rkyv https://rkyv.org/print.html

B rky

rkyv (archive) is a zero-copy deserialization framewo

This book covers the motivation, architecture, and n
way to learn and understand rkyv, but won't go as ir
documentation will. Don't be afraid to consult these
you read through.

Resources

Learning Materials
e The rkyv discord is a great place to get help wif

people using rkyv
e The rkyv github hosts the source and tracks pr

Documentation

e rkyv, the core library
e rkyv_dyn, which adds trait object support to rk
e rkyv_typename, a type naming library

Benchmarks

e The rust serialization benchmark is a shootout
rust serialization solutions. It includes special t
solutions like rkyv.

Sister Crates

e bytecheck, which rkyv uses for validation

1 of 31 10/18/23, 14:03

http://github.com/rkyv/rkyv
http://github.com/rkyv/rkyv
https://rkyv.org/print.html#resources
https://rkyv.org/print.html#resources
https://rkyv.org/print.html#learning-materials
https://rkyv.org/print.html#learning-materials
https://discord.gg/65F6MdnbQh
https://discord.gg/65F6MdnbQh
https://github.com/rkyv/rkyv
https://github.com/rkyv/rkyv
https://rkyv.org/print.html#documentation
https://rkyv.org/print.html#documentation
https://docs.rs/rkyv
https://docs.rs/rkyv
https://docs.rs/rkyv_dyn
https://docs.rs/rkyv_dyn
https://docs.rs/rkyv_typename
https://docs.rs/rkyv_typename
https://rkyv.org/print.html#benchmarks
https://rkyv.org/print.html#benchmarks
https://github.com/djkoloski/rust_serialization_benchmark
https://github.com/djkoloski/rust_serialization_benchmark
https://rkyv.org/print.html#sister-crates
https://rkyv.org/print.html#sister-crates
https://github.com/rkyv/bytecheck
https://github.com/rkyv/bytecheck

rkyv

2 of 31

https://rkyv.org/print.html

e ptr_meta, which rkyv uses for pointer manipul.
e rend, which rkyv uses for endian-agnostic feat

10/18/23, 14:03

https://github.com/rkyv/ptr_meta
https://github.com/rkyv/ptr_meta
https://github.com/rkyv/rend
https://github.com/rkyv/rend

rkyv https://rkyv.org/print.html

Motivation

First and foremost, the motivation behind rkyv is im
achieves that goal can also lead to gains in memory
the way.

Familiarity with other serialization frameworks ar
works will help, but isn't necessary to understanc

Most serialization frameworks like serde define an i
basic types such as primitives, strings, and byte arrz
type into two stages: the frontend and the backend.
breaks it down into the serializable types of the datz
data model types and writes them using some data
etc. This allows a clean separation between the seri:
it is written to.

Serde describes its data model in the serde book
eventually boils down to some combination of th

A major downside of traditional serialization is that
time to read, parse, and reconstruct types from thei

In JSON for example, strings are encoded by surr
quotes and escaping invalid characters inside of 1

{ "line": "\"All's well that ends well\""

AN AN A

numbers are turned into characters:

{ "pi": 3.1415926 }

ANANAANANANANN

and even field names, which could be implicitin r

{ "message_size": 334 }
ANANAAANNANANANANANANANN

All those characters are not only taking up space,

3 of 31 10/18/23, 14:03

https://rkyv.org/print.html#motivation
https://rkyv.org/print.html#motivation
https://serde.rs/
https://serde.rs/
https://serde.rs/data-model.html
https://serde.rs/data-model.html

rkyv https://rkyv.org/print.html

time we read and parse JSON, we're picking throt
figure out what the values are and reproduce the
bytes of memory, but it's encoded using nine byt
nine characters into the right f32!

This deserialization time adds up quickly, and in dat
and media editing it can come to dominate load tim
serialization technique called zero-copy deserializatio

4 of 31 10/18/23, 14:03

rkyv https://rkyv.org/print.html

Zero-copy deserializatiol

Zero-copy deserialization is a technique that reduce
access and use data by directly referencing bytes in th

This takes advantage of how we have to have sor
to deserialize it. If we had some JSON:

{ "quote": "I don't know, I didn't listen.

ANANAANANAANANANANANAANAANANANNANANANNNANNNANANN

Instead of copying those characters into a Strin;
JSON buffer as a &str . The lifetime of that &str
we wouldn't be allowed to drop it until we had dr

Partial zero-copy

Serde and others have support for partial zero-copy
pieces of the deserialized data are borrowed from t|
example, can borrow their bytes directly from the s¢
bincode that don't perform any character escaping.
created to hold the deserialized length and point to

A good way to think about this is that even thoug
the buffer, we still have to parse the structure out

struct Example<'a> {
quote: &'a str,
a: &'a [u8; 12],
b: u64,
c: char,

}
So a buffer might break down like this:

I don't know, I didn't listen.AAAAAAAAAAAA

We do a lot less work, but we still have to parse, ¢

5 of 31 10/18/23, 14:03

https://rkyv.org/print.html#zero-copy-deserialization
https://rkyv.org/print.html#zero-copy-deserialization
https://rkyv.org/print.html#partial-zero-copy
https://rkyv.org/print.html#partial-zero-copy

rkyv

6 of 31

https://rkyv.org/print.html

Example {
quote: str::from_utf8(&buffer[0..30]).un
a: &buffer[30..42],
b: u64::from_le_bytes(&buffer[42..50]),
c: char::from_u32(u32::from_le_bytes(&bu

And we can't borrow types like u64 or char that
since our buffer might not be properly aligned. W
store those! Even though we borrowed 42 of the
the last 12 and still had to parse through the buff

Partial zero-copy deserialization can considerably in
speed up some deserialiation, but with some work v

Total zero-copy

rkyv implements total zero-copy deserialization, whi
during deserialization and no work is done to deser
structuring its encoded representation so thatitis t
representation of the source type.

This is more like if our buffer was an Example:

struct Example {
quote: String,
a: [u8; 12],
b: u64,
c: char,

And our buffer looked like this:

I don't know, I didn't listen.__QOFFQLENAA

AN A A A

quote bytes pointer a
and len

Example
In this case, the bytes are padded to the correct ¢

Example are laid out exactly the same as they wc
deserialization code can be much simpler:

10/18/23, 14:03

https://rkyv.org/print.html#total-zero-copy
https://rkyv.org/print.html#total-zero-copy

rkyv

7 of 31

https://rkyv.org/print.html

unsafe { &xbuffer.as_ptr().add(32).cast()

This operation is almost zero work, and more imj
data. No matter how much or how little data we |
offset and a cast to access our data.

This opens up blazingly-fast data loading and enablc
more quickly than traditional serialization.

10/18/23, 14:03

rkyv https://rkyv.org/print.html

Architecture

The core of rkyv is built around relative pointers anc
Serialize, and Deserialize.Each of these traits |
supports unsized types: ArchiveUnsized, Serializ

A good way to think about it is that sized types ar
are built on. That's not a fluke either, rkyv is built
more complex abstractions out of lower-level ma
way. It's not much different from what you norm.

The system is built to be flexible and can be extende
example, the rkyv_dyn crate adds support for trait
defining how they build up to allow trait objects to k

8 of 31 10/18/23, 14:03

https://rkyv.org/print.html#architecture
https://rkyv.org/print.html#architecture
https://docs.rs/rkyv/0.7.1/rkyv/rel_ptr/struct.RelPtr.html
https://docs.rs/rkyv/0.7.1/rkyv/rel_ptr/struct.RelPtr.html
https://docs.rs/rkyv/0.7.1/rkyv/trait.Serialize.html
https://docs.rs/rkyv/0.7.1/rkyv/trait.Serialize.html
https://docs.rs/rkyv/0.7.1/rkyv/trait.Serialize.html
https://docs.rs/rkyv/0.7.1/rkyv/trait.Deserialize.html
https://docs.rs/rkyv/0.7.1/rkyv/trait.Deserialize.html
https://docs.rs/rkyv/0.7.1/rkyv/trait.Deserialize.html
https://docs.rs/rkyv/0.7.1/rkyv/trait.ArchiveUnsized.html
https://docs.rs/rkyv/0.7.1/rkyv/trait.ArchiveUnsized.html
https://docs.rs/rkyv/0.7.1/rkyv/trait.ArchiveUnsized.html
https://docs.rs/rkyv/0.7.1/rkyv/trait.SerializeUnsized.html
https://docs.rs/rkyv/0.7.1/rkyv/trait.SerializeUnsized.html
https://docs.rs/rkyv/0.7.1/rkyv/trait.SerializeUnsized.html

rkyv https://rkyv.org/print.html

Relative pointers

Relative pointers are the bread and butter of total z
replacing the use of normal pointers. But why can't

Consider some zero-copy data on disc. Before we ce¢
memory. But we can't control where in memory it ge
could be located at a different address, and therefo
located at a different address.

One of the major reasons for this is actually secut
program, it may run in a completely different ran
called address space layout randomization and it
memory corruption vulnerabilities.

At most, we can only control the alignment of our
work within those constraints.

This means that we can't store any pointers to that «
soon as we reload the data, it might not be at the sc
pointers dangling, and would almost definitely resul
other libraries like abomonation store some extra d
takes the place of deserialization, but we can do bet

In order to perform that fixup step, abomonation
mutable backing. This is okay for many use cases,
won't be able to mutate our buffer. One example
files.

While normal pointers hold an absolute address in 1
offset to an address. This changes how the pointer |

Pointer Self is moved
Absolute Target is still at address X

X Relative distance has

Relative changed di

This is exactly the property we need to build data st
deserialization. By using relative pointers, we can lo
and still have valid pointers inside of it. Relative poir
memory either, so we can memory map entire files

9 of 31 10/18/23, 14:03

https://rkyv.org/print.html#relative-pointers
https://rkyv.org/print.html#relative-pointers
https://en.wikipedia.org/wiki/Address_space_layout_randomization
https://en.wikipedia.org/wiki/Address_space_layout_randomization
https://github.com/TimelyDataflow/abomonation
https://github.com/TimelyDataflow/abomonation
https://en.wikipedia.org/wiki/Memory-mapped_file
https://en.wikipedia.org/wiki/Memory-mapped_file

rkyv

10 of 31

https://rkyv.org/print.html

data in a structured manner.

rkyv's implementation of relative pointers is the Re’

10/18/23, 14:03

https://docs.rs/rkyv/0.7.1/rkyv/rel_ptr/struct.RelPtr.html
https://docs.rs/rkyv/0.7.1/rkyv/rel_ptr/struct.RelPtr.html
https://docs.rs/rkyv/0.7.1/rkyv/rel_ptr/struct.RelPtr.html

rkyv https://rkyv.org/print.html

Archive

Types that implement Archive have an alternate re
deserialization. The construction of archived types

1. Any dependencies of the type are serialized. F
of the string, for boxes it would be the boxed \
contained elements. Any bookkeeping from th
type and held onto for later. This is the serializ

2. The resolver and original value are used to cor
output buffer. For strings the resolver would b
boxes it would be the position of the boxed va
position of the archived elements. With the ori
the archived version can be constructed. This i

Resolvers

A good example of why resolvers are necessary is w
two strings:

let value = ("hello".to_string(), "world".to._

The archived tuple needs to have both of the strings

0x0000 AA AA AA AA BB BB BB BB
Ox0008 CC CC CC cCc DD DD DD DD

A and B might be the length and pointer for the first
might be the length and pointer for the second strir

When archiving, we might be tempted to serialize ar
serialize and resolve the second one. But this might
("world") between the two! Instead, we need to writt
then finish archiving both of them. The tuple doesn’
need to finish archiving themselves, so they have to
Resolver.

This way, the tuple can:

1. Archive the first string (save the resolver)
2. Archive the second string (save the resolver)
3. Resolve the first string with its resolver

11 of 31 10/18/23, 14:03

https://rkyv.org/print.html#archive
https://rkyv.org/print.html#archive
https://rkyv.org/print.html#resolvers
https://rkyv.org/print.html#resolvers

rkyv

12 of 31

https://rkyv.org/print.html

4. Resolve the second string with its resolver

And we're guaranteed that the two strings are place
need.

10/18/23, 14:03

rkyv https://rkyv.org/print.html

Serialize

Types implement serialize separately from Arch-
some object, then Archive turns the value and tha
Having a separate Serialize traitis necessary bec
one archived representation, you may have options
order to create one.

The sSerialize traitis parameterized over the se
mutable object that helps the type serialize itself.
char don't bound their serializer type because tr
any kind of serializer. More complex types like B¢
that implements serializer, and even more col
require a serializer that additionally implement ¢

ScratchSpace.

Unlike serialize, Archive doesn't parameterize ¢
shouldn't matter what serializer a resolver was mad

Serializer

rkyv provides serializers that provide all the functior
library types, as well as serializers that combine oth
all of the components' capabilities.

The provided serializers offer a wide range of strate
cases will be best suited by AllocSerializer.

Many types require scratch space to serialize. This
they can use temporarily and return when they're
request scratch space to store the resolvers for it
of them. Requesting scratch space from the seria
reused many times, which reduces the number o
performed while serializing.

13 of 31 10/18/23, 14:03

https://rkyv.org/print.html#serialize
https://rkyv.org/print.html#serialize
https://docs.rs/rkyv/0.7.1/rkyv/trait.Serialize.html
https://docs.rs/rkyv/0.7.1/rkyv/trait.Serialize.html
https://docs.rs/rkyv/0.7.1/rkyv/trait.Serialize.html
https://docs.rs/rkyv/0.7.1/rkyv/ser/trait.Serializer.html
https://docs.rs/rkyv/0.7.1/rkyv/ser/trait.Serializer.html
https://docs.rs/rkyv/0.7.1/rkyv/ser/trait.Serializer.html
https://docs.rs/rkyv/0.7.1/rkyv/ser/trait.SharedSerializeRegistry.html
https://docs.rs/rkyv/0.7.1/rkyv/ser/trait.SharedSerializeRegistry.html
https://docs.rs/rkyv/0.7.1/rkyv/ser/trait.SharedSerializeRegistry.html
https://docs.rs/rkyv/0.7.1/rkyv/ser/trait.ScratchSpace.html
https://docs.rs/rkyv/0.7.1/rkyv/ser/trait.ScratchSpace.html
https://docs.rs/rkyv/0.7.1/rkyv/ser/trait.ScratchSpace.html
https://rkyv.org/print.html#serializer
https://rkyv.org/print.html#serializer
https://docs.rs/rkyv/0.7.1/rkyv/ser/serializers/index.html
https://docs.rs/rkyv/0.7.1/rkyv/ser/serializers/index.html
https://docs.rs/rkyv/0.7.1/rkyv/ser/serializers/type.AllocSerializer.html
https://docs.rs/rkyv/0.7.1/rkyv/ser/serializers/type.AllocSerializer.html
https://docs.rs/rkyv/0.7.1/rkyv/ser/serializers/type.AllocSerializer.html

rkyv https://rkyv.org/print.html

Deserialize

Similarly to Serialize, Deserialize parameterize
converts a type from its archived form back to its or
deserialization occurs in a single step and doesn't h,

Deserialize also parameterizes over the type tt
allows the same archived type to deserialize into
depending on what's being asked for. This helps
abstractions, but might require you to annotate t

This provides a more or less a traditional deserialize
sped up somewhat by having very compatible repre
memory and performance penalties of traditional d
what you need before you use it. Deserialization is r
as long as you can do so through the archived versic

Even the highest-performance serialization frame
speed limit because of the amount of memory all
performed.

A good use for Deserialize is deserializing portion
the archived data to locate some subobject, then de
archive as a whole. This granular approach provides
deserialization as well as traditional deserialization.

Deserializer

Deserializers, like serializers, provide capabilities to
types don't bound their deserializers, but some like
order to deserialize memory properly.

14 of 31 10/18/23, 14:03

https://rkyv.org/print.html#deserialize
https://rkyv.org/print.html#deserialize
https://docs.rs/rkyv/0.7.1/rkyv/trait.Deserialize.html
https://docs.rs/rkyv/0.7.1/rkyv/trait.Deserialize.html
https://docs.rs/rkyv/0.7.1/rkyv/trait.Deserialize.html
https://rkyv.org/print.html#deserializer
https://rkyv.org/print.html#deserializer

rkyv https://rkyv.org/print.html

Alignment

The alignment of a type restricts where it can be loce
loads and stores. Because rkyv creates references t
bytes, it has to ensure that the references it creates

In order to perform arithmetic and logical operat
load that data from memory into its registers. Ho
limitation on how the CPU can access that data: i
word boundaries. These words are the natural siz
word size is 4 bytes for 32-bit machines and 8 byt
had some data laid out like this:

0 4 8 c
AAAABBBBCCCCDDDD

On a 32-bit CPU, accesses could occur at any add
example, one could access A by loading 4 bytes -
bytes from address 4, and so on. This works grea
word boundaries. Unaligned data can throw a wre

0 4 8 c
. .AAAABBBBCCCC

Now if we want to load A into memory, we have

1. Load 4 bytes from address 0

2. Throw away the first two bytes

3. Load 4 bytes from address 4

4. Throw away the last two bytes

5. Combine our four bytes together

That forces us to do twice as many loads and per
can have a real impact on our performance acros
our data to be properly aligned.

rkyv provides two main utilities for aligning byte buf

e AlignedVec is a drop-in replacement for vecc
e AlignedBytes isawrapper around [u8; N]

Both of these types align the bytes inside to 16-byte
for almost all use cases, but if your particular situati

15 of 31 10/18/23, 14:03

https://rkyv.org/print.html#alignment
https://rkyv.org/print.html#alignment
https://docs.rs/rkyv/latest/rkyv/util/struct.AlignedVec.html
https://docs.rs/rkyv/latest/rkyv/util/struct.AlignedVec.html
https://docs.rs/rkyv/latest/rkyv/util/struct.AlignedVec.html
https://docs.rs/rkyv/latest/rkyv/util/struct.AlignedBytes.html
https://docs.rs/rkyv/latest/rkyv/util/struct.AlignedBytes.html
https://docs.rs/rkyv/latest/rkyv/util/struct.AlignedBytes.html

rkyv

16 of 31

https://rkyv.org/print.html

then you may need to manually align your bytes.

In practice

rkyv has a very basic unaligned data check built in tt
also validate your data, then it will always make sur

Common pitfalls

In some cases, your archived data may be prefixed |
the buffer. If this extra data misaligns the following
the prefixing data removed before accessing it.

In other cases, your archived data may not be tight 1
archived_root rely on the end of the buffer being
miscalculate the positions of the contained values if

10/18/23, 14:03

https://rkyv.org/print.html#in-practice
https://rkyv.org/print.html#in-practice
https://rkyv.org/validation.html
https://rkyv.org/validation.html
https://rkyv.org/print.html#common-pitfalls
https://rkyv.org/print.html#common-pitfalls
https://docs.rs/rkyv/latest/rkyv/util/fn.archived_root.html
https://docs.rs/rkyv/latest/rkyv/util/fn.archived_root.html
https://docs.rs/rkyv/latest/rkyv/util/fn.archived_root.html

rkyv https://rkyv.org/print.html

Format

Types which derive Archive generate an archived \

e Member types are replaced with their archivec
e Enums have #[repr(N)] where Nis u8, uilsé,
smallest possible type that can represent all of

For example, a struct like:

struct Example {
a: u32,
b: String,
c: Box<(u32, String)>,

Would have the archived counterpart:

struct ArchivedExample {
a: u32,
b: ArchivedString,
c: ArchivedBox<(u32, ArchivedString)>,

With the strict feature, these structs are addition.
guaranteed portability and stability.

In most cases, the strict feature will not be nec
efficiency of archived types. Make sure you undei
read the crate documentation for details on the

rkyv provides Archive implementations for commc
general they follow the same format as derived imp
cases. For example, ArchivedString performs asn
reduce memory use.

Object order

rkyv lays out subobjects in depth-first order from th
the root object is stored at the end of the buffer, no
tree:

17 of 31 10/18/23, 14:03

https://rkyv.org/print.html#format
https://rkyv.org/print.html#format
https://rkyv.org/print.html#object-order
https://rkyv.org/print.html#object-order

rkyv

18 of 31

https://rkyv.org/print.html

/\
/\

would be laid out like this in the buffer:

bdeca

from this serialization order:

a->b
a->c->d
a—->c —>e
a ->c

a

This deterministic layout means that you don't neec
object in most cases. As long as your buffer ends rig
can use archived_root with your buffer.

10/18/23, 14:03

https://docs.rs/rkyv/0.7.1/rkyv/util/fn.archived_root.html
https://docs.rs/rkyv/0.7.1/rkyv/util/fn.archived_root.html
https://docs.rs/rkyv/0.7.1/rkyv/util/fn.archived_root.html

rkyv https://rkyv.org/print.html

Wrapper types

Wrapper types make it easy to customize the way tt
make it easier to adapt rkyv to existing data models
deserializing idiomatic for even complicated types.

Annotating a field with #[with(...)] will wrap that
struct is serialized or deserialized. There's no perfor
but doing more or less work during serialization anc
performance. This excerpt is from the documentatic

#[derive(Archive, Deserialize, Serialize)]
struct Example {
#[with(Incremented)]

a: 132,
// Another 1i32 field, but not 1incrementec
b: 32,

The Incremented wrapper is wrapping a, and the
incremented in its archived form.

With

The core type behind wrappers is with . This struct
another name for the type inside of it. rkyv uses wi-
serializing and deserializing, and when you write yol
with with as well.

See ArchiveWith for an example of how to write yc

19 of 31 10/18/23, 14:03

https://rkyv.org/print.html#wrapper-types
https://rkyv.org/print.html#wrapper-types
https://rkyv.org/print.html#with
https://rkyv.org/print.html#with
https://rkyv.org/print.html#with
https://docs.rs/rkyv/0.7.1/rkyv/with/struct.With.html
https://docs.rs/rkyv/0.7.1/rkyv/with/struct.With.html
https://docs.rs/rkyv/0.7.1/rkyv/with/struct.With.html
https://docs.rs/rkyv/0.7.1/rkyv/with/trait.ArchiveWith.html
https://docs.rs/rkyv/0.7.1/rkyv/with/trait.ArchiveWith.html
https://docs.rs/rkyv/0.7.1/rkyv/with/trait.ArchiveWith.html

rkyv https://rkyv.org/print.html

Shared Pointers

The implementation details of shared pointers may
Specifically, the rules surrounding how and when st
and pooled may affect how you choose to use them

Serialization

Shared pointers (Rc and Arc) are serialized whene
time, and the data address is reused when subsequ
data. This means that you can expect shared pointe
when archived, even if they are unsized to different

Weak pointers (rc::Weak and sync: :Weak) have se
they're encountered. The serialization process upgr.
serializes them like shared pointers. Otherwise, it se

Deserialization

Similarly, shared pointers are deserialized on the fir
Weak pointers do a similar upgrade attempt when t

Serializers and Deserializers

The serializers for shared pointers hold the location
safe to serialize shared pointers to an archive acros:
you use the same serializer for each one. Using a ne
but may end up duplicating the shared data.

The deserializers for shared pointers hold a shared
and will hold them in memory until the deserializer
serialize only weak pointers to some shared data, tr
when deserialized but will point to nothing as soon .

20 of 31 10/18/23, 14:03

https://rkyv.org/print.html#shared-pointers
https://rkyv.org/print.html#shared-pointers
https://rkyv.org/print.html#serialization
https://rkyv.org/print.html#serialization
https://rkyv.org/print.html#deserialization
https://rkyv.org/print.html#deserialization
https://rkyv.org/print.html#serializers-and-deserializers
https://rkyv.org/print.html#serializers-and-deserializers

rkyv https://rkyv.org/print.html

Unsized Types

rkyv supports unsized types out of the box and ship
common unsized types (str s and slices). Trait obje
rkyv_dyn, see "Trait Objects" for more details.

Metadata

The core concept that enables unsized types is metz
different sizes, in contrast with languages like C and
size. This is important for the concept of sizing, whic
rust's Sized trait.

Pointers are composed of two pieces: a data addres
address is what most people think of when they thir
the pointed data. The metadata for a pointer is som
safely with the data at the pointed location. It can b
Sized types. Pointers with no extra metadata are s
pointers with metadata are sometimes called "wide'

rkyv uses the ptr_meta crate to perform these c
these may be incorporated as part of the standar

Fundamentally, the metadata of a pointer exists to |
information to safely access, drop, and deallocate st
slices, the metadata carries the length of the slice, fc
function table (vtable) pointer, and for custom unsiz
the single trailing unsized member.

Archived Metadata

For unsized types, the metadata for a type is archive
to the data. This mirrors how rust works internally t
and other exotic use cases. This does complicate thi
the metadata archiving process will end up as just fi
returning () .

21 of 31 10/18/23, 14:03

https://rkyv.org/print.html#unsized-types
https://rkyv.org/print.html#unsized-types
https://rkyv.org/trait-objects.html
https://rkyv.org/trait-objects.html
https://rkyv.org/print.html#metadata
https://rkyv.org/print.html#metadata
https://doc.rust-lang.org/std/marker/trait.Sized.html
https://doc.rust-lang.org/std/marker/trait.Sized.html
https://docs.rs/ptr_meta
https://docs.rs/ptr_meta
https://docs.rs/ptr_meta
https://rust-lang.github.io/rfcs/2580-ptr-meta.html
https://rust-lang.github.io/rfcs/2580-ptr-meta.html
https://rkyv.org/print.html#archived-metadata
https://rkyv.org/print.html#archived-metadata

rkyv

22 of 31

https://rkyv.org/print.html

This is definitely one of the more complicated pal
difficult to wrap your head around. Reading the ¢
may help you understand how the system works

10/18/23, 14:03

rkyv https://rkyv.org/print.html

Trait Objects

Trait object serialization is supported through the r
maintained as part of rkyv, but is separate from the
implementations to be used instead. This section wi
of rkyv_dyn and how to use it effectively.

rkyv_dyn may not work in some exotic environn

to register trait objects. If you want these capabil
your environment, feel free to file an issue or dro
through.

Core traits

The new traits introduced by rkyv_dyn are Serial-
are effectively type-erased versions of SerializeUn
that the traits are object-safe. Likewise, it introduce:
and deserializers: DynSerializer and DynDeserial
basic functionality required to serialize most types, |
custom types require.

DynSerializer implements the Serializer anc
not be suitable for all use cases. If you need more
by in the discord to talk it through.

Architecture

It is highly recommended to use the provided arch-
traits and set everything up correctly.

Using archive_dyn on a trait definition creates ano
your trait and SerializeDyn. This "shim" traitis bla
implement your trait and SerializeDyn, SO you shc
trait to use it.

The shim trait should be used everywhere that you
you want to serialize. By default, it will be named "S

23 of 31 10/18/23, 14:03

https://rkyv.org/print.html#trait-objects
https://rkyv.org/print.html#trait-objects
https://rkyv.org/print.html#core-traits
https://rkyv.org/print.html#core-traits
https://docs.rs/rkyv_dyn/latest/rkyv_dyn/trait.SerializeDyn.html
https://docs.rs/rkyv_dyn/latest/rkyv_dyn/trait.SerializeDyn.html
https://docs.rs/rkyv_dyn/latest/rkyv_dyn/trait.SerializeDyn.html
https://docs.rs/rkyv_dyn/latest/rkyv_dyn/trait.DynSerializer.html
https://docs.rs/rkyv_dyn/latest/rkyv_dyn/trait.DynSerializer.html
https://docs.rs/rkyv_dyn/latest/rkyv_dyn/trait.DynSerializer.html
https://docs.rs/rkyv_dyn/latest/rkyv_dyn/trait.DynDeserializer.html
https://docs.rs/rkyv_dyn/latest/rkyv_dyn/trait.DynDeserializer.html
https://docs.rs/rkyv_dyn/latest/rkyv_dyn/trait.DynDeserializer.html
https://rkyv.org/print.html#architecture-1
https://rkyv.org/print.html#architecture-1
https://docs.rs/rkyv_dyn/latest/rkyv_dyn/attr.archive_dyn.html
https://docs.rs/rkyv_dyn/latest/rkyv_dyn/attr.archive_dyn.html
https://docs.rs/rkyv_dyn/latest/rkyv_dyn/attr.archive_dyn.html

rkyv https://rkyv.org/print.html

approach that similar libraries take is directly addiny
your trait. While more ergonomic, this approach do
the trait on types that cannot or should not implem:
approach was favored for rkyv_dyn.

When the shim trait is serialized, it stores the type h
metadata so it can get the correct vtable for it when
vtables for implementing types must be known ahe.
archive_dyn for the second time.

Using archive_dyn on a trait implementation regis
implementation with a global lookup, allowing it to
process can be slow, the vtable_cache feature allo
only the first time, then cached locally for future loo
alternate implementations may take a different app
benefits and tradeoffs.

24 of 31 10/18/23, 14:03

rkyv

25 of 31

https://rkyv.org/print.html

Validation

Validation can be enabled with the validation feat
bytecheck crate to perform archive validation, and
and malicious data.

To validate an archive, you first have to derive Chec

use rkyv::{Archive, Deserialize, Serialize};

#[derive(Archive, Deserialize, Serialize)]
#[archive(check_bytes)]
pub struct Example {

a: 1132,

b: String,

c: Vec<bool>,

The #[archive(check_bytes)] attribute derives ct
Finally, you can use check_archived_root to check
archived value if it was successful:

use rkyv::check_archived_root;

let archived_example = check_archived_root::«

More examples of how to enable and perform valid.
crate's validation module.

The validation context

When checking an archive, a validation context is cri
defaults that will work for most archived types. If yo
logic, you may need to augment the capabilities of t
check your type and use check_archived_root_wit

The Defaultvalidator supports all builtin rkyv t
whether you have the alloc feature enabled or

Bounds checking and subtree ra

10/18/23, 14:03

https://rkyv.org/print.html#validation
https://rkyv.org/print.html#validation
https://docs.rs/bytecheck
https://docs.rs/bytecheck
https://docs.rs/bytecheck
https://docs.rs/bytecheck/latest/bytecheck/trait.CheckBytes.html
https://docs.rs/bytecheck/latest/bytecheck/trait.CheckBytes.html
https://docs.rs/bytecheck/latest/bytecheck/trait.CheckBytes.html
https://docs.rs/rkyv/0.7.1/rkyv/validation/validators/fn.check_archived_root.html
https://docs.rs/rkyv/0.7.1/rkyv/validation/validators/fn.check_archived_root.html
https://docs.rs/rkyv/0.7.1/rkyv/validation/validators/fn.check_archived_root.html
https://rkyv.org/print.html#the-validation-context
https://rkyv.org/print.html#the-validation-context
https://docs.rs/rkyv/0.7.1/rkyv/validation/fn.check_archived_root_with_context.html
https://docs.rs/rkyv/0.7.1/rkyv/validation/fn.check_archived_root_with_context.html
https://docs.rs/rkyv/0.7.1/rkyv/validation/fn.check_archived_root_with_context.html
https://docs.rs/rkyv/latest/rkyv/validation/validators/struct.DefaultValidator.html
https://docs.rs/rkyv/latest/rkyv/validation/validators/struct.DefaultValidator.html
https://docs.rs/rkyv/latest/rkyv/validation/validators/struct.DefaultValidator.html
https://rkyv.org/print.html#bounds-checking-and-subtree-ranges
https://rkyv.org/print.html#bounds-checking-and-subtree-ranges

rkyv https://rkyv.org/print.html

All pointers are checked to make sure that they:

e pointinside the archive
e are properly aligned
e and have enough space afterward to hold the

However, this alone is not enough to secure against
sharing violations, so rkyv uses a system to verify th
ownership model.

Archive validation uses a memory model where all <
memory. This is called a subtree range. When validat
keeps track of where subobjects are allowed to be I«
range from the beginning with push_prefix_subtre
push_suffix_subtree_range . After pushing a subtr
can be checked by calling their checkBytes implem
checked, pop_prefix_subtree_range and pop_sufi
restore the original range with the checked section |

Validation and Shared Pointers

While validating shared pointers is supported, some
prevent malicious data from validating:

Shared pointers that point to the same object will fa
types. This can cause issues if you have a shared po
pointers are an array pointer and a slice pointer. Sir
shared pointers to the same value as a concrete typ
dyn Any).

rkyv still supports these use cases, but it's not possi
with these use cases. Alternative validation solution
hashes may be a better approach in these cases.

26 of 31 10/18/23, 14:03

https://rkyv.org/print.html#validation-and-shared-pointers
https://rkyv.org/print.html#validation-and-shared-pointers

rkyv https://rkyv.org/print.html

Feature Comparison

This is a best-effort feaure comparison between rky
by no means completely comprehensive, and pull re
welcomed.

Feature matrix

Feature rkyv
Open type system yes
Scalars yes
Tables no*
Schema evolution no*
Zero-copy yes
Randome-access reads yes
Validation upfront*
Reflection no*
Object order bottom-up
Schema language derive
Usable as mutable state yes
Padding takes space on wire? yes*
Unset fields take space on wire? yes
Pointers take space on wire? yes
Cross-language no
Hash maps and B-trees yes
Shared pointers yes

* rkyv's open type system allows extension types that p

Open type system

One of rkyv's primary features is that its type systen
write custom types and control their properties very
solid foundation to build many other features on to
already a fundamental part of how rkyv works.

27 of 31 10/18/23, 14:03

https://rkyv.org/print.html#feature-comparison
https://rkyv.org/print.html#feature-comparison
https://rkyv.org/print.html#feature-matrix
https://rkyv.org/print.html#feature-matrix
https://rkyv.org/print.html#open-type-system
https://rkyv.org/print.html#open-type-system

rkyv

28 of 31

https://rkyv.org/print.html

Unsized types

Even though they're part of the main library, unsize
serialization functionality. Types like Box and Rc/Ai
entry points for unsized types into the sized system

Trait objects

Trait objects are further built on top of unsized type
objects easy and safe.

10/18/23, 14:03

https://rkyv.org/print.html#unsized-types-1
https://rkyv.org/print.html#unsized-types-1
https://rkyv.org/print.html#trait-objects-1
https://rkyv.org/print.html#trait-objects-1

rkyv https://rkyv.org/print.html

FAQ

Because it's so different from traditional serializatio
questions about rkyv. This is meant to serve as a coi
answers.

How is rkyv zero-copy? It definit
into memory.
Traditional serialization works in two steps:

1. Read the data from disk into a buffer (maybe i
2. Process the data in the buffer into the deserial

The copy happens when the data in the buffer ends
Zero-copy deserialization doesn't deserialize the bu
avoids this copy.

You can actually even avoid reading the data from d
environments by using memory mapping.

How does rkyv handle endianne

rkyv supports three endiannesses: native, little, and
little or big, but removes the abstraction layer to mc

types.

You can enable specific endiannesses with the 1itt

Is rkyv cross-platform?

Yes, but rkyv has been tested mostly on x86 machin
need to get fixed for other architectures.

Can | use this in embedded and :
environments?

29 of 31 10/18/23, 14:03

https://rkyv.org/print.html#faq
https://rkyv.org/print.html#faq
https://rkyv.org/print.html#how-is-rkyv-zero-copy-it-definitely-copies-the-archive-into-memory
https://rkyv.org/print.html#how-is-rkyv-zero-copy-it-definitely-copies-the-archive-into-memory
https://rkyv.org/print.html#how-is-rkyv-zero-copy-it-definitely-copies-the-archive-into-memory
https://rkyv.org/print.html#how-is-rkyv-zero-copy-it-definitely-copies-the-archive-into-memory
https://rkyv.org/print.html#how-does-rkyv-handle-endianness
https://rkyv.org/print.html#how-does-rkyv-handle-endianness
https://rkyv.org/print.html#is-rkyv-cross-platform
https://rkyv.org/print.html#is-rkyv-cross-platform
https://rkyv.org/print.html#can-i-use-this-in-embedded-and-no_std-environments
https://rkyv.org/print.html#can-i-use-this-in-embedded-and-no_std-environments
https://rkyv.org/print.html#can-i-use-this-in-embedded-and-no_std-environments
https://rkyv.org/print.html#can-i-use-this-in-embedded-and-no_std-environments
https://rkyv.org/print.html#can-i-use-this-in-embedded-and-no_std-environments
https://rkyv.org/print.html#can-i-use-this-in-embedded-and-no_std-environments

rkyv https://rkyv.org/print.html

Yes, disable the std feature for no_std . You can ac
to disable all memory allocation capabilities.

Safety

Isn't this very unsafe if you acce

Yes, but you can still access untrusted data if you va
It's an extra step, but it's usually still less than the cc
format. rkyv has proven to round-trip faster than bi

Doesn't that mean | always have

No. There are many other ways you can verify your
and signed buffers.

Isn't it kind of deceptive to say r
require validation?

The fastest path to access archived data is marked ¢
unusable, it means that it's only safe to call if you ca

The value must be archived at the given position

As long as you can (reasonably) guarantee that, ther
every archive needs to be validated, and you can us
guarantee data integrity and security.

Even if you do need to always validate your data bef
faster than deserializing with other high-performan:
even though it's not by the same margins.

30 of 31 10/18/23, 14:03

https://rkyv.org/print.html#safety
https://rkyv.org/print.html#safety
https://rkyv.org/print.html#isnt-this-very-unsafe-if-you-access-untrusted-data
https://rkyv.org/print.html#isnt-this-very-unsafe-if-you-access-untrusted-data
https://rkyv.org/print.html#doesnt-that-mean-i-always-have-to-validate
https://rkyv.org/print.html#doesnt-that-mean-i-always-have-to-validate
https://rkyv.org/print.html#isnt-it-kind-of-deceptive-to-say-rkyv-is-fast-and-then-require-validation
https://rkyv.org/print.html#isnt-it-kind-of-deceptive-to-say-rkyv-is-fast-and-then-require-validation
https://rkyv.org/print.html#isnt-it-kind-of-deceptive-to-say-rkyv-is-fast-and-then-require-validation
https://rkyv.org/print.html#isnt-it-kind-of-deceptive-to-say-rkyv-is-fast-and-then-require-validation

rkyv

31 of 31

https://rkyv.org/print.html

Contributors

Thanks to all the contributors who have helped doci
» David Koloski (djkoloski)

If you feel you're missing from this list, feel free to a

10/18/23, 14:03

https://rkyv.org/print.html#contributors
https://rkyv.org/print.html#contributors
https://github.com/djkoloski
https://github.com/djkoloski

