
Rust by Example
Rust is a modern systems programming language focusing on safety, speed, and
concurrency. It accomplishes these goals by being memory safe without using
garbage collection.

Rust by Example (RBE) is a collection of runnable examples that illustrate various
Rust concepts and standard libraries. To get even more out of these examples,
don't forget to install Rust locally and check out the o�cial docs. Additionally for
the curious, you can also check out the source code for this site.

Now let's begin!

Hello World - Start with a traditional Hello World program.

Primitives - Learn about signed integers, unsigned integers and other
primitives.

Custom Types - struct and enum .

Variable Bindings - mutable bindings, scope, shadowing.

Types - Learn about changing and de�ning types.

Conversion

Expressions

Flow of Control - if / else , for , and others.

Functions - Learn about Methods, Closures and High Order Functions.

Modules - Organize code using modules

Crates - A crate is a compilation unit in Rust. Learn to create a library.

Cargo - Go through some basic features of the o�cial Rust package
management tool.

Attributes - An attribute is metadata applied to some module, crate or item.

Generics - Learn about writing a function or data type which can work for
multiple types of arguments.

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

� of ��� �/�/��, �:�� PM

Scoping rules - Scopes play an important part in ownership, borrowing, and
lifetimes.

Traits - A trait is a collection of methods de�ned for an unknown type: Self

Macros

Error handling - Learn Rust way of handling failures.

Std library types - Learn about some custom types provided by std library.

Std misc - More custom types for �le handling, threads.

Testing - All sorts of testing in Rust.

Unsafe Operations

Compatibility

Meta - Documentation, Benchmarking.

Hello World
This is the source code of the traditional Hello World program.

println! is a macro that prints text to the console.

A binary can be generated using the Rust compiler: rustc .

$ rustc hello.rs

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

� of ��� �/�/��, �:�� PM

rustc will produce a hello binary that can be executed.

Activity

Click 'Run' above to see the expected output. Next, add a new line with a second
println! macro so that the output shows:

Comments
Any program requires comments, and Rust supports a few di�erent varieties:

Regular comments which are ignored by the compiler:
// Line comments which go to the end of the line.

/* Block comments which go to the closing delimiter. */

Doc comments which are parsed into HTML library documentation:
/// Generate library docs for the following item.

//! Generate library docs for the enclosing item.

$./hello
Hello World!

Hello World!
I'm a Rustacean!

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

� of ��� �/�/��, �:�� PM

See also:

Library documentation

Formatted print
Printing is handled by a series of macros de�ned in std::fmt some of which
include:

format! : write formatted text to String
print! : same as format! but the text is printed to the console (io::stdout).
println! : same as print! but a newline is appended.
eprint! : same as format! but the text is printed to the standard error

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

� of ��� �/�/��, �:�� PM

(io::stderr).
eprintln! : same as eprint! but a newline is appended.

All parse text in the same fashion. As a plus, Rust checks formatting correctness at
compile time.

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

� of ��� �/�/��, �:�� PM

std::fmt contains many traits which govern the display of text. The base form
of two important ones are listed below:

fmt::Debug : Uses the {:?} marker. Format text for debugging purposes.
fmt::Display : Uses the {} marker. Format text in a more elegant, user

friendly fashion.

Here, we used fmt::Display because the std library provides implementations
for these types. To print text for custom types, more steps are required.

Implementing the fmt::Display trait automatically implements the ToString
trait which allows us to convert the type to String .

Activities

Fix the two issues in the above code (see FIXME) so that it runs without error.
Add a println! macro that prints: Pi is roughly 3.142 by controlling the
number of decimal places shown. For the purposes of this exercise, use let
pi = 3.141592 as an estimate for pi. (Hint: you may need to check the
std::fmt documentation for setting the number of decimals to display)

See also:

std::fmt , macros , struct , and traits

Debug
All types which want to use std::fmt formatting traits require an
implementation to be printable. Automatic implementations are only provided for
types such as in the std library. All others must be manually implemented
somehow.

The fmt::Debug trait makes this very straightforward. All types can derive
(automatically create) the fmt::Debug implementation. This is not true for
fmt::Display which must be manually implemented.

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

� of ��� �/�/��, �:�� PM

All std library types automatically are printable with {:?} too:

So fmt::Debug de�nitely makes this printable but sacri�ces some elegance. Rust
also provides "pretty printing" with {:#?} .

// This structure cannot be printed either with `fmt::Display` or
// with `fmt::Debug`.
struct UnPrintable(i32);

// The `derive` attribute automatically creates the implementation
// required to make this `struct` printable with `fmt::Debug`.
#[derive(Debug)]
struct DebugPrintable(i32);

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

� of ��� �/�/��, �:�� PM

One can manually implement fmt::Display to control the display.

See also:

attributes, derive , std::fmt , and struct

Display
fmt::Debug hardly looks compact and clean, so it is often advantageous to

customize the output appearance. This is done by manually implementing
fmt::Display , which uses the {} print marker. Implementing it looks like this:

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

� of ��� �/�/��, �:�� PM

fmt::Display may be cleaner than fmt::Debug but this presents a problem for
the std library. How should ambiguous types be displayed? For example, if the
std library implemented a single style for all Vec<T> , what style should it be?

Would it be either of these two?

Vec<path> : /:/etc:/home/username:/bin (split on :)
Vec<number> : 1,2,3 (split on ,)

No, because there is no ideal style for all types and the std library doesn't
presume to dictate one. fmt::Display is not implemented for Vec<T> or for any
other generic containers. fmt::Debug must then be used for these generic cases.

This is not a problem though because for any new container type which is not
generic, fmt::Display can be implemented.

// Import (via `use`) the `fmt` module to make it available.
use std::fmt;

// Define a structure for which `fmt::Display` will be implemented. This
is
// a tuple struct named `Structure` that contains an `i32`.
struct Structure(i32);

// To use the `{}` marker, the trait `fmt::Display` must be implemented
// manually for the type.
impl fmt::Display for Structure {

// This trait requires `fmt` with this exact signature.
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {

// Write strictly the first element into the supplied output
// stream: `f`. Returns `fmt::Result` which indicates whether

the
// operation succeeded or failed. Note that `write!` uses syntax

which
// is very similar to `println!`.
write!(f, "{}", self.0)

 }
}

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

� of ��� �/�/��, �:�� PM

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

�� of ��� �/�/��, �:�� PM

So, fmt::Display has been implemented but fmt::Binary has not, and therefore
cannot be used. std::fmt has many such traits and each requires its own
implementation. This is detailed further in std::fmt .

Activity

After checking the output of the above example, use the Point2D struct as a guide
to add a Complex struct to the example. When printed in the same way, the output
should be:

See also:

derive , std::fmt , macros, struct , trait , and use

Testcase: List
Implementing fmt::Display for a structure where the elements must each be
handled sequentially is tricky. The problem is that each write! generates a
fmt::Result . Proper handling of this requires dealing with all the results. Rust

provides the ? operator for exactly this purpose.

Using ? on write! looks like this:

Alternatively, you can also use the try! macro, which works the same way. This is
a bit more verbose and no longer recommended, but you may still see it in older
Rust code. Using try! looks like this:

Display: 3.3 + 7.2i
Debug: Complex { real: 3.3, imag: 7.2 }

// Try `write!` to see if it errors. If it errors, return
// the error. Otherwise continue.
write!(f, "{}", value)?;

try!(write!(f, "{}", value));

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

�� of ��� �/�/��, �:�� PM

With ? available, implementing fmt::Display for a Vec is straightforward:

Activity

Try changing the program so that the index of each element in the vector is also
printed. The new output should look like this:

See also:

for , ref , Result , struct , ? , and vec!

[0: 1, 1: 2, 2: 3]

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

�� of ��� �/�/��, �:�� PM

Formatting
We've seen that formatting is speci�ed via a format string:

format!("{}", foo) -> "3735928559"
format!("0x{:X}", foo) -> "0xDEADBEEF"
format!("0o{:o}", foo) -> "0o33653337357"

The same variable (foo) can be formatted di�erently depending on which
argument type is used: X vs o vs unspecified.

This formatting functionality is implemented via traits, and there is one trait for
each argument type. The most common formatting trait is Display , which handles
cases where the argument type is left unspeci�ed: {} for instance.

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

�� of ��� �/�/��, �:�� PM

You can view a full list of formatting traits and their argument types in the

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

�� of ��� �/�/��, �:�� PM

std::fmt documentation.

Activity

Add an implementation of the fmt::Display trait for the Color struct above so
that the output displays as:

Two hints if you get stuck:

You may need to list each color more than once,
You can pad with zeros to a width of 2 with :02 .

See also:

std::fmt

Primitives
Rust provides access to a wide variety of primitives . A sample includes:

Scalar Types

signed integers: i8 , i16 , i32 , i64 , i128 and isize (pointer size)
unsigned integers: u8 , u16 , u32 , u64 , u128 and usize (pointer size)
�oating point: f32 , f64
char Unicode scalar values like 'a' , 'α' and '∞' (4 bytes each)
bool either true or false

and the unit type () , whose only possible value is an empty tuple: ()

Despite the value of a unit type being a tuple, it is not considered a compound type
because it does not contain multiple values.

Compound Types

RGB (128, 255, 90) 0x80FF5A
RGB (0, 3, 254) 0x0003FE
RGB (0, 0, 0) 0x000000

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

�� of ��� �/�/��, �:�� PM

arrays like [1, 2, 3]
tuples like (1, true)

Variables can always be type annotated. Numbers may additionally be annotated
via a suffix or by default. Integers default to i32 and �oats to f64 . Note that Rust
can also infer types from context.

See also:

the std library, mut , inference, and shadowing

Literals and operators
Integers 1 , �oats 1.2 , characters 'a' , strings "abc" , booleans true and the
unit type () can be expressed using literals.

Integers can, alternatively, be expressed using hexadecimal, octal or binary
notation using these pre�xes respectively: 0x , 0o or 0b .

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

�� of ��� �/�/��, �:�� PM

Underscores can be inserted in numeric literals to improve readability, e.g. 1_000
is the same as 1000 , and 0.000_001 is the same as 0.000001 .

We need to tell the compiler the type of the literals we use. For now, we'll use the
u32 su�x to indicate that the literal is an unsigned 32-bit integer, and the i32

su�x to indicate that it's a signed 32-bit integer.

The operators available and their precedence in Rust are similar to other C-like
languages.

Tuples
A tuple is a collection of values of di�erent types. Tuples are constructed using
parentheses () , and each tuple itself is a value with type signature (T1, T2,
...) , where T1 , T2 are the types of its members. Functions can use tuples to
return multiple values, as tuples can hold any number of values.

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

�� of ��� �/�/��, �:�� PM

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

�� of ��� �/�/��, �:�� PM

Activity

1. Recap: Add the fmt::Display trait to the Matrix struct in the above
example, so that if you switch from printing the debug format {:?} to the
display format {} , you see the following output:

You may want to refer back to the example for print display.

2. Add a transpose function using the reverse function as a template, which
accepts a matrix as an argument, and returns a matrix in which two elements
have been swapped. For example:

results in the output:

Arrays and Slices
An array is a collection of objects of the same type T , stored in contiguous
memory. Arrays are created using brackets [] , and their size, which is known at
compile time, is part of their type signature [T; size] .

Slices are similar to arrays, but their size is not known at compile time. Instead, a
slice is a two-word object, the �rst word is a pointer to the data, and the second
word is the length of the slice. The word size is the same as usize, determined by
the processor architecture eg 64 bits on an x86-64. Slices can be used to borrow a
section of an array, and have the type signature &[T] .

(1.1 1.2)
(2.1 2.2)

println!("Matrix:\n{}", matrix);
println!("Transpose:\n{}", transpose(matrix));

Matrix:
(1.1 1.2)
(2.1 2.2)
Transpose:
(1.1 2.1)
(1.2 2.2)

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

�� of ��� �/�/��, �:�� PM

Custom Types
Rust custom data types are formed mainly through the two keywords:

struct : de�ne a structure
enum : de�ne an enumeration

Constants can also be created via the const and static keywords.

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

�� of ��� �/�/��, �:�� PM

Structures
There are three types of structures ("structs") that can be created using the
struct keyword:

Tuple structs, which are, basically, named tuples.
The classic C structs
Unit structs, which are �eld-less, are useful for generics.

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

�� of ��� �/�/��, �:�� PM

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

�� of ��� �/�/��, �:�� PM

Activity

1. Add a function rect_area which calculates the area of a rectangle (try using
nested destructuring).

2. Add a function square which takes a Point and a f32 as arguments, and
returns a Rectangle with its lower left corner on the point, and a width and
height corresponding to the f32 .

See also:

attributes , lifetime and destructuring

Enums
The enum keyword allows the creation of a type which may be one of a few
di�erent variants. Any variant which is valid as a struct is also valid as an enum .

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

�� of ��� �/�/��, �:�� PM

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

�� of ��� �/�/��, �:�� PM

Type aliases

If you use a type alias, you can refer to each enum variant via its alias. This might
be useful if the enum's name is too long or too generic, and you want to rename it.

The most common place you'll see this is in impl blocks using the Self alias.

To learn more about enums and type aliases, you can read the stabilization report
from when this feature was stabilized into Rust.

See also:

match , fn , and String , "Type alias enum variants" RFC

use

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

�� of ��� �/�/��, �:�� PM

The use declaration can be used so manual scoping isn't needed:

See also:

match and use

C-like

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

�� of ��� �/�/��, �:�� PM

enum can also be used as C-like enums.

See also:

casting

Testcase: linked-list
A common use for enums is to create a linked-list:

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

�� of ��� �/�/��, �:�� PM

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

�� of ��� �/�/��, �:�� PM

See also:

Box and methods

constants
Rust has two di�erent types of constants which can be declared in any scope
including global. Both require explicit type annotation:

const : An unchangeable value (the common case).
static : A possibly mut able variable with 'static lifetime. The static

lifetime is inferred and does not have to be speci�ed. Accessing or modifying
a mutable static variable is unsafe .

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

�� of ��� �/�/��, �:�� PM

See also:

The const / static RFC, 'static lifetime

Variable Bindings
Rust provides type safety via static typing. Variable bindings can be type annotated
when declared. However, in most cases, the compiler will be able to infer the type
of the variable from the context, heavily reducing the annotation burden.

Values (like literals) can be bound to variables, using the let binding.

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

�� of ��� �/�/��, �:�� PM

Mutability
Variable bindings are immutable by default, but this can be overridden using the
mut modi�er.

The compiler will throw a detailed diagnostic about mutability errors.

Scope and Shadowing

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

�� of ��� �/�/��, �:�� PM

Variable bindings have a scope, and are constrained to live in a block. A block is a
collection of statements enclosed by braces {} . Also, variable shadowing is
allowed.

Declare first
It's possible to declare variable bindings �rst, and initialize them later. However,
this form is seldom used, as it may lead to the use of uninitialized variables.

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

�� of ��� �/�/��, �:�� PM

The compiler forbids use of uninitialized variables, as this would lead to unde�ned
behavior.

Types
Rust provides several mechanisms to change or de�ne the type of primitive and
user de�ned types. The following sections cover:

Casting between primitive types
Specifying the desired type of literals
Using type inference
Aliasing types

Casting
Rust provides no implicit type conversion (coercion) between primitive types. But,
explicit type conversion (casting) can be performed using the as keyword.

Rules for converting between integral types follow C conventions generally, except
in cases where C has unde�ned behavior. The behavior of all casts between

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

�� of ��� �/�/��, �:�� PM

integral types is well de�ned in Rust.

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

�� of ��� �/�/��, �:�� PM

Literals
Numeric literals can be type annotated by adding the type as a su�x. As an
example, to specify that the literal 42 should have the type i32 , write 42i32 .

The type of unsu�xed numeric literals will depend on how they are used. If no
constraint exists, the compiler will use i32 for integers, and f64 for �oating-point
numbers.

There are some concepts used in the previous code that haven't been explained
yet, here's a brief explanation for the impatient readers:

fun(&foo) is used to pass an argument to a function by reference, rather
than by value (fun(foo)). For more details see borrowing.
std::mem::size_of_val is a function, but called with its full path. Code can

be split in logical units called modules. In this case, the size_of_val function
is de�ned in the mem module, and the mem module is de�ned in the std
crate. For more details, see modules and crates.

Inference
The type inference engine is pretty smart. It does more than looking at the type of
the value expression during an initialization. It also looks at how the variable is
used afterwards to infer its type. Here's an advanced example of type inference:

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

�� of ��� �/�/��, �:�� PM

No type annotation of variables was needed, the compiler is happy and so is the
programmer!

Aliasing
The type statement can be used to give a new name to an existing type. Types
must have CamelCase names, or the compiler will raise a warning. The exception
to this rule are the primitive types: usize , f32 , etc.

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

�� of ��� �/�/��, �:�� PM

The main use of aliases is to reduce boilerplate; for example the IoResult<T> type
is an alias for the Result<T, IoError> type.

See also:

Attributes

Conversion
Rust addresses conversion between types by the use of traits. The generic
conversions will use the From and Into traits. However there are more speci�c
ones for the more common cases, in particular when converting to and from
String s.

From and Into
The From and Into traits are inherently linked, and this is actually part of its
implementation. If you are able to convert type A from type B, then it should be
easy to believe that we should be able to convert type B to type A.

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

�� of ��� �/�/��, �:�� PM

From

The From trait allows for a type to de�ne how to create itself from another type,
hence providing a very simple mechanism for converting between several types.
There are numerous implementations of this trait within the standard library for
conversion of primitive and common types.

For example we can easily convert a str into a String

We can do similar for de�ning a conversion for our own type.

Into

The Into trait is simply the reciprocal of the From trait. That is, if you have
implemented the From trait for your type you get the Into implementation for
free.

Using the Into trait will typically require speci�cation of the type to convert into
as the compiler is unable to determine this most of the time. However this is a
small trade-o� considering we get the functionality for free.

let my_str = "hello";
let my_string = String::from(my_str);

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

�� of ��� �/�/��, �:�� PM

TryFrom and TryInto
Similar to From and Into , TryFrom and TryInto are generic traits for converting
between types. Unlike From / Into , the TryFrom / TryInto traits are used for
fallible conversions, and as such, return Result s.

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

�� of ��� �/�/��, �:�� PM

To and from Strings

Converting to String

To convert any type to a String is as simple as implementing the ToString trait
for the type. Rather than doing so directly, you should implement the
fmt::Display trait which automagically provides ToString and also allows

printing the type as discussed in the section on print! .

use std::convert::TryFrom;
use std::convert::TryInto;

#[derive(Debug, PartialEq)]
struct EvenNumber(i32);

impl TryFrom<i32> for EvenNumber {
type Error = ();

fn try_from(value: i32) -> Result<Self, Self::Error> {
if value % 2 == 0 {

Ok(EvenNumber(value))
 } else {

Err(())
 }
 }
}

fn main() {
// TryFrom

assert_eq!(EvenNumber::try_from(8), Ok(EvenNumber(8)));
assert_eq!(EvenNumber::try_from(5), Err(()));

// TryInto

let result: Result<EvenNumber, ()> = 8i32.try_into();
assert_eq!(result, Ok(EvenNumber(8)));
let result: Result<EvenNumber, ()> = 5i32.try_into();
assert_eq!(result, Err(()));

}

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

�� of ��� �/�/��, �:�� PM

Parsing a String

One of the more common types to convert a string into is a number. The idiomatic
approach to this is to use the parse function and either to arrange for type
inference or to specify the type to parse using the 'turbo�sh' syntax. Both
alternatives are shown in the following example.

This will convert the string into the type speci�ed so long as the FromStr trait is
implemented for that type. This is implemented for numerous types within the
standard library. To obtain this functionality on a user de�ned type simply
implement the FromStr trait for that type.

Expressions
A Rust program is (mostly) made up of a series of statements:

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

�� of ��� �/�/��, �:�� PM

There are a few kinds of statements in Rust. The most common two are declaring a
variable binding, and using a ; with an expression:

Blocks are expressions too, so they can be used as values in assignments. The last
expression in the block will be assigned to the place expression such as a local
variable. However, if the last expression of the block ends with a semicolon, the
return value will be () .

fn main() {
 // statement
 // statement
 // statement
}

fn main() {
 // variable binding
 let x = 5;

 // expression;
 x;
 x + 1;
 15;
}

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

�� of ��� �/�/��, �:�� PM

Flow of Control
An essential part of any programming languages are ways to modify control �ow:
if / else , for , and others. Let's talk about them in Rust.

if/else
Branching with if - else is similar to other languages. Unlike many of them, the
boolean condition doesn't need to be surrounded by parentheses, and each
condition is followed by a block. if - else conditionals are expressions, and, all
branches must return the same type.

loop

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

�� of ��� �/�/��, �:�� PM

Rust provides a loop keyword to indicate an in�nite loop.

The break statement can be used to exit a loop at anytime, whereas the
continue statement can be used to skip the rest of the iteration and start a new

one.

Nesting and labels
It's possible to break or continue outer loops when dealing with nested loops. In
these cases, the loops must be annotated with some 'label , and the label must
be passed to the break / continue statement.

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

�� of ��� �/�/��, �:�� PM

Returning from loops
One of the uses of a loop is to retry an operation until it succeeds. If the operation
returns a value though, you might need to pass it to the rest of the code: put it
after the break , and it will be returned by the loop expression.

while

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

�� of ��� �/�/��, �:�� PM

The while keyword can be used to run a loop while a condition is true.

Let's write the infamous FizzBuzz using a while loop.

for loops

for and range

The for in construct can be used to iterate through an Iterator . One of the
easiest ways to create an iterator is to use the range notation a..b . This yields
values from a (inclusive) to b (exclusive) in steps of one.

Let's write FizzBuzz using for instead of while .

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

�� of ��� �/�/��, �:�� PM

Alternatively, a..=b can be used for a range that is inclusive on both ends. The
above can be written as:

for and iterators

The for in construct is able to interact with an Iterator in several ways. As
discussed in with the Iterator trait, if not speci�ed, the for loop will apply the
into_iter function on the collection provided to convert the collection into an

iterator. This is not the only means to convert a collection into an iterator however,
the other functions available include iter and iter_mut .

These 3 functions will return di�erent views of the data within your collection.

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

�� of ��� �/�/��, �:�� PM

iter - This borrows each element of the collection through each iteration.
Thus leaving the collection untouched and available for reuse after the loop.

into_iter - This consumes the collection so that on each iteration the exact
data is provided. Once the collection has been consumed it is no longer
available for reuse as it has been 'moved' within the loop.

iter_mut - This mutably borrows each element of the collection, allowing for
the collection to be modi�ed in place.

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

�� of ��� �/�/��, �:�� PM

In the above snippets note the type of match branch, that is the key di�erence in
the types of iteration. The di�erence in type then of course implies di�ering
actions that are able to be performed.

See also:

Iterator

match
Rust provides pattern matching via the match keyword, which can be used like a C
switch .

Destructuring

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

�� of ��� �/�/��, �:�� PM

A match block can destructure items in a variety of ways.

Destructuring Tuples
Destructuring Enums
Destructuring Pointers
Destructuring Structures

tuples
Tuples can be destructured in a match as follows:

See also:

Tuples

enums
An enum is destructured similarly:

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

�� of ��� �/�/��, �:�� PM

See also:

#[allow(...)] , color models and enum

pointers/ref

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

�� of ��� �/�/��, �:�� PM

For pointers, a distinction needs to be made between destructuring and
dereferencing as they are di�erent concepts which are used di�erently from a
language like C .

Dereferencing uses *
Destructuring uses & , ref , and ref mut

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

�� of ��� �/�/��, �:�� PM

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

�� of ��� �/�/��, �:�� PM

structs
Similarly, a struct can be destructured as shown:

See also:

Structs, The ref pattern

Guards
A match guard can be added to �lter the arm.

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

�� of ��� �/�/��, �:�� PM

See also:

Tuples

Binding
Indirectly accessing a variable makes it impossible to branch and use that variable
without re-binding. match provides the @ sigil for binding values to names:

You can also use binding to "destructure" enum variants, such as Option :

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

�� of ��� �/�/��, �:�� PM

See also:

functions , enums and Option

if let
For some use cases, when matching enums, match is awkward. For example:

if let is cleaner for this use case and in addition allows various failure options to
be speci�ed:

// Make `optional` of type `Option<i32>`
let optional = Some(7);

match optional {
Some(i) => {

println!("This is a really long string and `{:?}`", i);
// ^ Needed 2 indentations just so we could destructure
// `i` from the option.

 },
 _ => {},

// ^ Required because `match` is exhaustive. Doesn't it seem
// like wasted space?

};

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

�� of ��� �/�/��, �:�� PM

In the same way, if let can be used to match any enum value:

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

�� of ��� �/�/��, �:�� PM

Another bene�t: if let allows to match enum non-parameterized variants, even
if the enum doesn't #[derive(PartialEq)] , neither we implement PartialEq for
it. In such case, classic if Foo::Bar==a fails, because instances of such enum are
not comparable for equality. However, if let works.

Would you like a challenge? Fix the following example to use if let :

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

�� of ��� �/�/��, �:�� PM

See also:

enum , Option , and the RFC

while let
Similar to if let , while let can make awkward match sequences more
tolerable. Consider the following sequence that increments i :

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

�� of ��� �/�/��, �:�� PM

Using while let makes this sequence much nicer:

// Make `optional` of type `Option<i32>`
let mut optional = Some(0);

// Repeatedly try this test.
loop {

match optional {
// If `optional` destructures, evaluate the block.
Some(i) => {

if i > 9 {
println!("Greater than 9, quit!");

 optional = None;
 } else {

println!("`i` is `{:?}`. Try again.", i);
 optional = Some(i + 1);
 }

// ^ Requires 3 indentations!
 },

// Quit the loop when the destructure fails:
 _ => { break; }

// ^ Why should this be required? There must be a better way!
 }
}

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

�� of ��� �/�/��, �:�� PM

See also:

enum , Option , and the RFC

Functions
Functions are declared using the fn keyword. Its arguments are type annotated,
just like variables, and, if the function returns a value, the return type must be
speci�ed after an arrow -> .

The �nal expression in the function will be used as return value. Alternatively, the
return statement can be used to return a value earlier from within the function,

even from inside loops or if s.

Let's rewrite FizzBuzz using functions!

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

�� of ��� �/�/��, �:�� PM

Methods
Methods are functions attached to objects. These methods have access to the data
of the object and its other methods via the self keyword. Methods are de�ned
under an impl block.

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

�� of ��� �/�/��, �:�� PM

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

�� of ��� �/�/��, �:�� PM

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

�� of ��� �/�/��, �:�� PM

Closures
Closures in Rust, also called lambda expressions or lambdas, are functions that can
capture the enclosing environment. For example, a closure that captures the x
variable:

The syntax and capabilities of closures make them very convenient for on the �y
usage. Calling a closure is exactly like calling a function. However, both input and
return types can be inferred and input variable names must be speci�ed.

Other characteristics of closures include:

using || instead of () around input variables.
optional body delimination ({}) for a single expression (mandatory
otherwise).
the ability to capture the outer environment variables.

|val| val + x

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

�� of ��� �/�/��, �:�� PM

Capturing
Closures are inherently �exible and will do what the functionality requires to make
the closure work without annotation. This allows capturing to �exibly adapt to the
use case, sometimes moving and sometimes borrowing. Closures can capture
variables:

by reference: &T
by mutable reference: &mut T
by value: T

They preferentially capture variables by reference and only go lower when
required.

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

�� of ��� �/�/��, �:�� PM

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

�� of ��� �/�/��, �:�� PM

Using move before vertical pipes forces closure to take ownership of captured
variables:

See also:

Box and std::mem::drop

As input parameters

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

�� of ��� �/�/��, �:�� PM

While Rust chooses how to capture variables on the �y mostly without type
annotation, this ambiguity is not allowed when writing functions. When taking a
closure as an input parameter, the closure's complete type must be annotated
using one of a few traits . In order of decreasing restriction, they are:

Fn : the closure captures by reference (&T)
FnMut : the closure captures by mutable reference (&mut T)
FnOnce : the closure captures by value (T)

On a variable-by-variable basis, the compiler will capture variables in the least
restrictive manner possible.

For instance, consider a parameter annotated as FnOnce . This speci�es that the
closure may capture by &T , &mut T , or T , but the compiler will ultimately choose
based on how the captured variables are used in the closure.

This is because if a move is possible, then any type of borrow should also be
possible. Note that the reverse is not true. If the parameter is annotated as Fn ,
then capturing variables by &mut T or T are not allowed.

In the following example, try swapping the usage of Fn , FnMut , and FnOnce to
see what happens:

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

�� of ��� �/�/��, �:�� PM

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

�� of ��� �/�/��, �:�� PM

See also:

std::mem::drop , Fn , FnMut , Generics, where and FnOnce

Type anonymity
Closures succinctly capture variables from enclosing scopes. Does this have any
consequences? It surely does. Observe how using a closure as a function
parameter requires generics, which is necessary because of how they are de�ned:

When a closure is de�ned, the compiler implicitly creates a new anonymous
structure to store the captured variables inside, meanwhile implementing the
functionality via one of the traits : Fn , FnMut , or FnOnce for this unknown type.
This type is assigned to the variable which is stored until calling.

Since this new type is of unknown type, any usage in a function will require
generics. However, an unbounded type parameter <T> would still be ambiguous
and not be allowed. Thus, bounding by one of the traits : Fn , FnMut , or FnOnce
(which it implements) is su�cient to specify its type.

// `F` must be generic.
fn apply<F>(f: F) where
 F: FnOnce() {
 f();
}

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

�� of ��� �/�/��, �:�� PM

See also:

A thorough analysis, Fn , FnMut , and FnOnce

Input functions
Since closures may be used as arguments, you might wonder if the same can be
said about functions. And indeed they can! If you declare a function that takes a
closure as parameter, then any function that satis�es the trait bound of that
closure can be passed as a parameter.

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

�� of ��� �/�/��, �:�� PM

As an additional note, the Fn , FnMut , and FnOnce traits dictate how a closure
captures variables from the enclosing scope.

See also:

Fn , FnMut , and FnOnce

As output parameters
Closures as input parameters are possible, so returning closures as output
parameters should also be possible. However, anonymous closure types are, by
de�nition, unknown, so we have to use impl Trait to return them.

The valid traits for returning a closure are:

Fn

FnMut

FnOnce

Beyond this, the move keyword must be used, which signals that all captures occur
by value. This is required because any captures by reference would be dropped as
soon as the function exited, leaving invalid references in the closure.

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

�� of ��� �/�/��, �:�� PM

See also:

Fn , FnMut , Generics and impl Trait.

Examples in std
This section contains a few examples of using closures from the std library.

Iterator::any
Iterator::any is a function which when passed an iterator, will return true if

any element satis�es the predicate. Otherwise false . Its signature:

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

�� of ��� �/�/��, �:�� PM

See also:

std::iter::Iterator::any

Searching through iterators
Iterator::find is a function which iterates over an iterator and searches for the

�rst value which satis�es some condition. If none of the values satisfy the
condition, it returns None . Its signature:

pub trait Iterator {
// The type being iterated over.
type Item;

// `any` takes `&mut self` meaning the caller may be borrowed
// and modified, but not consumed.
fn any<F>(&mut self, f: F) -> bool where

// `FnMut` meaning any captured variable may at most be
// modified, not consumed. `Self::Item` states it takes
// arguments to the closure by value.

 F: FnMut(Self::Item) -> bool {}
}

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

�� of ��� �/�/��, �:�� PM

Iterator::find gives you a reference to the item. But if you want the index of the
item, use Iterator::position .

pub trait Iterator {
// The type being iterated over.
type Item;

// `find` takes `&mut self` meaning the caller may be borrowed
// and modified, but not consumed.
fn find<P>(&mut self, predicate: P) -> Option<Self::Item> where

// `FnMut` meaning any captured variable may at most be
// modified, not consumed. `&Self::Item` states it takes
// arguments to the closure by reference.

 P: FnMut(&Self::Item) -> bool {}
}

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

�� of ��� �/�/��, �:�� PM

See also:

std::iter::Iterator::find

std::iter::Iterator::find_map

std::iter::Iterator::position

std::iter::Iterator::rposition

Higher Order Functions
Rust provides Higher Order Functions (HOF). These are functions that take one or
more functions and/or produce a more useful function. HOFs and lazy iterators
give Rust its functional �avor.

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

�� of ��� �/�/��, �:�� PM

Option and Iterator implement their fair share of HOFs.

Diverging functions
Diverging functions never return. They are marked using ! , which is an empty
type.

fn foo() -> ! {
panic!("This call never returns.");

}

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

�� of ��� �/�/��, �:�� PM

As opposed to all the other types, this one cannot be instantiated, because the set
of all possible values this type can have is empty. Note that, it is di�erent from the
() type, which has exactly one possible value.

For example, this function returns as usual, although there is no information in the
return value.

As opposed to this function, which will never return the control back to the caller.

Although this might seem like an abstract concept, it is in fact very useful and often
handy. The main advantage of this type is that it can be cast to any other one and
therefore used at places where an exact type is required, for instance in match
branches. This allows us to write code like this:

fn some_fn() {
 ()
}

fn main() {
let a: () = some_fn();
println!("This function returns and you can see this line.")

}

#![feature(never_type)]

fn main() {
let x: ! = panic!("This call never returns.");
println!("You will never see this line!");

}

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

�� of ��� �/�/��, �:�� PM

It is also the return type of functions that loop forever (e.g. loop {}) like network
servers or functions that terminates the process (e.g. exit()).

Modules
Rust provides a powerful module system that can be used to hierarchically split
code in logical units (modules), and manage visibility (public/private) between
them.

A module is a collection of items: functions, structs, traits, impl blocks, and even
other modules.

Visibility
By default, the items in a module have private visibility, but this can be overridden
with the pub modi�er. Only the public items of a module can be accessed from
outside the module scope.

fn main() {
fn sum_odd_numbers(up_to: u32) -> u32 {

let mut acc = 0;
for i in 0..up_to {

// Notice that the return type of this match expression must
be u32

// because of the type of the "addition" variable.
let addition: u32 = match i%2 == 1 {

// The "i" variable is of type u32, which is perfectly
fine.

true => i,
// On the other hand, the "continue" expression does not

return
// u32, but it is still fine, because it never returns

and therefore
// does not violate the type requirements of the match

expression.
false => continue,

 };
 acc += addition;
 }
 acc
 }

println!("Sum of odd numbers up to 9 (excluding): {}",
sum_odd_numbers(9));
}

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

�� of ��� �/�/��, �:�� PM

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

�� of ��� �/�/��, �:�� PM

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

�� of ��� �/�/��, �:�� PM

Struct visibility
Structs have an extra level of visibility with their �elds. The visibility defaults to
private, and can be overridden with the pub modi�er. This visibility only matters
when a struct is accessed from outside the module where it is de�ned, and has the
goal of hiding information (encapsulation).

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

�� of ��� �/�/��, �:�� PM

See also:

generics and methods

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

�� of ��� �/�/��, �:�� PM

The use declaration
The use declaration can be used to bind a full path to a new name, for easier
access. It is often used like this:

You can use the as keyword to bind imports to a di�erent name:

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

�� of ��� �/�/��, �:�� PM

super and self
The super and self keywords can be used in the path to remove ambiguity
when accessing items and to prevent unnecessary hardcoding of paths.

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

�� of ��� �/�/��, �:�� PM

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

�� of ��� �/�/��, �:�� PM

File hierarchy
Modules can be mapped to a �le/directory hierarchy. Let's break down the visibility
example in �les:

In split.rs :

In my/mod.rs :

$ tree .
.
|-- my
| |-- inaccessible.rs
| |-- mod.rs
| `-- nested.rs
`-- split.rs

// This declaration will look for a file named `my.rs` or `my/mod.rs`
and will
// insert its contents inside a module named `my` under this scope
mod my;

fn function() {
println!("called `function()`");

}

fn main() {
 my::function();

 function();

 my::indirect_access();

 my::nested::function();
}

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

�� of ��� �/�/��, �:�� PM

In my/nested.rs :

In my/inaccessible.rs :

Let's check that things still work as before:

// Similarly `mod inaccessible` and `mod nested` will locate the
`nested.rs`
// and `inaccessible.rs` files and insert them here under their
respective
// modules
mod inaccessible;
pub mod nested;

pub fn function() {
println!("called `my::function()`");

}

fn private_function() {
println!("called `my::private_function()`");

}

pub fn indirect_access() {
print!("called `my::indirect_access()`, that\n> ");

 private_function();
}

pub fn function() {
println!("called `my::nested::function()`");

}

#[allow(dead_code)]
fn private_function() {

println!("called `my::nested::private_function()`");
}

#[allow(dead_code)]
pub fn public_function() {

println!("called `my::inaccessible::public_function()`");
}

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

�� of ��� �/�/��, �:�� PM

Crates
A crate is a compilation unit in Rust. Whenever rustc some_file.rs is called,
some_file.rs is treated as the crate file. If some_file.rs has mod declarations in

it, then the contents of the module �les would be inserted in places where mod
declarations in the crate �le are found, before running the compiler over it. In other
words, modules do not get compiled individually, only crates get compiled.

A crate can be compiled into a binary or into a library. By default, rustc will
produce a binary from a crate. This behavior can be overridden by passing the
--crate-type �ag to lib .

Library
Let's create a library, and then see how to link it to another crate.

Libraries get pre�xed with "lib", and by default they get named after their crate �le,
but this default name can be overridden using the crate_name attribute.

$ rustc split.rs && ./split
called `my::function()`
called `function()`
called `my::indirect_access()`, that
> called `my::private_function()`
called `my::nested::function()`

pub fn public_function() {
println!("called rary's `public_function()`");

}

fn private_function() {
println!("called rary's `private_function()`");

}

pub fn indirect_access() {
print!("called rary's `indirect_access()`, that\n> ");

 private_function();
}

$ rustc --crate-type=lib rary.rs
$ ls lib*
library.rlib

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

�� of ��� �/�/��, �:�� PM

extern crate

To link a crate to this new library, the extern crate declaration must be used.
This will not only link the library, but also import all its items under a module
named the same as the library. The visibility rules that apply to modules also apply
to libraries.

Cargo
cargo is the o�cial Rust package management tool. It has lots of really useful

features to improve code quality and developer velocity! These include

Dependency management and integration with crates.io (the o�cial Rust
package registry)
Awareness of unit tests
Awareness of benchmarks

This chapter will go through some quick basics, but you can �nd the
comprehensive docs in The Cargo Book.

Dependencies

// Link to `library`, import items under the `rary` module
extern crate rary;

fn main() {
 rary::public_function();

// Error! `private_function` is private
//rary::private_function();

 rary::indirect_access();
}

Where library.rlib is the path to the compiled library, assumed that
it's
in the same directory here:
$ rustc executable.rs --extern rary=library.rlib && ./executable
called rary's `public_function()`
called rary's `indirect_access()`, that
> called rary's `private_function()`

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

�� of ��� �/�/��, �:�� PM

Most programs have dependencies on some libraries. If you have ever managed
dependencies by hand, you know how much of a pain this can be. Luckily, the Rust
ecosystem comes standard with cargo ! cargo can manage dependencies for a
project.

To create a new Rust project,

For the rest of this chapter, let's assume we are making a binary, rather than a
library, but all of the concepts are the same.

After the above commands, you should see a �le hierarchy like this:

The main.rs is the root source �le for your new project -- nothing new there. The
Cargo.toml is the con�g �le for cargo for this project (foo). If you look inside it,

you should see something like this:

The name �eld under [package] determines the name of the project. This is used
by crates.io if you publish the crate (more later). It is also the name of the output
binary when you compile.

The version �eld is a crate version number using Semantic Versioning.

The authors �eld is a list of authors used when publishing the crate.

The [dependencies] section lets you add dependencies for your project.

For example, suppose that we want our program to have a great CLI. You can �nd
lots of great packages on crates.io (the o�cial Rust package registry). One popular

A binary
cargo new foo

OR A library
cargo new --lib foo

foo
├── Cargo.toml
└── src
 └── main.rs

[package]
name = "foo"
version = "0.1.0"
authors = ["mark"]

[dependencies]

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

�� of ��� �/�/��, �:�� PM

choice is clap. As of this writing, the most recent published version of clap is
2.27.1 . To add a dependency to our program, we can simply add the following to

our Cargo.toml under [dependencies] : clap = "2.27.1" . And of course,
extern crate clap in main.rs , just like normal. And that's it! You can start using
clap in your program.

cargo also supports other types of dependencies. Here is just a small sampling:

cargo is more than a dependency manager. All of the available con�guration
options are listed in the format speci�cation of Cargo.toml .

To build our project we can execute cargo build anywhere in the project
directory (including subdirectories!). We can also do cargo run to build and run.
Notice that these commands will resolve all dependencies, download crates if
needed, and build everything, including your crate. (Note that it only rebuilds what
it has not already built, similar to make).

Voila! That's all there is to it!

Conventions
In the previous chapter, we saw the following directory hierarchy:

Suppose that we wanted to have two binaries in the same project, though. What
then?

It turns out that cargo supports this. The default binary name is main , as we saw
before, but you can add additional binaries by placing them in a bin/ directory:

[package]
name = "foo"
version = "0.1.0"
authors = ["mark"]

[dependencies]
clap = "2.27.1" # from crates.io
rand = { git = "https://github.com/rust-lang-nursery/rand" } # from
online repo
bar = { path = "../bar" } # from a path in the local filesystem

foo
├── Cargo.toml
└── src
 └── main.rs

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

�� of ��� �/�/��, �:�� PM

To tell cargo to compile or run this binary as opposed to the default or other
binaries, we just pass cargo the --bin my_other_bin �ag, where my_other_bin
is the name of the binary we want to work with.

In addition to extra binaries, cargo supports more features such as benchmarks,
tests, and examples.

In the next chapter, we will look more closely at tests.

Testing
As we know testing is integral to any piece of software! Rust has �rst-class support
for unit and integration testing (see this chapter in TRPL).

From the testing chapters linked above, we see how to write unit tests and
integration tests. Organizationally, we can place unit tests in the modules they test
and integration tests in their own tests/ directory:

Each �le in tests is a separate integration test.

cargo naturally provides an easy way to run all of your tests!

You should see output like this:

foo
├── Cargo.toml
└── src
 ├── main.rs
 └── bin
 └── my_other_bin.rs

foo
├── Cargo.toml
├── src
│ └── main.rs
└── tests
 ├── my_test.rs
 └── my_other_test.rs

$ cargo test

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

�� of ��� �/�/��, �:�� PM

You can also run tests whose name matches a pattern:

One word of caution: Cargo may run multiple tests concurrently, so make sure that
they don't race with each other. For example, if they all output to a �le, you should
make them write to di�erent �les.

Build Scripts
Sometimes a normal build from cargo is not enough. Perhaps your crate needs
some pre-requisites before cargo will successfully compile, things like code
generation, or some native code that needs to be compiled. To solve this problem
we have build scripts that Cargo can run.

To add a build script to your package it can either be speci�ed in the Cargo.toml
as follows:

$ cargo test
 Compiling blah v0.1.0 (file:///nobackup/blah)
 Finished dev [unoptimized + debuginfo] target(s) in 0.89 secs
 Running target/debug/deps/blah-d3b32b97275ec472

running 3 tests
test test_bar ... ok
test test_baz ... ok
test test_foo_bar ... ok
test test_foo ... ok

test result: ok. 3 passed; 0 failed; 0 ignored; 0 measured; 0 filtered
out

$ cargo test test_foo

$ cargo test test_foo
 Compiling blah v0.1.0 (file:///nobackup/blah)
 Finished dev [unoptimized + debuginfo] target(s) in 0.35 secs
 Running target/debug/deps/blah-d3b32b97275ec472

running 2 tests
test test_foo ... ok
test test_foo_bar ... ok

test result: ok. 2 passed; 0 failed; 0 ignored; 0 measured; 2 filtered
out

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

�� of ��� �/�/��, �:�� PM

Otherwise Cargo will look for a build.rs �le in the project directory by default.

How to use a build script

The build script is simply another Rust �le that will be compiled and invoked prior
to compiling anything else in the package. Hence it can be used to ful�ll pre-
requisites of your crate.

Cargo provides the script with inputs via environment variables speci�ed here that
can be used.

The script provides output via stdout. All lines printed are written to target/debug
/build/<pkg>/output . Further, lines pre�xed with cargo: will be interpreted by
Cargo directly and hence can be used to de�ne parameters for the package's
compilation.

For further speci�cation and examples have a read of the Cargo speci�cation.

Attributes
An attribute is metadata applied to some module, crate or item. This metadata can
be used to/for:

conditional compilation of code
set crate name, version and type (binary or library)
disable lints (warnings)
enable compiler features (macros, glob imports, etc.)
link to a foreign library
mark functions as unit tests
mark functions that will be part of a benchmark

When attributes apply to a whole crate, their syntax is #![crate_attribute] , and
when they apply to a module or item, the syntax is #[item_attribute] (notice the
missing bang !).

Attributes can take arguments with di�erent syntaxes:

[package]
...
build = "build.rs"

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

�� of ��� �/�/��, �:�� PM

#[attribute = "value"]

#[attribute(key = "value")]

#[attribute(value)]

Attributes can have multiple values and can be separated over multiple lines, too:

dead_code

The compiler provides a dead_code lint that will warn about unused functions. An
attribute can be used to disable the lint.

Note that in real programs, you should eliminate dead code. In these examples
we'll allow dead code in some places because of the interactive nature of the
examples.

Crates
The crate_type attribute can be used to tell the compiler whether a crate is a
binary or a library (and even which type of library), and the crate_name attribute
can be used to set the name of the crate.

However, it is important to note that both the crate_type and crate_name
attributes have no e�ect whatsoever when using Cargo, the Rust package

#[attribute(value, value2)]

#[attribute(value, value2, value3,
 value4, value5)]

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

�� of ��� �/�/��, �:�� PM

manager. Since Cargo is used for the majority of Rust projects, this means real-
world uses of crate_type and crate_name are relatively limited.

When the crate_type attribute is used, we no longer need to pass the --crate-
type �ag to rustc .

cfg

Conditional compilation is possible through two di�erent operators:

the cfg attribute: #[cfg(...)] in attribute position
the cfg! macro: cfg!(...) in boolean expressions

Both utilize identical argument syntax.

$ rustc lib.rs
$ ls lib*
library.rlib

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

�� of ��� �/�/��, �:�� PM

See also:

the reference, cfg! , and macros.

Custom
Some conditionals like target_os are implicitly provided by rustc , but custom
conditionals must be passed to rustc using the --cfg �ag.

Try to run this to see what happens without the custom cfg �ag.

With the custom cfg �ag:

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

�� of ��� �/�/��, �:�� PM

Generics
Generics is the topic of generalizing types and functionalities to broader cases. This
is extremely useful for reducing code duplication in many ways, but can call for
rather involving syntax. Namely, being generic requires taking great care to specify
over which types a generic type is actually considered valid. The simplest and most
common use of generics is for type parameters.

A type parameter is speci�ed as generic by the use of angle brackets and upper
camel case: <Aaa, Bbb, ...> . "Generic type parameters" are typically
represented as <T> . In Rust, "generic" also describes anything that accepts one or
more generic type parameters <T> . Any type speci�ed as a generic type
parameter is generic, and everything else is concrete (non-generic).

For example, de�ning a generic function named foo that takes an argument T of
any type:

Because T has been speci�ed as a generic type parameter using <T> , it is
considered generic when used here as (arg: T) . This is the case even if T has
previously been de�ned as a struct .

This example shows some of the syntax in action:

$ rustc --cfg some_condition custom.rs && ./custom
condition met!

fn foo<T>(arg: T) { ... }

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

See also:

struct s

Functions
The same set of rules can be applied to functions: a type T becomes generic when
preceded by <T> .

Using generic functions sometimes requires explicitly specifying type parameters.
This may be the case if the function is called where the return type is generic, or if
the compiler doesn't have enough information to infer the necessary type
parameters.

A function call with explicitly speci�ed type parameters looks like: fun::<A, B,
...>() .

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

See also:

functions and struct s

Implementation
Similar to functions, implementations require care to remain generic.

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

See also:

functions returning references, impl , and struct

Traits

struct S; // Concrete type `S`
struct GenericVal<T>(T); // Generic type `GenericVal`

// impl of GenericVal where we explicitly specify type parameters:
impl GenericVal<f32> {} // Specify `f32`
impl GenericVal<S> {} // Specify `S` as defined above

// `<T>` Must precede the type to remain generic
impl<T> GenericVal<T> {}

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

Of course trait s can also be generic. Here we de�ne one which reimplements
the Drop trait as a generic method to drop itself and an input.

See also:

Drop , struct , and trait

Bounds
When working with generics, the type parameters often must use traits as bounds
to stipulate what functionality a type implements. For example, the following
example uses the trait Display to print and so it requires T to be bound by
Display ; that is, T must implement Display .

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

Bounding restricts the generic to types that conform to the bounds. That is:

Another e�ect of bounding is that generic instances are allowed to access the
methods of traits speci�ed in the bounds. For example:

// Define a function `printer` that takes a generic type `T` which
// must implement trait `Display`.
fn printer<T: Display>(t: T) {

println!("{}", t);
}

struct S<T: Display>(T);

// Error! `Vec<T>` does not implement `Display`. This
// specialization will fail.
let s = S(vec![1]);

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

As an additional note, where clauses can also be used to apply bounds in some
cases to be more expressive.

See also:

std::fmt , struct s, and trait s

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

Testcase: empty bounds
A consequence of how bounds work is that even if a trait doesn't include any
functionality, you can still use it as a bound. Eq and Ord are examples of such
trait s from the std library.

See also:

std::cmp::Eq , std::cmp::Ord s, and trait s

Multiple bounds
Multiple bounds can be applied with a + . Like normal, di�erent types are
separated with , .

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

See also:

std::fmt and trait s

Where clauses
A bound can also be expressed using a where clause immediately before the
opening { , rather than at the type's �rst mention. Additionally, where clauses can
apply bounds to arbitrary types, rather than just to type parameters.

Some cases that a where clause is useful:

When specifying generic types and bounds separately is clearer:

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

When using a where clause is more expressive than using normal syntax. The
impl in this example cannot be directly expressed without a where clause:

See also:

RFC, struct , and trait

New Type Idiom
The newtype idiom gives compile time guarantees that the right type of value is
supplied to a program.

For example, an age veri�cation function that checks age in years, must be given a

impl <A: TraitB + TraitC, D: TraitE + TraitF> MyTrait<A, D> for YourType
{}

// Expressing bounds with a `where` clause
impl <A, D> MyTrait<A, D> for YourType where
 A: TraitB + TraitC,
 D: TraitE + TraitF {}

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

value of type Years .

Uncomment the last print statement to observe that the type supplied must be
Years .

To obtain the newtype 's value as the base type, you may use tuple syntax like so:

See also:

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

structs

Associated items
"Associated Items" refers to a set of rules pertaining to item s of various types. It is
an extension to trait generics, and allows trait s to internally de�ne new items.

One such item is called an associated type, providing simpler usage patterns when
the trait is generic over its container type.

See also:

RFC

The Problem
A trait that is generic over its container type has type speci�cation requirements
- users of the trait must specify all of its generic types.

In the example below, the Contains trait allows the use of the generic types A
and B . The trait is then implemented for the Container type, specifying i32 for
A and B so that it can be used with fn difference() .

Because Contains is generic, we are forced to explicitly state all of the generic
types for fn difference() . In practice, we want a way to express that A and B
are determined by the input C . As you will see in the next section, associated types
provide exactly that capability.

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

See also:

struct s, and trait s

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

Associated types
The use of "Associated types" improves the overall readability of code by moving
inner types locally into a trait as output types. Syntax for the trait de�nition is as
follows:

Note that functions that use the trait Contains are no longer required to
express A or B at all:

Let's rewrite the example from the previous section using associated types:

// `A` and `B` are defined in the trait via the `type` keyword.
// (Note: `type` in this context is different from `type` when used for
// aliases).
trait Contains {

type A;
type B;

// Updated syntax to refer to these new types generically.
fn contains(&self, &Self::A, &Self::B) -> bool;

}

// Without using associated types
fn difference<A, B, C>(container: &C) -> i32 where
 C: Contains<A, B> { ... }

// Using associated types
fn difference<C: Contains>(container: &C) -> i32 { ... }

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

Phantom type parameters
A phantom type parameter is one that doesn't show up at runtime, but is checked
statically (and only) at compile time.

Data types can use extra generic type parameters to act as markers or to perform
type checking at compile time. These extra parameters hold no storage values, and
have no runtime behavior.

In the following example, we combine std::marker::PhantomData with the
phantom type parameter concept to create tuples containing di�erent data types.

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

See also:

Derive, struct, and TupleStructs

Testcase: unit clarification

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

A useful method of unit conversions can be examined by implementing Add with a
phantom type parameter. The Add trait is examined below:

The whole implementation:

// This construction would impose: `Self + RHS = Output`
// where RHS defaults to Self if not specified in the implementation.
pub trait Add<RHS = Self> {

type Output;

fn add(self, rhs: RHS) -> Self::Output;
}

// `Output` must be `T<U>` so that `T<U> + T<U> = T<U>`.
impl<U> Add for T<U> {

type Output = T<U>;
 ...
}

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

See also:

Borrowing (&), Bounds (X: Y), enum, impl & self, Overloading, ref, Traits (X for
Y), and TupleStructs.

Scoping rules
Scopes play an important part in ownership, borrowing, and lifetimes. That is, they
indicate to the compiler when borrows are valid, when resources can be freed, and
when variables are created or destroyed.

RAII
Variables in Rust do more than just hold data in the stack: they also own resources,
e.g. Box<T> owns memory in the heap. Rust enforces RAII (Resource Acquisition Is
Initialization), so whenever an object goes out of scope, its destructor is called and
its owned resources are freed.

This behavior shields against resource leak bugs, so you'll never have to manually
free memory or worry about memory leaks again! Here's a quick showcase:

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

Of course, we can double check for memory errors using valgrind :

$ rustc raii.rs && valgrind ./raii
==26873== Memcheck, a memory error detector
==26873== Copyright (C) 2002-2013, and GNU GPL'd, by Julian Seward et
al.
==26873== Using Valgrind-3.9.0 and LibVEX; rerun with -h for copyright
info
==26873== Command: ./raii
==26873==
==26873==
==26873== HEAP SUMMARY:
==26873== in use at exit: 0 bytes in 0 blocks
==26873== total heap usage: 1,013 allocs, 1,013 frees, 8,696 bytes
allocated
==26873==
==26873== All heap blocks were freed -- no leaks are possible
==26873==
==26873== For counts of detected and suppressed errors, rerun with: -v
==26873== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 2 from 2)

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

No leaks here!

Destructor

The notion of a destructor in Rust is provided through the Drop trait. The
destructor is called when the resource goes out of scope. This trait is not required
to be implemented for every type, only implement it for your type if you require its
own destructor logic.

Run the below example to see how the Drop trait works. When the variable in the
main function goes out of scope the custom destructor will be invoked.

See also:

Box

Ownership and moves
Because variables are in charge of freeing their own resources, resources can
only have one owner. This also prevents resources from being freed more than
once. Note that not all variables own resources (e.g. references).

When doing assignments (let x = y) or passing function arguments by value
(foo(x)), the ownership of the resources is transferred. In Rust-speak, this is
known as a move.

After moving resources, the previous owner can no longer be used. This avoids

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

creating dangling pointers.

Mutability
Mutability of data can be changed when ownership is transferred.

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

Borrowing
Most of the time, we'd like to access data without taking ownership over it. To
accomplish this, Rust uses a borrowing mechanism. Instead of passing objects by
value (T), objects can be passed by reference (&T).

The compiler statically guarantees (via its borrow checker) that references always
point to valid objects. That is, while references to an object exist, the object cannot
be destroyed.

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

Mutability
Mutable data can be mutably borrowed using &mut T . This is called a mutable
reference and gives read/write access to the borrower. In contrast, &T borrows the
data via an immutable reference, and the borrower can read the data but not
modify it:

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

See also:

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

static

Freezing
When data is immutably borrowed, it also freezes. Frozen data can't be modi�ed via
the original object until all references to it go out of scope:

Aliasing
Data can be immutably borrowed any number of times, but while immutably
borrowed, the original data can't be mutably borrowed. On the other hand, only
one mutable borrow is allowed at a time. The original data can be borrowed again
only after the mutable reference has been used for the last time.

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

The ref pattern
When doing pattern matching or destructuring via the let binding, the ref
keyword can be used to take references to the �elds of a struct/tuple. The example
below shows a few instances where this can be useful:

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

Lifetimes
A lifetime is a construct the compiler (or more speci�cally, its borrow checker) uses
to ensure all borrows are valid. Speci�cally, a variable's lifetime begins when it is
created and ends when it is destroyed. While lifetimes and scopes are often
referred to together, they are not the same.

Take, for example, the case where we borrow a variable via & . The borrow has a
lifetime that is determined by where it is declared. As a result, the borrow is valid
as long as it ends before the lender is destroyed. However, the scope of the borrow
is determined by where the reference is used.

In the following example and in the rest of this section, we will see how lifetimes
relate to scopes, as well as how the two di�er.

Note that no names or types are assigned to label lifetimes. This restricts how
lifetimes will be able to be used as we will see.

Explicit annotation
The borrow checker uses explicit lifetime annotations to determine how long

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

references should be valid. In cases where lifetimes are not elided1, Rust requires
explicit annotations to determine what the lifetime of a reference should be. The
syntax for explicitly annotating a lifetime uses an apostrophe character as follows:

Similar to closures, using lifetimes requires generics. Additionally, this lifetime
syntax indicates that the lifetime of foo may not exceed that of 'a . Explicit
annotation of a type has the form &'a T where 'a has already been introduced.

In cases with multiple lifetimes, the syntax is similar:

In this case, the lifetime of foo cannot exceed that of either 'a or 'b .

See the following example for explicit lifetime annotation in use:

foo<'a>
// `foo` has a lifetime parameter `'a`

foo<'a, 'b>
// `foo` has lifetime parameters `'a` and `'b`

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

1 elision implicitly annotates lifetimes and so is di�erent.

See also:

generics and closures

Functions
Ignoring elision, function signatures with lifetimes have a few constraints:

any reference must have an annotated lifetime.

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

any reference being returned must have the same lifetime as an input or be
static .

Additionally, note that returning references without input is banned if it would
result in returning references to invalid data. The following example shows o�
some valid forms of functions with lifetimes:

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

See also:

functions

Methods
Methods are annotated similarly to functions:

See also:

methods

Structs
Annotation of lifetimes in structures are also similar to functions:

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

See also:

struct s

Traits
Annotation of lifetimes in trait methods basically are similar to functions. Note that
impl may have annotation of lifetimes too.

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

See also:

trait s

Bounds
Just like generic types can be bounded, lifetimes (themselves generic) use bounds
as well. The : character has a slightly di�erent meaning here, but + is the same.
Note how the following read:

1. T: 'a : All references in T must outlive lifetime 'a .
2. T: Trait + 'a : Type T must implement trait Trait and all references in T

must outlive 'a .

The example below shows the above syntax in action used after keyword where :

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

See also:

generics, bounds in generics, and multiple bounds in generics

Coercion
A longer lifetime can be coerced into a shorter one so that it works inside a scope it
normally wouldn't work in. This comes in the form of inferred coercion by the Rust
compiler, and also in the form of declaring a lifetime di�erence:

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

Static
A 'static lifetime is the longest possible lifetime, and lasts for the lifetime of the
running program. A 'static lifetime may also be coerced to a shorter lifetime.
There are two ways to make a variable with 'static lifetime, and both are stored
in the read-only memory of the binary:

Make a constant with the static declaration.
Make a string literal which has type: &'static str .

See the following example for a display of each method:

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

See also:

'static constants

Elision
Some lifetime patterns are overwhelmingly common and so the borrow checker
will allow you to omit them to save typing and to improve readability. This is known
as elision. Elision exists in Rust solely because these patterns are common.

The following code shows a few examples of elision. For a more comprehensive
description of elision, see lifetime elision in the book.

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

See also:

elision

Traits
A trait is a collection of methods de�ned for an unknown type: Self . They can
access other methods declared in the same trait.

Traits can be implemented for any data type. In the example below, we de�ne
Animal , a group of methods. The Animal trait is then implemented for the
Sheep data type, allowing the use of methods from Animal with a Sheep .

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

Derive
The compiler is capable of providing basic implementations for some traits via the
#[derive] attribute. These traits can still be manually implemented if a more

complex behavior is required.

The following is a list of derivable traits:

Comparison traits: Eq , PartialEq , Ord , PartialOrd .
Clone , to create T from &T via a copy.
Copy , to give a type 'copy semantics' instead of 'move semantics'.
Hash , to compute a hash from &T .
Default , to create an empty instance of a data type.
Debug , to format a value using the {:?} formatter.

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

See also:

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

derive

Returning Traits with dyn
The Rust compiler needs to know how much space every function's return type
requires. This means all your functions have to return a concrete type. Unlike other
languages, if you have a trait like Animal , you can't write a function that returns
Animal , because its di�erent implementations will need di�erent amounts of

memory.

However, there's an easy workaround. Instead of returning a trait object directly,
our functions return a Box which contains some Animal . A box is just a reference
to some memory in the heap. Because a reference has a statically-known size, and
the compiler can guarantee it points to a heap-allocated Animal , we can return a
trait from our function!

Rust tries to be as explicit as possible whenever it allocates memory on the heap.
So if your function returns a pointer-to-trait-on-heap in this way, you need to write
the return type with the dyn keyword, e.g. Box<dyn Animal> .

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

Operator Overloading
In Rust, many of the operators can be overloaded via traits. That is, some
operators can be used to accomplish di�erent tasks based on their input
arguments. This is possible because operators are syntactic sugar for method calls.
For example, the + operator in a + b calls the add method (as in a.add(b)).
This add method is part of the Add trait. Hence, the + operator can be used by
any implementor of the Add trait.

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

A list of the traits, such as Add , that overload operators can be found in
core::ops .

See Also

Add, Syntax Index

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

Drop
The Drop trait only has one method: drop , which is called automatically when an
object goes out of scope. The main use of the Drop trait is to free the resources
that the implementor instance owns.

Box , Vec , String , File , and Process are some examples of types that
implement the Drop trait to free resources. The Drop trait can also be manually
implemented for any custom data type.

The following example adds a print to console to the drop function to announce
when it is called.

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

Iterators
The Iterator trait is used to implement iterators over collections such as arrays.

The trait requires only a method to be de�ned for the next element, which may
be manually de�ned in an impl block or automatically de�ned (as in arrays and
ranges).

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

As a point of convenience for common situations, the for construct turns some
collections into iterators using the .into_iter() method.

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

impl Trait

If your function returns a type that implements MyTrait , you can write its return
type as -> impl MyTrait . This can help simplify your type signatures quite a lot!

More importantly, some Rust types can't be written out. For example, every closure
has its own unnamed concrete type. Before impl Trait syntax, you had to
allocate on the heap in order to return a closure. But now you can do it all

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

statically, like this:

You can also use impl Trait to return an iterator that uses map or filter
closures! This makes using map and filter easier. Because closure types don't
have names, you can't write out an explicit return type if your function returns
iterators with closures. But with impl Trait you can do this easily:

Clone
When dealing with resources, the default behavior is to transfer them during
assignments or function calls. However, sometimes we need to make a copy of the
resource as well.

The Clone trait helps us do exactly this. Most commonly, we can use the
.clone() method de�ned by the Clone trait.

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

Supertraits
Rust doesn't have "inheritance", but you can de�ne a trait as being a superset of
another trait. For example:

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

See also:

The Rust Programming Language chapter on supertraits

Disambiguating overlapping traits
A type can implement many di�erent traits. What if two traits both require the
same name? For example, many traits might have a method named get() . They
might even have di�erent return types!

Good news: because each trait implementation gets its own impl block, it's clear
which trait's get method you're implementing.

What about when it comes time to call those methods? To disambiguate between

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

them, we have to use Fully Quali�ed Syntax.

See also:

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

The Rust Programming Language chapter on Fully Quali�ed syntax

macro_rules!
Rust provides a powerful macro system that allows metaprogramming. As you've
seen in previous chapters, macros look like functions, except that their name ends
with a bang ! , but instead of generating a function call, macros are expanded into
source code that gets compiled with the rest of the program. However, unlike
macros in C and other languages, Rust macros are expanded into abstract syntax
trees, rather than string preprocessing, so you don't get unexpected precedence
bugs.

Macros are created using the macro_rules! macro.

So why are macros useful?

1. Don't repeat yourself. There are many cases where you may need similar
functionality in multiple places but with di�erent types. Often, writing a
macro is a useful way to avoid repeating code. (More on this later)

2. Domain-speci�c languages. Macros allow you to de�ne special syntax for a
speci�c purpose. (More on this later)

3. Variadic interfaces. Sometimes you want to de�ne an interface that takes a
variable number of arguments. An example is println! which could take
any number of arguments, depending on the format string!. (More on this
later)

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

Syntax
In following subsections, we will show how to de�ne macros in Rust. There are
three basic ideas:

Patterns and Designators
Overloading
Repetition

Designators
The arguments of a macro are pre�xed by a dollar sign $ and type annotated with
a designator:

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

These are some of the available designators:

block

expr is used for expressions
ident is used for variable/function names
item

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

literal is used for literal constants
pat (pattern)
path

stmt (statement)
tt (token tree)
ty (type)
vis (visibility qualifier)

For a complete list, see the Rust Reference.

Overload
Macros can be overloaded to accept di�erent combinations of arguments. In that
regard, macro_rules! can work similarly to a match block:

Repeat
Macros can use + in the argument list to indicate that an argument may repeat at
least once, or * , to indicate that the argument may repeat zero or more times.

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

In the following example, surrounding the matcher with $(...),+ will match one
or more expression, separated by commas. Also note that the semicolon is
optional on the last case.

DRY (Don't Repeat Yourself)
Macros allow writing DRY code by factoring out the common parts of functions
and/or test suites. Here is an example that implements and tests the += , *= and
-= operators on Vec<T> :

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

Domain Specific Languages (DSLs)
A DSL is a mini "language" embedded in a Rust macro. It is completely valid Rust
because the macro system expands into normal Rust constructs, but it looks like a
small language. This allows you to de�ne concise or intuitive syntax for some
special functionality (within bounds).

Suppose that I want to de�ne a little calculator API. I would like to supply an
expression and have the output printed to console.

Output:

$ rustc --test dry.rs && ./dry
running 3 tests
test test::mul_assign ... ok
test test::add_assign ... ok
test test::sub_assign ... ok

test result: ok. 3 passed; 0 failed; 0 ignored; 0 measured

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

This was a very simple example, but much more complex interfaces have been
developed, such as lazy_static or clap .

Also, note the two pairs of braces in the macro. The outer ones are part of the
syntax of macro_rules! , in addition to () or [] .

Variadic Interfaces
A variadic interface takes an arbitrary number of arguments. For example,
println! can take an arbitrary number of arguments, as determined by the

format string.

We can extend our calculate! macro from the previous section to be variadic:

Output:

1 + 2 = 3
(1 + 2) * (3 / 4) = 0

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

Error handling
Error handling is the process of handling the possibility of failure. For example,
failing to read a �le and then continuing to use that bad input would clearly be
problematic. Noticing and explicitly managing those errors saves the rest of the
program from various pitfalls.

There are various ways to deal with errors in Rust, which are described in the
following subchapters. They all have more or less subtle di�erences and di�erent
use cases. As a rule of thumb:

An explicit panic is mainly useful for tests and dealing with unrecoverable errors.
For prototyping it can be useful, for example when dealing with functions that
haven't been implemented yet, but in those cases the more descriptive
unimplemented is better. In tests panic is a reasonable way to explicitly fail.

The Option type is for when a value is optional or when the lack of a value is not
an error condition. For example the parent of a directory - / and C: don't have
one. When dealing with Option s, unwrap is �ne for prototyping and cases where
it's absolutely certain that there is guaranteed to be a value. However expect is
more useful since it lets you specify an error message in case something goes
wrong anyway.

When there is a chance that things do go wrong and the caller has to deal with the
problem, use Result . You can unwrap and expect them as well (please don't do
that unless it's a test or quick prototype).

For a more rigorous discussion of error handling, refer to the error handling
section in the o�cial book.

panic

The simplest error handling mechanism we will see is panic . It prints an error
message, starts unwinding the stack, and usually exits the program. Here, we
explicitly call panic on our error condition:

1 + 2 = 3
3 + 4 = 7
(2 * 3) + 1 = 7

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

Option & unwrap
In the last example, we showed that we can induce program failure at will. We told
our program to panic if the princess received an inappropriate gift - a snake. But
what if the princess expected a gift and didn't receive one? That case would be just
as bad, so it needs to be handled!

We could test this against the null string ("") as we do with a snake. Since we're
using Rust, let's instead have the compiler point out cases where there's no gift.

An enum called Option<T> in the std library is used when absence is a possibility.
It manifests itself as one of two "options":

Some(T) : An element of type T was found
None : No element was found

These cases can either be explicitly handled via match or implicitly with unwrap .
Implicit handling will either return the inner element or panic .

Note that it's possible to manually customize panic with expect, but unwrap
otherwise leaves us with a less meaningful output than explicit handling. In the
following example, explicit handling yields a more controlled result while retaining
the option to panic if desired.

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

Unpacking options with ?
You can unpack Option s by using match statements, but it's often easier to use
the ? operator. If x is an Option , then evaluating x? will return the underlying
value if x is Some , otherwise it will terminate whatever function is being executed
and return None .

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

You can chain many ? s together to make your code much more readable.

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

Combinators: map
match is a valid method for handling Option s. However, you may eventually �nd

heavy usage tedious, especially with operations only valid with an input. In these
cases, combinators can be used to manage control �ow in a modular fashion.

Option has a built in method called map() , a combinator for the simple mapping
of Some -> Some and None -> None . Multiple map() calls can be chained
together for even more �exibility.

In the following example, process() replaces all functions previous to it while
staying compact.

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

See also:

closures, Option , Option::map()

Combinators: and_then
map() was described as a chainable way to simplify match statements. However,

using map() on a function that returns an Option<T> results in the nested
Option<Option<T>> . Chaining multiple calls together can then become confusing.

That's where another combinator called and_then() , known in some languages as
�atmap, comes in.

and_then() calls its function input with the wrapped value and returns the result.
If the Option is None , then it returns None instead.

In the following example, cookable_v2() results in an Option<Food> . Using
map() instead of and_then() would have given an Option<Option<Food>> , which

is an invalid type for eat() .

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

See also:

closures, Option , and Option::and_then()

Result

Result is a richer version of the Option type that describes possible error instead
of possible absence.

That is, Result<T, E> could have one of two outcomes:

Ok(T) : An element T was found
Err(E) : An error was found with element E

By convention, the expected outcome is Ok while the unexpected outcome is Err .

Like Option , Result has many methods associated with it. unwrap() , for
example, either yields the element T or panic s. For case handling, there are
many combinators between Result and Option that overlap.

In working with Rust, you will likely encounter methods that return the Result
type, such as the parse() method. It might not always be possible to parse a
string into the other type, so parse() returns a Result indicating possible failure.

Let's see what happens when we successfully and unsuccessfully parse() a string:

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

In the unsuccessful case, parse() leaves us with an error for unwrap() to panic
on. Additionally, the panic exits our program and provides an unpleasant error
message.

To improve the quality of our error message, we should be more speci�c about the
return type and consider explicitly handling the error.

Using Result in main

The Result type can also be the return type of the main function if speci�ed
explicitly. Typically the main function will be of the form:

However main is also able to have a return type of Result . If an error occurs
within the main function it will return an error code and print a debug
representation of the error (using the Debug trait). The following example shows
such a scenario and touches on aspects covered in the following section.

map for Result
Panicking in the previous example's multiply does not make for robust code.
Generally, we want to return the error to the caller so it can decide what is the right
way to respond to errors.

We �rst need to know what kind of error type we are dealing with. To determine
the Err type, we look to parse() , which is implemented with the FromStr trait

fn main() {
println!("Hello World!");

}

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

for i32 . As a result, the Err type is speci�ed as ParseIntError .

In the example below, the straightforward match statement leads to code that is
overall more cumbersome.

Luckily, Option 's map , and_then , and many other combinators are also
implemented for Result . Result contains a complete listing.

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

aliases for Result
How about when we want to reuse a speci�c Result type many times? Recall that
Rust allows us to create aliases. Conveniently, we can de�ne one for the speci�c
Result in question.

At a module level, creating aliases can be particularly helpful. Errors found in a
speci�c module often have the same Err type, so a single alias can succinctly
de�ne all associated Results . This is so useful that the std library even supplies
one: io::Result !

Here's a quick example to show o� the syntax:

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

See also:

io::Result

Early returns
In the previous example, we explicitly handled the errors using combinators.
Another way to deal with this case analysis is to use a combination of match
statements and early returns.

That is, we can simply stop executing the function and return the error if one
occurs. For some, this form of code can be easier to both read and write. Consider
this version of the previous example, rewritten using early returns:

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

At this point, we've learned to explicitly handle errors using combinators and early
returns. While we generally want to avoid panicking, explicitly handling all of our
errors is cumbersome.

In the next section, we'll introduce ? for the cases where we simply need to
unwrap without possibly inducing panic .

Introducing ?
Sometimes we just want the simplicity of unwrap without the possibility of a
panic . Until now, unwrap has forced us to nest deeper and deeper when what we

really wanted was to get the variable out. This is exactly the purpose of ? .

Upon �nding an Err , there are two valid actions to take:

1. panic! which we already decided to try to avoid if possible
2. return because an Err means it cannot be handled

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

? is almost1 exactly equivalent to an unwrap which return s instead of panic king
on Err s. Let's see how we can simplify the earlier example that used combinators:

The try! macro

Before there was ? , the same functionality was achieved with the try! macro.
The ? operator is now recommended, but you may still �nd try! when looking at
older code. The same multiply function from the previous example would look
like this using try! :

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

1 See re-enter ? for more details.

Multiple error types
The previous examples have always been very convenient; Result s interact with
other Result s and Option s interact with other Option s.

Sometimes an Option needs to interact with a Result , or a Result<T, Error1>
needs to interact with a Result<T, Error2> . In those cases, we want to manage
our di�erent error types in a way that makes them composable and easy to
interact with.

In the following code, two instances of unwrap generate di�erent error types.
Vec::first returns an Option , while parse::<i32> returns a Result<i32,
ParseIntError> :

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

Over the next sections, we'll see several strategies for handling these kind of
problems.

Pulling Result s out of Option s
The most basic way of handling mixed error types is to just embed them in each
other.

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

There are times when we'll want to stop processing on errors (like with ?) but
keep going when the Option is None . A couple of combinators come in handy to
swap the Result and Option .

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

Defining an error type
Sometimes it simpli�es the code to mask all of the di�erent errors with a single
type of error. We'll show this with a custom error.

Rust allows us to de�ne our own error types. In general, a "good" error type:

Represents di�erent errors with the same type
Presents nice error messages to the user
Is easy to compare with other types

Good: Err(EmptyVec)
Bad: Err("Please use a vector with at least one
element".to_owned())

Can hold information about the error
Good: Err(BadChar(c, position))
Bad: Err("+ cannot be used here".to_owned())

Composes well with other errors

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

Box ing errors
A way to write simple code while preserving the original errors is to Box them. The
drawback is that the underlying error type is only known at runtime and not
statically determined.

The stdlib helps in boxing our errors by having Box implement conversion from
any type that implements the Error trait into the trait object Box<Error> , via
From .

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

See also:

Dynamic dispatch and Error trait

Other uses of ?
Notice in the previous example that our immediate reaction to calling parse is to
map the error from a library error into a boxed error:

Since this is a simple and common operation, it would be convenient if it could be
elided. Alas, because and_then is not su�ciently �exible, it cannot. However, we
can instead use ? .

? was previously explained as either unwrap or return Err(err) . This is only
mostly true. It actually means unwrap or return Err(From::from(err)) . Since
From::from is a conversion utility between di�erent types, this means that if you
? where the error is convertible to the return type, it will convert automatically.

Here, we rewrite the previous example using ? . As a result, the map_err will go
away when From::from is implemented for our error type:

.and_then(|s| s.parse::<i32>()
 .map_err(|e| e.into())

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

This is actually fairly clean now. Compared with the original panic , it is very similar
to replacing the unwrap calls with ? except that the return types are Result . As a
result, they must be destructured at the top level.

See also:

From::from and ?

Wrapping errors
An alternative to boxing errors is to wrap them in your own error type.

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

This adds a bit more boilerplate for handling errors and might not be needed in all
applications. There are some libraries that can take care of the boilerplate for you.

See also:

From::from and Enums

Iterating over Result s
An Iter::map operation might fail, for example:

Let's step through strategies for handling this.

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

Ignore the failed items with filter_map()

filter_map calls a function and �lters out the results that are None .

Fail the entire operation with collect()

Result implements FromIter so that a vector of results (Vec<Result<T, E>>)
can be turned into a result with a vector (Result<Vec<T>, E>). Once an
Result::Err is found, the iteration will terminate.

This same technique can be used with Option .

Collect all valid values and failures with
partition()

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

When you look at the results, you'll note that everything is still wrapped in Result .
A little more boilerplate is needed for this.

Std library types
The std library provides many custom types which expands drastically on the
primitives . Some of these include:

growable String s like: "hello world"
growable vectors: [1, 2, 3]
optional types: Option<i32>
error handling types: Result<i32, i32>
heap allocated pointers: Box<i32>

See also:

primitives and the std library

Box, stack and heap

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

All values in Rust are stack allocated by default. Values can be boxed (allocated on
the heap) by creating a Box<T> . A box is a smart pointer to a heap allocated value
of type T . When a box goes out of scope, its destructor is called, the inner object is
destroyed, and the memory on the heap is freed.

Boxed values can be dereferenced using the * operator; this removes one layer of
indirection.

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

Vectors
Vectors are re-sizable arrays. Like slices, their size is not known at compile time,
but they can grow or shrink at any time. A vector is represented using 3
parameters:

pointer to the data
length
capacity

The capacity indicates how much memory is reserved for the vector. The vector
can grow as long as the length is smaller than the capacity. When this threshold
needs to be surpassed, the vector is reallocated with a larger capacity.

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

More Vec methods can be found under the std::vec module

Strings
There are two types of strings in Rust: String and &str .

A String is stored as a vector of bytes (Vec<u8>), but guaranteed to always be a
valid UTF-8 sequence. String is heap allocated, growable and not null terminated.

&str is a slice (&[u8]) that always points to a valid UTF-8 sequence, and can be
used to view into a String , just like &[T] is a view into Vec<T> .

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

More str / String methods can be found under the std::str and std::string
modules

Literals and escapes

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

There are multiple ways to write string literals with special characters in them. All
result in a similar &str so it's best to use the form that is the most convenient to
write. Similarly there are multiple ways to write byte string literals, which all result
in &[u8; N] .

Generally special characters are escaped with a backslash character: \ . This way
you can add any character to your string, even unprintable ones and ones that you
don't know how to type. If you want a literal backslash, escape it with another one:
\\

String or character literal delimiters occuring within a literal must be escaped:
"\"" , '\'' .

Sometimes there are just too many characters that need to be escaped or it's just
much more convenient to write a string out as-is. This is where raw string literals
come into play.

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

Want a string that's not UTF-8? (Remember, str and String must be valid UTF-8).
Or maybe you want an array of bytes that's mostly text? Byte strings to the rescue!

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

For conversions between character encodings check out the encoding crate.

A more detailed listing of the ways to write string literals and escape characters is
given in the 'Tokens' chapter of the Rust Reference.

Option

Sometimes it's desirable to catch the failure of some parts of a program instead of
calling panic! ; this can be accomplished using the Option enum.

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

The Option<T> enum has two variants:

None , to indicate failure or lack of value, and
Some(value) , a tuple struct that wraps a value with type T .

Result

We've seen that the Option enum can be used as a return value from functions

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

that may fail, where None can be returned to indicate failure. However, sometimes
it is important to express why an operation failed. To do this we have the Result
enum.

The Result<T, E> enum has two variants:

Ok(value) which indicates that the operation succeeded, and wraps the
value returned by the operation. (value has type T)
Err(why) , which indicates that the operation failed, and wraps why , which

(hopefully) explains the cause of the failure. (why has type E)

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

?

Chaining results using match can get pretty untidy; luckily, the ? operator can be
used to make things pretty again. ? is used at the end of an expression returning
a Result , and is equivalent to a match expression, where the Err(err) branch
expands to an early Err(From::from(err)) , and the Ok(ok) branch expands to
an ok expression.

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

Be sure to check the documentation, as there are many methods to map/compose
Result .

panic!

The panic! macro can be used to generate a panic and start unwinding its stack.
While unwinding, the runtime will take care of freeing all the resources owned by
the thread by calling the destructor of all its objects.

Since we are dealing with programs with only one thread, panic! will cause the
program to report the panic message and exit.

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

Let's check that panic! doesn't leak memory.

HashMap
Where vectors store values by an integer index, HashMap s store values by key.
HashMap keys can be booleans, integers, strings, or any other type that

implements the Eq and Hash traits. More on this in the next section.

Like vectors, HashMap s are growable, but HashMaps can also shrink themselves
when they have excess space. You can create a HashMap with a certain starting
capacity using HashMap::with_capacity(uint) , or use HashMap::new() to get a
HashMap with a default initial capacity (recommended).

$ rustc panic.rs && valgrind ./panic
==4401== Memcheck, a memory error detector
==4401== Copyright (C) 2002-2013, and GNU GPL'd, by Julian Seward et al.
==4401== Using Valgrind-3.10.0.SVN and LibVEX; rerun with -h for
copyright info
==4401== Command: ./panic
==4401==
thread '<main>' panicked at 'division by zero', panic.rs:5
==4401==
==4401== HEAP SUMMARY:
==4401== in use at exit: 0 bytes in 0 blocks
==4401== total heap usage: 18 allocs, 18 frees, 1,648 bytes allocated
==4401==
==4401== All heap blocks were freed -- no leaks are possible
==4401==
==4401== For counts of detected and suppressed errors, rerun with: -v
==4401== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 0 from 0)

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

For more information on how hashing and hash maps (sometimes called hash
tables) work, have a look at Hash Table Wikipedia

Alternate/custom key types

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

Any type that implements the Eq and Hash traits can be a key in HashMap . This
includes:

bool (though not very useful since there is only two possible keys)
int , uint , and all variations thereof
String and &str (protip: you can have a HashMap keyed by String and call
.get() with an &str)

Note that f32 and f64 do not implement Hash , likely because �oating-point
precision errors would make using them as hashmap keys horribly error-prone.

All collection classes implement Eq and Hash if their contained type also
respectively implements Eq and Hash . For example, Vec<T> will implement Hash
if T implements Hash .

You can easily implement Eq and Hash for a custom type with just one line:
#[derive(PartialEq, Eq, Hash)]

The compiler will do the rest. If you want more control over the details, you can
implement Eq and/or Hash yourself. This guide will not cover the speci�cs of
implementing Hash .

To play around with using a struct in HashMap , let's try making a very simple user
logon system:

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

HashSet
Consider a HashSet as a HashMap where we just care about the keys (HashSet<T>
is, in actuality, just a wrapper around HashMap<T, ()>).

"What's the point of that?" you ask. "I could just store the keys in a Vec ."

A HashSet 's unique feature is that it is guaranteed to not have duplicate elements.
That's the contract that any set collection ful�lls. HashSet is just one
implementation. (see also: BTreeSet)

If you insert a value that is already present in the HashSet , (i.e. the new value is
equal to the existing and they both have the same hash), then the new value will
replace the old.

This is great for when you never want more than one of something, or when you
want to know if you've already got something.

But sets can do more than that.

Sets have 4 primary operations (all of the following calls return an iterator):

union : get all the unique elements in both sets.

difference : get all the elements that are in the �rst set but not the second.

intersection : get all the elements that are only in both sets.

symmetric_difference : get all the elements that are in one set or the other,
but not both.

Try all of these in the following example:

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

(Examples are adapted from the documentation.)

Rc

When multiple ownership is needed, Rc (Reference Counting) can be used. Rc
keeps track of the number of the references which means the number of owners
of the value wrapped inside an Rc .

Reference count of an Rc increases by 1 whenever an Rc is cloned, and decreases
by 1 whenever one cloned Rc is dropped out of the scope. When an Rc 's
reference count becomes zero, which means there are no owners remained, both

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

the Rc and the value are all dropped.

Cloning an Rc never do a deep copy. Cloning creates just another pointer to the
wrapped value, and increments the count.

See also:

std::rc and Arc.

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

Std misc
Many other types are provided by the std library to support things such as:

Threads
Channels
File I/O

These expand beyond what the primitives provide.

See also:

primitives and the std library

Threads
Rust provides a mechanism for spawning native OS threads via the spawn
function, the argument of this function is a moving closure.

These threads will be scheduled by the OS.

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

Testcase: map-reduce
Rust makes it very easy to parallelise data processing, without many of the
headaches traditionally associated with such an attempt.

The standard library provides great threading primitives out of the box. These,
combined with Rust's concept of Ownership and aliasing rules, automatically
prevent data races.

The aliasing rules (one writable reference XOR many readable references)
automatically prevent you from manipulating state that is visible to other threads.
(Where synchronisation is needed, there are synchronisation primitives like
Mutex es or Channel s.)

In this example, we will calculate the sum of all digits in a block of numbers. We will
do this by parcelling out chunks of the block into di�erent threads. Each thread will
sum its tiny block of digits, and subsequently we will sum the intermediate sums
produced by each thread.

Note that, although we're passing references across thread boundaries, Rust
understands that we're only passing read-only references, and that thus no
unsafety or data races can occur. Because we're move -ing the data segments into
the thread, Rust will also ensure the data is kept alive until the threads exit, so no
dangling pointers occur.

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

Assignments

It is not wise to let our number of threads depend on user inputted data. What if
the user decides to insert a lot of spaces? Do we really want to spawn 2,000
threads? Modify the program so that the data is always chunked into a limited
number of chunks, de�ned by a static constant at the beginning of the program.

See also:

Threads
vectors and iterators
closures, move semantics and move closures
destructuring assignments
turbo�sh notation to help type inference
unwrap vs. expect
enumerate

Channels
Rust provides asynchronous channels for communication between threads.
Channels allow a unidirectional �ow of information between two end-points: the
Sender and the Receiver .

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

Path

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

The Path struct represents �le paths in the underlying �lesystem. There are two
�avors of Path : posix::Path , for UNIX-like systems, and windows::Path , for
Windows. The prelude exports the appropriate platform-speci�c Path variant.

A Path can be created from an OsStr , and provides several methods to get
information from the �le/directory the path points to.

Note that a Path is not internally represented as an UTF-8 string, but instead is
stored as a vector of bytes (Vec<u8>). Therefore, converting a Path to a &str is
not free and may fail (an Option is returned).

Be sure to check at other Path methods (posix::Path or windows::Path) and
the Metadata struct.

See also:

OsStr and Metadata.

File I/O
The File struct represents a �le that has been opened (it wraps a �le descriptor),
and gives read and/or write access to the underlying �le.

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

Since many things can go wrong when doing �le I/O, all the File methods return
the io::Result<T> type, which is an alias for Result<T, io::Error> .

This makes the failure of all I/O operations explicit. Thanks to this, the programmer
can see all the failure paths, and is encouraged to handle them in a proactive
manner.

open

The open static method can be used to open a �le in read-only mode.

A File owns a resource, the �le descriptor and takes care of closing the �le when
it is drop ed.

Here's the expected successful output:

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

(You are encouraged to test the previous example under di�erent failure
conditions: hello.txt doesn't exist, or hello.txt is not readable, etc.)

create

The create static method opens a �le in write-only mode. If the �le already
existed, the old content is destroyed. Otherwise, a new �le is created.

$ echo "Hello World!" > hello.txt
$ rustc open.rs && ./open
hello.txt contains:
Hello World!

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

Here's the expected successful output:

static LOREM_IPSUM: &str =
"Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do

eiusmod
tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim
veniam,
quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo
consequat. Duis aute irure dolor in reprehenderit in voluptate velit
esse
cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat
cupidatat non
proident, sunt in culpa qui officia deserunt mollit anim id est laborum.
";

use std::error::Error;
use std::fs::File;
use std::io::prelude::*;
use std::path::Path;

fn main() {
let path = Path::new("out/lorem_ipsum.txt");
let display = path.display();

// Open a file in write-only mode, returns `io::Result<File>`
let mut file = match File::create(&path) {

Err(why) => panic!("couldn't create {}: {}", display,
why.description()),

Ok(file) => file,
 };

// Write the `LOREM_IPSUM` string to `file`, returns
`io::Result<()>`

match file.write_all(LOREM_IPSUM.as_bytes()) {
Err(why) => panic!("couldn't write to {}: {}", display,

why.description()),
Ok(_) => println!("successfully wrote to {}", display),

 }
}

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

(As in the previous example, you are encouraged to test this example under failure
conditions.)

There is OpenOptions struct that can be used to con�gure how a �le is opened.

read_lines

The method lines() returns an iterator over the lines of a �le.

File::open expects a generic, AsRef<Path> . That's what read_lines() expects
as input.

$ mkdir out
$ rustc create.rs && ./create
successfully wrote to out/lorem_ipsum.txt
$ cat out/lorem_ipsum.txt
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod
tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim
veniam,
quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo
consequat. Duis aute irure dolor in reprehenderit in voluptate velit
esse
cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat
cupidatat non
proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

Running this program simply prints the lines individually.

This process is more e�cient than creating a String in memory especially
working with larger �les.

Child processes
The process::Output struct represents the output of a �nished child process, and
the process::Command struct is a process builder.

use std::fs::File;
use std::io::{self, BufRead};
use std::path::Path;

fn main() {
// File hosts must exist in current path before this produces output
if let Ok(lines) = read_lines("./hosts") {

// Consumes the iterator, returns an (Optional) String
for line in lines {

if let Ok(ip) = line {
println!("{}", ip);

 }
 }
 }
}

// The output is wrapped in a Result to allow matching on errors
// Returns an Iterator to the Reader of the lines of the file.
fn read_lines<P>(filename: P) ->
io::Result<io::Lines<io::BufReader<File>>>
where P: AsRef<Path>, {

let file = File::open(filename)?;
Ok(io::BufReader::new(file).lines())

}

$ echo -e "127.0.0.1\n192.168.0.1\n" > hosts
$ rustc read_lines.rs && ./read_lines
127.0.0.1
192.168.0.1

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

(You are encouraged to try the previous example with an incorrect �ag passed to
rustc)

Pipes
The std::Child struct represents a running child process, and exposes the
stdin , stdout and stderr handles for interaction with the underlying process

via pipes.

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

Wait

use std::error::Error;
use std::io::prelude::*;
use std::process::{Command, Stdio};

static PANGRAM: &'static str =
"the quick brown fox jumped over the lazy dog\n";

fn main() {
// Spawn the `wc` command
let process = match Command::new("wc")

 .stdin(Stdio::piped())
 .stdout(Stdio::piped())
 .spawn() {

Err(why) => panic!("couldn't spawn wc: {}", why.description()),
Ok(process) => process,

 };

// Write a string to the `stdin` of `wc`.
//
// `stdin` has type `Option<ChildStdin>`, but since we know this

instance
// must have one, we can directly `unwrap` it.
match process.stdin.unwrap().write_all(PANGRAM.as_bytes()) {

Err(why) => panic!("couldn't write to wc stdin: {}",
 why.description()),

Ok(_) => println!("sent pangram to wc"),
 }

// Because `stdin` does not live after the above calls, it is
`drop`ed,

// and the pipe is closed.
//
// This is very important, otherwise `wc` wouldn't start processing

the
// input we just sent.

// The `stdout` field also has type `Option<ChildStdout>` so must be
unwrapped.

let mut s = String::new();
match process.stdout.unwrap().read_to_string(&mut s) {

Err(why) => panic!("couldn't read wc stdout: {}",
 why.description()),

Ok(_) => print!("wc responded with:\n{}", s),
 }
}

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

If you'd like to wait for a process::Child to �nish, you must call Child::wait ,
which will return a process::ExitStatus .

Filesystem Operations
The std::fs module contains several functions that deal with the �lesystem.

use std::process::Command;

fn main() {
let mut child = Command::new("sleep").arg("5").spawn().unwrap();
let _result = child.wait().unwrap();

println!("reached end of main");
}

$ rustc wait.rs && ./wait
`wait` keeps running for 5 seconds until the `sleep 5` command
finishes
reached end of main

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

use std::fs;
use std::fs::{File, OpenOptions};
use std::io;
use std::io::prelude::*;
use std::os::unix;
use std::path::Path;

// A simple implementation of `% cat path`
fn cat(path: &Path) -> io::Result<String> {

let mut f = File::open(path)?;
let mut s = String::new();
match f.read_to_string(&mut s) {

Ok(_) => Ok(s),
Err(e) => Err(e),

 }
}

// A simple implementation of `% echo s > path`
fn echo(s: &str, path: &Path) -> io::Result<()> {

let mut f = File::create(path)?;

 f.write_all(s.as_bytes())
}

// A simple implementation of `% touch path` (ignores existing files)
fn touch(path: &Path) -> io::Result<()> {

match OpenOptions::new().create(true).write(true).open(path) {
Ok(_) => Ok(()),
Err(e) => Err(e),

 }
}

fn main() {
println!("`mkdir a`");
// Create a directory, returns `io::Result<()>`
match fs::create_dir("a") {

Err(why) => println!("! {:?}", why.kind()),
Ok(_) => {},

 }

println!("`echo hello > a/b.txt`");
// The previous match can be simplified using the `unwrap_or_else`

method
 echo("hello", &Path::new("a/b.txt")).unwrap_or_else(|why| {

println!("! {:?}", why.kind());
 });

println!("`mkdir -p a/c/d`");
// Recursively create a directory, returns `io::Result<()>`

 fs::create_dir_all("a/c/d").unwrap_or_else(|why| {

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

Here's the expected successful output:

println!("! {:?}", why.kind());
 });

println!("`touch a/c/e.txt`");
 touch(&Path::new("a/c/e.txt")).unwrap_or_else(|why| {

println!("! {:?}", why.kind());
 });

println!("`ln -s ../b.txt a/c/b.txt`");
// Create a symbolic link, returns `io::Result<()>`
if cfg!(target_family = "unix") {

 unix::fs::symlink("../b.txt", "a/c/b.txt").unwrap_or_else(|why|
{

println!("! {:?}", why.kind());
 });
 }

println!("`cat a/c/b.txt`");
match cat(&Path::new("a/c/b.txt")) {

Err(why) => println!("! {:?}", why.kind()),
Ok(s) => println!("> {}", s),

 }

println!("`ls a`");
// Read the contents of a directory, returns `io::Result<Vec<Path>>`
match fs::read_dir("a") {

Err(why) => println!("! {:?}", why.kind()),
Ok(paths) => for path in paths {

println!("> {:?}", path.unwrap().path());
 },
 }

println!("`rm a/c/e.txt`");
// Remove a file, returns `io::Result<()>`

 fs::remove_file("a/c/e.txt").unwrap_or_else(|why| {
println!("! {:?}", why.kind());

 });

println!("`rmdir a/c/d`");
// Remove an empty directory, returns `io::Result<()>`

 fs::remove_dir("a/c/d").unwrap_or_else(|why| {
println!("! {:?}", why.kind());

 });
}

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

And the �nal state of the a directory is:

An alternative way to de�ne the function cat is with ? notation:

See also:

cfg!

Program arguments

Standard Library

$ rustc fs.rs && ./fs
`mkdir a`
`echo hello > a/b.txt`
`mkdir -p a/c/d`
`touch a/c/e.txt`
`ln -s ../b.txt a/c/b.txt`
`cat a/c/b.txt`
> hello
`ls a`
> "a/b.txt"
> "a/c"
`rm a/c/e.txt`
`rmdir a/c/d`

$ tree a
a
|-- b.txt
`-- c
 `-- b.txt -> ../b.txt

1 directory, 2 files

fn cat(path: &Path) -> io::Result<String> {
let mut f = File::open(path)?;
let mut s = String::new();

 f.read_to_string(&mut s)?;
Ok(s)

}

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

The command line arguments can be accessed using std::env::args , which
returns an iterator that yields a String for each argument:

Crates

Alternatively, there are numerous crates that can provide extra functionality when
creating command-line applications. The Rust Cookbook exhibits best practices on
how to use one of the more popular command line argument crates, clap .

Argument parsing
Matching can be used to parse simple arguments:

$./args 1 2 3
My path is ./args.
I got 3 arguments: ["1", "2", "3"].

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

Foreign Function Interface
Rust provides a Foreign Function Interface (FFI) to C libraries. Foreign functions
must be declared inside an extern block annotated with a #[link] attribute
containing the name of the foreign library.

$./match_args Rust
This is not the answer.
$./match_args 42
This is the answer!
$./match_args do something
error: second argument not an integer
usage:
match_args <string>
 Check whether given string is the answer.
match_args {increase|decrease} <integer>
 Increase or decrease given integer by one.
$./match_args do 42
error: invalid command
usage:
match_args <string>
 Check whether given string is the answer.
match_args {increase|decrease} <integer>
 Increase or decrease given integer by one.
$./match_args increase 42
43

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

use std::fmt;

// this extern block links to the libm library
#[link(name = "m")]
extern {

// this is a foreign function
// that computes the square root of a single precision complex

number
fn csqrtf(z: Complex) -> Complex;

fn ccosf(z: Complex) -> Complex;
}

// Since calling foreign functions is considered unsafe,
// it's common to write safe wrappers around them.
fn cos(z: Complex) -> Complex {

unsafe { ccosf(z) }
}

fn main() {
// z = -1 + 0i
let z = Complex { re: -1., im: 0. };

// calling a foreign function is an unsafe operation
let z_sqrt = unsafe { csqrtf(z) };

println!("the square root of {:?} is {:?}", z, z_sqrt);

// calling safe API wrapped around unsafe operation
println!("cos({:?}) = {:?}", z, cos(z));

}

// Minimal implementation of single precision complex numbers
#[repr(C)]
#[derive(Clone, Copy)]
struct Complex {
 re: f32,
 im: f32,
}

impl fmt::Debug for Complex {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {

if self.im < 0. {
write!(f, "{}-{}i", self.re, -self.im)

 } else {
write!(f, "{}+{}i", self.re, self.im)

 }
 }
}

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

Testing
Rust is a programming language that cares a lot about correctness and it includes
support for writing software tests within the language itself.

Testing comes in three styles:

Unit testing.
Doc testing.
Integration testing.

Also Rust has support for specifying additional dependencies for tests:

Dev-dependencies

See Also

The Book chapter on testing
API Guidelines on doc-testing

Unit testing
Tests are Rust functions that verify that the non-test code is functioning in the
expected manner. The bodies of test functions typically perform some setup, run
the code we want to test, then assert whether the results are what we expect.

Most unit tests go into a tests mod with the #[cfg(test)] attribute. Test
functions are marked with the #[test] attribute.

Tests fail when something in the test function panics. There are some helper
macros:

assert!(expression) - panics if expression evaluates to false .
assert_eq!(left, right) and assert_ne!(left, right) - testing left and

right expressions for equality and inequality respectively.

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

Tests can be run with cargo test .

pub fn add(a: i32, b: i32) -> i32 {
 a + b
}

// This is a really bad adding function, its purpose is to fail in this
// example.
#[allow(dead_code)]
fn bad_add(a: i32, b: i32) -> i32 {
 a - b
}

#[cfg(test)]
mod tests {

// Note this useful idiom: importing names from outer (for mod
tests) scope.

use super::*;

#[test]
fn test_add() {

assert_eq!(add(1, 2), 3);
 }

#[test]
fn test_bad_add() {

// This assert would fire and test will fail.
// Please note, that private functions can be tested too!
assert_eq!(bad_add(1, 2), 3);

 }
}

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

Tests and ?

None of the previous unit test examples had a return type. But in Rust 2018, your
unit tests can return Result<()> , which lets you use ? in them! This can make
them much more concise.

$ cargo test

running 2 tests
test tests::test_bad_add ... FAILED
test tests::test_add ... ok

failures:

---- tests::test_bad_add stdout ----
 thread 'tests::test_bad_add' panicked at 'assertion failed:
`(left == right)`
 left: `-1`,
 right: `3`', src/lib.rs:21:8
note: Run with `RUST_BACKTRACE=1` for a backtrace.

failures:
 tests::test_bad_add

test result: FAILED. 1 passed; 1 failed; 0 ignored; 0 measured; 0
filtered out

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

See "The Edition Guide" for more details.

Testing panics

To check functions that should panic under certain circumstances, use attribute
#[should_panic] . This attribute accepts optional parameter expected = with

the text of the panic message. If your function can panic in multiple ways, it helps
make sure your test is testing the correct panic.

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

Running these tests gives us:

pub fn divide_non_zero_result(a: u32, b: u32) -> u32 {
if b == 0 {

panic!("Divide-by-zero error");
 } else if a < b {

panic!("Divide result is zero");
 }
 a / b
}

#[cfg(test)]
mod tests {

use super::*;

#[test]
fn test_divide() {

assert_eq!(divide_non_zero_result(10, 2), 5);
 }

#[test]
#[should_panic]
fn test_any_panic() {

 divide_non_zero_result(1, 0);
 }

#[test]
#[should_panic(expected = "Divide result is zero")]
fn test_specific_panic() {

 divide_non_zero_result(1, 10);
 }
}

$ cargo test

running 3 tests
test tests::test_any_panic ... ok
test tests::test_divide ... ok
test tests::test_specific_panic ... ok

test result: ok. 3 passed; 0 failed; 0 ignored; 0 measured; 0 filtered
out

 Doc-tests tmp-test-should-panic

running 0 tests

test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured; 0 filtered
out

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

Running specific tests

To run speci�c tests one may specify the test name to cargo test command.

To run multiple tests one may specify part of a test name that matches all the tests
that should be run.

Ignoring tests

Tests can be marked with the #[ignore] attribute to exclude some tests. Or to run
them with command cargo test -- --ignored

$ cargo test test_any_panic
running 1 test
test tests::test_any_panic ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 2 filtered
out

 Doc-tests tmp-test-should-panic

running 0 tests

test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured; 0 filtered
out

$ cargo test panic
running 2 tests
test tests::test_any_panic ... ok
test tests::test_specific_panic ... ok

test result: ok. 2 passed; 0 failed; 0 ignored; 0 measured; 1 filtered
out

 Doc-tests tmp-test-should-panic

running 0 tests

test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured; 0 filtered
out

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

pub fn add(a: i32, b: i32) -> i32 {
 a + b
}

#[cfg(test)]
mod tests {

use super::*;

#[test]
fn test_add() {

assert_eq!(add(2, 2), 4);
 }

#[test]
fn test_add_hundred() {

assert_eq!(add(100, 2), 102);
assert_eq!(add(2, 100), 102);

 }

#[test]
#[ignore]
fn ignored_test() {

assert_eq!(add(0, 0), 0);
 }
}

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

Documentation testing
The primary way of documenting a Rust project is through annotating the source
code. Documentation comments are written in markdown and support code
blocks in them. Rust takes care about correctness, so these code blocks are
compiled and used as tests.

$ cargo test
running 3 tests
test tests::ignored_test ... ignored
test tests::test_add ... ok
test tests::test_add_hundred ... ok

test result: ok. 2 passed; 0 failed; 1 ignored; 0 measured; 0 filtered
out

 Doc-tests tmp-ignore

running 0 tests

test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured; 0 filtered
out

$ cargo test -- --ignored
running 1 test
test tests::ignored_test ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 0 filtered
out

 Doc-tests tmp-ignore

running 0 tests

test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured; 0 filtered
out

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

Tests can be run with cargo test :

/// First line is a short summary describing function.
///
/// The next lines present detailed documentation. Code blocks start
with
/// triple backquotes and have implicit `fn main()` inside
/// and `extern crate <cratename>`. Assume we're testing `doccomments`
crate:
///
/// ```
/// let result = doccomments::add(2, 3);
/// assert_eq!(result, 5);
/// ```
pub fn add(a: i32, b: i32) -> i32 {
 a + b
}

/// Usually doc comments may include sections "Examples", "Panics" and
"Failures".
///
/// The next function divides two numbers.
///
/// # Examples
///
/// ```
/// let result = doccomments::div(10, 2);
/// assert_eq!(result, 5);
/// ```
///
/// # Panics
///
/// The function panics if the second argument is zero.
///
/// ```rust,should_panic
/// // panics on division by zero
/// doccomments::div(10, 0);
/// ```
pub fn div(a: i32, b: i32) -> i32 {

if b == 0 {
panic!("Divide-by-zero error");

 }

 a / b
}

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

Motivation behind documentation tests

The main purpose of documentation tests is to serve as examples that exercise the
functionality, which is one of the most important guidelines. It allows using
examples from docs as complete code snippets. But using ? makes compilation
fail since main returns unit . The ability to hide some source lines from
documentation comes to the rescue: one may write fn try_main() ->
Result<(), ErrorType> , hide it and unwrap it in hidden main . Sounds
complicated? Here's an example:

$ cargo test
running 0 tests

test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured; 0 filtered
out

 Doc-tests doccomments

running 3 tests
test src/lib.rs - add (line 7) ... ok
test src/lib.rs - div (line 21) ... ok
test src/lib.rs - div (line 31) ... ok

test result: ok. 3 passed; 0 failed; 0 ignored; 0 measured; 0 filtered
out

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

See Also

RFC505 on documentation style
API Guidelines on documentation guidelines

Integration testing
Unit tests are testing one module in isolation at a time: they're small and can test
private code. Integration tests are external to your crate and use only its public
interface in the same way any other code would. Their purpose is to test that many
parts of your library work correctly together.

Cargo looks for integration tests in tests directory next to src .

File src/lib.rs :

/// Using hidden `try_main` in doc tests.
///
/// ```
/// # // hidden lines start with `#` symbol, but they're still
compileable!
/// # fn try_main() -> Result<(), String> { // line that wraps the body
shown in doc
/// let res = try::try_div(10, 2)?;
/// # Ok(()) // returning from try_main
/// # }
/// # fn main() { // starting main that'll unwrap()
/// # try_main().unwrap(); // calling try_main and unwrapping
/// # // so that test will panic in case of
error
/// # }
pub fn try_div(a: i32, b: i32) -> Result<i32, String> {

if b == 0 {
Err(String::from("Divide-by-zero"))

 } else {
Ok(a / b)

 }
}

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

File with test: tests/integration_test.rs :

Running tests with cargo test command:

Each Rust source �le in tests directory is compiled as a separate crate. One way
of sharing some code between integration tests is making module with public
functions, importing and using it within tests.

File tests/common.rs :

// Assume that crate is called adder, will have to extern it in
integration test.
pub fn add(a: i32, b: i32) -> i32 {
 a + b
}

// extern crate we're testing, same as any other code would do.
extern crate adder;

#[test]
fn test_add() {

assert_eq!(adder::add(3, 2), 5);
}

$ cargo test
running 0 tests

test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured; 0 filtered
out

 Running target/debug/deps/integration_test-bcd60824f5fbfe19

running 1 test
test test_add ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 0 filtered
out

 Doc-tests adder

running 0 tests

test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured; 0 filtered
out

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

File with test: tests/integration_test.rs

Modules with common code follow the ordinary modules rules, so it's ok to create
common module as tests/common/mod.rs .

Development dependencies
Sometimes there is a need to have dependencies for tests (examples, benchmarks)
only. Such dependencies are added to Cargo.toml in the [dev-dependencies]
section. These dependencies are not propagated to other packages which depend
on this package.

One such example is using a crate that extends standard assert! macros.
File Cargo.toml :

File src/lib.rs :

pub fn setup() {
// some setup code, like creating required files/directories,

starting
// servers, etc.

}

// extern crate we're testing, same as any other code will do.
extern crate adder;

// importing common module.
mod common;

#[test]
fn test_add() {

// using common code.
 common::setup();

assert_eq!(adder::add(3, 2), 5);
}

standard crate data is left out
[dev-dependencies]
pretty_assertions = "0.4.0"

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

See Also

Cargo docs on specifying dependencies.

Unsafe Operations
As an introduction to this section, to borrow from the o�cial docs, "one should try
to minimize the amount of unsafe code in a code base." With that in mind, let's get
started! Unsafe annotations in Rust are used to bypass protections put in place by
the compiler; speci�cally, there are four primary things that unsafe is used for:

dereferencing raw pointers
calling functions or methods which are unsafe (including calling a function
over FFI, see a previous chapter of the book)
accessing or modifying static mutable variables
implementing unsafe traits

Raw Pointers

Raw pointers * and references &T function similarly, but references are always
safe because they are guaranteed to point to valid data due to the borrow checker.

// externing crate for test-only use
#[cfg(test)]
#[macro_use]
extern crate pretty_assertions;

pub fn add(a: i32, b: i32) -> i32 {
 a + b
}

#[cfg(test)]
mod tests {

use super::*;

#[test]
fn test_add() {

assert_eq!(add(2, 3), 5);
 }
}

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

Dereferencing a raw pointer can only be done through an unsafe block.

Calling Unsafe Functions

Some functions can be declared as unsafe , meaning it is the programmer's
responsibility to ensure correctness instead of the compiler's. One example of this
is std::slice::from_raw_parts which will create a slice given a pointer to the �rst
element and a length.

For slice::from_raw_parts , one of the assumptions which must be upheld is that
the pointer passed in points to valid memory and that the memory pointed to is of
the correct type. If these invariants aren't upheld then the program's behaviour is
unde�ned and there is no knowing what will happen.

Compatibility
The Rust language is fastly evolving, and because of this certain compatibility
issues can arise, despite e�orts to ensure forwards-compatibility wherever
possible.

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

Raw identi�ers

Raw identifiers
Rust, like many programming languages, has the concept of "keywords". These
identi�ers mean something to the language, and so you cannot use them in places
like variable names, function names, and other places. Raw identi�ers let you use
keywords where they would not normally be allowed. This is particularly useful
when Rust introduces new keywords, and a library using an older edition of Rust
has a variable or function with the same name as a keyword introduced in a newer
edition.

For example, consider a crate foo compiled with the 2015 edition of Rust that
exports a function named try . This keyword is reserved for a new feature in the
2018 edition, so without raw identi�ers, we would have no way to name the
function.

You'll get this error:

You can write this with a raw identi�er:

Meta
Some topics aren't exactly relevant to how you program but provide you tooling or

extern crate foo;

fn main() {
 foo::try();
}

error: expected identifier, found keyword `try`
 --> src/main.rs:4:4
 |
4 | foo::try();
 | ^^^ expected identifier, found keyword

extern crate foo;

fn main() {
 foo::r#try();
}

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

infrastructure support which just makes things better for everyone. These topics
include:

Documentation: Generate library documentation for users via the included
rustdoc .

Testing: Create testsuites for libraries to give con�dence that your library
does exactly what it's supposed to.
Benchmarking: Create benchmarks for functionality to be con�dent that they
run quickly.

Documentation
Use cargo doc to build documentation in target/doc .

Use cargo test to run all tests (including documentation tests), and cargo test
--doc to only run documentation tests.

These commands will appropriately invoke rustdoc (and rustc) as required.

Doc comments

Doc comments are very useful for big projects that require documentation. When
running Rustdoc, these are the comments that get compiled into documentation.
They are denoted by a /// , and support Markdown.

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

To run the tests, �rst build the code as a library, then tell rustdoc where to �nd the
library so it can link it into each doctest program:

$ rustc doc.rs --crate-type lib
$ rustdoc --test --extern doc="libdoc.rlib" doc.rs

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

See also:

The Rust Book: Making Useful Documentation Comments
The Rustdoc Book
The Reference: Doc comments
RFC 1574: API Documentation Conventions
RFC 1946: Relative links to other items from doc comments (intra-rustdoc
links)
Is there any documentation style guide for comments? (reddit)

Rust By Example https://doc.rust-lang.org/stable/rust-by-example/pri...

��� of ��� �/�/��, �:�� PM

