocol_breach_request_timeout]
secs = 120
nanos = 0

reth Book https://paradigmxyz.github.io/reth/print.html

37 of 136 10/26/23, 15:08

https://paradigmxyz.github.io/reth/print.html#the-prune-section
https://paradigmxyz.github.io/reth/print.html#the-prune-section
https://paradigmxyz.github.io/reth/print.html#the-prune-section
https://paradigmxyz.github.io/reth/print.html#the-prune-section
https://paradigmxyz.github.io/reth/print.html#the-prune-section
https://paradigmxyz.github.io/reth/print.html#default-config
https://paradigmxyz.github.io/reth/print.html#default-config
https://paradigmxyz.github.io/reth/print.html#example-of-the-custom-pruning-configuration
https://paradigmxyz.github.io/reth/print.html#example-of-the-custom-pruning-configuration

1920000

We can also prune receipts more granular, using the logs filtering:

[prune]
Minimum pruning interval measured in blocks
block_interval = 5

[prune.parts]
Sender Recovery pruning configuration
sender_recovery = { distance = 100_000 } # Prune all transaction senders
before the block `head-128`, i.e. keep transaction senders for the last 129
blocks

Transaction Lookup pruning configuration
transaction_lookup = "full" # Prune all TxNumber => TxHash mappings

Receipts pruning configuration. This setting overrides
`receipts_log_filter`.
receipts = { before = 1920000 } # Prune all receipts from transactions before
the block 1920000, i.e. keep receipts from the block 1920000

Account History pruning configuration
account_history = { distance = 100_000 } # Prune all historical account
states before the block `head-128`

Storage History pruning configuration
storage_history = { distance = 100_000 } # Prune all historical storage
states before the block `head-128`

Receipts pruning configuration by retaining only those receipts that
contain logs emitted
by the specified addresses, discarding all others. This setting is
overridden by `receipts`.
[prune.parts.receipts_log_filter]
Prune all receipts, leaving only those which:
- Contain logs from address `0xa0b86991c6218b36c1d19d4a2e9eb0ce3606eb48`,
starting from the block 17000000
- Contain logs from address `0xdac17f958d2ee523a2206206994597c13d831ec7` in
the last 1001 blocks
"0xa0b86991c6218b36c1d19d4a2e9eb0ce3606eb48" = { before = 17000000 }
"0xdac17f958d2ee523a2206206994597c13d831ec7" = { distance = 1000 }

reth Book https://paradigmxyz.github.io/reth/print.html

38 of 136 10/26/23, 15:08

Transaction types

Over time, the Ethereum network has undergone various upgrades and improvements to

enhance transaction efficiency, security, and user experience. Three significant

transaction types that have evolved are:

• Legacy Transactions,

• EIP-2930 Transactions,

• EIP-1559 Transactions.

Each of these transaction types brings unique features and improvements to the

Ethereum network.

Legacy Transactions

Legacy Transactions (type 0x0), the traditional Ethereum transactions in use since the

network's inception, include the following parameters:

• nonce ,

• gasPrice ,

• gasLimit ,

• to ,

• value ,

• data ,

• v ,

• r ,

• s .

These transactions do not utilize access lists, which specify the addresses and storage

keys to be accessed, nor do they incorporate EIP-1559 fee market changes.

EIP-2930 Transactions

Introduced in EIP-2930, transactions with type 0x1 incorporate an accessList

parameter alongside legacy parameters. This accessList specifies an array of addresses

and storage keys that the transaction plans to access, enabling gas savings on cross-

contract calls by pre-declaring the accessed contract and storage slots. They do not

include EIP-1559 fee market changes.

reth Book https://paradigmxyz.github.io/reth/print.html

39 of 136 10/26/23, 15:08

https://paradigmxyz.github.io/reth/print.html#transaction-types
https://paradigmxyz.github.io/reth/print.html#transaction-types
https://paradigmxyz.github.io/reth/print.html#legacy-transactions
https://paradigmxyz.github.io/reth/print.html#legacy-transactions
https://paradigmxyz.github.io/reth/print.html#eip-2930-transactions
https://paradigmxyz.github.io/reth/print.html#eip-2930-transactions
https://eips.ethereum.org/EIPS/eip-2930
https://eips.ethereum.org/EIPS/eip-2930

EIP-1559 Transactions

EIP-1559 transactions (type 0x2) were introduced in Ethereum's London fork to address

network congestion and transaction fee overpricing caused by the historical fee market.

Unlike traditional transactions, EIP-1559 transactions don't specify a gas price (gasPrice).

Instead, they use an in-protocol, dynamically changing base fee per gas, adjusted at each

block to manage network congestion.

Alongside the accessList parameter and legacy parameters (except gasPrice),

EIP-1559 transactions include:

• maxPriorityFeePerGas , specifying the maximum fee above the base fee the sender

is willing to pay,

• maxFeePerGas , setting the maximum total fee the sender is willing to pay.

The base fee is burned, while the priority fee is paid to the miner who includes the

transaction, incentivizing miners to include transactions with higher priority fees per gas.

reth Book https://paradigmxyz.github.io/reth/print.html

40 of 136 10/26/23, 15:08

https://paradigmxyz.github.io/reth/print.html#eip-1559-transactions
https://paradigmxyz.github.io/reth/print.html#eip-1559-transactions
https://eips.ethereum.org/EIPS/eip-1559
https://eips.ethereum.org/EIPS/eip-1559

Pruning & Full Node

Pruning and full node are new features of Reth, and we will be happy to hear about

your experience using them either on GitHub or in the Telegram group.

By default, Reth runs as an archive node. Such nodes have all historical blocks and the

state at each of these blocks available for querying and tracing.

Reth also supports pruning of historical data and running as a full node. This chapter will

walk through the steps for running Reth as a full node, what caveats to expect and how to

configure your own pruned node.

Basic concepts

• Archive node – Reth node that has all historical data from genesis.

• Pruned node – Reth node that has its historical data pruned partially or fully

through a custom configuration.

• Full Node – Reth node that has the latest state and historical data for only the last

10064 blocks available for querying in the same way as an archive node.

The node type that was chosen when first running a node can not be changed after the

initial sync. Turning Archive into Pruned, or Pruned into Full is not supported.

Modes

Archive Node

Default mode, follow the steps from the previous chapter on how to run on mainnet or

official testnets.

Pruned Node

To run Reth as a pruned node configured through a custom configuration, modify the

reth.toml file and run Reth in the same way as archive node by following the steps from

the previous chapter on how to run on mainnet or official testnets.

reth Book https://paradigmxyz.github.io/reth/print.html

41 of 136 10/26/23, 15:08

https://paradigmxyz.github.io/reth/print.html#pruning--full-node
https://paradigmxyz.github.io/reth/print.html#pruning--full-node
https://github.com/paradigmxyz/reth/issues
https://github.com/paradigmxyz/reth/issues
https://t.me/paradigm_reth
https://t.me/paradigm_reth
https://paradigmxyz.github.io/reth/print.html#basic-concepts
https://paradigmxyz.github.io/reth/print.html#basic-concepts
https://paradigmxyz.github.io/reth/run/config.html#the-prune-section
https://paradigmxyz.github.io/reth/run/config.html#the-prune-section
https://paradigmxyz.github.io/reth/run/run-a-node.html
https://paradigmxyz.github.io/reth/run/run-a-node.html
https://paradigmxyz.github.io/reth/print.html#modes
https://paradigmxyz.github.io/reth/print.html#modes
https://paradigmxyz.github.io/reth/print.html#archive-node
https://paradigmxyz.github.io/reth/print.html#archive-node
https://paradigmxyz.github.io/reth/run/mainnet.html
https://paradigmxyz.github.io/reth/run/mainnet.html
https://paradigmxyz.github.io/reth/run/mainnet.html
https://paradigmxyz.github.io/reth/run/mainnet.html
https://paradigmxyz.github.io/reth/print.html#pruned-node
https://paradigmxyz.github.io/reth/print.html#pruned-node
https://paradigmxyz.github.io/reth/run/config.html#the-prune-section
https://paradigmxyz.github.io/reth/run/config.html#the-prune-section
https://paradigmxyz.github.io/reth/run/mainnet.html
https://paradigmxyz.github.io/reth/run/mainnet.html

Full Node

To run Reth as a full node, follow the steps from the previous chapter on how to run on

mainnet or official testnets, and add a --full flag. For example:

Size

All numbers are as of October 2023 at block number 18.3M for mainnet.

Archive Node

Archive node occupies at least 2.14TB.

You can track the growth of Reth archive node size with our public Grafana dashboard.

Pruned Node

Different segments take up different amounts of disk space. If pruned fully, this is the

total freed space you'll get, per segment:

Segment Size

Sender Recovery 75GB

Transaction Lookup 150GB

Receipts 250GB

Account History 240GB

Storage History 700GB

Full Node

Full node occupies at least 950GB.

Essentially, the full node is the same as following configuration for the pruned node:

RUST_LOG=info reth node \
 --full \
 --authrpc.jwtsecret /path/to/secret \
 --authrpc.addr 127.0.0.1 \
 --authrpc.port 8551

reth Book https://paradigmxyz.github.io/reth/print.html

42 of 136 10/26/23, 15:08

https://paradigmxyz.github.io/reth/print.html#full-node
https://paradigmxyz.github.io/reth/print.html#full-node
https://paradigmxyz.github.io/reth/run/mainnet.html
https://paradigmxyz.github.io/reth/run/mainnet.html
https://paradigmxyz.github.io/reth/run/mainnet.html
https://paradigmxyz.github.io/reth/run/mainnet.html
https://paradigmxyz.github.io/reth/print.html#size
https://paradigmxyz.github.io/reth/print.html#size
https://paradigmxyz.github.io/reth/print.html#archive-node-1
https://paradigmxyz.github.io/reth/print.html#archive-node-1
https://reth.paradigm.xyz/d/2k8BXz24k/reth?orgId=1&refresh=30s&viewPanel=52
https://reth.paradigm.xyz/d/2k8BXz24k/reth?orgId=1&refresh=30s&viewPanel=52
https://paradigmxyz.github.io/reth/print.html#pruned-node-1
https://paradigmxyz.github.io/reth/print.html#pruned-node-1
https://paradigmxyz.github.io/reth/print.html#full-node-1
https://paradigmxyz.github.io/reth/print.html#full-node-1

Meaning, it prunes:

• Account History and Storage History up to the last 10064 blocks

• Sender Recovery up to the last 10064 blocks. The caveat is that it's pruned gradually

after the initial sync is completed, so the disk space is reclaimed slowly.

• Receipts up to the last 10064 blocks, preserving all receipts with the logs from

Beacon Deposit Contract

Given the aforementioned segment sizes, we get the following full node size:

RPC support

As it was mentioned in the pruning configuration chapter, there are several segments

which can be pruned independently of each other:

• Sender Recovery

• Transaction Lookup

• Receipts

• Account History

• Storage History

Pruning of each of these segments disables different RPC methods, because the historical

data or lookup indexes become unavailable.

[prune]
block_interval = 5

[prune.parts]
sender_recovery = { distance = 10_064 }
transaction_lookup is not pruned
receipts = { before = 11052984 } # Beacon Deposit Contract deployment block:
https://etherscan.io
/tx/0xe75fb554e433e03763a1560646ee22dcb74e5274b34c5ad644e7c0f619a7e1d0
account_history = { distance = 10_064 }
storage_history = { distance = 10_064 }

[prune.parts.receipts_log_filter]
Prune all receipts, leaving only those which contain logs from address
`0x00000000219ab540356cbb839cbe05303d7705fa`,
starting from the block 11052984. This leaves receipts with the logs from
the Beacon Deposit Contract.
"0x00000000219ab540356cbb839cbe05303d7705fa" = { before = 11052984 }

Archive Node - Receipts - AccountHistory - StorageHistory = Full Node

2.14TB - 250GB - 240GB - 700GB = 950GB

reth Book https://paradigmxyz.github.io/reth/print.html

43 of 136 10/26/23, 15:08

https://paradigmxyz.github.io/reth/print.html#rpc-support
https://paradigmxyz.github.io/reth/print.html#rpc-support
https://paradigmxyz.github.io/reth/run/config.html#the-prune-section
https://paradigmxyz.github.io/reth/run/config.html#the-prune-section

Full Node

The following tables describe RPC methods available in the full node.

debug namespace

RPC Note

debug_getRawBlock

debug_getRawHeader

debug_getRawReceipts
Only for the last 10064 blocks and Beacon Deposit

Contract

debug_getRawTransaction

debug_traceBlock Only for the last 10064 blocks

debug_traceBlockByHash Only for the last 10064 blocks

debug_traceBlockByNumber Only for the last 10064 blocks

debug_traceCall Only for the last 10064 blocks

debug_traceCallMany Only for the last 10064 blocks

debug_traceTransaction Only for the last 10064 blocks

eth namespace

RPC / Segment Note

eth_accounts

eth_blockNumber

eth_call Only for the last 10064 blocks

eth_chainId

eth_createAccessList Only for the last 10064 blocks

eth_estimateGas Only for the last 10064 blocks

eth_feeHistory

eth_gasPrice

eth_getBalance Only for the last 10064 blocks

eth_getBlockByHash

eth_getBlockByNumber

eth_getBlockReceipts
Only for the last 10064 blocks

and Beacon Deposit Contract

eth_getBlockTransactionCountByHash

reth Book https://paradigmxyz.github.io/reth/print.html

44 of 136 10/26/23, 15:08

https://paradigmxyz.github.io/reth/print.html#full-node-2
https://paradigmxyz.github.io/reth/print.html#full-node-2
https://paradigmxyz.github.io/reth/print.html#debug-namespace
https://paradigmxyz.github.io/reth/print.html#debug-namespace
https://paradigmxyz.github.io/reth/print.html#debug-namespace
https://paradigmxyz.github.io/reth/print.html#debug-namespace
https://paradigmxyz.github.io/reth/print.html#eth-namespace
https://paradigmxyz.github.io/reth/print.html#eth-namespace
https://paradigmxyz.github.io/reth/print.html#eth-namespace
https://paradigmxyz.github.io/reth/print.html#eth-namespace

RPC / Segment Note

eth_getBlockTransactionCountByNumber

eth_getCode

eth_getFilterChanges

eth_getFilterLogs
Only for the last 10064 blocks

and Beacon Deposit Contract

eth_getLogs
Only for the last 10064 blocks

and Beacon Deposit Contract

eth_getStorageAt Only for the last 10064 blocks

eth_getTransactionByBlockHashAndIndex

eth_getTransactionByBlockNumberAndIndex

eth_getTransactionByHash

eth_getTransactionCount Only for the last 10064 blocks

eth_getTransactionReceipt
Only for the last 10064 blocks

and Beacon Deposit Contract

eth_getUncleByBlockHashAndIndex

eth_getUncleByBlockNumberAndIndex

eth_getUncleCountByBlockHash

eth_getUncleCountByBlockNumber

eth_maxPriorityFeePerGas

eth_mining

eth_newBlockFilter

eth_newFilter

eth_newPendingTransactionFilter

eth_protocolVersion

eth_sendRawTransaction

eth_sendTransaction

eth_sign

eth_signTransaction

eth_signTypedData

eth_subscribe

eth_syncing

eth_uninstallFilter

eth_unsubscribe

reth Book https://paradigmxyz.github.io/reth/print.html

45 of 136 10/26/23, 15:08

net namespace

RPC / Segment

net_listening

net_peerCount

net_version

trace namespace

RPC / Segment Note

trace_block Only for the last 10064 blocks

trace_call Only for the last 10064 blocks

trace_callMany Only for the last 10064 blocks

trace_get Only for the last 10064 blocks

trace_rawTransaction Only for the last 10064 blocks

trace_replayBlockTransactions Only for the last 10064 blocks

trace_replayTransaction Only for the last 10064 blocks

trace_transaction Only for the last 10064 blocks

txpool namespace

RPC / Segment

txpool_content

txpool_contentFrom

txpool_inspect

txpool_status

Pruned Node

The following tables describe the requirements for prune segments, per RPC method:

• �� – if the segment is pruned, the RPC method still works

• � - if the segment is pruned, the RPC method doesn't work anymore

debug namespace

RPC / Segment
Sender Transaction

Receipts
Account

reth Book https://paradigmxyz.github.io/reth/print.html

46 of 136 10/26/23, 15:08

https://paradigmxyz.github.io/reth/print.html#net-namespace
https://paradigmxyz.github.io/reth/print.html#net-namespace
https://paradigmxyz.github.io/reth/print.html#net-namespace
https://paradigmxyz.github.io/reth/print.html#net-namespace
https://paradigmxyz.github.io/reth/print.html#trace-namespace
https://paradigmxyz.github.io/reth/print.html#trace-namespace
https://paradigmxyz.github.io/reth/print.html#trace-namespace
https://paradigmxyz.github.io/reth/print.html#trace-namespace
https://paradigmxyz.github.io/reth/print.html#txpool-namespace
https://paradigmxyz.github.io/reth/print.html#txpool-namespace
https://paradigmxyz.github.io/reth/print.html#txpool-namespace
https://paradigmxyz.github.io/reth/print.html#txpool-namespace
https://paradigmxyz.github.io/reth/print.html#pruned-node-2
https://paradigmxyz.github.io/reth/print.html#pruned-node-2
https://paradigmxyz.github.io/reth/print.html#debug-namespace-1
https://paradigmxyz.github.io/reth/print.html#debug-namespace-1
https://paradigmxyz.github.io/reth/print.html#debug-namespace-1
https://paradigmxyz.github.io/reth/print.html#debug-namespace-1

Recovery Lookup History

debug_getRawBlock �� �� �� ��

debug_getRawHeader �� �� �� ��

debug_getRawReceipts �� �� � ��

debug_getRawTransaction �� � �� ��

debug_traceBlock �� �� �� �

debug_traceBlockByHash �� �� �� �

debug_traceBlockByNumber �� �� �� �

debug_traceCall �� �� �� �

debug_traceCallMany �� �� �� �

debug_traceTransaction �� �� �� �

eth namespace

RPC / Segment
Sender

Recovery

Transaction

Lookup
Receipts

eth_accounts �� �� ��

eth_blockNumber �� �� ��

eth_call �� �� ��

eth_chainId �� �� ��

eth_createAccessList �� �� ��

eth_estimateGas �� �� ��

eth_feeHistory �� �� ��

eth_gasPrice �� �� ��

eth_getBalance �� �� ��

eth_getBlockByHash �� �� ��

eth_getBlockByNumber �� �� ��

eth_getBlockReceipts �� �� �

eth_getBlockTransactionCountByHash �� �� ��

eth_getBlockTransactionCountByNumber �� �� ��

eth_getCode �� �� ��

eth_getFilterChanges �� �� ��

eth_getFilterLogs �� �� �

eth_getLogs �� �� �

eth_getStorageAt �� �� ��

reth Book https://paradigmxyz.github.io/reth/print.html

47 of 136 10/26/23, 15:08

https://paradigmxyz.github.io/reth/print.html#eth-namespace-1
https://paradigmxyz.github.io/reth/print.html#eth-namespace-1
https://paradigmxyz.github.io/reth/print.html#eth-namespace-1
https://paradigmxyz.github.io/reth/print.html#eth-namespace-1

RPC / Segment
Sender

Recovery

Transaction

Lookup
Receipts

eth_getTransactionByBlockHashAndIndex �� �� ��

eth_getTransactionByBlockNumberAndIndex �� �� ��

eth_getTransactionByHash �� � ��

eth_getTransactionCount �� �� ��

eth_getTransactionReceipt �� � �

eth_getUncleByBlockHashAndIndex �� �� ��

eth_getUncleByBlockNumberAndIndex �� �� ��

eth_getUncleCountByBlockHash �� �� ��

eth_getUncleCountByBlockNumber �� �� ��

eth_maxPriorityFeePerGas �� �� ��

eth_mining �� �� ��

eth_newBlockFilter �� �� ��

eth_newFilter �� �� ��

eth_newPendingTransactionFilter �� �� ��

eth_protocolVersion �� �� ��

eth_sendRawTransaction �� �� ��

eth_sendTransaction �� �� ��

eth_sign �� �� ��

eth_signTransaction �� �� ��

eth_signTypedData �� �� ��

eth_subscribe �� �� ��

eth_syncing �� �� ��

eth_uninstallFilter �� �� ��

eth_unsubscribe �� �� ��

net namespace

RPC / Segment
Sender

Recovery

Transaction

Lookup
Receipts

Account

History

Storage

History

net_listening �� �� �� �� ��

net_peerCount �� �� �� �� ��

net_version �� �� �� �� ��

trace namespace

reth Book https://paradigmxyz.github.io/reth/print.html

48 of 136 10/26/23, 15:08

https://paradigmxyz.github.io/reth/print.html#net-namespace-1
https://paradigmxyz.github.io/reth/print.html#net-namespace-1
https://paradigmxyz.github.io/reth/print.html#net-namespace-1
https://paradigmxyz.github.io/reth/print.html#net-namespace-1
https://paradigmxyz.github.io/reth/print.html#trace-namespace-1
https://paradigmxyz.github.io/reth/print.html#trace-namespace-1
https://paradigmxyz.github.io/reth/print.html#trace-namespace-1
https://paradigmxyz.github.io/reth/print.html#trace-namespace-1

RPC / Segment
Sender

Recovery

Transaction

Lookup
Receipts

Account

trace_block �� �� �� �

trace_call �� �� �� �

trace_callMany �� �� �� �

trace_get �� � �� �

trace_rawTransaction �� �� �� �

trace_replayBlockTransactions �� �� �� �

trace_replayTransaction �� � �� �

trace_transaction �� � �� �

txpool namespace

RPC / Segment
Sender

Recovery

Transaction

Lookup
Receipts

Account

History

txpool_content �� �� �� ��

txpool_contentFrom �� �� �� ��

txpool_inspect �� �� �� ��

txpool_status �� �� �� ��

reth Book https://paradigmxyz.github.io/reth/print.html

49 of 136 10/26/23, 15:08

https://paradigmxyz.github.io/reth/print.html#txpool-namespace-1
https://paradigmxyz.github.io/reth/print.html#txpool-namespace-1
https://paradigmxyz.github.io/reth/print.html#txpool-namespace-1
https://paradigmxyz.github.io/reth/print.html#txpool-namespace-1

Ports

This section provides essential information about the ports used by the system, their

primary purposes, and recommendations for exposure settings.

Peering Ports

• Port: 30303

• Protocol: TCP and UDP

• Purpose: Peering with other nodes for synchronization of blockchain data. Nodes

communicate through this port to maintain network consensus and share updated

information.

• Exposure Recommendation: This port should be exposed to enable seamless

interaction and synchronization with other nodes in the network.

Metrics Port

• Port: 9001

• Protocol: TCP

• Purpose: This port is designated for serving metrics related to the system's

performance and operation. It allows internal monitoring and data collection for

analysis.

• Exposure Recommendation: By default, this port should not be exposed to the

public. It is intended for internal monitoring and analysis purposes.

HTTP RPC Port

• Port: 8545

• Protocol: TCP

• Purpose: Port 8545 provides an HTTP-based Remote Procedure Call (RPC) interface.

It enables external applications to interact with the blockchain by sending requests

over HTTP.

• Exposure Recommendation: Similar to the metrics port, exposing this port to the

public is not recommended by default due to security considerations.

reth Book https://paradigmxyz.github.io/reth/print.html

50 of 136 10/26/23, 15:08

https://paradigmxyz.github.io/reth/print.html#ports
https://paradigmxyz.github.io/reth/print.html#ports
https://paradigmxyz.github.io/reth/print.html#peering-ports
https://paradigmxyz.github.io/reth/print.html#peering-ports
https://paradigmxyz.github.io/reth/print.html#metrics-port
https://paradigmxyz.github.io/reth/print.html#metrics-port
https://paradigmxyz.github.io/reth/print.html#http-rpc-port
https://paradigmxyz.github.io/reth/print.html#http-rpc-port

WS RPC Port

• Port: 8546

• Protocol: TCP

• Purpose: Port 8546 offers a WebSocket-based Remote Procedure Call (RPC)

interface. It allows real-time communication between external applications and the

blockchain.

• Exposure Recommendation: As with the HTTP RPC port, the WS RPC port should

not be exposed by default for security reasons.

Engine API Port

• Port: 8551

• Protocol: TCP

• Purpose: Port 8551 facilitates communication between specific components, such

as "reth" and "CL" (assuming their definitions are understood within the context of

the system). It enables essential internal processes.

• Exposure Recommendation: This port is not meant to be exposed to the public by

default. It should be reserved for internal communication between vital components

of the system.

reth Book https://paradigmxyz.github.io/reth/print.html

51 of 136 10/26/23, 15:08

https://paradigmxyz.github.io/reth/print.html#ws-rpc-port
https://paradigmxyz.github.io/reth/print.html#ws-rpc-port
https://paradigmxyz.github.io/reth/print.html#engine-api-port
https://paradigmxyz.github.io/reth/print.html#engine-api-port

Troubleshooting

As Reth is still in alpha, while running the node you can experience some problems

related to different parts of the system: pipeline sync, blockchain tree, p2p, database, etc.

This page tries to answer how to deal with the most popular issues.

Database

Database write error

If you encounter an irrecoverable database-related errors, in most of the cases it's related

to the RAM/NVMe/SSD you use. For example:

or

1. Check your memory health: use memtest86+ or memtester. If your memory is

faulty, it's better to resync the node on different hardware.

2. Check database integrity:

If mdbx_chk has detected any errors, please open an issue and post the output from

the mdbx_chk.log file.

Error: A stage encountered an irrecoverable error.

Caused by:
 0: An internal database error occurred: Database write error code: -30796
 1: Database write error code: -30796

Error: A stage encountered an irrecoverable error.

Caused by:
 0: An internal database error occurred: Database read error code: -30797
 1: Database read error code: -30797

git clone https://github.com/paradigmxyz/reth

cd reth

make db-tools

db-tools/mdbx_chk $(reth db path)/mdbx.dat | tee mdbx_chk.log

reth Book https://paradigmxyz.github.io/reth/print.html

52 of 136 10/26/23, 15:08

https://paradigmxyz.github.io/reth/print.html#troubleshooting-2
https://paradigmxyz.github.io/reth/print.html#troubleshooting-2
https://paradigmxyz.github.io/reth/print.html#database
https://paradigmxyz.github.io/reth/print.html#database
https://paradigmxyz.github.io/reth/print.html#database-write-error
https://paradigmxyz.github.io/reth/print.html#database-write-error
https://www.memtest.org/
https://www.memtest.org/
https://linux.die.net/man/8/memtester
https://linux.die.net/man/8/memtester
https://github.com/paradigmxyz/reth/issues
https://github.com/paradigmxyz/reth/issues

JSON-RPC

You can interact with Reth over JSON-RPC. Reth supports all standard Ethereum JSON-

RPC API methods.

JSON-RPC is provided on multiple transports. Reth supports HTTP, WebSocket and IPC

(both UNIX sockets and Windows named pipes). Transports must be enabled through

command-line flags.

The JSON-RPC APIs are grouped into namespaces, depending on their purpose. All

method names are composed of their namespace and their name, separated by an

underscore.

Each namespace must be explicitly enabled.

Namespaces

The methods are grouped into namespaces, which are listed below:

Namespace Description Sensitive

eth The eth API allows you to interact with Ethereum. Maybe

web3
The web3 API provides utility functions for the

web3 client.
No

net
The net API provides access to network

information of the node.
No

txpool
The txpool API allows you to inspect the

transaction pool.
No

debug

The debug API provides several methods to

inspect the Ethereum state, including Geth-style

traces.

No

trace

The trace API provides several methods to

inspect the Ethereum state, including Parity-style

traces.

No

admin The admin API allows you to configure your node. Yes

rpc
The rpc API provides information about the RPC

server and its modules.
No

Note that some APIs are sensitive, since they can be used to configure your node

(admin), or access accounts stored on the node (eth).

Generally, it is advisable to not expose any JSONRPC namespace publicly, unless you

reth Book https://paradigmxyz.github.io/reth/print.html

53 of 136 10/26/23, 15:08

https://paradigmxyz.github.io/reth/print.html#json-rpc
https://paradigmxyz.github.io/reth/print.html#json-rpc
https://paradigmxyz.github.io/reth/print.html#namespaces
https://paradigmxyz.github.io/reth/print.html#namespaces
https://paradigmxyz.github.io/reth/jsonrpc/eth.html
https://paradigmxyz.github.io/reth/jsonrpc/eth.html
https://paradigmxyz.github.io/reth/jsonrpc/eth.html
https://paradigmxyz.github.io/reth/jsonrpc/web3.html
https://paradigmxyz.github.io/reth/jsonrpc/web3.html
https://paradigmxyz.github.io/reth/jsonrpc/web3.html
https://paradigmxyz.github.io/reth/jsonrpc/net.html
https://paradigmxyz.github.io/reth/jsonrpc/net.html
https://paradigmxyz.github.io/reth/jsonrpc/net.html
https://paradigmxyz.github.io/reth/jsonrpc/txpool.html
https://paradigmxyz.github.io/reth/jsonrpc/txpool.html
https://paradigmxyz.github.io/reth/jsonrpc/txpool.html
https://paradigmxyz.github.io/reth/jsonrpc/debug.html
https://paradigmxyz.github.io/reth/jsonrpc/debug.html
https://paradigmxyz.github.io/reth/jsonrpc/debug.html
https://paradigmxyz.github.io/reth/jsonrpc/trace.html
https://paradigmxyz.github.io/reth/jsonrpc/trace.html
https://paradigmxyz.github.io/reth/jsonrpc/trace.html
https://paradigmxyz.github.io/reth/jsonrpc/admin.html
https://paradigmxyz.github.io/reth/jsonrpc/admin.html
https://paradigmxyz.github.io/reth/jsonrpc/admin.html
https://paradigmxyz.github.io/reth/jsonrpc/rpc.html
https://paradigmxyz.github.io/reth/jsonrpc/rpc.html
https://paradigmxyz.github.io/reth/jsonrpc/rpc.html

know what you are doing.

Transports

Reth supports HTTP, WebSockets and IPC.

HTTP

Using the HTTP transport, clients send a request to the server and immediately get a

response back. The connection is closed after the response for a given request is sent.

Because HTTP is unidirectional, subscriptions are not supported.

To start an HTTP server, pass --http to reth node :

The default port is 8545 , and the default listen address is localhost.

You can configure the listen address and port using --http.addr and --http.port

respectively:

To enable JSON-RPC namespaces on the HTTP server, pass each namespace separated by

a comma to --http.api :

You can pass the all option, which is a convenient wrapper for the all the JSON-RPC

namespaces admin,debug,eth,net,trace,txpool,web3,rpc on the HTTP server:

You can also restrict who can access the HTTP server by specifying a domain for Cross-

Origin requests. This is important, since any application local to your node will be able to

access the RPC server:

Alternatively, if you want to allow any domain, you can pass * :

reth node --http

reth node --http --http.addr 127.0.0.1 --http.port 12345

reth node --http --http.api eth,net,trace

reth node --http --http.api all

reth node --http --http.api All

reth node --http --http.corsdomain https://mycoolapp.rs

reth Book https://paradigmxyz.github.io/reth/print.html

54 of 136 10/26/23, 15:08

https://paradigmxyz.github.io/reth/print.html#transports
https://paradigmxyz.github.io/reth/print.html#transports
https://paradigmxyz.github.io/reth/print.html#http
https://paradigmxyz.github.io/reth/print.html#http

WebSockets

WebSockets is a bidirectional transport protocol. Most modern browsers support

WebSockets.

A WebSocket connection is maintained until it is explicitly terminated by either the client

or the node.

Because WebSockets are bidirectional, nodes can push events to clients, which enables

clients to subscribe to specific events, such as new transactions in the transaction pool,

and new logs for smart contracts.

The configuration of the WebSocket server follows the same pattern as the HTTP server:

• Enable it using --ws

• Configure the server address by passing --ws.addr and --ws.port (default 8546)

• Configure cross-origin requests using --ws.origins

• Enable APIs using --ws.api

IPC

IPC is a simpler transport protocol for use in local environments where the node and the

client exist on the same machine.

The IPC transport is enabled by default and has access to all namespaces, unless explicitly

disabled with --ipcdisable .

Reth creates a UNIX socket on Linux and macOS at /tmp/reth.ipc . On Windows, IPC is

provided using named pipes at \\.\pipe\reth.ipc .

You can configure the IPC path using --ipcpath .

Interacting with the RPC

One can easily interact with these APIs just like they would with any Ethereum client.

You can use curl , a programming language with a low-level library, or a tool like Foundry

to interact with the chain at the exposed HTTP or WS port.

As a reminder, you need to run the command below to enable all of these APIs using an

reth node --http --http.corsdomain "*"

reth Book https://paradigmxyz.github.io/reth/print.html

55 of 136 10/26/23, 15:08

https://paradigmxyz.github.io/reth/print.html#websockets
https://paradigmxyz.github.io/reth/print.html#websockets
https://paradigmxyz.github.io/reth/print.html#ipc
https://paradigmxyz.github.io/reth/print.html#ipc
https://paradigmxyz.github.io/reth/print.html#interacting-with-the-rpc
https://paradigmxyz.github.io/reth/print.html#interacting-with-the-rpc

HTTP transport:

This allows you to then call:

RUST_LOG=info reth node --http --http.api
"admin,debug,eth,net,trace,txpool,web3,rpc"

cast block-number
cast rpc admin_nodeInfo
cast rpc debug_traceTransaction
cast rpc trace_replayBlockTransactions

reth Book https://paradigmxyz.github.io/reth/print.html

56 of 136 10/26/23, 15:08

eth Namespace

Documentation for the API methods in the eth namespace can be found on

ethereum.org.

reth Book https://paradigmxyz.github.io/reth/print.html

57 of 136 10/26/23, 15:08

https://paradigmxyz.github.io/reth/print.html#eth-namespace-2
https://paradigmxyz.github.io/reth/print.html#eth-namespace-2
https://paradigmxyz.github.io/reth/print.html#eth-namespace-2
https://paradigmxyz.github.io/reth/print.html#eth-namespace-2
https://ethereum.org/en/developers/docs/apis/json-rpc/
https://ethereum.org/en/developers/docs/apis/json-rpc/

web3 Namespace

The web3 API provides utility functions for the web3 client.

web3_clientVersion

Get the web3 client version.

Client Method invocation

RPC {"method": "web3_clientVersion"}

Example

web3_sha3

Get the Keccak-256 hash of the given data.

Client Method invocation

RPC {"method": "web3_sha3", "params": [bytes]}

Example

// > {"jsonrpc":"2.0","id":1,"method":"web3_clientVersion","params":[]}
{"jsonrpc":"2.0","id":1,"result":"reth/v0.0.1/x86_64-unknown-linux-gnu"}

// > {"jsonrpc":"2.0","id":1,"method":"web3_sha3","params":["rust is
awesome"]}
{"jsonrpc":"2.0","id":1,"result":"0xe421b3428564a5c509ac118bad93a3b84485ec3f927e214b0c4c23076d4b

reth Book https://paradigmxyz.github.io/reth/print.html

58 of 136 10/26/23, 15:08

https://paradigmxyz.github.io/reth/print.html#web3-namespace
https://paradigmxyz.github.io/reth/print.html#web3-namespace
https://paradigmxyz.github.io/reth/print.html#web3-namespace
https://paradigmxyz.github.io/reth/print.html#web3-namespace
https://paradigmxyz.github.io/reth/print.html#web3_clientversion
https://paradigmxyz.github.io/reth/print.html#web3_clientversion
https://paradigmxyz.github.io/reth/print.html#web3_clientversion
https://paradigmxyz.github.io/reth/print.html#example
https://paradigmxyz.github.io/reth/print.html#example
https://paradigmxyz.github.io/reth/print.html#web3_sha3
https://paradigmxyz.github.io/reth/print.html#web3_sha3
https://paradigmxyz.github.io/reth/print.html#web3_sha3
https://paradigmxyz.github.io/reth/print.html#example-1
https://paradigmxyz.github.io/reth/print.html#example-1

net Namespace

The net API provides information about the networking component of the node.

net_listening

Returns a bool indicating whether or not the node is listening for network connections.

Client Method invocation

RPC {"method": "net_listening", "params": []}

Example

net_peerCount

Returns the number of peers connected to the node.

Client Method invocation

RPC {"method": "net_peerCount", "params": []}

Example

net_version

Returns the network ID (e.g. 1 for mainnet)

Client Method invocation

RPC {"method": "net_version", "params": []}

// > {"jsonrpc":"2.0","id":1,"method":"net_listening","params":[]}
{"jsonrpc":"2.0","id":1,"result":true}

// > {"jsonrpc":"2.0","id":1,"method":"net_peerCount","params":[]}
{"jsonrpc":"2.0","id":1,"result":10}

reth Book https://paradigmxyz.github.io/reth/print.html

59 of 136 10/26/23, 15:08

https://paradigmxyz.github.io/reth/print.html#net-namespace-2
https://paradigmxyz.github.io/reth/print.html#net-namespace-2
https://paradigmxyz.github.io/reth/print.html#net-namespace-2
https://paradigmxyz.github.io/reth/print.html#net-namespace-2
https://paradigmxyz.github.io/reth/print.html#net_listening
https://paradigmxyz.github.io/reth/print.html#net_listening
https://paradigmxyz.github.io/reth/print.html#net_listening
https://paradigmxyz.github.io/reth/print.html#example-2
https://paradigmxyz.github.io/reth/print.html#example-2
https://paradigmxyz.github.io/reth/print.html#net_peercount
https://paradigmxyz.github.io/reth/print.html#net_peercount
https://paradigmxyz.github.io/reth/print.html#net_peercount
https://paradigmxyz.github.io/reth/print.html#example-3
https://paradigmxyz.github.io/reth/print.html#example-3
https://paradigmxyz.github.io/reth/print.html#net_version
https://paradigmxyz.github.io/reth/print.html#net_version
https://paradigmxyz.github.io/reth/print.html#net_version

Example

// > {"jsonrpc":"2.0","id":1,"method":"net_version","params":[]}
{"jsonrpc":"2.0","id":1,"result":1}

reth Book https://paradigmxyz.github.io/reth/print.html

60 of 136 10/26/23, 15:08

https://paradigmxyz.github.io/reth/print.html#example-4
https://paradigmxyz.github.io/reth/print.html#example-4

txpool Namespace

The txpool API allows you to inspect the transaction pool.

txpool_content

Returns the details of all transactions currently pending for inclusion in the next block(s),

as well as the ones that are being scheduled for future execution only.

See here for more details

Client Method invocation

RPC {"method": "txpool_content", "params": []}

txpool_contentFrom

Retrieves the transactions contained within the txpool, returning pending as well as

queued transactions of this address, grouped by nonce.

See here for more details

Client Method invocation

RPC {"method": "txpool_contentFrom", "params": [address]}

txpool_inspect

Returns a summary of all the transactions currently pending for inclusion in the next

block(s), as well as the ones that are being scheduled for future execution only.

See here for more details

Client Method invocation

RPC {"method": "txpool_inspect", "params": []}

txpool_status

reth Book https://paradigmxyz.github.io/reth/print.html

61 of 136 10/26/23, 15:08

https://paradigmxyz.github.io/reth/print.html#txpool-namespace-2
https://paradigmxyz.github.io/reth/print.html#txpool-namespace-2
https://paradigmxyz.github.io/reth/print.html#txpool-namespace-2
https://paradigmxyz.github.io/reth/print.html#txpool-namespace-2
https://paradigmxyz.github.io/reth/print.html#txpool_content
https://paradigmxyz.github.io/reth/print.html#txpool_content
https://paradigmxyz.github.io/reth/print.html#txpool_content
https://geth.ethereum.org/docs/rpc/ns-txpool#txpool_content
https://geth.ethereum.org/docs/rpc/ns-txpool#txpool_content
https://paradigmxyz.github.io/reth/print.html#txpool_contentfrom
https://paradigmxyz.github.io/reth/print.html#txpool_contentfrom
https://paradigmxyz.github.io/reth/print.html#txpool_contentfrom
https://geth.ethereum.org/docs/rpc/ns-txpool#txpool_contentFrom
https://geth.ethereum.org/docs/rpc/ns-txpool#txpool_contentFrom
https://paradigmxyz.github.io/reth/print.html#txpool_inspect
https://paradigmxyz.github.io/reth/print.html#txpool_inspect
https://paradigmxyz.github.io/reth/print.html#txpool_inspect
https://geth.ethereum.org/docs/rpc/ns-txpool#txpool_inspect
https://geth.ethereum.org/docs/rpc/ns-txpool#txpool_inspect
https://paradigmxyz.github.io/reth/print.html#txpool_status
https://paradigmxyz.github.io/reth/print.html#txpool_status
https://paradigmxyz.github.io/reth/print.html#txpool_status

Returns the number of transactions currently pending for inclusion in the next block(s), as

well as the ones that are being scheduled for future execution only.

See here for more details

Client Method invocation

RPC {"method": "txpool_status", "params": []}

reth Book https://paradigmxyz.github.io/reth/print.html

62 of 136 10/26/23, 15:08

https://geth.ethereum.org/docs/rpc/ns-txpool#txpool_status
https://geth.ethereum.org/docs/rpc/ns-txpool#txpool_status

debug Namespace

The debug API provides several methods to inspect the Ethereum state, including Geth-

style traces.

debug_getRawHeader

Returns an RLP-encoded header.

Client Method invocation

RPC {"method": "debug_getRawHeader", "params": [block]}

debug_getRawBlock

Retrieves and returns the RLP encoded block by number, hash or tag.

Client Method invocation

RPC {"method": "debug_getRawBlock", "params": [block]}

debug_getRawTransaction

Returns an EIP-2718 binary-encoded transaction.

Client Method invocation

RPC {"method": "debug_getRawTransaction", "params": [tx_hash]}

debug_getRawReceipts

Returns an array of EIP-2718 binary-encoded receipts.

Client Method invocation

RPC {"method": "debug_getRawReceipts", "params": [block]}

reth Book https://paradigmxyz.github.io/reth/print.html

63 of 136 10/26/23, 15:08

https://paradigmxyz.github.io/reth/print.html#debug-namespace-2
https://paradigmxyz.github.io/reth/print.html#debug-namespace-2
https://paradigmxyz.github.io/reth/print.html#debug-namespace-2
https://paradigmxyz.github.io/reth/print.html#debug-namespace-2
https://paradigmxyz.github.io/reth/print.html#debug_getrawheader
https://paradigmxyz.github.io/reth/print.html#debug_getrawheader
https://paradigmxyz.github.io/reth/print.html#debug_getrawheader
https://paradigmxyz.github.io/reth/print.html#debug_getrawblock
https://paradigmxyz.github.io/reth/print.html#debug_getrawblock
https://paradigmxyz.github.io/reth/print.html#debug_getrawblock
https://paradigmxyz.github.io/reth/print.html#debug_getrawtransaction
https://paradigmxyz.github.io/reth/print.html#debug_getrawtransaction
https://paradigmxyz.github.io/reth/print.html#debug_getrawtransaction
https://paradigmxyz.github.io/reth/print.html#debug_getrawreceipts
https://paradigmxyz.github.io/reth/print.html#debug_getrawreceipts
https://paradigmxyz.github.io/reth/print.html#debug_getrawreceipts

debug_getBadBlocks

Returns an array of recent bad blocks that the client has seen on the network.

Client Method invocation

RPC {"method": "debug_getBadBlocks", "params": []}

debug_traceChain

Returns the structured logs created during the execution of EVM between two blocks

(excluding start) as a JSON object.

Client Method invocation

RPC
{"method": "debug_traceChain", "params": [start_block,

end_block]}

debug_traceBlock

The debug_traceBlock method will return a full stack trace of all invoked opcodes of all

transaction that were included in this block.

This expects an RLP-encoded block.

Note

The parent of this block must be present, or it will fail.

Client Method invocation

RPC {"method": "debug_traceBlock", "params": [rlp, opts]}

debug_traceBlockByHash

Similar to debug_traceBlock , debug_traceBlockByHash accepts a block hash and will

replay the block that is already present in the database.

Client Method invocation

reth Book https://paradigmxyz.github.io/reth/print.html

64 of 136 10/26/23, 15:08

https://paradigmxyz.github.io/reth/print.html#debug_getbadblocks
https://paradigmxyz.github.io/reth/print.html#debug_getbadblocks
https://paradigmxyz.github.io/reth/print.html#debug_getbadblocks
https://paradigmxyz.github.io/reth/print.html#debug_tracechain
https://paradigmxyz.github.io/reth/print.html#debug_tracechain
https://paradigmxyz.github.io/reth/print.html#debug_tracechain
https://paradigmxyz.github.io/reth/print.html#debug_traceblock
https://paradigmxyz.github.io/reth/print.html#debug_traceblock
https://paradigmxyz.github.io/reth/print.html#debug_traceblock
https://paradigmxyz.github.io/reth/print.html#debug_traceblockbyhash
https://paradigmxyz.github.io/reth/print.html#debug_traceblockbyhash
https://paradigmxyz.github.io/reth/print.html#debug_traceblockbyhash
https://paradigmxyz.github.io/reth/jsonrpc/debug.html#debug_traceblock
https://paradigmxyz.github.io/reth/jsonrpc/debug.html#debug_traceblock
https://paradigmxyz.github.io/reth/jsonrpc/debug.html#debug_traceblock

Client Method invocation

RPC
{"method": "debug_traceBlockByHash", "params": [block_hash,

opts]}

debug_traceBlockByNumber

Similar to debug_traceBlockByHash , debug_traceBlockByNumber accepts a block number

and will replay the block that is already present in the database.

Client Method invocation

RPC
{"method": "debug_traceBlockByNumber", "params": [block_number,

opts]}

debug_traceTransaction

The debug_traceTransaction debugging method will attempt to run the transaction in

the exact same manner as it was executed on the network. It will replay any transaction

that may have been executed prior to this one before it will finally attempt to execute the

transaction that corresponds to the given hash.

Client Method invocation

RPC {"method": "debug_traceTransaction", "params": [tx_hash, opts]}

debug_traceCall

The debug_traceCall method lets you run an eth_call within the context of the given

block execution using the final state of parent block as the base.

The first argument (just as in eth_call) is a transaction request.

The block can optionally be specified either by hash or by number as the second

argument.

Client Method invocation

RPC
{"method": "debug_traceCall", "params": [call, block_number,

opts]}

reth Book https://paradigmxyz.github.io/reth/print.html

65 of 136 10/26/23, 15:08

https://paradigmxyz.github.io/reth/print.html#debug_traceblockbynumber
https://paradigmxyz.github.io/reth/print.html#debug_traceblockbynumber
https://paradigmxyz.github.io/reth/print.html#debug_traceblockbynumber
https://paradigmxyz.github.io/reth/jsonrpc/debug.html#debug_traceblockbyhash
https://paradigmxyz.github.io/reth/jsonrpc/debug.html#debug_traceblockbyhash
https://paradigmxyz.github.io/reth/jsonrpc/debug.html#debug_traceblockbyhash
https://paradigmxyz.github.io/reth/print.html#debug_tracetransaction
https://paradigmxyz.github.io/reth/print.html#debug_tracetransaction
https://paradigmxyz.github.io/reth/print.html#debug_tracetransaction
https://paradigmxyz.github.io/reth/print.html#debug_tracecall
https://paradigmxyz.github.io/reth/print.html#debug_tracecall
https://paradigmxyz.github.io/reth/print.html#debug_tracecall

trace Namespace

The trace API provides several methods to inspect the Ethereum state, including Parity-

style traces.

A similar module exists (with other debug functions) with Geth-style traces (debug).

The trace API gives deeper insight into transaction processing.

There are two types of methods in this API:

• Ad-hoc tracing APIs for performing diagnostics on calls or transactions (historical

or hypothetical).

• Transaction-trace filtering APIs for getting full externality traces on any

transaction executed by reth.

Ad-hoc tracing APIs

Ad-hoc tracing APIs allow you to perform diagnostics on calls or transactions (historical or

hypothetical), including:

• Transaction traces (trace)

• VM traces (vmTrace)

• State difference traces (stateDiff)

The ad-hoc tracing APIs are:

• trace_call

• trace_callMany

• trace_rawTransaction

• trace_replayBlockTransactions

• trace_replayTransaction

Transaction-trace filtering APIs

Transaction trace filtering APIs are similar to log filtering APIs in the eth namespace,

except these allow you to search and filter based only upon address information.

Information returned includes the execution of all contract creations, destructions, and

calls, together with their input data, output data, gas usage, transfer amounts and

success statuses.

reth Book https://paradigmxyz.github.io/reth/print.html

66 of 136 10/26/23, 15:08

https://paradigmxyz.github.io/reth/print.html#trace-namespace-2
https://paradigmxyz.github.io/reth/print.html#trace-namespace-2
https://paradigmxyz.github.io/reth/print.html#trace-namespace-2
https://paradigmxyz.github.io/reth/print.html#trace-namespace-2
https://paradigmxyz.github.io/reth/jsonrpc/debug.html
https://paradigmxyz.github.io/reth/jsonrpc/debug.html
https://paradigmxyz.github.io/reth/jsonrpc/debug.html
https://paradigmxyz.github.io/reth/print.html#ad-hoc-tracing-apis
https://paradigmxyz.github.io/reth/print.html#ad-hoc-tracing-apis
https://paradigmxyz.github.io/reth/jsonrpc/trace.html#trace_call
https://paradigmxyz.github.io/reth/jsonrpc/trace.html#trace_call
https://paradigmxyz.github.io/reth/jsonrpc/trace.html#trace_call
https://paradigmxyz.github.io/reth/jsonrpc/trace.html#trace_callmany
https://paradigmxyz.github.io/reth/jsonrpc/trace.html#trace_callmany
https://paradigmxyz.github.io/reth/jsonrpc/trace.html#trace_callmany
https://paradigmxyz.github.io/reth/jsonrpc/trace.html#trace_rawtransaction
https://paradigmxyz.github.io/reth/jsonrpc/trace.html#trace_rawtransaction
https://paradigmxyz.github.io/reth/jsonrpc/trace.html#trace_rawtransaction
https://paradigmxyz.github.io/reth/jsonrpc/trace.html#trace_replayblocktransactions
https://paradigmxyz.github.io/reth/jsonrpc/trace.html#trace_replayblocktransactions
https://paradigmxyz.github.io/reth/jsonrpc/trace.html#trace_replayblocktransactions
https://paradigmxyz.github.io/reth/jsonrpc/trace.html#trace_replaytransaction
https://paradigmxyz.github.io/reth/jsonrpc/trace.html#trace_replaytransaction
https://paradigmxyz.github.io/reth/jsonrpc/trace.html#trace_replaytransaction
https://paradigmxyz.github.io/reth/print.html#transaction-trace-filtering-apis
https://paradigmxyz.github.io/reth/print.html#transaction-trace-filtering-apis

The transaction trace filtering APIs are:

• trace_block

• trace_filter

• trace_get

• trace_transaction

trace_call

Executes the given call and returns a number of possible traces for it.

The first parameter is a transaction object where the from field is optional and the

nonce field is ommitted.

The second parameter is an array of one or more trace types (vmTrace , trace ,

stateDiff).

The third and optional parameter is a block number, block hash, or a block tag (latest ,

finalized , safe , earliest , pending).

Client Method invocation

RPC {"method": "trace_call", "params": [tx, type[], block]}

Example

// > {"jsonrpc":"2.0","id":1,"method":"trace_call","params":[{},["trace"]}
{

"id": 1,
"jsonrpc": "2.0",
"result": {

"output": "0x",
"stateDiff": null,
"trace": [{

"action": { ... },
"result": {

"gasUsed": "0x0",
"output": "0x"

 },
"subtraces": 0,
"traceAddress": [],
"type": "call"

 }],
"vmTrace": null

 }
}

reth Book https://paradigmxyz.github.io/reth/print.html

67 of 136 10/26/23, 15:08

https://paradigmxyz.github.io/reth/jsonrpc/trace.html#trace_block
https://paradigmxyz.github.io/reth/jsonrpc/trace.html#trace_block
https://paradigmxyz.github.io/reth/jsonrpc/trace.html#trace_block
https://paradigmxyz.github.io/reth/jsonrpc/trace.html#trace_filter
https://paradigmxyz.github.io/reth/jsonrpc/trace.html#trace_filter
https://paradigmxyz.github.io/reth/jsonrpc/trace.html#trace_filter
https://paradigmxyz.github.io/reth/jsonrpc/trace.html#trace_get
https://paradigmxyz.github.io/reth/jsonrpc/trace.html#trace_get
https://paradigmxyz.github.io/reth/jsonrpc/trace.html#trace_get
https://paradigmxyz.github.io/reth/jsonrpc/trace.html#trace_transaction
https://paradigmxyz.github.io/reth/jsonrpc/trace.html#trace_transaction
https://paradigmxyz.github.io/reth/jsonrpc/trace.html#trace_transaction
https://paradigmxyz.github.io/reth/print.html#trace_call
https://paradigmxyz.github.io/reth/print.html#trace_call
https://paradigmxyz.github.io/reth/print.html#trace_call
https://paradigmxyz.github.io/reth/print.html#example-5
https://paradigmxyz.github.io/reth/print.html#example-5

trace_callMany

Performs multiple call traces on top of the same block, that is, transaction n will be

executed on top of a pending block with all n - 1 transaction applied (and traced) first.

The first parameter is a list of call traces, where each call trace is of the form [tx,

type[]] (see trace_call).

The second and optional parameter is a block number, block hash, or a block tag

(latest , finalized , safe , earliest , pending).

Client Method invocation

RPC {"method": "trace_call", "params": [trace[], block]}

Example

reth Book https://paradigmxyz.github.io/reth/print.html

68 of 136 10/26/23, 15:08

https://paradigmxyz.github.io/reth/print.html#trace_callmany
https://paradigmxyz.github.io/reth/print.html#trace_callmany
https://paradigmxyz.github.io/reth/print.html#trace_callmany
https://paradigmxyz.github.io/reth/jsonrpc/trace.html#trace_call
https://paradigmxyz.github.io/reth/jsonrpc/trace.html#trace_call
https://paradigmxyz.github.io/reth/jsonrpc/trace.html#trace_call
https://paradigmxyz.github.io/reth/print.html#example-6
https://paradigmxyz.github.io/reth/print.html#example-6

// > {"jsonrpc":"2.0","id":1,"method":"trace_callMany","params":
[[[{"from":"0x407d73d8a49eeb85d32cf465507dd71d507100c1","to":"0xa94f5374fce5edbc8e2a8697c15331677e6e
["trace"]],
[{"from":"0x407d73d8a49eeb85d32cf465507dd71d507100c1","to":"0xa94f5374fce5edbc8e2a8697c15331677e6ebf
["trace"]]],"latest"]}
{

"id": 1,
"jsonrpc": "2.0",
"result": [

 {
"output": "0x",
"stateDiff": null,
"trace": [{

"action": {
"callType": "call",
"from": "0x407d73d8a49eeb85d32cf465507dd71d507100c1",
"gas": "0x1dcd12f8",
"input": "0x",
"to": "0xa94f5374fce5edbc8e2a8697c15331677e6ebf0b",
"value": "0x186a0"

 },
"result": {

"gasUsed": "0x0",
"output": "0x"

 },
"subtraces": 0,
"traceAddress": [],
"type": "call"

 }],
"vmTrace": null

 },
 {

"output": "0x",
"stateDiff": null,
"trace": [{

"action": {
"callType": "call",
"from": "0x407d73d8a49eeb85d32cf465507dd71d507100c1",
"gas": "0x1dcd12f8",
"input": "0x",
"to": "0xa94f5374fce5edbc8e2a8697c15331677e6ebf0b",
"value": "0x186a0"

 },
"result": {

"gasUsed": "0x0",
"output": "0x"

 },
"subtraces": 0,
"traceAddress": [],
"type": "call"

 }],
"vmTrace": null

 }
]
}

reth Book https://paradigmxyz.github.io/reth/print.html

69 of 136 10/26/23, 15:08

trace_rawTransaction

Traces a call to eth_sendRawTransaction without making the call, returning the traces.

Client Method invocation

RPC {"method": "trace_call", "params": [raw_tx, type[]]}

Example

trace_replayBlockTransactions

Replays all transactions in a block returning the requested traces for each transaction.

Client Method invocation

RPC
{"method": "trace_replayBlockTransactions", "params": [block,

type[]]}

Example

// > {"jsonrpc":"2.0","id":1,"method":"trace_rawTransaction","params":
["0xd46e8dd67c5d32be8d46e8dd67c5d32be8058bb8eb970870f072445675058bb8eb970870f072445675",
["trace"]]}
{

"id": 1,
"jsonrpc": "2.0",
"result": {

"output": "0x",
"stateDiff": null,
"trace": [{
"action": { ... },
"result": {

"gasUsed": "0x0",
"output": "0x"

 },
"subtraces": 0,
"traceAddress": [],
"type": "call"

 }],
"vmTrace": null

 }
}

reth Book https://paradigmxyz.github.io/reth/print.html

70 of 136 10/26/23, 15:08

https://paradigmxyz.github.io/reth/print.html#trace_rawtransaction
https://paradigmxyz.github.io/reth/print.html#trace_rawtransaction
https://paradigmxyz.github.io/reth/print.html#trace_rawtransaction
https://paradigmxyz.github.io/reth/print.html#example-7
https://paradigmxyz.github.io/reth/print.html#example-7
https://paradigmxyz.github.io/reth/print.html#trace_replayblocktransactions
https://paradigmxyz.github.io/reth/print.html#trace_replayblocktransactions
https://paradigmxyz.github.io/reth/print.html#trace_replayblocktransactions
https://paradigmxyz.github.io/reth/print.html#example-8
https://paradigmxyz.github.io/reth/print.html#example-8

trace_replayTransaction

Replays a transaction, returning the traces.

Client Method invocation

RPC
{"method": "trace_replayTransaction", "params": [tx_hash,

type[]]}

Example

// >
{"jsonrpc":"2.0","id":1,"method":"trace_replayBlockTransactions","params":
["0x2ed119",["trace"]]}
{

"id": 1,
"jsonrpc": "2.0",
"result": [

 {
"output": "0x",
"stateDiff": null,
"trace": [{

"action": { ... },
"result": {

"gasUsed": "0x0",
"output": "0x"

 },
"subtraces": 0,
"traceAddress": [],
"type": "call"

 }],
"transactionHash": "0x...",
"vmTrace": null

 },
 { ... }
]
}

reth Book https://paradigmxyz.github.io/reth/print.html

71 of 136 10/26/23, 15:08

https://paradigmxyz.github.io/reth/print.html#trace_replaytransaction
https://paradigmxyz.github.io/reth/print.html#trace_replaytransaction
https://paradigmxyz.github.io/reth/print.html#trace_replaytransaction
https://paradigmxyz.github.io/reth/print.html#example-9
https://paradigmxyz.github.io/reth/print.html#example-9

trace_block

Returns traces created at given block.

Client Method invocation

RPC {"method": "trace_block", "params": [block]}

Example

// > {"jsonrpc":"2.0","id":1,"method":"trace_replayTransaction","params":
["0x02d4a872e096445e80d05276ee756cefef7f3b376bcec14246469c0cd97dad8f",
["trace"]]}
{

"id": 1,
"jsonrpc": "2.0",
"result": {

"output": "0x",
"stateDiff": null,
"trace": [{

"action": { ... },
"result": {

"gasUsed": "0x0",
"output": "0x"

 },
"subtraces": 0,
"traceAddress": [],
"type": "call"

 }],
"vmTrace": null

 }
}

reth Book https://paradigmxyz.github.io/reth/print.html

72 of 136 10/26/23, 15:08

https://paradigmxyz.github.io/reth/print.html#trace_block
https://paradigmxyz.github.io/reth/print.html#trace_block
https://paradigmxyz.github.io/reth/print.html#trace_block
https://paradigmxyz.github.io/reth/print.html#example-10
https://paradigmxyz.github.io/reth/print.html#example-10

trace_filter

Returns traces matching given filter.

Filters are objects with the following properties:

• fromBlock : Returns traces from the given block (a number, hash, or a tag like

latest).

• toBlock : Returns traces to the given block.

• fromAddress : Sent from these addresses

• toAddress : Sent to these addresses

• after : The offset trace number

• count : The number of traces to display in a batch

All properties are optional.

Client Method invocation

// > {"jsonrpc":"2.0","id":1,"method":"trace_block","params":["0x2ed119"]}
{

"id": 1,
"jsonrpc": "2.0",
"result": [

 {
"action": {

"callType": "call",
"from": "0xaa7b131dc60b80d3cf5e59b5a21a666aa039c951",
"gas": "0x0",
"input": "0x",
"to": "0xd40aba8166a212d6892125f079c33e6f5ca19814",
"value": "0x4768d7effc3fbe"

 },
"blockHash":

"0x7eb25504e4c202cf3d62fd585d3e238f592c780cca82dacb2ed3cb5b38883add",
"blockNumber": 3068185,
"result": {

"gasUsed": "0x0",
"output": "0x"

 },
"subtraces": 0,
"traceAddress": [],
"transactionHash":

"0x07da28d752aba3b9dd7060005e554719c6205c8a3aea358599fc9b245c52f1f6",
"transactionPosition": 0,
"type": "call"

 },
 ...
]
}

reth Book https://paradigmxyz.github.io/reth/print.html

73 of 136 10/26/23, 15:08

https://paradigmxyz.github.io/reth/print.html#trace_filter
https://paradigmxyz.github.io/reth/print.html#trace_filter
https://paradigmxyz.github.io/reth/print.html#trace_filter

Client Method invocation

RPC {"method": "trace_filter", "params": [filter]}

Example

trace_get

Returns trace at given position.

Client Method invocation

RPC {"method": "trace_get", "params": [tx_hash,indices[]]}

// > {"jsonrpc":"2.0","id":1,"method":"trace_filter","params":
[{"fromBlock":"0x2ed0c4","toBlock":"0x2ed128","toAddress":
["0x8bbB73BCB5d553B5A556358d27625323Fd781D37"],"after":1000,"count":100}]}
{

"id": 1,
"jsonrpc": "2.0",
"result": [

 {
"action": {

"callType": "call",
"from": "0x32be343b94f860124dc4fee278fdcbd38c102d88",
"gas": "0x4c40d",
"input": "0x",
"to": "0x8bbb73bcb5d553b5a556358d27625323fd781d37",
"value": "0x3f0650ec47fd240000"

 },
"blockHash":

"0x86df301bcdd8248d982dbf039f09faf792684e1aeee99d5b58b77d620008b80f",
"blockNumber": 3068183,
"result": {

"gasUsed": "0x0",
"output": "0x"

 },
"subtraces": 0,
"traceAddress": [],
"transactionHash":

"0x3321a7708b1083130bd78da0d62ead9f6683033231617c9d268e2c7e3fa6c104",
"transactionPosition": 3,
"type": "call"

 },
 ...
]
}

reth Book https://paradigmxyz.github.io/reth/print.html

74 of 136 10/26/23, 15:08

https://paradigmxyz.github.io/reth/print.html#example-11
https://paradigmxyz.github.io/reth/print.html#example-11
https://paradigmxyz.github.io/reth/print.html#trace_get
https://paradigmxyz.github.io/reth/print.html#trace_get
https://paradigmxyz.github.io/reth/print.html#trace_get

Example

trace_transaction

Returns all traces of given transaction

Client Method invocation

RPC {"method": "trace_transaction", "params": [tx_hash]}

Example

// > {"jsonrpc":"2.0","id":1,"method":"trace_get","params":
["0x17104ac9d3312d8c136b7f44d4b8b47852618065ebfa534bd2d3b5ef218ca1f3",
["0x0"]]}
{

"id": 1,
"jsonrpc": "2.0",
"result": {

"action": {
"callType": "call",
"from": "0x1c39ba39e4735cb65978d4db400ddd70a72dc750",
"gas": "0x13e99",
"input": "0x16c72721",
"to": "0x2bd2326c993dfaef84f696526064ff22eba5b362",
"value": "0x0"

 },
"blockHash":

"0x7eb25504e4c202cf3d62fd585d3e238f592c780cca82dacb2ed3cb5b38883add",
"blockNumber": 3068185,
"result": {
"gasUsed": "0x183",
"output":

"0x0001"
 },

"subtraces": 0,
"traceAddress": [
0

],
"transactionHash":

"0x17104ac9d3312d8c136b7f44d4b8b47852618065ebfa534bd2d3b5ef218ca1f3",
"transactionPosition": 2,
"type": "call"

 }
}

reth Book https://paradigmxyz.github.io/reth/print.html

75 of 136 10/26/23, 15:08

https://paradigmxyz.github.io/reth/print.html#example-12
https://paradigmxyz.github.io/reth/print.html#example-12
https://paradigmxyz.github.io/reth/print.html#trace_transaction
https://paradigmxyz.github.io/reth/print.html#trace_transaction
https://paradigmxyz.github.io/reth/print.html#trace_transaction
https://paradigmxyz.github.io/reth/print.html#example-13
https://paradigmxyz.github.io/reth/print.html#example-13

// > {"jsonrpc":"2.0","id":1,"method":"trace_transaction","params":
["0x17104ac9d3312d8c136b7f44d4b8b47852618065ebfa534bd2d3b5ef218ca1f3"]}
{

"id": 1,
"jsonrpc": "2.0",
"result": [

 {
"action": {

"callType": "call",
"from": "0x1c39ba39e4735cb65978d4db400ddd70a72dc750",
"gas": "0x13e99",
"input": "0x16c72721",
"to": "0x2bd2326c993dfaef84f696526064ff22eba5b362",
"value": "0x0"

 },
"blockHash":

"0x7eb25504e4c202cf3d62fd585d3e238f592c780cca82dacb2ed3cb5b38883add",
"blockNumber": 3068185,
"result": {

"gasUsed": "0x183",
"output":

"0x0001"
 },

"subtraces": 0,
"traceAddress": [

0
],

"transactionHash":
"0x17104ac9d3312d8c136b7f44d4b8b47852618065ebfa534bd2d3b5ef218ca1f3",

"transactionPosition": 2,
"type": "call"

 },
 ...
]
}

reth Book https://paradigmxyz.github.io/reth/print.html

76 of 136 10/26/23, 15:08

admin Namespace

The admin API allows you to configure your node, including adding and removing peers.

Note

As this namespace can configure your node at runtime, it is generally not advised

to expose it publicly.

admin_addPeer

Add the given peer to the current peer set of the node.

The method accepts a single argument, the enode URL of the remote peer to connect to,

and returns a bool indicating whether the peer was accepted or not.

Client Method invocation

RPC {"method": "admin_addPeer", "params": [url]}

Example

admin_removePeer

Disconnects from a peer if the connection exists. Returns a bool indicating whether the

peer was successfully removed or not.

Client Method invocation

RPC {"method": "admin_removePeer", "params": [url]}

Example

// > {"jsonrpc":"2.0","id":1,"method":"admin_addPeer","params":
["enode://a979fb575495b8d6db44f750317d0f4622bf4c2aa3365d6af7c284339968eef29b69ad0dce72a4d8db5ebb4968
{"jsonrpc":"2.0","id":1,"result":true}

reth Book https://paradigmxyz.github.io/reth/print.html

77 of 136 10/26/23, 15:08

https://paradigmxyz.github.io/reth/print.html#admin-namespace
https://paradigmxyz.github.io/reth/print.html#admin-namespace
https://paradigmxyz.github.io/reth/print.html#admin-namespace
https://paradigmxyz.github.io/reth/print.html#admin-namespace
https://paradigmxyz.github.io/reth/print.html#admin_addpeer
https://paradigmxyz.github.io/reth/print.html#admin_addpeer
https://paradigmxyz.github.io/reth/print.html#admin_addpeer
https://ethereum.org/en/developers/docs/networking-layer/network-addresses/#enode
https://ethereum.org/en/developers/docs/networking-layer/network-addresses/#enode
https://ethereum.org/en/developers/docs/networking-layer/network-addresses/#enode
https://paradigmxyz.github.io/reth/print.html#example-14
https://paradigmxyz.github.io/reth/print.html#example-14
https://paradigmxyz.github.io/reth/print.html#admin_removepeer
https://paradigmxyz.github.io/reth/print.html#admin_removepeer
https://paradigmxyz.github.io/reth/print.html#admin_removepeer
https://paradigmxyz.github.io/reth/print.html#example-15
https://paradigmxyz.github.io/reth/print.html#example-15

admin_addTrustedPeer

Adds the given peer to a list of trusted peers, which allows the peer to always connect,

even if there would be no room for it otherwise.

It returns a bool indicating whether the peer was added to the list or not.

Client Method invocation

RPC {"method": "admin_addTrustedPeer", "params": [url]}

Example

admin_removeTrustedPeer

Removes a remote node from the trusted peer set, but it does not disconnect it

automatically.

Returns true if the peer was successfully removed.

Client Method invocation

RPC {"method": "admin_removeTrustedPeer", "params": [url]}

Example

// > {"jsonrpc":"2.0","id":1,"method":"admin_removePeer","params":
["enode://a979fb575495b8d6db44f750317d0f4622bf4c2aa3365d6af7c284339968eef29b69ad0dce72a4d8db5ebb4968
{"jsonrpc":"2.0","id":1,"result":true}

// > {"jsonrpc":"2.0","id":1,"method":"admin_addTrustedPeer","params":
["enode://a979fb575495b8d6db44f750317d0f4622bf4c2aa3365d6af7c284339968eef29b69ad0dce72a4d8db5ebb4968
{"jsonrpc":"2.0","id":1,"result":true}

// > {"jsonrpc":"2.0","id":1,"method":"admin_removeTrustedPeer","params":
["enode://a979fb575495b8d6db44f750317d0f4622bf4c2aa3365d6af7c284339968eef29b69ad0dce72a4d8db5ebb4968
{"jsonrpc":"2.0","id":1,"result":true}

reth Book https://paradigmxyz.github.io/reth/print.html

78 of 136 10/26/23, 15:08

https://paradigmxyz.github.io/reth/print.html#admin_addtrustedpeer
https://paradigmxyz.github.io/reth/print.html#admin_addtrustedpeer
https://paradigmxyz.github.io/reth/print.html#admin_addtrustedpeer
https://paradigmxyz.github.io/reth/print.html#example-16
https://paradigmxyz.github.io/reth/print.html#example-16
https://paradigmxyz.github.io/reth/print.html#admin_removetrustedpeer
https://paradigmxyz.github.io/reth/print.html#admin_removetrustedpeer
https://paradigmxyz.github.io/reth/print.html#admin_removetrustedpeer
https://paradigmxyz.github.io/reth/print.html#example-17
https://paradigmxyz.github.io/reth/print.html#example-17

admin_nodeInfo

Returns all information known about the running node.

These include general information about the node itself, as well as what protocols it

participates in, its IP and ports.

Client Method invocation

RPC {"method": "admin_nodeInfo"}

Example

admin_peerEvents,

admin_peerEvents_unsubscribe

Subscribe to events received by peers over the network.

// > {"jsonrpc":"2.0","id":1,"method":"admin_nodeInfo","params":[]}
{

"jsonrpc": "2.0",
"id": 1,
"result": {

"enode":
"enode://44826a5d6a55f88a18298bca4773fca5749cdc3a5c9f308aa7d810e9b31123f3e7c5fba0b1d70aac5308426

"id":
"44826a5d6a55f88a18298bca4773fca5749cdc3a5c9f308aa7d810e9b31123f3e7c5fba0b1d70aac5308426f47df2a1

"ip": "::",
"listenAddr": "[::]:30303",
"name": "reth/v0.0.1/x86_64-unknown-linux-gnu",
"ports": {

"discovery": 30303,
"listener": 30303

 },
"protocols": {

"eth": {
"difficulty": 17334254859343145000,
"genesis":

"0xd4e56740f876aef8c010b86a40d5f56745a118d0906a34e69aec8c0db1cb8fa3",
"head":

"0xb83f73fbe6220c111136aefd27b160bf4a34085c65ba89f24246b3162257c36a",
"network": 1

 }
 }
 }
}

reth Book https://paradigmxyz.github.io/reth/print.html

79 of 136 10/26/23, 15:08

https://paradigmxyz.github.io/reth/print.html#admin_nodeinfo
https://paradigmxyz.github.io/reth/print.html#admin_nodeinfo
https://paradigmxyz.github.io/reth/print.html#admin_nodeinfo
https://paradigmxyz.github.io/reth/print.html#example-18
https://paradigmxyz.github.io/reth/print.html#example-18
https://paradigmxyz.github.io/reth/print.html#admin_peerevents-admin_peerevents_unsubscribe
https://paradigmxyz.github.io/reth/print.html#admin_peerevents-admin_peerevents_unsubscribe
https://paradigmxyz.github.io/reth/print.html#admin_peerevents-admin_peerevents_unsubscribe
https://paradigmxyz.github.io/reth/print.html#admin_peerevents-admin_peerevents_unsubscribe
https://paradigmxyz.github.io/reth/print.html#admin_peerevents-admin_peerevents_unsubscribe
https://paradigmxyz.github.io/reth/print.html#admin_peerevents-admin_peerevents_unsubscribe
https://paradigmxyz.github.io/reth/print.html#admin_peerevents-admin_peerevents_unsubscribe

Like other subscription methods, this returns the ID of the subscription, which is then

used in all events subsequently.

To unsubscribe from peer events, call admin_peerEvents_unsubscribe

Client Method invocation

RPC {"method": "admin_peerEvents"}

Example

// > {"jsonrpc":"2.0","id":1,"method":"admin_peerEvents","params":[]}
// responds with subscription ID
{"jsonrpc": "2.0", "id": 1, "result": "0xcd0c3e8af590364c09d0fa6a1210faf5"}

reth Book https://paradigmxyz.github.io/reth/print.html

80 of 136 10/26/23, 15:08

https://paradigmxyz.github.io/reth/print.html#example-19
https://paradigmxyz.github.io/reth/print.html#example-19

rpc Namespace

The rpc API provides methods to get information about the RPC server itself, such as the

enabled namespaces.

rpc_modules

Lists the enabled RPC namespaces and the versions of each.

Client Method invocation

RPC {"method": "rpc_modules", "params": []}

Example

Handling Responses During Syncing

When interacting with the RPC server while it is still syncing, some RPC requests may

return an empty or null response, while others return the expected results. This behavior

can be observed due to the asynchronous nature of the syncing process and the

availability of required data. Notably, endpoints that rely on specific stages of the syncing

process, such as the execution stage, might not be available until those stages are

complete.

It's important to understand that during pipeline sync, some endpoints may not be

accessible until the necessary data is fully synchronized. For instance, the

eth_getBlockReceipts endpoint is only expected to return valid data after the execution

stage, where receipts are generated, has completed. As a result, certain RPC requests

may return empty or null responses until the respective stages are finished.

This behavior is intrinsic to how the syncing mechanism works and is not indicative of an

issue or bug. If you encounter such responses while the node is still syncing, it's

recommended to wait until the sync process is complete to ensure accurate and expected

RPC responses.

// > {"jsonrpc":"2.0","id":1,"method":"rpc_modules","params":[]}
{"jsonrpc":"2.0","id":1,"result":{"txpool":"1.0","eth":"1.0","rpc":"1.0"}}

reth Book https://paradigmxyz.github.io/reth/print.html

81 of 136 10/26/23, 15:08

https://paradigmxyz.github.io/reth/print.html#rpc-namespace
https://paradigmxyz.github.io/reth/print.html#rpc-namespace
https://paradigmxyz.github.io/reth/print.html#rpc-namespace
https://paradigmxyz.github.io/reth/print.html#rpc-namespace
https://paradigmxyz.github.io/reth/print.html#rpc_modules
https://paradigmxyz.github.io/reth/print.html#rpc_modules
https://paradigmxyz.github.io/reth/print.html#rpc_modules
https://paradigmxyz.github.io/reth/print.html#example-20
https://paradigmxyz.github.io/reth/print.html#example-20
https://paradigmxyz.github.io/reth/print.html#handling-responses-during-syncing
https://paradigmxyz.github.io/reth/print.html#handling-responses-during-syncing

CLI Reference

The Reth node is operated via the CLI by running the reth node command. To stop it,

press ctrl-c . You may need to wait a bit as Reth tears down existing p2p connections or

other cleanup tasks.

However, Reth has more commands than that:

Some of the most useful commands as a node developer are:

• reth node : Starts the Reth node's components, including the JSON-RPC.

• reth init : Initialize the database from a genesis file.

• reth import : This syncs RLP encoded blocks from a file.

• reth db : Administrative TUI to the key-value store.

• reth stage : Runs a stage in isolation. Useful for testing and benchmarking.

• reth p2p : P2P-related utilities

• reth test-vectors : Generate Test Vectors

• reth config : Write config to stdout

• reth debug : Various debug routines

See below for the full list of commands.

Commands

reth --help

reth Book https://paradigmxyz.github.io/reth/print.html

82 of 136 10/26/23, 15:08

https://paradigmxyz.github.io/reth/print.html#cli-reference
https://paradigmxyz.github.io/reth/print.html#cli-reference
https://paradigmxyz.github.io/reth/cli/node.html
https://paradigmxyz.github.io/reth/cli/node.html
https://paradigmxyz.github.io/reth/cli/node.html
https://paradigmxyz.github.io/reth/cli/init.html
https://paradigmxyz.github.io/reth/cli/init.html
https://paradigmxyz.github.io/reth/cli/init.html
https://paradigmxyz.github.io/reth/cli/import.html
https://paradigmxyz.github.io/reth/cli/import.html
https://paradigmxyz.github.io/reth/cli/import.html
https://paradigmxyz.github.io/reth/cli/db.html
https://paradigmxyz.github.io/reth/cli/db.html
https://paradigmxyz.github.io/reth/cli/db.html
https://paradigmxyz.github.io/reth/cli/stage.html
https://paradigmxyz.github.io/reth/cli/stage.html
https://paradigmxyz.github.io/reth/cli/stage.html
https://paradigmxyz.github.io/reth/cli/p2p.html
https://paradigmxyz.github.io/reth/cli/p2p.html
https://paradigmxyz.github.io/reth/cli/p2p.html
https://paradigmxyz.github.io/reth/cli/test-vectors.html
https://paradigmxyz.github.io/reth/cli/test-vectors.html
https://paradigmxyz.github.io/reth/cli/test-vectors.html
https://paradigmxyz.github.io/reth/cli/config.html
https://paradigmxyz.github.io/reth/cli/config.html
https://paradigmxyz.github.io/reth/cli/config.html
https://paradigmxyz.github.io/reth/cli/debug.html
https://paradigmxyz.github.io/reth/cli/debug.html
https://paradigmxyz.github.io/reth/cli/debug.html
https://paradigmxyz.github.io/reth/print.html#commands
https://paradigmxyz.github.io/reth/print.html#commands

$ reth --help
Reth

Usage: reth [OPTIONS] <COMMAND>

Commands:
 node Start the node
 init Initialize the database from a genesis file
 import This syncs RLP encoded blocks from a file
 db Database debugging utilities
 stage Manipulate individual stages
 p2p P2P Debugging utilities
test-vectors Generate Test Vectors

 config Write config to stdout
 debug Various debug routines
 recover Scripts for node recovery
help Print this message or the help of the given subcommand(s)

Options:
 --chain <CHAIN_OR_PATH>
 The chain this node is running.

 Possible values are either a built-in chain or the path to a chain
specification file.

 Built-in chains:
 - mainnet
 - goerli
 - sepolia
 - holesky

 [default: mainnet]

 --instance <INSTANCE>
 Add a new instance of a node.

 Configures the ports of the node to avoid conflicts with the
defaults. This is useful for running multiple nodes on the same machine.

 Max number of instances is 200. It is chosen in a way so that it's
not possible to have port numbers that conflict with each other.

 Changes to the following port numbers: - DISCOVERY_PORT: default +
`instance` - 1 - AUTH_PORT: default + `instance` * 100 - 100 - HTTP_RPC_PORT:
default - `instance` + 1 - WS_RPC_PORT: default + `instance` * 2 - 2

 [default: 1]

 -h, --help
 Print help (see a summary with '-h')

 -V, --version
 Print version

Logging:
 --log.directory <PATH>

reth Book https://paradigmxyz.github.io/reth/print.html

83 of 136 10/26/23, 15:08

 The path to put log files in

 [default: /reth/logs]

 --log.max-size <SIZE>
 The maximum size (in MB) of log files

 [default: 200]

 --log.max-files <COUNT>
 The maximum amount of log files that will be stored. If set to 0,
background file logging is disabled

 [default: 5]

 --log.journald
 Log events to journald

 --log.filter <FILTER>
 The filter to use for logs written to the log file

 [default: error]

 --color <COLOR>
 Sets whether or not the formatter emits ANSI terminal escape codes
for colors and other text formatting

 [default: always]

 Possible values:
 - always: Colors on
 - auto: Colors on
 - never: Colors off

Display:
 -v, --verbosity...
 Set the minimum log level.

 -v Errors
 -vv Warnings
 -vvv Info
 -vvvv Debug
 -vvvvv Traces (warning: very verbose!)

 -q, --quiet
 Silence all log output

reth Book https://paradigmxyz.github.io/reth/print.html

84 of 136 10/26/23, 15:08

reth node

Start the node

reth Book https://paradigmxyz.github.io/reth/print.html

85 of 136 10/26/23, 15:08

https://paradigmxyz.github.io/reth/print.html#reth-node
https://paradigmxyz.github.io/reth/print.html#reth-node
https://paradigmxyz.github.io/reth/print.html#reth-node

$ reth node --help

Usage: reth node [OPTIONS]

Options:
 --datadir <DATA_DIR>
 The path to the data dir for all reth files and subdirectories.

 Defaults to the OS-specific data directory:

 - Linux: `$XDG_DATA_HOME/reth/` or `$HOME/.local/share/reth/`
 - Windows: `{FOLDERID_RoamingAppData}/reth/`
 - macOS: `$HOME/Library/Application Support/reth/`

 [default: default]

 --config <FILE>
 The path to the configuration file to use.

 --chain <CHAIN_OR_PATH>
 The chain this node is running.

 Possible values are either a built-in chain or the path to a chain
specification file.

 Built-in chains:
 - mainnet
 - goerli
 - sepolia
 - holesky
 - dev

 [default: mainnet]

 --instance <INSTANCE>
 Add a new instance of a node.

 Configures the ports of the node to avoid conflicts with the
defaults. This is useful for running multiple nodes on the same machine.

 Max number of instances is 200. It is chosen in a way so that it's
not possible to have port numbers that conflict with each other.

 Changes to the following port numbers: - DISCOVERY_PORT: default +
`instance` - 1 - AUTH_PORT: default + `instance` * 100 - 100 - HTTP_RPC_PORT:
default - `instance` + 1 - WS_RPC_PORT: default + `instance` * 2 - 2

 [default: 1]

 --trusted-setup-file <PATH>
 Overrides the KZG trusted setup by reading from the supplied file

 -h, --help
 Print help (see a summary with '-h')

Metrics:

reth Book https://paradigmxyz.github.io/reth/print.html

86 of 136 10/26/23, 15:08

 --metrics <SOCKET>
 Enable Prometheus metrics.

 The metrics will be served at the given interface and port.

Networking:
 -d, --disable-discovery
 Disable the discovery service

 --disable-dns-discovery
 Disable the DNS discovery

 --disable-discv4-discovery
 Disable Discv4 discovery

 --discovery.port <DISCOVERY_PORT>
 The UDP port to use for P2P discovery/networking. default: 30303

 --trusted-peers <TRUSTED_PEERS>
 Target trusted peer enodes --trusted-peers
enode://abcd@192.168.0.1:30303

 --trusted-only
 Connect only to trusted peers

 --bootnodes <BOOTNODES>
 Bootnodes to connect to initially.

 Will fall back to a network-specific default if not specified.

 --peers-file <FILE>
 The path to the known peers file. Connected peers are dumped to
this file on nodes
 shutdown, and read on startup. Cannot be used with `--no-persist-
peers`.

 --identity <IDENTITY>
 Custom node identity

 [default: reth/VERSION/PLATFORM]

 --p2p-secret-key <PATH>
 Secret key to use for this node.

 This will also deterministically set the peer ID. If not specified,
it will be set in the data dir for the chain being used.

 --no-persist-peers
 Do not persist peers.

 --nat <NAT>
 NAT resolution method (any|none|upnp|publicip|extip:<IP>)

 [default: any]

 --port <PORT>
 Network listening port. default: 30303

reth Book https://paradigmxyz.github.io/reth/print.html

87 of 136 10/26/23, 15:08

 --max-outbound-peers <MAX_OUTBOUND_PEERS>
 Maximum number of outbound requests. default: 100

 --max-inbound-peers <MAX_INBOUND_PEERS>
 Maximum number of inbound requests. default: 30

RPC:
 --http
 Enable the HTTP-RPC server

 --http.addr <HTTP_ADDR>
 Http server address to listen on

 [default: 127.0.0.1]

 --http.port <HTTP_PORT>
 Http server port to listen on

 [default: 8545]

 --http.api <HTTP_API>
 Rpc Modules to be configured for the HTTP server

 [possible values: admin, debug, eth, net, trace, txpool, web3, rpc,
reth, ots]

 --http.corsdomain <HTTP_CORSDOMAIN>
 Http Corsdomain to allow request from

 --ws
 Enable the WS-RPC server

 --ws.addr <WS_ADDR>
 Ws server address to listen on

 [default: 127.0.0.1]

 --ws.port <WS_PORT>
 Ws server port to listen on

 [default: 8546]

 --ws.origins <ws.origins>
 Origins from which to accept WebSocket requests

 --ws.api <WS_API>
 Rpc Modules to be configured for the WS server

 [possible values: admin, debug, eth, net, trace, txpool, web3, rpc,
reth, ots]

 --ipcdisable
 Disable the IPC-RPC server

 --ipcpath <IPCPATH>
 Filename for IPC socket/pipe within the datadir

reth Book https://paradigmxyz.github.io/reth/print.html

88 of 136 10/26/23, 15:08

 [default: /tmp/reth.ipc]

 --authrpc.addr <AUTH_ADDR>
 Auth server address to listen on

 [default: 127.0.0.1]

 --authrpc.port <AUTH_PORT>
 Auth server port to listen on

 [default: 8551]

 --authrpc.jwtsecret <PATH>
 Path to a JWT secret to use for authenticated RPC endpoints

 --rpc-max-request-size <RPC_MAX_REQUEST_SIZE>
 Set the maximum RPC request payload size for both HTTP and WS in
megabytes

 [default: 15]

 --rpc-max-response-size <RPC_MAX_RESPONSE_SIZE>
 Set the maximum RPC response payload size for both HTTP and WS in
megabytes

 [default: 115]
 [aliases: --rpc.returndata.limit]

 --rpc-max-subscriptions-per-connection
<RPC_MAX_SUBSCRIPTIONS_PER_CONNECTION>
 Set the the maximum concurrent subscriptions per connection

 [default: 1024]

 --rpc-max-connections <COUNT>
 Maximum number of RPC server connections

 [default: 500]

 --rpc-max-tracing-requests <COUNT>
 Maximum number of concurrent tracing requests

 [default: 25]

 --rpc-max-logs-per-response <COUNT>
 Maximum number of logs that can be returned in a single response

 [default: 20000]

 --rpc-gas-cap <GAS_CAP>
 Maximum gas limit for `eth_call` and call tracing RPC methods

 [default: 50000000]

Gas Price Oracle:
 --gpo.blocks <BLOCKS>

reth Book https://paradigmxyz.github.io/reth/print.html

89 of 136 10/26/23, 15:08

 Number of recent blocks to check for gas price

 [default: 20]

 --gpo.ignoreprice <IGNORE_PRICE>
 Gas Price below which gpo will ignore transactions

 [default: 2]

 --gpo.maxprice <MAX_PRICE>
 Maximum transaction priority fee(or gasprice before London Fork) to
be recommended by gpo

 [default: 500000000000]

 --gpo.percentile <PERCENTILE>
 The percentile of gas prices to use for the estimate

 [default: 60]

 --block-cache-len <BLOCK_CACHE_LEN>
 Maximum number of block cache entries

 [default: 5000]

 --receipt-cache-len <RECEIPT_CACHE_LEN>
 Maximum number of receipt cache entries

 [default: 2000]

 --env-cache-len <ENV_CACHE_LEN>
 Maximum number of env cache entries

 [default: 1000]

TxPool:
 --txpool.pending_max_count <PENDING_MAX_COUNT>
 Max number of transaction in the pending sub-pool

 [default: 10000]

 --txpool.pending_max_size <PENDING_MAX_SIZE>
 Max size of the pending sub-pool in megabytes

 [default: 20]

 --txpool.basefee_max_count <BASEFEE_MAX_COUNT>
 Max number of transaction in the basefee sub-pool

 [default: 10000]

 --txpool.basefee_max_size <BASEFEE_MAX_SIZE>
 Max size of the basefee sub-pool in megabytes

 [default: 20]

 --txpool.queued_max_count <QUEUED_MAX_COUNT>

reth Book https://paradigmxyz.github.io/reth/print.html

90 of 136 10/26/23, 15:08

 Max number of transaction in the queued sub-pool

 [default: 10000]

 --txpool.queued_max_size <QUEUED_MAX_SIZE>
 Max size of the queued sub-pool in megabytes

 [default: 20]

 --txpool.max_account_slots <MAX_ACCOUNT_SLOTS>
 Max number of executable transaction slots guaranteed per account

 [default: 16]

 --txpool.pricebump <PRICE_BUMP>
 Price bump (in %) for the transaction pool underpriced check

 [default: 10]

 --blobpool.pricebump <BLOB_TRANSACTION_PRICE_BUMP>
 Price bump percentage to replace an already existing blob
transaction

 [default: 100]

Builder:
 --builder.extradata <EXTRADATA>
 Block extra data set by the payload builder

 [default: reth/VERSION/OS]

 --builder.gaslimit <GAS_LIMIT>
 Target gas ceiling for built blocks

 [default: 30000000]

 --builder.interval <SECONDS>
 The interval at which the job should build a new payload after the
last (in seconds)

 [default: 1]

 --builder.deadline <SECONDS>
 The deadline for when the payload builder job should resolve

 [default: 12]

 --builder.max-tasks <MAX_PAYLOAD_TASKS>
 Maximum number of tasks to spawn for building a payload

 [default: 3]

Debug:
 --debug.continuous
 Prompt the downloader to download blocks one at a time.

 NOTE: This is for testing purposes only.

reth Book https://paradigmxyz.github.io/reth/print.html

91 of 136 10/26/23, 15:08

 --debug.terminate
 Flag indicating whether the node should be terminated after the
pipeline sync

 --debug.tip <TIP>
 Set the chain tip manually for testing purposes.

 NOTE: This is a temporary flag

 --debug.max-block <MAX_BLOCK>
 Runs the sync only up to the specified block

 --debug.print-inspector
 Print opcode level traces directly to console during execution

 --debug.hook-block <HOOK_BLOCK>
 Hook on a specific block during execution

 --debug.hook-transaction <HOOK_TRANSACTION>
 Hook on a specific transaction during execution

 --debug.hook-all
 Hook on every transaction in a block

Database:
 --db.log-level <LOG_LEVEL>
 Database logging level. Levels higher than "notice" require a debug
build

 Possible values:
 - fatal: Enables logging for critical conditions, i.e. assertion
failures
 - error: Enables logging for error conditions
 - warn: Enables logging for warning conditions
 - notice: Enables logging for normal but significant condition
 - verbose: Enables logging for verbose informational
 - debug: Enables logging for debug-level messages
 - trace: Enables logging for trace debug-level messages
 - extra: Enables logging for extra debug-level messages

Dev testnet:
 --dev
 Start the node in dev mode

 This mode uses a local proof-of-authority consensus engine with
either fixed block times
 or automatically mined blocks.
 Disables network discovery and enables local http server.
 Prefunds 20 accounts derived by mnemonic "test test test test test
test test test test test
 test junk" with 10 000 ETH each.

 --dev.block-max-transactions <BLOCK_MAX_TRANSACTIONS>
 How many transactions to mine per block

 --dev.block-time <BLOCK_TIME>

reth Book https://paradigmxyz.github.io/reth/print.html

92 of 136 10/26/23, 15:08

 Interval between blocks.

 Parses strings using [humantime::parse_duration]
 --dev.block_time 12s

Pruning:
 --full
 Run full node. Only the most recent 10064 block states are stored.
This flag takes priority over pruning configuration in reth.toml

Logging:
 --log.directory <PATH>
 The path to put log files in

 [default: /reth/logs]

 --log.max-size <SIZE>
 The maximum size (in MB) of log files

 [default: 200]

 --log.max-files <COUNT>
 The maximum amount of log files that will be stored. If set to 0,
background file logging is disabled

 [default: 5]

 --log.journald
 Log events to journald

 --log.filter <FILTER>
 The filter to use for logs written to the log file

 [default: error]

 --color <COLOR>
 Sets whether or not the formatter emits ANSI terminal escape codes
for colors and other text formatting

 [default: always]

 Possible values:
 - always: Colors on
 - auto: Colors on
 - never: Colors off

Display:
 -v, --verbosity...
 Set the minimum log level.

 -v Errors
 -vv Warnings
 -vvv Info
 -vvvv Debug
 -vvvvv Traces (warning: very verbose!)

 -q, --quiet

reth Book https://paradigmxyz.github.io/reth/print.html

93 of 136 10/26/23, 15:08

 Silence all log output

reth Book https://paradigmxyz.github.io/reth/print.html

94 of 136 10/26/23, 15:08

reth init

Initialize the database from a genesis file

reth Book https://paradigmxyz.github.io/reth/print.html

95 of 136 10/26/23, 15:08

https://paradigmxyz.github.io/reth/print.html#reth-init
https://paradigmxyz.github.io/reth/print.html#reth-init
https://paradigmxyz.github.io/reth/print.html#reth-init

$ reth init --help

Usage: reth init [OPTIONS]

Options:
 --datadir <DATA_DIR>
 The path to the data dir for all reth files and subdirectories.

 Defaults to the OS-specific data directory:

 - Linux: `$XDG_DATA_HOME/reth/` or `$HOME/.local/share/reth/`
 - Windows: `{FOLDERID_RoamingAppData}/reth/`
 - macOS: `$HOME/Library/Application Support/reth/`

 [default: default]

 --chain <CHAIN_OR_PATH>
 The chain this node is running.

 Possible values are either a built-in chain or the path to a chain
specification file.

 Built-in chains:
 - mainnet
 - goerli
 - sepolia
 - holesky

 [default: mainnet]

 --instance <INSTANCE>
 Add a new instance of a node.

 Configures the ports of the node to avoid conflicts with the
defaults. This is useful for running multiple nodes on the same machine.

 Max number of instances is 200. It is chosen in a way so that it's
not possible to have port numbers that conflict with each other.

 Changes to the following port numbers: - DISCOVERY_PORT: default +
`instance` - 1 - AUTH_PORT: default + `instance` * 100 - 100 - HTTP_RPC_PORT:
default - `instance` + 1 - WS_RPC_PORT: default + `instance` * 2 - 2

 [default: 1]

 -h, --help
 Print help (see a summary with '-h')

Database:
 --db.log-level <LOG_LEVEL>
 Database logging level. Levels higher than "notice" require a debug
build

 Possible values:
 - fatal: Enables logging for critical conditions, i.e. assertion
failures

reth Book https://paradigmxyz.github.io/reth/print.html

96 of 136 10/26/23, 15:08

 - error: Enables logging for error conditions
 - warn: Enables logging for warning conditions
 - notice: Enables logging for normal but significant condition
 - verbose: Enables logging for verbose informational
 - debug: Enables logging for debug-level messages
 - trace: Enables logging for trace debug-level messages
 - extra: Enables logging for extra debug-level messages

Logging:
 --log.directory <PATH>
 The path to put log files in

 [default: /reth/logs]

 --log.max-size <SIZE>
 The maximum size (in MB) of log files

 [default: 200]

 --log.max-files <COUNT>
 The maximum amount of log files that will be stored. If set to 0,
background file logging is disabled

 [default: 5]

 --log.journald
 Log events to journald

 --log.filter <FILTER>
 The filter to use for logs written to the log file

 [default: error]

 --color <COLOR>
 Sets whether or not the formatter emits ANSI terminal escape codes
for colors and other text formatting

 [default: always]

 Possible values:
 - always: Colors on
 - auto: Colors on
 - never: Colors off

Display:
 -v, --verbosity...
 Set the minimum log level.

 -v Errors
 -vv Warnings
 -vvv Info
 -vvvv Debug
 -vvvvv Traces (warning: very verbose!)

 -q, --quiet
 Silence all log output

reth Book https://paradigmxyz.github.io/reth/print.html

97 of 136 10/26/23, 15:08

reth import

This syncs RLP encoded blocks from a file

reth Book https://paradigmxyz.github.io/reth/print.html

98 of 136 10/26/23, 15:08

https://paradigmxyz.github.io/reth/print.html#reth-import
https://paradigmxyz.github.io/reth/print.html#reth-import
https://paradigmxyz.github.io/reth/print.html#reth-import

$ reth import --help

Usage: reth import [OPTIONS] <IMPORT_PATH>

Options:
 --config <FILE>
 The path to the configuration file to use.

 --datadir <DATA_DIR>
 The path to the data dir for all reth files and subdirectories.

 Defaults to the OS-specific data directory:

 - Linux: `$XDG_DATA_HOME/reth/` or `$HOME/.local/share/reth/`
 - Windows: `{FOLDERID_RoamingAppData}/reth/`
 - macOS: `$HOME/Library/Application Support/reth/`

 [default: default]

 --chain <CHAIN_OR_PATH>
 The chain this node is running.

 Possible values are either a built-in chain or the path to a chain
specification file.

 Built-in chains:
 - mainnet
 - goerli
 - sepolia
 - holesky

 [default: mainnet]

 --instance <INSTANCE>
 Add a new instance of a node.

 Configures the ports of the node to avoid conflicts with the
defaults. This is useful for running multiple nodes on the same machine.

 Max number of instances is 200. It is chosen in a way so that it's
not possible to have port numbers that conflict with each other.

 Changes to the following port numbers: - DISCOVERY_PORT: default +
`instance` - 1 - AUTH_PORT: default + `instance` * 100 - 100 - HTTP_RPC_PORT:
default - `instance` + 1 - WS_RPC_PORT: default + `instance` * 2 - 2

 [default: 1]

 -h, --help
 Print help (see a summary with '-h')

Database:
 --db.log-level <LOG_LEVEL>
 Database logging level. Levels higher than "notice" require a debug
build

reth Book https://paradigmxyz.github.io/reth/print.html

99 of 136 10/26/23, 15:08

 Possible values:
 - fatal: Enables logging for critical conditions, i.e. assertion
failures
 - error: Enables logging for error conditions
 - warn: Enables logging for warning conditions
 - notice: Enables logging for normal but significant condition
 - verbose: Enables logging for verbose informational
 - debug: Enables logging for debug-level messages
 - trace: Enables logging for trace debug-level messages
 - extra: Enables logging for extra debug-level messages

 <IMPORT_PATH>
 The path to a block file for import.

 The online stages (headers and bodies) are replaced by a file
import, after which the
 remaining stages are executed.

Logging:
 --log.directory <PATH>
 The path to put log files in

 [default: /reth/logs]

 --log.max-size <SIZE>
 The maximum size (in MB) of log files

 [default: 200]

 --log.max-files <COUNT>
 The maximum amount of log files that will be stored. If set to 0,
background file logging is disabled

 [default: 5]

 --log.journald
 Log events to journald

 --log.filter <FILTER>
 The filter to use for logs written to the log file

 [default: error]

 --color <COLOR>
 Sets whether or not the formatter emits ANSI terminal escape codes
for colors and other text formatting

 [default: always]

 Possible values:
 - always: Colors on
 - auto: Colors on
 - never: Colors off

Display:
 -v, --verbosity...
 Set the minimum log level.

reth Book https://paradigmxyz.github.io/reth/print.html

100 of 136 10/26/23, 15:08

 -v Errors
 -vv Warnings
 -vvv Info
 -vvvv Debug
 -vvvvv Traces (warning: very verbose!)

 -q, --quiet
 Silence all log output

reth Book https://paradigmxyz.github.io/reth/print.html

101 of 136 10/26/23, 15:08

reth db

Database debugging utilities

reth Book https://paradigmxyz.github.io/reth/print.html

102 of 136 10/26/23, 15:08

https://paradigmxyz.github.io/reth/print.html#reth-db
https://paradigmxyz.github.io/reth/print.html#reth-db
https://paradigmxyz.github.io/reth/print.html#reth-db

$ reth db --help

Usage: reth db [OPTIONS] <COMMAND>

Commands:
 stats Lists all the tables, their entry count and their size
 list Lists the contents of a table
 diff Create a diff between two database tables or two entire databases
 get Gets the content of a table for the given key
 drop Deletes all database entries
 clear Deletes all table entries
 version Lists current and local database versions
 path Returns the full database path
help Print this message or the help of the given subcommand(s)

Options:
 --datadir <DATA_DIR>
 The path to the data dir for all reth files and subdirectories.

 Defaults to the OS-specific data directory:

 - Linux: `$XDG_DATA_HOME/reth/` or `$HOME/.local/share/reth/`
 - Windows: `{FOLDERID_RoamingAppData}/reth/`
 - macOS: `$HOME/Library/Application Support/reth/`

 [default: default]

 --chain <CHAIN_OR_PATH>
 The chain this node is running.

 Possible values are either a built-in chain or the path to a chain
specification file.

 Built-in chains:
 - mainnet
 - goerli
 - sepolia
 - holesky

 [default: mainnet]

 --instance <INSTANCE>
 Add a new instance of a node.

 Configures the ports of the node to avoid conflicts with the
defaults. This is useful for running multiple nodes on the same machine.

 Max number of instances is 200. It is chosen in a way so that it's
not possible to have port numbers that conflict with each other.

 Changes to the following port numbers: - DISCOVERY_PORT: default +
`instance` - 1 - AUTH_PORT: default + `instance` * 100 - 100 - HTTP_RPC_PORT:
default - `instance` + 1 - WS_RPC_PORT: default + `instance` * 2 - 2

 [default: 1]

reth Book https://paradigmxyz.github.io/reth/print.html

103 of 136 10/26/23, 15:08

 -h, --help
 Print help (see a summary with '-h')

Database:
 --db.log-level <LOG_LEVEL>
 Database logging level. Levels higher than "notice" require a debug
build

 Possible values:
 - fatal: Enables logging for critical conditions, i.e. assertion
failures
 - error: Enables logging for error conditions
 - warn: Enables logging for warning conditions
 - notice: Enables logging for normal but significant condition
 - verbose: Enables logging for verbose informational
 - debug: Enables logging for debug-level messages
 - trace: Enables logging for trace debug-level messages
 - extra: Enables logging for extra debug-level messages

Logging:
 --log.directory <PATH>
 The path to put log files in

 [default: /reth/logs]

 --log.max-size <SIZE>
 The maximum size (in MB) of log files

 [default: 200]

 --log.max-files <COUNT>
 The maximum amount of log files that will be stored. If set to 0,
background file logging is disabled

 [default: 5]

 --log.journald
 Log events to journald

 --log.filter <FILTER>
 The filter to use for logs written to the log file

 [default: error]

 --color <COLOR>
 Sets whether or not the formatter emits ANSI terminal escape codes
for colors and other text formatting

 [default: always]

 Possible values:
 - always: Colors on
 - auto: Colors on
 - never: Colors off

Display:
 -v, --verbosity...

reth Book https://paradigmxyz.github.io/reth/print.html

104 of 136 10/26/23, 15:08

reth db clear

Deletes all table entries

reth db diff

Create a diff between two database tables or two entire databases

reth db drop

Deletes all database entries

 Set the minimum log level.

 -v Errors
 -vv Warnings
 -vvv Info
 -vvvv Debug
 -vvvvv Traces (warning: very verbose!)

 -q, --quiet
 Silence all log output

$ reth db clear --help

Usage: reth db clear [OPTIONS] <TABLE>

Arguments:
 <TABLE>
 Table name

$ reth db diff --help

Usage: reth db diff [OPTIONS] --secondary-datadir <SECONDARY_DATADIR>
--output <OUTPUT>

Options:
 --secondary-datadir <SECONDARY_DATADIR>
 The path to the data dir for all reth files and subdirectories.

reth Book https://paradigmxyz.github.io/reth/print.html

105 of 136 10/26/23, 15:08

https://paradigmxyz.github.io/reth/print.html#reth-db-clear
https://paradigmxyz.github.io/reth/print.html#reth-db-clear
https://paradigmxyz.github.io/reth/print.html#reth-db-clear
https://paradigmxyz.github.io/reth/print.html#reth-db-diff
https://paradigmxyz.github.io/reth/print.html#reth-db-diff
https://paradigmxyz.github.io/reth/print.html#reth-db-diff
https://paradigmxyz.github.io/reth/print.html#reth-db-drop
https://paradigmxyz.github.io/reth/print.html#reth-db-drop
https://paradigmxyz.github.io/reth/print.html#reth-db-drop

reth db get

Gets the content of a table for the given key

reth db list

Lists the contents of a table

$ reth db drop --help

Usage: reth db drop [OPTIONS]

Options:
 -f, --force
 Bypasses the interactive confirmation and drops the database
directly

$ reth db get --help

Usage: reth db get [OPTIONS] <TABLE> <KEY>

Arguments:
 <TABLE>
 The table name

 NOTE: The dupsort tables are not supported now.

 <KEY>
 The key to get content for

reth Book https://paradigmxyz.github.io/reth/print.html

106 of 136 10/26/23, 15:08

https://paradigmxyz.github.io/reth/print.html#reth-db-get
https://paradigmxyz.github.io/reth/print.html#reth-db-get
https://paradigmxyz.github.io/reth/print.html#reth-db-get
https://paradigmxyz.github.io/reth/print.html#reth-db-list
https://paradigmxyz.github.io/reth/print.html#reth-db-list
https://paradigmxyz.github.io/reth/print.html#reth-db-list

reth db path

Returns the full database path

reth db stats

Lists all the tables, their entry count and their size

$ reth db list --help

Usage: reth db list [OPTIONS] <TABLE>

Arguments:
 <TABLE>
 The table name

Options:
 -s, --skip <SKIP>
 Skip first N entries

 [default: 0]

 -r, --reverse
 Reverse the order of the entries. If enabled last table entries are
read

 -l, --len <LEN>
 How many items to take from the walker

 [default: 5]

 --search <SEARCH>
 Search parameter for both keys and values. Prefix it with `0x` to
search for binary data, and text otherwise.

 ATTENTION! For compressed tables (`Transactions` and `Receipts`),
there might be missing results since the search uses the raw uncompressed
value from the database.

 -c, --count
 Returns the number of rows found

 -j, --json
 Dump as JSON instead of using TUI

$ reth db path --help

Usage: reth db path [OPTIONS]

reth Book https://paradigmxyz.github.io/reth/print.html

107 of 136 10/26/23, 15:08

https://paradigmxyz.github.io/reth/print.html#reth-db-path
https://paradigmxyz.github.io/reth/print.html#reth-db-path
https://paradigmxyz.github.io/reth/print.html#reth-db-path
https://paradigmxyz.github.io/reth/print.html#reth-db-stats
https://paradigmxyz.github.io/reth/print.html#reth-db-stats
https://paradigmxyz.github.io/reth/print.html#reth-db-stats

reth db version

Lists current and local database versions

$ reth db stats --help

Usage: reth db stats [OPTIONS]

$ reth db version --help

Usage: reth db version [OPTIONS]

reth Book https://paradigmxyz.github.io/reth/print.html

108 of 136 10/26/23, 15:08

https://paradigmxyz.github.io/reth/print.html#reth-db-version
https://paradigmxyz.github.io/reth/print.html#reth-db-version
https://paradigmxyz.github.io/reth/print.html#reth-db-version

reth stage

Manipulate individual stages

reth Book https://paradigmxyz.github.io/reth/print.html

109 of 136 10/26/23, 15:08

https://paradigmxyz.github.io/reth/print.html#reth-stage
https://paradigmxyz.github.io/reth/print.html#reth-stage
https://paradigmxyz.github.io/reth/print.html#reth-stage

$ reth stage --help

Usage: reth stage [OPTIONS] <COMMAND>

Commands:
 run Run a single stage
 drop Drop a stage's tables from the database
 dump Dumps a stage from a range into a new database
 unwind Unwinds a certain block range, deleting it from the database
 help Print this message or the help of the given subcommand(s)

Options:
 --chain <CHAIN_OR_PATH>
 The chain this node is running.

 Possible values are either a built-in chain or the path to a chain
specification file.

 Built-in chains:
 - mainnet
 - goerli
 - sepolia
 - holesky

 [default: mainnet]

 --instance <INSTANCE>
 Add a new instance of a node.

 Configures the ports of the node to avoid conflicts with the
defaults. This is useful for running multiple nodes on the same machine.

 Max number of instances is 200. It is chosen in a way so that it's
not possible to have port numbers that conflict with each other.

 Changes to the following port numbers: - DISCOVERY_PORT: default +
`instance` - 1 - AUTH_PORT: default + `instance` * 100 - 100 - HTTP_RPC_PORT:
default - `instance` + 1 - WS_RPC_PORT: default + `instance` * 2 - 2

 [default: 1]

 -h, --help
 Print help (see a summary with '-h')

Logging:
 --log.directory <PATH>
 The path to put log files in

 [default: /reth/logs]

 --log.max-size <SIZE>
 The maximum size (in MB) of log files

 [default: 200]

 --log.max-files <COUNT>

reth Book https://paradigmxyz.github.io/reth/print.html

110 of 136 10/26/23, 15:08

reth stage drop

Drop a stage's tables from the database

reth stage dump

Dumps a stage from a range into a new database

 The maximum amount of log files that will be stored. If set to 0,
background file logging is disabled

 [default: 5]

 --log.journald
 Log events to journald

 --log.filter <FILTER>
 The filter to use for logs written to the log file

 [default: error]

 --color <COLOR>
 Sets whether or not the formatter emits ANSI terminal escape codes
for colors and other text formatting

 [default: always]

 Possible values:
 - always: Colors on
 - auto: Colors on
 - never: Colors off

Display:
 -v, --verbosity...
 Set the minimum log level.

 -v Errors
 -vv Warnings
 -vvv Info
 -vvvv Debug
 -vvvvv Traces (warning: very verbose!)

 -q, --quiet
 Silence all log output

$ reth stage drop --help

Usage: reth stage drop [OPTIONS] <STAGE>

reth Book https://paradigmxyz.github.io/reth/print.html

111 of 136 10/26/23, 15:08

https://paradigmxyz.github.io/reth/print.html#reth-stage-drop
https://paradigmxyz.github.io/reth/print.html#reth-stage-drop
https://paradigmxyz.github.io/reth/print.html#reth-stage-drop
https://paradigmxyz.github.io/reth/print.html#reth-stage-dump
https://paradigmxyz.github.io/reth/print.html#reth-stage-dump
https://paradigmxyz.github.io/reth/print.html#reth-stage-dump

reth stage dump execution

Execution stage

reth stage dump storage-hashing

StorageHashing stage

$ reth stage dump --help

Usage: reth stage dump [OPTIONS] <COMMAND>

Commands:
 execution Execution stage
 storage-hashing StorageHashing stage
 account-hashing AccountHashing stage
 merkle Merkle stage
help Print this message or the help of the given subcommand(s)

$ reth stage dump execution --help

Usage: reth stage dump execution [OPTIONS] --output-db <OUTPUT_PATH> --from
<FROM> --to <TO>

Options:
 --output-db <OUTPUT_PATH>
 The path to the new database folder.

 -f, --from <FROM>
 From which block

 -t, --to <TO>
 To which block

 -d, --dry-run
 If passed, it will dry-run a stage execution from the newly created
database right after dumping

reth Book https://paradigmxyz.github.io/reth/print.html

112 of 136 10/26/23, 15:08

https://paradigmxyz.github.io/reth/print.html#reth-stage-dump-execution
https://paradigmxyz.github.io/reth/print.html#reth-stage-dump-execution
https://paradigmxyz.github.io/reth/print.html#reth-stage-dump-execution
https://paradigmxyz.github.io/reth/print.html#reth-stage-dump-storage-hashing
https://paradigmxyz.github.io/reth/print.html#reth-stage-dump-storage-hashing
https://paradigmxyz.github.io/reth/print.html#reth-stage-dump-storage-hashing

reth stage dump account-hashing

AccountHashing stage

reth stage dump merkle

Merkle stage

$ reth stage dump storage-hashing --help

Usage: reth stage dump storage-hashing [OPTIONS] --output-db <OUTPUT_PATH>
--from <FROM> --to <TO>

Options:
 --output-db <OUTPUT_PATH>
 The path to the new database folder.

 -f, --from <FROM>
 From which block

 -t, --to <TO>
 To which block

 -d, --dry-run
 If passed, it will dry-run a stage execution from the newly created
database right after dumping

$ reth stage dump account-hashing --help

Usage: reth stage dump account-hashing [OPTIONS] --output-db <OUTPUT_PATH>
--from <FROM> --to <TO>

Options:
 --output-db <OUTPUT_PATH>
 The path to the new database folder.

 -f, --from <FROM>
 From which block

 -t, --to <TO>
 To which block

 -d, --dry-run
 If passed, it will dry-run a stage execution from the newly created
database right after dumping

reth Book https://paradigmxyz.github.io/reth/print.html

113 of 136 10/26/23, 15:08

https://paradigmxyz.github.io/reth/print.html#reth-stage-dump-account-hashing
https://paradigmxyz.github.io/reth/print.html#reth-stage-dump-account-hashing
https://paradigmxyz.github.io/reth/print.html#reth-stage-dump-account-hashing
https://paradigmxyz.github.io/reth/print.html#reth-stage-dump-merkle
https://paradigmxyz.github.io/reth/print.html#reth-stage-dump-merkle
https://paradigmxyz.github.io/reth/print.html#reth-stage-dump-merkle

reth stage run

Run a single stage.

$ reth stage dump merkle --help

Usage: reth stage dump merkle [OPTIONS] --output-db <OUTPUT_PATH> --from
<FROM> --to <TO>

Options:
 --output-db <OUTPUT_PATH>
 The path to the new database folder.

 -f, --from <FROM>
 From which block

 -t, --to <TO>
 To which block

 -d, --dry-run
 If passed, it will dry-run a stage execution from the newly created
database right after dumping

reth Book https://paradigmxyz.github.io/reth/print.html

114 of 136 10/26/23, 15:08

https://paradigmxyz.github.io/reth/print.html#reth-stage-run
https://paradigmxyz.github.io/reth/print.html#reth-stage-run
https://paradigmxyz.github.io/reth/print.html#reth-stage-run

reth stage unwind to-block

Unwinds the database until the given block number (range is inclusive)

$ reth stage run --help

Note that this won't use the Pipeline and as a result runs stages assuming
that all the data can be held in memory. It is not recommended to run a stage
for really large block ranges if your computer does not have a lot of memory
to store all the data.

Usage: reth stage run [OPTIONS] --from <FROM> --to <TO> <STAGE>

Arguments:
 <STAGE>
 The name of the stage to run

 [possible values: headers, bodies, senders, execution, account-
hashing, storage-hashing, hashing, merkle, tx-lookup, account-history,
storage-history, total-difficulty]

Options:
 --config <FILE>
 The path to the configuration file to use.

 --metrics <SOCKET>
 Enable Prometheus metrics.

 The metrics will be served at the given interface and port.

 --from <FROM>
 The height to start at

 -t, --to <TO>
 The end of the stage

 --batch-size <BATCH_SIZE>
 Batch size for stage execution and unwind

 -s, --skip-unwind
 Normally, running the stage requires unwinding for stages that
already have been run, in order to not rewrite to the same database slots.

 You can optionally skip the unwinding phase if you're syncing a
block range that has not been synced before.

$ reth stage unwind to-block --help

Usage: reth stage unwind to-block [OPTIONS] <TARGET>

Arguments:
 <TARGET>

reth Book https://paradigmxyz.github.io/reth/print.html

115 of 136 10/26/23, 15:08

https://paradigmxyz.github.io/reth/print.html#reth-stage-unwind-to-block
https://paradigmxyz.github.io/reth/print.html#reth-stage-unwind-to-block
https://paradigmxyz.github.io/reth/print.html#reth-stage-unwind-to-block

reth stage unwind num-blocks

Unwinds the given number of blocks from the database

$ reth stage unwind num-blocks --help

Usage: reth stage unwind num-blocks [OPTIONS] <AMOUNT>

Arguments:
 <AMOUNT>

reth Book https://paradigmxyz.github.io/reth/print.html

116 of 136 10/26/23, 15:08

https://paradigmxyz.github.io/reth/print.html#reth-stage-unwind-num-blocks
https://paradigmxyz.github.io/reth/print.html#reth-stage-unwind-num-blocks
https://paradigmxyz.github.io/reth/print.html#reth-stage-unwind-num-blocks

reth p2p

P2P Debugging utilities

reth Book https://paradigmxyz.github.io/reth/print.html

117 of 136 10/26/23, 15:08

https://paradigmxyz.github.io/reth/print.html#reth-p2p
https://paradigmxyz.github.io/reth/print.html#reth-p2p
https://paradigmxyz.github.io/reth/print.html#reth-p2p

$ reth p2p --help

Usage: reth p2p [OPTIONS] <COMMAND>

Commands:
 header Download block header
 body Download block body
help Print this message or the help of the given subcommand(s)

Options:
 --config <FILE>
 The path to the configuration file to use.

 --chain <CHAIN_OR_PATH>
 The chain this node is running.

 Possible values are either a built-in chain or the path to a chain
specification file.

 Built-in chains:
 - mainnet
 - goerli
 - sepolia
 - holesky

 [default: mainnet]

 --datadir <DATA_DIR>
 The path to the data dir for all reth files and subdirectories.

 Defaults to the OS-specific data directory:

 - Linux: `$XDG_DATA_HOME/reth/` or `$HOME/.local/share/reth/`
 - Windows: `{FOLDERID_RoamingAppData}/reth/`
 - macOS: `$HOME/Library/Application Support/reth/`

 [default: default]

 --p2p-secret-key <PATH>
 Secret key to use for this node.

 This also will deterministically set the peer ID.

 -d, --disable-discovery
 Disable the discovery service

 --disable-dns-discovery
 Disable the DNS discovery

 --disable-discv4-discovery
 Disable Discv4 discovery

 --discovery.port <DISCOVERY_PORT>
 The UDP port to use for P2P discovery/networking. default: 30303

 --trusted-peer <TRUSTED_PEER>

reth Book https://paradigmxyz.github.io/reth/print.html

118 of 136 10/26/23, 15:08

 Target trusted peer

 --trusted-only
 Connect only to trusted peers

 --retries <RETRIES>
 The number of retries per request

 [default: 5]

 --instance <INSTANCE>
 Add a new instance of a node.

 Configures the ports of the node to avoid conflicts with the
defaults. This is useful for running multiple nodes on the same machine.

 Max number of instances is 200. It is chosen in a way so that it's
not possible to have port numbers that conflict with each other.

 Changes to the following port numbers: - DISCOVERY_PORT: default +
`instance` - 1 - AUTH_PORT: default + `instance` * 100 - 100 - HTTP_RPC_PORT:
default - `instance` + 1 - WS_RPC_PORT: default + `instance` * 2 - 2

 [default: 1]

 --nat <NAT>
 [default: any]

 -h, --help
 Print help (see a summary with '-h')

Database:
 --db.log-level <LOG_LEVEL>
 Database logging level. Levels higher than "notice" require a debug
build

 Possible values:
 - fatal: Enables logging for critical conditions, i.e. assertion
failures
 - error: Enables logging for error conditions
 - warn: Enables logging for warning conditions
 - notice: Enables logging for normal but significant condition
 - verbose: Enables logging for verbose informational
 - debug: Enables logging for debug-level messages
 - trace: Enables logging for trace debug-level messages
 - extra: Enables logging for extra debug-level messages

Logging:
 --log.directory <PATH>
 The path to put log files in

 [default: /reth/logs]

 --log.max-size <SIZE>
 The maximum size (in MB) of log files

 [default: 200]

reth Book https://paradigmxyz.github.io/reth/print.html

119 of 136 10/26/23, 15:08

reth p2p body

Download block body

 --log.max-files <COUNT>
 The maximum amount of log files that will be stored. If set to 0,
background file logging is disabled

 [default: 5]

 --log.journald
 Log events to journald

 --log.filter <FILTER>
 The filter to use for logs written to the log file

 [default: error]

 --color <COLOR>
 Sets whether or not the formatter emits ANSI terminal escape codes
for colors and other text formatting

 [default: always]

 Possible values:
 - always: Colors on
 - auto: Colors on
 - never: Colors off

Display:
 -v, --verbosity...
 Set the minimum log level.

 -v Errors
 -vv Warnings
 -vvv Info
 -vvvv Debug
 -vvvvv Traces (warning: very verbose!)

 -q, --quiet
 Silence all log output

$ reth p2p body --help

Usage: reth p2p body [OPTIONS] <ID>

Arguments:
 <ID>
 The block number or hash

reth Book https://paradigmxyz.github.io/reth/print.html

120 of 136 10/26/23, 15:08

https://paradigmxyz.github.io/reth/print.html#reth-p2p-body
https://paradigmxyz.github.io/reth/print.html#reth-p2p-body
https://paradigmxyz.github.io/reth/print.html#reth-p2p-body

reth p2p header

Download block header

$ reth p2p header --help

Usage: reth p2p header [OPTIONS] <ID>

Arguments:
 <ID>
 The header number or hash

reth Book https://paradigmxyz.github.io/reth/print.html

121 of 136 10/26/23, 15:08

https://paradigmxyz.github.io/reth/print.html#reth-p2p-header
https://paradigmxyz.github.io/reth/print.html#reth-p2p-header
https://paradigmxyz.github.io/reth/print.html#reth-p2p-header

reth test-vectors

Generate Test Vectors

reth Book https://paradigmxyz.github.io/reth/print.html

122 of 136 10/26/23, 15:08

https://paradigmxyz.github.io/reth/print.html#reth-test-vectors
https://paradigmxyz.github.io/reth/print.html#reth-test-vectors
https://paradigmxyz.github.io/reth/print.html#reth-test-vectors

$ reth test-vectors --help

Usage: reth test-vectors [OPTIONS] <COMMAND>

Commands:
 tables Generates test vectors for specified tables. If no table is
specified, generate for all
help Print this message or the help of the given subcommand(s)

Options:
 --chain <CHAIN_OR_PATH>
 The chain this node is running.

 Possible values are either a built-in chain or the path to a chain
specification file.

 Built-in chains:
 - mainnet
 - goerli
 - sepolia
 - holesky

 [default: mainnet]

 --instance <INSTANCE>
 Add a new instance of a node.

 Configures the ports of the node to avoid conflicts with the
defaults. This is useful for running multiple nodes on the same machine.

 Max number of instances is 200. It is chosen in a way so that it's
not possible to have port numbers that conflict with each other.

 Changes to the following port numbers: - DISCOVERY_PORT: default +
`instance` - 1 - AUTH_PORT: default + `instance` * 100 - 100 - HTTP_RPC_PORT:
default - `instance` + 1 - WS_RPC_PORT: default + `instance` * 2 - 2

 [default: 1]

 -h, --help
 Print help (see a summary with '-h')

Logging:
 --log.directory <PATH>
 The path to put log files in

 [default: /reth/logs]

 --log.max-size <SIZE>
 The maximum size (in MB) of log files

 [default: 200]

 --log.max-files <COUNT>
 The maximum amount of log files that will be stored. If set to 0,
background file logging is disabled

reth Book https://paradigmxyz.github.io/reth/print.html

123 of 136 10/26/23, 15:08

reth test-vectors tables

Generates test vectors for specified tables. If no table is specified, generate for all

 [default: 5]

 --log.journald
 Log events to journald

 --log.filter <FILTER>
 The filter to use for logs written to the log file

 [default: error]

 --color <COLOR>
 Sets whether or not the formatter emits ANSI terminal escape codes
for colors and other text formatting

 [default: always]

 Possible values:
 - always: Colors on
 - auto: Colors on
 - never: Colors off

Display:
 -v, --verbosity...
 Set the minimum log level.

 -v Errors
 -vv Warnings
 -vvv Info
 -vvvv Debug
 -vvvvv Traces (warning: very verbose!)

 -q, --quiet
 Silence all log output

$ reth test-vectors tables --help

Usage: reth test-vectors tables [OPTIONS] [NAMES]...

Arguments:
 [NAMES]...
 List of table names. Case-sensitive

reth Book https://paradigmxyz.github.io/reth/print.html

124 of 136 10/26/23, 15:08

https://paradigmxyz.github.io/reth/print.html#reth-test-vectors-tables
https://paradigmxyz.github.io/reth/print.html#reth-test-vectors-tables
https://paradigmxyz.github.io/reth/print.html#reth-test-vectors-tables

reth config

Write config to stdout

reth Book https://paradigmxyz.github.io/reth/print.html

125 of 136 10/26/23, 15:08

https://paradigmxyz.github.io/reth/print.html#reth-config
https://paradigmxyz.github.io/reth/print.html#reth-config
https://paradigmxyz.github.io/reth/print.html#reth-config

$ reth config --help

Usage: reth config [OPTIONS]

Options:
 --config <FILE>
 The path to the configuration file to use.

 --default
 Show the default config

 --chain <CHAIN_OR_PATH>
 The chain this node is running.

 Possible values are either a built-in chain or the path to a chain
specification file.

 Built-in chains:
 - mainnet
 - goerli
 - sepolia
 - holesky

 [default: mainnet]

 --instance <INSTANCE>
 Add a new instance of a node.

 Configures the ports of the node to avoid conflicts with the
defaults. This is useful for running multiple nodes on the same machine.

 Max number of instances is 200. It is chosen in a way so that it's
not possible to have port numbers that conflict with each other.

 Changes to the following port numbers: - DISCOVERY_PORT: default +
`instance` - 1 - AUTH_PORT: default + `instance` * 100 - 100 - HTTP_RPC_PORT:
default - `instance` + 1 - WS_RPC_PORT: default + `instance` * 2 - 2

 [default: 1]

 -h, --help
 Print help (see a summary with '-h')

Logging:
 --log.directory <PATH>
 The path to put log files in

 [default: /reth/logs]

 --log.max-size <SIZE>
 The maximum size (in MB) of log files

 [default: 200]

 --log.max-files <COUNT>
 The maximum amount of log files that will be stored. If set to 0,

reth Book https://paradigmxyz.github.io/reth/print.html

126 of 136 10/26/23, 15:08

background file logging is disabled

 [default: 5]

 --log.journald
 Log events to journald

 --log.filter <FILTER>
 The filter to use for logs written to the log file

 [default: error]

 --color <COLOR>
 Sets whether or not the formatter emits ANSI terminal escape codes
for colors and other text formatting

 [default: always]

 Possible values:
 - always: Colors on
 - auto: Colors on
 - never: Colors off

Display:
 -v, --verbosity...
 Set the minimum log level.

 -v Errors
 -vv Warnings
 -vvv Info
 -vvvv Debug
 -vvvvv Traces (warning: very verbose!)

 -q, --quiet
 Silence all log output

reth Book https://paradigmxyz.github.io/reth/print.html

127 of 136 10/26/23, 15:08

reth debug

Various debug routines

reth Book https://paradigmxyz.github.io/reth/print.html

128 of 136 10/26/23, 15:08

https://paradigmxyz.github.io/reth/print.html#reth-debug
https://paradigmxyz.github.io/reth/print.html#reth-debug
https://paradigmxyz.github.io/reth/print.html#reth-debug

$ reth debug --help

Usage: reth debug [OPTIONS] <COMMAND>

Commands:
 execution Debug the roundtrip execution of blocks as well as the
generated data
 merkle Debug the clean & incremental state root calculations
in-memory-merkle Debug in-memory state root calculation
help Print this message or the help of the given subcommand(s)

Options:
 --datadir <DATA_DIR>
 The path to the data dir for all reth files and subdirectories.

 Defaults to the OS-specific data directory:

 - Linux: `$XDG_DATA_HOME/reth/` or `$HOME/.local/share/reth/`
 - Windows: `{FOLDERID_RoamingAppData}/reth/`
 - macOS: `$HOME/Library/Application Support/reth/`

 [default: default]

 --chain <CHAIN_OR_PATH>
 The chain this node is running.

 Possible values are either a built-in chain or the path to a chain
specification file.

 Built-in chains:
 - mainnet
 - goerli
 - sepolia
 - holesky

 [default: mainnet]

 --instance <INSTANCE>
 Add a new instance of a node.

 Configures the ports of the node to avoid conflicts with the
defaults. This is useful for running multiple nodes on the same machine.

 Max number of instances is 200. It is chosen in a way so that it's
not possible to have port numbers that conflict with each other.

 Changes to the following port numbers: - DISCOVERY_PORT: default +
`instance` - 1 - AUTH_PORT: default + `instance` * 100 - 100 - HTTP_RPC_PORT:
default - `instance` + 1 - WS_RPC_PORT: default + `instance` * 2 - 2

 [default: 1]

 -h, --help
 Print help (see a summary with '-h')

Logging:

reth Book https://paradigmxyz.github.io/reth/print.html

129 of 136 10/26/23, 15:08

reth debug execution

Debug the roundtrip execution of blocks as well as the generated data

 --log.directory <PATH>
 The path to put log files in

 [default: /reth/logs]

 --log.max-size <SIZE>
 The maximum size (in MB) of log files

 [default: 200]

 --log.max-files <COUNT>
 The maximum amount of log files that will be stored. If set to 0,
background file logging is disabled

 [default: 5]

 --log.journald
 Log events to journald

 --log.filter <FILTER>
 The filter to use for logs written to the log file

 [default: error]

 --color <COLOR>
 Sets whether or not the formatter emits ANSI terminal escape codes
for colors and other text formatting

 [default: always]

 Possible values:
 - always: Colors on
 - auto: Colors on
 - never: Colors off

Display:
 -v, --verbosity...
 Set the minimum log level.

 -v Errors
 -vv Warnings
 -vvv Info
 -vvvv Debug
 -vvvvv Traces (warning: very verbose!)

 -q, --quiet
 Silence all log output

reth Book https://paradigmxyz.github.io/reth/print.html

130 of 136 10/26/23, 15:08

https://paradigmxyz.github.io/reth/print.html#reth-debug-execution
https://paradigmxyz.github.io/reth/print.html#reth-debug-execution
https://paradigmxyz.github.io/reth/print.html#reth-debug-execution

reth debug merkle

Debug the clean & incremental state root calculations

reth debug in-memory-merkle

Debug in-memory state root calculation

$ reth debug execution --help

Usage: reth debug execution [OPTIONS] --to <TO>

$ reth debug merkle --help

Usage: reth debug merkle [OPTIONS] --to <TO>

$ reth debug in-memory-merkle --help

Usage: reth debug in-memory-merkle [OPTIONS]

reth Book https://paradigmxyz.github.io/reth/print.html

131 of 136 10/26/23, 15:08

https://paradigmxyz.github.io/reth/print.html#reth-debug-merkle
https://paradigmxyz.github.io/reth/print.html#reth-debug-merkle
https://paradigmxyz.github.io/reth/print.html#reth-debug-merkle
https://paradigmxyz.github.io/reth/print.html#reth-debug-in-memory-merkle
https://paradigmxyz.github.io/reth/print.html#reth-debug-in-memory-merkle
https://paradigmxyz.github.io/reth/print.html#reth-debug-in-memory-merkle

reth recover

Scripts for node recovery

reth Book https://paradigmxyz.github.io/reth/print.html

132 of 136 10/26/23, 15:08

https://paradigmxyz.github.io/reth/print.html#reth-recover
https://paradigmxyz.github.io/reth/print.html#reth-recover
https://paradigmxyz.github.io/reth/print.html#reth-recover

$ reth recover --help

Usage: reth recover [OPTIONS] <COMMAND>

Commands:
 storage-tries Recover the node by deleting dangling storage tries
help Print this message or the help of the given subcommand(s)

Options:
 --chain <CHAIN_OR_PATH>
 The chain this node is running.

 Possible values are either a built-in chain or the path to a chain
specification file.

 Built-in chains:
 - mainnet
 - goerli
 - sepolia
 - holesky

 [default: mainnet]

 --instance <INSTANCE>
 Add a new instance of a node.

 Configures the ports of the node to avoid conflicts with the
defaults. This is useful for running multiple nodes on the same machine.

 Max number of instances is 200. It is chosen in a way so that it's
not possible to have port numbers that conflict with each other.

 Changes to the following port numbers: - DISCOVERY_PORT: default +
`instance` - 1 - AUTH_PORT: default + `instance` * 100 - 100 - HTTP_RPC_PORT:
default - `instance` + 1 - WS_RPC_PORT: default + `instance` * 2 - 2

 [default: 1]

 -h, --help
 Print help (see a summary with '-h')

Logging:
 --log.directory <PATH>
 The path to put log files in

 [default: /reth/logs]

 --log.max-size <SIZE>
 The maximum size (in MB) of log files

 [default: 200]

 --log.max-files <COUNT>
 The maximum amount of log files that will be stored. If set to 0,
background file logging is disabled

reth Book https://paradigmxyz.github.io/reth/print.html

133 of 136 10/26/23, 15:08

reth recover storage-tries

Recover the node by deleting dangling storage tries

 [default: 5]

 --log.journald
 Log events to journald

 --log.filter <FILTER>
 The filter to use for logs written to the log file

 [default: error]

 --color <COLOR>
 Sets whether or not the formatter emits ANSI terminal escape codes
for colors and other text formatting

 [default: always]

 Possible values:
 - always: Colors on
 - auto: Colors on
 - never: Colors off

Display:
 -v, --verbosity...
 Set the minimum log level.

 -v Errors
 -vv Warnings
 -vvv Info
 -vvvv Debug
 -vvvvv Traces (warning: very verbose!)

 -q, --quiet
 Silence all log output

$ reth recover storage-tries --help

Usage: reth recover storage-tries [OPTIONS]

reth Book https://paradigmxyz.github.io/reth/print.html

134 of 136 10/26/23, 15:08

https://paradigmxyz.github.io/reth/print.html#reth-recover-storage-tries
https://paradigmxyz.github.io/reth/print.html#reth-recover-storage-tries
https://paradigmxyz.github.io/reth/print.html#reth-recover-storage-tries

Developers

Reth is composed of several crates that can be used in standalone projects. If you are

interested in using one or more of the crates, you can get an overview of them in the

developer docs, or take a look at the crate docs.

reth Book https://paradigmxyz.github.io/reth/print.html

135 of 136 10/26/23, 15:08

https://paradigmxyz.github.io/reth/print.html#developers
https://paradigmxyz.github.io/reth/print.html#developers
https://github.com/paradigmxyz/reth/tree/main/docs
https://github.com/paradigmxyz/reth/tree/main/docs
https://paradigmxyz.github.io/reth/docs
https://paradigmxyz.github.io/reth/docs

Contribute

Reth has docs specifically geared for developers and contributors, including

documentation on the structure and architecture of reth, the general workflow we

employ, and other useful tips.

You can find these docs here.

Check out our contributing guidelines here.

reth Book https://paradigmxyz.github.io/reth/print.html

136 of 136 10/26/23, 15:08

https://paradigmxyz.github.io/reth/print.html#contribute
https://paradigmxyz.github.io/reth/print.html#contribute
https://github.com/paradigmxyz/reth/tree/main/docs
https://github.com/paradigmxyz/reth/tree/main/docs
https://github.com/paradigmxyz/reth/blob/main/CONTRIBUTING.md
https://github.com/paradigmxyz/reth/blob/main/CONTRIBUTING.md

