
rkyv (archive) is a zero-copy deserialization framework for rust.

This book covers the motivation, architecture, and major features of rkyv.

way to learn and understand rkyv, but won't go as in-depth on specifics as

documentation will. Don't be afraid to consult these other resources as yo

you read through.

Resources

Learning Materials

• The rkyv discord is a great place to get help with specific issues and m

people using rkyv

• The rkyv github hosts the source and tracks project issues and miles

Documentation

• rkyv, the core library

• rkyv_dyn, which adds trait object support to rkyv

• rkyv_typename, a type naming library

Benchmarks

• The rust serialization benchmark is a shootout style benchmark com

rust serialization solutions. It includes special benchmarks for zero-c

solutions like rkyv.

Sister Crates

• bytecheck, which rkyv uses for validation

rkyv https://rkyv.org/print.html

1 of 31 10/18/23, 14:03

http://github.com/rkyv/rkyv
http://github.com/rkyv/rkyv
https://rkyv.org/print.html#resources
https://rkyv.org/print.html#resources
https://rkyv.org/print.html#learning-materials
https://rkyv.org/print.html#learning-materials
https://discord.gg/65F6MdnbQh
https://discord.gg/65F6MdnbQh
https://github.com/rkyv/rkyv
https://github.com/rkyv/rkyv
https://rkyv.org/print.html#documentation
https://rkyv.org/print.html#documentation
https://docs.rs/rkyv
https://docs.rs/rkyv
https://docs.rs/rkyv_dyn
https://docs.rs/rkyv_dyn
https://docs.rs/rkyv_typename
https://docs.rs/rkyv_typename
https://rkyv.org/print.html#benchmarks
https://rkyv.org/print.html#benchmarks
https://github.com/djkoloski/rust_serialization_benchmark
https://github.com/djkoloski/rust_serialization_benchmark
https://rkyv.org/print.html#sister-crates
https://rkyv.org/print.html#sister-crates
https://github.com/rkyv/bytecheck
https://github.com/rkyv/bytecheck

• ptr_meta, which rkyv uses for pointer manipulation

• rend, which rkyv uses for endian-agnostic features

rkyv https://rkyv.org/print.html

2 of 31 10/18/23, 14:03

https://github.com/rkyv/ptr_meta
https://github.com/rkyv/ptr_meta
https://github.com/rkyv/rend
https://github.com/rkyv/rend

Motivation

First and foremost, the motivation behind rkyv is improved performance.

achieves that goal can also lead to gains in memory use, correctness, and

the way.

Familiarity with other serialization frameworks and how traditional seri

works will help, but isn't necessary to understand how rkyv works.

Most serialization frameworks like serde define an internal data model th

basic types such as primitives, strings, and byte arrays. This splits the wor

type into two stages: the frontend and the backend. The frontend takes so

breaks it down into the serializable types of the data model. The backend

data model types and writes them using some data format such as JSON,

etc. This allows a clean separation between the serialization of a type and

it is written to.

Serde describes its data model in the serde book. Everything serialized

eventually boils down to some combination of those types!

A major downside of traditional serialization is that it takes a considerable

time to read, parse, and reconstruct types from their serialized values.

In JSON for example, strings are encoded by surrounding the contents

quotes and escaping invalid characters inside of them:

numbers are turned into characters:

and even field names, which could be implicit in most cases, are turned

All those characters are not only taking up space, they're also taking up

{ "line": "\"All's well that ends well\"" }

 ^^ ^ ^

{ "pi": 3.1415926 }

 ^^^^^^^^^

{ "message_size": 334 }

 ^^^^^^^^^^^^^^^

rkyv https://rkyv.org/print.html

3 of 31 10/18/23, 14:03

https://rkyv.org/print.html#motivation
https://rkyv.org/print.html#motivation
https://serde.rs/
https://serde.rs/
https://serde.rs/data-model.html
https://serde.rs/data-model.html

time we read and parse JSON, we're picking through those characters i

figure out what the values are and reproduce them in memory. An

bytes of memory, but it's encoded using nine bytes and we still have to

nine characters into the right f32 !

This deserialization time adds up quickly, and in data-heavy applications s

and media editing it can come to dominate load times. rkyv provides a so

serialization technique called zero-copy deserialization

rkyv https://rkyv.org/print.html

4 of 31 10/18/23, 14:03

Zero-copy deserialization

Zero-copy deserialization is a technique that reduces the time and memo

access and use data by directly referencing bytes in the serialized form

This takes advantage of how we have to have some data loaded in mem

to deserialize it. If we had some JSON:

Instead of copying those characters into a String

JSON buffer as a &str . The lifetime of that &str would depend on our

we wouldn't be allowed to drop it until we had dropped the string we w

Partial zero-copy

Serde and others have support for partial zero-copy deserialization, wher

pieces of the deserialized data are borrowed from the serialized form. Str

example, can borrow their bytes directly from the serialized form in encod

bincode that don't perform any character escaping. However, a string obj

created to hold the deserialized length and point to the borrowed charact

A good way to think about this is that even though we're borrowing lots

the buffer, we still have to parse the structure out:

So a buffer might break down like this:

We do a lot less work, but we still have to parse, create, and return an

{ "quote": "I don't know, I didn't listen." }

 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

struct Example<'a> {

 quote: &'a str,

 a: &'a [u8; 12],

 b: u64,

 c: char,

}

I don't know, I didn't listen.AAAAAAAAAAAABBBBBBBBCCCC

^-----------------------------^-----------^-------^---

 quote: str a: [u8; 12] b: u64 c: char

rkyv https://rkyv.org/print.html

5 of 31 10/18/23, 14:03

https://rkyv.org/print.html#zero-copy-deserialization
https://rkyv.org/print.html#zero-copy-deserialization
https://rkyv.org/print.html#partial-zero-copy
https://rkyv.org/print.html#partial-zero-copy

And we can't borrow types like u64 or char that have alignment requ

since our buffer might not be properly aligned. We have to immediatel

store those! Even though we borrowed 42 of the buffer's bytes, we mis

the last 12 and still had to parse through the buffer to find out where e

Partial zero-copy deserialization can considerably improve memory usage

speed up some deserialiation, but with some work we can go further.

Total zero-copy

rkyv implements total zero-copy deserialization, which guarantees that no

during deserialization and no work is done to deserialize data. It achieves

structuring its encoded representation so that it is the same as the in-mem

representation of the source type.

This is more like if our buffer was an Example:

And our buffer looked like this:

In this case, the bytes are padded to the correct alignment and the field

Example are laid out exactly the same as they would be in memory. Ou

deserialization code can be much simpler:

Example {

 quote: str::from_utf8(&buffer[0..30]).unwrap(),

 a: &buffer[30..42],

 b: u64::from_le_bytes(&buffer[42..50]),

 c: char::from_u32(u32::from_le_bytes(&buffer[

}

struct Example {

 quote: String,

 a: [u8; 12],

 b: u64,

 c: char,

}

I don't know, I didn't listen.__QOFFQLENAAAAAAAAAAAABBBBBBB

^----------------------------- ^---^---^-----------^------

 quote bytes pointer a b

 and len

 ^--------------------------

 Example

rkyv https://rkyv.org/print.html

6 of 31 10/18/23, 14:03

https://rkyv.org/print.html#total-zero-copy
https://rkyv.org/print.html#total-zero-copy

This operation is almost zero work, and more importantly it doesn't

data. No matter how much or how little data we have, it's always just a

offset and a cast to access our data.

This opens up blazingly-fast data loading and enables data access orders

more quickly than traditional serialization.

unsafe { &*buffer.as_ptr().add(32).cast() }

rkyv https://rkyv.org/print.html

7 of 31 10/18/23, 14:03

Architecture

The core of rkyv is built around relative pointers and three core traits:

Serialize , and Deserialize . Each of these traits has a corresponding v

supports unsized types: ArchiveUnsized , SerializeUnsized

A good way to think about it is that sized types are the

are built on. That's not a fluke either, rkyv is built precisely so that you c

more complex abstractions out of lower-level machinery in a safe and c

way. It's not much different from what you normally do while programm

The system is built to be flexible and can be extended beyond the provide

example, the rkyv_dyn crate adds support for trait objects by introducing

defining how they build up to allow trait objects to be serialized and deser

rkyv https://rkyv.org/print.html

8 of 31 10/18/23, 14:03

https://rkyv.org/print.html#architecture
https://rkyv.org/print.html#architecture
https://docs.rs/rkyv/0.7.1/rkyv/rel_ptr/struct.RelPtr.html
https://docs.rs/rkyv/0.7.1/rkyv/rel_ptr/struct.RelPtr.html
https://docs.rs/rkyv/0.7.1/rkyv/trait.Serialize.html
https://docs.rs/rkyv/0.7.1/rkyv/trait.Serialize.html
https://docs.rs/rkyv/0.7.1/rkyv/trait.Serialize.html
https://docs.rs/rkyv/0.7.1/rkyv/trait.Deserialize.html
https://docs.rs/rkyv/0.7.1/rkyv/trait.Deserialize.html
https://docs.rs/rkyv/0.7.1/rkyv/trait.Deserialize.html
https://docs.rs/rkyv/0.7.1/rkyv/trait.ArchiveUnsized.html
https://docs.rs/rkyv/0.7.1/rkyv/trait.ArchiveUnsized.html
https://docs.rs/rkyv/0.7.1/rkyv/trait.ArchiveUnsized.html
https://docs.rs/rkyv/0.7.1/rkyv/trait.SerializeUnsized.html
https://docs.rs/rkyv/0.7.1/rkyv/trait.SerializeUnsized.html
https://docs.rs/rkyv/0.7.1/rkyv/trait.SerializeUnsized.html

Relative pointers

Relative pointers are the bread and butter of total zero-copy deserializatio

replacing the use of normal pointers. But why can't we use normal pointe

Consider some zero-copy data on disc. Before we can use it, we need to lo

memory. But we can't control where in memory it gets loaded. Every time

could be located at a different address, and therefore the objects inside o

located at a different address.

One of the major reasons for this is actually security

program, it may run in a completely different random location in memo

called address space layout randomization and it helps prevent exploit

memory corruption vulnerabilities.

At most, we can only control the alignment of our zero-copy data, so we

work within those constraints.

This means that we can't store any pointers to that data, inside of it or ou

soon as we reload the data, it might not be at the same address. That wou

pointers dangling, and would almost definitely result in memory access vi

other libraries like abomonation store some extra data and perform a fas

takes the place of deserialization, but we can do better.

In order to perform that fixup step, abomonation requires that the buff

mutable backing. This is okay for many use cases, but there are also cas

won't be able to mutate our buffer. One example is if we used

files.

While normal pointers hold an absolute address in memory, relative poin

offset to an address. This changes how the pointer behaves under moves

Pointer Self is moved

Absolute �� Target is still at address �

Relative
� Relative distance has

changed

��

distance apart

This is exactly the property we need to build data structures with total zer

deserialization. By using relative pointers, we can load data at any position

and still have valid pointers inside of it. Relative pointers don't require wri

memory either, so we can memory map entire files and instantly have acc

rkyv https://rkyv.org/print.html

9 of 31 10/18/23, 14:03

https://rkyv.org/print.html#relative-pointers
https://rkyv.org/print.html#relative-pointers
https://en.wikipedia.org/wiki/Address_space_layout_randomization
https://en.wikipedia.org/wiki/Address_space_layout_randomization
https://github.com/TimelyDataflow/abomonation
https://github.com/TimelyDataflow/abomonation
https://en.wikipedia.org/wiki/Memory-mapped_file
https://en.wikipedia.org/wiki/Memory-mapped_file

data in a structured manner.

rkyv's implementation of relative pointers is the RelPtr

rkyv https://rkyv.org/print.html

10 of 31 10/18/23, 14:03

https://docs.rs/rkyv/0.7.1/rkyv/rel_ptr/struct.RelPtr.html
https://docs.rs/rkyv/0.7.1/rkyv/rel_ptr/struct.RelPtr.html
https://docs.rs/rkyv/0.7.1/rkyv/rel_ptr/struct.RelPtr.html

Archive

Types that implement Archive have an alternate representation that sup

deserialization. The construction of archived types happens in two steps:

1. Any dependencies of the type are serialized. For strings this would b

of the string, for boxes it would be the boxed value, and for vectors i

contained elements. Any bookkeeping from this step is bundled into

type and held onto for later. This is the serialize

2. The resolver and original value are used to construct the archived va

output buffer. For strings the resolver would be the position of the c

boxes it would be the position of the boxed value, and for vectors it

position of the archived elements. With the original values and resol

the archived version can be constructed. This is the

Resolvers

A good example of why resolvers are necessary is when archiving a tuple.

two strings:

The archived tuple needs to have both of the strings right next to each oth

A and B might be the length and pointer for the first string of the tuple, an

might be the length and pointer for the second string.

When archiving, we might be tempted to serialize and resolve the first str

serialize and resolve the second one. But this might place the second strin

("world") between the two! Instead, we need to write out the bytes for bot

then finish archiving both of them. The tuple doesn't know what informat

need to finish archiving themselves, so they have to provide it to the tuple

Resolver.

This way, the tuple can:

1. Archive the first string (save the resolver)

2. Archive the second string (save the resolver)

3. Resolve the first string with its resolver

let value = ("hello".to_string(), "world".to_string());

0x0000 AA AA AA AA BB BB BB BB

0x0008 CC CC CC CC DD DD DD DD

rkyv https://rkyv.org/print.html

11 of 31 10/18/23, 14:03

https://rkyv.org/print.html#archive
https://rkyv.org/print.html#archive
https://rkyv.org/print.html#resolvers
https://rkyv.org/print.html#resolvers

4. Resolve the second string with its resolver

And we're guaranteed that the two strings are placed right next to each o

need.

rkyv https://rkyv.org/print.html

12 of 31 10/18/23, 14:03

Serialize

Types implement Serialize separately from Archive

some object, then Archive turns the value and that resolver into an arch

Having a separate Serialize trait is necessary because although a type m

one archived representation, you may have options of what requirements

order to create one.

The Serialize trait is parameterized over the serializer

mutable object that helps the type serialize itself. The most basic types

char don't bound their serializer type because they can serialize thems

any kind of serializer. More complex types like Box

that implements Serializer , and even more complex types like

require a serializer that additionally implement SharedSerializeReg

ScratchSpace .

Unlike Serialize , Archive doesn't parameterize over the serializer used

shouldn't matter what serializer a resolver was made with, only that it's m

Serializer

rkyv provides serializers that provide all the functionality needed to serial

library types, as well as serializers that combine other serializers into a sin

all of the components' capabilities.

The provided serializers offer a wide range of strategies and capabilities, b

cases will be best suited by AllocSerializer .

Many types require scratch space to serialize. This is some extra allocate

they can use temporarily and return when they're done. For example,

request scratch space to store the resolvers for its elements until it can

of them. Requesting scratch space from the serializer allows scratch sp

reused many times, which reduces the number of slow memory allocat

performed while serializing.

rkyv https://rkyv.org/print.html

13 of 31 10/18/23, 14:03

https://rkyv.org/print.html#serialize
https://rkyv.org/print.html#serialize
https://docs.rs/rkyv/0.7.1/rkyv/trait.Serialize.html
https://docs.rs/rkyv/0.7.1/rkyv/trait.Serialize.html
https://docs.rs/rkyv/0.7.1/rkyv/trait.Serialize.html
https://docs.rs/rkyv/0.7.1/rkyv/ser/trait.Serializer.html
https://docs.rs/rkyv/0.7.1/rkyv/ser/trait.Serializer.html
https://docs.rs/rkyv/0.7.1/rkyv/ser/trait.Serializer.html
https://docs.rs/rkyv/0.7.1/rkyv/ser/trait.SharedSerializeRegistry.html
https://docs.rs/rkyv/0.7.1/rkyv/ser/trait.SharedSerializeRegistry.html
https://docs.rs/rkyv/0.7.1/rkyv/ser/trait.SharedSerializeRegistry.html
https://docs.rs/rkyv/0.7.1/rkyv/ser/trait.ScratchSpace.html
https://docs.rs/rkyv/0.7.1/rkyv/ser/trait.ScratchSpace.html
https://docs.rs/rkyv/0.7.1/rkyv/ser/trait.ScratchSpace.html
https://rkyv.org/print.html#serializer
https://rkyv.org/print.html#serializer
https://docs.rs/rkyv/0.7.1/rkyv/ser/serializers/index.html
https://docs.rs/rkyv/0.7.1/rkyv/ser/serializers/index.html
https://docs.rs/rkyv/0.7.1/rkyv/ser/serializers/type.AllocSerializer.html
https://docs.rs/rkyv/0.7.1/rkyv/ser/serializers/type.AllocSerializer.html
https://docs.rs/rkyv/0.7.1/rkyv/ser/serializers/type.AllocSerializer.html

Deserialize

Similarly to Serialize , Deserialize parameterizes over and takes a des

converts a type from its archived form back to its original one. Unlike seria

deserialization occurs in a single step and doesn't have an equivalent of a

Deserialize also parameterizes over the type that is being deserialize

allows the same archived type to deserialize into multiple different una

depending on what's being asked for. This helps enable lots of very pow

abstractions, but might require you to annotate types when deserializin

This provides a more or less a traditional deserialization with the added b

sped up somewhat by having very compatible representations. It also incu

memory and performance penalties of traditional deserialization, so mak

what you need before you use it. Deserialization is not required to access

as long as you can do so through the archived versions.

Even the highest-performance serialization frameworks will hit a deser

speed limit because of the amount of memory allocation that needs to

performed.

A good use for Deserialize is deserializing portions of archives. You can

the archived data to locate some subobject, then deserialize just that piec

archive as a whole. This granular approach provides the benefits of both z

deserialization as well as traditional deserialization.

Deserializer

Deserializers, like serializers, provide capabilities to objects during deseria

types don't bound their deserializers, but some like

order to deserialize memory properly.

rkyv https://rkyv.org/print.html

14 of 31 10/18/23, 14:03

https://rkyv.org/print.html#deserialize
https://rkyv.org/print.html#deserialize
https://docs.rs/rkyv/0.7.1/rkyv/trait.Deserialize.html
https://docs.rs/rkyv/0.7.1/rkyv/trait.Deserialize.html
https://docs.rs/rkyv/0.7.1/rkyv/trait.Deserialize.html
https://rkyv.org/print.html#deserializer
https://rkyv.org/print.html#deserializer

Alignment

The alignment of a type restricts where it can be located in memory to opt

loads and stores. Because rkyv creates references to values located in you

bytes, it has to ensure that the references it creates are properly

In order to perform arithmetic and logical operations on data, modern

load that data from memory into its registers. However, there's usually

limitation on how the CPU can access that data: it can only access data

word boundaries. These words are the natural size for the CPU to work

word size is 4 bytes for 32-bit machines and 8 bytes for 64-bit machine

had some data laid out like this:

On a 32-bit CPU, accesses could occur at any address that's a multiple o

example, one could access A by loading 4 bytes from address 0,

bytes from address 4, and so on. This works great because our data is

word boundaries. Unaligned data can throw a wrench in that:

Now if we want to load A into memory, we have to:

1. Load 4 bytes from address 0

2. Throw away the first two bytes

3. Load 4 bytes from address 4

4. Throw away the last two bytes

5. Combine our four bytes together

That forces us to do twice as many loads and perform some correction

can have a real impact on our performance across the board, so we req

our data to be properly aligned.

rkyv provides two main utilities for aligning byte buffers:

• AlignedVec is a drop-in replacement for Vec<u8>

• AlignedBytes is a wrapper around [u8; N]

Both of these types align the bytes inside to 16-byte boundaries. This sho

for almost all use cases, but if your particular situation requires even high

0 4 8 C

AAAABBBBCCCCDDDD

0 4 8 C

..AAAABBBBCCCC

rkyv https://rkyv.org/print.html

15 of 31 10/18/23, 14:03

https://rkyv.org/print.html#alignment
https://rkyv.org/print.html#alignment
https://docs.rs/rkyv/latest/rkyv/util/struct.AlignedVec.html
https://docs.rs/rkyv/latest/rkyv/util/struct.AlignedVec.html
https://docs.rs/rkyv/latest/rkyv/util/struct.AlignedVec.html
https://docs.rs/rkyv/latest/rkyv/util/struct.AlignedBytes.html
https://docs.rs/rkyv/latest/rkyv/util/struct.AlignedBytes.html
https://docs.rs/rkyv/latest/rkyv/util/struct.AlignedBytes.html

then you may need to manually align your bytes.

In practice

rkyv has a very basic unaligned data check built in that may not catch ever

also validate your data, then it will always make sure that your data is pro

Common pitfalls

In some cases, your archived data may be prefixed by some extra data lik

the buffer. If this extra data misaligns the following data, then the buffer w

the prefixing data removed before accessing it.

In other cases, your archived data may not be tight to the end of the buffe

archived_root rely on the end of the buffer being tight to the end of the

miscalculate the positions of the contained values if it is not.

rkyv https://rkyv.org/print.html

16 of 31 10/18/23, 14:03

https://rkyv.org/print.html#in-practice
https://rkyv.org/print.html#in-practice
https://rkyv.org/validation.html
https://rkyv.org/validation.html
https://rkyv.org/print.html#common-pitfalls
https://rkyv.org/print.html#common-pitfalls
https://docs.rs/rkyv/latest/rkyv/util/fn.archived_root.html
https://docs.rs/rkyv/latest/rkyv/util/fn.archived_root.html
https://docs.rs/rkyv/latest/rkyv/util/fn.archived_root.html

Format

Types which derive Archive generate an archived version of the type wh

• Member types are replaced with their archived counterparts

• Enums have #[repr(N)] where N is u8 , u16 ,

smallest possible type that can represent all of the variants.

For example, a struct like:

Would have the archived counterpart:

With the strict feature, these structs are additionally annotated with

guaranteed portability and stability.

In most cases, the strict feature will not be necessary and can reduc

efficiency of archived types. Make sure you understand your use case c

read the crate documentation for details on the strict

rkyv provides Archive implementations for common core and std types

general they follow the same format as derived implementations, but ma

cases. For example, ArchivedString performs a small string optimization

reduce memory use.

Object order

rkyv lays out subobjects in depth-first order from the leaves to the root. T

the root object is stored at the end of the buffer, not the beginning. For ex

tree:

struct Example {

 a: u32,

 b: String,

 c: Box<(u32, String)>,

}

struct ArchivedExample {

 a: u32,

 b: ArchivedString,

 c: ArchivedBox<(u32, ArchivedString)>,

}

rkyv https://rkyv.org/print.html

17 of 31 10/18/23, 14:03

https://rkyv.org/print.html#format
https://rkyv.org/print.html#format
https://rkyv.org/print.html#object-order
https://rkyv.org/print.html#object-order

would be laid out like this in the buffer:

from this serialization order:

This deterministic layout means that you don't need to store the position

object in most cases. As long as your buffer ends right at the end of your r

can use archived_root with your buffer.

 a

 / \

b c

 / \

 d e

b d e c a

a -> b

a -> c -> d

a -> c -> e

a -> c

a

rkyv https://rkyv.org/print.html

18 of 31 10/18/23, 14:03

https://docs.rs/rkyv/0.7.1/rkyv/util/fn.archived_root.html
https://docs.rs/rkyv/0.7.1/rkyv/util/fn.archived_root.html
https://docs.rs/rkyv/0.7.1/rkyv/util/fn.archived_root.html

Wrapper types

Wrapper types make it easy to customize the way that fields of types are a

make it easier to adapt rkyv to existing data models, and make serializing

deserializing idiomatic for even complicated types.

Annotating a field with #[with(...)] will wrap that field with the given ty

struct is serialized or deserialized. There's no performance penalty to actu

but doing more or less work during serialization and deserialization can a

performance. This excerpt is from the documentation for

The Incremented wrapper is wrapping a , and the definition causes that

incremented in its archived form.

With

The core type behind wrappers is With . This struct is

another name for the type inside of it. rkyv uses With

serializing and deserializing, and when you write your own wrappers they

with With as well.

See ArchiveWith for an example of how to write your own wrapper types

#[derive(Archive, Deserialize, Serialize)]

struct Example {

#[with(Incremented)]

 a: i32,

// Another i32 field, but not incremented this time

 b: i32,

}

rkyv https://rkyv.org/print.html

19 of 31 10/18/23, 14:03

https://rkyv.org/print.html#wrapper-types
https://rkyv.org/print.html#wrapper-types
https://rkyv.org/print.html#with
https://rkyv.org/print.html#with
https://rkyv.org/print.html#with
https://docs.rs/rkyv/0.7.1/rkyv/with/struct.With.html
https://docs.rs/rkyv/0.7.1/rkyv/with/struct.With.html
https://docs.rs/rkyv/0.7.1/rkyv/with/struct.With.html
https://docs.rs/rkyv/0.7.1/rkyv/with/trait.ArchiveWith.html
https://docs.rs/rkyv/0.7.1/rkyv/with/trait.ArchiveWith.html
https://docs.rs/rkyv/0.7.1/rkyv/with/trait.ArchiveWith.html

Shared Pointers

The implementation details of shared pointers may be of interest to those

Specifically, the rules surrounding how and when shared and weak pointe

and pooled may affect how you choose to use them.

Serialization

Shared pointers (Rc and Arc) are serialized whenever they're encounter

time, and the data address is reused when subsequent shared pointers p

data. This means that you can expect shared pointers to always point to t

when archived, even if they are unsized to different types.

Weak pointers (rc::Weak and sync::Weak) have serialization attempted

they're encountered. The serialization process upgrades them, and if it su

serializes them like shared pointers. Otherwise, it serializes them like

Deserialization

Similarly, shared pointers are deserialized on the first encounter and reus

Weak pointers do a similar upgrade attempt when they're encountered fo

Serializers and Deserializers

The serializers for shared pointers hold the location of the serialized data

safe to serialize shared pointers to an archive across multiple

you use the same serializer for each one. Using a new serializer will still do

but may end up duplicating the shared data.

The deserializers for shared pointers hold a shared pointer to any deseria

and will hold them in memory until the deserializer is dropped. This mean

serialize only weak pointers to some shared data, they will point to the co

when deserialized but will point to nothing as soon as the deserializer is d

rkyv https://rkyv.org/print.html

20 of 31 10/18/23, 14:03

https://rkyv.org/print.html#shared-pointers
https://rkyv.org/print.html#shared-pointers
https://rkyv.org/print.html#serialization
https://rkyv.org/print.html#serialization
https://rkyv.org/print.html#deserialization
https://rkyv.org/print.html#deserialization
https://rkyv.org/print.html#serializers-and-deserializers
https://rkyv.org/print.html#serializers-and-deserializers

Unsized Types

rkyv supports unsized types out of the box and ships with implementation

common unsized types (str s and slices). Trait objects can also be suppor

rkyv_dyn , see "Trait Objects" for more details.

Metadata

The core concept that enables unsized types is metadata. In rust, pointers

different sizes, in contrast with languages like C and C++ where all pointer

size. This is important for the concept of sizing, which you may have enco

rust's Sized trait.

Pointers are composed of two pieces: a data address and some metadata

address is what most people think of when they think about pointers; it's

the pointed data. The metadata for a pointer is some extra data that is ne

safely with the data at the pointed location. It can be almost anything, or n

Sized types. Pointers with no extra metadata are sometimes called "thin

pointers with metadata are sometimes called "wide" or "fat" pointers.

rkyv uses the ptr_meta crate to perform these conversions safely. In th

these may be incorporated as part of the standard library

Fundamentally, the metadata of a pointer exists to provide the program e

information to safely access, drop, and deallocate structures that are poin

slices, the metadata carries the length of the slice, for trait objects it carrie

function table (vtable) pointer, and for custom unsized structs it carries th

the single trailing unsized member.

Archived Metadata

For unsized types, the metadata for a type is archived separately from the

to the data. This mirrors how rust works internally to support archiving sh

and other exotic use cases. This does complicate things somewhat, but fo

the metadata archiving process will end up as just filling out a few functio

returning () .

rkyv https://rkyv.org/print.html

21 of 31 10/18/23, 14:03

https://rkyv.org/print.html#unsized-types
https://rkyv.org/print.html#unsized-types
https://rkyv.org/trait-objects.html
https://rkyv.org/trait-objects.html
https://rkyv.org/print.html#metadata
https://rkyv.org/print.html#metadata
https://doc.rust-lang.org/std/marker/trait.Sized.html
https://doc.rust-lang.org/std/marker/trait.Sized.html
https://docs.rs/ptr_meta
https://docs.rs/ptr_meta
https://docs.rs/ptr_meta
https://rust-lang.github.io/rfcs/2580-ptr-meta.html
https://rust-lang.github.io/rfcs/2580-ptr-meta.html
https://rkyv.org/print.html#archived-metadata
https://rkyv.org/print.html#archived-metadata

This is definitely one of the more complicated parts of the library, and c

difficult to wrap your head around. Reading the documentation for

may help you understand how the system works by working through a

rkyv https://rkyv.org/print.html

22 of 31 10/18/23, 14:03

Trait Objects

Trait object serialization is supported through the rkyv_dyn

maintained as part of rkyv, but is separate from the main crate to allow ot

implementations to be used instead. This section will focus primarily on th

of rkyv_dyn and how to use it effectively.

rkyv_dyn may not work in some exotic environments due to the

to register trait objects. If you want these capabilities but

your environment, feel free to file an issue or drop by in the discord to

through.

Core traits

The new traits introduced by rkyv_dyn are SerializeDyn

are effectively type-erased versions of SerializeUnsized

that the traits are object-safe. Likewise, it introduces type-erased versions

and deserializers: DynSerializer and DynDeserializer

basic functionality required to serialize most types, but may be more or le

custom types require.

DynSerializer implements the Serializer and

not be suitable for all use cases. If you need more capabilities, file an is

by in the discord to talk it through.

Architecture

It is highly recommended to use the provided archive_dyn

traits and set everything up correctly.

Using archive_dyn on a trait definition creates another trait definition wi

your trait and SerializeDyn . This "shim" trait is blanket implemented for

implement your trait and SerializeDyn , so you should only ever have to

trait to use it.

The shim trait should be used everywhere that you have a trait object of y

you want to serialize. By default, it will be named "Serialize" + your trait na

rkyv https://rkyv.org/print.html

23 of 31 10/18/23, 14:03

https://rkyv.org/print.html#trait-objects
https://rkyv.org/print.html#trait-objects
https://rkyv.org/print.html#core-traits
https://rkyv.org/print.html#core-traits
https://docs.rs/rkyv_dyn/latest/rkyv_dyn/trait.SerializeDyn.html
https://docs.rs/rkyv_dyn/latest/rkyv_dyn/trait.SerializeDyn.html
https://docs.rs/rkyv_dyn/latest/rkyv_dyn/trait.SerializeDyn.html
https://docs.rs/rkyv_dyn/latest/rkyv_dyn/trait.DynSerializer.html
https://docs.rs/rkyv_dyn/latest/rkyv_dyn/trait.DynSerializer.html
https://docs.rs/rkyv_dyn/latest/rkyv_dyn/trait.DynSerializer.html
https://docs.rs/rkyv_dyn/latest/rkyv_dyn/trait.DynDeserializer.html
https://docs.rs/rkyv_dyn/latest/rkyv_dyn/trait.DynDeserializer.html
https://docs.rs/rkyv_dyn/latest/rkyv_dyn/trait.DynDeserializer.html
https://rkyv.org/print.html#architecture-1
https://rkyv.org/print.html#architecture-1
https://docs.rs/rkyv_dyn/latest/rkyv_dyn/attr.archive_dyn.html
https://docs.rs/rkyv_dyn/latest/rkyv_dyn/attr.archive_dyn.html
https://docs.rs/rkyv_dyn/latest/rkyv_dyn/attr.archive_dyn.html

approach that similar libraries take is directly adding

your trait. While more ergonomic, this approach does not allow the imple

the trait on types that cannot or should not implement

approach was favored for rkyv_dyn .

When the shim trait is serialized, it stores the type hash of the underlying

metadata so it can get the correct vtable for it when accessed. This requir

vtables for implementing types must be known ahead of time, which is wh

archive_dyn for the second time.

Using archive_dyn on a trait implementation registers the vtable for that

implementation with a global lookup, allowing it to be retrieved later on. B

process can be slow, the vtable_cache feature allows the vtable lookup t

only the first time, then cached locally for future lookups. This is one of th

alternate implementations may take a different approach and choose a d

benefits and tradeoffs.

rkyv https://rkyv.org/print.html

24 of 31 10/18/23, 14:03

Validation

Validation can be enabled with the validation feature. Validation levera

bytecheck crate to perform archive validation, and allows the consumpti

and malicious data.

To validate an archive, you first have to derive CheckBytes

The #[archive(check_bytes)] attribute derives CheckBytes

Finally, you can use check_archived_root to check an archive and get a r

archived value if it was successful:

More examples of how to enable and perform validation can be found in

crate's validation module.

The validation context

When checking an archive, a validation context is created automatically us

defaults that will work for most archived types. If your type requires speci

logic, you may need to augment the capabilities of the validation context i

check your type and use check_archived_root_with_context

The DefaultValidator supports all builtin rkyv types, but changes dep

whether you have the alloc feature enabled or not.

Bounds checking and subtree ranges

use rkyv::{Archive, Deserialize, Serialize};

#[derive(Archive, Deserialize, Serialize)]

#[archive(check_bytes)]

pub struct Example {

 a: i32,

 b: String,

 c: Vec<bool>,

}

use rkyv::check_archived_root;

let archived_example = check_archived_root::<Example>(buffer).

rkyv https://rkyv.org/print.html

25 of 31 10/18/23, 14:03

https://rkyv.org/print.html#validation
https://rkyv.org/print.html#validation
https://docs.rs/bytecheck
https://docs.rs/bytecheck
https://docs.rs/bytecheck
https://docs.rs/bytecheck/latest/bytecheck/trait.CheckBytes.html
https://docs.rs/bytecheck/latest/bytecheck/trait.CheckBytes.html
https://docs.rs/bytecheck/latest/bytecheck/trait.CheckBytes.html
https://docs.rs/rkyv/0.7.1/rkyv/validation/validators/fn.check_archived_root.html
https://docs.rs/rkyv/0.7.1/rkyv/validation/validators/fn.check_archived_root.html
https://docs.rs/rkyv/0.7.1/rkyv/validation/validators/fn.check_archived_root.html
https://rkyv.org/print.html#the-validation-context
https://rkyv.org/print.html#the-validation-context
https://docs.rs/rkyv/0.7.1/rkyv/validation/fn.check_archived_root_with_context.html
https://docs.rs/rkyv/0.7.1/rkyv/validation/fn.check_archived_root_with_context.html
https://docs.rs/rkyv/0.7.1/rkyv/validation/fn.check_archived_root_with_context.html
https://docs.rs/rkyv/latest/rkyv/validation/validators/struct.DefaultValidator.html
https://docs.rs/rkyv/latest/rkyv/validation/validators/struct.DefaultValidator.html
https://docs.rs/rkyv/latest/rkyv/validation/validators/struct.DefaultValidator.html
https://rkyv.org/print.html#bounds-checking-and-subtree-ranges
https://rkyv.org/print.html#bounds-checking-and-subtree-ranges

All pointers are checked to make sure that they:

• point inside the archive

• are properly aligned

• and have enough space afterward to hold the desired object

However, this alone is not enough to secure against recursion attacks and

sharing violations, so rkyv uses a system to verify that the archive follows

ownership model.

Archive validation uses a memory model where all subobjects are located

memory. This is called a subtree range. When validating an object, the arch

keeps track of where subobjects are allowed to be located, and can reduc

range from the beginning with push_prefix_subtree_range

push_suffix_subtree_range . After pushing a subtree range, any subobje

can be checked by calling their CheckBytes implementations. Once the su

checked, pop_prefix_subtree_range and pop_suffix_subtree_range

restore the original range with the checked section removed.

Validation and Shared Pointers

While validating shared pointers is supported, some additional restriction

prevent malicious data from validating:

Shared pointers that point to the same object will fail to validate if they ar

types. This can cause issues if you have a shared pointer to the same arra

pointers are an array pointer and a slice pointer. Similarly, it can cause iss

shared pointers to the same value as a concrete type (e.g.

dyn Any).

rkyv still supports these use cases, but it's not possible or feasible to ensu

with these use cases. Alternative validation solutions like archive signatur

hashes may be a better approach in these cases.

rkyv https://rkyv.org/print.html

26 of 31 10/18/23, 14:03

https://rkyv.org/print.html#validation-and-shared-pointers
https://rkyv.org/print.html#validation-and-shared-pointers

Feature Comparison

This is a best-effort feaure comparison between rkyv, FlatBuffers, and Cap

by no means completely comprehensive, and pull requests that improve t

welcomed.

Feature matrix

Feature rkyv

Open type system yes

Scalars yes

Tables no*

Schema evolution no*

Zero-copy yes

Random-access reads yes

Validation upfront*

Reflection no*

Object order bottom-up

Schema language derive

Usable as mutable state yes

Padding takes space on wire? yes*

Unset fields take space on wire? yes

Pointers take space on wire? yes

Cross-language no

Hash maps and B-trees yes

Shared pointers yes

* rkyv's open type system allows extension types that provide these capabilitie

Open type system

One of rkyv's primary features is that its type system is

write custom types and control their properties very finely. You can think

solid foundation to build many other features on top of. In fact, the open

already a fundamental part of how rkyv works.

rkyv https://rkyv.org/print.html

27 of 31 10/18/23, 14:03

https://rkyv.org/print.html#feature-comparison
https://rkyv.org/print.html#feature-comparison
https://rkyv.org/print.html#feature-matrix
https://rkyv.org/print.html#feature-matrix
https://rkyv.org/print.html#open-type-system
https://rkyv.org/print.html#open-type-system

Unsized types

Even though they're part of the main library, unsized types are built on to

serialization functionality. Types like Box and Rc/Arc

entry points for unsized types into the sized system.

Trait objects

Trait objects are further built on top of unsized types to make serializing a

objects easy and safe.

rkyv https://rkyv.org/print.html

28 of 31 10/18/23, 14:03

https://rkyv.org/print.html#unsized-types-1
https://rkyv.org/print.html#unsized-types-1
https://rkyv.org/print.html#trait-objects-1
https://rkyv.org/print.html#trait-objects-1

FAQ

Because it's so different from traditional serialization systems, a lot of peo

questions about rkyv. This is meant to serve as a comprehensive, centraliz

answers.

How is rkyv zero-copy? It definitely copies the archiv

into memory.

Traditional serialization works in two steps:

1. Read the data from disk into a buffer (maybe in pieces)

2. Process the data in the buffer into the deserialized data structure

The copy happens when the data in the buffer ends up duplicated in the d

Zero-copy deserialization doesn't deserialize the buffer into a separate str

avoids this copy.

You can actually even avoid reading the data from disk into a buffer in mo

environments by using memory mapping.

How does rkyv handle endianness?

rkyv supports three endiannesses: native, little, and big. Native endiannes

little or big, but removes the abstraction layer to more easily work with th

types.

You can enable specific endiannesses with the little_endian

Is rkyv cross-platform?

Yes, but rkyv has been tested mostly on x86 machines and wasm. There m

need to get fixed for other architectures.

Can I use this in embedded and #[no_std]

environments?

rkyv https://rkyv.org/print.html

29 of 31 10/18/23, 14:03

https://rkyv.org/print.html#faq
https://rkyv.org/print.html#faq
https://rkyv.org/print.html#how-is-rkyv-zero-copy-it-definitely-copies-the-archive-into-memory
https://rkyv.org/print.html#how-is-rkyv-zero-copy-it-definitely-copies-the-archive-into-memory
https://rkyv.org/print.html#how-is-rkyv-zero-copy-it-definitely-copies-the-archive-into-memory
https://rkyv.org/print.html#how-is-rkyv-zero-copy-it-definitely-copies-the-archive-into-memory
https://rkyv.org/print.html#how-does-rkyv-handle-endianness
https://rkyv.org/print.html#how-does-rkyv-handle-endianness
https://rkyv.org/print.html#is-rkyv-cross-platform
https://rkyv.org/print.html#is-rkyv-cross-platform
https://rkyv.org/print.html#can-i-use-this-in-embedded-and-no_std-environments
https://rkyv.org/print.html#can-i-use-this-in-embedded-and-no_std-environments
https://rkyv.org/print.html#can-i-use-this-in-embedded-and-no_std-environments
https://rkyv.org/print.html#can-i-use-this-in-embedded-and-no_std-environments
https://rkyv.org/print.html#can-i-use-this-in-embedded-and-no_std-environments
https://rkyv.org/print.html#can-i-use-this-in-embedded-and-no_std-environments

Yes, disable the std feature for no_std . You can additionally disable the

to disable all memory allocation capabilities.

Safety

Isn't this very unsafe if you access untrusted data?

Yes, but you can still access untrusted data if you validate the archive first

It's an extra step, but it's usually still less than the cost of deserializing usin

format. rkyv has proven to round-trip faster than bincode for all tested us

Doesn't that mean I always have to validate?

No. There are many other ways you can verify your data, for example with

and signed buffers.

Isn't it kind of deceptive to say rkyv is fast and then

require validation?

The fastest path to access archived data is marked as

unusable, it means that it's only safe to call if you can verify its preconditio

The value must be archived at the given position in the byte array.

As long as you can (reasonably) guarantee that, then accessing the archive

every archive needs to be validated, and you can use a variety of different

guarantee data integrity and security.

Even if you do need to always validate your data before accessing it, valida

faster than deserializing with other high-performance formats. A round-tr

even though it's not by the same margins.

rkyv https://rkyv.org/print.html

30 of 31 10/18/23, 14:03

https://rkyv.org/print.html#safety
https://rkyv.org/print.html#safety
https://rkyv.org/print.html#isnt-this-very-unsafe-if-you-access-untrusted-data
https://rkyv.org/print.html#isnt-this-very-unsafe-if-you-access-untrusted-data
https://rkyv.org/print.html#doesnt-that-mean-i-always-have-to-validate
https://rkyv.org/print.html#doesnt-that-mean-i-always-have-to-validate
https://rkyv.org/print.html#isnt-it-kind-of-deceptive-to-say-rkyv-is-fast-and-then-require-validation
https://rkyv.org/print.html#isnt-it-kind-of-deceptive-to-say-rkyv-is-fast-and-then-require-validation
https://rkyv.org/print.html#isnt-it-kind-of-deceptive-to-say-rkyv-is-fast-and-then-require-validation
https://rkyv.org/print.html#isnt-it-kind-of-deceptive-to-say-rkyv-is-fast-and-then-require-validation

Contributors

Thanks to all the contributors who have helped document rkyv:

• David Koloski (djkoloski)

If you feel you're missing from this list, feel free to add yourself in a PR.

rkyv https://rkyv.org/print.html

31 of 31 10/18/23, 14:03

https://rkyv.org/print.html#contributors
https://rkyv.org/print.html#contributors
https://github.com/djkoloski
https://github.com/djkoloski

