
Getting Started

Thank you for your interest in contributing to Rust! There are many ways to contribute,

and we appreciate all of them.

• Asking Questions

◦ Experts

◦ Etiquette

• What should I work on?

◦ Easy or mentored issues

◦ Recurring work

◦ Clippy issues

◦ Diagnostic issues

◦ Contributing to std (standard library)

◦ Contributing code to other Rust projects

◦ Other ways to contribute

• Cloning and Building

• Contributor Procedures

• Other Resources

If this is your first time contributing, the walkthrough chapter can give you a good

example of how a typical contribution would go.

This documentation is not intended to be comprehensive; it is meant to be a quick guide

for the most useful things. For more information, see this chapter on how to build and

run the compiler.

Asking Questions

If you have questions, please make a post on the Rust Zulip server or internals.rust-

lang.org. If you are contributing to Rustup, be aware they are not on Zulip - you can ask

questions in #wg-rustup on Discord. See the list of teams and working groups and the

Community page on the official website for more resources.

As a reminder, all contributors are expected to follow our Code of Conduct.

The compiler team (or t-compiler) usually hangs out in Zulip in this "stream"; it will be

easiest to get questions answered there.

Please ask questions! A lot of people report feeling that they are "wasting expert time",

but nobody on t-compiler feels this way. Contributors are important to us.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

1 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#getting-started
https://rustc-dev-guide.rust-lang.org/print.html#getting-started
https://rustc-dev-guide.rust-lang.org/getting-started.html#asking-questions
https://rustc-dev-guide.rust-lang.org/getting-started.html#asking-questions
https://rustc-dev-guide.rust-lang.org/getting-started.html#experts
https://rustc-dev-guide.rust-lang.org/getting-started.html#experts
https://rustc-dev-guide.rust-lang.org/getting-started.html#etiquette
https://rustc-dev-guide.rust-lang.org/getting-started.html#etiquette
https://rustc-dev-guide.rust-lang.org/getting-started.html#what-should-i-work-on
https://rustc-dev-guide.rust-lang.org/getting-started.html#what-should-i-work-on
https://rustc-dev-guide.rust-lang.org/getting-started.html#easy-or-mentored-issues
https://rustc-dev-guide.rust-lang.org/getting-started.html#easy-or-mentored-issues
https://rustc-dev-guide.rust-lang.org/getting-started.html#recurring-work
https://rustc-dev-guide.rust-lang.org/getting-started.html#recurring-work
https://rustc-dev-guide.rust-lang.org/getting-started.html#clippy-issues
https://rustc-dev-guide.rust-lang.org/getting-started.html#clippy-issues
https://rustc-dev-guide.rust-lang.org/getting-started.html#diagnostic-issues
https://rustc-dev-guide.rust-lang.org/getting-started.html#diagnostic-issues
https://rustc-dev-guide.rust-lang.org/getting-started.html#contributing-to-std-standard-library
https://rustc-dev-guide.rust-lang.org/getting-started.html#contributing-to-std-standard-library
https://rustc-dev-guide.rust-lang.org/getting-started.html#contributing-code-to-other-rust-projects
https://rustc-dev-guide.rust-lang.org/getting-started.html#contributing-code-to-other-rust-projects
https://rustc-dev-guide.rust-lang.org/getting-started.html#other-ways-to-contribute
https://rustc-dev-guide.rust-lang.org/getting-started.html#other-ways-to-contribute
https://rustc-dev-guide.rust-lang.org/getting-started.html#cloning-and-building
https://rustc-dev-guide.rust-lang.org/getting-started.html#cloning-and-building
https://rustc-dev-guide.rust-lang.org/getting-started.html#contributor-procedures
https://rustc-dev-guide.rust-lang.org/getting-started.html#contributor-procedures
https://rustc-dev-guide.rust-lang.org/getting-started.html#other-resources
https://rustc-dev-guide.rust-lang.org/getting-started.html#other-resources
https://rustc-dev-guide.rust-lang.org/walkthrough.html
https://rustc-dev-guide.rust-lang.org/walkthrough.html
https://rustc-dev-guide.rust-lang.org/building/how-to-build-and-run.html
https://rustc-dev-guide.rust-lang.org/building/how-to-build-and-run.html
https://rustc-dev-guide.rust-lang.org/building/how-to-build-and-run.html
https://rustc-dev-guide.rust-lang.org/building/how-to-build-and-run.html
https://rustc-dev-guide.rust-lang.org/print.html#asking-questions
https://rustc-dev-guide.rust-lang.org/print.html#asking-questions
https://rust-lang.zulipchat.com/
https://rust-lang.zulipchat.com/
https://internals.rust-lang.org/
https://internals.rust-lang.org/
https://internals.rust-lang.org/
https://internals.rust-lang.org/
http://discord.gg/rust-lang
http://discord.gg/rust-lang
https://www.rust-lang.org/governance
https://www.rust-lang.org/governance
https://www.rust-lang.org/community
https://www.rust-lang.org/community
https://www.rust-lang.org/community
https://www.rust-lang.org/community
https://www.rust-lang.org/conduct.html
https://www.rust-lang.org/conduct.html
https://rust-lang.zulipchat.com/#narrow/stream/131828-t-compiler
https://rust-lang.zulipchat.com/#narrow/stream/131828-t-compiler

Also, if you feel comfortable, prefer public topics, as this means others can see the

questions and answers, and perhaps even integrate them back into this guide :)

Experts

Not all t-compiler members are experts on all parts of rustc ; it's a pretty large project.

To find out who has expertise on different parts of the compiler, consult this "experts

map".

It's not perfectly complete, though, so please also feel free to ask questions even if you

can't figure out who to ping.

Another way to find experts for a given part of the compiler is to see who has made

recent commits. For example, to find people who have recently worked on name

resolution since the 1.68.2 release, you could run git shortlog -n 1.68.2..

compiler/rustc_resolve/ . Ignore any commits starting with "Rollup merge" or commits

by @bors (see CI contribution procedures for more information about these commits).

Etiquette

We do ask that you be mindful to include as much useful information as you can in your

question, but we recognize this can be hard if you are unfamiliar with contributing to

Rust.

Just pinging someone without providing any context can be a bit annoying and just create

noise, so we ask that you be mindful of the fact that the t-compiler folks get a lot of

pings in a day.

What should I work on?

The Rust project is quite large and it can be difficult to know which parts of the project

need help, or are a good starting place for beginners. Here are some suggested starting

places.

Easy or mentored issues

If you're looking for somewhere to start, check out the following issue search. See the

Triage for an explanation of these labels. You can also try filtering the search to areas

you're interested in. For example:

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

2 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#experts
https://rustc-dev-guide.rust-lang.org/print.html#experts
https://github.com/rust-lang/compiler-team/blob/master/content/experts/map.toml
https://github.com/rust-lang/compiler-team/blob/master/content/experts/map.toml
https://github.com/rust-lang/compiler-team/blob/master/content/experts/map.toml
https://github.com/rust-lang/compiler-team/blob/master/content/experts/map.toml
https://rustc-dev-guide.rust-lang.org/contributing.html#ci
https://rustc-dev-guide.rust-lang.org/contributing.html#ci
https://rustc-dev-guide.rust-lang.org/print.html#etiquette
https://rustc-dev-guide.rust-lang.org/print.html#etiquette
https://rustc-dev-guide.rust-lang.org/print.html#what-should-i-work-on
https://rustc-dev-guide.rust-lang.org/print.html#what-should-i-work-on
https://rustc-dev-guide.rust-lang.org/print.html#easy-or-mentored-issues
https://rustc-dev-guide.rust-lang.org/print.html#easy-or-mentored-issues
https://github.com/issues?q=is%3Aopen+is%3Aissue+org%3Arust-lang+no%3Aassignee+label%3AE-easy%2C%22good+first+issue%22%2Cgood-first-issue%2CE-medium%2CEasy%2CE-help-wanted%2CE-mentor+-label%3AS-blocked+
https://github.com/issues?q=is%3Aopen+is%3Aissue+org%3Arust-lang+no%3Aassignee+label%3AE-easy%2C%22good+first+issue%22%2Cgood-first-issue%2CE-medium%2CEasy%2CE-help-wanted%2CE-mentor+-label%3AS-blocked+
https://rustc-dev-guide.rust-lang.org/contributing.html#issue-triage
https://rustc-dev-guide.rust-lang.org/contributing.html#issue-triage

• repo:rust-lang/rust-clippy will only show clippy issues

• label:T-compiler will only show issues related to the compiler

• label:A-diagnostics will only show diagnostic issues

Not all important or beginner work has issue labels. See below for how to find work that

isn't labelled.

Recurring work

Some work is too large to be done by a single person. In this case, it's common to have

"Tracking issues" to co-ordinate the work between contributors. Here are some example

tracking issues where it's easy to pick up work without a large time commitment:

• Rustdoc Askama Migration

• Diagnostic Translation

• Move UI tests to subdirectories

If you find more recurring work, please feel free to add it here!

Clippy issues

The Clippy project has spent a long time making its contribution process as friendly to

newcomers as possible. Consider working on it first to get familiar with the process and

the compiler internals.

See the Clippy contribution guide for instructions on getting started.

Diagnostic issues

Many diagnostic issues are self-contained and don't need detailed background

knowledge of the compiler. You can see a list of diagnostic issues here.

Contributing to std (standard library)

See std-dev-guide.

Contributing code to other Rust projects

There are a bunch of other projects that you can contribute to outside of the rust-

lang/rust repo, including cargo , miri , rustup , and many others.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

3 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#recurring-work
https://rustc-dev-guide.rust-lang.org/print.html#recurring-work
https://github.com/rust-lang/rust/issues/108868
https://github.com/rust-lang/rust/issues/108868
https://github.com/rust-lang/rust/issues/100717
https://github.com/rust-lang/rust/issues/100717
https://github.com/rust-lang/rust/issues/73494
https://github.com/rust-lang/rust/issues/73494
https://rustc-dev-guide.rust-lang.org/print.html#clippy-issues
https://rustc-dev-guide.rust-lang.org/print.html#clippy-issues
https://doc.rust-lang.org/clippy/
https://doc.rust-lang.org/clippy/
https://github.com/rust-lang/rust-clippy/blob/master/CONTRIBUTING.md
https://github.com/rust-lang/rust-clippy/blob/master/CONTRIBUTING.md
https://rustc-dev-guide.rust-lang.org/print.html#diagnostic-issues
https://rustc-dev-guide.rust-lang.org/print.html#diagnostic-issues
https://github.com/rust-lang/rust/issues?q=is%3Aissue+is%3Aopen+label%3AA-diagnostics+no%3Aassignee
https://github.com/rust-lang/rust/issues?q=is%3Aissue+is%3Aopen+label%3AA-diagnostics+no%3Aassignee
https://rustc-dev-guide.rust-lang.org/print.html#contributing-to-std-standard-library
https://rustc-dev-guide.rust-lang.org/print.html#contributing-to-std-standard-library
https://std-dev-guide.rust-lang.org/
https://std-dev-guide.rust-lang.org/
https://rustc-dev-guide.rust-lang.org/print.html#contributing-code-to-other-rust-projects
https://rustc-dev-guide.rust-lang.org/print.html#contributing-code-to-other-rust-projects

These repos might have their own contributing guidelines and procedures. Many of them

are owned by working groups (e.g. chalk is largely owned by WG-traits). For more info,

see the documentation in those repos' READMEs.

Other ways to contribute

There are a bunch of other ways you can contribute, especially if you don't feel

comfortable jumping straight into the large rust-lang/rust codebase.

The following tasks are doable without much background knowledge but are incredibly

helpful:

• Cleanup crew: find minimal reproductions of ICEs, bisect regressions, etc. This is a

way of helping that saves a ton of time for others to fix an error later.

• Writing documentation: if you are feeling a bit more intrepid, you could try to read a

part of the code and write doc comments for it. This will help you to learn some part

of the compiler while also producing a useful artifact!

• Triaging issues: categorizing, replicating, and minimizing issues is very helpful to the

Rust maintainers.

• Working groups: there are a bunch of working groups on a wide variety of rust-

related things.

• Answer questions in the Get Help! channels on the Rust Discord server, on

users.rust-lang.org, or on StackOverflow.

• Participate in the RFC process.

• Find a requested community library, build it, and publish it to Crates.io. Easier said

than done, but very, very valuable!

Cloning and Building

See "How to build and run the compiler".

Contributor Procedures

This section has moved to the "Contribution Procedures" chapter.

Other Resources

This section has moved to the "About this guide" chapter.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

4 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#other-ways-to-contribute
https://rustc-dev-guide.rust-lang.org/print.html#other-ways-to-contribute
https://rustc-dev-guide.rust-lang.org/notification-groups/cleanup-crew.html
https://rustc-dev-guide.rust-lang.org/notification-groups/cleanup-crew.html
https://rustc-dev-guide.rust-lang.org/contributing.html#writing-documentation
https://rustc-dev-guide.rust-lang.org/contributing.html#writing-documentation
https://rustc-dev-guide.rust-lang.org/contributing.html#issue-triage
https://rustc-dev-guide.rust-lang.org/contributing.html#issue-triage
https://rust-lang.github.io/compiler-team/working-groups/
https://rust-lang.github.io/compiler-team/working-groups/
http://discord.gg/rust-lang
http://discord.gg/rust-lang
https://users.rust-lang.org/
https://users.rust-lang.org/
http://stackoverflow.com/questions/tagged/rust
http://stackoverflow.com/questions/tagged/rust
https://github.com/rust-lang/rfcs
https://github.com/rust-lang/rfcs
https://github.com/rust-lang/rfcs/labels/A-community-library
https://github.com/rust-lang/rfcs/labels/A-community-library
http://crates.io/
http://crates.io/
https://rustc-dev-guide.rust-lang.org/print.html#cloning-and-building
https://rustc-dev-guide.rust-lang.org/print.html#cloning-and-building
https://rustc-dev-guide.rust-lang.org/building/how-to-build-and-run.html
https://rustc-dev-guide.rust-lang.org/building/how-to-build-and-run.html
https://rustc-dev-guide.rust-lang.org/print.html#contributor-procedures
https://rustc-dev-guide.rust-lang.org/print.html#contributor-procedures
https://rustc-dev-guide.rust-lang.org/contributing.html
https://rustc-dev-guide.rust-lang.org/contributing.html
https://rustc-dev-guide.rust-lang.org/print.html#other-resources
https://rustc-dev-guide.rust-lang.org/print.html#other-resources
https://rustc-dev-guide.rust-lang.org/about-this-guide.html#other-places-to-find-information
https://rustc-dev-guide.rust-lang.org/about-this-guide.html#other-places-to-find-information

About this guide

This guide is meant to help document how rustc – the Rust compiler – works, as well as to

help new contributors get involved in rustc development.

There are seven parts to this guide:

1. Building rustc : Contains information that should be useful no matter how you are

contributing, about building, debugging, profiling, etc.

2. Contributing to rustc : Contains information that should be useful no matter how

you are contributing, about procedures for contribution, using git and Github,

stabilizing features, etc.

3. High-Level Compiler Architecture: Discusses the high-level architecture of the

compiler and stages of the compile process.

4. Source Code Representation: Describes the process of taking raw source code from

the user and transforming it into various forms that the compiler can work with

easily.

5. Analysis: discusses the analyses that the compiler uses to check various properties

of the code and inform later stages of the compile process (e.g., type checking).

6. From MIR to Binaries: How linked executable machine code is generated.

7. Appendices at the end with useful reference information. There are a few of these

with different information, including a glossary.

Constant change

Keep in mind that rustc is a real production-quality product, being worked upon

continuously by a sizeable set of contributors. As such, it has its fair share of codebase

churn and technical debt. In addition, many of the ideas discussed throughout this guide

are idealized designs that are not fully realized yet. All this makes keeping this guide

completely up to date on everything very hard!

The Guide itself is of course open-source as well, and the sources can be found at the

GitHub repository. If you find any mistakes in the guide, please file an issue about it. Even

better, open a PR with a correction!

If you do contribute to the guide, please see the corresponding subsection on writing

documentation in this guide.

“‘All conditioned things are impermanent’ — when one sees this with wisdom, one

turns away from suffering.” The Dhammapada, verse 277

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

5 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#about-this-guide
https://rustc-dev-guide.rust-lang.org/print.html#about-this-guide
https://rustc-dev-guide.rust-lang.org/building/how-to-build-and-run.html
https://rustc-dev-guide.rust-lang.org/building/how-to-build-and-run.html
https://rustc-dev-guide.rust-lang.org/building/how-to-build-and-run.html
https://rustc-dev-guide.rust-lang.org/building/how-to-build-and-run.html
https://rustc-dev-guide.rust-lang.org/contributing.html
https://rustc-dev-guide.rust-lang.org/contributing.html
https://rustc-dev-guide.rust-lang.org/contributing.html
https://rustc-dev-guide.rust-lang.org/contributing.html
https://rustc-dev-guide.rust-lang.org/part-2-intro.html
https://rustc-dev-guide.rust-lang.org/part-2-intro.html
https://rustc-dev-guide.rust-lang.org/part-3-intro.html
https://rustc-dev-guide.rust-lang.org/part-3-intro.html
https://rustc-dev-guide.rust-lang.org/part-4-intro.html
https://rustc-dev-guide.rust-lang.org/part-4-intro.html
https://rustc-dev-guide.rust-lang.org/part-5-intro.html
https://rustc-dev-guide.rust-lang.org/part-5-intro.html
https://rustc-dev-guide.rust-lang.org/appendix/background.html
https://rustc-dev-guide.rust-lang.org/appendix/background.html
https://rustc-dev-guide.rust-lang.org/print.html#constant-change
https://rustc-dev-guide.rust-lang.org/print.html#constant-change
https://github.com/rust-lang/rustc-dev-guide/
https://github.com/rust-lang/rustc-dev-guide/
https://rustc-dev-guide.rust-lang.org/contributing.html#contributing-to-rustc-dev-guide
https://rustc-dev-guide.rust-lang.org/contributing.html#contributing-to-rustc-dev-guide
https://rustc-dev-guide.rust-lang.org/contributing.html#contributing-to-rustc-dev-guide
https://rustc-dev-guide.rust-lang.org/contributing.html#contributing-to-rustc-dev-guide

Other places to find information

You might also find the following sites useful:

• This guide contains information about how various parts of the compiler work and

how to contribute to the compiler.

• rustc API docs -- rustdoc documentation for the compiler, devtools, and internal

tools

• Forge -- contains documentation about Rust infrastructure, team procedures, and

more

• compiler-team -- the home-base for the Rust compiler team, with description of the

team procedures, active working groups, and the team calendar.

• std-dev-guide -- a similar guide for developing the standard library.

• The t-compiler zulip

• #contribute and #wg-rustup on Discord.

• The Rust Internals forum, a place to ask questions and discuss Rust's internals

• The Rust reference, even though it doesn't specifically talk about Rust's internals, is

a great resource nonetheless

• Although out of date, Tom Lee's great blog article is very helpful

• rustaceans.org is helpful, but mostly dedicated to IRC

• The Rust Compiler Testing Docs

• For @bors, this cheat sheet is helpful

• Google is always helpful when programming. You can search all Rust documentation

(the standard library, the compiler, the books, the references, and the guides) to

quickly find information about the language and compiler.

• You can also use Rustdoc's built-in search feature to find documentation on types

and functions within the crates you're looking at. You can also search by type

signature! For example, searching for * -> vec should find all functions that return

a Vec<T> . Hint: Find more tips and keyboard shortcuts by typing ? on any Rustdoc

page!

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

6 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#other-places-to-find-information
https://rustc-dev-guide.rust-lang.org/print.html#other-places-to-find-information
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle
https://forge.rust-lang.org/
https://forge.rust-lang.org/
https://github.com/rust-lang/compiler-team/
https://github.com/rust-lang/compiler-team/
https://std-dev-guide.rust-lang.org/
https://std-dev-guide.rust-lang.org/
https://rust-lang.zulipchat.com/#narrow/stream/131828-t-compiler
https://rust-lang.zulipchat.com/#narrow/stream/131828-t-compiler
https://discord.gg/rust-lang
https://discord.gg/rust-lang
http://internals.rust-lang.org/
http://internals.rust-lang.org/
https://doc.rust-lang.org/book/README.html
https://doc.rust-lang.org/book/README.html
https://tomlee.co/2014/04/a-more-detailed-tour-of-the-rust-compiler/
https://tomlee.co/2014/04/a-more-detailed-tour-of-the-rust-compiler/
https://www.rustaceans.org/
https://www.rustaceans.org/
https://rustc-dev-guide.rust-lang.org/tests/intro.html
https://rustc-dev-guide.rust-lang.org/tests/intro.html
https://github.com/bors
https://github.com/bors
https://bors.rust-lang.org/
https://bors.rust-lang.org/
https://www.google.com/search?q=site:doc.rust-lang.org+your+query+here
https://www.google.com/search?q=site:doc.rust-lang.org+your+query+here

How to build and run the compiler

• Get the source code

◦ Shallow clone the repository

• What is x.py ?

◦ Running x.py

▪ Running x.py slightly more conveniently

• Create a config.toml

• Common x commands

◦ Building the compiler

◦ Build specific components

• Creating a rustup toolchain

• Building targets for cross-compilation

• Other x commands

◦ Cleaning out build directories

The compiler is built using a tool called x.py . You will need to have Python installed to

run it.

Get the source code

The main repository is rust-lang/rust . This contains the compiler, the standard library

(including core , alloc , test , proc_macro , etc), and a bunch of tools (e.g. rustdoc , the

bootstrapping infrastructure, etc).

The very first step to work on rustc is to clone the repository:

Shallow clone the repository

Due to the size of the repository, cloning on a slower internet connection can take a long

time. To sidestep this, you can use the --depth N option with the git clone command.

This instructs git to perform a "shallow clone", cloning the repository but truncating it to

the last N commits.

Passing --depth 1 tells git to clone the repository but truncate the history to the latest

commit that is on the master branch, which is usually fine for browsing the source code

or building the compiler.

git clone https://github.com/rust-lang/rust.git
cd rust

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

7 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#how-to-build-and-run-the-compiler
https://rustc-dev-guide.rust-lang.org/print.html#how-to-build-and-run-the-compiler
https://rustc-dev-guide.rust-lang.org/building/how-to-build-and-run.html#get-the-source-code
https://rustc-dev-guide.rust-lang.org/building/how-to-build-and-run.html#get-the-source-code
https://rustc-dev-guide.rust-lang.org/building/how-to-build-and-run.html#shallow-clone-the-repository
https://rustc-dev-guide.rust-lang.org/building/how-to-build-and-run.html#shallow-clone-the-repository
https://rustc-dev-guide.rust-lang.org/building/how-to-build-and-run.html#what-is-xpy
https://rustc-dev-guide.rust-lang.org/building/how-to-build-and-run.html#what-is-xpy
https://rustc-dev-guide.rust-lang.org/building/how-to-build-and-run.html#what-is-xpy
https://rustc-dev-guide.rust-lang.org/building/how-to-build-and-run.html#what-is-xpy
https://rustc-dev-guide.rust-lang.org/building/how-to-build-and-run.html#what-is-xpy
https://rustc-dev-guide.rust-lang.org/building/how-to-build-and-run.html#running-xpy
https://rustc-dev-guide.rust-lang.org/building/how-to-build-and-run.html#running-xpy
https://rustc-dev-guide.rust-lang.org/building/how-to-build-and-run.html#running-xpy
https://rustc-dev-guide.rust-lang.org/building/how-to-build-and-run.html#running-xpy
https://rustc-dev-guide.rust-lang.org/building/how-to-build-and-run.html#running-xpy-slightly-more-conveniently
https://rustc-dev-guide.rust-lang.org/building/how-to-build-and-run.html#running-xpy-slightly-more-conveniently
https://rustc-dev-guide.rust-lang.org/building/how-to-build-and-run.html#running-xpy-slightly-more-conveniently
https://rustc-dev-guide.rust-lang.org/building/how-to-build-and-run.html#running-xpy-slightly-more-conveniently
https://rustc-dev-guide.rust-lang.org/building/how-to-build-and-run.html#running-xpy-slightly-more-conveniently
https://rustc-dev-guide.rust-lang.org/building/how-to-build-and-run.html#create-a-configtoml
https://rustc-dev-guide.rust-lang.org/building/how-to-build-and-run.html#create-a-configtoml
https://rustc-dev-guide.rust-lang.org/building/how-to-build-and-run.html#create-a-configtoml
https://rustc-dev-guide.rust-lang.org/building/how-to-build-and-run.html#create-a-configtoml
https://rustc-dev-guide.rust-lang.org/building/how-to-build-and-run.html#common-x-commands
https://rustc-dev-guide.rust-lang.org/building/how-to-build-and-run.html#common-x-commands
https://rustc-dev-guide.rust-lang.org/building/how-to-build-and-run.html#common-x-commands
https://rustc-dev-guide.rust-lang.org/building/how-to-build-and-run.html#common-x-commands
https://rustc-dev-guide.rust-lang.org/building/how-to-build-and-run.html#common-x-commands
https://rustc-dev-guide.rust-lang.org/building/how-to-build-and-run.html#building-the-compiler
https://rustc-dev-guide.rust-lang.org/building/how-to-build-and-run.html#building-the-compiler
https://rustc-dev-guide.rust-lang.org/building/how-to-build-and-run.html#build-specific-components
https://rustc-dev-guide.rust-lang.org/building/how-to-build-and-run.html#build-specific-components
https://rustc-dev-guide.rust-lang.org/building/how-to-build-and-run.html#creating-a-rustup-toolchain
https://rustc-dev-guide.rust-lang.org/building/how-to-build-and-run.html#creating-a-rustup-toolchain
https://rustc-dev-guide.rust-lang.org/building/how-to-build-and-run.html#building-targets-for-cross-compilation
https://rustc-dev-guide.rust-lang.org/building/how-to-build-and-run.html#building-targets-for-cross-compilation
https://rustc-dev-guide.rust-lang.org/building/how-to-build-and-run.html#other-x-commands
https://rustc-dev-guide.rust-lang.org/building/how-to-build-and-run.html#other-x-commands
https://rustc-dev-guide.rust-lang.org/building/how-to-build-and-run.html#other-x-commands
https://rustc-dev-guide.rust-lang.org/building/how-to-build-and-run.html#other-x-commands
https://rustc-dev-guide.rust-lang.org/building/how-to-build-and-run.html#other-x-commands
https://rustc-dev-guide.rust-lang.org/building/how-to-build-and-run.html#cleaning-out-build-directories
https://rustc-dev-guide.rust-lang.org/building/how-to-build-and-run.html#cleaning-out-build-directories
https://rustc-dev-guide.rust-lang.org/print.html#get-the-source-code
https://rustc-dev-guide.rust-lang.org/print.html#get-the-source-code
https://github.com/rust-lang/rust
https://github.com/rust-lang/rust
https://github.com/rust-lang/rust
https://rustc-dev-guide.rust-lang.org/print.html#shallow-clone-the-repository
https://rustc-dev-guide.rust-lang.org/print.html#shallow-clone-the-repository

NOTE: A shallow clone limits which git commands can be run. If you intend to

work on and contribute to the compiler, it is generally recommended to fully clone

the repository as shown above.

For example, git bisect and git blame require access to the commit history, so

they don't work if the repository was cloned with --depth 1 .

What is x.py?

x.py is the build tool for the rust repository. It can build docs, run tests, and compile

the compiler and standard library.

This chapter focuses on the basics to be productive, but if you want to learn more about

x.py , read this chapter.

Also, using x rather than x.py is recommended as:

./x is the most likely to work on every system (on Unix it runs the shell script that

does python version detection, on Windows it will probably run the powershell

script - certainly less likely to break than ./x.py which often just opens the file in

an editor).1

(You can find the platform related scripts around the x.py , like x.ps1)

Notice that this is not absolute, for instance, using Nushell in VSCode on Win10, typing x

or ./x still open the x.py in editor rather invoke the program :)

In the rest of this guilde, we use x rather than x.py directly. The following command:

could be replaced by:

git clone --depth 1 https://github.com/rust-lang/rust.git
cd rust

./x check

./x.py check

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

8 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/building/how-to-build-and-run.html#get-the-source-code
https://rustc-dev-guide.rust-lang.org/building/how-to-build-and-run.html#get-the-source-code
https://rustc-dev-guide.rust-lang.org/print.html#what-is-xpy
https://rustc-dev-guide.rust-lang.org/print.html#what-is-xpy
https://rustc-dev-guide.rust-lang.org/print.html#what-is-xpy
https://rustc-dev-guide.rust-lang.org/print.html#what-is-xpy
https://rustc-dev-guide.rust-lang.org/print.html#what-is-xpy
https://rustc-dev-guide.rust-lang.org/building/bootstrapping.html
https://rustc-dev-guide.rust-lang.org/building/bootstrapping.html
https://rustc-dev-guide.rust-lang.org/print.html#1
https://rustc-dev-guide.rust-lang.org/print.html#1

Running x.py

The x.py command can be run directly on most Unix systems in the following format:

This is how the documentation and examples assume you are running x.py . Some

alternative ways are:

On Windows, the Powershell commands may give you an error that looks like this:

You can avoid this error by allowing powershell to run local scripts:

Running x.py slightly more conveniently

There is a binary that wraps x.py called x in src/tools/x . All it does is run x.py , but it

can be installed system-wide and run from any subdirectory of a checkout. It also looks

up the appropriate version of python to use.

You can install it with cargo install --path src/tools/x .

To clarify that this is another global installed binary util, which is similar to the one

./x <subcommand> [flags]

On a Unix shell if you don't have the necessary `python3` command
./x <subcommand> [flags]

In Windows Powershell (if powershell is configured to run scripts)
./x <subcommand> [flags]
./x.ps1 <subcommand> [flags]

On the Windows Command Prompt (if .py files are configured to run Python)
x.py <subcommand> [flags]

You can also run Python yourself, e.g.:
python x.py <subcommand> [flags]

PS C:\Users\vboxuser\rust> ./x
./x : File C:\Users\vboxuser\rust\x.ps1 cannot be loaded because running
scripts is disabled on this system. For more
information, see about_Execution_Policies at https:/go.microsoft.com/fwlink
/?LinkID=135170.
At line:1 char:1
+ ./x
+ ~~~
 + CategoryInfo : SecurityError: (:) [], PSSecurityException
 + FullyQualifiedErrorId : UnauthorizedAccess

Set-ExecutionPolicy -ExecutionPolicy RemoteSigned -Scope CurrentUser

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

9 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#running-xpy
https://rustc-dev-guide.rust-lang.org/print.html#running-xpy
https://rustc-dev-guide.rust-lang.org/print.html#running-xpy
https://rustc-dev-guide.rust-lang.org/print.html#running-xpy
https://rustc-dev-guide.rust-lang.org/print.html#running-xpy-slightly-more-conveniently
https://rustc-dev-guide.rust-lang.org/print.html#running-xpy-slightly-more-conveniently
https://rustc-dev-guide.rust-lang.org/print.html#running-xpy-slightly-more-conveniently
https://rustc-dev-guide.rust-lang.org/print.html#running-xpy-slightly-more-conveniently
https://rustc-dev-guide.rust-lang.org/print.html#running-xpy-slightly-more-conveniently

declared in section What is x.py , but it works as an independent process to execute the

x.py rather than calling the shell to run the platform related scripts.

Create a config.toml

To start, run ./x setup and select the compiler defaults. This will do some initialization

and create a config.toml for you with reasonable defaults. If you use a different default

(which you'll likely want to do if you want to contribute to an area of rust other than the

compiler, such as rustdoc), make sure to read information about that default (located in

src/bootstrap/defaults) as the build process may be different for other defaults.

Alternatively, you can write config.toml by hand. See config.example.toml for all the

available settings and explanations of them. See src/bootstrap/defaults for common

settings to change.

If you have already built rustc and you change settings related to LLVM, then you may

have to execute rm -rf build for subsequent configuration changes to take effect. Note

that ./x clean will not cause a rebuild of LLVM.

Common x commands

Here are the basic invocations of the x commands most commonly used when working

on rustc , std , rustdoc , and other tools.

Command When to use it

./x

check
Quick check to see if most things compile; rust-analyzer can run this automatically for you

./x

build
Builds rustc , std , and rustdoc

./x test Runs all tests

./x fmt Formats all code

As written, these commands are reasonable starting points. However, there are

additional options and arguments for each of them that are worth learning for serious

development work. In particular, ./x build and ./x test provide many ways to

compile or test a subset of the code, which can save a lot of time.

Also, note that x supports all kinds of path suffixes for compiler , library , and

src/tools directories. So, you can simply run x test tidy instead of x test

src/tools/tidy . Or, x build std instead of x build library/std .

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

10 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/building/how-to-build-and-run.html#what-is-xpy
https://rustc-dev-guide.rust-lang.org/building/how-to-build-and-run.html#what-is-xpy
https://rustc-dev-guide.rust-lang.org/building/how-to-build-and-run.html#what-is-xpy
https://rustc-dev-guide.rust-lang.org/building/how-to-build-and-run.html#what-is-xpy
https://rustc-dev-guide.rust-lang.org/print.html#create-a-configtoml
https://rustc-dev-guide.rust-lang.org/print.html#create-a-configtoml
https://rustc-dev-guide.rust-lang.org/print.html#create-a-configtoml
https://rustc-dev-guide.rust-lang.org/print.html#create-a-configtoml
https://rustc-dev-guide.rust-lang.org/print.html#common-x-commands
https://rustc-dev-guide.rust-lang.org/print.html#common-x-commands
https://rustc-dev-guide.rust-lang.org/print.html#common-x-commands
https://rustc-dev-guide.rust-lang.org/print.html#common-x-commands
https://rustc-dev-guide.rust-lang.org/print.html#common-x-commands
https://rustc-dev-guide.rust-lang.org/building/suggested.html#configuring-rust-analyzer-for-rustc
https://rustc-dev-guide.rust-lang.org/building/suggested.html#configuring-rust-analyzer-for-rustc

See the chapters on testing and rustdoc for more details.

Building the compiler

Note that building will require a relatively large amount of storage space. You may want

to have upwards of 10 or 15 gigabytes available to build the compiler.

Once you've created a config.toml , you are now ready to run x . There are a lot of

options here, but let's start with what is probably the best "go to" command for building a

local compiler:

This may look like it only builds the standard library, but that is not the case. What this

command does is the following:

• Build std using the stage0 compiler

• Build rustc using the stage0 compiler

◦ This produces the stage1 compiler

• Build std using the stage1 compiler

This final product (stage1 compiler + libs built using that compiler) is what you need to

build other Rust programs (unless you use #![no_std] or #![no_core]).

You will probably find that building the stage1 std is a bottleneck for you, but fear not,

there is a (hacky) workaround... see the section on avoiding rebuilds for std.

Sometimes you don't need a full build. When doing some kind of "type-based

refactoring", like renaming a method, or changing the signature of some function, you

can use ./x check instead for a much faster build.

Note that this whole command just gives you a subset of the full rustc build. The full

rustc build (what you get with ./x build --stage 2 compiler/rustc) has quite a few

more steps:

• Build rustc with the stage1 compiler.

◦ The resulting compiler here is called the "stage2" compiler.

• Build std with stage2 compiler.

• Build librustdoc and a bunch of other things with the stage2 compiler.

You almost never need to do this.

Build specific components

./x build library

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

11 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/tests/running.html
https://rustc-dev-guide.rust-lang.org/tests/running.html
https://rustc-dev-guide.rust-lang.org/rustdoc.html
https://rustc-dev-guide.rust-lang.org/rustdoc.html
https://rustc-dev-guide.rust-lang.org/print.html#building-the-compiler
https://rustc-dev-guide.rust-lang.org/print.html#building-the-compiler
https://rustc-dev-guide.rust-lang.org/building/suggested.html#faster-builds-with---keep-stage
https://rustc-dev-guide.rust-lang.org/building/suggested.html#faster-builds-with---keep-stage
https://rustc-dev-guide.rust-lang.org/print.html#build-specific-components
https://rustc-dev-guide.rust-lang.org/print.html#build-specific-components

If you are working on the standard library, you probably don't need to build the compiler

unless you are planning to use a recently added nightly feature. Instead, you can just

build using the bootstrap compiler.

If you choose the library profile when running x setup , you can omit --stage 0 (it's

the default).

Creating a rustup toolchain

Once you have successfully built rustc , you will have created a bunch of files in your

build directory. In order to actually run the resulting rustc , we recommend creating

rustup toolchains. The first one will run the stage1 compiler (which we built above). The

second will execute the stage2 compiler (which we did not build, but which you will likely

need to build at some point; for example, if you want to run the entire test suite).

Now you can run the rustc you built with. If you run with -vV , you should see a version

number ending in -dev , indicating a build from your local environment:

The rustup toolchain points to the specified toolchain compiled in your build directory,

so the rustup toolchain will be updated whenever x build or x test are run for that

toolchain/stage.

Note: the toolchain we've built does not include cargo . In this case, rustup will fall back

to using cargo from the installed nightly , beta , or stable toolchain (in that order). If

you need to use unstable cargo flags, be sure to run rustup install nightly if you

haven't already. See the rustup documentation on custom toolchains.

Note: rust-analyzer and IntelliJ Rust plugin use a component called rust-analyzer-proc-

./x build --stage 0 library

rustup toolchain link stage0 build/host/stage0-sysroot # beta compiler +
stage0 std
rustup toolchain link stage1 build/host/stage1
rustup toolchain link stage2 build/host/stage2

$ rustc +stage1 -vV
rustc 1.48.0-dev
binary: rustc
commit-hash: unknown
commit-date: unknown
host: x86_64-unknown-linux-gnu
release: 1.48.0-dev
LLVM version: 11.0

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

12 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#creating-a-rustup-toolchain
https://rustc-dev-guide.rust-lang.org/print.html#creating-a-rustup-toolchain
https://rust-lang.github.io/rustup/concepts/toolchains.html#custom-toolchains
https://rust-lang.github.io/rustup/concepts/toolchains.html#custom-toolchains

macro-srv to work with proc macros. If you intend to use a custom toolchain for a project

(e.g. via rustup override set stage1) you may want to build this component:

Building targets for cross-compilation

To produce a compiler that can cross-compile for other targets, pass any number of

target flags to x build . For example, if your host platform is x86_64-unknown-linux-

gnu and your cross-compilation target is wasm32-wasi , you can build with:

Note that if you want the resulting compiler to be able to build crates that involve proc

macros or build scripts, you must be sure to explicitly build target support for the host

platform (in this case, x86_64-unknown-linux-gnu).

If you want to always build for other targets without needing to pass flags to x build ,

you can configure this in the [build] section of your config.toml like so:

Note that building for some targets requires having external dependencies installed (e.g.

building musl targets requires a local copy of musl). Any target-specific configuration (e.g.

the path to a local copy of musl) will need to be provided by your config.toml . Please

see config.example.toml for information on target-specific configuration keys.

For examples of the complete configuration necessary to build a target, please visit the

rustc book, select any target under the "Platform Support" heading on the left, and see

the section related to building a compiler for that target. For targets without a

corresponding page in the rustc book, it may be useful to inspect the Dockerfiles that the

Rust infrastructure itself uses to set up and configure cross-compilation.

If you have followed the directions from the prior section on creating a rustup toolchain,

then once you have built your compiler you will be able to use it to cross-compile like so:

Other x commands

./x build proc-macro-srv-cli

./x build --target x86_64-unknown-linux-gnu --target wasm32-wasi

[build]
target = ["x86_64-unknown-linux-gnu", "wasm32-wasi"]

cargo +stage1 build --target wasm32-wasi

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

13 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#building-targets-for-cross-compilation
https://rustc-dev-guide.rust-lang.org/print.html#building-targets-for-cross-compilation
https://doc.rust-lang.org/rustc/platform-support.html
https://doc.rust-lang.org/rustc/platform-support.html
https://doc.rust-lang.org/rustc/platform-support.html
https://doc.rust-lang.org/rustc/platform-support.html
https://rustc-dev-guide.rust-lang.org/tests/docker.html
https://rustc-dev-guide.rust-lang.org/tests/docker.html
https://rustc-dev-guide.rust-lang.org/print.html#other-x-commands
https://rustc-dev-guide.rust-lang.org/print.html#other-x-commands
https://rustc-dev-guide.rust-lang.org/print.html#other-x-commands
https://rustc-dev-guide.rust-lang.org/print.html#other-x-commands
https://rustc-dev-guide.rust-lang.org/print.html#other-x-commands

Here are a few other useful x commands. We'll cover some of them in detail in other

sections:

• Building things:

◦ ./x build – builds everything using the stage 1 compiler, not just up to std

◦ ./x build --stage 2 – builds everything with the stage 2 compiler including

rustdoc

• Running tests (see the section on running tests for more details):

◦ ./x test library/std – runs the unit tests and integration tests from std

◦ ./x test tests/ui – runs the ui test suite

◦ ./x test tests/ui/const-generics - runs all the tests in the const-

generics/ subdirectory of the ui test suite

◦ ./x test tests/ui/const-generics/const-types.rs - runs the single test

const-types.rs from the ui test suite

Cleaning out build directories

Sometimes you need to start fresh, but this is normally not the case. If you need to run

this then rustbuild is most likely not acting right and you should file a bug as to what is

going wrong. If you do need to clean everything up then you only need to run one

command!

rm -rf build works too, but then you have to rebuild LLVM, which can take a long time

even on fast computers.

1 issue#1707

./x clean

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

14 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/tests/running.html
https://rustc-dev-guide.rust-lang.org/tests/running.html
https://rustc-dev-guide.rust-lang.org/print.html#cleaning-out-build-directories
https://rustc-dev-guide.rust-lang.org/print.html#cleaning-out-build-directories
https://github.com/rust-lang/rustc-dev-guide/issues/1707
https://github.com/rust-lang/rustc-dev-guide/issues/1707

Prerequisites

Dependencies

See the rust-lang/rust README.

Hardware

You will need an internet connection to build. The bootstrapping process involves

updating git submodules and downloading a beta compiler. It doesn't need to be super

fast, but that can help.

There are no strict hardware requirements, but building the compiler is computationally

expensive, so a beefier machine will help, and I wouldn't recommend trying to build on a

Raspberry Pi! We recommend the following.

• 30GB+ of free disk space. Otherwise, you will have to keep clearing incremental

caches. More space is better, the compiler is a bit of a hog; it's a problem we are

aware of.

• 8GB+ RAM

• 2+ cores. Having more cores really helps. 10 or 20 or more is not too many!

Beefier machines will lead to much faster builds. If your machine is not very powerful, a

common strategy is to only use ./x check on your local machine and let the CI build test

your changes when you push to a PR branch.

Building the compiler takes more than half an hour on my moderately powerful laptop.

We suggest downloading LLVM from CI so you don't have to build it from source (see

here).

Like cargo , the build system will use as many cores as possible. Sometimes this can

cause you to run low on memory. You can use -j to adjust the number of concurrent

jobs. If a full build takes more than ~45 minutes to an hour, you are probably spending

most of the time swapping memory in and out; try using -j1 .

If you don't have too much free disk space, you may want to turn off incremental

compilation (see here). This will make compilation take longer (especially after a rebase),

but will save a ton of space from the incremental caches.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

15 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#prerequisites
https://rustc-dev-guide.rust-lang.org/print.html#prerequisites
https://rustc-dev-guide.rust-lang.org/print.html#dependencies
https://rustc-dev-guide.rust-lang.org/print.html#dependencies
https://github.com/rust-lang/rust#dependencies
https://github.com/rust-lang/rust#dependencies
https://github.com/rust-lang/rust#dependencies
https://github.com/rust-lang/rust#dependencies
https://github.com/rust-lang/rust#dependencies
https://rustc-dev-guide.rust-lang.org/print.html#hardware
https://rustc-dev-guide.rust-lang.org/print.html#hardware
https://rustc-dev-guide.rust-lang.org/building/how-to-build-and-run.html#create-a-configtoml
https://rustc-dev-guide.rust-lang.org/building/how-to-build-and-run.html#create-a-configtoml
https://rustc-dev-guide.rust-lang.org/building/how-to-build-and-run.html#create-a-configtoml
https://rustc-dev-guide.rust-lang.org/building/how-to-build-and-run.html#create-a-configtoml
https://rustc-dev-guide.rust-lang.org/building/how-to-build-and-run.html#create-a-configtoml
https://rustc-dev-guide.rust-lang.org/building/how-to-build-and-run.html#create-a-configtoml

Suggested Workflows

The full bootstrapping process takes quite a while. Here are some suggestions to make

your life easier.

• Installing a pre-push hook

• Configuring rust-analyzer for rustc

◦ Visual Studio Code

◦ Neovim

• Check, check, and check again

• x suggest

• Configuring rustup to use nightly

• Faster builds with --keep-stage .

• Using incremental compilation

• Fine-tuning optimizations

• Working on multiple branches at the same time

• Using nix-shell

• Shell Completions

Installing a pre-push hook

CI will automatically fail your build if it doesn't pass tidy , our internal tool for ensuring

code quality. If you'd like, you can install a Git hook that will automatically run ./x test

tidy on each push, to ensure your code is up to par. If the hook fails then run ./x test

tidy --bless and commit the changes. If you decide later that the pre-push behavior is

undesirable, you can delete the pre-push file in .git/hooks .

A prebuilt git hook lives at src/etc/pre-push.sh which can be copied into your

.git/hooks folder as pre-push (without the .sh extension!).

You can also install the hook as a step of running ./x setup !

Configuring rust-analyzer for rustc

Visual Studio Code

rust-analyzer can help you check and format your code whenever you save a file. By

default, rust-analyzer runs the cargo check and rustfmt commands, but you can

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

16 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#suggested-workflows
https://rustc-dev-guide.rust-lang.org/print.html#suggested-workflows
https://rustc-dev-guide.rust-lang.org/building/suggested.html#installing-a-pre-push-hook
https://rustc-dev-guide.rust-lang.org/building/suggested.html#installing-a-pre-push-hook
https://rustc-dev-guide.rust-lang.org/building/suggested.html#configuring-rust-analyzer-for-rustc
https://rustc-dev-guide.rust-lang.org/building/suggested.html#configuring-rust-analyzer-for-rustc
https://rustc-dev-guide.rust-lang.org/building/suggested.html#configuring-rust-analyzer-for-rustc
https://rustc-dev-guide.rust-lang.org/building/suggested.html#configuring-rust-analyzer-for-rustc
https://rustc-dev-guide.rust-lang.org/building/suggested.html#configuring-rust-analyzer-for-rustc
https://rustc-dev-guide.rust-lang.org/building/suggested.html#configuring-rust-analyzer-for-rustc
https://rustc-dev-guide.rust-lang.org/building/suggested.html#configuring-rust-analyzer-for-rustc
https://rustc-dev-guide.rust-lang.org/building/suggested.html#visual-studio-code
https://rustc-dev-guide.rust-lang.org/building/suggested.html#visual-studio-code
https://rustc-dev-guide.rust-lang.org/building/suggested.html#neovim
https://rustc-dev-guide.rust-lang.org/building/suggested.html#neovim
https://rustc-dev-guide.rust-lang.org/building/suggested.html#check-check-and-check-again
https://rustc-dev-guide.rust-lang.org/building/suggested.html#check-check-and-check-again
https://rustc-dev-guide.rust-lang.org/building/suggested.html#x-suggest
https://rustc-dev-guide.rust-lang.org/building/suggested.html#x-suggest
https://rustc-dev-guide.rust-lang.org/building/suggested.html#x-suggest
https://rustc-dev-guide.rust-lang.org/building/suggested.html#configuring-rustup-to-use-nightly
https://rustc-dev-guide.rust-lang.org/building/suggested.html#configuring-rustup-to-use-nightly
https://rustc-dev-guide.rust-lang.org/building/suggested.html#configuring-rustup-to-use-nightly
https://rustc-dev-guide.rust-lang.org/building/suggested.html#configuring-rustup-to-use-nightly
https://rustc-dev-guide.rust-lang.org/building/suggested.html#configuring-rustup-to-use-nightly
https://rustc-dev-guide.rust-lang.org/building/suggested.html#faster-builds-with---keep-stage
https://rustc-dev-guide.rust-lang.org/building/suggested.html#faster-builds-with---keep-stage
https://rustc-dev-guide.rust-lang.org/building/suggested.html#faster-builds-with---keep-stage
https://rustc-dev-guide.rust-lang.org/building/suggested.html#faster-builds-with---keep-stage
https://rustc-dev-guide.rust-lang.org/building/suggested.html#faster-builds-with---keep-stage
https://rustc-dev-guide.rust-lang.org/building/suggested.html#using-incremental-compilation
https://rustc-dev-guide.rust-lang.org/building/suggested.html#using-incremental-compilation
https://rustc-dev-guide.rust-lang.org/building/suggested.html#fine-tuning-optimizations
https://rustc-dev-guide.rust-lang.org/building/suggested.html#fine-tuning-optimizations
https://rustc-dev-guide.rust-lang.org/building/suggested.html#working-on-multiple-branches-at-the-same-time
https://rustc-dev-guide.rust-lang.org/building/suggested.html#working-on-multiple-branches-at-the-same-time
https://rustc-dev-guide.rust-lang.org/building/suggested.html#using-nix-shell
https://rustc-dev-guide.rust-lang.org/building/suggested.html#using-nix-shell
https://rustc-dev-guide.rust-lang.org/building/suggested.html#shell-completions
https://rustc-dev-guide.rust-lang.org/building/suggested.html#shell-completions
https://rustc-dev-guide.rust-lang.org/print.html#installing-a-pre-push-hook
https://rustc-dev-guide.rust-lang.org/print.html#installing-a-pre-push-hook
https://git-scm.com/book/en/v2/Customizing-Git-Git-Hooks
https://git-scm.com/book/en/v2/Customizing-Git-Git-Hooks
https://github.com/rust-lang/rust/blob/master/src/etc/pre-push.sh
https://github.com/rust-lang/rust/blob/master/src/etc/pre-push.sh
https://github.com/rust-lang/rust/blob/master/src/etc/pre-push.sh
https://rustc-dev-guide.rust-lang.org/print.html#configuring-rust-analyzer-for-rustc
https://rustc-dev-guide.rust-lang.org/print.html#configuring-rust-analyzer-for-rustc
https://rustc-dev-guide.rust-lang.org/print.html#configuring-rust-analyzer-for-rustc
https://rustc-dev-guide.rust-lang.org/print.html#configuring-rust-analyzer-for-rustc
https://rustc-dev-guide.rust-lang.org/print.html#configuring-rust-analyzer-for-rustc
https://rustc-dev-guide.rust-lang.org/print.html#configuring-rust-analyzer-for-rustc
https://rustc-dev-guide.rust-lang.org/print.html#configuring-rust-analyzer-for-rustc
https://rustc-dev-guide.rust-lang.org/print.html#visual-studio-code
https://rustc-dev-guide.rust-lang.org/print.html#visual-studio-code

override these commands to use more adapted versions of these tools when hacking on

rustc . For example, x setup vscode will prompt you to create a

.vscode/settings.json file which will configure Visual Studio code. This will ask rust-

analyzer to use ./x check to check the sources, and the stage 0 rustfmt to format

them. The recommended rust-analyzer settings live at src/etc

/rust_analyzer_settings.json .

If you have enough free disk space and you would like to be able to run x commands

while rust-analyzer runs in the background, you can also add --build-dir build-rust-

analyzer to the overrideCommand to avoid x locking.

If running ./x check on save is inconvenient, in VS Code you can use a Build Task

instead:

Neovim

For Neovim users there are several options for configuring for rustc. The easiest way is by

using neoconf.nvim, which allows for project-local configuration files with the native LSP.

The steps for how to use it are below. Note that requires Rust-Analyzer to already be

configured with Neovim. Steps for this can be found here.

1. First install the plugin. This can be done by following the steps in the README.

2. Run x setup , which will have a prompt for it to create a .vscode/settings.json

file. neoconf is able to read and update Rust-Analyzer settings automatically when

the project is opened when this file is detected.

If you're running coc.nvim , you can use :CocLocalConfig to create a .vim/coc-

settings.json , and copy the settings from src/etc/rust_analyzer_settings.json .

Another way is without a plugin, and creating your own logic in your configuration. To do

this you must translate the JSON to Lua yourself. The translation is 1:1 and fairly straight-

// .vscode/tasks.json
{

"version": "2.0.0",
"tasks": [

 {
"label": "./x check",
"command": "./x check",
"type": "shell",
"problemMatcher": "$rustc",
"presentation": { "clear": true },
"group": { "kind": "build", "isDefault": true }

 }
]
}

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

17 of 660 8/30/23, 09:47

https://github.com/rust-lang/rust/blob/master/src/etc/rust_analyzer_settings.json
https://github.com/rust-lang/rust/blob/master/src/etc/rust_analyzer_settings.json
https://github.com/rust-lang/rust/blob/master/src/etc/rust_analyzer_settings.json
https://github.com/rust-lang/rust/blob/master/src/etc/rust_analyzer_settings.json
https://github.com/rust-lang/rust/blob/master/src/etc/rust_analyzer_settings.json
https://github.com/rust-lang/rust/blob/master/src/etc/rust_analyzer_settings.json
https://code.visualstudio.com/docs/editor/tasks
https://code.visualstudio.com/docs/editor/tasks
https://rustc-dev-guide.rust-lang.org/print.html#neovim
https://rustc-dev-guide.rust-lang.org/print.html#neovim
https://github.com/folke/neoconf.nvim/
https://github.com/folke/neoconf.nvim/
https://rust-analyzer.github.io/manual.html#nvim-lsp
https://rust-analyzer.github.io/manual.html#nvim-lsp
https://github.com/rust-lang/rust/blob/master/src/etc/rust_analyzer_settings.json
https://github.com/rust-lang/rust/blob/master/src/etc/rust_analyzer_settings.json
https://github.com/rust-lang/rust/blob/master/src/etc/rust_analyzer_settings.json

forward. It must be put in the ["rust-analyzer"] key of the setup table, which is shown

here

If you would like to use the build task that is described above, you may either make your

own command in your config, or you can install a plugin such as overseer.nvim that can

read VSCode's task.json files, and follow the same instructions as above.

Check, check, and check again

When doing simple refactorings, it can be useful to run ./x check continuously. If you

set up rust-analyzer as described above, this will be done for you every time you save a

file. Here you are just checking that the compiler can build, but often that is all you need

(e.g., when renaming a method). You can then run ./x build when you actually need to

run tests.

In fact, it is sometimes useful to put off tests even when you are not 100% sure the code

will work. You can then keep building up refactoring commits and only run the tests at

some later time. You can then use git bisect to track down precisely which commit

caused the problem. A nice side-effect of this style is that you are left with a fairly fine-

grained set of commits at the end, all of which build and pass tests. This often helps

reviewing.

x suggest

The x suggest subcommand suggests (and runs) a subset of the extensive rust-

lang/rust tests based on files you have changed. This is especially useful for new

contributors who have not mastered the arcane x flags yet and more experienced

contributors as a shorthand for reducing mental effort. In all cases it is useful not to run

the full tests (which can take on the order of tens of minutes) and just run a subset which

are relevant to your changes. For example, running tidy and linkchecker is useful

when editing Markdown files, whereas UI tests are much less likely to be helpful. While x

suggest is a useful tool, it does not guarantee perfect coverage (just as PR CI isn't a

substitute for bors). See the dedicated chapter for more information and contribution

instructions.

Please note that x suggest is in a beta state currently and the tests that it will suggest

are limited.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

18 of 660 8/30/23, 09:47

https://github.com/neovim/nvim-lspconfig/blob/master/doc/server_configurations.md#rust_analyzer
https://github.com/neovim/nvim-lspconfig/blob/master/doc/server_configurations.md#rust_analyzer
https://github.com/neovim/nvim-lspconfig/blob/master/doc/server_configurations.md#rust_analyzer
https://github.com/neovim/nvim-lspconfig/blob/master/doc/server_configurations.md#rust_analyzer
https://github.com/stevearc/overseer.nvim
https://github.com/stevearc/overseer.nvim
https://github.com/stevearc/overseer.nvim/blob/master/doc/guides.md#vs-code-tasks
https://github.com/stevearc/overseer.nvim/blob/master/doc/guides.md#vs-code-tasks
https://github.com/stevearc/overseer.nvim/blob/master/doc/guides.md#vs-code-tasks
https://github.com/stevearc/overseer.nvim/blob/master/doc/guides.md#vs-code-tasks
https://github.com/stevearc/overseer.nvim/blob/master/doc/guides.md#vs-code-tasks
https://rustc-dev-guide.rust-lang.org/print.html#check-check-and-check-again
https://rustc-dev-guide.rust-lang.org/print.html#check-check-and-check-again
https://rustc-dev-guide.rust-lang.org/print.html#x-suggest
https://rustc-dev-guide.rust-lang.org/print.html#x-suggest
https://rustc-dev-guide.rust-lang.org/print.html#x-suggest
https://rustc-dev-guide.rust-lang.org/tests/suggest-tests.html
https://rustc-dev-guide.rust-lang.org/tests/suggest-tests.html

Configuring rustup to use nightly

Some parts of the bootstrap process uses pinned, nightly versions of tools like rustfmt. To

make things like cargo fmt work correctly in your repo, run

after installing a nightly toolchain with rustup . Don't forget to do this for all directories

you have setup a worktree for. You may need to use the pinned nightly version from

src/stage0.json , but often the normal nightly channel will work.

Note see the section on vscode for how to configure it with this real rustfmt x uses, and

the section on rustup for how to setup rustup toolchain for your bootstrapped compiler

Note This does not allow you to build rustc with cargo directly. You still have to use x

to work on the compiler or standard library, this just lets you use cargo fmt .

Faster builds with --keep-stage.

Sometimes just checking whether the compiler builds is not enough. A common example

is that you need to add a debug! statement to inspect the value of some state or better

understand the problem. In that case, you don't really need a full build. By bypassing

bootstrap's cache invalidation, you can often get these builds to complete very fast (e.g.,

around 30 seconds). The only catch is this requires a bit of fudging and may produce

compilers that don't work (but that is easily detected and fixed).

The sequence of commands you want is as follows:

• Initial build: ./x build library

◦ As documented previously, this will build a functional stage1 compiler as part

of running all stage0 commands (which include building a std compatible

with the stage1 compiler) as well as the first few steps of the "stage 1 actions"

up to "stage1 (sysroot stage1) builds std".

• Subsequent builds: ./x build library --keep-stage 1

◦ Note that we added the --keep-stage 1 flag here

As mentioned, the effect of --keep-stage 1 is that we just assume that the old standard

library can be re-used. If you are editing the compiler, this is almost always true: you

haven't changed the standard library, after all. But sometimes, it's not true: for example,

if you are editing the "metadata" part of the compiler, which controls how the compiler

encodes types and other states into the rlib files, or if you are editing things that wind

up in the metadata (such as the definition of the MIR).

cd <path to rustc repo>
rustup override set nightly

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

19 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#configuring-rustup-to-use-nightly
https://rustc-dev-guide.rust-lang.org/print.html#configuring-rustup-to-use-nightly
https://rustc-dev-guide.rust-lang.org/print.html#configuring-rustup-to-use-nightly
https://rustc-dev-guide.rust-lang.org/print.html#configuring-rustup-to-use-nightly
https://rustc-dev-guide.rust-lang.org/print.html#configuring-rustup-to-use-nightly
https://rust-lang.github.io/rustup/concepts/channels.html?highlight=nightl#working-with-nightly-rust
https://rust-lang.github.io/rustup/concepts/channels.html?highlight=nightl#working-with-nightly-rust
https://rustc-dev-guide.rust-lang.org/building/suggested.html#working-on-multiple-branches-at-the-same-time
https://rustc-dev-guide.rust-lang.org/building/suggested.html#working-on-multiple-branches-at-the-same-time
https://rustc-dev-guide.rust-lang.org/building/suggested.html#configuring-rust-analyzer-for-rustc
https://rustc-dev-guide.rust-lang.org/building/suggested.html#configuring-rust-analyzer-for-rustc
https://rustc-dev-guide.rust-lang.org/building/how-to-build-and-run.html
https://rustc-dev-guide.rust-lang.org/building/how-to-build-and-run.html
https://rustc-dev-guide.rust-lang.org/print.html#faster-builds-with---keep-stage
https://rustc-dev-guide.rust-lang.org/print.html#faster-builds-with---keep-stage
https://rustc-dev-guide.rust-lang.org/print.html#faster-builds-with---keep-stage
https://rustc-dev-guide.rust-lang.org/print.html#faster-builds-with---keep-stage
https://rustc-dev-guide.rust-lang.org/print.html#faster-builds-with---keep-stage
https://rustc-dev-guide.rust-lang.org/building/how-to-build-and-run.html#building-the-compiler
https://rustc-dev-guide.rust-lang.org/building/how-to-build-and-run.html#building-the-compiler

The TL;DR is that you might get weird behavior from a compile when using --keep-

stage 1 -- for example, strange ICEs or other panics. In that case, you should simply

remove the --keep-stage 1 from the command and rebuild. That ought to fix the

problem.

You can also use --keep-stage 1 when running tests. Something like this:

• Initial test run: ./x test tests/ui

• Subsequent test run: ./x test tests/ui --keep-stage 1

Using incremental compilation

You can further enable the --incremental flag to save additional time in subsequent

rebuilds:

If you don't want to include the flag with every command, you can enable it in the

config.toml :

Note that incremental compilation will use more disk space than usual. If disk space is a

concern for you, you might want to check the size of the build directory from time to

time.

Fine-tuning optimizations

Setting optimize = false makes the compiler too slow for tests. However, to improve

the test cycle, you can disable optimizations selectively only for the crates you'll have to

rebuild (source). For example, when working on rustc_mir_build , the rustc_mir_build

and rustc_driver crates take the most time to incrementally rebuild. You could

therefore set the following in the root Cargo.toml :

./x test tests/ui --incremental --test-args issue-1234

[rust]
incremental = true

[profile.release.package.rustc_mir_build]
opt-level = 0
[profile.release.package.rustc_driver]
opt-level = 0

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

20 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/appendix/glossary.html#ice
https://rustc-dev-guide.rust-lang.org/appendix/glossary.html#ice
https://rustc-dev-guide.rust-lang.org/print.html#using-incremental-compilation
https://rustc-dev-guide.rust-lang.org/print.html#using-incremental-compilation
https://rustc-dev-guide.rust-lang.org/print.html#fine-tuning-optimizations
https://rustc-dev-guide.rust-lang.org/print.html#fine-tuning-optimizations
https://rust-lang.zulipchat.com/#narrow/stream/131828-t-compiler/topic/incremental.20compilation.20question/near/202712165
https://rust-lang.zulipchat.com/#narrow/stream/131828-t-compiler/topic/incremental.20compilation.20question/near/202712165

Working on multiple branches at the same time

Working on multiple branches in parallel can be a little annoying, since building the

compiler on one branch will cause the old build and the incremental compilation cache to

be overwritten. One solution would be to have multiple clones of the repository, but that

would mean storing the Git metadata multiple times, and having to update each clone

individually.

Fortunately, Git has a better solution called worktrees. This lets you create multiple

"working trees", which all share the same Git database. Moreover, because all of the

worktrees share the same object database, if you update a branch (e.g. master) in any of

them, you can use the new commits from any of the worktrees. One caveat, though, is

that submodules do not get shared. They will still be cloned multiple times.

Given you are inside the root directory for your Rust repository, you can create a "linked

working tree" in a new "rust2" directory by running the following command:

Creating a new worktree for a new branch based on master looks like:

You can then use that rust2 folder as a separate workspace for modifying and building

rustc !

Using nix-shell

If you're using nix, you can use the following nix-shell to work on Rust:

git worktree add ../rust2

git worktree add -b my-feature ../rust2 master

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

21 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#working-on-multiple-branches-at-the-same-time
https://rustc-dev-guide.rust-lang.org/print.html#working-on-multiple-branches-at-the-same-time
https://git-scm.com/docs/git-worktree
https://git-scm.com/docs/git-worktree
https://rustc-dev-guide.rust-lang.org/print.html#using-nix-shell
https://rustc-dev-guide.rust-lang.org/print.html#using-nix-shell

{ pkgs ? import <nixpkgs> {} }:

This file contains a development shell for working on rustc.
let
 # Build configuration for rust-lang/rust. Based on `config.example.toml`
(then called
 # `config.toml.example`) from `1bd30ce2aac40c7698aa4a1b9520aa649ff2d1c5`
 config = pkgs.writeText "rustc-config" ''
 profile = "compiler" # you may want to choose a different profile, like
`library` or `tools`
 changelog-seen = 2

 [build]
 patch-binaries-for-nix = true
 # The path to (or name of) the GDB executable to use. This is only used
for
 # executing the debuginfo test suite.
 gdb = "${pkgs.gdb}/bin/gdb"
 python = "${pkgs.python3Full}/bin/python"

 [rust]
 debug = true
 incremental = true
 deny-warnings = false

 # Indicates whether some LLVM tools, like llvm-objdump, will be made
available in the
 # sysroot.
 llvm-tools = true

 # Print backtrace on internal compiler errors during bootstrap
 backtrace-on-ice = true
 '';

 ripgrepConfig =
 let
 # Files that are ignored by ripgrep when searching.
 ignoreFile = pkgs.writeText "rustc-rgignore" ''
 configure
 config.example.toml
 x.py
 LICENSE-MIT
 LICENSE-APACHE
 COPYRIGHT
 **/*.txt
 **/*.toml
 **/*.yml
 **/*.nix
 *.md
 src/ci
 src/etc/
 src/llvm-emscripten/
 src/llvm-project/
 src/rtstartup/
 src/rustllvm/
 src/stdsimd/

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

22 of 660 8/30/23, 09:47

Shell Completions

If you use Bash, Fish or PowerShell, you can find automatically-generated shell

completion scripts for x.py in src/etc/completions . Zsh support will also be included

once issues with clap_complete have been resolved.

You can use source ./src/etc/completions/x.py.<extension> to load completions for

your shell of choice, or source .\src\etc\completions\x.py.ps1 for PowerShell. Adding

this to your shell's startup script (e.g. .bashrc) will automatically load this completion.

 src/tools/rls/rls-analysis/test_data/
 '';
 in
 pkgs.writeText "rustc-ripgreprc" "--ignore-file=${ignoreFile}";
in
pkgs.mkShell {
 name = "rustc";
 nativeBuildInputs = with pkgs; [
 gcc9 binutils cmake ninja openssl pkgconfig python39 git curl cacert
patchelf nix psutils
];
 RIPGREP_CONFIG_PATH = ripgrepConfig;
 RUST_BOOTSTRAP_CONFIG = config;
}

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

23 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#shell-completions
https://rustc-dev-guide.rust-lang.org/print.html#shell-completions
https://github.com/rust-lang/rust/tree/master/src/etc/completions
https://github.com/rust-lang/rust/tree/master/src/etc/completions
https://github.com/rust-lang/rust/tree/master/src/etc/completions
https://crates.io/crates/clap_complete
https://crates.io/crates/clap_complete
https://crates.io/crates/clap_complete

Build distribution artifacts

You might want to build and package up the compiler for distribution. You’ll want to run

this command to do it:

Install distribution artifacts

If you’ve built a distribution artifact you might want to install it and test that it works on

your target system. You’ll want to run this command:

Note: If you are testing out a modification to a compiler, you might want to use it to

compile some project. Usually, you do not want to use ./x install for testing. Rather,

you should create a toolchain as discussed in here.

For example, if the toolchain you created is called foo, you would then invoke it with

rustc +foo ... (where ... represents the rest of the arguments).

./x dist

./x install

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

24 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#build-distribution-artifacts
https://rustc-dev-guide.rust-lang.org/print.html#build-distribution-artifacts
https://rustc-dev-guide.rust-lang.org/print.html#install-distribution-artifacts
https://rustc-dev-guide.rust-lang.org/print.html#install-distribution-artifacts
https://rustc-dev-guide.rust-lang.org/building/how-to-build-and-run.html#creating-a-rustup-toolchain
https://rustc-dev-guide.rust-lang.org/building/how-to-build-and-run.html#creating-a-rustup-toolchain

Building documentation

This chapter describes how to build documentation of toolchain components, like the

standard library (std) or the compiler (rustc).

• Document everything

This uses rustdoc from the beta toolchain, so will produce (slightly) different

output to stage 1 rustdoc, as rustdoc is under active development:

If you want to be sure the documentation looks the same as on CI:

This ensures that (current) rustdoc gets built, then that is used to document the

components.

• Much like running individual tests or building specific components, you can build

just the documentation you want:

See the nightly docs index page for a full list of books.

• Document internal rustc items

Compiler documentation is not built by default. To create it by default with x doc ,

modify config.toml :

Note that when enabled, documentation for internal compiler items will also be

built.

NOTE: The documentation for the compiler is found at this link.

./x doc

./x doc --stage 1

./x doc src/doc/book

./x doc src/doc/nomicon

./x doc compiler library

[build]

compiler-docs = true

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

25 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#building-documentation
https://rustc-dev-guide.rust-lang.org/print.html#building-documentation
https://doc.rust-lang.org/nightly/
https://doc.rust-lang.org/nightly/
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/

Rustdoc overview

rustdoc lives in-tree with the compiler and standard library. This chapter is about how it

works. For information about Rustdoc's features and how to use them, see the Rustdoc

book. For more details about how rustdoc works, see the "Rustdoc internals" chapter.

• Cheat sheet

• Code structure

• Tests

• Constraints

• Multiple runs, same output directory

• Use cases

◦ Standard library docs

◦ docs.rs

◦ Locally generated docs

◦ Self-hosted project docs

rustdoc uses rustc internals (and, of course, the standard library), so you will have to

build the compiler and std once before you can build rustdoc .

Rustdoc is implemented entirely within the crate librustdoc . It runs the compiler up to

the point where we have an internal representation of a crate (HIR) and the ability to run

some queries about the types of items. HIR and queries are discussed in the linked

chapters.

librustdoc performs two major steps after that to render a set of documentation:

• "Clean" the AST into a form that's more suited to creating documentation (and

slightly more resistant to churn in the compiler).

• Use this cleaned AST to render a crate's documentation, one page at a time.

Naturally, there's more than just this, and those descriptions simplify out lots of details,

but that's the high-level overview.

(Side note: librustdoc is a library crate! The rustdoc binary is created using the project

in src/tools/rustdoc . Note that literally all that does is call the main() that's in this

crate's lib.rs , though.)

Cheat sheet

• Run ./x setup tools before getting started. This will configure x with nice

settings for developing rustdoc and other tools, including downloading a copy of

rustc rather than building it.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

26 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#rustdoc-overview
https://rustc-dev-guide.rust-lang.org/print.html#rustdoc-overview
https://doc.rust-lang.org/nightly/rustdoc/
https://doc.rust-lang.org/nightly/rustdoc/
https://doc.rust-lang.org/nightly/rustdoc/
https://doc.rust-lang.org/nightly/rustdoc/
https://rustc-dev-guide.rust-lang.org/rustdoc-internals.html
https://rustc-dev-guide.rust-lang.org/rustdoc-internals.html
https://rustc-dev-guide.rust-lang.org/rustdoc.html#cheat-sheet
https://rustc-dev-guide.rust-lang.org/rustdoc.html#cheat-sheet
https://rustc-dev-guide.rust-lang.org/rustdoc.html#code-structure
https://rustc-dev-guide.rust-lang.org/rustdoc.html#code-structure
https://rustc-dev-guide.rust-lang.org/rustdoc.html#tests
https://rustc-dev-guide.rust-lang.org/rustdoc.html#tests
https://rustc-dev-guide.rust-lang.org/rustdoc.html#constraints
https://rustc-dev-guide.rust-lang.org/rustdoc.html#constraints
https://rustc-dev-guide.rust-lang.org/rustdoc.html#multiple-runs-same-output-directory
https://rustc-dev-guide.rust-lang.org/rustdoc.html#multiple-runs-same-output-directory
https://rustc-dev-guide.rust-lang.org/rustdoc.html#use-cases
https://rustc-dev-guide.rust-lang.org/rustdoc.html#use-cases
https://rustc-dev-guide.rust-lang.org/rustdoc.html#standard-library-docs
https://rustc-dev-guide.rust-lang.org/rustdoc.html#standard-library-docs
https://rustc-dev-guide.rust-lang.org/rustdoc.html#docsrs
https://rustc-dev-guide.rust-lang.org/rustdoc.html#docsrs
https://rustc-dev-guide.rust-lang.org/rustdoc.html#locally-generated-docs
https://rustc-dev-guide.rust-lang.org/rustdoc.html#locally-generated-docs
https://rustc-dev-guide.rust-lang.org/rustdoc.html#self-hosted-project-docs
https://rustc-dev-guide.rust-lang.org/rustdoc.html#self-hosted-project-docs
https://github.com/rust-lang/rust/tree/master/src/librustdoc
https://github.com/rust-lang/rust/tree/master/src/librustdoc
https://github.com/rust-lang/rust/tree/master/src/librustdoc
https://rustc-dev-guide.rust-lang.org/hir.html
https://rustc-dev-guide.rust-lang.org/hir.html
https://rustc-dev-guide.rust-lang.org/query.html
https://rustc-dev-guide.rust-lang.org/query.html
https://github.com/rust-lang/rust/tree/master/src/tools/rustdoc
https://github.com/rust-lang/rust/tree/master/src/tools/rustdoc
https://github.com/rust-lang/rust/tree/master/src/tools/rustdoc
https://rustc-dev-guide.rust-lang.org/print.html#cheat-sheet
https://rustc-dev-guide.rust-lang.org/print.html#cheat-sheet

• Use ./x check src/tools/rustdoc to quickly check for compile errors.

• Use ./x build to make a usable rustdoc you can run on other projects.

◦ Add library/test to be able to use rustdoc --test .

◦ Run rustup toolchain link stage2 build/host/stage2 to add a custom

toolchain called stage2 to your rustup environment. After running that,

cargo +stage2 doc in any directory will build with your locally-compiled

rustdoc.

• Use ./x doc library to use this rustdoc to generate the standard library docs.

◦ The completed docs will be available in build/host/doc (under core , alloc ,

and std).

◦ If you want to copy those docs to a webserver, copy all of build/host/doc ,

since that's where the CSS, JS, fonts, and landing page are.

• Use ./x test tests/rustdoc* to run the tests using a stage1 rustdoc.

◦ See Rustdoc internals for more information about tests.

Code structure

• All paths in this section are relative to src/librustdoc in the rust-lang/rust

repository.

• Most of the HTML printing code is in html/format.rs and html/render/mod.rs . It's

in a bunch of fmt::Display implementations and supplementary functions.

• The types that got Display impls above are defined in clean/mod.rs , right next to

the custom Clean trait used to process them out of the rustc HIR.

• The bits specific to using rustdoc as a test harness are in doctest.rs .

• The Markdown renderer is loaded up in html/markdown.rs , including functions for

extracting doctests from a given block of Markdown.

• The tests on the structure of rustdoc HTML output are located in tests/rustdoc ,

where they're handled by the test runner of rustbuild and the supplementary script

src/etc/htmldocck.py .

Tests

• All paths in this section are relative to tests in the rust-lang/rust repository.

• Tests on search index generation are located in rustdoc-js , as a series of

JavaScript files that encode queries on the standard library search index and

expected results.

• Tests on the "UI" of rustdoc (the terminal output it produces when run) are in

rustdoc-ui

• Tests on the "GUI" of rustdoc (the HTML, JS, and CSS as rendered in a browser) are in

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

27 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/rustdoc-internals.html
https://rustc-dev-guide.rust-lang.org/rustdoc-internals.html
https://rustc-dev-guide.rust-lang.org/print.html#code-structure
https://rustc-dev-guide.rust-lang.org/print.html#code-structure
https://rustc-dev-guide.rust-lang.org/print.html#tests
https://rustc-dev-guide.rust-lang.org/print.html#tests

rustdoc-gui . These use a NodeJS tool called browser-UI-test that uses puppeteer

to run tests in a headless browser and check rendering and interactivity.

Constraints

We try to make rustdoc work reasonably well with JavaScript disabled, and when

browsing local files. We support these browsers.

Supporting local files (file:/// URLs) brings some surprising restrictions. Certain

browser features that require secure origins, like localStorage and Service Workers,

don't work reliably. We can still use such features but we should make sure pages are still

usable without them.

Multiple runs, same output directory

Rustdoc can be run multiple times for varying inputs, with its output set to the same

directory. That's how cargo produces documentation for dependencies of the current

crate. It can also be done manually if a user wants a big documentation bundle with all of

the docs they care about.

HTML is generated independently for each crate, but there is some cross-crate

information that we update as we add crates to the output directory:

• crates<SUFFIX>.js holds a list of all crates in the output directory.

• search-index<SUFFIX>.js holds a list of all searchable items.

• For each trait, there is a file under implementors/.../trait.TraitName.js

containing a list of implementors of that trait. The implementors may be in different

crates than the trait, and the JS file is updated as we discover new ones.

Use cases

There are a few major use cases for rustdoc that you should keep in mind when working

on it:

Standard library docs

These are published at https://doc.rust-lang.org/std as part of the Rust release process.

Stable releases are also uploaded to specific versioned URLs like https://doc.rust-lang.org

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

28 of 660 8/30/23, 09:47

https://github.com/GuillaumeGomez/browser-UI-test/
https://github.com/GuillaumeGomez/browser-UI-test/
https://rustc-dev-guide.rust-lang.org/print.html#constraints
https://rustc-dev-guide.rust-lang.org/print.html#constraints
https://rust-lang.github.io/rfcs/1985-tiered-browser-support.html#supported-browsers
https://rust-lang.github.io/rfcs/1985-tiered-browser-support.html#supported-browsers
https://rustc-dev-guide.rust-lang.org/print.html#multiple-runs-same-output-directory
https://rustc-dev-guide.rust-lang.org/print.html#multiple-runs-same-output-directory
https://rustc-dev-guide.rust-lang.org/print.html#use-cases
https://rustc-dev-guide.rust-lang.org/print.html#use-cases
https://rustc-dev-guide.rust-lang.org/print.html#standard-library-docs
https://rustc-dev-guide.rust-lang.org/print.html#standard-library-docs
https://doc.rust-lang.org/std
https://doc.rust-lang.org/std
https://doc.rust-lang.org/1.57.0/std/
https://doc.rust-lang.org/1.57.0/std/

/1.57.0/std/. Beta and nightly docs are published to https://doc.rust-lang.org/beta/std/

and https://doc.rust-lang.org/nightly/std/. The docs are uploaded with the promote-

release tool and served from S3 with CloudFront.

The standard library docs contain five crates: alloc, core, proc_macro, std, and test.

docs.rs

When crates are published to crates.io, docs.rs automatically builds and publishes their

documentation, for instance at https://docs.rs/serde/latest/serde/. It always builds with

the current nightly rustdoc, so any changes you land in rustdoc are "insta-stable" in that

they will have an immediate public effect on docs.rs. Old documentation is not rebuilt, so

you will see some variation in UI when browsing old releases in docs.rs. Crate authors can

request rebuilds, which will be run with the latest rustdoc.

Docs.rs performs some transformations on rustdoc's output in order to save storage and

display a navigation bar at the top. In particular, certain static files, like main.js and

rustdoc.css, may be shared across multiple invocations of the same version of rustdoc.

Others, like crates.js and sidebar-items.js, are different for different invocations. Still

others, like fonts, will never change. These categories are distinguished using the

SharedResource enum in src/librustdoc/html/render/write_shared.rs

Documentation on docs.rs is always generated for a single crate at a time, so the search

and sidebar functionality don't include dependencies of the current crate.

Locally generated docs

Crate authors can run cargo doc --open in crates they have checked out locally to see

the docs. This is useful to check that the docs they are writing are useful and display

correctly. It can also be useful for people to view documentation on crates they aren't

authors of, but want to use. In both cases, people may use --document-private-items

Cargo flag to see private methods, fields, and so on, which are normally not displayed.

By default cargo doc will generate documentation for a crate and all of its

dependencies. That can result in a very large documentation bundle, with a large (and

slow) search corpus. The Cargo flag --no-deps inhibits that behavior and generates docs

for just the crate.

Self-hosted project docs

Some projects like to host their own documentation. For example: https://docs.serde.rs/.

This is easy to do by locally generating docs, and simply copying them to a web server.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

29 of 660 8/30/23, 09:47

https://doc.rust-lang.org/1.57.0/std/
https://doc.rust-lang.org/1.57.0/std/
https://doc.rust-lang.org/beta/std/
https://doc.rust-lang.org/beta/std/
https://doc.rust-lang.org/nightly/std/
https://doc.rust-lang.org/nightly/std/
https://github.com/rust-lang/promote-release
https://github.com/rust-lang/promote-release
https://github.com/rust-lang/promote-release
https://github.com/rust-lang/promote-release
https://rustc-dev-guide.rust-lang.org/print.html#docsrs
https://rustc-dev-guide.rust-lang.org/print.html#docsrs
https://docs.rs/serde/latest/serde/
https://docs.rs/serde/latest/serde/
https://rustc-dev-guide.rust-lang.org/print.html#locally-generated-docs
https://rustc-dev-guide.rust-lang.org/print.html#locally-generated-docs
https://rustc-dev-guide.rust-lang.org/print.html#self-hosted-project-docs
https://rustc-dev-guide.rust-lang.org/print.html#self-hosted-project-docs
https://docs.serde.rs/
https://docs.serde.rs/

Rustdoc's HTML output can be extensively customized by flags. Users can add a theme,

set the default theme, and inject arbitrary HTML. See rustdoc --help for details.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

30 of 660 8/30/23, 09:47

Adding a new target

These are a set of steps to add support for a new target. There are numerous end states

and paths to get there, so not all sections may be relevant to your desired goal.

• Specifying a new LLVM

◦ Using pre-built LLVM

• Creating a target specification

◦ Adding a target specification

• Patching crates

• Cross-compiling

• Promoting a target from tier 2 (target) to tier 2 (host)

Specifying a new LLVM

For very new targets, you may need to use a different fork of LLVM than what is currently

shipped with Rust. In that case, navigate to the src/llvm-project git submodule (you

might need to run ./x check at least once so the submodule is updated), check out the

appropriate commit for your fork, then commit that new submodule reference in the

main Rust repository.

An example would be:

Using pre-built LLVM

If you have a local LLVM checkout that is already built, you may be able to configure Rust

to treat your build as the system LLVM to avoid redundant builds.

You can tell Rust to use a pre-built version of LLVM using the target section of

config.toml :

If you are attempting to use a system LLVM, we have observed the following paths before,

cd src/llvm-project
git remote add my-target-llvm some-llvm-repository
git checkout my-target-llvm/my-branch
cd ..
git add llvm-project
git commit -m 'Use my custom LLVM'

[target.x86_64-unknown-linux-gnu]
llvm-config = "/path/to/llvm/llvm-7.0.1/bin/llvm-config"

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

31 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#adding-a-new-target
https://rustc-dev-guide.rust-lang.org/print.html#adding-a-new-target
https://rustc-dev-guide.rust-lang.org/building/new-target.html#specifying-a-new-llvm
https://rustc-dev-guide.rust-lang.org/building/new-target.html#specifying-a-new-llvm
https://rustc-dev-guide.rust-lang.org/building/new-target.html#using-pre-built-llvm
https://rustc-dev-guide.rust-lang.org/building/new-target.html#using-pre-built-llvm
https://rustc-dev-guide.rust-lang.org/building/new-target.html#creating-a-target-specification
https://rustc-dev-guide.rust-lang.org/building/new-target.html#creating-a-target-specification
https://rustc-dev-guide.rust-lang.org/building/new-target.html#adding-a-target-specification
https://rustc-dev-guide.rust-lang.org/building/new-target.html#adding-a-target-specification
https://rustc-dev-guide.rust-lang.org/building/new-target.html#patching-crates
https://rustc-dev-guide.rust-lang.org/building/new-target.html#patching-crates
https://rustc-dev-guide.rust-lang.org/building/new-target.html#cross-compiling
https://rustc-dev-guide.rust-lang.org/building/new-target.html#cross-compiling
https://rustc-dev-guide.rust-lang.org/building/new-target.html#promoting-a-target-from-tier-2-target-to-tier-2-host
https://rustc-dev-guide.rust-lang.org/building/new-target.html#promoting-a-target-from-tier-2-target-to-tier-2-host
https://rustc-dev-guide.rust-lang.org/print.html#specifying-a-new-llvm
https://rustc-dev-guide.rust-lang.org/print.html#specifying-a-new-llvm
https://rustc-dev-guide.rust-lang.org/print.html#using-pre-built-llvm
https://rustc-dev-guide.rust-lang.org/print.html#using-pre-built-llvm

though they may be different from your system:

• /usr/bin/llvm-config-8

• /usr/lib/llvm-8/bin/llvm-config

Note that you need to have the LLVM FileCheck tool installed, which is used for codegen

tests. This tool is normally built with LLVM, but if you use your own preinstalled LLVM, you

will need to provide FileCheck in some other way. On Debian-based systems, you can

install the llvm-N-tools package (where N is the LLVM version number, e.g. llvm-8-

tools). Alternately, you can specify the path to FileCheck with the llvm-filecheck

config item in config.toml or you can disable codegen test with the codegen-tests

item in config.toml .

Creating a target specification

You should start with a target JSON file. You can see the specification for an existing

target using --print target-spec-json :

Save that JSON to a file and modify it as appropriate for your target.

Adding a target specification

Once you have filled out a JSON specification and been able to compile somewhat

successfully, you can copy the specification into the compiler itself.

You will need to add a line to the big table inside of the supported_targets macro in the

rustc_target::spec module. You will then add a corresponding file for your new target

containing a target function.

Look for existing targets to use as examples.

After adding your target to the rustc_target crate you may want to add core , std , ...

with support for your new target. In that case you will probably need access to some

target_* cfg. Unfortunately when building with stage0 (the beta compiler), you'll get an

error that the target cfg is unexpected because stage0 doesn't know about the new target

specification and we pass --check-cfg in order to tell it to check.

To fix the errors you will need to manually add the unexpected value to the

EXTRA_CHECK_CFGS list in src/bootstrap/lib.rs . Here is an example for adding

rustc -Z unstable-options --target=wasm32-unknown-unknown --print target-
spec-json

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

32 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#creating-a-target-specification
https://rustc-dev-guide.rust-lang.org/print.html#creating-a-target-specification
https://rustc-dev-guide.rust-lang.org/print.html#adding-a-target-specification
https://rustc-dev-guide.rust-lang.org/print.html#adding-a-target-specification

NEW_TARGET_OS as target_os :

Patching crates

You may need to make changes to crates that the compiler depends on, such as libc or

cc . If so, you can use Cargo's [patch] ability. For example, if you want to use an

unreleased version of libc , you can add it to the top-level Cargo.toml file:

After this, run cargo update -p libc to update the lockfiles.

Beware that if you patch to a local path dependency, this will enable warnings for that

dependency. Some dependencies are not warning-free, and due to the deny-warnings

setting in config.toml , the build may suddenly start to fail. To work around the

warnings, you may want to disable deny-warnings in the config, or modify the

dependency to remove the warnings.

Cross-compiling

Once you have a target specification in JSON and in the code, you can cross-compile

rustc :

- (Some(Mode::Std), "target_os", Some(&["watchos"])),
+ // #[cfg(bootstrap)] NEW_TARGET_OS
+ (Some(Mode::Std), "target_os", Some(&["watchos", "NEW_TARGET_OS"])),

diff --git a/Cargo.toml b/Cargo.toml
index 1e83f05e0ca..4d0172071c1 100644
--- a/Cargo.toml
+++ b/Cargo.toml
@@ -113,6 +113,8 @@ cargo-util = { path = "src/tools/cargo/crates/cargo-util"
}
 [patch.crates-io]
+libc = { git = "https://github.com/rust-lang/libc", rev =
"0bf7ce340699dcbacabdf5f16a242d2219a49ee0" }

 # See comments in `src/tools/rustc-workspace-hack/README.md` for what's
going on
 # here
 rustc-workspace-hack = { path = 'src/tools/rustc-workspace-hack' }

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

33 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#patching-crates
https://rustc-dev-guide.rust-lang.org/print.html#patching-crates
https://crates.io/crates/libc
https://crates.io/crates/libc
https://crates.io/crates/libc
https://crates.io/crates/cc
https://crates.io/crates/cc
https://crates.io/crates/cc
https://doc.rust-lang.org/stable/cargo/reference/overriding-dependencies.html#the-patch-section
https://doc.rust-lang.org/stable/cargo/reference/overriding-dependencies.html#the-patch-section
https://doc.rust-lang.org/stable/cargo/reference/overriding-dependencies.html#the-patch-section
https://rustc-dev-guide.rust-lang.org/print.html#cross-compiling
https://rustc-dev-guide.rust-lang.org/print.html#cross-compiling

If your target specification is already available in the bootstrap compiler, you can use it

instead of the JSON file for both arguments.

Promoting a target from tier 2 (target) to tier 2 (host)

There are two levels of tier 2 targets: a) Targets that are only cross-compiled (rustup

target add) b) Targets that have a native toolchain (rustup toolchain install)

For an example of promoting a target from cross-compiled to native, see #75914.

DESTDIR=/path/to/install/in \
./x install -i --stage 1 --host aarch64-apple-darwin.json --target aarch64-
apple-darwin \
compiler/rustc library/std

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

34 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#promoting-a-target-from-tier-2-target-to-tier-2-host
https://rustc-dev-guide.rust-lang.org/print.html#promoting-a-target-from-tier-2-target-to-tier-2-host
https://doc.rust-lang.org/nightly/rustc/target-tier-policy.html#tier-2-with-host-tools
https://doc.rust-lang.org/nightly/rustc/target-tier-policy.html#tier-2-with-host-tools
https://github.com/rust-lang/rust/pull/75914
https://github.com/rust-lang/rust/pull/75914

Testing the compiler

• Kinds of tests

◦ Compiletest

◦ Package tests

◦ Tidy

◦ Formatting

◦ Book documentation tests

◦ Documentation link checker

◦ Dist check

◦ Tool tests

◦ Cargo test

◦ Crater

◦ Performance testing

• Further reading

The Rust project runs a wide variety of different tests, orchestrated by the build system

(./x test). This section gives a brief overview of the different testing tools. Subsequent

chapters dive into running tests and adding new tests.

Kinds of tests

There are several kinds of tests to exercise things in the Rust distribution. Almost all of

them are driven by ./x test , with some exceptions noted below.

Compiletest

The main test harness for testing the compiler itself is a tool called compiletest. It

supports running different styles of tests, called test suites. The tests are all located in the

tests directory. The Compiletest chapter goes into detail on how to use this tool.

Example: ./x test tests/ui

Package tests

The standard library and many of the compiler packages include typical Rust #[test]

unit tests, integration tests, and documentation tests. You can pass a path to x.py to

almost any package in the library or compiler directory, and x will essentially run

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

35 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#testing-the-compiler
https://rustc-dev-guide.rust-lang.org/print.html#testing-the-compiler
https://rustc-dev-guide.rust-lang.org/tests/intro.html#kinds-of-tests
https://rustc-dev-guide.rust-lang.org/tests/intro.html#kinds-of-tests
https://rustc-dev-guide.rust-lang.org/tests/intro.html#compiletest
https://rustc-dev-guide.rust-lang.org/tests/intro.html#compiletest
https://rustc-dev-guide.rust-lang.org/tests/intro.html#package-tests
https://rustc-dev-guide.rust-lang.org/tests/intro.html#package-tests
https://rustc-dev-guide.rust-lang.org/tests/intro.html#tidy
https://rustc-dev-guide.rust-lang.org/tests/intro.html#tidy
https://rustc-dev-guide.rust-lang.org/tests/intro.html#formatting
https://rustc-dev-guide.rust-lang.org/tests/intro.html#formatting
https://rustc-dev-guide.rust-lang.org/tests/intro.html#book-documentation-tests
https://rustc-dev-guide.rust-lang.org/tests/intro.html#book-documentation-tests
https://rustc-dev-guide.rust-lang.org/tests/intro.html#documentation-link-checker
https://rustc-dev-guide.rust-lang.org/tests/intro.html#documentation-link-checker
https://rustc-dev-guide.rust-lang.org/tests/intro.html#dist-check
https://rustc-dev-guide.rust-lang.org/tests/intro.html#dist-check
https://rustc-dev-guide.rust-lang.org/tests/intro.html#tool-tests
https://rustc-dev-guide.rust-lang.org/tests/intro.html#tool-tests
https://rustc-dev-guide.rust-lang.org/tests/intro.html#cargo-test
https://rustc-dev-guide.rust-lang.org/tests/intro.html#cargo-test
https://rustc-dev-guide.rust-lang.org/tests/intro.html#crater
https://rustc-dev-guide.rust-lang.org/tests/intro.html#crater
https://rustc-dev-guide.rust-lang.org/tests/intro.html#performance-testing
https://rustc-dev-guide.rust-lang.org/tests/intro.html#performance-testing
https://rustc-dev-guide.rust-lang.org/tests/intro.html#further-reading
https://rustc-dev-guide.rust-lang.org/tests/intro.html#further-reading
https://rustc-dev-guide.rust-lang.org/tests/running.html
https://rustc-dev-guide.rust-lang.org/tests/running.html
https://rustc-dev-guide.rust-lang.org/tests/adding.html
https://rustc-dev-guide.rust-lang.org/tests/adding.html
https://rustc-dev-guide.rust-lang.org/print.html#kinds-of-tests
https://rustc-dev-guide.rust-lang.org/print.html#kinds-of-tests
https://rustc-dev-guide.rust-lang.org/print.html#compiletest
https://rustc-dev-guide.rust-lang.org/print.html#compiletest
https://rustc-dev-guide.rust-lang.org/tests/compiletest.html
https://rustc-dev-guide.rust-lang.org/tests/compiletest.html
https://github.com/rust-lang/rust/tree/master/tests
https://github.com/rust-lang/rust/tree/master/tests
https://github.com/rust-lang/rust/tree/master/tests
https://rustc-dev-guide.rust-lang.org/tests/compiletest.html
https://rustc-dev-guide.rust-lang.org/tests/compiletest.html
https://rustc-dev-guide.rust-lang.org/print.html#package-tests
https://rustc-dev-guide.rust-lang.org/print.html#package-tests

cargo test on that package.

Examples:

Command Description

./x test library/std Runs tests on std only

./x test library/core Runs tests on core only

./x test

compiler/rustc_data_structures
Runs tests on rustc_data_structures

The standard library relies very heavily on documentation tests to cover its functionality.

However, unit tests and integration tests can also be used as needed. Almost all of the

compiler packages have doctests disabled.

All standard library and compiler unit tests are placed in separate tests file (which is

enforced in tidy). This ensures that when the test file is changed, the crate does not need

to be recompiled. For example:

If it wasn't done this way, and you were working on something like core , that would

require recompiling the entire standard library, and the entirety of rustc .

./x test includes some CLI options for controlling the behavior with these tests:

• --doc — Only runs documentation tests in the package.

• --no-doc — Run all tests except documentation tests.

Tidy

Tidy is a custom tool used for validating source code style and formatting conventions,

such as rejecting long lines. There is more information in the section on coding

conventions.

Example: ./x test tidy

Formatting

Rustfmt is integrated with the build system to enforce uniform style across the compiler.

The formatting check is automatically run by the Tidy tool mentioned above.

#[cfg(test)]
mod tests;

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

36 of 660 8/30/23, 09:47

https://github.com/rust-lang/rust/blob/master/src/tools/tidy/src/unit_tests.rs
https://github.com/rust-lang/rust/blob/master/src/tools/tidy/src/unit_tests.rs
https://rustc-dev-guide.rust-lang.org/print.html#tidy
https://rustc-dev-guide.rust-lang.org/print.html#tidy
https://rustc-dev-guide.rust-lang.org/conventions.html#formatting
https://rustc-dev-guide.rust-lang.org/conventions.html#formatting
https://rustc-dev-guide.rust-lang.org/conventions.html#formatting
https://rustc-dev-guide.rust-lang.org/conventions.html#formatting
https://rustc-dev-guide.rust-lang.org/print.html#formatting
https://rustc-dev-guide.rust-lang.org/print.html#formatting

Examples:

Command Description

./x fmt

--check
Checks formatting and exits with an error if formatting is needed.

./x fmt Runs rustfmt across the entire codebase.

./x test

tidy

--bless

First runs rustfmt to format the codebase, then runs tidy checks.

Book documentation tests

All of the books that are published have their own tests, primarily for validating that the

Rust code examples pass. Under the hood, these are essentially using rustdoc --test

on the markdown files. The tests can be run by passing a path to a book to ./x test .

Example: ./x test src/doc/book

Documentation link checker

Links across all documentation is validated with a link checker tool.

Example: ./x test src/tools/linkchecker

Example: ./x test linkchecker

This requires building all of the documentation, which might take a while.

Dist check

distcheck verifies that the source distribution tarball created by the build system will

unpack, build, and run all tests.

Example: ./x test distcheck

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

37 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#book-documentation-tests
https://rustc-dev-guide.rust-lang.org/print.html#book-documentation-tests
https://rustc-dev-guide.rust-lang.org/print.html#documentation-link-checker
https://rustc-dev-guide.rust-lang.org/print.html#documentation-link-checker
https://rustc-dev-guide.rust-lang.org/print.html#dist-check
https://rustc-dev-guide.rust-lang.org/print.html#dist-check

Tool tests

Packages that are included with Rust have all of their tests run as well. This includes

things such as cargo, clippy, rustfmt, miri, bootstrap (testing the Rust build system itself),

etc.

Most of the tools are located in the src/tools directory. To run the tool's tests, just pass

its path to ./x test .

Example: ./x test src/tools/cargo

Usually these tools involve running cargo test within the tool's directory.

In CI, some tools are allowed to fail. Failures send notifications to the corresponding

teams, and is tracked on the toolstate website. More information can be found in the

toolstate documentation.

Cargo test

cargotest is a small tool which runs cargo test on a few sample projects (such as

servo , ripgrep , tokei , etc.). This ensures there aren't any significant regressions.

Example: ./x test src/tools/cargotest

Crater

Crater is a tool which runs tests on many thousands of public projects. This tool has its

own separate infrastructure for running. See the Crater chapter for more details.

Performance testing

A separate infrastructure is used for testing and tracking performance of the compiler.

See the Performance testing chapter for more details.

Further reading

The following blog posts may also be of interest:

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

38 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#tool-tests
https://rustc-dev-guide.rust-lang.org/print.html#tool-tests
https://github.com/rust-lang/rust/tree/master/src/tools/
https://github.com/rust-lang/rust/tree/master/src/tools/
https://github.com/rust-lang/rust/tree/master/src/tools/
https://rust-lang-nursery.github.io/rust-toolstate/
https://rust-lang-nursery.github.io/rust-toolstate/
https://forge.rust-lang.org/infra/toolstate.html
https://forge.rust-lang.org/infra/toolstate.html
https://rustc-dev-guide.rust-lang.org/print.html#cargo-test
https://rustc-dev-guide.rust-lang.org/print.html#cargo-test
https://rustc-dev-guide.rust-lang.org/print.html#crater
https://rustc-dev-guide.rust-lang.org/print.html#crater
https://rustc-dev-guide.rust-lang.org/tests/crater.html
https://rustc-dev-guide.rust-lang.org/tests/crater.html
https://rustc-dev-guide.rust-lang.org/print.html#performance-testing
https://rustc-dev-guide.rust-lang.org/print.html#performance-testing
https://rustc-dev-guide.rust-lang.org/tests/perf.html
https://rustc-dev-guide.rust-lang.org/tests/perf.html
https://rustc-dev-guide.rust-lang.org/print.html#further-reading
https://rustc-dev-guide.rust-lang.org/print.html#further-reading

• brson's classic "How Rust is tested"

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

39 of 660 8/30/23, 09:47

https://brson.github.io/2017/07/10/how-rust-is-tested
https://brson.github.io/2017/07/10/how-rust-is-tested

Running tests

• Running a subset of the test suites

◦ Run only the tidy script

◦ Run tests on the standard library

◦ Run the tidy script and tests on the standard library

◦ Run tests on the standard library using a stage 1 compiler

◦ Run all tests using a stage 2 compiler

• Run unit tests on the compiler/library

• Running an individual test

• Passing arguments to rustc when running tests

• Editing and updating the reference files

• Configuring test running

• Passing --pass $mode

• Running tests with different "compare modes"

• Running tests manually

• Running tests on a remote machine

• Testing on emulators

You can run the tests using x . The most basic command – which you will almost never

want to use! – is as follows:

This will build the stage 1 compiler and then run the whole test suite. You probably don't

want to do this very often, because it takes a very long time, and anyway bors / GitHub

Actions will do it for you. (Often, I will run this command in the background after opening

a PR that I think is done, but rarely otherwise. -nmatsakis)

The test results are cached and previously successful tests are ignored during testing.

The stdout/stderr contents as well as a timestamp file for every test can be found under

build/ARCH/test/ . To force-rerun a test (e.g. in case the test runner fails to notice a

change) you can simply remove the timestamp file, or use the --force-rerun CLI option.

Note that some tests require a Python-enabled gdb. You can test if your gdb install

supports Python by using the python command from within gdb. Once invoked you can

type some Python code (e.g. print("hi")) followed by return and then CTRL+D to

execute it. If you are building gdb from source, you will need to configure with --with-

python=<path-to-python-binary> .

Running a subset of the test suites

./x test

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

40 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#running-tests
https://rustc-dev-guide.rust-lang.org/print.html#running-tests
https://rustc-dev-guide.rust-lang.org/tests/running.html#running-a-subset-of-the-test-suites
https://rustc-dev-guide.rust-lang.org/tests/running.html#running-a-subset-of-the-test-suites
https://rustc-dev-guide.rust-lang.org/tests/running.html#run-only-the-tidy-script
https://rustc-dev-guide.rust-lang.org/tests/running.html#run-only-the-tidy-script
https://rustc-dev-guide.rust-lang.org/tests/running.html#run-tests-on-the-standard-library
https://rustc-dev-guide.rust-lang.org/tests/running.html#run-tests-on-the-standard-library
https://rustc-dev-guide.rust-lang.org/tests/running.html#run-the-tidy-script-and-tests-on-the-standard-library
https://rustc-dev-guide.rust-lang.org/tests/running.html#run-the-tidy-script-and-tests-on-the-standard-library
https://rustc-dev-guide.rust-lang.org/tests/running.html#run-tests-on-the-standard-library-using-a-stage-1-compiler
https://rustc-dev-guide.rust-lang.org/tests/running.html#run-tests-on-the-standard-library-using-a-stage-1-compiler
https://rustc-dev-guide.rust-lang.org/tests/running.html#run-all-tests-using-a-stage-2-compiler
https://rustc-dev-guide.rust-lang.org/tests/running.html#run-all-tests-using-a-stage-2-compiler
https://rustc-dev-guide.rust-lang.org/tests/running.html#run-unit-tests-on-the-compilerlibrary
https://rustc-dev-guide.rust-lang.org/tests/running.html#run-unit-tests-on-the-compilerlibrary
https://rustc-dev-guide.rust-lang.org/tests/running.html#running-an-individual-test
https://rustc-dev-guide.rust-lang.org/tests/running.html#running-an-individual-test
https://rustc-dev-guide.rust-lang.org/tests/running.html#passing-arguments-to-rustc-when-running-tests
https://rustc-dev-guide.rust-lang.org/tests/running.html#passing-arguments-to-rustc-when-running-tests
https://rustc-dev-guide.rust-lang.org/tests/running.html#passing-arguments-to-rustc-when-running-tests
https://rustc-dev-guide.rust-lang.org/tests/running.html#passing-arguments-to-rustc-when-running-tests
https://rustc-dev-guide.rust-lang.org/tests/running.html#passing-arguments-to-rustc-when-running-tests
https://rustc-dev-guide.rust-lang.org/tests/running.html#editing-and-updating-the-reference-files
https://rustc-dev-guide.rust-lang.org/tests/running.html#editing-and-updating-the-reference-files
https://rustc-dev-guide.rust-lang.org/tests/running.html#configuring-test-running
https://rustc-dev-guide.rust-lang.org/tests/running.html#configuring-test-running
https://rustc-dev-guide.rust-lang.org/tests/running.html#passing---pass-mode
https://rustc-dev-guide.rust-lang.org/tests/running.html#passing---pass-mode
https://rustc-dev-guide.rust-lang.org/tests/running.html#passing---pass-mode
https://rustc-dev-guide.rust-lang.org/tests/running.html#passing---pass-mode
https://rustc-dev-guide.rust-lang.org/tests/running.html#running-tests-with-different-compare-modes
https://rustc-dev-guide.rust-lang.org/tests/running.html#running-tests-with-different-compare-modes
https://rustc-dev-guide.rust-lang.org/tests/running.html#running-tests-manually
https://rustc-dev-guide.rust-lang.org/tests/running.html#running-tests-manually
https://rustc-dev-guide.rust-lang.org/tests/running.html#running-tests-on-a-remote-machine
https://rustc-dev-guide.rust-lang.org/tests/running.html#running-tests-on-a-remote-machine
https://rustc-dev-guide.rust-lang.org/tests/running.html#testing-on-emulators
https://rustc-dev-guide.rust-lang.org/tests/running.html#testing-on-emulators
https://rustc-dev-guide.rust-lang.org/print.html#running-a-subset-of-the-test-suites
https://rustc-dev-guide.rust-lang.org/print.html#running-a-subset-of-the-test-suites

When working on a specific PR, you will usually want to run a smaller set of tests. For

example, a good "smoke test" that can be used after modifying rustc to see if things are

generally working correctly would be the following:

This will run the ui test suite. Of course, the choice of test suites is somewhat arbitrary,

and may not suit the task you are doing. For example, if you are hacking on debuginfo,

you may be better off with the debuginfo test suite:

If you only need to test a specific subdirectory of tests for any given test suite, you can

pass that directory to ./x test :

Likewise, you can test a single file by passing its path:

Run only the tidy script

Run tests on the standard library

Note that this only runs tests on std ; if you want to test core or other crates, you have

to specify those explicitly.

Run the tidy script and tests on the standard library

Run tests on the standard library using a stage 1 compiler

./x test tests/ui

./x test tests/debuginfo

./x test tests/ui/const-generics

./x test tests/ui/const-generics/const-test.rs

./x test tidy

./x test --stage 0 library/std

./x test --stage 0 tidy library/std

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

41 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#run-only-the-tidy-script
https://rustc-dev-guide.rust-lang.org/print.html#run-only-the-tidy-script
https://rustc-dev-guide.rust-lang.org/print.html#run-tests-on-the-standard-library
https://rustc-dev-guide.rust-lang.org/print.html#run-tests-on-the-standard-library
https://rustc-dev-guide.rust-lang.org/print.html#run-the-tidy-script-and-tests-on-the-standard-library
https://rustc-dev-guide.rust-lang.org/print.html#run-the-tidy-script-and-tests-on-the-standard-library
https://rustc-dev-guide.rust-lang.org/print.html#run-tests-on-the-standard-library-using-a-stage-1-compiler
https://rustc-dev-guide.rust-lang.org/print.html#run-tests-on-the-standard-library-using-a-stage-1-compiler

By listing which test suites you want to run you avoid having to run tests for components

you did not change at all.

Warning: Note that bors only runs the tests with the full stage 2 build; therefore, while

the tests usually work fine with stage 1, there are some limitations.

Run all tests using a stage 2 compiler

You almost never need to do this; CI will run these tests for you.

Run unit tests on the compiler/library

You may want to run unit tests on a specific file with following:

But unfortunately, it's impossible. You should invoke following instead:

Running an individual test

Another common thing that people want to do is to run an individual test, often the test

they are trying to fix. As mentioned earlier, you may pass the full file path to achieve this,

or alternatively one may invoke x with the --test-args option:

Under the hood, the test runner invokes the standard Rust test runner (the same one you

get with #[test]), so this command would wind up filtering for tests that include

"issue-1234" in the name. (Thus --test-args is a good way to run a collection of related

tests.)

./x test --stage 1 library/std

./x test --stage 2

./x test compiler/rustc_data_structures/src/thin_vec/tests.rs

./x test compiler/rustc_data_structures/ --test-args thin_vec

./x test tests/ui --test-args issue-1234

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

42 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#run-all-tests-using-a-stage-2-compiler
https://rustc-dev-guide.rust-lang.org/print.html#run-all-tests-using-a-stage-2-compiler
https://rustc-dev-guide.rust-lang.org/print.html#run-unit-tests-on-the-compilerlibrary
https://rustc-dev-guide.rust-lang.org/print.html#run-unit-tests-on-the-compilerlibrary
https://rustc-dev-guide.rust-lang.org/print.html#running-an-individual-test
https://rustc-dev-guide.rust-lang.org/print.html#running-an-individual-test

Passing arguments to rustc when running tests

It can sometimes be useful to run some tests with specific compiler arguments, without

using RUSTFLAGS (during development of unstable features, with -Z flags, for example).

This can be done with ./x test 's --rustc-args option, to pass additional arguments to

the compiler when building the tests.

Editing and updating the reference files

If you have changed the compiler's output intentionally, or you are making a new test,

you can pass --bless to the test subcommand. E.g. if some tests in tests/ui are failing,

you can run

to automatically adjust the .stderr , .stdout or .fixed files of all tests. Of course you

can also target just specific tests with the --test-args your_test_name flag, just like

when running the tests.

Configuring test running

There are a few options for running tests:

• config.toml has the rust.verbose-tests option. If false , each test will print a

single dot (the default). If true , the name of every test will be printed. This is

equivalent to the --quiet option in the Rust test harness

• The environment variable RUST_TEST_THREADS can be set to the number of

concurrent threads to use for testing.

Passing --pass $mode

Pass UI tests now have three modes, check-pass , build-pass and run-pass . When

--pass $mode is passed, these tests will be forced to run under the given $mode unless

the directive // ignore-pass exists in the test file. For example, you can run all the tests

in tests/ui as check-pass :

./x test tests/ui --bless

./x test tests/ui --pass check

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

43 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#passing-arguments-to-rustc-when-running-tests
https://rustc-dev-guide.rust-lang.org/print.html#passing-arguments-to-rustc-when-running-tests
https://rustc-dev-guide.rust-lang.org/print.html#passing-arguments-to-rustc-when-running-tests
https://rustc-dev-guide.rust-lang.org/print.html#passing-arguments-to-rustc-when-running-tests
https://rustc-dev-guide.rust-lang.org/print.html#passing-arguments-to-rustc-when-running-tests
https://rustc-dev-guide.rust-lang.org/print.html#editing-and-updating-the-reference-files
https://rustc-dev-guide.rust-lang.org/print.html#editing-and-updating-the-reference-files
https://rustc-dev-guide.rust-lang.org/print.html#configuring-test-running
https://rustc-dev-guide.rust-lang.org/print.html#configuring-test-running
https://doc.rust-lang.org/rustc/tests/
https://doc.rust-lang.org/rustc/tests/
https://rustc-dev-guide.rust-lang.org/print.html#passing---pass-mode
https://rustc-dev-guide.rust-lang.org/print.html#passing---pass-mode
https://rustc-dev-guide.rust-lang.org/print.html#passing---pass-mode
https://rustc-dev-guide.rust-lang.org/print.html#passing---pass-mode

By passing --pass $mode , you can reduce the testing time. For each mode, please see

Controlling pass/fail expectations.

Running tests with different "compare modes"

UI tests may have different output depending on certain "modes" that the compiler is in.

For example, when using the Polonius mode, a test foo.rs will first look for expected

output in foo.polonius.stderr , falling back to the usual foo.stderr if not found. The

following will run the UI test suite in Polonius mode:

See Compare modes for more details.

Running tests manually

Sometimes it's easier and faster to just run the test by hand. Most tests are just rs files,

so after creating a rustup toolchain, you can do something like:

This is much faster, but doesn't always work. For example, some tests include directives

that specify specific compiler flags, or which rely on other crates, and they may not run

the same without those options.

Running tests on a remote machine

Tests may be run on a remote machine (e.g. to test builds for a different architecture).

This is done using remote-test-client on the build machine to send test programs to

remote-test-server running on the remote machine. remote-test-server executes the

test programs and sends the results back to the build machine. remote-test-server

provides unauthenticated remote code execution so be careful where it is used.

To do this, first build remote-test-server for the remote machine, e.g. for RISC-V

The binary will be created at ./build/host/stage2-tools/$TARGET_ARCH/release

./x test tests/ui --compare-mode=polonius

rustc +stage1 tests/ui/issue-1234.rs

./x build src/tools/remote-test-server --target riscv64gc-unknown-linux-gnu

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

44 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/tests/ui.html#controlling-passfail-expectations
https://rustc-dev-guide.rust-lang.org/tests/ui.html#controlling-passfail-expectations
https://rustc-dev-guide.rust-lang.org/print.html#running-tests-with-different-compare-modes
https://rustc-dev-guide.rust-lang.org/print.html#running-tests-with-different-compare-modes
https://rustc-dev-guide.rust-lang.org/tests/compiletest.html#compare-modes
https://rustc-dev-guide.rust-lang.org/tests/compiletest.html#compare-modes
https://rustc-dev-guide.rust-lang.org/print.html#running-tests-manually
https://rustc-dev-guide.rust-lang.org/print.html#running-tests-manually
https://rustc-dev-guide.rust-lang.org/building/how-to-build-and-run.html#creating-a-rustup-toolchain
https://rustc-dev-guide.rust-lang.org/building/how-to-build-and-run.html#creating-a-rustup-toolchain
https://rustc-dev-guide.rust-lang.org/print.html#running-tests-on-a-remote-machine
https://rustc-dev-guide.rust-lang.org/print.html#running-tests-on-a-remote-machine

/remote-test-server . Copy this over to the remote machine.

On the remote machine, run the remote-test-server with the --bind 0.0.0.0:12345

flag (and optionally -v for verbose output). Output should look like this:

Note that binding the server to 0.0.0.0 will allow all hosts able to reach your machine to

execute arbitrary code on your machine. We strongly recommend either setting up a

firewall to block external access to port 12345, or to use a more restrictive IP address

when binding.

You can test if the remote-test-server is working by connecting to it and sending

ping\n . It should reply pong :

To run tests using the remote runner, set the TEST_DEVICE_ADDR environment variable

then use x as usual. For example, to run ui tests for a RISC-V machine with the IP

address 1.2.3.4 use

If remote-test-server was run with the verbose flag, output on the test machine may

look something like

Tests are built on the machine running x not on the remote machine. Tests which fail to

build unexpectedly (or ui tests producing incorrect build output) may fail without ever

$./remote-test-server -v --bind 0.0.0.0:12345
starting test server
listening on 0.0.0.0:12345!

$ nc $REMOTE_IP 12345
ping
pong

export TEST_DEVICE_ADDR="1.2.3.4:12345"
./x test tests/ui --target riscv64gc-unknown-linux-gnu

[...]
run "/tmp/work/test1007/a"
run "/tmp/work/test1008/a"
run "/tmp/work/test1009/a"
run "/tmp/work/test1010/a"
run "/tmp/work/test1011/a"
run "/tmp/work/test1012/a"
run "/tmp/work/test1013/a"
run "/tmp/work/test1014/a"
run "/tmp/work/test1015/a"
run "/tmp/work/test1016/a"
run "/tmp/work/test1017/a"
run "/tmp/work/test1018/a"
[...]

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

45 of 660 8/30/23, 09:47

running on the remote machine.

Testing on emulators

Some platforms are tested via an emulator for architectures that aren't readily available.

For architectures where the standard library is well supported and the host operating

system supports TCP/IP networking, see the above instructions for testing on a remote

machine (in this case the remote machine is emulated).

There is also a set of tools for orchestrating running the tests within the emulator.

Platforms such as arm-android and arm-unknown-linux-gnueabihf are set up to

automatically run the tests under emulation on GitHub Actions. The following will take a

look at how a target's tests are run under emulation.

The Docker image for armhf-gnu includes QEMU to emulate the ARM CPU architecture.

Included in the Rust tree are the tools remote-test-client and remote-test-server which

are programs for sending test programs and libraries to the emulator, and running the

tests within the emulator, and reading the results. The Docker image is set up to launch

remote-test-server and the build tools use remote-test-client to communicate with

the server to coordinate running tests (see src/bootstrap/test.rs).

TODO: Is there any support for using an iOS emulator?

It's also unclear to me how the wasm or asm.js tests are run.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

46 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#testing-on-emulators
https://rustc-dev-guide.rust-lang.org/print.html#testing-on-emulators
https://github.com/rust-lang/rust/tree/master/src/ci/docker/host-x86_64/armhf-gnu/Dockerfile
https://github.com/rust-lang/rust/tree/master/src/ci/docker/host-x86_64/armhf-gnu/Dockerfile
https://www.qemu.org/
https://www.qemu.org/
https://github.com/rust-lang/rust/tree/master/src/tools/remote-test-client
https://github.com/rust-lang/rust/tree/master/src/tools/remote-test-client
https://github.com/rust-lang/rust/tree/master/src/tools/remote-test-server
https://github.com/rust-lang/rust/tree/master/src/tools/remote-test-server
https://github.com/rust-lang/rust/tree/master/src/bootstrap/test.rs
https://github.com/rust-lang/rust/tree/master/src/bootstrap/test.rs

Testing with Docker

The Rust tree includes Docker image definitions for the platforms used on GitHub Actions

in src/ci/docker . The script src/ci/docker/run.sh is used to build the Docker image,

run it, build Rust within the image, and run the tests.

You can run these images on your local development machine. This can be helpful to test

environments different from your local system. First you will need to install Docker on a

Linux, Windows, or macOS system (typically Linux will be much faster than Windows or

macOS because the latter use virtual machines to emulate a Linux environment). To enter

interactive mode which will start a bash shell in the container, run src/ci/docker

/run.sh --dev <IMAGE> where <IMAGE> is one of the directory names in src/ci/docker

(for example x86_64-gnu is a fairly standard Ubuntu environment).

The docker script will mount your local Rust source tree in read-only mode, and an obj

directory in read-write mode. All of the compiler artifacts will be stored in the obj

directory. The shell will start out in the obj directory. From there, you can run ../src

/ci/run.sh which will run the build as defined by the image.

Alternatively, you can run individual commands to do specific tasks. For example, you can

run ../x test tests/ui to just run UI tests. Note that there is some configuration in the

src/ci/run.sh script that you may need to recreate. Particularly, set submodules =

false in your config.toml so that it doesn't attempt to modify the read-only directory.

Some additional notes about using the Docker images:

• Some of the std tests require IPv6 support. Docker on Linux seems to have it

disabled by default. Run the commands in enable-docker-ipv6.sh to enable IPv6

before creating the container. This only needs to be done once.

• The container will be deleted automatically when you exit the shell, however the

build artifacts persist in the obj directory. If you are switching between different

Docker images, the artifacts from previous environments stored in the obj

directory may confuse the build system. Sometimes you will need to delete parts or

all of the obj directory before building inside the container.

• The container is bare-bones, with only a minimal set of packages. You may want to

install some things like apt install less vim .

• You can open multiple shells in the container. First you need the container name (a

short hash), which is displayed in the shell prompt, or you can run docker

container ls outside of the container to list the available containers. With the

container name, run docker exec -it <CONTAINER> /bin/bash where

<CONTAINER> is the container name like 4ba195e95cef .

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

47 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#testing-with-docker
https://rustc-dev-guide.rust-lang.org/print.html#testing-with-docker
https://www.docker.com/
https://www.docker.com/
https://github.com/rust-lang/rust/tree/master/src/ci/docker
https://github.com/rust-lang/rust/tree/master/src/ci/docker
https://github.com/rust-lang/rust/tree/master/src/ci/docker
https://github.com/rust-lang/rust/blob/master/src/ci/docker/run.sh
https://github.com/rust-lang/rust/blob/master/src/ci/docker/run.sh
https://github.com/rust-lang/rust/blob/master/src/ci/docker/run.sh
https://github.com/rust-lang/rust/blob/master/src/ci/run.sh
https://github.com/rust-lang/rust/blob/master/src/ci/run.sh
https://github.com/rust-lang/rust/blob/master/src/ci/run.sh
https://github.com/rust-lang/rust/blob/master/src/ci/scripts/enable-docker-ipv6.sh
https://github.com/rust-lang/rust/blob/master/src/ci/scripts/enable-docker-ipv6.sh
https://github.com/rust-lang/rust/blob/master/src/ci/scripts/enable-docker-ipv6.sh

Testing with CI

Testing infrastructure

When a Pull Request is opened on GitHub, GitHub Actions will automatically launch a

build that will run all tests on some configurations (x86_64-gnu-llvm-13 linux, x86_64-gnu-

tools linux, and mingw-check linux). In essence, each runs ./x test with various

different options.

The integration bot bors is used for coordinating merges to the master branch. When a

PR is approved, it goes into a queue where merges are tested one at a time on a wide set

of platforms using GitHub Actions. Due to the limit on the number of parallel jobs, we run

CI under the rust-lang-ci organization except for PRs. Most platforms only run the build

steps, some run a restricted set of tests, only a subset run the full suite of tests (see Rust's

platform tiers).

If everything passes, then all of the distribution artifacts that were generated during the

CI run are published.

Using CI to test

In some cases, a PR may run into problems with running tests on a particular platform or

configuration. If you can't run those tests locally, don't hesitate to use CI resources to try

out a fix.

As mentioned above, opening or updating a PR will only run on a small subset of

configurations. Only when a PR is approved will it go through the full set of test

configurations. However, you can try one of those configurations in your PR before it is

approved. For example, if a Windows build fails, but you don't have access to a Windows

machine, you can try running the Windows job that failed on CI within your PR after

pushing a possible fix.

To do this, you'll need to edit src/ci/github-actions/ci.yml . The jobs section defines

the jobs that will run. The jobs.pr section defines everything that will run in a push to a

PR. The jobs.auto section defines the full set of tests that are run after a PR is approved.

You can copy one of the definitions from the auto section up to the pr section.

For example, the x86_64-msvc-1 and x86_64-msvc-2 jobs are responsible for running

the 64-bit MSVC tests. You can copy those up to the jobs.pr.strategy.matrix.include

section with the other jobs.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

48 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#testing-with-ci
https://rustc-dev-guide.rust-lang.org/print.html#testing-with-ci
https://rustc-dev-guide.rust-lang.org/print.html#testing-infrastructure
https://rustc-dev-guide.rust-lang.org/print.html#testing-infrastructure
https://github.com/rust-lang/rust/actions
https://github.com/rust-lang/rust/actions
https://github.com/servo/homu
https://github.com/servo/homu
https://bors.rust-lang.org/queue/rust
https://bors.rust-lang.org/queue/rust
https://github.com/rust-lang-ci/rust/actions
https://github.com/rust-lang-ci/rust/actions
https://forge.rust-lang.org/release/platform-support.html#rust-platform-support
https://forge.rust-lang.org/release/platform-support.html#rust-platform-support
https://rustc-dev-guide.rust-lang.org/print.html#using-ci-to-test
https://rustc-dev-guide.rust-lang.org/print.html#using-ci-to-test
https://github.com/rust-lang/rust/blob/master/src/ci/github-actions/ci.yml
https://github.com/rust-lang/rust/blob/master/src/ci/github-actions/ci.yml
https://github.com/rust-lang/rust/blob/master/src/ci/github-actions/ci.yml

The comment at the top of ci.yml will tell you to run this command:

This will generate the true .github/workflows/ci.yml which is what GitHub Actions

uses.

Then, you can commit those two files and push to GitHub. GitHub Actions should launch

the tests.

After you have finished, don't forget to remove any changes you have made to ci.yml .

Although you are welcome to use CI, just be conscientious that this is a shared resource

with limited concurrency. Try not to enable too many jobs at once (one or two should be

sufficient in most cases).

./x run src/tools/expand-yaml-anchors

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

49 of 660 8/30/23, 09:47

https://github.com/rust-lang/rust/blob/master/.github/workflows/ci.yml#L1
https://github.com/rust-lang/rust/blob/master/.github/workflows/ci.yml#L1
https://github.com/rust-lang/rust/blob/master/.github/workflows/ci.yml#L1

Adding new tests

• UI test walkthrough

◦ Step 1. Add a test file

◦ Step 2. Generate the expected output

◦ Step 3. Add error annotations

◦ Step 4. Review the output

◦ Step 5. Check other tests

• Comment explaining what the test is about

In general, we expect every PR that fixes a bug in rustc to come accompanied by a

regression test of some kind. This test should fail in master but pass after the PR. These

tests are really useful for preventing us from repeating the mistakes of the past.

The first thing to decide is which kind of test to add. This will depend on the nature of the

change and what you want to exercise. Here are some rough guidelines:

• The majority of compiler tests are done with compiletest.

◦ The majority of compiletest tests are UI tests in the tests/ui directory.

• Changes to the standard library are usually tested within the standard library itself.

◦ The majority of standard library tests are written as doctests, which illustrate

and exercise typical API behavior.

◦ Additional unit tests should go in library/${crate}/tests (where ${crate}

is usually core , alloc , or std).

• If the code is part of an isolated system, and you are not testing compiler output,

consider using a unit or integration test.

• Need to run rustdoc? Prefer a rustdoc or rustdoc-ui test. Occasionally you'll need

rustdoc-js as well.

• Other compiletest test suites are generally used for special purposes:

◦ Need to run gdb or lldb? Use the debuginfo test suite.

◦ Need to inspect LLVM IR or MIR IR? Use the codegen or mir-opt test suites.

◦ Need to inspect the resulting binary in some way? Then use run-make .

◦ Check out the compiletest chapter for more specialized test suites.

UI test walkthrough

The following is a basic guide for creating a UI test, which is one of the most common

compiler tests. For this tutorial, we'll be adding a test for an async error message.

Step 1. Add a test file

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

50 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#adding-new-tests
https://rustc-dev-guide.rust-lang.org/print.html#adding-new-tests
https://rustc-dev-guide.rust-lang.org/tests/adding.html#ui-test-walkthrough
https://rustc-dev-guide.rust-lang.org/tests/adding.html#ui-test-walkthrough
https://rustc-dev-guide.rust-lang.org/tests/adding.html#step-1-add-a-test-file
https://rustc-dev-guide.rust-lang.org/tests/adding.html#step-1-add-a-test-file
https://rustc-dev-guide.rust-lang.org/tests/adding.html#step-2-generate-the-expected-output
https://rustc-dev-guide.rust-lang.org/tests/adding.html#step-2-generate-the-expected-output
https://rustc-dev-guide.rust-lang.org/tests/adding.html#step-3-add-error-annotations
https://rustc-dev-guide.rust-lang.org/tests/adding.html#step-3-add-error-annotations
https://rustc-dev-guide.rust-lang.org/tests/adding.html#step-4-review-the-output
https://rustc-dev-guide.rust-lang.org/tests/adding.html#step-4-review-the-output
https://rustc-dev-guide.rust-lang.org/tests/adding.html#step-5-check-other-tests
https://rustc-dev-guide.rust-lang.org/tests/adding.html#step-5-check-other-tests
https://rustc-dev-guide.rust-lang.org/tests/adding.html#comment-explaining-what-the-test-is-about
https://rustc-dev-guide.rust-lang.org/tests/adding.html#comment-explaining-what-the-test-is-about
https://rustc-dev-guide.rust-lang.org/tests/compiletest.html
https://rustc-dev-guide.rust-lang.org/tests/compiletest.html
https://rustc-dev-guide.rust-lang.org/tests/ui.html
https://rustc-dev-guide.rust-lang.org/tests/ui.html
https://github.com/rust-lang/rust/tree/master/tests/ui/
https://github.com/rust-lang/rust/tree/master/tests/ui/
https://github.com/rust-lang/rust/tree/master/tests/ui/
https://rustc-dev-guide.rust-lang.org/tests/intro.html#package-tests
https://rustc-dev-guide.rust-lang.org/tests/intro.html#package-tests
https://rustc-dev-guide.rust-lang.org/tests/intro.html#package-tests
https://rustc-dev-guide.rust-lang.org/tests/intro.html#package-tests
https://rustc-dev-guide.rust-lang.org/tests/compiletest.html
https://rustc-dev-guide.rust-lang.org/tests/compiletest.html
https://rustc-dev-guide.rust-lang.org/print.html#ui-test-walkthrough
https://rustc-dev-guide.rust-lang.org/print.html#ui-test-walkthrough
https://rustc-dev-guide.rust-lang.org/tests/ui.html
https://rustc-dev-guide.rust-lang.org/tests/ui.html
https://rustc-dev-guide.rust-lang.org/print.html#step-1-add-a-test-file
https://rustc-dev-guide.rust-lang.org/print.html#step-1-add-a-test-file

The first step is to create a Rust source file somewhere in the tests/ui tree. When

creating a test, do your best to find a good location and name (see Test organization for

more). Since naming is the hardest part of development, everything should be downhill

from here!

Let's place our async test at tests/ui/async-await/await-without-async.rs :

A few things to notice about our test:

• The top should start with a short comment that explains what the test is for.

• The // edition:2018 comment is called a header which provides instructions to

compiletest on how to build the test. Here we need to set the edition for async to

work (the default is 2015).

• Following that is the source of the test. Try to keep it succinct and to the point. This

may require some effort if you are trying to minimize an example from a bug report.

• We end this test with an empty fn main function. This is because the default for UI

tests is a bin crate-type, and we don't want the "main not found" error in our test.

Alternatively, you could add #![crate_type="lib"] .

Step 2. Generate the expected output

The next step is to create the expected output from the compiler. This can be done with

the --bless option:

This will build the compiler (if it hasn't already been built), compile the test, and place the

output of the compiler in a file called tests/ui/async-await/await-without-

async.stderr .

However, this step will fail! You should see an error message, something like this:

// Check what happens when using await in a non-async fn.
// edition:2018

async fn foo() {}

fn bar() {
 foo().await
}

fn main() {}

./x test tests/ui/async-await/await-without-async.rs --bless

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

51 of 660 8/30/23, 09:47

https://github.com/rust-lang/rust/tree/master/tests/ui/
https://github.com/rust-lang/rust/tree/master/tests/ui/
https://github.com/rust-lang/rust/tree/master/tests/ui/
https://rustc-dev-guide.rust-lang.org/tests/ui.html#test-organization
https://rustc-dev-guide.rust-lang.org/tests/ui.html#test-organization
https://rustc-dev-guide.rust-lang.org/tests/adding.html#explanatory_comment
https://rustc-dev-guide.rust-lang.org/tests/adding.html#explanatory_comment
https://rustc-dev-guide.rust-lang.org/tests/headers.html
https://rustc-dev-guide.rust-lang.org/tests/headers.html
https://rustc-dev-guide.rust-lang.org/print.html#step-2-generate-the-expected-output
https://rustc-dev-guide.rust-lang.org/print.html#step-2-generate-the-expected-output

error: /rust/tests/ui/async-await/await-without-async.rs:7: unexpected error: '7:10:

7:16: await is only allowed inside async functions and blocks E0728'

Step 3. Add error annotations

Every error needs to be annotated with a comment in the source with the text of the

error. In this case, we can add the following comment to our test file:

The //~^ squiggle caret comment tells compiletest that the error belongs to the previous

line (more on this in the Error annotations section).

Save that, and run the test again:

It should now pass, yay!

Step 4. Review the output

Somewhat hand-in-hand with the previous step, you should inspect the .stderr file that

was created to see if it looks like how you expect. If you are adding a new diagnostic

message, now would be a good time to also consider how readable the message looks

overall, particularly for people new to Rust.

Our example tests/ui/async-await/await-without-async.stderr file should look like

this:

fn bar() {
 foo().await
//~^ ERROR `await` is only allowed inside `async` functions and blocks
}

./x test tests/ui/async-await/await-without-async.rs

error[E0728]: `await` is only allowed inside `async` functions and blocks
 --> $DIR/await-without-async.rs:7:10
 |
LL | fn bar() {
 | --- this is not `async`
LL | foo().await
 | ^^^^^^ only allowed inside `async` functions and blocks

error: aborting due to previous error

For more information about this error, try `rustc --explain E0728`.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

52 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#step-3-add-error-annotations
https://rustc-dev-guide.rust-lang.org/print.html#step-3-add-error-annotations
https://rustc-dev-guide.rust-lang.org/tests/ui.html#error-annotations
https://rustc-dev-guide.rust-lang.org/tests/ui.html#error-annotations
https://rustc-dev-guide.rust-lang.org/print.html#step-4-review-the-output
https://rustc-dev-guide.rust-lang.org/print.html#step-4-review-the-output

You may notice some things look a little different than the regular compiler output. The

$DIR removes the path information which will differ between systems. The LL values

replace the line numbers. That helps avoid small changes in the source from triggering

large diffs. See the Normalization section for more.

Around this stage, you may need to iterate over the last few steps a few times to tweak

your test, re-bless the test, and re-review the output.

Step 5. Check other tests

Sometimes when adding or changing a diagnostic message, this will affect other tests in

the test suite. The final step before posting a PR is to check if you have affected anything

else. Running the UI suite is usually a good start:

If other tests start failing, you may need to investigate what has changed and if the new

output makes sense. You may also need to re-bless the output with the --bless flag.

Comment explaining what the test is about

The first comment of a test file should summarize the point of the test, and highlight

what is important about it. If there is an issue number associated with the test, include

the issue number.

This comment doesn't have to be super extensive. Just something like "Regression test for

#18060: match arms were matching in the wrong order." might already be enough.

These comments are very useful to others later on when your test breaks, since they

often can highlight what the problem is. They are also useful if for some reason the tests

need to be refactored, since they let others know which parts of the test were important

(often a test must be rewritten because it no longer tests what is was meant to test, and

then it's useful to know what it was meant to test exactly).

./x test tests/ui

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

53 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/tests/ui.html#normalization
https://rustc-dev-guide.rust-lang.org/tests/ui.html#normalization
https://rustc-dev-guide.rust-lang.org/print.html#step-5-check-other-tests
https://rustc-dev-guide.rust-lang.org/print.html#step-5-check-other-tests
https://rustc-dev-guide.rust-lang.org/print.html#comment-explaining-what-the-test-is-about
https://rustc-dev-guide.rust-lang.org/print.html#comment-explaining-what-the-test-is-about

Compiletest

• Introduction

• Test suites

◦ Pretty-printer tests

◦ Incremental tests

◦ Debuginfo tests

◦ Codegen tests

◦ Assembly tests

◦ Codegen-units tests

◦ Mir-opt tests

◦ run-make tests

◦ Valgrind tests

• Building auxiliary crates

◦ Auxiliary proc-macro

• Revisions

• Compare modes

Introduction

compiletest is the main test harness of the Rust test suite. It allows test authors to

organize large numbers of tests (the Rust compiler has many thousands), efficient test

execution (parallel execution is supported), and allows the test author to configure

behavior and expected results of both individual and groups of tests.

NOTE: For macOS users, SIP (System Integrity Protection) may consistently check

the compiled binary by sending network requests to Apple, so you may get a huge

performance degradation when running tests.

You can resolve it by tweaking the following settings: Privacy & Security ->

Developer Tools -> Add Terminal (Or VsCode, etc.) .

compiletest may check test code for success, for runtime failure, or for compile-time

failure. Tests are typically organized as a Rust source file with annotations in comments

before and/or within the test code. These comments serve to direct compiletest on if or

how to run the test, what behavior to expect, and more. See header commands and the

test suite documentation below for more details on these annotations.

See the Adding new tests chapter for a tutorial on creating a new test, and the Running

tests chapter on how to run the test suite.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

54 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#compiletest-1
https://rustc-dev-guide.rust-lang.org/print.html#compiletest-1
https://rustc-dev-guide.rust-lang.org/tests/compiletest.html#introduction
https://rustc-dev-guide.rust-lang.org/tests/compiletest.html#introduction
https://rustc-dev-guide.rust-lang.org/tests/compiletest.html#test-suites
https://rustc-dev-guide.rust-lang.org/tests/compiletest.html#test-suites
https://rustc-dev-guide.rust-lang.org/tests/compiletest.html#pretty-printer-tests
https://rustc-dev-guide.rust-lang.org/tests/compiletest.html#pretty-printer-tests
https://rustc-dev-guide.rust-lang.org/tests/compiletest.html#incremental-tests
https://rustc-dev-guide.rust-lang.org/tests/compiletest.html#incremental-tests
https://rustc-dev-guide.rust-lang.org/tests/compiletest.html#debuginfo-tests
https://rustc-dev-guide.rust-lang.org/tests/compiletest.html#debuginfo-tests
https://rustc-dev-guide.rust-lang.org/tests/compiletest.html#codegen-tests
https://rustc-dev-guide.rust-lang.org/tests/compiletest.html#codegen-tests
https://rustc-dev-guide.rust-lang.org/tests/compiletest.html#assembly-tests
https://rustc-dev-guide.rust-lang.org/tests/compiletest.html#assembly-tests
https://rustc-dev-guide.rust-lang.org/tests/compiletest.html#codegen-units-tests
https://rustc-dev-guide.rust-lang.org/tests/compiletest.html#codegen-units-tests
https://rustc-dev-guide.rust-lang.org/tests/compiletest.html#mir-opt-tests
https://rustc-dev-guide.rust-lang.org/tests/compiletest.html#mir-opt-tests
https://rustc-dev-guide.rust-lang.org/tests/compiletest.html#run-make-tests
https://rustc-dev-guide.rust-lang.org/tests/compiletest.html#run-make-tests
https://rustc-dev-guide.rust-lang.org/tests/compiletest.html#run-make-tests
https://rustc-dev-guide.rust-lang.org/tests/compiletest.html#run-make-tests
https://rustc-dev-guide.rust-lang.org/tests/compiletest.html#valgrind-tests
https://rustc-dev-guide.rust-lang.org/tests/compiletest.html#valgrind-tests
https://rustc-dev-guide.rust-lang.org/tests/compiletest.html#building-auxiliary-crates
https://rustc-dev-guide.rust-lang.org/tests/compiletest.html#building-auxiliary-crates
https://rustc-dev-guide.rust-lang.org/tests/compiletest.html#auxiliary-proc-macro
https://rustc-dev-guide.rust-lang.org/tests/compiletest.html#auxiliary-proc-macro
https://rustc-dev-guide.rust-lang.org/tests/compiletest.html#revisions
https://rustc-dev-guide.rust-lang.org/tests/compiletest.html#revisions
https://rustc-dev-guide.rust-lang.org/tests/compiletest.html#compare-modes
https://rustc-dev-guide.rust-lang.org/tests/compiletest.html#compare-modes
https://rustc-dev-guide.rust-lang.org/print.html#introduction
https://rustc-dev-guide.rust-lang.org/print.html#introduction
https://rust-lang.zulipchat.com/#narrow/stream/182449-t-compiler.2Fhelp/topic/.E2.9C.94.20Is.20there.20any.20performance.20issue.20for.20MacOS.3F
https://rust-lang.zulipchat.com/#narrow/stream/182449-t-compiler.2Fhelp/topic/.E2.9C.94.20Is.20there.20any.20performance.20issue.20for.20MacOS.3F
https://rust-lang.zulipchat.com/#narrow/stream/182449-t-compiler.2Fhelp/topic/.E2.9C.94.20Is.20there.20any.20performance.20issue.20for.20MacOS.3F
https://rust-lang.zulipchat.com/#narrow/stream/182449-t-compiler.2Fhelp/topic/.E2.9C.94.20Is.20there.20any.20performance.20issue.20for.20MacOS.3F
https://rustc-dev-guide.rust-lang.org/tests/headers.html
https://rustc-dev-guide.rust-lang.org/tests/headers.html
https://rustc-dev-guide.rust-lang.org/tests/adding.html
https://rustc-dev-guide.rust-lang.org/tests/adding.html
https://rustc-dev-guide.rust-lang.org/tests/running.html
https://rustc-dev-guide.rust-lang.org/tests/running.html
https://rustc-dev-guide.rust-lang.org/tests/running.html
https://rustc-dev-guide.rust-lang.org/tests/running.html

Compiletest itself tries to avoid running tests when the artifacts that are involved (mainly

the compiler) haven't changed. You can use x test --test-args --force-rerun to

rerun a test even when none of the inputs have changed.

Test suites

All of the tests are in the tests directory. The tests are organized into "suites", with each

suite in a separate subdirectory. Each test suite behaves a little differently, with different

compiler behavior and different checks for correctness. For example, the

tests/incremental directory contains tests for incremental compilation. The various

suites are defined in src/tools/compiletest/src/common.rs in the pub enum Mode

declaration.

The following test suites are available, with links for more information:

• ui — tests that check the stdout/stderr from the compilation and/or running the

resulting executable

• ui-fulldeps — ui tests which require a linkable build of rustc (such as using

extern crate rustc_span; or used as a plugin)

• pretty — tests for pretty printing

• incremental — tests incremental compilation behavior

• debuginfo — tests for debuginfo generation running debuggers

• codegen — tests for code generation

• codegen-units — tests for codegen unit partitioning

• assembly — verifies assembly output

• mir-opt — tests for MIR generation

• run-make — general purpose tests using a Makefile

• run-make-fulldeps — run-make tests which require a linkable build of rustc , or

the rust demangler

• run-pass-valgrind — tests run with Valgrind

• Rustdoc tests:

◦ rustdoc — tests for rustdoc, making sure that the generated files contain the

expected documentation.

◦ rustdoc-gui — tests for rustdoc's GUI using a web browser.

◦ rustdoc-js — tests to ensure the rustdoc search is working as expected.

◦ rustdoc-js-std — tests to ensure the rustdoc search is working as expected

(run specifically on the std docs).

◦ rustdoc-json — tests on the JSON output of rustdoc.

◦ rustdoc-ui — tests on the terminal output of rustdoc.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

55 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#test-suites
https://rustc-dev-guide.rust-lang.org/print.html#test-suites
https://github.com/rust-lang/rust/blob/master/tests
https://github.com/rust-lang/rust/blob/master/tests
https://github.com/rust-lang/rust/blob/master/tests
https://github.com/rust-lang/rust/tree/master/tests/incremental
https://github.com/rust-lang/rust/tree/master/tests/incremental
https://github.com/rust-lang/rust/tree/master/tests/incremental
https://github.com/rust-lang/rust/tree/master/src/tools/compiletest/src/common.rs
https://github.com/rust-lang/rust/tree/master/src/tools/compiletest/src/common.rs
https://github.com/rust-lang/rust/tree/master/src/tools/compiletest/src/common.rs
https://rustc-dev-guide.rust-lang.org/tests/ui.html
https://rustc-dev-guide.rust-lang.org/tests/ui.html
https://rustc-dev-guide.rust-lang.org/tests/ui.html
https://rustc-dev-guide.rust-lang.org/tests/compiletest.html#pretty-printer-tests
https://rustc-dev-guide.rust-lang.org/tests/compiletest.html#pretty-printer-tests
https://rustc-dev-guide.rust-lang.org/tests/compiletest.html#pretty-printer-tests
https://rustc-dev-guide.rust-lang.org/tests/compiletest.html#incremental-tests
https://rustc-dev-guide.rust-lang.org/tests/compiletest.html#incremental-tests
https://rustc-dev-guide.rust-lang.org/tests/compiletest.html#incremental-tests
https://rustc-dev-guide.rust-lang.org/tests/compiletest.html#debuginfo-tests
https://rustc-dev-guide.rust-lang.org/tests/compiletest.html#debuginfo-tests
https://rustc-dev-guide.rust-lang.org/tests/compiletest.html#debuginfo-tests
https://rustc-dev-guide.rust-lang.org/tests/compiletest.html#codegen-tests
https://rustc-dev-guide.rust-lang.org/tests/compiletest.html#codegen-tests
https://rustc-dev-guide.rust-lang.org/tests/compiletest.html#codegen-tests
https://rustc-dev-guide.rust-lang.org/tests/compiletest.html#codegen-units-tests
https://rustc-dev-guide.rust-lang.org/tests/compiletest.html#codegen-units-tests
https://rustc-dev-guide.rust-lang.org/tests/compiletest.html#codegen-units-tests
https://rustc-dev-guide.rust-lang.org/tests/compiletest.html#assembly-tests
https://rustc-dev-guide.rust-lang.org/tests/compiletest.html#assembly-tests
https://rustc-dev-guide.rust-lang.org/tests/compiletest.html#assembly-tests
https://rustc-dev-guide.rust-lang.org/tests/compiletest.html#mir-opt-tests
https://rustc-dev-guide.rust-lang.org/tests/compiletest.html#mir-opt-tests
https://rustc-dev-guide.rust-lang.org/tests/compiletest.html#mir-opt-tests
https://rustc-dev-guide.rust-lang.org/tests/compiletest.html#run-make-tests
https://rustc-dev-guide.rust-lang.org/tests/compiletest.html#run-make-tests
https://rustc-dev-guide.rust-lang.org/tests/compiletest.html#run-make-tests
https://rustc-dev-guide.rust-lang.org/tests/compiletest.html#valgrind-tests
https://rustc-dev-guide.rust-lang.org/tests/compiletest.html#valgrind-tests
https://rustc-dev-guide.rust-lang.org/tests/compiletest.html#valgrind-tests
https://rustc-dev-guide.rust-lang.org/rustdoc.html#tests
https://rustc-dev-guide.rust-lang.org/rustdoc.html#tests

Pretty-printer tests

The tests in tests/pretty exercise the "pretty-printing" functionality of rustc . The -Z

unpretty CLI option for rustc causes it to translate the input source into various

different formats, such as the Rust source after macro expansion.

The pretty-printer tests have several header commands described below. These

commands can significantly change the behavior of the test, but the default behavior

without any commands is to:

1. Run rustc -Zunpretty=normal on the source file

2. Run rustc -Zunpretty=normal on the output of the previous step

3. The output of the previous two steps should be the same.

4. Run rustc -Zno-codegen on the output to make sure that it can type check (this is

similar to running cargo check)

If any of the commands above fail, then the test fails.

The header commands for pretty-printing tests are:

• pretty-mode specifies the mode pretty-print tests should run in (that is, the

argument to -Zunpretty). The default is normal if not specified.

• pretty-compare-only causes a pretty test to only compare the pretty-printed

output (stopping after step 3 from above). It will not try to compile the expanded

output to type check it. This is needed for a pretty-mode that does not expand to

valid Rust, or for other situations where the expanded output cannot be compiled.

• pretty-expanded allows a pretty test to also check that the expanded output can

be type checked. That is, after the steps above, it does two more steps:

5. Run rustc -Zunpretty=expanded on the original source

6. Run rustc -Zno-codegen on the expanded output to make sure that it

can type check

This is needed because not all code can be compiled after being expanded. Pretty

tests should specify this if they can. An example where this cannot be used is if the

test includes println! . That macro expands to reference private internal functions

of the standard library that cannot be called directly without the fmt_internals

feature gate.

More history about this may be found in #23616.

• pp-exact is used to ensure a pretty-print test results in specific output. If specified

without a value, then it means the pretty-print output should match the original

source. If specified with a value, as in // pp-exact:foo.pp , it will ensure that the

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

56 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#pretty-printer-tests
https://rustc-dev-guide.rust-lang.org/print.html#pretty-printer-tests
https://github.com/rust-lang/rust/tree/master/tests/pretty
https://github.com/rust-lang/rust/tree/master/tests/pretty
https://github.com/rust-lang/rust/tree/master/tests/pretty
https://rustc-dev-guide.rust-lang.org/tests/headers.html
https://rustc-dev-guide.rust-lang.org/tests/headers.html
https://github.com/rust-lang/rust/issues/23616#issuecomment-484999901
https://github.com/rust-lang/rust/issues/23616#issuecomment-484999901

pretty-printed output matches the contents of the given file. Otherwise, if pp-exact

is not specified, then the pretty-printed output will be pretty-printed one more time,

and the output of the two pretty-printing rounds will be compared to ensure that

the pretty-printed output converges to a steady state.

Incremental tests

The tests in tests/incremental exercise incremental compilation. They use revision

headers to tell compiletest to run the compiler in a series of steps. Compiletest starts with

an empty directory with the -C incremental flag, and then runs the compiler for each

revision, reusing the incremental results from previous steps. The revisions should start

with:

• rpass — the test should compile and run successfully

• rfail — the test should compile successfully, but the executable should fail to run

• cfail — the test should fail to compile

To make the revisions unique, you should add a suffix like rpass1 and rpass2 .

To simulate changing the source, compiletest also passes a --cfg flag with the current

revision name. For example, this will run twice, simulating changing a function:

cfail tests support the forbid-output header to specify that a certain substring must

not appear anywhere in the compiler output. This can be useful to ensure certain errors

do not appear, but this can be fragile as error messages change over time, and a test may

no longer be checking the right thing but will still pass.

cfail tests support the should-ice header to specify that a test should cause an

Internal Compiler Error (ICE). This is a highly specialized header to check that the

incremental cache continues to work after an ICE.

// revisions: rpass1 rpass2

#[cfg(rpass1)]
fn foo() {

println!("one");
}

#[cfg(rpass2)]
fn foo() {

println!("two");
}

fn main() { foo(); }

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

57 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#incremental-tests
https://rustc-dev-guide.rust-lang.org/print.html#incremental-tests
https://github.com/rust-lang/rust/tree/master/tests/incremental
https://github.com/rust-lang/rust/tree/master/tests/incremental
https://github.com/rust-lang/rust/tree/master/tests/incremental
https://rustc-dev-guide.rust-lang.org/tests/compiletest.html#revisions
https://rustc-dev-guide.rust-lang.org/tests/compiletest.html#revisions
https://rustc-dev-guide.rust-lang.org/tests/compiletest.html#revisions
https://rustc-dev-guide.rust-lang.org/tests/compiletest.html#revisions

Debuginfo tests

The tests in tests/debuginfo test debuginfo generation. They build a program, launch a

debugger, and issue commands to the debugger. A single test can work with cdb, gdb,

and lldb.

Most tests should have the // compile-flags: -g header or something similar to

generate the appropriate debuginfo.

To set a breakpoint on a line, add a // #break comment on the line.

The debuginfo tests consist of a series of debugger commands along with "check" lines

which specify output that is expected from the debugger.

The commands are comments of the form // $DEBUGGER-command:$COMMAND where

$DEBUGGER is the debugger being used and $COMMAND is the debugger command to

execute. The debugger values can be:

• cdb

• gdb

• gdbg — GDB without Rust support (versions older than 7.11)

• gdbr — GDB with Rust support

• lldb

• lldbg — LLDB without Rust support

• lldbr — LLDB with Rust support (this no longer exists)

The command to check the output are of the form // $DEBUGGER-check:$OUTPUT where

$OUTPUT is the output to expect.

For example, the following will build the test, start the debugger, set a breakpoint, launch

the program, inspect a value, and check what the debugger prints:

The following header commands are available to disable a test based on the debugger

currently being used:

// compile-flags: -g

// lldb-command: run
// lldb-command: print foo
// lldb-check: $0 = 123

fn main() {
let foo = 123;

 b(); // #break
}

fn b() {}

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

58 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#debuginfo-tests
https://rustc-dev-guide.rust-lang.org/print.html#debuginfo-tests
https://github.com/rust-lang/rust/tree/master/tests/debuginfo
https://github.com/rust-lang/rust/tree/master/tests/debuginfo
https://github.com/rust-lang/rust/tree/master/tests/debuginfo
https://rustc-dev-guide.rust-lang.org/tests/headers.html
https://rustc-dev-guide.rust-lang.org/tests/headers.html

• min-cdb-version: 10.0.18317.1001 — ignores the test if the version of cdb is

below the given version

• min-gdb-version: 8.2 — ignores the test if the version of gdb is below the given

version

• ignore-gdb-version: 9.2 — ignores the test if the version of gdb is equal to the

given version

• ignore-gdb-version: 7.11.90 - 8.0.9 — ignores the test if the version of gdb is

in a range (inclusive)

• min-lldb-version: 310 — ignores the test if the version of lldb is below the given

version

• rust-lldb — ignores the test if lldb is not contain the Rust plugin. NOTE: The "Rust"

version of LLDB doesn't exist anymore, so this will always be ignored. This should

probably be removed.

Codegen tests

The tests in tests/codegen test LLVM code generation. They compile the test with the

--emit=llvm-ir flag to emit LLVM IR. They then run the LLVM FileCheck tool. The test is

annotated with various // CHECK comments to check the generated code. See the

FileCheck documentation for a tutorial and more information.

See also the assembly tests for a similar set of tests.

Assembly tests

The tests in tests/assembly test LLVM assembly output. They compile the test with the

--emit=asm flag to emit a .s file with the assembly output. They then run the LLVM

FileCheck tool.

Each test should be annotated with the // assembly-output: header with a value of

either emit-asm or ptx-linker to indicate the type of assembly output.

Then, they should be annotated with various // CHECK comments to check the assembly

output. See the FileCheck documentation for a tutorial and more information.

See also the codegen tests for a similar set of tests.

Codegen-units tests

The tests in tests/codegen-units test the monomorphization collector and CGU

partitioning.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

59 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#codegen-tests
https://rustc-dev-guide.rust-lang.org/print.html#codegen-tests
https://github.com/rust-lang/rust/tree/master/tests/codegen
https://github.com/rust-lang/rust/tree/master/tests/codegen
https://github.com/rust-lang/rust/tree/master/tests/codegen
https://llvm.org/docs/CommandGuide/FileCheck.html
https://llvm.org/docs/CommandGuide/FileCheck.html
https://rustc-dev-guide.rust-lang.org/tests/compiletest.html#assembly-tests
https://rustc-dev-guide.rust-lang.org/tests/compiletest.html#assembly-tests
https://rustc-dev-guide.rust-lang.org/print.html#assembly-tests
https://rustc-dev-guide.rust-lang.org/print.html#assembly-tests
https://github.com/rust-lang/rust/tree/master/tests/assembly
https://github.com/rust-lang/rust/tree/master/tests/assembly
https://github.com/rust-lang/rust/tree/master/tests/assembly
https://llvm.org/docs/CommandGuide/FileCheck.html
https://llvm.org/docs/CommandGuide/FileCheck.html
https://rustc-dev-guide.rust-lang.org/tests/compiletest.html#codegen-tests
https://rustc-dev-guide.rust-lang.org/tests/compiletest.html#codegen-tests
https://rustc-dev-guide.rust-lang.org/print.html#codegen-units-tests
https://rustc-dev-guide.rust-lang.org/print.html#codegen-units-tests
https://github.com/rust-lang/rust/tree/master/tests/codegen-units
https://github.com/rust-lang/rust/tree/master/tests/codegen-units
https://github.com/rust-lang/rust/tree/master/tests/codegen-units
https://rustc-dev-guide.rust-lang.org/backend/monomorph.html
https://rustc-dev-guide.rust-lang.org/backend/monomorph.html

These tests work by running rustc with a flag to print the result of the

monomorphization collection pass, and then special annotations in the file are used to

compare against that.

Each test should be annotated with the // compile-flags:-Zprint-mono-items=VAL

header with the appropriate VAL to instruct rustc to print the monomorphization

information.

Then, the test should be annotated with comments of the form //~ MONO_ITEM name

where name is the monomorphized string printed by rustc like fn <u32 as Trait>::foo .

To check for CGU partitioning, a comment of the form //~ MONO_ITEM name @@ cgu

where cgu is a space separated list of the CGU names and the linkage information in

brackets. For example: //~ MONO_ITEM static function::FOO @@ statics[Internal]

Mir-opt tests

The tests in tests/mir-opt check parts of the generated MIR to make sure it is

generated correctly and is doing the expected optimizations. Check out the MIR

Optimizations chapter for more.

Compiletest will build the test with several flags to dump the MIR output and set a

baseline for optimizations:

• -Copt-level=1

• -Zdump-mir=all

• -Zmir-opt-level=4

• -Zvalidate-mir

• -Zdump-mir-exclude-pass-number

The test should be annotated with // EMIT_MIR comments that specify files that will

contain the expected MIR output. You can use x test --bless to create the initial

expected files.

There are several forms the EMIT_MIR comment can take:

• // EMIT_MIR $MIR_PATH.mir — This will check that the given filename matches the

exact output from the MIR dump. For example, my_test.main.SimplifyCfg-

elaborate-drops.after.mir will load that file from the test directory, and compare

it against the dump from rustc.

Checking the "after" file (which is after optimization) is useful if you are interested in

the final state after an optimization. Some rare cases may want to use the "before"

file for completeness.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

60 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#mir-opt-tests
https://rustc-dev-guide.rust-lang.org/print.html#mir-opt-tests
https://github.com/rust-lang/rust/tree/master/tests/mir-opt
https://github.com/rust-lang/rust/tree/master/tests/mir-opt
https://github.com/rust-lang/rust/tree/master/tests/mir-opt
https://rustc-dev-guide.rust-lang.org/mir/optimizations.html
https://rustc-dev-guide.rust-lang.org/mir/optimizations.html
https://rustc-dev-guide.rust-lang.org/mir/optimizations.html
https://rustc-dev-guide.rust-lang.org/mir/optimizations.html

• // EMIT_MIR $MIR_PATH.diff — where $MIR_PATH is the filename of the MIR

dump, such as my_test_name.my_function.EarlyOtherwiseBranch . Compiletest will

diff the .before.mir and .after.mir files, and compare the diff output to the

expected .diff file from the EMIT_MIR comment.

This is useful if you want to see how an optimization changes the MIR.

• // EMIT_MIR $MIR_PATH.dot or $MIR_PATH.html — These are special cases for

other MIR outputs (via -Z dump-mir-graphviz and -Z dump-mir-spanview) that will

check that the output matches the given file.

By default 32 bit and 64 bit targets use the same dump files, which can be problematic in

the presence of pointers in constants or other bit width dependent things. In that case

you can add // EMIT_MIR_FOR_EACH_BIT_WIDTH to your test, causing separate files to be

generated for 32bit and 64bit systems.

run-make tests

The tests in tests/run-make are general-purpose tests using Makefiles which provide the

ultimate in flexibility. These should be used as a last resort. If possible, you should use

one of the other test suites. If there is some minor feature missing which you need for

your test, consider extending compiletest to add a header command for what you need.

However, if running a bunch of commands is really what you need, run-make is here to

the rescue!

Each test should be in a separate directory with a Makefile indicating the commands to

run. There is a tools.mk Makefile which you can include which provides a bunch of

utilities to make it easier to run commands and compare outputs. Take a look at some of

the other tests for some examples on how to get started.

Valgrind tests

The tests in tests/run-pass-valgrind are for use with Valgrind. These are currently

vestigial, as Valgrind is no longer used in CI. These may be removed in the future.

Building auxiliary crates

It is common that some tests require additional auxiliary crates to be compiled. There are

two headers to assist with that:

• aux-build

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

61 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#run-make-tests
https://rustc-dev-guide.rust-lang.org/print.html#run-make-tests
https://rustc-dev-guide.rust-lang.org/print.html#run-make-tests
https://rustc-dev-guide.rust-lang.org/print.html#run-make-tests
https://github.com/rust-lang/rust/tree/master/tests/run-make
https://github.com/rust-lang/rust/tree/master/tests/run-make
https://github.com/rust-lang/rust/tree/master/tests/run-make
https://github.com/rust-lang/rust/blob/master/tests/run-make/tools.mk
https://github.com/rust-lang/rust/blob/master/tests/run-make/tools.mk
https://github.com/rust-lang/rust/blob/master/tests/run-make/tools.mk
https://rustc-dev-guide.rust-lang.org/print.html#valgrind-tests
https://rustc-dev-guide.rust-lang.org/print.html#valgrind-tests
https://github.com/rust-lang/rust/tree/master/tests/run-pass-valgrind
https://github.com/rust-lang/rust/tree/master/tests/run-pass-valgrind
https://github.com/rust-lang/rust/tree/master/tests/run-pass-valgrind
https://valgrind.org/
https://valgrind.org/
https://rustc-dev-guide.rust-lang.org/print.html#building-auxiliary-crates
https://rustc-dev-guide.rust-lang.org/print.html#building-auxiliary-crates
https://rustc-dev-guide.rust-lang.org/tests/headers.html
https://rustc-dev-guide.rust-lang.org/tests/headers.html

• aux-crate

aux-build will build a separate crate from the named source file. The source file should

be in a directory called auxiliary beside the test file.

The aux crate will be built as a dylib if possible (unless on a platform that does not

support them, or the no-prefer-dynamic header is specified in the aux file). The -L flag

is used to find the extern crates.

aux-crate is very similar to aux-build ; however, it uses the --extern flag to link to the

extern crate. That allows you to specify the additional syntax of the --extern flag, such

as renaming a dependency. For example, // aux-crate:foo=bar.rs will compile

auxiliary/bar.rs and make it available under then name foo within the test. This is

similar to how Cargo does dependency renaming.

Auxiliary proc-macro

If you want a proc-macro dependency, then there currently is some ceremony needed.

Place the proc-macro itself in a file like auxiliary/my-proc-macro.rs with the following

structure:

The force-host is needed because proc-macros are loaded in the host compiler, and

no-prefer-dynamic is needed to tell compiletest to not use prefer-dynamic which is not

compatible with proc-macros. The #![crate_type] attribute is needed to specify the

correct crate-type.

Then in your test, you can build with aux-build :

// aux-build: my-helper.rs

extern crate my_helper;
// ... You can use my_helper.

// force-host
// no-prefer-dynamic

#![crate_type = "proc-macro"]

extern crate proc_macro;
use proc_macro::TokenStream;

#[proc_macro]
pub fn foo(input: TokenStream) -> TokenStream {

"".parse().unwrap()
}

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

62 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#auxiliary-proc-macro
https://rustc-dev-guide.rust-lang.org/print.html#auxiliary-proc-macro

Revisions

Revisions allow a single test file to be used for multiple tests. This is done by adding a

special header at the top of the file:

This will result in the test being compiled (and tested) three times, once with --cfg foo ,

once with --cfg bar , and once with --cfg baz . You can therefore use #[cfg(foo)] etc

within the test to tweak each of these results.

You can also customize headers and expected error messages to a particular revision. To

do this, add [foo] (or bar , baz , etc) after the // comment, like so:

Note that not all headers have meaning when customized to a revision. For example, the

ignore-test header (and all "ignore" headers) currently only apply to the test as a

whole, not to particular revisions. The only headers that are intended to really work when

customized to a revision are error patterns and compiler flags.

Following is classes of tests that support revisions:

• UI

• assembly

• codegen

• debuginfo

• rustdoc UI tests

• incremental (these are special in that they inherently cannot be run in parallel)

// aux-build: my-proc-macro.rs

extern crate my_proc_macro;

fn main() {
 my_proc_macro::foo!();
}

// revisions: foo bar baz

// A flag to pass in only for cfg `foo`:
//[foo]compile-flags: -Z verbose

#[cfg(foo)]
fn test_foo() {

let x: usize = 32_u32; //[foo]~ ERROR mismatched types
}

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

63 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#revisions
https://rustc-dev-guide.rust-lang.org/print.html#revisions

Compare modes

Compiletest can be run in different modes, called compare modes, which can be used to

compare the behavior of all tests with different compiler flags enabled. This can help

highlight what differences might appear with certain flags, and check for any problems

that might arise.

To run the tests in a different mode, you need to pass the --compare-mode CLI flag:

The possible compare modes are:

• polonius — Runs with Polonius with -Zpolonius .

• chalk — Runs with Chalk with -Zchalk .

• split-dwarf — Runs with unpacked split-DWARF with -Csplit-

debuginfo=unpacked .

• split-dwarf-single — Runs with packed split-DWARF with -Csplit-

debuginfo=packed .

See UI compare modes for more information about how UI tests support different output

for different modes.

In CI, compare modes are only used in one Linux builder, and only with the following

settings:

• tests/debuginfo : Uses split-dwarf mode. This helps ensure that none of the

debuginfo tests are affected when enabling split-DWARF.

Note that compare modes are separate to revisions. All revisions are tested when

running ./x test tests/ui , however compare-modes must be manually run

individually via the --compare-mode flag.

./x test tests/ui --compare-mode=chalk

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

64 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#compare-modes
https://rustc-dev-guide.rust-lang.org/print.html#compare-modes
https://rustc-dev-guide.rust-lang.org/tests/ui.html#compare-modes
https://rustc-dev-guide.rust-lang.org/tests/ui.html#compare-modes
https://rustc-dev-guide.rust-lang.org/tests/compiletest.html#revisions
https://rustc-dev-guide.rust-lang.org/tests/compiletest.html#revisions

UI tests

• Introduction

• General structure of a test

• Output comparison

◦ Normalization

• Error annotations

◦ Error annotation examples

▪ Positioned on error line

▪ Positioned below error line

▪ Use same error line as defined on error annotation line above

◦ error-pattern

◦ Error levels

◦ cfg revisions

• Controlling pass/fail expectations

• Known bugs

• Test organization

• Rustfix tests

• Compare modes

UI tests are a particular test suite of compiletest.

Introduction

The tests in tests/ui are a collection of general-purpose tests which primarily focus on

validating the console output of the compiler, but can be used for many other purposes.

For example, tests can also be configured to run the resulting program to verify its

behavior.

General structure of a test

A test consists of a Rust source file located anywhere in the tests/ui directory. For

example, tests/ui/hello.rs is a basic hello-world test.

Compiletest will use rustc to compile the test, and compare the output against the

expected output which is stored in a .stdout or .stderr file located next to the test.

See Output comparison for more.

Additionally, errors and warnings should be annotated with comments within the source

file. See Error annotations for more.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

65 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#ui-tests
https://rustc-dev-guide.rust-lang.org/print.html#ui-tests
https://rustc-dev-guide.rust-lang.org/tests/ui.html#introduction
https://rustc-dev-guide.rust-lang.org/tests/ui.html#introduction
https://rustc-dev-guide.rust-lang.org/tests/ui.html#general-structure-of-a-test
https://rustc-dev-guide.rust-lang.org/tests/ui.html#general-structure-of-a-test
https://rustc-dev-guide.rust-lang.org/tests/ui.html#output-comparison
https://rustc-dev-guide.rust-lang.org/tests/ui.html#output-comparison
https://rustc-dev-guide.rust-lang.org/tests/ui.html#normalization
https://rustc-dev-guide.rust-lang.org/tests/ui.html#normalization
https://rustc-dev-guide.rust-lang.org/tests/ui.html#error-annotations
https://rustc-dev-guide.rust-lang.org/tests/ui.html#error-annotations
https://rustc-dev-guide.rust-lang.org/tests/ui.html#error-annotation-examples
https://rustc-dev-guide.rust-lang.org/tests/ui.html#error-annotation-examples
https://rustc-dev-guide.rust-lang.org/tests/ui.html#positioned-on-error-line
https://rustc-dev-guide.rust-lang.org/tests/ui.html#positioned-on-error-line
https://rustc-dev-guide.rust-lang.org/tests/ui.html#positioned-below-error-line
https://rustc-dev-guide.rust-lang.org/tests/ui.html#positioned-below-error-line
https://rustc-dev-guide.rust-lang.org/tests/ui.html#use-same-error-line-as-defined-on-error-annotation-line-above
https://rustc-dev-guide.rust-lang.org/tests/ui.html#use-same-error-line-as-defined-on-error-annotation-line-above
https://rustc-dev-guide.rust-lang.org/tests/ui.html#error-pattern
https://rustc-dev-guide.rust-lang.org/tests/ui.html#error-pattern
https://rustc-dev-guide.rust-lang.org/tests/ui.html#error-pattern
https://rustc-dev-guide.rust-lang.org/tests/ui.html#error-levels
https://rustc-dev-guide.rust-lang.org/tests/ui.html#error-levels
https://rustc-dev-guide.rust-lang.org/tests/ui.html#cfg-revisions
https://rustc-dev-guide.rust-lang.org/tests/ui.html#cfg-revisions
https://rustc-dev-guide.rust-lang.org/tests/ui.html#controlling-passfail-expectations
https://rustc-dev-guide.rust-lang.org/tests/ui.html#controlling-passfail-expectations
https://rustc-dev-guide.rust-lang.org/tests/ui.html#known-bugs
https://rustc-dev-guide.rust-lang.org/tests/ui.html#known-bugs
https://rustc-dev-guide.rust-lang.org/tests/ui.html#test-organization
https://rustc-dev-guide.rust-lang.org/tests/ui.html#test-organization
https://rustc-dev-guide.rust-lang.org/tests/ui.html#rustfix-tests
https://rustc-dev-guide.rust-lang.org/tests/ui.html#rustfix-tests
https://rustc-dev-guide.rust-lang.org/tests/ui.html#compare-modes
https://rustc-dev-guide.rust-lang.org/tests/ui.html#compare-modes
https://rustc-dev-guide.rust-lang.org/tests/compiletest.html#test-suites
https://rustc-dev-guide.rust-lang.org/tests/compiletest.html#test-suites
https://rustc-dev-guide.rust-lang.org/print.html#introduction-1
https://rustc-dev-guide.rust-lang.org/print.html#introduction-1
https://github.com/rust-lang/rust/blob/master/tests/ui
https://github.com/rust-lang/rust/blob/master/tests/ui
https://github.com/rust-lang/rust/blob/master/tests/ui
https://rustc-dev-guide.rust-lang.org/tests/ui.html#controlling-passfail-expectations
https://rustc-dev-guide.rust-lang.org/tests/ui.html#controlling-passfail-expectations
https://rustc-dev-guide.rust-lang.org/print.html#general-structure-of-a-test
https://rustc-dev-guide.rust-lang.org/print.html#general-structure-of-a-test
https://github.com/rust-lang/rust/blob/master/tests/ui/hello.rs
https://github.com/rust-lang/rust/blob/master/tests/ui/hello.rs
https://github.com/rust-lang/rust/blob/master/tests/ui/hello.rs
https://rustc-dev-guide.rust-lang.org/tests/ui.html#output-comparison
https://rustc-dev-guide.rust-lang.org/tests/ui.html#output-comparison
https://rustc-dev-guide.rust-lang.org/tests/ui.html#error-annotations
https://rustc-dev-guide.rust-lang.org/tests/ui.html#error-annotations

Headers in the form of comments at the top of the file control how the test is compiled

and what the expected behavior is.

Tests are expected to fail to compile, since most tests are testing compiler errors. You can

change that behavior with a header, see Controlling pass/fail expectations.

By default, a test is built as an executable binary. If you need a different crate type, you

can use the #![crate_type] attribute to set it as needed.

Output comparison

UI tests store the expected output from the compiler in .stderr and .stdout files next

to the test. You normally generate these files with the --bless CLI option, and then

inspect them manually to verify they contain what you expect.

The output is normalized to ignore unwanted differences, see the Normalization section.

If the file is missing, then compiletest expects the corresponding output to be empty.

There can be multiple stdout/stderr files. The general form is:

test-name . revision . compare_mode . extension

• revision is the revision name. This is not included when not using revisions.

• compare_mode is the compare mode. This will only be checked when the given

compare mode is active. If the file does not exist, then compiletest will check for a

file without the compare mode.

• extension is the kind of output being checked:

◦ stderr — compiler stderr

◦ stdout — compiler stdout

◦ run.stderr — stderr when running the test

◦ run.stdout — stdout when running the test

◦ 64bit.stderr — compiler stderr with stderr-per-bitwidth header on a 64-

bit target

◦ 32bit.stderr — compiler stderr with stderr-per-bitwidth header on a 32-

bit target

A simple example would be foo.stderr next to a foo.rs test. A more complex example

would be foo.my-revision.polonius.stderr .

There are several headers which will change how compiletest will check for output files:

• stderr-per-bitwidth — checks separate output files based on the target pointer

width. Consider using the normalize-stderr header instead (see Normalization).

• dont-check-compiler-stderr — Ignores stderr from the compiler.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

66 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/tests/headers.html
https://rustc-dev-guide.rust-lang.org/tests/headers.html
https://rustc-dev-guide.rust-lang.org/tests/ui.html#controlling-passfail-expectations
https://rustc-dev-guide.rust-lang.org/tests/ui.html#controlling-passfail-expectations
https://rustc-dev-guide.rust-lang.org/print.html#output-comparison
https://rustc-dev-guide.rust-lang.org/print.html#output-comparison
https://rustc-dev-guide.rust-lang.org/tests/ui.html#normalization
https://rustc-dev-guide.rust-lang.org/tests/ui.html#normalization
https://rustc-dev-guide.rust-lang.org/tests/ui.html#cfg-revisions
https://rustc-dev-guide.rust-lang.org/tests/ui.html#cfg-revisions
https://rustc-dev-guide.rust-lang.org/tests/ui.html#compare-modes
https://rustc-dev-guide.rust-lang.org/tests/ui.html#compare-modes
https://rustc-dev-guide.rust-lang.org/tests/headers.html
https://rustc-dev-guide.rust-lang.org/tests/headers.html
https://rustc-dev-guide.rust-lang.org/tests/ui.html#normalization
https://rustc-dev-guide.rust-lang.org/tests/ui.html#normalization

• dont-check-compiler-stdout — Ignores stdout from the compiler.

• compare-output-lines-by-subset — Checks that the output contains the contents

of the stored output files by lines opposed to checking for strict equality.

UI tests run with -Zdeduplicate-diagnostics=no flag which disables rustc's built-in

diagnostic deduplication mechanism. This means you may see some duplicate messages

in the output. This helps illuminate situations where duplicate diagnostics are being

generated.

Normalization

The compiler output is normalized to eliminate output difference between platforms,

mainly about filenames.

Compiletest makes the following replacements on the compiler output:

• The directory where the test is defined is replaced with $DIR . Example: /path/to

/rust/tests/ui/error-codes

• The directory to the standard library source is replaced with $SRC_DIR . Example:

/path/to/rust/library

• Line and column numbers for paths in $SRC_DIR are replaced with LL:COL . This

helps ensure that changes to the layout of the standard library do not cause

widespread changes to the .stderr files. Example: $SRC_DIR/alloc

/src/sync.rs:53:46

• The base directory where the test's output goes is replaced with $TEST_BUILD_DIR .

This only comes up in a few rare circumstances. Example: /path/to/rust/build

/x86_64-unknown-linux-gnu/test/ui

• Tabs are replaced with \t .

• Backslashes (\) are converted to forward slashes (/) within paths (using a

heuristic). This helps normalize differences with Windows-style paths.

• CRLF newlines are converted to LF.

• Error line annotations like //~ ERROR some message are removed.

• Various v0 and legacy symbol hashes are replaced with placeholders like [HASH] or

<SYMBOL_HASH> .

Additionally, the compiler is run with the -Z ui-testing flag which causes the compiler

itself to apply some changes to the diagnostic output to make it more suitable for UI

testing. For example, it will anonymize line numbers in the output (line numbers prefixing

each source line are replaced with LL). In extremely rare situations, this mode can be

disabled with the header command // compile-flags: -Z ui-testing=no .

Note: The line and column numbers for --> lines pointing to the test are not normalized,

and left as-is. This ensures that the compiler continues to point to the correct location,

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

67 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#normalization
https://rustc-dev-guide.rust-lang.org/print.html#normalization

and keeps the stderr files readable. Ideally all line/column information would be retained,

but small changes to the source causes large diffs, and more frequent merge conflicts

and test errors.

Sometimes these built-in normalizations are not enough. In such cases, you may provide

custom normalization rules using the header commands, e.g.

This tells the test, on 32-bit platforms, whenever the compiler writes fn() (32 bits) to

stderr, it should be normalized to read fn() ($PTR bits) instead. Similar for 64-bit. The

replacement is performed by regexes using default regex flavor provided by regex crate.

The corresponding reference file will use the normalized output to test both 32-bit and

64-bit platforms:

Please see ui/transmute/main.rs and main.stderr for a concrete usage example.

Besides normalize-stderr-32bit and -64bit , one may use any target information or

stage supported by ignore-X here as well (e.g. normalize-stderr-windows or simply

normalize-stderr-test for unconditional replacement).

Error annotations

Error annotations specify the errors that the compiler is expected to emit. They are

"attached" to the line in source where the error is located.

Although UI tests have a .stderr file which contains the entire compiler output, UI tests

require that errors are also annotated within the source. This redundancy helps avoid

mistakes since the .stderr files are usually auto-generated. It also helps to directly see

where the error spans are expected to point to by looking at one file instead of having to

compare the .stderr file with the source. Finally, they ensure that no additional

// normalize-stdout-test: "foo" -> "bar"
// normalize-stderr-32bit: "fn\(\) \(32 bits\)" -> "fn\(\) \($$PTR bits\)"
// normalize-stderr-64bit: "fn\(\) \(64 bits\)" -> "fn\(\) \($$PTR bits\)"

...
 |
 = note: source type: fn() ($PTR bits)
 = note: target type: u16 (16 bits)
...

fn main() {
 boom //~ ERROR cannot find value `boom` in this scope [E0425]
}

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

68 of 660 8/30/23, 09:47

https://github.com/rust-lang/rust/blob/master/tests/ui/transmute/main.rs
https://github.com/rust-lang/rust/blob/master/tests/ui/transmute/main.rs
https://github.com/rust-lang/rust/blob/master/tests/ui/transmute/main.rs
https://github.com/rust-lang/rust/blob/master/tests/ui/transmute/main.stderr
https://github.com/rust-lang/rust/blob/master/tests/ui/transmute/main.stderr
https://github.com/rust-lang/rust/blob/master/tests/ui/transmute/main.stderr
https://rustc-dev-guide.rust-lang.org/tests/headers.html#ignoring-tests
https://rustc-dev-guide.rust-lang.org/tests/headers.html#ignoring-tests
https://rustc-dev-guide.rust-lang.org/tests/headers.html#ignoring-tests
https://rustc-dev-guide.rust-lang.org/print.html#error-annotations
https://rustc-dev-guide.rust-lang.org/print.html#error-annotations

unexpected errors are generated.

They have several forms, but generally are a comment with the diagnostic level (such as

ERROR) and a substring of the expected error output. You don't have to write out the

entire message, just make sure to include the important part of the message to make it

self-documenting.

The error annotation needs to match with the line of the diagnostic. There are several

ways to match the message with the line (see the examples below):

• ~ : Associates the error level and message with the current line

• ~^ : Associates the error level and message with the previous error annotation line.

Each caret (^) that you add adds a line to this, so ~^^^ is three lines above the

error annotation line.

• ~| : Associates the error level and message with the same line as the previous

comment. This is more convenient than using multiple carets when there are

multiple messages associated with the same line.

The space character between //~ (or other variants) and the subsequent text is

negligible (i.e. there is no semantic difference between //~ ERROR and //~ERROR

although the former is more common in the codebase).

Error annotation examples

Here are examples of error annotations on different lines of UI test source.

Positioned on error line

Use the //~ ERROR idiom:

Positioned below error line

Use the //~^ idiom with number of carets in the string to indicate the number of lines

above. In the example below, the error line is four lines above the error annotation line

so four carets are included in the annotation.

fn main() {
let x = (1, 2, 3);
match x {

 (_a, _x @ ..) => {} //~ ERROR `_x @` is not allowed in a tuple
 _ => {}
 }
}

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

69 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#error-annotation-examples
https://rustc-dev-guide.rust-lang.org/print.html#error-annotation-examples
https://rustc-dev-guide.rust-lang.org/print.html#positioned-on-error-line
https://rustc-dev-guide.rust-lang.org/print.html#positioned-on-error-line
https://rustc-dev-guide.rust-lang.org/print.html#positioned-below-error-line
https://rustc-dev-guide.rust-lang.org/print.html#positioned-below-error-line

Use same error line as defined on error annotation line above

Use the //~| idiom to define the same error line as the error annotation line above:

error-pattern

The error-pattern header can be used for messages that don't have a specific span.

Let's think about this test:

We want to ensure this shows "index out of bounds" but we cannot use the ERROR

annotation since the error doesn't have any span. Then it's time to use the error-

pattern header:

fn main() {
let x = (1, 2, 3);
match x {

 (_a, _x @ ..) => {} // <- the error is on this line
 _ => {}
 }
}
//~^^^^ ERROR `_x @` is not allowed in a tuple

struct Binder(i32, i32, i32);

fn main() {
let x = Binder(1, 2, 3);
match x {

 Binder(_a, _x @ ..) => {} // <- the error is on this line
 _ => {}
 }
}
//~^^^^ ERROR `_x @` is not allowed in a tuple struct
//~| ERROR this pattern has 1 field, but the corresponding tuple struct has 3
fields [E0023]

fn main() {
let a: *const [_] = &[1, 2, 3];
unsafe {

let _b = (*a)[3];
 }
}

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

70 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#use-same-error-line-as-defined-on-error-annotation-line-above
https://rustc-dev-guide.rust-lang.org/print.html#use-same-error-line-as-defined-on-error-annotation-line-above
https://rustc-dev-guide.rust-lang.org/print.html#error-pattern
https://rustc-dev-guide.rust-lang.org/print.html#error-pattern
https://rustc-dev-guide.rust-lang.org/print.html#error-pattern
https://rustc-dev-guide.rust-lang.org/tests/headers.html
https://rustc-dev-guide.rust-lang.org/tests/headers.html

But for strict testing, try to use the ERROR annotation as much as possible.

Error levels

The error levels that you can have are:

1. ERROR

2. WARN or WARNING

3. NOTE

4. HELP and SUGGESTION

You are allowed to not include a level, but you should include it at least for the primary

message.

The SUGGESTION level is used for specifying what the expected replacement text should

be for a diagnostic suggestion.

UI tests use the -A unused flag by default to ignore all unused warnings, as unused

warnings are usually not the focus of a test. However, simple code samples often have

unused warnings. If the test is specifically testing an unused warning, just add the

appropriate #![warn(unused)] attribute as needed.

cfg revisions

When using revisions, different messages can be conditionally checked based on the

current revision. This is done by placing the revision cfg name in brackets like this:

// error-pattern: index out of bounds
fn main() {

let a: *const [_] = &[1, 2, 3];
unsafe {

let _b = (*a)[3];
 }
}

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

71 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#error-levels
https://rustc-dev-guide.rust-lang.org/print.html#error-levels
https://rustc-dev-guide.rust-lang.org/print.html#cfg-revisions
https://rustc-dev-guide.rust-lang.org/print.html#cfg-revisions
https://rustc-dev-guide.rust-lang.org/tests/compiletest.html#revisions
https://rustc-dev-guide.rust-lang.org/tests/compiletest.html#revisions

In this example, the second error message is only emitted in the mir revision. The thir

revision only emits the first error.

If the cfg causes the compiler to emit different output, then a test can have multiple

.stderr files for the different outputs. In the example above, there would be a

.mir.stderr and .thir.stderr file with the different outputs of the different revisions.

Controlling pass/fail expectations

By default, a UI test is expected to generate a compile error because most of the tests

are checking for invalid input and error diagnostics. However, you can also make UI tests

where compilation is expected to succeed, and you can even run the resulting program.

Just add one of the following header commands:

• Pass headers:

◦ // check-pass — compilation should succeed but skip codegen (which is

expensive and isn't supposed to fail in most cases).

◦ // build-pass — compilation and linking should succeed but do not run the

resulting binary.

◦ // run-pass — compilation should succeed and running the resulting binary

should also succeed.

• Fail headers:

◦ // check-fail — compilation should fail (the codegen phase is skipped). This

is the default for UI tests.

◦ // build-fail — compilation should fail during the codegen phase. This will

run rustc twice, once to verify that it compiles successfully without the

codegen phase, then a second time the full compile should fail.

◦ // run-fail — compilation should succeed, but running the resulting binary

should fail.

For run-pass and run-fail tests, by default the output of the program itself is not

// edition:2018
// revisions: mir thir
// [thir]compile-flags: -Z thir-unsafeck

async unsafe fn f() {}

async fn g() {
 f(); //~ ERROR call to unsafe function is unsafe
}

fn main() {
 f(); //[mir]~ ERROR call to unsafe function is unsafe
}

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

72 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#controlling-passfail-expectations
https://rustc-dev-guide.rust-lang.org/print.html#controlling-passfail-expectations
https://rustc-dev-guide.rust-lang.org/tests/headers.html
https://rustc-dev-guide.rust-lang.org/tests/headers.html

checked. If you want to check the output of running the program, include the check-run-

results header. This will check for a .run.stderr and .run.stdout files to compare

against the actual output of the program.

Tests with the *-pass headers can be overridden with the --pass command-line option:

The --pass option only affects UI tests. Using --pass check can run the UI test suite

much faster (roughly twice as fast on my system), though obviously not exercising as

much.

The ignore-pass header can be used to ignore the --pass CLI flag if the test won't work

properly with that override.

Known bugs

The known-bug header may be used for tests that demonstrate a known bug that has not

yet been fixed. Adding tests for known bugs is helpful for several reasons, including:

1. Maintaining a functional test that can be conveniently reused when the bug is fixed.

2. Providing a sentinel that will fail if the bug is incidentally fixed. This can alert the

developer so they know that the associated issue has been fixed and can possibly

be closed.

Do not include error annotations in a test with known-bug . The test should still include

other normal headers and stdout/stderr files.

Test organization

When deciding where to place a test file, please try to find a subdirectory that best

matches what you are trying to exercise. Do your best to keep things organized.

Admittedly it can be difficult as some tests can overlap different categories, and the

existing layout may not fit well.

For regression tests – basically, some random snippet of code that came in from the

internet – we often name the test after the issue plus a short description. Ideally, the test

should be added to a directory that helps identify what piece of code is being tested here

(e.g., tests/ui/borrowck/issue-54597-reject-move-out-of-borrow-via-pat.rs)

When writing a new feature, create a subdirectory to store your tests. For example, if

./x test tests/ui --pass check

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

73 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#known-bugs
https://rustc-dev-guide.rust-lang.org/print.html#known-bugs
https://rustc-dev-guide.rust-lang.org/tests/ui.html#error-annotations
https://rustc-dev-guide.rust-lang.org/tests/ui.html#error-annotations
https://rustc-dev-guide.rust-lang.org/print.html#test-organization
https://rustc-dev-guide.rust-lang.org/print.html#test-organization

you are implementing RFC 1234 ("Widgets"), then it might make sense to put the tests in a

directory like tests/ui/rfc1234-widgets/ .

In other cases, there may already be a suitable directory. (The proper directory structure

to use is actually an area of active debate.)

Over time, the tests/ui directory has grown very fast. There is a check in tidy that will

ensure none of the subdirectories has more than 1000 entries. Having too many files

causes problems because it isn't editor/IDE friendly and the GitHub UI won't show more

than 1000 entries. However, since tests/ui (UI test root directory) and tests/ui

/issues directories have more than 1000 entries, we set a different limit for those

directories. So, please avoid putting a new test there and try to find a more relevant

place.

For example, if your test is related to closures, you should put it in tests/ui/closures . If

you're not sure where is the best place, it's still okay to add to tests/ui/issues/ . When

you reach the limit, you could increase it by tweaking here.

Rustfix tests

UI tests can validate that diagnostic suggestions apply correctly and that the resulting

changes compile correctly. This can be done with the run-rustfix header:

Rustfix tests should have a file with the .fixed extension which contains the source file

after the suggestion has been applied.

When the test is run, compiletest first checks that the correct lint/warning is generated.

Then, it applies the suggestion and compares against .fixed (they must match). Finally,

the fixed source is compiled, and this compilation is required to succeed.

Usually when creating a rustfix test you will generate the .fixed file automatically with

the x test --bless option.

The run-rustfix header will cause all suggestions to be applied, even if they are not

MachineApplicable . If this is a problem, then you can instead use the rustfix-only-

machine-applicable header. This should be used if there is a mixture of different

// run-rustfix
// check-pass
#![crate_type = "lib"]

pub struct not_camel_case {}
//~^ WARN `not_camel_case` should have an upper camel case name
//~| HELP convert the identifier to upper camel case
//~| SUGGESTION NotCamelCase

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

74 of 660 8/30/23, 09:47

https://github.com/rust-lang/rust/blob/master/tests/ui
https://github.com/rust-lang/rust/blob/master/tests/ui
https://github.com/rust-lang/rust/blob/master/tests/ui
https://rustc-dev-guide.rust-lang.org/tests/intro.html#tidy
https://rustc-dev-guide.rust-lang.org/tests/intro.html#tidy
https://github.com/rust-lang/rust/blob/master/src/tools/tidy/src/ui_tests.rs
https://github.com/rust-lang/rust/blob/master/src/tools/tidy/src/ui_tests.rs
https://rustc-dev-guide.rust-lang.org/print.html#rustfix-tests
https://rustc-dev-guide.rust-lang.org/print.html#rustfix-tests
https://rustc-dev-guide.rust-lang.org/diagnostics.html#suggestions
https://rustc-dev-guide.rust-lang.org/diagnostics.html#suggestions
https://rustc-dev-guide.rust-lang.org/diagnostics.html#suggestions

suggestion levels, and some of the non-machine-applicable ones do not apply cleanly.

Compare modes

Compare modes can be used to run all tests with different flags from what they are

normally compiled with. In some cases, this might result in different output from the

compiler. To support this, different output files can be saved which contain the output

based on the compare mode.

For example, when using the Polonius mode, a test foo.rs will first look for expected

output in foo.polonius.stderr , falling back to the usual foo.stderr if not found. This is

useful as different modes can sometimes result in different diagnostics and behavior.

This can help track which tests have differences between the modes, and to visually

inspect those diagnostic differences.

If in the rare case you encounter a test that has different behavior, you can run

something like the following to generate the alternate stderr file:

Currently none of the compare modes are checked in CI for UI tests.

./x test tests/ui --compare-mode=polonius --bless

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

75 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#compare-modes-1
https://rustc-dev-guide.rust-lang.org/print.html#compare-modes-1
https://rustc-dev-guide.rust-lang.org/tests/compiletest.html#compare-modes
https://rustc-dev-guide.rust-lang.org/tests/compiletest.html#compare-modes

Test headers

• Header commands

◦ Ignoring tests

◦ Environment variable headers

◦ Miscellaneous headers

• Substitutions

• Adding a new header command

◦ Adding a new header command parser

◦ Implementing the behavior change

Header commands are special comments that tell compiletest how to build and interpret

a test. They must appear before the Rust source in the test. They may also appear in

Makefiles for run-make tests.

They are normally put after the short comment that explains the point of this test. For

example, this test uses the // compile-flags command to specify a custom flag to give

to rustc when the test is compiled:

Header commands can be standalone (like // run-pass) or take a value (like //

compile-flags: -C overflow-checks=off).

Header commands

The following is a list of header commands. Commands are linked to sections that

describe the command in more detail if available. This list may not be exhaustive. Header

commands can generally be found by browsing the TestProps structure found in

header.rs from the compiletest source.

• Controlling pass/fail expectations

◦ check-pass — building (no codegen) should pass

◦ build-pass — building should pass

◦ run-pass — running the test should pass

◦ check-fail — building (no codegen) should fail (the default if no header)

// Test the behavior of `0 - 1` when overflow checks are disabled.

// compile-flags: -C overflow-checks=off

fn main() {
let x = 0 - 1;

 ...
}

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

76 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#test-headers
https://rustc-dev-guide.rust-lang.org/print.html#test-headers
https://rustc-dev-guide.rust-lang.org/tests/headers.html#header-commands
https://rustc-dev-guide.rust-lang.org/tests/headers.html#header-commands
https://rustc-dev-guide.rust-lang.org/tests/headers.html#ignoring-tests
https://rustc-dev-guide.rust-lang.org/tests/headers.html#ignoring-tests
https://rustc-dev-guide.rust-lang.org/tests/headers.html#environment-variable-headers
https://rustc-dev-guide.rust-lang.org/tests/headers.html#environment-variable-headers
https://rustc-dev-guide.rust-lang.org/tests/headers.html#miscellaneous-headers
https://rustc-dev-guide.rust-lang.org/tests/headers.html#miscellaneous-headers
https://rustc-dev-guide.rust-lang.org/tests/headers.html#substitutions
https://rustc-dev-guide.rust-lang.org/tests/headers.html#substitutions
https://rustc-dev-guide.rust-lang.org/tests/headers.html#adding-a-new-header-command
https://rustc-dev-guide.rust-lang.org/tests/headers.html#adding-a-new-header-command
https://rustc-dev-guide.rust-lang.org/tests/headers.html#adding-a-new-header-command-parser
https://rustc-dev-guide.rust-lang.org/tests/headers.html#adding-a-new-header-command-parser
https://rustc-dev-guide.rust-lang.org/tests/headers.html#implementing-the-behavior-change
https://rustc-dev-guide.rust-lang.org/tests/headers.html#implementing-the-behavior-change
https://rustc-dev-guide.rust-lang.org/tests/compiletest.html#run-make-tests
https://rustc-dev-guide.rust-lang.org/tests/compiletest.html#run-make-tests
https://rustc-dev-guide.rust-lang.org/print.html#header-commands
https://rustc-dev-guide.rust-lang.org/print.html#header-commands
https://github.com/rust-lang/rust/tree/master/src/tools/compiletest/src/header.rs
https://github.com/rust-lang/rust/tree/master/src/tools/compiletest/src/header.rs
https://github.com/rust-lang/rust/tree/master/src/tools/compiletest/src/header.rs
https://rustc-dev-guide.rust-lang.org/tests/ui.html#controlling-passfail-expectations
https://rustc-dev-guide.rust-lang.org/tests/ui.html#controlling-passfail-expectations

◦ build-fail — building should fail

◦ run-fail — running should fail

◦ ignore-pass — ignores the --pass flag

◦ check-run-results — checks run-pass/fail-pass output

• UI headers

◦ normalize-X — normalize compiler output

◦ run-rustfix — checks diagnostic suggestions

◦ rustfix-only-machine-applicable — checks only machine applicable

suggestions

◦ stderr-per-bitwidth — separate output per bit width

◦ dont-check-compiler-stderr — don't validate stderr

◦ dont-check-compiler-stdout — don't validate stdout

◦ compare-output-lines-by-subset — checks output by line subset

• Building auxiliary crates

◦ aux-build

◦ aux-crate

• Pretty-printer headers

◦ pretty-compare-only

◦ pretty-expanded

◦ pretty-mode

◦ pp-exact

• Ignoring tests

◦ ignore-X

◦ only-X

◦ needs-X

◦ no-system-llvm

◦ min-llvm-versionX

◦ min-system-llvm-version

◦ ignore-llvm-version

• Environment variable headers

◦ rustc-env

◦ exec-env

◦ unset-exec-env

◦ unset-rustc-env

• Miscellaneous headers

◦ compile-flags — adds compiler flags

◦ run-flags — adds flags to executable tests

◦ edition — sets the edition

◦ failure-status — expected exit code

◦ should-fail — testing compiletest itself

◦ gate-test-X — feature gate testing

◦ error-pattern — errors not on a line

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

77 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/tests/ui.html
https://rustc-dev-guide.rust-lang.org/tests/ui.html
https://rustc-dev-guide.rust-lang.org/tests/ui.html#normalization
https://rustc-dev-guide.rust-lang.org/tests/ui.html#normalization
https://rustc-dev-guide.rust-lang.org/tests/ui.html#normalization
https://rustc-dev-guide.rust-lang.org/tests/ui.html#rustfix-tests
https://rustc-dev-guide.rust-lang.org/tests/ui.html#rustfix-tests
https://rustc-dev-guide.rust-lang.org/tests/ui.html#rustfix-tests
https://rustc-dev-guide.rust-lang.org/tests/ui.html#rustfix-tests
https://rustc-dev-guide.rust-lang.org/tests/ui.html#rustfix-tests
https://rustc-dev-guide.rust-lang.org/tests/ui.html#rustfix-tests
https://rustc-dev-guide.rust-lang.org/tests/ui.html#output-comparison
https://rustc-dev-guide.rust-lang.org/tests/ui.html#output-comparison
https://rustc-dev-guide.rust-lang.org/tests/ui.html#output-comparison
https://rustc-dev-guide.rust-lang.org/tests/ui.html#output-comparison
https://rustc-dev-guide.rust-lang.org/tests/ui.html#output-comparison
https://rustc-dev-guide.rust-lang.org/tests/ui.html#output-comparison
https://rustc-dev-guide.rust-lang.org/tests/ui.html#output-comparison
https://rustc-dev-guide.rust-lang.org/tests/ui.html#output-comparison
https://rustc-dev-guide.rust-lang.org/tests/ui.html#output-comparison
https://rustc-dev-guide.rust-lang.org/tests/ui.html#output-comparison
https://rustc-dev-guide.rust-lang.org/tests/ui.html#output-comparison
https://rustc-dev-guide.rust-lang.org/tests/ui.html#output-comparison
https://rustc-dev-guide.rust-lang.org/tests/compiletest.html#building-auxiliary-crates
https://rustc-dev-guide.rust-lang.org/tests/compiletest.html#building-auxiliary-crates
https://rustc-dev-guide.rust-lang.org/tests/compiletest.html#pretty-printer-tests
https://rustc-dev-guide.rust-lang.org/tests/compiletest.html#pretty-printer-tests
https://rustc-dev-guide.rust-lang.org/tests/headers.html#ignoring-tests
https://rustc-dev-guide.rust-lang.org/tests/headers.html#ignoring-tests
https://rustc-dev-guide.rust-lang.org/tests/headers.html#environment-variable-headers
https://rustc-dev-guide.rust-lang.org/tests/headers.html#environment-variable-headers
https://rustc-dev-guide.rust-lang.org/tests/headers.html#miscellaneous-headers
https://rustc-dev-guide.rust-lang.org/tests/headers.html#miscellaneous-headers
https://rustc-dev-guide.rust-lang.org/tests/ui.html#error-pattern
https://rustc-dev-guide.rust-lang.org/tests/ui.html#error-pattern
https://rustc-dev-guide.rust-lang.org/tests/ui.html#error-pattern

◦ incremental — incremental tests not in the incremental test-suite

◦ no-prefer-dynamic — don't use -C prefer-dynamic , don't build as a dylib

◦ force-host — build only for the host target

◦ revisions — compile multiple times

◦ forbid-output — incremental cfail rejects output pattern

◦ should-ice — incremental cfail should ICE

◦ known-bug — indicates that the test is for a known bug that has not yet been

fixed

• Assembly headers

◦ assembly-output — the type of assembly output to check

Ignoring tests

These header commands are used to ignore the test in some situations, which means the

test won't be compiled or run.

• ignore-X where X is a target detail or stage will ignore the test accordingly (see

below)

• only-X is like ignore-X , but will only run the test on that target or stage

• ignore-test always ignores the test. This can be used to temporarily disable a test

if it is currently not working, but you want to keep it in tree to re-enable it later.

Some examples of X in ignore-X or only-X :

• A full target triple: aarch64-apple-ios

• Architecture: aarch64 , arm , asmjs , mips , wasm32 , x86_64 , x86 , ...

• OS: android , emscripten , freebsd , ios , linux , macos , windows , ...

• Environment (fourth word of the target triple): gnu , msvc , musl

• WASM: wasm32-bare matches wasm32-unknown-unknown . emscripten also matches

that target as well as the emscripten targets.

• Pointer width: 32bit , 64bit

• Endianness: endian-big

• Stage: stage0 , stage1 , stage2

• Channel: stable , beta

• When cross compiling: cross-compile

• When remote testing is used: remote

• When debug-assertions are enabled: debug

• When particular debuggers are being tested: cdb , gdb , lldb

• Specific compare modes: compare-mode-polonius , compare-mode-chalk , compare-

mode-split-dwarf , compare-mode-split-dwarf-single

The following header commands will check rustc build settings and target settings:

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

78 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/tests/compiletest.html#revisions
https://rustc-dev-guide.rust-lang.org/tests/compiletest.html#revisions
https://rustc-dev-guide.rust-lang.org/tests/compiletest.html#revisions
https://rustc-dev-guide.rust-lang.org/tests/compiletest.html#incremental-tests
https://rustc-dev-guide.rust-lang.org/tests/compiletest.html#incremental-tests
https://rustc-dev-guide.rust-lang.org/tests/compiletest.html#incremental-tests
https://rustc-dev-guide.rust-lang.org/tests/compiletest.html#incremental-tests
https://rustc-dev-guide.rust-lang.org/tests/compiletest.html#incremental-tests
https://rustc-dev-guide.rust-lang.org/tests/compiletest.html#incremental-tests
https://rustc-dev-guide.rust-lang.org/tests/ui.html#known-bugs
https://rustc-dev-guide.rust-lang.org/tests/ui.html#known-bugs
https://rustc-dev-guide.rust-lang.org/tests/ui.html#known-bugs
https://rustc-dev-guide.rust-lang.org/tests/compiletest.html#assembly-tests
https://rustc-dev-guide.rust-lang.org/tests/compiletest.html#assembly-tests
https://rustc-dev-guide.rust-lang.org/print.html#ignoring-tests
https://rustc-dev-guide.rust-lang.org/print.html#ignoring-tests
https://rustc-dev-guide.rust-lang.org/tests/running.html#running-tests-on-a-remote-machine
https://rustc-dev-guide.rust-lang.org/tests/running.html#running-tests-on-a-remote-machine
https://rustc-dev-guide.rust-lang.org/tests/ui.html#compare-modes
https://rustc-dev-guide.rust-lang.org/tests/ui.html#compare-modes

• needs-asm-support — ignores if it is running on a target that doesn't have stable

support for asm!

• needs-profiler-support — ignores if profiler support was not enabled for the

target (profiler = true in rustc's config.toml)

• needs-sanitizer-support — ignores if the sanitizer support was not enabled for

the target (sanitizers = true in rustc's config.toml)

• needs-sanitizer-{address,hwaddress,leak,memory,thread} — ignores if the

corresponding sanitizer is not enabled for the target (AddressSanitizer, hardware-

assisted AddressSanitizer, LeakSanitizer, MemorySanitizer or ThreadSanitizer

respectively)

• needs-run-enabled — ignores if it is a test that gets executed, and running has

been disabled. Running tests can be disabled with the x test --run=never flag, or

running on fuchsia.

• needs-unwind — ignores if the target does not support unwinding

• needs-rust-lld — ignores if the rust lld support is not enabled (rust.lld = true

in config.toml)

The following header commands will check LLVM support:

• no-system-llvm — ignores if the system llvm is used

• min-llvm-version: 13.0 — ignored if the LLVM version is less than the given value

• min-system-llvm-version: 12.0 — ignored if using a system LLVM and its version

is less than the given value

• ignore-llvm-version: 9.0 — ignores a specific LLVM version

• ignore-llvm-version: 7.0 - 9.9.9 — ignores LLVM versions in a range (inclusive)

• needs-llvm-components: powerpc — ignores if the specific LLVM component was

not built. Note: The test will fail on CI if the component does not exist.

• needs-matching-clang — ignores if the version of clang does not match the LLVM

version of rustc. These tests are always ignored unless a special environment

variable is set (which is only done in one CI job).

See also Debuginfo tests for headers for ignoring debuggers.

Environment variable headers

The following headers affect environment variables.

• rustc-env is an environment variable to set when running rustc of the form

KEY=VALUE .

• exec-env is an environment variable to set when executing a test of the form

KEY=VALUE .

• unset-exec-env specifies an environment variable to unset when executing a test.

• unset-rustc-env specifies an environment variable to unset when running rustc .

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

79 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/tests/compiletest.html#debuginfo-tests
https://rustc-dev-guide.rust-lang.org/tests/compiletest.html#debuginfo-tests
https://rustc-dev-guide.rust-lang.org/print.html#environment-variable-headers
https://rustc-dev-guide.rust-lang.org/print.html#environment-variable-headers

Miscellaneous headers

The following headers are generally available, and not specific to particular test suites.

• compile-flags passes extra command-line args to the compiler, e.g. compile-

flags -g which forces debuginfo to be enabled.

• run-flags passes extra args to the test if the test is to be executed.

• edition controls the edition the test should be compiled with (defaults to 2015).

Example usage: // edition:2018 .

• failure-status specifies the numeric exit code that should be expected for tests

that expect an error. If this is not set, the default is 1.

• should-fail indicates that the test should fail; used for "meta testing", where we

test the compiletest program itself to check that it will generate errors in

appropriate scenarios. This header is ignored for pretty-printer tests.

• gate-test-X where X is a feature marks the test as "gate test" for feature X. Such

tests are supposed to ensure that the compiler errors when usage of a gated

feature is attempted without the proper #![feature(X)] tag. Each unstable lang

feature is required to have a gate test. This header is actually checked by tidy, it is

not checked by compiletest.

• error-pattern checks the diagnostics just like the ERROR annotation without

specifying error line. This is useful when the error doesn't give any span. See

error-pattern .

• incremental runs the test with the -C incremental flag and an empty incremental

directory. This should be avoided when possible; you should use an incremental

mode test instead. Incremental mode tests support running the compiler multiple

times and verifying that it can load the generated incremental cache. This flag is for

specialized circumstances, like checking the interaction of codegen unit partitioning

with generating an incremental cache.

• no-prefer-dynamic will force an auxiliary crate to be built as an rlib instead of a

dylib. When specified in a test, it will remove the use of -C prefer-dynamic . This

can be useful in a variety of circumstances. For example, it can prevent a proc-

macro from being built with the wrong crate type. Or if your test is specifically

targeting behavior of other crate types, it can be used to prevent building with the

wrong crate type.

• force-host will force the test to build for the host platform instead of the target.

This is useful primarily for auxiliary proc-macros, which need to be loaded by the

host compiler.

Substitutions

Headers values support substituting a few variables which will be replaced with their

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

80 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#miscellaneous-headers
https://rustc-dev-guide.rust-lang.org/print.html#miscellaneous-headers
https://rustc-dev-guide.rust-lang.org/tests/intro.html#tidy
https://rustc-dev-guide.rust-lang.org/tests/intro.html#tidy
https://rustc-dev-guide.rust-lang.org/tests/ui.html#error-pattern
https://rustc-dev-guide.rust-lang.org/tests/ui.html#error-pattern
https://rustc-dev-guide.rust-lang.org/tests/ui.html#error-pattern
https://rustc-dev-guide.rust-lang.org/print.html#substitutions
https://rustc-dev-guide.rust-lang.org/print.html#substitutions

corresponding value. For example, if you need to pass a compiler flag with a path to a

specific file, something like the following could work:

Where the sentinel {{src-base}} will be replaced with the appropriate path described

below:

• {{cwd}} : The directory where compiletest is run from. This may not be the root of

the checkout, so you should avoid using it where possible.

◦ Examples: /path/to/rust , /path/to/build/root

• {{src-base}} : The directory where the test is defined. This is equivalent to $DIR

for output normalization.

◦ Example: /path/to/rust/tests/ui/error-codes

• {{build-base}} : The base directory where the test's output goes. This is equivalent

to $TEST_BUILD_DIR for output normalization.

◦ Example: /path/to/rust/build/x86_64-unknown-linux-gnu/test/ui

See tests/ui/commandline-argfile.rs for an example of a test that uses this

substitution.

Adding a new header command

One would add a new header command if there is a need to define some test property or

behavior on an individual, test-by-test basis. A header command property serves as the

header command's backing store (holds the command's current value) at runtime.

To add a new header command property:

1. Look for the pub struct TestProps declaration in src/tools/compiletest

/src/header.rs and add the new public property to the end of the declaration.

2. Look for the impl TestProps implementation block immediately following the

struct declaration and initialize the new property to its default value.

Adding a new header command parser

When compiletest encounters a test file, it parses the file a line at a time by calling every

parser defined in the Config struct's implementation block, also in src/tools

/compiletest/src/header.rs (note that the Config struct's declaration block is found in

src/tools/compiletest/src/common.rs). TestProps 's load_from() method will try

passing the current line of text to each parser, which, in turn typically checks to see if the

// compile-flags: --remap-path-prefix={{src-base}}=/the/src

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

81 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/tests/ui.html#normalization
https://rustc-dev-guide.rust-lang.org/tests/ui.html#normalization
https://rustc-dev-guide.rust-lang.org/tests/ui.html#normalization
https://rustc-dev-guide.rust-lang.org/tests/ui.html#normalization
https://github.com/rust-lang/rust/blob/master/tests/ui/commandline-argfile.rs
https://github.com/rust-lang/rust/blob/master/tests/ui/commandline-argfile.rs
https://github.com/rust-lang/rust/blob/master/tests/ui/commandline-argfile.rs
https://rustc-dev-guide.rust-lang.org/print.html#adding-a-new-header-command
https://rustc-dev-guide.rust-lang.org/print.html#adding-a-new-header-command
https://github.com/rust-lang/rust/tree/master/src/tools/compiletest/src/header.rs
https://github.com/rust-lang/rust/tree/master/src/tools/compiletest/src/header.rs
https://github.com/rust-lang/rust/tree/master/src/tools/compiletest/src/header.rs
https://github.com/rust-lang/rust/tree/master/src/tools/compiletest/src/header.rs
https://github.com/rust-lang/rust/tree/master/src/tools/compiletest/src/header.rs
https://github.com/rust-lang/rust/tree/master/src/tools/compiletest/src/header.rs
https://rustc-dev-guide.rust-lang.org/print.html#adding-a-new-header-command-parser
https://rustc-dev-guide.rust-lang.org/print.html#adding-a-new-header-command-parser
https://github.com/rust-lang/rust/tree/master/src/tools/compiletest/src/header.rs
https://github.com/rust-lang/rust/tree/master/src/tools/compiletest/src/header.rs
https://github.com/rust-lang/rust/tree/master/src/tools/compiletest/src/header.rs
https://github.com/rust-lang/rust/tree/master/src/tools/compiletest/src/header.rs
https://github.com/rust-lang/rust/tree/master/src/tools/compiletest/src/header.rs
https://github.com/rust-lang/rust/tree/master/src/tools/compiletest/src/header.rs
https://github.com/rust-lang/rust/tree/master/src/tools/compiletest/src/common.rs
https://github.com/rust-lang/rust/tree/master/src/tools/compiletest/src/common.rs
https://github.com/rust-lang/rust/tree/master/src/tools/compiletest/src/common.rs

line begins with a particular commented (//) header command such as // must-

compile-successfully or // failure-status . Whitespace after the comment marker is

optional.

Parsers will override a given header command property's default value merely by being

specified in the test file as a header command or by having a parameter value specified in

the test file, depending on the header command.

Parsers defined in impl Config are typically named parse_<header_command> (note

kebab-case <header-command> transformed to snake-case <header_command>). impl

Config also defines several 'low-level' parsers which make it simple to parse common

patterns like simple presence or not (parse_name_directive()), header-

command:parameter(s) (parse_name_value_directive()), optional parsing only if a

particular cfg attribute is defined (has_cfg_prefix()) and many more. The low-level

parsers are found near the end of the impl Config block; be sure to look through them

and their associated parsers immediately above to see how they are used to avoid writing

additional parsing code unnecessarily.

As a concrete example, here is the implementation for the parse_failure_status()

parser, in src/tools/compiletest/src/header.rs :

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

82 of 660 8/30/23, 09:47

https://github.com/rust-lang/rust/tree/master/src/tools/compiletest/src/header.rs
https://github.com/rust-lang/rust/tree/master/src/tools/compiletest/src/header.rs
https://github.com/rust-lang/rust/tree/master/src/tools/compiletest/src/header.rs

Implementing the behavior change

When a test invokes a particular header command, it is expected that some behavior will

change as a result. What behavior, obviously, will depend on the purpose of the header

command. In the case of failure-status , the behavior that changes is that

compiletest expects the failure code defined by the header command invoked in the

test, rather than the default value.

Although specific to failure-status (as every header command will have a different

implementation in order to invoke behavior change) perhaps it is helpful to see the

behavior change implementation of one case, simply as an example. To implement

failure-status , the check_correct_failure_status() function found in the TestCx

@@ -232,6 +232,7 @@ pub struct TestProps {
 // customized normalization rules
 pub normalize_stdout: Vec<(String, String)>,
 pub normalize_stderr: Vec<(String, String)>,
+ pub failure_status: i32,
 }

 impl TestProps {
@@ -260,6 +261,7 @@ impl TestProps {
 run_pass: false,
 normalize_stdout: vec![],
 normalize_stderr: vec![],
+ failure_status: 101,
 }
 }

@@ -383,6 +385,10 @@ impl TestProps {
 if let Some(rule) = config.parse_custom_normalization(ln,
"normalize-stderr") {
 self.normalize_stderr.push(rule);
 }
+
+ if let Some(code) = config.parse_failure_status(ln) {
+ self.failure_status = code;
+ }
 });

 for key in &["RUST_TEST_NOCAPTURE", "RUST_TEST_THREADS"] {
@@ -488,6 +494,13 @@ impl Config {
 self.parse_name_directive(line, "pretty-compare-only")
 }

+ fn parse_failure_status(&self, line: &str) -> Option<i32> {
+ match self.parse_name_value_directive(line, "failure-status") {
+ Some(code) => code.trim().parse::<i32>().ok(),
+ _ => None,
+ }
+ }

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

83 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#implementing-the-behavior-change
https://rustc-dev-guide.rust-lang.org/print.html#implementing-the-behavior-change

implementation block, located in src/tools/compiletest/src/runtest.rs , was modified

as per below:

Note the use of self.props.failure_status to access the header command property. In

tests which do not specify the failure status header command,

self.props.failure_status will evaluate to the default value of 101 at the time of this

writing. But for a test which specifies a header command of, for example, // failure-

status: 1 , self.props.failure_status will evaluate to 1, as parse_failure_status()

will have overridden the TestProps default value, for that test specifically.

@@ -295,11 +295,14 @@ impl<'test> TestCx<'test> {
 }

 fn check_correct_failure_status(&self, proc_res: &ProcRes) {
- // The value the Rust runtime returns on failure
- const RUST_ERR: i32 = 101;
- if proc_res.status.code() != Some(RUST_ERR) {
+ let expected_status = Some(self.props.failure_status);
+ let received_status = proc_res.status.code();
+
+ if expected_status != received_status {
 self.fatal_proc_rec(
- &format!("failure produced the wrong error: {}",
proc_res.status),
+ &format!("Error: expected failure status ({:?}) but received
status {:?}.",
+ expected_status,
+ received_status),
 proc_res,
);
 }
@@ -320,7 +323,6 @@ impl<'test> TestCx<'test> {
);

 let proc_res = self.exec_compiled_test();
-
 if !proc_res.status.success() {
 self.fatal_proc_rec("test run failed!", &proc_res);
 }
@@ -499,7 +501,6 @@ impl<'test> TestCx<'test> {
 expected,
 actual
);
- panic!();
 }
 }

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

84 of 660 8/30/23, 09:47

https://github.com/rust-lang/rust/tree/master/src/tools/compiletest/src/runtest.rs
https://github.com/rust-lang/rust/tree/master/src/tools/compiletest/src/runtest.rs
https://github.com/rust-lang/rust/tree/master/src/tools/compiletest/src/runtest.rs

Performance testing

rustc-perf

A lot of work is put into improving the performance of the compiler and preventing

performance regressions. The rustc-perf project provides several services for testing and

tracking performance. It provides hosted infrastructure for running benchmarks as a

service. At this time, only x86_64-unknown-linux-gnu builds are tracked.

A "perf run" is used to compare the performance of the compiler in different

configurations for a large collection of popular crates. Different configurations include

"fresh builds", builds with incremental compilation, etc.

The result of a perf run is a comparison between two versions of the compiler (by their

commit hashes).

Automatic perf runs

After every PR is merged, a suite of benchmarks are run against the compiler. The results

are tracked over time on the https://perf.rust-lang.org/ website. Any changes are noted in

a comment on the PR.

Manual perf runs

Additionally, performance tests can be ran before a PR is merged on an as-needed basis.

You should request a perf run if your PR may affect performance, especially if it can affect

performance adversely.

To evaluate the performance impact of a PR, write this comment on the PR:

@bors try @rust-timer queue

Note: Only users authorized to do perf runs are allowed to post this comment.

Teams that are allowed to use it are tracked in the Teams repository with the perf

= true value in the [permissions] section (and bors permissions are also

required). If you are not on one of those teams, feel free to ask for someone to post

it for you (either on Zulip or ask the assigned reviewer).

This will first tell bors to do a "try" build which do a full release build for x86_64-unknown-

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

85 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#performance-testing-1
https://rustc-dev-guide.rust-lang.org/print.html#performance-testing-1
https://rustc-dev-guide.rust-lang.org/print.html#rustc-perf
https://rustc-dev-guide.rust-lang.org/print.html#rustc-perf
https://github.com/rust-lang/rustc-perf
https://github.com/rust-lang/rustc-perf
https://rustc-dev-guide.rust-lang.org/print.html#automatic-perf-runs
https://rustc-dev-guide.rust-lang.org/print.html#automatic-perf-runs
https://perf.rust-lang.org/
https://perf.rust-lang.org/
https://rustc-dev-guide.rust-lang.org/print.html#manual-perf-runs
https://rustc-dev-guide.rust-lang.org/print.html#manual-perf-runs
https://github.com/rust-lang/team
https://github.com/rust-lang/team

linux-gnu . After the build finishes, it will place it in the queue to run the performance

suite against it. After the performance tests finish, the bot will post a comment on the PR

with a summary and a link to a full report.

More details are available in the perf collector documentation.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

86 of 660 8/30/23, 09:47

https://github.com/rust-lang/rustc-perf/blob/master/collector/README.md
https://github.com/rust-lang/rustc-perf/blob/master/collector/README.md

Crater

Crater is a tool for compiling and running tests for every crate on crates.io (and a few on

GitHub). It is mainly used for checking the extent of breakage when implementing

potentially breaking changes and ensuring lack of breakage by running beta vs stable

compiler versions.

When to run Crater

You should request a crater run if your PR makes large changes to the compiler or could

cause breakage. If you are unsure, feel free to ask your PR's reviewer.

Requesting Crater Runs

The rust team maintains a few machines that can be used for running crater runs on the

changes introduced by a PR. If your PR needs a crater run, leave a comment for the triage

team in the PR thread. Please inform the team whether you require a "check-only" crater

run, a "build only" crater run, or a "build-and-test" crater run. The difference is primarily

in time; the conservative (if you're not sure) option is to go for the build-and-test run. If

making changes that will only have an effect at compile-time (e.g., implementing a new

trait) then you only need a check run.

Your PR will be enqueued by the triage team and the results will be posted when they are

ready. Check runs will take around ~3-4 days, with the other two taking 5-6 days on

average.

While crater is really useful, it is also important to be aware of a few caveats:

• Not all code is on crates.io! There is a lot of code in repos on GitHub and elsewhere.

Also, companies may not wish to publish their code. Thus, a successful crater run is

not a magically green light that there will be no breakage; you still need to be

careful.

• Crater only runs Linux builds on x86_64. Thus, other architectures and platforms are

not tested. Critically, this includes Windows.

• Many crates are not tested. This could be for a lot of reasons, including that the

crate doesn't compile any more (e.g. used old nightly features), has broken or flaky

tests, requires network access, or other reasons.

• Before crater can be run, @bors try needs to succeed in building artifacts. This

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

87 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#crater-1
https://rustc-dev-guide.rust-lang.org/print.html#crater-1
https://github.com/rust-lang/crater
https://github.com/rust-lang/crater
https://crates.io/
https://crates.io/
https://rustc-dev-guide.rust-lang.org/print.html#when-to-run-crater
https://rustc-dev-guide.rust-lang.org/print.html#when-to-run-crater
https://rustc-dev-guide.rust-lang.org/print.html#requesting-crater-runs
https://rustc-dev-guide.rust-lang.org/print.html#requesting-crater-runs

means that if your code doesn't compile, you cannot run crater.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

88 of 660 8/30/23, 09:47

Suggest tests tool

This chapter is about the internals of and contribution instructions for the suggest-

tests tool. For a high-level overview of the tool, see this section. This tool is currently in a

beta state and is tracked by this issue on Github. Currently the number of tests it will

suggest are very limited in scope, we are looking to expand this (contributions welcome!).

Internals

The tool is defined in a separate crate (src/tools/suggest-tests) which outputs

suggestions which are parsed by a shim in bootstrap (src/bootstrap/suggest.rs). The

only notable thing the bootstrap shim does is (when invoked with the --run flag) use

bootstrap's internal mechanisms to create a new Builder and uses it to invoke the

suggested commands. The suggest-tests crate is where the fun happens, two kinds of

suggestions are defined: "static" and "dynamic" suggestions.

Static suggestions

Defined here. Static suggestions are simple: they are just globs which map to a x

command. In suggest-tests , this is implemented with a simple macro_rules macro.

Dynamic suggestions

Defined here. These are more complicated than static suggestions and are implemented

as functions with the following signature: fn(&Path) -> Vec<Suggestion> . In other

words, each suggestion takes a path to a modified file and (after running arbitrary Rust

code) can return any number of suggestions, or none. Dynamic suggestions are useful for

situations where fine-grained control over suggestions is needed. For example,

modifications to the compiler/xyz/ path should trigger the x test compiler/xyz

suggestion. In the future, dynamic suggestions might even read file contents to

determine if (what) tests should run.

Adding a suggestion

The following steps should serve as a rough guide to add suggestions to suggest-tests

(very welcome!):

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

89 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#suggest-tests-tool
https://rustc-dev-guide.rust-lang.org/print.html#suggest-tests-tool
https://rustc-dev-guide.rust-lang.org/building/suggested.html#x-suggest
https://rustc-dev-guide.rust-lang.org/building/suggested.html#x-suggest
https://github.com/rust-lang/rust/issues/109933
https://github.com/rust-lang/rust/issues/109933
https://rustc-dev-guide.rust-lang.org/print.html#internals
https://rustc-dev-guide.rust-lang.org/print.html#internals
https://github.com/rust-lang/rust/blob/master/src/tools/suggest-tests
https://github.com/rust-lang/rust/blob/master/src/tools/suggest-tests
https://github.com/rust-lang/rust/blob/master/src/tools/suggest-tests
https://github.com/rust-lang/rust/blob/master/src/bootstrap/suggest.rs
https://github.com/rust-lang/rust/blob/master/src/bootstrap/suggest.rs
https://github.com/rust-lang/rust/blob/master/src/bootstrap/suggest.rs
https://rustc-dev-guide.rust-lang.org/print.html#static-suggestions
https://rustc-dev-guide.rust-lang.org/print.html#static-suggestions
https://github.com/rust-lang/rust/blob/master/src/tools/suggest-tests/src/static_suggestions.rs
https://github.com/rust-lang/rust/blob/master/src/tools/suggest-tests/src/static_suggestions.rs
https://crates.io/crates/glob
https://crates.io/crates/glob
https://rustc-dev-guide.rust-lang.org/print.html#dynamic-suggestions
https://rustc-dev-guide.rust-lang.org/print.html#dynamic-suggestions
https://github.com/rust-lang/rust/blob/master/src/tools/suggest-tests/src/dynamic_suggestions.rs
https://github.com/rust-lang/rust/blob/master/src/tools/suggest-tests/src/dynamic_suggestions.rs
https://rustc-dev-guide.rust-lang.org/print.html#adding-a-suggestion
https://rustc-dev-guide.rust-lang.org/print.html#adding-a-suggestion

1. Determine the rules for your suggestion. Is it simple and operates only on a single

path or does it match globs? Does it need fine-grained control over the resulting

command or does "one size fit all"?

2. Based on the previous step, decide if your suggestion should be implemented as

either static or dynamic.

3. Implement the suggestion. If it is dynamic then a test is highly recommended, to

verify that your logic is correct and to give an example of the suggestion. See the

tests.rs file.

4. Open a PR implementing your suggestion. (TODO: add example PR)

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

90 of 660 8/30/23, 09:47

https://github.com/rust-lang/rust/blob/master/src/tools/suggest-tests/src/tests.rs
https://github.com/rust-lang/rust/blob/master/src/tools/suggest-tests/src/tests.rs

Debugging the compiler

• Configuring the compiler

• -Z flags

• Getting a backtrace

• Getting a backtrace for errors

• Getting the error creation location

• Getting logging output

• Formatting Graphviz output (.dot files)

• Viewing Spanview output (.html files)

• Narrowing (Bisecting) Regressions

• Downloading Artifacts from Rust's CI

• Debugging type layouts

• Configuring CodeLLDB for debugging rustc

This chapter contains a few tips to debug the compiler. These tips aim to be useful no

matter what you are working on. Some of the other chapters have advice about specific

parts of the compiler (e.g. the Queries Debugging and Testing chapter or the LLVM

Debugging chapter).

Configuring the compiler

By default, rustc is built without most debug information. To enable debug info, set

debug = true in your config.toml.

Setting debug = true turns on many different debug options (e.g., debug-assertions ,

debug-logging , etc.) which can be individually tweaked if you want to, but many people

simply set debug = true .

If you want to use GDB to debug rustc, please set config.toml with options:

NOTE: This will use a lot of disk space (upwards of 35GB), and will take a lot more

compile time. With debuginfo-level = 1 (the default when debug = true), you

will be able to track the execution path, but will lose the symbol information for

debugging.

[rust]
debug = true
debuginfo-level = 2

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

91 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#debugging-the-compiler
https://rustc-dev-guide.rust-lang.org/print.html#debugging-the-compiler
https://rustc-dev-guide.rust-lang.org/compiler-debugging.html#configuring-the-compiler
https://rustc-dev-guide.rust-lang.org/compiler-debugging.html#configuring-the-compiler
https://rustc-dev-guide.rust-lang.org/compiler-debugging.html#-z-flags
https://rustc-dev-guide.rust-lang.org/compiler-debugging.html#-z-flags
https://rustc-dev-guide.rust-lang.org/compiler-debugging.html#-z-flags
https://rustc-dev-guide.rust-lang.org/compiler-debugging.html#-z-flags
https://rustc-dev-guide.rust-lang.org/compiler-debugging.html#getting-a-backtrace
https://rustc-dev-guide.rust-lang.org/compiler-debugging.html#getting-a-backtrace
https://rustc-dev-guide.rust-lang.org/compiler-debugging.html#getting-a-backtrace-for-errors
https://rustc-dev-guide.rust-lang.org/compiler-debugging.html#getting-a-backtrace-for-errors
https://rustc-dev-guide.rust-lang.org/compiler-debugging.html#getting-the-error-creation-location
https://rustc-dev-guide.rust-lang.org/compiler-debugging.html#getting-the-error-creation-location
https://rustc-dev-guide.rust-lang.org/compiler-debugging.html#getting-logging-output
https://rustc-dev-guide.rust-lang.org/compiler-debugging.html#getting-logging-output
https://rustc-dev-guide.rust-lang.org/compiler-debugging.html#formatting-graphviz-output-dot-files
https://rustc-dev-guide.rust-lang.org/compiler-debugging.html#formatting-graphviz-output-dot-files
https://rustc-dev-guide.rust-lang.org/compiler-debugging.html#viewing-spanview-output-html-files
https://rustc-dev-guide.rust-lang.org/compiler-debugging.html#viewing-spanview-output-html-files
https://rustc-dev-guide.rust-lang.org/compiler-debugging.html#narrowing-bisecting-regressions
https://rustc-dev-guide.rust-lang.org/compiler-debugging.html#narrowing-bisecting-regressions
https://rustc-dev-guide.rust-lang.org/compiler-debugging.html#downloading-artifacts-from-rusts-ci
https://rustc-dev-guide.rust-lang.org/compiler-debugging.html#downloading-artifacts-from-rusts-ci
https://rustc-dev-guide.rust-lang.org/compiler-debugging.html#debugging-type-layouts
https://rustc-dev-guide.rust-lang.org/compiler-debugging.html#debugging-type-layouts
https://rustc-dev-guide.rust-lang.org/compiler-debugging.html#configuring-codelldb-for-debugging-rustc
https://rustc-dev-guide.rust-lang.org/compiler-debugging.html#configuring-codelldb-for-debugging-rustc
https://rustc-dev-guide.rust-lang.org/compiler-debugging.html#configuring-codelldb-for-debugging-rustc
https://rustc-dev-guide.rust-lang.org/compiler-debugging.html#configuring-codelldb-for-debugging-rustc
https://rustc-dev-guide.rust-lang.org/incrcomp-debugging.html
https://rustc-dev-guide.rust-lang.org/incrcomp-debugging.html
https://rustc-dev-guide.rust-lang.org/backend/debugging.html
https://rustc-dev-guide.rust-lang.org/backend/debugging.html
https://rustc-dev-guide.rust-lang.org/backend/debugging.html
https://rustc-dev-guide.rust-lang.org/backend/debugging.html
https://rustc-dev-guide.rust-lang.org/print.html#configuring-the-compiler
https://rustc-dev-guide.rust-lang.org/print.html#configuring-the-compiler

The default configuration will enable symbol-mangling-version v0. This requires at least

GDB v10.2, otherwise you need to disable new symbol-mangling-version in config.toml .

See the comments in config.example.toml for more info.

You will need to rebuild the compiler after changing any configuration option.

-Z flags

The compiler has a bunch of -Z flags. These are unstable flags that are only enabled on

nightly. Many of them are useful for debugging. To get a full listing of -Z flags, use -Z

help .

One useful flag is -Z verbose , which generally enables printing more info that could be

useful for debugging.

Getting a backtrace

When you have an ICE (panic in the compiler), you can set RUST_BACKTRACE=1 to get the

stack trace of the panic! like in normal Rust programs. IIRC backtraces don't work on

MinGW, sorry. If you have trouble or the backtraces are full of unknown , you might want

to find some way to use Linux, Mac, or MSVC on Windows.

In the default configuration (without debug set to true), you don't have line numbers

enabled, so the backtrace looks like this:

[rust]
new-symbol-mangling = false

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

92 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#-z-flags
https://rustc-dev-guide.rust-lang.org/print.html#-z-flags
https://rustc-dev-guide.rust-lang.org/print.html#-z-flags
https://rustc-dev-guide.rust-lang.org/print.html#-z-flags
https://rustc-dev-guide.rust-lang.org/print.html#getting-a-backtrace
https://rustc-dev-guide.rust-lang.org/print.html#getting-a-backtrace

If you set debug = true , you will get line numbers for the stack trace. Then the backtrace

will look like this:

Getting a backtrace for errors

If you want to get a backtrace to the point where the compiler emits an error message,

you can pass the -Z treat-err-as-bug=n , which will make the compiler panic on the

nth error on delay_span_bug . If you leave off =n , the compiler will assume 1 for n

and thus panic on the first error it encounters.

This can also help when debugging delay_span_bug calls - it will make the first

delay_span_bug call panic, which will give you a useful backtrace.

For example:

stack backtrace:
 0: std::sys::imp::backtrace::tracing::imp::unwind_backtrace
 1: std::sys_common::backtrace::_print
 2: std::panicking::default_hook::{{closure}}
 3: std::panicking::default_hook
 4: std::panicking::rust_panic_with_hook
 5: std::panicking::begin_panic
 (~~~~ LINES REMOVED BY ME FOR BREVITY ~~~~)
 32: rustc_typeck::check_crate
 33: <std::thread::local::LocalKey<T>>::with
 34: <std::thread::local::LocalKey<T>>::with
 35: rustc::ty::context::TyCtxt::create_and_enter
 36: rustc_driver::driver::compile_input
 37: rustc_driver::run_compiler

stack backtrace:
 (~~~~ LINES REMOVED BY ME FOR BREVITY ~~~~)
 at /home/user/rust/compiler/rustc_typeck/src/check/cast.rs:110
 7: rustc_typeck::check::cast::CastCheck::check
 at /home/user/rust/compiler/rustc_typeck/src/check/cast.rs:572
 at /home/user/rust/compiler/rustc_typeck/src/check/cast.rs:460
 at /home/user/rust/compiler/rustc_typeck/src/check/cast.rs:370
 (~~~~ LINES REMOVED BY ME FOR BREVITY ~~~~)
 33: rustc_driver::driver::compile_input
 at /home/user/rust/compiler/rustc_driver/src/driver.rs:1010
 at /home/user/rust/compiler/rustc_driver/src/driver.rs:212
 34: rustc_driver::run_compiler
 at /home/user/rust/compiler/rustc_driver/src/lib.rs:253

$ cat error.rs

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

93 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#getting-a-backtrace-for-errors
https://rustc-dev-guide.rust-lang.org/print.html#getting-a-backtrace-for-errors

Now, where does the error above come from?

fn main() {
1 + ();

}

$ rustc +stage1 error.rs
error[E0277]: cannot add `()` to `{integer}`
 --> error.rs:2:7
 |
2 | 1 + ();
 | ^ no implementation for `{integer} + ()`
 |
 = help: the trait `Add<()>` is not implemented for `{integer}`

error: aborting due to previous error

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

94 of 660 8/30/23, 09:47

Cool, now I have a backtrace for the error!

Getting the error creation location

-Z track-diagnostics can help figure out where errors are emitted. It uses

#[track_caller] for this and prints its location alongside the error:

$ RUST_BACKTRACE=1 rustc +stage1 error.rs -Z treat-err-as-bug
error[E0277]: the trait bound `{integer}: std::ops::Add<()>` is not satisfied
 --> error.rs:2:7
 |
2 | 1 + ();
 | ^ no implementation for `{integer} + ()`
 |
 = help: the trait `std::ops::Add<()>` is not implemented for `{integer}`

error: internal compiler error: unexpected panic

note: the compiler unexpectedly panicked. this is a bug.

note: we would appreciate a bug report: https://github.com/rust-lang/rust
/blob/master/CONTRIBUTING.md#bug-reports

note: rustc 1.24.0-dev running on x86_64-unknown-linux-gnu

note: run with `RUST_BACKTRACE=1` for a backtrace

thread 'rustc' panicked at 'encountered error with `-Z treat_err_as_bug',
/home/user/rust/compiler/rustc_errors/src/lib.rs:411:12
note: Some details are omitted, run with `RUST_BACKTRACE=full` for a verbose
backtrace.
stack backtrace:
 (~~~ IRRELEVANT PART OF BACKTRACE REMOVED BY ME ~~~)
 7: rustc::traits::error_reporting::<impl rustc::infer::InferCtxt<'a,
'tcx>>
 ::report_selection_error
 at /home/user/rust/compiler/rustc_middle/src/traits
/error_reporting.rs:823
 8: rustc::traits::error_reporting::<impl rustc::infer::InferCtxt<'a,
'tcx>>
 ::report_fulfillment_errors
 at /home/user/rust/compiler/rustc_middle/src/traits
/error_reporting.rs:160
 at /home/user/rust/compiler/rustc_middle/src/traits
/error_reporting.rs:112
 9: rustc_typeck::check::FnCtxt::select_obligations_where_possible
 at /home/user/rust/compiler/rustc_typeck/src/check/mod.rs:2192
 (~~~ IRRELEVANT PART OF BACKTRACE REMOVED BY ME ~~~)
 36: rustc_driver::run_compiler
 at /home/user/rust/compiler/rustc_driver/src/lib.rs:253

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

95 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#getting-the-error-creation-location
https://rustc-dev-guide.rust-lang.org/print.html#getting-the-error-creation-location

This is similar but different to -Z treat-err-as-bug :

• it will print the locations for all errors emitted

• it does not require a compiler built with debug symbols

• you don't have to read through a big stack trace.

Getting logging output

The compiler uses the tracing crate for logging.

For details see the guide section on tracing

Formatting Graphviz output (.dot files)

Some compiler options for debugging specific features yield graphviz graphs - e.g. the

#[rustc_mir(borrowck_graphviz_postflow="suffix.dot")] attribute dumps various

borrow-checker dataflow graphs.

These all produce .dot files. To view these files, install graphviz (e.g. apt-get install

graphviz) and then run the following commands:

$ RUST_BACKTRACE=1 rustc +stage1 error.rs -Z track-diagnostics
error[E0277]: cannot add `()` to `{integer}`
 --> src\error.rs:2:7
 |
2 | 1 + ();
 | ^ no implementation for `{integer} + ()`
-Ztrack-diagnostics: created at compiler/rustc_trait_selection/src/traits
/error_reporting/mod.rs:638:39
 |
 = help: the trait `Add<()>` is not implemented for `{integer}`
 = help: the following other types implement trait `Add<Rhs>`:
 <&'a f32 as Add<f32>>
 <&'a f64 as Add<f64>>
 <&'a i128 as Add<i128>>
 <&'a i16 as Add<i16>>
 <&'a i32 as Add<i32>>
 <&'a i64 as Add<i64>>
 <&'a i8 as Add<i8>>
 <&'a isize as Add<isize>>
 and 48 others

For more information about this error, try `rustc --explain E0277`.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

96 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#getting-logging-output
https://rustc-dev-guide.rust-lang.org/print.html#getting-logging-output
https://docs.rs/tracing
https://docs.rs/tracing
https://docs.rs/tracing
https://rustc-dev-guide.rust-lang.org/tracing.html
https://rustc-dev-guide.rust-lang.org/tracing.html
https://rustc-dev-guide.rust-lang.org/print.html#formatting-graphviz-output-dot-files
https://rustc-dev-guide.rust-lang.org/print.html#formatting-graphviz-output-dot-files

Viewing Spanview output (.html files)

In addition to graphviz output, MIR debugging flags include an option to generate a MIR

representation called Spanview that uses HTML to highlight code regions in the original

source code and display compiler metadata associated with each region. -Z dump-mir-

spanview , for example, highlights spans associated with each MIR Statement ,

Terminator , and/or BasicBlock .

These .html files use CSS features to dynamically expand spans obscured by

overlapping spans, and native tooltips (based on the HTML title attribute) to reveal the

actual MIR elements, as text.

To view these files, simply use a modern browser, or a CSS-capable HTML preview feature

in a modern IDE. (The default HTML preview pane in VS Code is known to work, for

instance.)

Narrowing (Bisecting) Regressions

The cargo-bisect-rustc tool can be used as a quick and easy way to find exactly which PR

caused a change in rustc behavior. It automatically downloads rustc PR artifacts and

tests them against a project you provide until it finds the regression. You can then look at

the PR to get more context on why it was changed. See this tutorial on how to use it.

Downloading Artifacts from Rust's CI

The rustup-toolchain-install-master tool by kennytm can be used to download the

artifacts produced by Rust's CI for a specific SHA1 -- this basically corresponds to the

successful landing of some PR -- and then sets them up for your local use. This also works

for artifacts produced by @bors try . This is helpful when you want to examine the

resulting build of a PR without doing the build yourself.

Debugging type layouts

$ dot -T pdf maybe_init_suffix.dot > maybe_init_suffix.pdf
$ firefox maybe_init_suffix.pdf # Or your favorite pdf viewer

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

97 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#viewing-spanview-output-html-files
https://rustc-dev-guide.rust-lang.org/print.html#viewing-spanview-output-html-files
https://rustc-dev-guide.rust-lang.org/compiler-debugging.html#formatting-graphviz-output-dot-files
https://rustc-dev-guide.rust-lang.org/compiler-debugging.html#formatting-graphviz-output-dot-files
https://rustc-dev-guide.rust-lang.org/mir/debugging.html
https://rustc-dev-guide.rust-lang.org/mir/debugging.html
https://rustc-dev-guide.rust-lang.org/mir/debugging.html
https://rustc-dev-guide.rust-lang.org/mir/debugging.html
https://rustc-dev-guide.rust-lang.org/mir/debugging.html
https://rustc-dev-guide.rust-lang.org/mir/debugging.html
https://rustc-dev-guide.rust-lang.org/print.html#narrowing-bisecting-regressions
https://rustc-dev-guide.rust-lang.org/print.html#narrowing-bisecting-regressions
https://github.com/rust-lang/cargo-bisect-rustc
https://github.com/rust-lang/cargo-bisect-rustc
https://rust-lang.github.io/cargo-bisect-rustc/tutorial.html
https://rust-lang.github.io/cargo-bisect-rustc/tutorial.html
https://rustc-dev-guide.rust-lang.org/print.html#downloading-artifacts-from-rusts-ci
https://rustc-dev-guide.rust-lang.org/print.html#downloading-artifacts-from-rusts-ci
https://github.com/kennytm/rustup-toolchain-install-master
https://github.com/kennytm/rustup-toolchain-install-master
https://rustc-dev-guide.rust-lang.org/print.html#debugging-type-layouts
https://rustc-dev-guide.rust-lang.org/print.html#debugging-type-layouts

The (permanently) unstable #[rustc_layout] attribute can be used to dump the Layout

of the type it is attached to. For example:

Will emit the following:

#![feature(rustc_attrs)]

#[rustc_layout(debug)]
type T<'a> = &'a u32;

error: layout_of(&'a u32) = Layout {
 fields: Primitive,
 variants: Single {
 index: 0,
 },
 abi: Scalar(
 Scalar {
 value: Pointer,
 valid_range: 1..=18446744073709551615,
 },
),
 largest_niche: Some(
 Niche {
 offset: Size {
 raw: 0,
 },
 scalar: Scalar {
 value: Pointer,
 valid_range: 1..=18446744073709551615,
 },
 },
),
 align: AbiAndPrefAlign {
 abi: Align {
 pow2: 3,
 },
 pref: Align {
 pow2: 3,
 },
 },
 size: Size {
 raw: 8,
 },
}
 --> src/lib.rs:4:1
 |
4 | type T<'a> = &'a u32;
 | ^^^^^^^^^^^^^^^^^^^^^

error: aborting due to previous error

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

98 of 660 8/30/23, 09:47

https://doc.rust-lang.org/nightly/nightly-rustc/rustc_target/abi/struct.Layout.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_target/abi/struct.Layout.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_target/abi/struct.Layout.html

Configuring CodeLLDB for debugging rustc

If you are using VSCode, and have edited your config.toml to request debugging level 1

or 2 for the parts of the code you're interested in, then you should be able to use the

CodeLLDB extension in VSCode to debug it.

Here is a sample launch.json file, being used to run a stage 1 compiler direct from the

directory where it is built (does not have to be "installed"):

// .vscode/launch.json
{

"version": "0.2.0",
"configurations": [

 {
"type": "lldb",
"request": "launch",
"name": "Launch",
"args": [], // array of string command-line arguments to pass to

compiler
"program": "${workspaceFolder}/build/host/stage1/bin/rustc",
"windows": { // applicable if using windows

"program": "${workspaceFolder}/build/host/stage1/bin/rustc.exe"
 },

"cwd": "${workspaceFolder}", // current working directory at program
start

"stopOnEntry": false,
"sourceLanguages": ["rust"]

 }
]
 }

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

99 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#configuring-codelldb-for-debugging-rustc
https://rustc-dev-guide.rust-lang.org/print.html#configuring-codelldb-for-debugging-rustc
https://rustc-dev-guide.rust-lang.org/print.html#configuring-codelldb-for-debugging-rustc
https://rustc-dev-guide.rust-lang.org/print.html#configuring-codelldb-for-debugging-rustc
https://marketplace.visualstudio.com/items?itemName=vadimcn.vscode-lldb
https://marketplace.visualstudio.com/items?itemName=vadimcn.vscode-lldb

Using tracing to debug the compiler

• Function level filters

◦ I don't want everything

◦ I don't want all calls

• Query level filters

• Broad module level filters

• Log colors

• How to keep or remove debug! and trace! calls from the resulting binary

• Logging etiquette and conventions

The compiler has a lot of debug! (or trace!) calls, which print out logging information at

many points. These are very useful to at least narrow down the location of a bug if not to

find it entirely, or just to orient yourself as to why the compiler is doing a particular thing.

To see the logs, you need to set the RUSTC_LOG environment variable to your log filter.

The full syntax of the log filters can be found in the rustdoc of tracing-subscriber .

Function level filters

Lots of functions in rustc are annotated with

which allows you to use

to do the following all at once

• log all function calls to foo

• log the arguments (except for those in the skip list)

• log everything (from anywhere else in the compiler) until the function returns

I don't want everything

Depending on the scope of the function, you may not want to log everything in its body.

As an example: the do_mir_borrowck function will dump hundreds of lines even for

trivial code being borrowchecked.

#[instrument(level = "debug", skip(self))]
fn foo(&self, bar: Type) {}

RUSTC_LOG=[foo]

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

100 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#using-tracing-to-debug-the-compiler
https://rustc-dev-guide.rust-lang.org/print.html#using-tracing-to-debug-the-compiler
https://rustc-dev-guide.rust-lang.org/tracing.html#function-level-filters
https://rustc-dev-guide.rust-lang.org/tracing.html#function-level-filters
https://rustc-dev-guide.rust-lang.org/tracing.html#i-dont-want-everything
https://rustc-dev-guide.rust-lang.org/tracing.html#i-dont-want-everything
https://rustc-dev-guide.rust-lang.org/tracing.html#i-dont-want-all-calls
https://rustc-dev-guide.rust-lang.org/tracing.html#i-dont-want-all-calls
https://rustc-dev-guide.rust-lang.org/tracing.html#query-level-filters
https://rustc-dev-guide.rust-lang.org/tracing.html#query-level-filters
https://rustc-dev-guide.rust-lang.org/tracing.html#broad-module-level-filters
https://rustc-dev-guide.rust-lang.org/tracing.html#broad-module-level-filters
https://rustc-dev-guide.rust-lang.org/tracing.html#log-colors
https://rustc-dev-guide.rust-lang.org/tracing.html#log-colors
https://rustc-dev-guide.rust-lang.org/tracing.html#how-to-keep-or-remove-debug-and-trace-calls-from-the-resulting-binary
https://rustc-dev-guide.rust-lang.org/tracing.html#how-to-keep-or-remove-debug-and-trace-calls-from-the-resulting-binary
https://rustc-dev-guide.rust-lang.org/tracing.html#how-to-keep-or-remove-debug-and-trace-calls-from-the-resulting-binary
https://rustc-dev-guide.rust-lang.org/tracing.html#how-to-keep-or-remove-debug-and-trace-calls-from-the-resulting-binary
https://rustc-dev-guide.rust-lang.org/tracing.html#how-to-keep-or-remove-debug-and-trace-calls-from-the-resulting-binary
https://rustc-dev-guide.rust-lang.org/tracing.html#how-to-keep-or-remove-debug-and-trace-calls-from-the-resulting-binary
https://rustc-dev-guide.rust-lang.org/tracing.html#how-to-keep-or-remove-debug-and-trace-calls-from-the-resulting-binary
https://rustc-dev-guide.rust-lang.org/tracing.html#how-to-keep-or-remove-debug-and-trace-calls-from-the-resulting-binary
https://rustc-dev-guide.rust-lang.org/tracing.html#logging-etiquette-and-conventions
https://rustc-dev-guide.rust-lang.org/tracing.html#logging-etiquette-and-conventions
https://docs.rs/tracing/0.1/tracing/macro.debug.html
https://docs.rs/tracing/0.1/tracing/macro.debug.html
https://docs.rs/tracing/0.1/tracing/macro.debug.html
https://docs.rs/tracing-subscriber/0.2.24/tracing_subscriber/filter/struct.EnvFilter.html#directives
https://docs.rs/tracing-subscriber/0.2.24/tracing_subscriber/filter/struct.EnvFilter.html#directives
https://docs.rs/tracing-subscriber/0.2.24/tracing_subscriber/filter/struct.EnvFilter.html#directives
https://docs.rs/tracing-subscriber/0.2.24/tracing_subscriber/filter/struct.EnvFilter.html#directives
https://rustc-dev-guide.rust-lang.org/print.html#function-level-filters
https://rustc-dev-guide.rust-lang.org/print.html#function-level-filters
https://rustc-dev-guide.rust-lang.org/print.html#i-dont-want-everything
https://rustc-dev-guide.rust-lang.org/print.html#i-dont-want-everything

Since you can combine all filters, you can add a crate/module path, e.g.

I don't want all calls

If you are compiling libcore, you likely don't want all borrowck dumps, but only one for a

specific function. You can filter function calls by their arguments by regexing them.

will only give you the logs of borrowchecking from_utf8_unchecked . Note that you will

still get a short message per ignored do_mir_borrowck , but none of the things inside

those calls. This helps you in looking through the calls that are happening and helps you

adjust your regex if you mistyped it.

Query level filters

Every query is automatically tagged with a logging span so that you can display all log

messages during the execution of the query. For example, if you want to log everything

during type checking:

The query arguments are included as a tracing field which means that you can filter on

the debug display of the arguments. For example, the typeck query has an argument

key: LocalDefId of what is being checked. You can use a regex to match on that

LocalDefId to log type checking for a specific function:

Different queries have different arguments. You can find a list of queries and their

arguments in rustc_middle/src/query/mod.rs .

Broad module level filters

You can also use filters similar to the log crate's filters, which will enable everything

within a specific module. This is often too verbose and too unstructured, so it is

RUSTC_LOG=rustc_borrowck[do_mir_borrowck]

RUSTC_LOG=[do_mir_borrowck{id=\.*from_utf8_unchecked\.*}]

RUSTC_LOG=[typeck]

RUSTC_LOG=[typeck{key=.*name_of_item.*}]

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

101 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#i-dont-want-all-calls
https://rustc-dev-guide.rust-lang.org/print.html#i-dont-want-all-calls
https://rustc-dev-guide.rust-lang.org/print.html#query-level-filters
https://rustc-dev-guide.rust-lang.org/print.html#query-level-filters
https://rustc-dev-guide.rust-lang.org/query.html
https://rustc-dev-guide.rust-lang.org/query.html
https://github.com/rust-lang/rust/blob/master/compiler/rustc_middle/src/query/mod.rs#L18
https://github.com/rust-lang/rust/blob/master/compiler/rustc_middle/src/query/mod.rs#L18
https://github.com/rust-lang/rust/blob/master/compiler/rustc_middle/src/query/mod.rs#L18
https://rustc-dev-guide.rust-lang.org/print.html#broad-module-level-filters
https://rustc-dev-guide.rust-lang.org/print.html#broad-module-level-filters

recommended to use function level filters.

Your log filter can be just debug to get all debug! output and higher (e.g., it will also

include info!), or path::to::module to get all output (which will include trace!) from a

particular module, or path::to::module=debug to get debug! output and higher from a

particular module.

For example, to get the debug! output and higher for a specific module, you can run the

compiler with RUSTC_LOG=path::to::module=debug rustc my-file.rs . All debug!

output will then appear in standard error.

Note that you can use a partial path and the filter will still work. For example, if you want

to see info! output from only rustdoc::passes::collect_intra_doc_links , you could

use RUSTDOC_LOG=rustdoc::passes::collect_intra_doc_links=info or you could use

RUSTDOC_LOG=rustdoc::passes::collect_intra=info .

If you are developing rustdoc, use RUSTDOC_LOG instead. If you are developing Miri, use

MIRI_LOG instead. You get the idea :)

See the tracing crate's docs, and specifically the docs for debug! to see the full syntax

you can use. (Note: unlike the compiler, the tracing crate and its examples use the

RUST_LOG environment variable. rustc, rustdoc, and other tools set custom environment

variables.)

Note that unless you use a very strict filter, the logger will emit a lot of output, so

use the most specific module(s) you can (comma-separated if multiple). It's typically

a good idea to pipe standard error to a file and look at the log output with a text editor.

So, to put it together:

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

102 of 660 8/30/23, 09:47

https://docs.rs/tracing
https://docs.rs/tracing
https://docs.rs/tracing
https://docs.rs/tracing/0.1/tracing/macro.debug.html
https://docs.rs/tracing/0.1/tracing/macro.debug.html
https://docs.rs/tracing/0.1/tracing/macro.debug.html
https://docs.rs/tracing
https://docs.rs/tracing
https://docs.rs/tracing

Log colors

By default, rustc (and other tools, like rustdoc and Miri) will be smart about when to use

ANSI colors in the log output. If they are outputting to a terminal, they will use colors, and

if they are outputting to a file or being piped somewhere else, they will not. However, it's

hard to read log output in your terminal unless you have a very strict filter, so you may

want to pipe the output to a pager like less . But then there won't be any colors, which

makes it hard to pick out what you're looking for!

You can override whether to have colors in log output with the RUSTC_LOG_COLOR

environment variable (or RUSTDOC_LOG_COLOR for rustdoc, or MIRI_LOG_COLOR for Miri,

etc.). There are three options: auto (the default), always , and never . So, if you want to

enable colors when piping to less , use something similar to this command:

This puts the output of all debug calls in `rustc_middle/src/traits` into
standard error, which might fill your console backscroll.
$ RUSTC_LOG=rustc_middle::traits=debug rustc +stage1 my-file.rs

This puts the output of all debug calls in `rustc_middle/src/traits` in
`traits-log`, so you can then see it with a text editor.
$ RUSTC_LOG=rustc_middle::traits=debug rustc +stage1 my-file.rs 2>traits-log

Not recommended! This will show the output of all `debug!` calls
in the Rust compiler, and there are a *lot* of them, so it will be
hard to find anything.
$ RUSTC_LOG=debug rustc +stage1 my-file.rs 2>all-log

This will show the output of all `info!` calls in `rustc_codegen_ssa`.
#
There's an `info!` statement in `codegen_instance` that outputs
every function that is codegen'd. This is useful to find out
which function triggers an LLVM assertion, and this is an `info!`
log rather than a `debug!` log so it will work on the official
compilers.
$ RUSTC_LOG=rustc_codegen_ssa=info rustc +stage1 my-file.rs

This will show all logs in `rustc_codegen_ssa` and `rustc_resolve`.
$ RUSTC_LOG=rustc_codegen_ssa,rustc_resolve rustc +stage1 my-file.rs

This will show the output of all `info!` calls made by rustdoc
or any rustc library it calls.
$ RUSTDOC_LOG=info rustdoc +stage1 my-file.rs

This will only show `debug!` calls made by rustdoc directly,
not any `rustc*` crate.
$ RUSTDOC_LOG=rustdoc=debug rustdoc +stage1 my-file.rs

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

103 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#log-colors
https://rustc-dev-guide.rust-lang.org/print.html#log-colors

Note that MIRI_LOG_COLOR will only color logs that come from Miri, not logs from rustc

functions that Miri calls. Use RUSTC_LOG_COLOR to color logs from rustc.

How to keep or remove debug! and trace! calls from

the resulting binary

While calls to error! , warn! and info! are included in every build of the compiler, calls

to debug! and trace! are only included in the program if debug-logging=true is

turned on in config.toml (it is turned off by default), so if you don't see DEBUG logs,

especially if you run the compiler with RUSTC_LOG=rustc rustc some.rs and only see

INFO logs, make sure that debug-logging=true is turned on in your config.toml.

Logging etiquette and conventions

Because calls to debug! are removed by default, in most cases, don't worry about the

performance of adding "unnecessary" calls to debug! and leaving them in code you

commit - they won't slow down the performance of what we ship.

That said, there can also be excessive tracing calls, especially when they are redundant

with other calls nearby or in functions called from here. There is no perfect balance to hit

here, and is left to the reviewer's discretion to decide whether to let you leave debug!

statements in or whether to ask you to remove them before merging.

It may be preferable to use trace! over debug! for very noisy logs.

A loosely followed convention is to use #[instrument(level = "debug")] (also see the

attribute's documentation) in favour of debug!("foo(...)") at the start of a function

foo . Within functions, prefer debug!(?variable.field) over debug!("xyz = {:?}",

variable.field) and debug!(bar = ?var.method(arg)) over debug!("bar = {:?}",

var.method(arg)) . The documentation for this syntax can be found here.

One thing to be careful of is expensive operations in logs.

If in the module rustc::foo you have a statement

The `-R` switch tells less to print ANSI colors without escaping them.
$ RUSTC_LOG=debug RUSTC_LOG_COLOR=always rustc +stage1 ... | less -R

debug!(x = ?random_operation(tcx));

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

104 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#how-to-keep-or-remove-debug-and-trace-calls-from-the-resulting-binary
https://rustc-dev-guide.rust-lang.org/print.html#how-to-keep-or-remove-debug-and-trace-calls-from-the-resulting-binary
https://rustc-dev-guide.rust-lang.org/print.html#how-to-keep-or-remove-debug-and-trace-calls-from-the-resulting-binary
https://rustc-dev-guide.rust-lang.org/print.html#how-to-keep-or-remove-debug-and-trace-calls-from-the-resulting-binary
https://rustc-dev-guide.rust-lang.org/print.html#how-to-keep-or-remove-debug-and-trace-calls-from-the-resulting-binary
https://rustc-dev-guide.rust-lang.org/print.html#how-to-keep-or-remove-debug-and-trace-calls-from-the-resulting-binary
https://rustc-dev-guide.rust-lang.org/print.html#how-to-keep-or-remove-debug-and-trace-calls-from-the-resulting-binary
https://rustc-dev-guide.rust-lang.org/print.html#how-to-keep-or-remove-debug-and-trace-calls-from-the-resulting-binary
https://rustc-dev-guide.rust-lang.org/print.html#how-to-keep-or-remove-debug-and-trace-calls-from-the-resulting-binary
https://rustc-dev-guide.rust-lang.org/print.html#how-to-keep-or-remove-debug-and-trace-calls-from-the-resulting-binary
https://rustc-dev-guide.rust-lang.org/print.html#logging-etiquette-and-conventions
https://rustc-dev-guide.rust-lang.org/print.html#logging-etiquette-and-conventions
https://docs.rs/tracing-attributes/0.1.17/tracing_attributes/attr.instrument.html
https://docs.rs/tracing-attributes/0.1.17/tracing_attributes/attr.instrument.html
https://docs.rs/tracing-attributes/0.1.17/tracing_attributes/attr.instrument.html
https://docs.rs/tracing-attributes/0.1.17/tracing_attributes/attr.instrument.html
https://docs.rs/tracing/0.1.28/tracing/#recording-fields
https://docs.rs/tracing/0.1.28/tracing/#recording-fields

Then if someone runs a debug rustc with RUSTC_LOG=rustc::foo , then

random_operation() will run. RUSTC_LOG filters that do not enable this debug statement

will not execute random_operation .

This means that you should not put anything too expensive or likely to crash there - that

would annoy anyone who wants to use logging for that module. No-one will know it until

someone tries to use logging to find another bug.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

105 of 660 8/30/23, 09:47

Profiling the compiler

This section talks about how to profile the compiler and find out where it spends its time.

Depending on what you're trying to measure, there are several different approaches:

• If you want to see if a PR improves or regresses compiler performance, see the

rustc-perf chapter for requesting a benchmarking run.

• If you want a medium-to-high level overview of where rustc is spending its time:

◦ The -Z self-profile flag and measureme tools offer a query-based

approach to profiling. See their docs for more information.

• If you want function level performance data or even just more details than the

above approaches:

◦ Consider using a native code profiler such as perf

◦ or tracy for a nanosecond-precision, full-featured graphical interface.

• If you want a nice visual representation of the compile times of your crate graph,

you can use cargo's --timings flag, e.g. cargo build --timings . You can use this

flag on the compiler itself with CARGOFLAGS="--timings" ./x build

• If you want to profile memory usage, you can use various tools depending on what

operating system you are using.

◦ For Windows, read our WPA guide.

Optimizing rustc's bootstrap times with cargo-llvm-

lines

Using cargo-llvm-lines you can count the number of lines of LLVM IR across all

instantiations of a generic function. Since most of the time compiling rustc is spent in

LLVM, the idea is that by reducing the amount of code passed to LLVM, compiling rustc

gets faster.

To use cargo-llvm-lines together with somewhat custom rustc build process, you can

use -C save-temps to obtain required LLVM IR. The option preserves temporary work

products created during compilation. Among those is LLVM IR that represents an input to

the optimization pipeline; ideal for our purposes. It is stored in files with *.no-opt.bc

extension in LLVM bitcode format.

Example usage:

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

106 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#profiling-the-compiler
https://rustc-dev-guide.rust-lang.org/print.html#profiling-the-compiler
https://rustc-dev-guide.rust-lang.org/tests/perf.html
https://rustc-dev-guide.rust-lang.org/tests/perf.html
https://github.com/rust-lang/measureme
https://github.com/rust-lang/measureme
https://github.com/rust-lang/measureme/blob/master/summarize/README.md
https://github.com/rust-lang/measureme/blob/master/summarize/README.md
https://rustc-dev-guide.rust-lang.org/profiling/with_perf.html
https://rustc-dev-guide.rust-lang.org/profiling/with_perf.html
https://github.com/nagisa/rust_tracy_client
https://github.com/nagisa/rust_tracy_client
https://doc.rust-lang.org/nightly/cargo/reference/timings.html
https://doc.rust-lang.org/nightly/cargo/reference/timings.html
https://doc.rust-lang.org/nightly/cargo/reference/timings.html
https://doc.rust-lang.org/nightly/cargo/reference/timings.html
https://doc.rust-lang.org/nightly/cargo/reference/timings.html
https://rustc-dev-guide.rust-lang.org/profiling/wpa_profiling.html
https://rustc-dev-guide.rust-lang.org/profiling/wpa_profiling.html
https://rustc-dev-guide.rust-lang.org/print.html#optimizing-rustcs-bootstrap-times-with-cargo-llvm-lines
https://rustc-dev-guide.rust-lang.org/print.html#optimizing-rustcs-bootstrap-times-with-cargo-llvm-lines
https://rustc-dev-guide.rust-lang.org/print.html#optimizing-rustcs-bootstrap-times-with-cargo-llvm-lines
https://rustc-dev-guide.rust-lang.org/print.html#optimizing-rustcs-bootstrap-times-with-cargo-llvm-lines
https://rustc-dev-guide.rust-lang.org/print.html#optimizing-rustcs-bootstrap-times-with-cargo-llvm-lines
https://rustc-dev-guide.rust-lang.org/print.html#optimizing-rustcs-bootstrap-times-with-cargo-llvm-lines
https://rustc-dev-guide.rust-lang.org/print.html#optimizing-rustcs-bootstrap-times-with-cargo-llvm-lines
https://github.com/dtolnay/cargo-llvm-lines
https://github.com/dtolnay/cargo-llvm-lines

Example output for the compiler:

cargo install cargo-llvm-lines
On a normal crate you could now run `cargo llvm-lines`, but `x` isn't
normal :P

Do a clean before every run, to not mix in the results from previous runs.
./x clean
env RUSTFLAGS=-Csave-temps ./x build --stage 0 compiler/rustc

Single crate, e.g., rustc_middle. (Relies on the glob support of your
shell.)
Convert unoptimized LLVM bitcode into a human readable LLVM assembly
accepted by cargo-llvm-lines.
for f in build/x86_64-unknown-linux-gnu/stage0-rustc/x86_64-unknown-linux-
gnu/release/deps/rustc_middle-*.no-opt.bc; do
 ./build/x86_64-unknown-linux-gnu/llvm/bin/llvm-dis "$f"
done
cargo llvm-lines --files ./build/x86_64-unknown-linux-gnu/stage0-
rustc/x86_64-unknown-linux-gnu/release/deps/rustc_middle-*.ll > llvm-lines-
middle.txt

Specify all crates of the compiler.
for f in build/x86_64-unknown-linux-gnu/stage0-rustc/x86_64-unknown-linux-
gnu/release/deps/*.no-opt.bc; do
 ./build/x86_64-unknown-linux-gnu/llvm/bin/llvm-dis "$f"
done
cargo llvm-lines --files ./build/x86_64-unknown-linux-gnu/stage0-
rustc/x86_64-unknown-linux-gnu/release/deps/*.ll > llvm-lines.txt

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

107 of 660 8/30/23, 09:47

Since this doesn't seem to work with incremental compilation or ./x check , you will be

compiling rustc a lot. I recommend changing a few settings in config.toml to make it

bearable:

The llvm-lines output is affected by several options. optimize = false increases it from

2.1GB to 3.5GB and codegen-units = 0 to 4.1GB.

MIR optimizations have little impact. Compared to the default RUSTFLAGS="-Z mir-opt-

level=1" , level 0 adds 0.3GB and level 2 removes 0.2GB. As of July 2022, inlining happens

in LLVM and GCC codegen backends, missing only in the Cranelift one.

 Lines Copies Function name
 ----- ------ -------------
 45207720 (100%) 1583774 (100%) (TOTAL)
 2102350 (4.7%) 146650 (9.3%) core::ptr::drop_in_place
 615080 (1.4%) 8392 (0.5%) std::thread::local::LocalKey<T>::try_with
 594296 (1.3%) 1780 (0.1%)
hashbrown::raw::RawTable<T>::rehash_in_place
 592071 (1.3%) 9691 (0.6%) core::option::Option<T>::map
 528172 (1.2%) 5741 (0.4%) core::alloc::layout::Layout::array
 466854 (1.0%) 8863 (0.6%) core::ptr::swap_nonoverlapping_one
 412736 (0.9%) 1780 (0.1%) hashbrown::raw::RawTable<T>::resize
 367776 (0.8%) 2554 (0.2%)
alloc::raw_vec::RawVec<T,A>::grow_amortized
 367507 (0.8%) 643 (0.0%)
rustc_query_system::dep_graph::graph::DepGraph<K>::with_task_impl
 355882 (0.8%) 6332 (0.4%) alloc::alloc::box_free
 354556 (0.8%) 14213 (0.9%) core::ptr::write
 354361 (0.8%) 3590 (0.2%)
core::iter::traits::iterator::Iterator::fold
 347761 (0.8%) 3873 (0.2%) rustc_middle::ty::context::tls::set_tlv
 337534 (0.7%) 2377 (0.2%) alloc::raw_vec::RawVec<T,A>::allocate_in
 331690 (0.7%) 3192 (0.2%) hashbrown::raw::RawTable<T>::find
 328756 (0.7%) 3978 (0.3%)
rustc_middle::ty::context::tls::with_context_opt
 326903 (0.7%) 642 (0.0%)
rustc_query_system::query::plumbing::try_execute_query

[rust]
A debug build takes _a third_ as long on my machine,
but compiling more than stage0 rustc becomes unbearably slow.
optimize = false

We can't use incremental anyway, so we disable it for a little speed boost.
incremental = false
We won't be running it, so no point in compiling debug checks.
debug = false

Using a single codegen unit gives less output, but is slower to compile.
codegen-units = 0 # num_cpus

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

108 of 660 8/30/23, 09:47

Profiling with perf

This is a guide for how to profile rustc with perf.

Initial steps

• Get a clean checkout of rust-lang/master, or whatever it is you want to profile.

• Set the following settings in your config.toml :

◦ debuginfo-level = 1 - enables line debuginfo

◦ jemalloc = false - lets you do memory use profiling with valgrind

◦ leave everything else the defaults

• Run ./x build to get a full build

• Make a rustup toolchain pointing to that result

◦ see the "build and run" section for instructions

Gathering a perf profile

perf is an excellent tool on linux that can be used to gather and analyze all kinds of

information. Mostly it is used to figure out where a program spends its time. It can also

be used for other sorts of events, though, like cache misses and so forth.

The basics

The basic perf command is this:

The -F99 tells perf to sample at 99 Hz, which avoids generating too much data for longer

runs (why 99 Hz you ask? It is often chosen because it is unlikely to be in lockstep with

other periodic activity). The --call-graph dwarf tells perf to get call-graph information

from debuginfo, which is accurate. The XXX is the command you want to profile. So, for

example, you might do:

to run cargo -- here <toolchain> should be the name of the toolchain you made in the

beginning. But there are some things to be aware of:

perf record -F99 --call-graph dwarf XXX

perf record -F99 --call-graph dwarf cargo +<toolchain> rustc

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

109 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#profiling-with-perf
https://rustc-dev-guide.rust-lang.org/print.html#profiling-with-perf
https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page
https://rustc-dev-guide.rust-lang.org/print.html#initial-steps
https://rustc-dev-guide.rust-lang.org/print.html#initial-steps
https://rustc-dev-guide.rust-lang.org/building/how-to-build-and-run.html#toolchain
https://rustc-dev-guide.rust-lang.org/building/how-to-build-and-run.html#toolchain
https://rustc-dev-guide.rust-lang.org/print.html#gathering-a-perf-profile
https://rustc-dev-guide.rust-lang.org/print.html#gathering-a-perf-profile
https://rustc-dev-guide.rust-lang.org/print.html#the-basics
https://rustc-dev-guide.rust-lang.org/print.html#the-basics

• You probably don't want to profile the time spend building dependencies. So

something like cargo build; cargo clean -p $C may be helpful (where $C is the

crate name)

◦ Though usually I just do touch src/lib.rs and rebuild instead. =)

• You probably don't want incremental messing about with your profile. So something

like CARGO_INCREMENTAL=0 can be helpful.

Gathering a perf profile from a perf.rust-lang.org test

Often we want to analyze a specific test from perf.rust-lang.org . To do that, the first

step is to clone the rustc-perf repository:

Doing it the easy way

Once you've cloned the repo, you can use the collector executable to do profiling for

you! You can find instructions in the rustc-perf readme.

For example, to measure the clap-rs test, you might do:

You can also use that same command to use cachegrind or other profiling tools.

Doing it the hard way

If you prefer to run things manually, that is also possible. You first need to find the source

for the test you want. Sources for the tests are found in the collector/compile-

benchmarks directory and the collector/runtime-benchmarks directory. So let's go into

the directory of a specific test; we'll use clap-rs as an example:

In this case, let's say we want to profile the cargo check performance. In that case, I

would first run some basic commands to build the dependencies:

git clone https://github.com/rust-lang/rustc-perf

./target/release/collector \
 --output-repo /path/to/place/output \
 profile perf-record \
 --rustc /path/to/rustc/executable/from/your/build/directory \
 --cargo `which cargo` \
 --filter clap-rs \
 --builds Check \

cd collector/compile-benchmarks/clap-3.1.6

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

110 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#gathering-a-perf-profile-from-a-perfrust-langorg-test
https://rustc-dev-guide.rust-lang.org/print.html#gathering-a-perf-profile-from-a-perfrust-langorg-test
https://rustc-dev-guide.rust-lang.org/print.html#gathering-a-perf-profile-from-a-perfrust-langorg-test
https://rustc-dev-guide.rust-lang.org/print.html#gathering-a-perf-profile-from-a-perfrust-langorg-test
https://rustc-dev-guide.rust-lang.org/print.html#gathering-a-perf-profile-from-a-perfrust-langorg-test
https://github.com/rust-lang/rustc-perf
https://github.com/rust-lang/rustc-perf
https://rustc-dev-guide.rust-lang.org/print.html#doing-it-the-easy-way
https://rustc-dev-guide.rust-lang.org/print.html#doing-it-the-easy-way
https://github.com/rust-lang/rustc-perf/blob/master/collector/README.md#profiling
https://github.com/rust-lang/rustc-perf/blob/master/collector/README.md#profiling
https://rustc-dev-guide.rust-lang.org/print.html#doing-it-the-hard-way
https://rustc-dev-guide.rust-lang.org/print.html#doing-it-the-hard-way
https://github.com/rust-lang/rustc-perf/tree/master/collector/compile-benchmarks
https://github.com/rust-lang/rustc-perf/tree/master/collector/compile-benchmarks
https://github.com/rust-lang/rustc-perf/tree/master/collector/compile-benchmarks
https://github.com/rust-lang/rustc-perf/tree/master/collector/compile-benchmarks
https://github.com/rust-lang/rustc-perf/tree/master/collector/compile-benchmarks
https://github.com/rust-lang/rustc-perf/tree/master/collector/compile-benchmarks
https://github.com/rust-lang/rustc-perf/tree/master/collector/compile-benchmarks
https://github.com/rust-lang/rustc-perf/tree/master/collector/compile-benchmarks
https://github.com/rust-lang/rustc-perf/tree/master/collector/runtime-benchmarks
https://github.com/rust-lang/rustc-perf/tree/master/collector/runtime-benchmarks
https://github.com/rust-lang/rustc-perf/tree/master/collector/runtime-benchmarks
https://github.com/rust-lang/rustc-perf/tree/master/collector/runtime-benchmarks
https://github.com/rust-lang/rustc-perf/tree/master/collector/runtime-benchmarks

(Again, <toolchain> should be replaced with the name of the toolchain we made in the

first step.)

Next: we want record the execution time for just the clap-rs crate, running cargo check. I

tend to use cargo rustc for this, since it also allows me to add explicit flags, which we'll

do later on.

Note that final command: it's a doozy! It uses the cargo rustc command, which

executes rustc with (potentially) additional options; the --profile check and --lib

options specify that we are doing a cargo check execution, and that this is a library (not

a binary).

At this point, we can use perf tooling to analyze the results. For example:

will open up an interactive TUI program. In simple cases, that can be helpful. For more

detailed examination, the perf-focus tool can be helpful; it is covered below.

A note of caution. Each of the rustc-perf tests is its own special snowflake. In particular,

some of them are not libraries, in which case you would want to do touch src/main.rs

and avoid passing --lib . I'm not sure how best to tell which test is which to be honest.

Gathering NLL data

If you want to profile an NLL run, you can just pass extra options to the cargo rustc

command, like so:

Analyzing a perf profile with perf focus

Setup: first clean out any old results and build the dependencies:
cargo +<toolchain> clean
CARGO_INCREMENTAL=0 cargo +<toolchain> check

touch src/lib.rs
CARGO_INCREMENTAL=0 perf record -F99 --call-graph dwarf cargo rustc --profile
check --lib

perf report

touch src/lib.rs
CARGO_INCREMENTAL=0 perf record -F99 --call-graph dwarf cargo rustc --profile
check --lib -- -Z borrowck=mir

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

111 of 660 8/30/23, 09:47

https://github.com/nikomatsakis/perf-focus
https://github.com/nikomatsakis/perf-focus
https://github.com/nikomatsakis/perf-focus
https://github.com/nikomatsakis/perf-focus
https://rustc-dev-guide.rust-lang.org/print.html#gathering-nll-data
https://rustc-dev-guide.rust-lang.org/print.html#gathering-nll-data
https://rustc-dev-guide.rust-lang.org/print.html#analyzing-a-perf-profile-with-perf-focus
https://rustc-dev-guide.rust-lang.org/print.html#analyzing-a-perf-profile-with-perf-focus
https://rustc-dev-guide.rust-lang.org/print.html#analyzing-a-perf-profile-with-perf-focus
https://rustc-dev-guide.rust-lang.org/print.html#analyzing-a-perf-profile-with-perf-focus

Once you've gathered a perf profile, we want to get some information about it. For this, I

personally use perf focus. It's a kind of simple but useful tool that lets you answer queries

like:

• "how much time was spent in function F" (no matter where it was called from)

• "how much time was spent in function F when it was called from G"

• "how much time was spent in function F excluding time spent in G"

• "what functions does F call and how much time does it spend in them"

To understand how it works, you have to know just a bit about perf. Basically, perf works

by sampling your process on a regular basis (or whenever some event occurs). For each

sample, perf gathers a backtrace. perf focus lets you write a regular expression that

tests which functions appear in that backtrace, and then tells you which percentage of

samples had a backtrace that met the regular expression. It's probably easiest to explain

by walking through how I would analyze NLL performance.

Installing perf-focus

You can install perf-focus using cargo install :

Example: How much time is spent in MIR borrowck?

Let's say we've gathered the NLL data for a test. We'd like to know how much time it is

spending in the MIR borrow-checker. The "main" function of the MIR borrowck is called

do_mir_borrowck , so we can do this command:

The '{do_mir_borrowck}' argument is called the matcher. It specifies the test to be

applied on the backtrace. In this case, the {X} indicates that there must be some function

on the backtrace that meets the regular expression X . In this case, that regex is just the

name of the function we want (in fact, it's a subset of the name; the full name includes a

bunch of other stuff, like the module path). In this mode, perf-focus just prints out the

percentage of samples where do_mir_borrowck was on the stack: in this case, 29%.

A note about c++filt. To get the data from perf , perf focus currently executes perf

script (perhaps there is a better way...). I've sometimes found that perf script outputs

cargo install perf-focus

$ perf focus '{do_mir_borrowck}'
Matcher : {do_mir_borrowck}
Matches : 228
Not Matches: 542
Percentage : 29%

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

112 of 660 8/30/23, 09:47

https://github.com/nikomatsakis/perf-focus
https://github.com/nikomatsakis/perf-focus
https://rustc-dev-guide.rust-lang.org/print.html#installing-perf-focus
https://rustc-dev-guide.rust-lang.org/print.html#installing-perf-focus
https://rustc-dev-guide.rust-lang.org/print.html#installing-perf-focus
https://rustc-dev-guide.rust-lang.org/print.html#installing-perf-focus
https://rustc-dev-guide.rust-lang.org/print.html#example-how-much-time-is-spent-in-mir-borrowck
https://rustc-dev-guide.rust-lang.org/print.html#example-how-much-time-is-spent-in-mir-borrowck

C++ mangled names. This is annoying. You can tell by running perf script | head

yourself — if you see names like 5rustc6middle instead of rustc::middle , then you

have the same problem. You can solve this by doing:

This will pipe the output from perf script through c++filt and should mostly convert

those names into a more friendly format. The --from-stdin flag to perf focus tells it to

get its data from stdin, rather than executing perf focus . We should make this more

convenient (at worst, maybe add a c++filt option to perf focus , or just always use it

— it's pretty harmless).

Example: How much time does MIR borrowck spend solving traits?

Perhaps we'd like to know how much time MIR borrowck spends in the trait checker. We

can ask this using a more complex regex:

Here we used the .. operator to ask "how often do we have do_mir_borrowck on the

stack and then, later, some function whose name begins with rustc::traits ?" (basically,

code in that module). It turns out the answer is "almost never" — only 12 samples fit that

description (if you ever see no samples, that often indicates your query is messed up).

If you're curious, you can find out exactly which samples by using the --print-match

option. This will print out the full backtrace for each sample. The | at the front of the line

indicates the part that the regular expression matched.

Example: Where does MIR borrowck spend its time?

Often we want to do more "explorational" queries. Like, we know that MIR borrowck is

29% of the time, but where does that time get spent? For that, the --tree-callees

option is often the best tool. You usually also want to give --tree-min-percent or

--tree-max-depth . The result looks like this:

perf script | c++filt | perf focus --from-stdin ...

$ perf focus '{do_mir_borrowck}..{^rustc::traits}'
Matcher : {do_mir_borrowck},..{^rustc::traits}
Matches : 12
Not Matches: 1311
Percentage : 0%

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

113 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#example-how-much-time-does-mir-borrowck-spend-solving-traits
https://rustc-dev-guide.rust-lang.org/print.html#example-how-much-time-does-mir-borrowck-spend-solving-traits
https://rustc-dev-guide.rust-lang.org/print.html#example-where-does-mir-borrowck-spend-its-time
https://rustc-dev-guide.rust-lang.org/print.html#example-where-does-mir-borrowck-spend-its-time

What happens with --tree-callees is that

• we find each sample matching the regular expression

• we look at the code that occurs after the regex match and try to build up a call tree

The --tree-min-percent 3 option says "only show me things that take more than 3% of

the time. Without this, the tree often gets really noisy and includes random stuff like the

innards of malloc. --tree-max-depth can be useful too, it just limits how many levels we

print.

For each line, we display the percent of time in that function altogether ("total") and the

percent of time spent in just that function and not some callee of that function (self).

Usually "total" is the more interesting number, but not always.

Relative percentages

By default, all in perf-focus are relative to the total program execution. This is useful to

help you keep perspective — often as we drill down to find hot spots, we can lose sight of

the fact that, in terms of overall program execution, this "hot spot" is actually not

important. It also ensures that percentages between different queries are easily

compared against one another.

That said, sometimes it's useful to get relative percentages, so perf focus offers a

--relative option. In this case, the percentages are listed only for samples that match

(vs all samples). So for example we could get our percentages relative to the borrowck

itself like so:

$ perf focus '{do_mir_borrowck}' --tree-callees --tree-min-percent 3
Matcher : {do_mir_borrowck}
Matches : 577
Not Matches: 746
Percentage : 43%

Tree
| matched `{do_mir_borrowck}` (43% total, 0% self)
: | rustc_borrowck::nll::compute_regions (20% total, 0% self)
: : | rustc_borrowck::nll::type_check::type_check_internal (13% total, 0%
self)
: : : | core::ops::function::FnOnce::call_once (5% total, 0% self)
: : : : | rustc_borrowck::nll::type_check::liveness::generate (5% total, 3%
self)
: : : | <rustc_borrowck::nll::type_check::TypeVerifier<'a, 'b, 'tcx> as
rustc::mir::visit::Visitor<'tcx>>::visit_mir (3% total, 0% self)
: | rustc::mir::visit::Visitor::visit_mir (8% total, 6% self)
: | <rustc_borrowck::MirBorrowckCtxt<'cx, 'tcx> as
rustc_mir_dataflow::DataflowResultsConsumer<'cx,
'tcx>>::visit_statement_entry (5% total, 0% self)
: | rustc_mir_dataflow::do_dataflow (3% total, 0% self)

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

114 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#relative-percentages
https://rustc-dev-guide.rust-lang.org/print.html#relative-percentages

Here you see that compute_regions came up as "47% total" — that means that 47% of

do_mir_borrowck is spent in that function. Before, we saw 20% — that's because

do_mir_borrowck itself is only 43% of the total time (and .47 * .43 = .20).

$ perf focus '{do_mir_borrowck}' --tree-callees --relative --tree-max-depth 1
--tree-min-percent 5
Matcher : {do_mir_borrowck}
Matches : 577
Not Matches: 746
Percentage : 100%

Tree
| matched `{do_mir_borrowck}` (100% total, 0% self)
: | rustc_borrowck::nll::compute_regions (47% total, 0% self) [...]
: | rustc::mir::visit::Visitor::visit_mir (19% total, 15% self) [...]
: | <rustc_borrowck::MirBorrowckCtxt<'cx, 'tcx> as
rustc_mir_dataflow::DataflowResultsConsumer<'cx,
'tcx>>::visit_statement_entry (13% total, 0% self) [...]
: | rustc_mir_dataflow::do_dataflow (8% total, 1% self) [...]

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

115 of 660 8/30/23, 09:47

Profiling on Windows

Introducing WPR and WPA

High-level performance analysis (including memory usage) can be performed with the

Windows Performance Recorder (WPR) and Windows Performance Analyzer (WPA). As the

names suggest, WPR is for recording system statistics (in the form of event trace log a.k.a.

ETL files), while WPA is for analyzing these ETL files.

WPR collects system wide statistics, so it won't just record things relevant to rustc but also

everything else that's running on the machine. During analysis, we can filter to just the

things we find interesting.

These tools are quite powerful but also require a bit of learning before we can

successfully profile the Rust compiler.

Here we will explore how to use WPR and WPA for analyzing the Rust compiler as well as

provide links to useful "profiles" (i.e., settings files that tweak the defaults for WPR and

WPA) that are specifically designed to make analyzing rustc easier.

Installing WPR and WPA

You can install WPR and WPA as part of the Windows Performance Toolkit which itself is

an option as part of downloading the Windows Assessment and Deployment Kit (ADK).

You can download the ADK installer here. Make sure to select the Windows Performance

Toolkit (you don't need to select anything else).

Recording

In order to perform system analysis, you'll first need to record your system with WPR.

Open WPR and at the bottom of the window select the "profiles" of the things you want to

record. For looking into memory usage of the rustc bootstrap process, we'll want to select

the following items:

• CPU usage

• VirtualAlloc usage

You might be tempted to record "Heap usage" as well, but this records every single heap

allocation and can be very, very expensive. For high-level analysis, it might be best to

leave that turned off.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

116 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#profiling-on-windows
https://rustc-dev-guide.rust-lang.org/print.html#profiling-on-windows
https://rustc-dev-guide.rust-lang.org/print.html#introducing-wpr-and-wpa
https://rustc-dev-guide.rust-lang.org/print.html#introducing-wpr-and-wpa
https://rustc-dev-guide.rust-lang.org/print.html#installing-wpr-and-wpa
https://rustc-dev-guide.rust-lang.org/print.html#installing-wpr-and-wpa
https://go.microsoft.com/fwlink/?linkid=2086042
https://go.microsoft.com/fwlink/?linkid=2086042
https://rustc-dev-guide.rust-lang.org/print.html#recording
https://rustc-dev-guide.rust-lang.org/print.html#recording

Now we need to get our setup ready to record. For memory usage analysis, it is best to

record the stage 2 compiler build with a stage 1 compiler build with debug symbols.

Having symbols in the compiler we're using to build rustc will aid our analysis greatly by

allowing WPA to resolve Rust symbols correctly. Unfortunately, the stage 0 compiler does

not have symbols turned on which is why we'll need to build a stage 1 compiler and then

a stage 2 compiler ourselves.

To do this, make sure you have set debuginfo-level = 1 in your config.toml file. This

tells rustc to generate debug information which includes stack frames when

bootstrapping.

Now you can build the stage 1 compiler: x build --stage 1 -i library or however else

you want to build the stage 1 compiler.

Now that the stage 1 compiler is built, we can record the stage 2 build. Go back to WPR,

click the "start" button and build the stage 2 compiler (e.g., x build --stage=2 -i

library). When this process finishes, stop the recording.

Click the Save button and once that process is complete, click the "Open in WPA" button

which appears.

Note: The trace file is fairly large so it can take WPA some time to finish opening the

file.

Analysis

Now that our ETL file is open in WPA, we can analyze the results. First, we'll want to apply

the pre-made "profile" which will put WPA into a state conducive to analyzing rustc

bootstrap. Download the profile here. Select the "Profiles" menu at the top, then "apply"

and then choose the downloaded profile.

You should see something resembling the following:

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

117 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#analysis
https://rustc-dev-guide.rust-lang.org/print.html#analysis
https://github.com/wesleywiser/rustc-bootstrap-wpa-analysis/releases/download/1/rustc.generic.wpaProfile
https://github.com/wesleywiser/rustc-bootstrap-wpa-analysis/releases/download/1/rustc.generic.wpaProfile

Next, we will need to tell WPA to load and process debug symbols so that it can properly

demangle the Rust stack traces. To do this, click "Trace" and then choose "Load Symbols".

This step can take a while.

Once WPA has loaded symbols for rustc, we can expand the rustc.exe node and begin

drilling down into the stack with the largest allocations.

To do that, we'll expand the [Root] node in the "Commit Stack" column and continue

expanding until we find interesting stack frames.

Tip: After selecting the node you want to expand, press the right arrow key. This will

expand the node and put the selection on the next largest node in the expanded

set. You can continue pressing the right arrow key until you reach an interesting

frame.

In this sample, you can see calls through codegen are allocating ~30gb of memory in total

throughout this profile.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

118 of 660 8/30/23, 09:47

Other Analysis Tabs

The profile also includes a few other tabs which can be helpful:

• System Configuration

◦ General information about the system the capture was recorded on.

• rustc Build Processes

◦ A flat list of relevant processes such as rustc.exe, cargo.exe, link.exe etc.

◦ Each process lists its command line arguments.

◦ Useful for figuring out what a specific rustc process was working on.

• rustc Build Process Tree

◦ Timeline showing when processes started and exited.

• rustc CPU Analysis

◦ Contains charts preconfigured to show hotspots in rustc.

◦ These charts are designed to support analyzing where rustc is spending its

time.

• rustc Memory Analysis

◦ Contains charts preconfigured to show where rustc is allocating memory.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

119 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#other-analysis-tabs
https://rustc-dev-guide.rust-lang.org/print.html#other-analysis-tabs

crates.io Dependencies

The Rust compiler supports building with some dependencies from crates.io . Examples

are log and env_logger .

In general, you should avoid adding dependencies to the compiler for several reasons:

• The dependency may not be of high quality or well-maintained.

• The dependency may not be using a compatible license.

• The dependency may have transitive dependencies that have one of the above

problems.

Note that there is no official policy for vetting new dependencies to the compiler.

Decisions are made on a case-by-case basis, during code review.

Permitted dependencies

The tidy tool has a list of crates that are allowed. To add a dependency that is not

already in the compiler, you will need to add it to the list.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

120 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#cratesio-dependencies
https://rustc-dev-guide.rust-lang.org/print.html#cratesio-dependencies
https://rustc-dev-guide.rust-lang.org/print.html#permitted-dependencies
https://rustc-dev-guide.rust-lang.org/print.html#permitted-dependencies
https://github.com/rust-lang/rust/blob/9d1b2106e23b1abd32fce1f17267604a5102f57a/src/tools/tidy/src/deps.rs#L73
https://github.com/rust-lang/rust/blob/9d1b2106e23b1abd32fce1f17267604a5102f57a/src/tools/tidy/src/deps.rs#L73

Contribution Procedures

• Bug reports

• Bug fixes or "normal" code changes

• New features

◦ Breaking changes

◦ Major changes

◦ Performance

• Pull requests

◦ r?

◦ Waiting for reviews

◦ CI

◦ r+

◦ Opening a PR

• External dependencies

• Writing documentation

◦ Contributing to rustc-dev-guide

• Issue triage

◦ Rfcbot labels

• Helpful links and information

Bug reports

While bugs are unfortunate, they're a reality in software. We can't fix what we don't know

about, so please report liberally. If you're not sure if something is a bug or not, feel free to

file a bug anyway.

If you believe reporting your bug publicly represents a security risk to Rust users,

please follow our instructions for reporting security vulnerabilities.

If you're using the nightly channel, please check if the bug exists in the latest toolchain

before filing your bug. It might be fixed already.

If you have the chance, before reporting a bug, please search existing issues, as it's

possible that someone else has already reported your error. This doesn't always work,

and sometimes it's hard to know what to search for, so consider this extra credit. We

won't mind if you accidentally file a duplicate report.

Similarly, to help others who encountered the bug find your issue, consider filing an issue

with a descriptive title, which contains information that might be unique to it. This can be

the language or compiler feature used, the conditions that trigger the bug, or part of the

error message if there is any. An example could be: "impossible case reached" on

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

121 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#contribution-procedures
https://rustc-dev-guide.rust-lang.org/print.html#contribution-procedures
https://rustc-dev-guide.rust-lang.org/contributing.html#bug-reports
https://rustc-dev-guide.rust-lang.org/contributing.html#bug-reports
https://rustc-dev-guide.rust-lang.org/contributing.html#bug-fixes-or-normal-code-changes
https://rustc-dev-guide.rust-lang.org/contributing.html#bug-fixes-or-normal-code-changes
https://rustc-dev-guide.rust-lang.org/contributing.html#new-features
https://rustc-dev-guide.rust-lang.org/contributing.html#new-features
https://rustc-dev-guide.rust-lang.org/contributing.html#breaking-changes
https://rustc-dev-guide.rust-lang.org/contributing.html#breaking-changes
https://rustc-dev-guide.rust-lang.org/contributing.html#major-changes
https://rustc-dev-guide.rust-lang.org/contributing.html#major-changes
https://rustc-dev-guide.rust-lang.org/contributing.html#performance
https://rustc-dev-guide.rust-lang.org/contributing.html#performance
https://rustc-dev-guide.rust-lang.org/contributing.html#pull-requests
https://rustc-dev-guide.rust-lang.org/contributing.html#pull-requests
https://rustc-dev-guide.rust-lang.org/contributing.html#r
https://rustc-dev-guide.rust-lang.org/contributing.html#r
https://rustc-dev-guide.rust-lang.org/contributing.html#waiting-for-reviews
https://rustc-dev-guide.rust-lang.org/contributing.html#waiting-for-reviews
https://rustc-dev-guide.rust-lang.org/contributing.html#ci
https://rustc-dev-guide.rust-lang.org/contributing.html#ci
https://rustc-dev-guide.rust-lang.org/contributing.html#r-1
https://rustc-dev-guide.rust-lang.org/contributing.html#r-1
https://rustc-dev-guide.rust-lang.org/contributing.html#opening-a-pr
https://rustc-dev-guide.rust-lang.org/contributing.html#opening-a-pr
https://rustc-dev-guide.rust-lang.org/contributing.html#external-dependencies
https://rustc-dev-guide.rust-lang.org/contributing.html#external-dependencies
https://rustc-dev-guide.rust-lang.org/contributing.html#writing-documentation
https://rustc-dev-guide.rust-lang.org/contributing.html#writing-documentation
https://rustc-dev-guide.rust-lang.org/contributing.html#contributing-to-rustc-dev-guide
https://rustc-dev-guide.rust-lang.org/contributing.html#contributing-to-rustc-dev-guide
https://rustc-dev-guide.rust-lang.org/contributing.html#issue-triage
https://rustc-dev-guide.rust-lang.org/contributing.html#issue-triage
https://rustc-dev-guide.rust-lang.org/contributing.html#rfcbot-labels
https://rustc-dev-guide.rust-lang.org/contributing.html#rfcbot-labels
https://rustc-dev-guide.rust-lang.org/contributing.html#helpful-links-and-information
https://rustc-dev-guide.rust-lang.org/contributing.html#helpful-links-and-information
https://rustc-dev-guide.rust-lang.org/print.html#bug-reports
https://rustc-dev-guide.rust-lang.org/print.html#bug-reports
https://www.rust-lang.org/policies/security
https://www.rust-lang.org/policies/security
https://github.com/rust-lang/rust/issues?q=is%3Aissue
https://github.com/rust-lang/rust/issues?q=is%3Aissue

lifetime inference for impl Trait in return position.

Opening an issue is as easy as following this link and filling out the fields in the

appropriate provided template.

Bug fixes or "normal" code changes

For most PRs, no special procedures are needed. You can just open a PR, and it will be

reviewed, approved, and merged. This includes most bug fixes, refactorings, and other

user-invisible changes. The next few sections talk about exceptions to this rule.

Also, note that it is perfectly acceptable to open WIP PRs or GitHub Draft PRs. Some

people prefer to do this so they can get feedback along the way or share their code with a

collaborator. Others do this so they can utilize the CI to build and test their PR (e.g. when

developing on a slow machine).

New features

Rust has strong backwards-compatibility guarantees. Thus, new features can't just be

implemented directly in stable Rust. Instead, we have 3 release channels: stable, beta,

and nightly.

• Stable: this is the latest stable release for general usage.

• Beta: this is the next release (will be stable within 6 weeks).

• Nightly: follows the master branch of the repo. This is the only channel where

unstable, incomplete, or experimental features are usable with feature gates.

See this chapter on implementing new features for more information.

Breaking changes

Breaking changes have a dedicated section in the dev-guide.

Major changes

The compiler team has a special process for large changes, whether or not they cause

breakage. This process is called a Major Change Proposal (MCP). MCP is a relatively

lightweight mechanism for getting feedback on large changes to the compiler (as

opposed to a full RFC or a design meeting with the team).

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

122 of 660 8/30/23, 09:47

https://github.com/rust-lang/rust/issues/new/choose
https://github.com/rust-lang/rust/issues/new/choose
https://rustc-dev-guide.rust-lang.org/print.html#bug-fixes-or-normal-code-changes
https://rustc-dev-guide.rust-lang.org/print.html#bug-fixes-or-normal-code-changes
https://rustc-dev-guide.rust-lang.org/contributing.html#pull-requests
https://rustc-dev-guide.rust-lang.org/contributing.html#pull-requests
https://github.blog/2019-02-14-introducing-draft-pull-requests/
https://github.blog/2019-02-14-introducing-draft-pull-requests/
https://rustc-dev-guide.rust-lang.org/print.html#new-features
https://rustc-dev-guide.rust-lang.org/print.html#new-features
https://rustc-dev-guide.rust-lang.org/implementing_new_features.html
https://rustc-dev-guide.rust-lang.org/implementing_new_features.html
https://rustc-dev-guide.rust-lang.org/print.html#breaking-changes
https://rustc-dev-guide.rust-lang.org/print.html#breaking-changes
https://rustc-dev-guide.rust-lang.org/bug-fix-procedure.html
https://rustc-dev-guide.rust-lang.org/bug-fix-procedure.html
https://rustc-dev-guide.rust-lang.org/print.html#major-changes
https://rustc-dev-guide.rust-lang.org/print.html#major-changes

Example of things that might require MCPs include major refactorings, changes to

important types, or important changes to how the compiler does something, or smaller

user-facing changes.

When in doubt, ask on zulip. It would be a shame to put a lot of work into a PR that

ends up not getting merged! See this document for more info on MCPs.

Performance

Compiler performance is important. We have put a lot of effort over the last few years

into gradually improving it.

If you suspect that your change may cause a performance regression (or improvement),

you can request a "perf run" (and your reviewer may also request one before approving).

This is yet another bot that will compile a collection of benchmarks on a compiler with

your changes. The numbers are reported here, and you can see a comparison of your

changes against the latest master.

For an introduction to the performance of Rust code in general which would also be

useful in rustc development, see The Rust Performance Book.

Pull requests

Pull requests (or PRs for short) are the primary mechanism we use to change Rust.

GitHub itself has some great documentation on using the Pull Request feature. We use

the "fork and pull" model described here, where contributors push changes to their

personal fork and create pull requests to bring those changes into the source repository.

We have more info about how to use git when contributing to Rust under the git section.

r?

All pull requests are reviewed by another person. We have a bot, @rustbot, that will

automatically assign a random person to review your request based on which files you

changed.

If you want to request that a specific person reviews your pull request, you can add an

r? to the pull request description or in a comment. For example, if you want to ask a

review to @awesome-reviewer, add

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

123 of 660 8/30/23, 09:47

https://rust-lang.zulipchat.com/#narrow/stream/131828-t-compiler
https://rust-lang.zulipchat.com/#narrow/stream/131828-t-compiler
https://forge.rust-lang.org/compiler/mcp.html
https://forge.rust-lang.org/compiler/mcp.html
https://rustc-dev-guide.rust-lang.org/print.html#performance
https://rustc-dev-guide.rust-lang.org/print.html#performance
https://perf.rust-lang.org/dashboard.html
https://perf.rust-lang.org/dashboard.html
https://perf.rust-lang.org/
https://perf.rust-lang.org/
https://nnethercote.github.io/perf-book/
https://nnethercote.github.io/perf-book/
https://rustc-dev-guide.rust-lang.org/print.html#pull-requests
https://rustc-dev-guide.rust-lang.org/print.html#pull-requests
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/about-pull-requests
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/about-pull-requests
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/getting-started/about-collaborative-development-models#fork-and-pull-model
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/getting-started/about-collaborative-development-models#fork-and-pull-model
https://rustc-dev-guide.rust-lang.org/git.html
https://rustc-dev-guide.rust-lang.org/git.html
https://rustc-dev-guide.rust-lang.org/print.html#r
https://rustc-dev-guide.rust-lang.org/print.html#r
https://github.com/rustbot
https://github.com/rustbot

to the end of the pull request description, and @rustbot will assign them instead of a

random person. This is entirely optional.

You can also assign a random reviewer from a specific team by writing r? rust-

lang/groupname . As an example, if you were making a diagnostics change, then you could

get a reviewer from the diagnostics team by adding:

For a full list of possible groupname s, check the adhoc_groups section at the

triagebot.toml config file, or the list of teams in the rust-lang teams database.

Waiting for reviews

NOTE

Pull request reviewers are often working at capacity, and many of them are

contributing on a volunteer basis. In order to minimize review delays, pull request

authors and assigned reviewers should ensure that the review label (S-waiting-

on-review and S-waiting-on-author) stays updated, invoking these commands

when appropriate:

• @rustbot author : the review is finished, and PR author should check the

comments and take action accordingly.

• @rustbot review : the author is ready for a review, and this PR will be queued

again in the reviewer's queue.

Please note that the reviewers are humans, who for the most part work on rustc in their

free time. This means that they can take some time to respond and review your PR. It also

means that reviewers can miss some PRs that are assigned to them.

To try to move PRs forward, the Triage WG regularly goes through all PRs that are waiting

for review and haven't been discussed for at least 2 weeks. If you don't get a review

within 2 weeks, feel free to ask the Triage WG on Zulip (#t-release/triage). They have

knowledge of when to ping, who might be on vacation, etc.

The reviewer may request some changes using the GitHub code review interface. They

may also request special procedures for some PRs. See Crater and Breaking Changes

chapters for some examples of such procedures.

r? @awesome-reviewer

r? rust-lang/diagnostics

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

124 of 660 8/30/23, 09:47

https://github.com/rustbot
https://github.com/rustbot
https://github.com/rust-lang/rust/blob/HEAD/triagebot.toml
https://github.com/rust-lang/rust/blob/HEAD/triagebot.toml
https://github.com/rust-lang/team/tree/HEAD/teams
https://github.com/rust-lang/team/tree/HEAD/teams
https://rustc-dev-guide.rust-lang.org/print.html#waiting-for-reviews
https://rustc-dev-guide.rust-lang.org/print.html#waiting-for-reviews
https://rust-lang.zulipchat.com/#narrow/stream/242269-t-release.2Ftriage
https://rust-lang.zulipchat.com/#narrow/stream/242269-t-release.2Ftriage
https://rustc-dev-guide.rust-lang.org/tests/crater.html
https://rustc-dev-guide.rust-lang.org/tests/crater.html
https://rustc-dev-guide.rust-lang.org/bug-fix-procedure.html
https://rustc-dev-guide.rust-lang.org/bug-fix-procedure.html

CI

In addition to being reviewed by a human, pull requests are automatically tested, thanks

to continuous integration (CI). Basically, every time you open and update a pull request, CI

builds the compiler and tests it against the compiler test suite, and also performs other

tests such as checking that your pull request is in compliance with Rust's style guidelines.

Running continuous integration tests allows PR authors to catch mistakes early without

going through a first review cycle, and also helps reviewers stay aware of the status of a

particular pull request.

Rust has plenty of CI capacity, and you should never have to worry about wasting

computational resources each time you push a change. It is also perfectly fine (and even

encouraged!) to use the CI to test your changes if it can help your productivity. In

particular, we don't recommend running the full ./x test suite locally, since it takes a

very long time to execute.

r+

After someone has reviewed your pull request, they will leave an annotation on the pull

request with an r+ . It will look something like this:

This tells @bors, our lovable integration bot, that your pull request has been approved.

The PR then enters the merge queue, where @bors will run all the tests on every platform

we support. If it all works out, @bors will merge your code into master and close the pull

request.

Depending on the scale of the change, you may see a slightly different form of r+ :

The additional rollup tells @bors that this change should always be "rolled up". Changes

that are rolled up are tested and merged alongside other PRs, to speed the process up.

Typically only small changes that are expected not to conflict with one another are

marked as "always roll up".

Be patient; this can take a while and the queue can sometimes be long. PRs are never

merged by hand.

Opening a PR

@bors r+

@bors r+ rollup

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

125 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#ci
https://rustc-dev-guide.rust-lang.org/print.html#ci
https://rustc-dev-guide.rust-lang.org/tests/intro.html
https://rustc-dev-guide.rust-lang.org/tests/intro.html
https://rustc-dev-guide.rust-lang.org/print.html#r-1
https://rustc-dev-guide.rust-lang.org/print.html#r-1
https://github.com/bors
https://github.com/bors
https://bors.rust-lang.org/queue/rust
https://bors.rust-lang.org/queue/rust
https://github.com/bors
https://github.com/bors
https://github.com/bors
https://github.com/bors
https://github.com/bors
https://github.com/bors
https://rustc-dev-guide.rust-lang.org/print.html#opening-a-pr
https://rustc-dev-guide.rust-lang.org/print.html#opening-a-pr

You are now ready to file a pull request? Great! Here are a few points you should be

aware of.

All pull requests should be filed against the master branch, unless you know for sure

that you should target a different branch.

Make sure your pull request is in compliance with Rust's style guidelines by running

We recommend to make this check before every pull request (and every new commit in a

pull request); you can add git hooks before every push to make sure you never forget to

make this check. The CI will also run tidy and will fail if tidy fails.

Rust follows a no merge-commit policy, meaning, when you encounter merge conflicts you

are expected to always rebase instead of merging. E.g. always use rebase when bringing

the latest changes from the master branch to your feature branch.

If you encounter merge conflicts or when a reviewer asks you to perform some changes,

your PR will get marked as S-waiting-on-author . When you resolve them, you should

use @rustbot to mark it as S-waiting-on-review :

See this chapter for more details.

GitHub allows closing issues using keywords. This feature should be used to keep the

issue tracker tidy. However, it is generally preferred to put the "closes #123" text in the PR

description rather than the issue commit; particularly during rebasing, citing the issue

number in the commit can "spam" the issue in question.

External dependencies

This section has moved to "Using External Repositories".

Writing documentation

Documentation improvements are very welcome. The source of doc.rust-lang.org is

located in src/doc in the tree, and standard API documentation is generated from the

source code itself (e.g. library/std/src/lib.rs). Documentation pull requests function

in the same way as other pull requests.

$./x test tidy --bless

@rustbot label -S-waiting-on-author +S-waiting-on-review

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

126 of 660 8/30/23, 09:47

https://git-scm.com/book/en/v2/Customizing-Git-Git-Hooks
https://git-scm.com/book/en/v2/Customizing-Git-Git-Hooks
https://rustc-dev-guide.rust-lang.org/rustbot.html#issue-relabeling
https://rustc-dev-guide.rust-lang.org/rustbot.html#issue-relabeling
https://docs.github.com/en/issues/tracking-your-work-with-issues/linking-a-pull-request-to-an-issue
https://docs.github.com/en/issues/tracking-your-work-with-issues/linking-a-pull-request-to-an-issue
https://rustc-dev-guide.rust-lang.org/print.html#external-dependencies
https://rustc-dev-guide.rust-lang.org/print.html#external-dependencies
https://rustc-dev-guide.rust-lang.org/external-repos.html
https://rustc-dev-guide.rust-lang.org/external-repos.html
https://rustc-dev-guide.rust-lang.org/print.html#writing-documentation
https://rustc-dev-guide.rust-lang.org/print.html#writing-documentation
https://github.com/rust-lang/rust/tree/master/src/doc
https://github.com/rust-lang/rust/tree/master/src/doc
https://github.com/rust-lang/rust/tree/master/src/doc
https://github.com/rust-lang/rust/blob/master/library/std/src/lib.rs#L1
https://github.com/rust-lang/rust/blob/master/library/std/src/lib.rs#L1
https://github.com/rust-lang/rust/blob/master/library/std/src/lib.rs#L1

To find documentation-related issues, sort by the A-docs label.

You can find documentation style guidelines in RFC 1574.

To build the standard library documentation, use x doc --stage 0 library --open . To

build the documentation for a book (e.g. the unstable book), use x doc src/doc

/unstable-book. Results should appear in build/host/doc , as well as automatically

open in your default browser. See Building Documentation for more information.

You can also use rustdoc directly to check small fixes. For example, rustdoc src/doc

/reference.md will render reference to doc/reference.html . The CSS might be messed

up, but you can verify that the HTML is right.

Contributing to rustc-dev-guide

Contributions to the rustc-dev-guide are always welcome, and can be made directly at the

rust-lang/rustc-dev-guide repo. The issue tracker in that repo is also a great way to find

things that need doing. There are issues for beginners and advanced compiler devs alike!

Just a few things to keep in mind:

• Please limit line length to 100 characters. This is enforced by CI, and you can run the

checks locally with ci/lengthcheck.sh .

• When contributing text to the guide, please contextualize the information with some

time period and/or a reason so that the reader knows how much to trust or mistrust

the information. Aim to provide a reasonable amount of context, possibly including

but not limited to:

◦ A reason for why the data may be out of date other than "change", as change

is a constant across the project.

◦ The date the comment was added, e.g. instead of writing "Currently, ..." or "As of

now, ...", consider adding the date, in one of the following formats:

▪ Jan 2021

▪ January 2021

▪ jan 2021

▪ january 2021

There is a CI action (in ~/.github/workflows/date-check.yml) that generates

a monthly issue with any of these that are over 6 months old.

For the action to pick the date, add a special annotation before specifying the

date:

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

127 of 660 8/30/23, 09:47

https://github.com/rust-lang/rust/issues?q=is%3Aopen%20is%3Aissue%20label%3AA-docs
https://github.com/rust-lang/rust/issues?q=is%3Aopen%20is%3Aissue%20label%3AA-docs
https://github.com/rust-lang/rfcs/blob/master/text/1574-more-api-documentation-conventions.md#appendix-a-full-conventions-text
https://github.com/rust-lang/rfcs/blob/master/text/1574-more-api-documentation-conventions.md#appendix-a-full-conventions-text
https://rustc-dev-guide.rust-lang.org/building/compiler-documenting.html#building-documentation
https://rustc-dev-guide.rust-lang.org/building/compiler-documenting.html#building-documentation
https://rustc-dev-guide.rust-lang.org/print.html#contributing-to-rustc-dev-guide
https://rustc-dev-guide.rust-lang.org/print.html#contributing-to-rustc-dev-guide
https://rustc-dev-guide.rust-lang.org/
https://rustc-dev-guide.rust-lang.org/
https://github.com/rust-lang/rustc-dev-guide
https://github.com/rust-lang/rustc-dev-guide
https://github.com/rust-lang/rustc-dev-guide
https://github.com/rust-lang/rustc-dev-guide

Example:

For cases where the date should not be part of the visible rendered output,

use the following instead:

◦ A link to a relevant WG, tracking issue, rustc rustdoc page, or similar, that

may provide further explanation for the change process or a way to verify that

the information is not outdated.

• If a text grows rather long (more than a few page scrolls) or complicated (more than

four subsections) it might benefit from having a Table of Contents at the beginning,

which you can auto-generate by including the <!-- toc --> marker.

Issue triage

Sometimes, an issue will stay open, even though the bug has been fixed. And sometimes,

the original bug may go stale because something has changed in the meantime.

It can be helpful to go through older bug reports and make sure that they are still valid.

Load up an older issue, double check that it's still true, and leave a comment letting us

know if it is or is not. The least recently updated sort is good for finding issues like this.

Thanks to @rustbot , anyone can help triage issues by adding appropriate labels to issues

that haven't been triaged yet:

Labels Color Description

A-   Yellow The area of the project an issue relates to.

B-   Magenta Issues which are blockers.

beta-   Dark Blue
Tracks changes which need to be backported

to beta

C-   Light Purple The category of an issue.

D-   Mossy Green Issues for diagnostics.

E-   Green
The experience level necessary to fix an

issue.

<!-- date-check --> Jan 2023

As of <!-- date-check --> Jan 2023, the foo did the bar.

<!-- date-check: Jan 2023 -->

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

128 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#issue-triage
https://rustc-dev-guide.rust-lang.org/print.html#issue-triage
https://github.com/rust-lang/rust/issues?q=is%3Aissue+is%3Aopen+sort%3Aupdated-asc
https://github.com/rust-lang/rust/issues?q=is%3Aissue+is%3Aopen+sort%3Aupdated-asc
https://rustc-dev-guide.rust-lang.org/rustbot.html
https://rustc-dev-guide.rust-lang.org/rustbot.html
https://rustc-dev-guide.rust-lang.org/rustbot.html
https://rustc-dev-guide.rust-lang.org/rustbot.html
https://github.com/rust-lang/rust/labels?q=A
https://github.com/rust-lang/rust/labels?q=A
https://github.com/rust-lang/rust/labels?q=B
https://github.com/rust-lang/rust/labels?q=B
https://github.com/rust-lang/rust/labels?q=beta
https://github.com/rust-lang/rust/labels?q=beta
https://forge.rust-lang.org/release/backporting.html#beta-backporting-in-rust-langrust
https://forge.rust-lang.org/release/backporting.html#beta-backporting-in-rust-langrust
https://forge.rust-lang.org/release/backporting.html#beta-backporting-in-rust-langrust
https://forge.rust-lang.org/release/backporting.html#beta-backporting-in-rust-langrust
https://github.com/rust-lang/rust/labels?q=C
https://github.com/rust-lang/rust/labels?q=C
https://github.com/rust-lang/rust/labels?q=D
https://github.com/rust-lang/rust/labels?q=D
https://github.com/rust-lang/rust/labels?q=E
https://github.com/rust-lang/rust/labels?q=E

Labels Color Description

F-   Peach Issues for nightly features.

I-   Red The importance of the issue.

I-*-

nominated
  Red

The issue has been nominated for discussion

at the next meeting of the corresponding

team.

I-prioritize   Red

The issue has been nominated for

prioritization by the team tagged with a

T-prefixed label.

metabug   Purple Bugs that collect other bugs.

O-   Purple Grey
The operating system or platform that the

issue is specific to.

P-   Orange

The issue priority. These labels can be

assigned by anyone that understand the

issue and is able to prioritize it, and remove

the I-prioritize label.

regression-   Pink Tracks regressions from a stable release.

relnotes   Light Orange
Changes that should be documented in the

release notes of the next release.

S-   Gray Tracks the status of pull requests.

S-tracking-   Steel Blue Tracks the status of tracking issues.

stable-   Dark Blue
Tracks changes which need to be backported

to stable in anticipation of a point release.

T-   Blue Denotes which team the issue belongs to.

WG-   Green
Denotes which working group the issue

belongs to.

Rfcbot labels

rfcbot uses its own labels for tracking the process of coordinating asynchronous

decisions, such as approving or rejecting a change. This is used for RFCs, issues, and pull

requests.

Labels Color Description

proposed-

final-

comment-

period

  Gray

Currently awaiting signoff of all team

members in order to enter the final

comment period.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

129 of 660 8/30/23, 09:47

https://github.com/rust-lang/rust/labels?q=F
https://github.com/rust-lang/rust/labels?q=F
https://github.com/rust-lang/rust/labels?q=I
https://github.com/rust-lang/rust/labels?q=I
https://github.com/rust-lang/rust/labels?q=nominated
https://github.com/rust-lang/rust/labels?q=nominated
https://github.com/rust-lang/rust/labels?q=nominated
https://github.com/rust-lang/rust/labels?q=nominated
https://github.com/rust-lang/rust/labels/I-prioritize
https://github.com/rust-lang/rust/labels/I-prioritize
https://github.com/rust-lang/rust/labels/metabug
https://github.com/rust-lang/rust/labels/metabug
https://github.com/rust-lang/rust/labels?q=O
https://github.com/rust-lang/rust/labels?q=O
https://github.com/rust-lang/rust/labels?q=P
https://github.com/rust-lang/rust/labels?q=P
https://github.com/rust-lang/rust/labels/I-prioritize
https://github.com/rust-lang/rust/labels/I-prioritize
https://github.com/rust-lang/rust/labels?q=regression
https://github.com/rust-lang/rust/labels?q=regression
https://github.com/rust-lang/rust/labels/relnotes
https://github.com/rust-lang/rust/labels/relnotes
https://github.com/rust-lang/rust/labels?q=S
https://github.com/rust-lang/rust/labels?q=S
https://github.com/rust-lang/rust/labels?q=s-tracking
https://github.com/rust-lang/rust/labels?q=s-tracking
https://github.com/rust-lang/rust/labels/C-tracking-issue
https://github.com/rust-lang/rust/labels/C-tracking-issue
https://github.com/rust-lang/rust/labels?q=stable
https://github.com/rust-lang/rust/labels?q=stable
https://forge.rust-lang.org/release/backporting.html#stable-backporting-in-rust-langrust
https://forge.rust-lang.org/release/backporting.html#stable-backporting-in-rust-langrust
https://forge.rust-lang.org/release/backporting.html#stable-backporting-in-rust-langrust
https://forge.rust-lang.org/release/backporting.html#stable-backporting-in-rust-langrust
https://github.com/rust-lang/rust/labels?q=T
https://github.com/rust-lang/rust/labels?q=T
https://github.com/rust-lang/rust/labels?q=WG
https://github.com/rust-lang/rust/labels?q=WG
https://rustc-dev-guide.rust-lang.org/print.html#rfcbot-labels
https://rustc-dev-guide.rust-lang.org/print.html#rfcbot-labels
https://github.com/anp/rfcbot-rs/
https://github.com/anp/rfcbot-rs/
https://github.com/rust-lang/rfcs
https://github.com/rust-lang/rfcs
https://github.com/rust-lang/rust/labels/proposed-final-comment-period
https://github.com/rust-lang/rust/labels/proposed-final-comment-period
https://github.com/rust-lang/rust/labels/proposed-final-comment-period
https://github.com/rust-lang/rust/labels/proposed-final-comment-period
https://github.com/rust-lang/rust/labels/proposed-final-comment-period
https://github.com/rust-lang/rust/labels/proposed-final-comment-period
https://github.com/rust-lang/rust/labels/proposed-final-comment-period
https://github.com/rust-lang/rust/labels/proposed-final-comment-period

Labels Color Description

disposition-

merge
  Green Indicates the intent is to merge the change.

disposition-

close
  Red

Indicates the intent is to not accept the

change and close it.

disposition-

postpone
  Gray

Indicates the intent is to not accept the

change at this time and postpone it to a

later date.

final-

comment-

period

  Blue
Currently soliciting final comments before

merging or closing.

finished-final-

comment-

period

  Light Yellow
The final comment period has concluded,

and the issue will be merged or closed.

postponed   Yellow The issue has been postponed.

closed   Red The issue has been rejected.

to-announce   Gray

Issues that have finished their final-

comment-period and should be publicly

announced. Note: the rust-lang/rust

repository uses this label differently, to

announce issues at the triage meetings.

Helpful links and information

This section has moved to the "About this guide" chapter.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

130 of 660 8/30/23, 09:47

https://github.com/rust-lang/rust/labels/disposition-merge
https://github.com/rust-lang/rust/labels/disposition-merge
https://github.com/rust-lang/rust/labels/disposition-merge
https://github.com/rust-lang/rust/labels/disposition-merge
https://github.com/rust-lang/rust/labels/disposition-close
https://github.com/rust-lang/rust/labels/disposition-close
https://github.com/rust-lang/rust/labels/disposition-close
https://github.com/rust-lang/rust/labels/disposition-close
https://github.com/rust-lang/rust/labels/disposition-postpone
https://github.com/rust-lang/rust/labels/disposition-postpone
https://github.com/rust-lang/rust/labels/disposition-postpone
https://github.com/rust-lang/rust/labels/disposition-postpone
https://github.com/rust-lang/rust/labels/final-comment-period
https://github.com/rust-lang/rust/labels/final-comment-period
https://github.com/rust-lang/rust/labels/final-comment-period
https://github.com/rust-lang/rust/labels/final-comment-period
https://github.com/rust-lang/rust/labels/final-comment-period
https://github.com/rust-lang/rust/labels/final-comment-period
https://github.com/rust-lang/rust/labels/finished-final-comment-period
https://github.com/rust-lang/rust/labels/finished-final-comment-period
https://github.com/rust-lang/rust/labels/finished-final-comment-period
https://github.com/rust-lang/rust/labels/finished-final-comment-period
https://github.com/rust-lang/rust/labels/finished-final-comment-period
https://github.com/rust-lang/rust/labels/finished-final-comment-period
https://github.com/rust-lang/rfcs/labels/postponed
https://github.com/rust-lang/rfcs/labels/postponed
https://github.com/rust-lang/rfcs/labels/closed
https://github.com/rust-lang/rfcs/labels/closed
https://github.com/rust-lang/rfcs/labels/to-announce
https://github.com/rust-lang/rfcs/labels/to-announce
https://rustc-dev-guide.rust-lang.org/print.html#helpful-links-and-information
https://rustc-dev-guide.rust-lang.org/print.html#helpful-links-and-information
https://rustc-dev-guide.rust-lang.org/about-this-guide.html#other-places-to-find-information
https://rustc-dev-guide.rust-lang.org/about-this-guide.html#other-places-to-find-information

About the compiler team

rustc is maintained by the Rust compiler team. The people who belong to this team

collectively work to track regressions and implement new features. Members of the Rust

compiler team are people who have made significant contributions to rustc and its

design.

Discussion

Currently the compiler team chats in Zulip:

• Team chat occurs in the t-compiler stream on the Zulip instance

• There are also a number of other associated Zulip streams, such as

t-compiler/help , where people can ask for help with rustc development, or

t-compiler/meetings , where the team holds their weekly triage and steering

meetings.

Expert map

If you're interested in figuring out who can answer questions about a particular part of

the compiler, or you'd just like to know who works on what, check out our experts

directory. It contains a listing of the various parts of the compiler and a list of people who

are experts on each one.

Rust compiler meeting

The compiler team has a weekly meeting where we do triage and try to generally stay on

top of new bugs, regressions, and discuss important things in general. They are held on

Zulip. It works roughly as follows:

• Announcements, MCPs/FCPs, and WG-check-ins: We share some announcements

with the rest of the team about important things we want everyone to be aware of.

We also share the status of MCPs and FCPs and we use the opportunity to have a

couple of WGs giving us an update about their work.

• Check for beta and stable nominations: These are nominations of things to

backport to beta and stable respectively. We then look for new cases where the

compiler broke previously working code in the wild. Regressions are important

issues to fix, so it's likely that they are tagged as P-critical or P-high; the major

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

131 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#about-the-compiler-team
https://rustc-dev-guide.rust-lang.org/print.html#about-the-compiler-team
https://www.rust-lang.org/governance/teams/compiler
https://www.rust-lang.org/governance/teams/compiler
https://rustc-dev-guide.rust-lang.org/print.html#discussion
https://rustc-dev-guide.rust-lang.org/print.html#discussion
https://rust-lang.zulipchat.com/#narrow/stream/131828-t-compiler
https://rust-lang.zulipchat.com/#narrow/stream/131828-t-compiler
https://rust-lang.zulipchat.com/#narrow/stream/131828-t-compiler
https://rust-lang.zulipchat.com/#narrow/stream/182449-t-compiler.2Fhelp
https://rust-lang.zulipchat.com/#narrow/stream/182449-t-compiler.2Fhelp
https://rust-lang.zulipchat.com/#narrow/stream/182449-t-compiler.2Fhelp
https://rust-lang.zulipchat.com/#narrow/stream/238009-t-compiler.2Fmeetings
https://rust-lang.zulipchat.com/#narrow/stream/238009-t-compiler.2Fmeetings
https://rust-lang.zulipchat.com/#narrow/stream/238009-t-compiler.2Fmeetings
https://rustc-dev-guide.rust-lang.org/print.html#expert-map
https://rustc-dev-guide.rust-lang.org/print.html#expert-map
https://github.com/rust-lang/compiler-team/blob/master/content/experts/map.toml
https://github.com/rust-lang/compiler-team/blob/master/content/experts/map.toml
https://github.com/rust-lang/compiler-team/blob/master/content/experts/map.toml
https://github.com/rust-lang/compiler-team/blob/master/content/experts/map.toml
https://rustc-dev-guide.rust-lang.org/print.html#rust-compiler-meeting
https://rustc-dev-guide.rust-lang.org/print.html#rust-compiler-meeting
https://rust-lang.zulipchat.com/#narrow/stream/238009-t-compiler.2Fmeetings
https://rust-lang.zulipchat.com/#narrow/stream/238009-t-compiler.2Fmeetings

exception would be bug fixes (though even there we often aim to give warnings

first).

• Review P-critical and P-high bugs: P-critical and P-high bugs are those that are

sufficiently important for us to actively track progress. P-critical and P-high bugs

should ideally always have an assignee.

• Check S-waiting-on-team and I-nominated issues: These are issues where

feedback from the team is desired.

• Look over the performance triage report: We check for PRs that made the

performance worse and try to decide if it's worth reverting the performance

regression or if the regression can be addressed in a future PR.

The meeting currently takes place on Thursdays at 10am Boston time (UTC-4 typically, but

daylight savings time sometimes makes things complicated).

Team membership

Membership in the Rust team is typically offered when someone has been making

significant contributions to the compiler for some time. Membership is both a recognition

but also an obligation: compiler team members are generally expected to help with

upkeep as well as doing reviews and other work.

If you are interested in becoming a compiler team member, the first thing to do is to start

fixing some bugs, or get involved in a working group. One good way to find bugs is to look

for open issues tagged with E-easy or E-mentor.

You can also dig through the graveyard of PRs that were closed due to inactivity, some of

them may contain work that is still useful - refer to the associated issues, if any - and only

needs some finishing touches for which the original author didn't have time.

r+ rights

Once you have made a number of individual PRs to rustc, we will often offer r+ privileges.

This means that you have the right to instruct "bors" (the robot that manages which PRs

get landed into rustc) to merge a PR (here are some instructions for how to talk to bors).

The guidelines for reviewers are as follows:

• You are always welcome to review any PR, regardless of who it is assigned to.

However, do not r+ PRs unless:

◦ You are confident in that part of the code.

◦ You are confident that nobody else wants to review it first.

▪ For example, sometimes people will express a desire to review a PR

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

132 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/bug-fix-procedure.html
https://rustc-dev-guide.rust-lang.org/bug-fix-procedure.html
https://rustc-dev-guide.rust-lang.org/bug-fix-procedure.html
https://rustc-dev-guide.rust-lang.org/bug-fix-procedure.html
https://rustc-dev-guide.rust-lang.org/print.html#team-membership
https://rustc-dev-guide.rust-lang.org/print.html#team-membership
https://github.com/rust-lang/rust/issues?q=is%3Aopen+is%3Aissue+label%3AE-easy
https://github.com/rust-lang/rust/issues?q=is%3Aopen+is%3Aissue+label%3AE-easy
https://github.com/rust-lang/rust/issues?q=is%3Aopen+is%3Aissue+label%3AE-mentor
https://github.com/rust-lang/rust/issues?q=is%3Aopen+is%3Aissue+label%3AE-mentor
https://github.com/rust-lang/rust/pulls?q=is%3Apr+label%3AS-inactive
https://github.com/rust-lang/rust/pulls?q=is%3Apr+label%3AS-inactive
https://rustc-dev-guide.rust-lang.org/print.html#r-rights
https://rustc-dev-guide.rust-lang.org/print.html#r-rights
https://bors.rust-lang.org/
https://bors.rust-lang.org/

before it lands, perhaps because it touches a particularly sensitive part of

the code.

• Always be polite when reviewing: you are a representative of the Rust project, so it is

expected that you will go above and beyond when it comes to the Code of Conduct.

Reviewer rotation

Once you have r+ rights, you can also be added to the reviewer rotation. triagebot is the

bot that automatically assigns incoming PRs to reviewers. If you are added, you will be

randomly selected to review PRs. If you find you are assigned a PR that you don't feel

comfortable reviewing, you can also leave a comment like r? @so-and-so to assign to

someone else — if you don't know who to request, just write r? @nikomatsakis for

reassignment and @nikomatsakis will pick someone for you.

Getting on the reviewer rotation is much appreciated as it lowers the review burden for

all of us! However, if you don't have time to give people timely feedback on their PRs, it

may be better that you don't get on the list.

Full team membership

Full team membership is typically extended once someone made many contributions to

the Rust compiler over time, ideally (but not necessarily) to multiple areas. Sometimes

this might be implementing a new feature, but it is also important — perhaps more

important! — to have time and willingness to help out with general upkeep such as

bugfixes, tracking regressions, and other less glamorous work.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

133 of 660 8/30/23, 09:47

https://www.rust-lang.org/policies/code-of-conduct
https://www.rust-lang.org/policies/code-of-conduct
https://rustc-dev-guide.rust-lang.org/print.html#reviewer-rotation
https://rustc-dev-guide.rust-lang.org/print.html#reviewer-rotation
https://github.com/rust-lang/rust/blob/36285c5de8915ecc00d91ae0baa79a87ed5858d5/triagebot.toml#L528-L577
https://github.com/rust-lang/rust/blob/36285c5de8915ecc00d91ae0baa79a87ed5858d5/triagebot.toml#L528-L577
https://github.com/rust-lang/triagebot/
https://github.com/rust-lang/triagebot/
https://forge.rust-lang.org/triagebot/pr-assignment.html
https://forge.rust-lang.org/triagebot/pr-assignment.html
https://rustc-dev-guide.rust-lang.org/print.html#full-team-membership
https://rustc-dev-guide.rust-lang.org/print.html#full-team-membership

Using Git

• Prerequisites

• Standard Process

• Troubleshooting git issues

◦ I made a merge commit by accident.

◦ I deleted my fork on GitHub!

◦ I changed a submodule by accident

◦ I see "error: cannot rebase" when I try to rebase

◦ I see 'Untracked Files: src/stdarch'?

◦ I see <<< HEAD ?

◦ Git is trying to rebase commits I didn't write?

◦ Quick note about submodules

• Rebasing and Conflicts

◦ Rebasing

◦ Keeping things up to date

• Advanced Rebasing

◦ git range-diff

• No-Merge Policy

• Tips for reviewing

◦ Hiding whitespace

◦ Fetching PRs

◦ Moving large sections of code

◦ range-diff

◦ Ignoring changes to specific files

• Git submodules

The Rust project uses Git to manage its source code. In order to contribute, you'll need

some familiarity with its features so that your changes can be incorporated into the

compiler.

The goal of this page is to cover some of the more common questions and problems new

contributors face. Although some Git basics will be covered here, if you find that this is

still a little too fast for you, it might make sense to first read some introductions to Git,

such as the Beginner and Getting started sections of this tutorial from Atlassian. GitHub

also provides documentation and guides for beginners, or you can consult the more in

depth book from Git.

This guide is incomplete. If you run into trouble with git that this page doesn't help with,

please open an issue so we can document how to fix it.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

134 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#using-git
https://rustc-dev-guide.rust-lang.org/print.html#using-git
https://rustc-dev-guide.rust-lang.org/git.html#prerequisites
https://rustc-dev-guide.rust-lang.org/git.html#prerequisites
https://rustc-dev-guide.rust-lang.org/git.html#standard-process
https://rustc-dev-guide.rust-lang.org/git.html#standard-process
https://rustc-dev-guide.rust-lang.org/git.html#troubleshooting-git-issues
https://rustc-dev-guide.rust-lang.org/git.html#troubleshooting-git-issues
https://rustc-dev-guide.rust-lang.org/git.html#i-made-a-merge-commit-by-accident
https://rustc-dev-guide.rust-lang.org/git.html#i-made-a-merge-commit-by-accident
https://rustc-dev-guide.rust-lang.org/git.html#i-deleted-my-fork-on-github
https://rustc-dev-guide.rust-lang.org/git.html#i-deleted-my-fork-on-github
https://rustc-dev-guide.rust-lang.org/git.html#i-changed-a-submodule-by-accident
https://rustc-dev-guide.rust-lang.org/git.html#i-changed-a-submodule-by-accident
https://rustc-dev-guide.rust-lang.org/git.html#i-see-error-cannot-rebase-when-i-try-to-rebase
https://rustc-dev-guide.rust-lang.org/git.html#i-see-error-cannot-rebase-when-i-try-to-rebase
https://rustc-dev-guide.rust-lang.org/git.html#i-see-untracked-files-srcstdarch
https://rustc-dev-guide.rust-lang.org/git.html#i-see-untracked-files-srcstdarch
https://rustc-dev-guide.rust-lang.org/git.html#i-see--head
https://rustc-dev-guide.rust-lang.org/git.html#i-see--head
https://rustc-dev-guide.rust-lang.org/git.html#i-see--head
https://rustc-dev-guide.rust-lang.org/git.html#i-see--head
https://rustc-dev-guide.rust-lang.org/git.html#i-see--head
https://rustc-dev-guide.rust-lang.org/git.html#git-is-trying-to-rebase-commits-i-didnt-write
https://rustc-dev-guide.rust-lang.org/git.html#git-is-trying-to-rebase-commits-i-didnt-write
https://rustc-dev-guide.rust-lang.org/git.html#quick-note-about-submodules
https://rustc-dev-guide.rust-lang.org/git.html#quick-note-about-submodules
https://rustc-dev-guide.rust-lang.org/git.html#rebasing-and-conflicts
https://rustc-dev-guide.rust-lang.org/git.html#rebasing-and-conflicts
https://rustc-dev-guide.rust-lang.org/git.html#rebasing
https://rustc-dev-guide.rust-lang.org/git.html#rebasing
https://rustc-dev-guide.rust-lang.org/git.html#keeping-things-up-to-date
https://rustc-dev-guide.rust-lang.org/git.html#keeping-things-up-to-date
https://rustc-dev-guide.rust-lang.org/git.html#advanced-rebasing
https://rustc-dev-guide.rust-lang.org/git.html#advanced-rebasing
https://rustc-dev-guide.rust-lang.org/git.html#git-range-diff
https://rustc-dev-guide.rust-lang.org/git.html#git-range-diff
https://rustc-dev-guide.rust-lang.org/git.html#git-range-diff
https://rustc-dev-guide.rust-lang.org/git.html#no-merge-policy
https://rustc-dev-guide.rust-lang.org/git.html#no-merge-policy
https://rustc-dev-guide.rust-lang.org/git.html#tips-for-reviewing
https://rustc-dev-guide.rust-lang.org/git.html#tips-for-reviewing
https://rustc-dev-guide.rust-lang.org/git.html#hiding-whitespace
https://rustc-dev-guide.rust-lang.org/git.html#hiding-whitespace
https://rustc-dev-guide.rust-lang.org/git.html#fetching-prs
https://rustc-dev-guide.rust-lang.org/git.html#fetching-prs
https://rustc-dev-guide.rust-lang.org/git.html#moving-large-sections-of-code
https://rustc-dev-guide.rust-lang.org/git.html#moving-large-sections-of-code
https://rustc-dev-guide.rust-lang.org/git.html#range-diff
https://rustc-dev-guide.rust-lang.org/git.html#range-diff
https://rustc-dev-guide.rust-lang.org/git.html#ignoring-changes-to-specific-files
https://rustc-dev-guide.rust-lang.org/git.html#ignoring-changes-to-specific-files
https://rustc-dev-guide.rust-lang.org/git.html#git-submodules
https://rustc-dev-guide.rust-lang.org/git.html#git-submodules
https://git-scm.com/
https://git-scm.com/
https://www.atlassian.com/git/tutorials/what-is-version-control
https://www.atlassian.com/git/tutorials/what-is-version-control
https://docs.github.com/en/get-started/quickstart/set-up-git
https://docs.github.com/en/get-started/quickstart/set-up-git
https://guides.github.com/introduction/git-handbook/
https://guides.github.com/introduction/git-handbook/
https://git-scm.com/book/en/v2/
https://git-scm.com/book/en/v2/
https://github.com/rust-lang/rustc-dev-guide/issues/new
https://github.com/rust-lang/rustc-dev-guide/issues/new

Prerequisites

We'll assume that you've installed Git, forked rust-lang/rust, and cloned the forked repo

to your PC. We'll use the command line interface to interact with Git; there are also a

number of GUIs and IDE integrations that can generally do the same things.

If you've cloned your fork, then you will be able to reference it with origin in your local

repo. It may be helpful to also set up a remote for the official rust-lang/rust repo via

if you're using HTTPS, or

if you're using SSH.

NOTE: This page is dedicated to workflows for rust-lang/rust , but will likely be useful

when contributing to other repositories in the Rust project.

Standard Process

Below is the normal procedure that you're likely to use for most minor changes and PRs:

1. Ensure that you're making your changes on top of master: git checkout master .

2. Get the latest changes from the Rust repo: git pull upstream master --ff-only .

(see No-Merge Policy for more info about this).

3. Make a new branch for your change: git checkout -b issue-12345-fix .

4. Make some changes to the repo and test them.

5. Stage your changes via git add src/changed/file.rs src/another/change.rs and

then commit them with git commit . Of course, making intermediate commits may

be a good idea as well. Avoid git add . , as it makes it too easy to unintentionally

commit changes that should not be committed, such as submodule updates. You

can use git status to check if there are any files you forgot to stage.

6. Push your changes to your fork: git push --set-upstream origin issue-12345-

fix (After adding commits, you can use git push and after rebasing or pulling-

and-rebasing, you can use git push --force-with-lease).

7. Open a PR from your fork to rust-lang/rust 's master branch.

If you end up needing to rebase and are hitting conflicts, see Rebasing. If you want to

track upstream while working on long-running feature/issue, see Keeping things up to

date.

git remote add upstream https://github.com/rust-lang/rust.git

git remote add upstream git@github.com:rust-lang/rust.git

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

135 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#prerequisites-1
https://rustc-dev-guide.rust-lang.org/print.html#prerequisites-1
https://github.com/rust-lang/rust
https://github.com/rust-lang/rust
https://rustc-dev-guide.rust-lang.org/print.html#standard-process
https://rustc-dev-guide.rust-lang.org/print.html#standard-process
https://rustc-dev-guide.rust-lang.org/git.html#keeping-things-up-to-date
https://rustc-dev-guide.rust-lang.org/git.html#keeping-things-up-to-date
https://guides.github.com/activities/forking/#making-a-pull-request
https://guides.github.com/activities/forking/#making-a-pull-request
https://rustc-dev-guide.rust-lang.org/git.html#rebasing
https://rustc-dev-guide.rust-lang.org/git.html#rebasing
https://rustc-dev-guide.rust-lang.org/git.html#keeping-things-up-to-date
https://rustc-dev-guide.rust-lang.org/git.html#keeping-things-up-to-date
https://rustc-dev-guide.rust-lang.org/git.html#keeping-things-up-to-date
https://rustc-dev-guide.rust-lang.org/git.html#keeping-things-up-to-date

If your reviewer requests changes, the procedure for those changes looks much the

same, with some steps skipped:

1. Ensure that you're making changes to the most recent version of your code: git

checkout issue-12345-fix .

2. Make, stage, and commit your additional changes just like before.

3. Push those changes to your fork: git push .

Troubleshooting git issues

You don't need to clone rust-lang/rust from scratch if it's out of date! Even if you think

you've messed it up beyond repair, there are ways to fix the git state that don't require

downloading the whole repository again. Here are some common issues you might run

into:

I made a merge commit by accident.

Git has two ways to update your branch with the newest changes: merging and rebasing.

Rust uses rebasing. If you make a merge commit, it's not too hard to fix: git rebase -i

upstream/master .

See Rebasing for more about rebasing.

I deleted my fork on GitHub!

This is not a problem from git's perspective. If you run git remote -v , it will say

something like this:

If you renamed your fork, you can change the URL like this:

where the <URL> is your new fork.

$ git remote -v
origin git@github.com:jyn514/rust.git (fetch)
origin git@github.com:jyn514/rust.git (push)
upstream https://github.com/rust-lang/rust (fetch)
upstream https://github.com/rust-lang/rust (fetch)

git remote set-url origin <URL>

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

136 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#troubleshooting-git-issues
https://rustc-dev-guide.rust-lang.org/print.html#troubleshooting-git-issues
https://rustc-dev-guide.rust-lang.org/print.html#i-made-a-merge-commit-by-accident
https://rustc-dev-guide.rust-lang.org/print.html#i-made-a-merge-commit-by-accident
https://rustc-dev-guide.rust-lang.org/git.html#keeping-things-up-to-date
https://rustc-dev-guide.rust-lang.org/git.html#keeping-things-up-to-date
https://rustc-dev-guide.rust-lang.org/git.html#rebasing
https://rustc-dev-guide.rust-lang.org/git.html#rebasing
https://rustc-dev-guide.rust-lang.org/print.html#i-deleted-my-fork-on-github
https://rustc-dev-guide.rust-lang.org/print.html#i-deleted-my-fork-on-github

I changed a submodule by accident

Usually people notice this when rustbot posts a comment on github that cargo has been

modified:

You might also notice conflicts in the web UI:

The most common cause is that you rebased after a change and ran git add . without

first running x to update the submodules. Alternatively, you might have run cargo fmt

instead of x fmt and modified files in a submodule, then committed the changes.

To fix it, do the following things:

1. See which commit has the accidental changes: git log --stat -n1 src/tools

/cargo

2. Revert the changes to that commit: git checkout <my-commit>~ src/tools/cargo .

Type ~ literally but replace <my-commit> with the output from step 1.

3. Tell git to commit the changes: git commit --fixup <my-commit>

4. Repeat steps 1-3 for all the submodules you modified.

◦ If you modified the submodule in several different commits, you will need to

repeat steps 1-3 for each commit you modified. You'll know when to stop

when the git log command shows a commit that's not authored by you.

5. Squash your changes into the existing commits: git rebase --autosquash -i

upstream/master

6. Push your changes.

I see "error: cannot rebase" when I try to rebase

These are two common errors to see when rebasing:

error: cannot rebase: Your index contains uncommitted changes.
error: Please commit or stash them.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

137 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#i-changed-a-submodule-by-accident
https://rustc-dev-guide.rust-lang.org/print.html#i-changed-a-submodule-by-accident
https://rustc-dev-guide.rust-lang.org/git.html#standard-process
https://rustc-dev-guide.rust-lang.org/git.html#standard-process
https://rustc-dev-guide.rust-lang.org/print.html#i-see-error-cannot-rebase-when-i-try-to-rebase
https://rustc-dev-guide.rust-lang.org/print.html#i-see-error-cannot-rebase-when-i-try-to-rebase

(See https://git-scm.com/book/en/v2/Getting-Started-What-is-Git%3F#_the_three_states

for the difference between the two.)

This means you have made changes since the last time you made a commit. To be able to

rebase, either commit your changes, or make a temporary commit called a "stash" to

have them still not be commited when you finish rebasing. You may want to configure git

to make this "stash" automatically, which will prevent the "cannot rebase" error in nearly

all cases:

See https://git-scm.com/book/en/v2/Git-Tools-Stashing-and-Cleaning for more info about

stashing.

I see 'Untracked Files: src/stdarch'?

This is left over from the move to the library/ directory. Unfortunately, git rebase

does not follow renames for submodules, so you have to delete the directory yourself:

I see <<< HEAD?

You were probably in the middle of a rebase or merge conflict. See Conflicts for how to fix

the conflict. If you don't care about the changes and just want to get a clean copy of the

repository back, you can use git reset :

Git is trying to rebase commits I didn't write?

If you see many commits in your rebase list, or merge commits, or commits by other

people that you didn't write, it likely means you're trying to rebase over the wrong

branch. For example, you may have a rust-lang/rust remote upstream , but ran git

rebase origin/master instead of git rebase upstream/master . The fix is to abort the

rebase and use the correct branch instead:

error: cannot rebase: You have unstaged changes.
error: Please commit or stash them.

git config --global rebase.autostash true

rm -r src/stdarch

WARNING: this throws out any local changes you've made! Consider resolving
the conflicts instead.
git reset --hard master

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

138 of 660 8/30/23, 09:47

https://git-scm.com/book/en/v2/Getting-Started-What-is-Git%3F#_the_three_states
https://git-scm.com/book/en/v2/Getting-Started-What-is-Git%3F#_the_three_states
https://git-scm.com/book/en/v2/Git-Tools-Stashing-and-Cleaning
https://git-scm.com/book/en/v2/Git-Tools-Stashing-and-Cleaning
https://rustc-dev-guide.rust-lang.org/print.html#i-see-untracked-files-srcstdarch
https://rustc-dev-guide.rust-lang.org/print.html#i-see-untracked-files-srcstdarch
https://rustc-dev-guide.rust-lang.org/print.html#i-see--head
https://rustc-dev-guide.rust-lang.org/print.html#i-see--head
https://rustc-dev-guide.rust-lang.org/print.html#i-see--head
https://rustc-dev-guide.rust-lang.org/print.html#i-see--head
https://rustc-dev-guide.rust-lang.org/print.html#i-see--head
https://rustc-dev-guide.rust-lang.org/git.html#conflicts
https://rustc-dev-guide.rust-lang.org/git.html#conflicts
https://rustc-dev-guide.rust-lang.org/print.html#git-is-trying-to-rebase-commits-i-didnt-write
https://rustc-dev-guide.rust-lang.org/print.html#git-is-trying-to-rebase-commits-i-didnt-write

▸ Click here to see an example of rebasing over the wrong branch

Quick note about submodules

When updating your local repository with git pull , you may notice that sometimes Git

says you have modified some files that you have never edited. For example, running git

status gives you something like (note the new commits mention):

These changes are not changes to files: they are changes to submodules (more on this

later). To get rid of those, run ./x --help , which will automatically update the

submodules.

Some submodules are not actually needed; for example, src/llvm-project doesn't need

to be checked out if you're using download-ci-llvm . To avoid having to keep fetching its

history, you can use git submodule deinit -f src/llvm-project , which will also avoid

it showing as modified again.

Rebasing and Conflicts

When you edit your code locally, you are making changes to the version of rust-lang/rust

that existed when you created your feature branch. As such, when you submit your PR it

is possible that some of the changes that have been made to rust-lang/rust since then are

in conflict with the changes you've made.

When this happens, you need to resolve the conflicts before your changes can be

merged. First, get a local copy of the conflicting changes: Checkout your local master

branch with git checkout master , then git pull upstream master to update it with

the most recent changes.

git rebase --abort
git rebase -i upstream/master

On branch master
Your branch is up to date with 'origin/master'.

Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git restore <file>..." to discard changes in working directory)
 modified: src/llvm-project (new commits)
 modified: src/tools/cargo (new commits)

no changes added to commit (use "git add" and/or "git commit -a")

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

139 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#quick-note-about-submodules
https://rustc-dev-guide.rust-lang.org/print.html#quick-note-about-submodules
https://rustc-dev-guide.rust-lang.org/git.html#git-submodules
https://rustc-dev-guide.rust-lang.org/git.html#git-submodules
https://rustc-dev-guide.rust-lang.org/print.html#rebasing-and-conflicts
https://rustc-dev-guide.rust-lang.org/print.html#rebasing-and-conflicts

Rebasing

You're now ready to start the rebasing process. Checkout the branch with your changes

and execute git rebase master .

When you rebase a branch on master, all the changes on your branch are reapplied to

the most recent version of master. In other words, Git tries to pretend that the changes

you made to the old version of master were instead made to the new version of master.

During this process, you should expect to encounter at least one "rebase conflict." This

happens when Git's attempt to reapply the changes fails because your changes conflicted

with other changes that have been made. You can tell that this happened because you'll

see lines in the output that look like

When you open these files, you'll see sections of the form

This represents the lines in the file that Git could not figure out how to rebase. The

section between <<<<<<< HEAD and ======= has the code from master, while the other

side has your version of the code. You'll need to decide how to deal with the conflict. You

may want to keep your changes, keep the changes on master, or combine the two.

Generally, resolving the conflict consists of two steps: First, fix the particular conflict. Edit

the file to make the changes you want and remove the <<<<<<< , ======= and >>>>>>>

lines in the process. Second, check the surrounding code. If there was a conflict, its likely

there are some logical errors lying around too! It's a good idea to run x check here to

make sure there are no glaring errors.

Once you're all done fixing the conflicts, you need to stage the files that had conflicts in

them via git add . Afterwards, run git rebase --continue to let Git know that you've

resolved the conflicts and it should finish the rebase.

Once the rebase has succeeded, you'll want to update the associated branch on your fork

with git push --force-with-lease .

Note that git push will not work properly and say something like this:

CONFLICT (content): Merge conflict in file.rs

<<<<<<< HEAD
Original code
=======
Your code
>>>>>>> 8fbf656... Commit fixes 12345

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

140 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#rebasing
https://rustc-dev-guide.rust-lang.org/print.html#rebasing

The advice this gives is incorrect! Because of Rust's "no-merge" policy the merge commit

created by git pull will not be allowed in the final PR, in addition to defeating the point

of the rebase! Use git push --force-with-lease instead.

Keeping things up to date

The above section on Rebasing is a specific guide on rebasing work and dealing with

merge conflicts. Here is some general advice about how to keep your local repo up-to-

date with upstream changes:

Using git pull upstream master while on your local master branch regularly will keep it

up-to-date. You will also want to rebase your feature branches up-to-date as well. After

pulling, you can checkout the feature branches and rebase them:

To avoid merges as per the No-Merge Policy, you may want to use git config pull.ff

only (this will apply the config only to the local repo) to ensure that Git doesn't create

merge commits when git pull ing, without needing to pass --ff-only or --rebase

every time.

You can also git push --force-with-lease from master to keep your fork's master in

sync with upstream.

Advanced Rebasing

If your branch contains multiple consecutive rewrites of the same code, or if the rebase

conflicts are extremely severe, you can use git rebase --interactive master to gain

more control over the process. This allows you to choose to skip commits, edit the

commits that you do not skip, change the order in which they are applied, or "squash"

them into each other.

 ! [rejected] issue-xxxxx -> issue-xxxxx (non-fast-forward)
error: failed to push some refs to 'https://github.com/username/rust.git'
hint: Updates were rejected because the tip of your current branch is behind
hint: its remote counterpart. Integrate the remote changes (e.g.
hint: 'git pull ...') before pushing again.
hint: See the 'Note about fast-forwards' in 'git push --help' for details.

git checkout master
git pull upstream master --ff-only # to make certain there are no merge
commits
git rebase master feature_branch
git push --force-with-lease # (set origin to be the same as local)

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

141 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/git.html#no-merge-policy
https://rustc-dev-guide.rust-lang.org/git.html#no-merge-policy
https://rustc-dev-guide.rust-lang.org/print.html#keeping-things-up-to-date
https://rustc-dev-guide.rust-lang.org/print.html#keeping-things-up-to-date
https://rustc-dev-guide.rust-lang.org/git.html#rebasing
https://rustc-dev-guide.rust-lang.org/git.html#rebasing
https://rustc-dev-guide.rust-lang.org/git.html#no-merge-policy
https://rustc-dev-guide.rust-lang.org/git.html#no-merge-policy
https://rustc-dev-guide.rust-lang.org/print.html#advanced-rebasing
https://rustc-dev-guide.rust-lang.org/print.html#advanced-rebasing

Alternatively, you can sacrifice the commit history like this:

"Squashing" commits into each other causes them to be merged into a single commit.

Both the upside and downside of this is that it simplifies the history. On the one hand,

you lose track of the steps in which changes were made, but the history becomes easier

to work with.

You also may want to squash just the last few commits together, possibly because they

only represent "fixups" and not real changes. For example, git rebase --interactive

HEAD~2 will allow you to edit the two commits only.

git range-diff

After completing a rebase, and before pushing up your changes, you may want to review

the changes between your old branch and your new one. You can do that with git

range-diff master @{upstream} HEAD .

The first argument to range-diff , master in this case, is the base revision that you're

comparing your old and new branch against. The second argument is the old version of

your branch; in this case, @upstream means the version that you've pushed to GitHub,

which is the same as what people will see in your pull request. Finally, the third argument

to range-diff is the new version of your branch; in this case, it is HEAD , which is the

commit that is currently checked-out in your local repo.

Note that you can also use the equivalent, abbreviated form git range-diff master

@{u} HEAD .

Unlike in regular Git diffs, you'll see a - or + next to another - or + in the range-diff

output. The marker on the left indicates a change between the old branch and the new

branch, and the marker on the right indicates a change you've committed. So, you can

think of a range-diff as a "diff of diffs" since it shows you the differences between your old

diff and your new diff.

Here's an example of git range-diff output (taken from Git's docs):

squash all the changes into one commit so you only have to worry about
conflicts once
git rebase -i $(git merge-base master HEAD) # and squash all changes along
the way
git rebase master
fix all merge conflicts
git rebase --continue

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

142 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#git-range-diff
https://rustc-dev-guide.rust-lang.org/print.html#git-range-diff
https://rustc-dev-guide.rust-lang.org/print.html#git-range-diff
https://git-scm.com/docs/git-range-diff#_examples
https://git-scm.com/docs/git-range-diff#_examples

(Note that git range-diff output in your terminal will probably be easier to read than

in this example because it will have colors.)

Another feature of git range-diff is that, unlike git diff , it will also diff commit

messages. This feature can be useful when amending several commit messages so you

can make sure you changed the right parts.

git range-diff is a very useful command, but note that it can take some time to get

used to its output format. You may also find Git's documentation on the command useful,

especially their "Examples" section.

No-Merge Policy

The rust-lang/rust repo uses what is known as a "rebase workflow." This means that

merge commits in PRs are not accepted. As a result, if you are running git merge locally,

chances are good that you should be rebasing instead. Of course, this is not always true;

if your merge will just be a fast-forward, like the merges that git pull usually performs,

then no merge commit is created and you have nothing to worry about. Running git

config merge.ff only (this will apply the config to the local repo) once will ensure that

all the merges you perform are of this type, so that you cannot make a mistake.

There are a number of reasons for this decision and like all others, it is a tradeoff. The

main advantage is the generally linear commit history. This greatly simplifies bisecting

and makes the history and commit log much easier to follow and understand.

Tips for reviewing

-: ------- > 1: 0ddba11 Prepare for the inevitable!
1: c0debee = 2: cab005e Add a helpful message at the start
2: f00dbal ! 3: decafe1 Describe a bug
 @@ -1,3 +1,3 @@
 Author: A U Thor <author@example.com>

 -TODO: Describe a bug
 +Describe a bug
 @@ -324,5 +324,6
 This is expected.

 -+What is unexpected is that it will also crash.
 ++Unexpectedly, it also crashes. This is a bug, and the jury is
 ++still out there how to fix it best. See ticket #314 for details.

 Contact
3: bedead < -: ------- TO-UNDO

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

143 of 660 8/30/23, 09:47

https://git-scm.com/docs/git-range-diff#_examples
https://git-scm.com/docs/git-range-diff#_examples
https://rustc-dev-guide.rust-lang.org/print.html#no-merge-policy
https://rustc-dev-guide.rust-lang.org/print.html#no-merge-policy
https://rustc-dev-guide.rust-lang.org/print.html#tips-for-reviewing
https://rustc-dev-guide.rust-lang.org/print.html#tips-for-reviewing

NOTE: This section is for reviewing PRs, not authoring them.

Hiding whitespace

Github has a button for disabling whitespace changes that may be useful. You can also

use git diff -w origin/master to view changes locally.

Fetching PRs

To checkout PRs locally, you can use git fetch upstream pull/NNNNN/head && git

checkout FETCH_HEAD .

You can also use github's cli tool. Github shows a button on PRs where you can copy-

paste the command to check it out locally. See https://cli.github.com/ for more info.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

144 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#hiding-whitespace
https://rustc-dev-guide.rust-lang.org/print.html#hiding-whitespace
https://rustc-dev-guide.rust-lang.org/print.html#fetching-prs
https://rustc-dev-guide.rust-lang.org/print.html#fetching-prs
https://cli.github.com/
https://cli.github.com/

Moving large sections of code

Git and Github's default diff view for large moves within a file is quite poor; it will show

each line as deleted and each line as added, forcing you to compare each line yourself.

Git has an option to show moved lines in a different color:

See the docs for --color-moved for more info.

range-diff

See the relevant section for PR authors. This can be useful for comparing code that was

force-pushed to make sure there are no unexpected changes.

Ignoring changes to specific files

Many large files in the repo are autogenerated. To view a diff that ignores changes to

those files, you can use the following syntax (e.g. Cargo.lock):

git log -p --color-moved=dimmed-zebra --color-moved-ws=allow-indentation-
change

git log -p ':!Cargo.lock'

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

145 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#moving-large-sections-of-code
https://rustc-dev-guide.rust-lang.org/print.html#moving-large-sections-of-code
https://git-scm.com/docs/git-diff#Documentation/git-diff.txt---color-movedltmodegt
https://git-scm.com/docs/git-diff#Documentation/git-diff.txt---color-movedltmodegt
https://git-scm.com/docs/git-diff#Documentation/git-diff.txt---color-movedltmodegt
https://git-scm.com/docs/git-diff#Documentation/git-diff.txt---color-movedltmodegt
https://rustc-dev-guide.rust-lang.org/print.html#range-diff
https://rustc-dev-guide.rust-lang.org/print.html#range-diff
https://rustc-dev-guide.rust-lang.org/git.html#git-range-diff
https://rustc-dev-guide.rust-lang.org/git.html#git-range-diff
https://rustc-dev-guide.rust-lang.org/print.html#ignoring-changes-to-specific-files
https://rustc-dev-guide.rust-lang.org/print.html#ignoring-changes-to-specific-files

Arbitrary patterns are supported (e.g. :!compiler/*). Patterns use the same syntax as

.gitignore , with : prepended to indicate a pattern.

Git submodules

NOTE: submodules are a nice thing to know about, but it isn't an absolute prerequisite to

contribute to rustc . If you are using Git for the first time, you might want to get used to

the main concepts of Git before reading this section.

The rust-lang/rust repository uses Git submodules as a way to use other Rust projects

from within the rust repo. Examples include Rust's fork of llvm-project , cargo and

libraries like stdarch and backtrace .

Those projects are developed and maintained in an separate Git (and GitHub) repository,

and they have their own Git history/commits, issue tracker and PRs. Submodules allow us

to create some sort of embedded sub-repository inside the rust repository and use

them like they were directories in the rust repository.

Take llvm-project for example. llvm-project is maintained in the rust-lang/llvm-

project repository, but it is used in rust-lang/rust by the compiler for code generation

and optimization. We bring it in rust as a submodule, in the src/llvm-project folder.

The contents of submodules are ignored by Git: submodules are in some sense isolated

from the rest of the repository. However, if you try to cd src/llvm-project and then run

git status :

As far as git is concerned, you are no longer in the rust repo, but in the llvm-project

repo. You will notice that we are in "detached HEAD" state, i.e. not on a branch but on a

particular commit.

This is because, like any dependency, we want to be able to control which version to use.

Submodules allow us to do just that: every submodule is "pinned" to a certain commit,

which doesn't change unless modified manually. If you use git checkout <commit> in

the llvm-project directory and go back to the rust directory, you can stage this change

like any other, e.g. by running git add src/llvm-project . (Note that if you don't stage

the change to commit, then you run the risk that running x will just undo your change by

switching back to the previous commit when it automatically "updates" the submodules.)

This version selection is usually done by the maintainers of the project, and looks like this.

HEAD detached at 9567f08afc943
nothing to commit, working tree clean

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

146 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#git-submodules
https://rustc-dev-guide.rust-lang.org/print.html#git-submodules
https://git-scm.com/book/en/v2/Git-Tools-Submodules
https://git-scm.com/book/en/v2/Git-Tools-Submodules
https://github.com/rust-lang/llvm-project
https://github.com/rust-lang/llvm-project
https://github.com/rust-lang/llvm-project
https://github.com/rust-lang/llvm-project
https://github.com/rust-lang/llvm-project
https://github.com/rust-lang/llvm-project
https://github.com/rust-lang/rust/pull/99464/files
https://github.com/rust-lang/rust/pull/99464/files

Git submodules take some time to get used to, so don't worry if it isn't perfectly clear yet.

You will rarely have to use them directly and, again, you don't need to know everything

about submodules to contribute to Rust. Just know that they exist and that they

correspond to some sort of embedded subrepository dependency that Git can nicely and

fairly conveniently handle for us.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

147 of 660 8/30/23, 09:47

Mastering @rustbot

@rustbot (also known as triagebot) is a utility robot that is mostly used to allow any

contributor to achieve certain tasks that would normally require GitHub membership to

the rust-lang organization. Its most interesting features for contributors to rustc are

issue claiming and relabeling.

Issue claiming

@rustbot exposes a command that allows anyone to assign an issue to themselves. If

you see an issue you want to work on, you can send the following message as a comment

on the issue at hand:

This will tell @rustbot to assign the issue to you if it has no assignee yet. Note that

because of some GitHub restrictions, you may be assigned indirectly, i.e. @rustbot will

assign itself as a placeholder and edit the top comment to reflect the fact that the issue is

now assigned to you.

If you want to unassign from an issue, @rustbot has a different command:

Issue relabeling

Changing labels for an issue or PR is also normally reserved for members of the

organization. However, @rustbot allows you to relabel an issue yourself, only with a few

restrictions. This is mostly useful in two cases:

Helping with issue triage: Rust's issue tracker has more than 5,000 open issues at the

time of this writing, so labels are the most powerful tool that we have to keep it as tidy as

possible. You don't need to spend hours in the issue tracker to triage issues, but if you

open an issue, you should feel free to label it if you are comfortable with doing it yourself.

Updating the status of a PR: We use "status labels" to reflect the status of PRs. For

example, if your PR has merge conflicts, it will automatically be assigned the S-waiting-

on-author , and reviewers might not review it until you rebase your PR. Once you do

rebase your branch, you should change the labels yourself to remove the S-waiting-on-

@rustbot claim

@rustbot release-assignment

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

148 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#mastering-rustbot
https://rustc-dev-guide.rust-lang.org/print.html#mastering-rustbot
https://rustc-dev-guide.rust-lang.org/print.html#issue-claiming
https://rustc-dev-guide.rust-lang.org/print.html#issue-claiming
https://rustc-dev-guide.rust-lang.org/print.html#issue-relabeling
https://rustc-dev-guide.rust-lang.org/print.html#issue-relabeling

author label and add back S-waiting-on-review . In this case, the @rustbot command

will look like this:

The syntax for this command is pretty loose, so there are other variants of this command

invocation. For more details, see the docs page about labeling.

Other commands

If you are interested in seeing what @rustbot is capable of, check out its documentation,

which is meant as a reference for the bot and should be kept up to date every time the

bot gets an upgrade.

@rustbot is maintained by the Release team. If you have any feedback regarding existing

commands or suggestions for new commands, feel free to reach out on Zulip or file an

issue in the triagebot repository

@rustbot label -S-waiting-on-author +S-waiting-on-review

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

149 of 660 8/30/23, 09:47

https://forge.rust-lang.org/triagebot/labeling.html
https://forge.rust-lang.org/triagebot/labeling.html
https://rustc-dev-guide.rust-lang.org/print.html#other-commands
https://rustc-dev-guide.rust-lang.org/print.html#other-commands
https://forge.rust-lang.org/triagebot/index.html
https://forge.rust-lang.org/triagebot/index.html
https://rust-lang.zulipchat.com/#narrow/stream/224082-t-release.2Ftriagebot
https://rust-lang.zulipchat.com/#narrow/stream/224082-t-release.2Ftriagebot
https://github.com/rust-lang/triagebot/
https://github.com/rust-lang/triagebot/

Walkthrough: a typical contribution

• Overview

• Pre-RFC and RFC

• Implementation

• Refining your implementation

• Stabilization

There are a lot of ways to contribute to the Rust compiler, including fixing bugs, improving

performance, helping design features, providing feedback on existing features, etc. This

chapter does not claim to scratch the surface. Instead, it walks through the design and

implementation of a new feature. Not all of the steps and processes described here are

needed for every contribution, and I will try to point those out as they arise.

In general, if you are interested in making a contribution and aren't sure where to start,

please feel free to ask!

Overview

The feature I will discuss in this chapter is the ? Kleene operator for macros. Basically,

we want to be able to write something like this:

So basically, the $(pat)? matcher in the macro means "this pattern can occur 0 or 1

times", similar to other regex syntaxes.

There were a number of steps to go from an idea to stable Rust feature. Here is a quick

list. We will go through each of these in order below. As I mentioned before, not all of

these are needed for every type of contribution.

macro_rules! foo {
 ($arg:ident $(, $optional_arg:ident)?) => {

println!("{}", $arg);

 $(
println!("{}", $optional_arg);

)?
 }
}

fn main() {
let x = 0;

 foo!(x); // ok! prints "0"
 foo!(x, x); // ok! prints "0 0"
}

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

150 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#walkthrough-a-typical-contribution
https://rustc-dev-guide.rust-lang.org/print.html#walkthrough-a-typical-contribution
https://rustc-dev-guide.rust-lang.org/walkthrough.html#overview
https://rustc-dev-guide.rust-lang.org/walkthrough.html#overview
https://rustc-dev-guide.rust-lang.org/walkthrough.html#pre-rfc-and-rfc
https://rustc-dev-guide.rust-lang.org/walkthrough.html#pre-rfc-and-rfc
https://rustc-dev-guide.rust-lang.org/walkthrough.html#implementation
https://rustc-dev-guide.rust-lang.org/walkthrough.html#implementation
https://rustc-dev-guide.rust-lang.org/walkthrough.html#refining-your-implementation
https://rustc-dev-guide.rust-lang.org/walkthrough.html#refining-your-implementation
https://rustc-dev-guide.rust-lang.org/walkthrough.html#stabilization
https://rustc-dev-guide.rust-lang.org/walkthrough.html#stabilization
https://rustc-dev-guide.rust-lang.org/print.html#overview
https://rustc-dev-guide.rust-lang.org/print.html#overview

• Idea discussion/Pre-RFC A Pre-RFC is an early draft or design discussion of a

feature. This stage is intended to flesh out the design space a bit and get a grasp on

the different merits and problems with an idea. It's a great way to get early feedback

on your idea before presenting it the wider audience. You can find the original

discussion here.

• RFC This is when you formally present your idea to the community for

consideration. You can find the RFC here.

• Implementation Implement your idea unstably in the compiler. You can find the

original implementation here.

• Possibly iterate/refine As the community gets experience with your feature on the

nightly compiler and in std , there may be additional feedback about design choice

that might be adjusted. This particular feature went through a number of iterations.

• Stabilization When your feature has baked enough, a Rust team member may

propose to stabilize it. If there is consensus, this is done.

• Relax Your feature is now a stable Rust feature!

Pre-RFC and RFC

NOTE: In general, if you are not proposing a new feature or substantial change to

Rust or the ecosystem, you don't need to follow the RFC process. Instead, you can

just jump to implementation.

You can find the official guidelines for when to open an RFC here.

An RFC is a document that describes the feature or change you are proposing in detail.

Anyone can write an RFC; the process is the same for everyone, including Rust team

members.

To open an RFC, open a PR on the rust-lang/rfcs repo on GitHub. You can find detailed

instructions in the README.

Before opening an RFC, you should do the research to "flesh out" your idea. Hastily-

proposed RFCs tend not to be accepted. You should generally have a good description of

the motivation, impact, disadvantages, and potential interactions with other features.

If that sounds like a lot of work, it's because it is. But no fear! Even if you're not a compiler

hacker, you can get great feedback by doing a pre-RFC. This is an informal discussion of

the idea. The best place to do this is internals.rust-lang.org. Your post doesn't have to

follow any particular structure. It doesn't even need to be a cohesive idea. Generally, you

will get tons of feedback that you can integrate back to produce a good RFC.

(Another pro-tip: try searching the RFCs repo and internals for prior related ideas. A lot of

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

151 of 660 8/30/23, 09:47

https://internals.rust-lang.org/t/pre-rfc-at-most-one-repetition-macro-patterns/6557
https://internals.rust-lang.org/t/pre-rfc-at-most-one-repetition-macro-patterns/6557
https://github.com/rust-lang/rfcs/pull/2298
https://github.com/rust-lang/rfcs/pull/2298
https://github.com/rust-lang/rust/pull/47752
https://github.com/rust-lang/rust/pull/47752
https://github.com/rust-lang/rust/pull/49719
https://github.com/rust-lang/rust/pull/49719
https://github.com/rust-lang/rust/pull/51336
https://github.com/rust-lang/rust/pull/51336
https://github.com/rust-lang/rust/pull/51587
https://github.com/rust-lang/rust/pull/51587
https://github.com/rust-lang/rust/issues/48075#issuecomment-433177613
https://github.com/rust-lang/rust/issues/48075#issuecomment-433177613
https://rustc-dev-guide.rust-lang.org/print.html#pre-rfc-and-rfc
https://rustc-dev-guide.rust-lang.org/print.html#pre-rfc-and-rfc
https://rustc-dev-guide.rust-lang.org/walkthrough.html#impl
https://rustc-dev-guide.rust-lang.org/walkthrough.html#impl
https://github.com/rust-lang/rfcs#when-you-need-to-follow-this-process
https://github.com/rust-lang/rfcs#when-you-need-to-follow-this-process
https://github.com/rust-lang/rfcs
https://github.com/rust-lang/rfcs
https://github.com/rust-lang/rfcs#what-the-process-is
https://github.com/rust-lang/rfcs#what-the-process-is

times an idea has already been considered and was either rejected or postponed to be

tried again later. This can save you and everybody else some time)

In the case of our example, a participant in the pre-RFC thread pointed out a syntax

ambiguity and a potential resolution. Also, the overall feedback seemed positive. In this

case, the discussion converged pretty quickly, but for some ideas, a lot more discussion

can happen (e.g. see this RFC which received a whopping 684 comments!). If that

happens, don't be discouraged; it means the community is interested in your idea, but it

perhaps needs some adjustments.

The RFC for our ? macro feature did receive some discussion on the RFC thread too. As

with most RFCs, there were a few questions that we couldn't answer by discussion: we

needed experience using the feature to decide. Such questions are listed in the

"Unresolved Questions" section of the RFC. Also, over the course of the RFC discussion,

you will probably want to update the RFC document itself to reflect the course of the

discussion (e.g. new alternatives or prior work may be added or you may decide to

change parts of the proposal itself).

In the end, when the discussion seems to reach a consensus and die down a bit, a Rust

team member may propose to move to "final comment period" (FCP) with one of three

possible dispositions. This means that they want the other members of the appropriate

teams to review and comment on the RFC. More discussion may ensue, which may result

in more changes or unresolved questions being added. At some point, when everyone is

satisfied, the RFC enters the FCP, which is the last chance for people to bring up

objections. When the FCP is over, the disposition is adopted. Here are the three possible

dispositions:

• Merge: accept the feature. Here is the proposal to merge for our ? macro feature.

• Close: this feature in its current form is not a good fit for rust. Don't be discouraged

if this happens to your RFC, and don't take it personally. This is not a reflection on

you, but rather a community decision that rust will go a different direction.

• Postpone: there is interest in going this direction but not at the moment. This

happens most often because the appropriate Rust team doesn't have the

bandwidth to shepherd the feature through the process to stabilization. Often this is

the case when the feature doesn't fit into the team's roadmap. Postponed ideas

may be revisited later.

When an RFC is merged, the PR is merged into the RFCs repo. A new tracking issue is

created in the rust-lang/rust repo to track progress on the feature and discuss unresolved

questions, implementation progress and blockers, etc. Here is the tracking issue on for

our ? macro feature.

Implementation

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

152 of 660 8/30/23, 09:47

https://github.com/rust-lang/rfcs/pull/2457
https://github.com/rust-lang/rfcs/pull/2457
https://github.com/rust-lang/rfcs/pull/2298#issuecomment-360582667
https://github.com/rust-lang/rfcs/pull/2298#issuecomment-360582667
https://github.com/rust-lang/rfcs/pull/2298#issuecomment-360582667
https://github.com/rust-lang/rfcs/pull/2298#issuecomment-360582667
https://github.com/rust-lang/rust
https://github.com/rust-lang/rust
https://github.com/rust-lang/rust/issues/48075
https://github.com/rust-lang/rust/issues/48075
https://github.com/rust-lang/rust/issues/48075
https://github.com/rust-lang/rust/issues/48075
https://rustc-dev-guide.rust-lang.org/print.html#implementation
https://rustc-dev-guide.rust-lang.org/print.html#implementation

To make a change to the compiler, open a PR against the rust-lang/rust repo.

Depending on the feature/change/bug fix/improvement, implementation may be

relatively-straightforward or it may be a major undertaking. You can always ask for help

or mentorship from more experienced compiler devs. Also, you don't have to be the one

to implement your feature; but keep in mind that if you don't, it might be a while before

someone else does.

For the ? macro feature, I needed to go understand the relevant parts of macro

expansion in the compiler. Personally, I find that improving the comments in the code is a

helpful way of making sure I understand it, but you don't have to do that if you don't want

to.

I then implemented the original feature, as described in the RFC. When a new feature is

implemented, it goes behind a feature gate, which means that you have to use

#![feature(my_feature_name)] to use the feature. The feature gate is removed when

the feature is stabilized.

Most bug fixes and improvements don't require a feature gate. You can just make your

changes/improvements.

When you open a PR on the rust-lang/rust, a bot will assign your PR to a review. If there is

a particular Rust team member you are working with, you can request that reviewer by

leaving a comment on the thread with r? @reviewer-github-id (e.g. r? @eddyb). If you

don't know who to request, don't request anyone; the bot will assign someone

automatically based on which files you changed.

The reviewer may request changes before they approve your PR. Feel free to ask

questions or discuss things you don't understand or disagree with. However, recognize

that the PR won't be merged unless someone on the Rust team approves it.

When your reviewer approves the PR, it will go into a queue for yet another bot called

@bors . @bors manages the CI build/merge queue. When your PR reaches the head of

the @bors queue, @bors will test out the merge by running all tests against your PR on

GitHub Actions. This takes a lot of time to finish. If all tests pass, the PR is merged and

becomes part of the next nightly compiler!

There are a couple of things that may happen for some PRs during the review process

• If the change is substantial enough, the reviewer may request an FCP on the PR. This

gives all members of the appropriate team a chance to review the changes.

• If the change may cause breakage, the reviewer may request a crater run. This

compiles the compiler with your changes and then attempts to compile all crates on

crates.io with your modified compiler. This is a great smoke test to check if you

introduced a change to compiler behavior that affects a large portion of the

ecosystem.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

153 of 660 8/30/23, 09:47

https://github.com/rust-lang/rust
https://github.com/rust-lang/rust
https://github.com/rust-lang/rust/pull/47732
https://github.com/rust-lang/rust/pull/47732
https://github.com/rust-lang/rust/pull/47752
https://github.com/rust-lang/rust/pull/47752
https://github.com/rust-lang/rust
https://github.com/rust-lang/rust
https://rustc-dev-guide.rust-lang.org/tests/intro.html#crater
https://rustc-dev-guide.rust-lang.org/tests/intro.html#crater

• If the diff of your PR is large or the reviewer is busy, your PR may have some merge

conflicts with other PRs that happen to get merged first. You should fix these merge

conflicts using the normal git procedures.

If you are not doing a new feature or something like that (e.g. if you are fixing a bug), then

that's it! Thanks for your contribution :)

Refining your implementation

As people get experience with your new feature on nightly, slight changes may be

proposed and unresolved questions may become resolved. Updates/changes go through

the same process for implementing any other changes, as described above (i.e. submit a

PR, go through review, wait for @bors , etc).

Some changes may be major enough to require an FCP and some review by Rust team

members.

For the ? macro feature, we went through a few different iterations after the original

implementation: 1, 2, 3.

Along the way, we decided that ? should not take a separator, which was previously an

unresolved question listed in the RFC. We also changed the disambiguation strategy: we

decided to remove the ability to use ? as a separator token for other repetition

operators (e.g. + or *). However, since this was a breaking change, we decided to do it

over an edition boundary. Thus, the new feature can be enabled only in edition 2018.

These deviations from the original RFC required another FCP.

Stabilization

Finally, after the feature had baked for a while on nightly, a language team member

moved to stabilize it.

A stabilization report needs to be written that includes

• brief description of the behavior and any deviations from the RFC

• which edition(s) are affected and how

• links to a few tests to show the interesting aspects

The stabilization report for our feature is here.

After this, a PR is made to remove the feature gate, enabling the feature by default (on

the 2018 edition). A note is added to the Release notes about the feature.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

154 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#refining-your-implementation
https://rustc-dev-guide.rust-lang.org/print.html#refining-your-implementation
https://github.com/rust-lang/rust/pull/49719
https://github.com/rust-lang/rust/pull/49719
https://github.com/rust-lang/rust/pull/51336
https://github.com/rust-lang/rust/pull/51336
https://github.com/rust-lang/rust/pull/51587
https://github.com/rust-lang/rust/pull/51587
https://github.com/rust-lang/rust/issues/51934
https://github.com/rust-lang/rust/issues/51934
https://rustc-dev-guide.rust-lang.org/print.html#stabilization
https://rustc-dev-guide.rust-lang.org/print.html#stabilization
https://github.com/rust-lang/rust/issues/48075#issuecomment-433177613
https://github.com/rust-lang/rust/issues/48075#issuecomment-433177613
https://github.com/rust-lang/rust/issues/48075#issuecomment-433243048
https://github.com/rust-lang/rust/issues/48075#issuecomment-433243048
https://github.com/rust-lang/rust/pull/56245
https://github.com/rust-lang/rust/pull/56245
https://github.com/rust-lang/rust/blob/master/RELEASES.md
https://github.com/rust-lang/rust/blob/master/RELEASES.md

Steps to stabilize the feature can be found at Stabilizing Features.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

155 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/stabilization_guide.html
https://rustc-dev-guide.rust-lang.org/stabilization_guide.html

Implementing new language features

• The @rfcbot FCP process

• The logistics of writing features

◦ Warning Cycles

◦ Stability

◦ Tracking Issues

• Stability in code

When you want to implement a new significant feature in the compiler, you need to go

through this process to make sure everything goes smoothly.

NOTE: this section is for language features, not library features, which use a

different process.

The @rfcbot FCP process

When the change is small and uncontroversial, then it can be done with just writing a PR

and getting an r+ from someone who knows that part of the code. However, if the change

is potentially controversial, it would be a bad idea to push it without consensus from the

rest of the team (both in the "distributed system" sense to make sure you don't break

anything you don't know about, and in the social sense to avoid PR fights).

If such a change seems to be too small to require a full formal RFC process (e.g., a small

standard library addition, a big refactoring of the code, a "technically-breaking" change, or

a "big bugfix" that basically amounts to a small feature) but is still too controversial or big

to get by with a single r+, you can propose a final comment period (FCP). Or, if you're not

on the relevant team (and thus don't have @rfcbot permissions), ask someone who is to

start one; unless they have a concern themselves, they should.

Again, the FCP process is only needed if you need consensus – if you don't think anyone

would have a problem with your change, it's OK to get by with only an r+. For example, it

is OK to add or modify unstable command-line flags or attributes without an FCP for

compiler development or standard library use, as long as you don't expect them to be in

wide use in the nightly ecosystem. Some teams have lighter weight processes that they

use in scenarios like this; for example, the compiler team recommends filing a Major

Change Proposal (MCP) as a lightweight way to garner support and feedback without

requiring full consensus.

You don't need to have the implementation fully ready for r+ to propose an FCP, but it is

generally a good idea to have at least a proof of concept so that people can see what you

are talking about.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

156 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#implementing-new-language-features
https://rustc-dev-guide.rust-lang.org/print.html#implementing-new-language-features
https://rustc-dev-guide.rust-lang.org/implementing_new_features.html#the-rfcbot-fcp-process
https://rustc-dev-guide.rust-lang.org/implementing_new_features.html#the-rfcbot-fcp-process
https://rustc-dev-guide.rust-lang.org/implementing_new_features.html#the-logistics-of-writing-features
https://rustc-dev-guide.rust-lang.org/implementing_new_features.html#the-logistics-of-writing-features
https://rustc-dev-guide.rust-lang.org/implementing_new_features.html#warning-cycles
https://rustc-dev-guide.rust-lang.org/implementing_new_features.html#warning-cycles
https://rustc-dev-guide.rust-lang.org/implementing_new_features.html#stability
https://rustc-dev-guide.rust-lang.org/implementing_new_features.html#stability
https://rustc-dev-guide.rust-lang.org/implementing_new_features.html#tracking-issues
https://rustc-dev-guide.rust-lang.org/implementing_new_features.html#tracking-issues
https://rustc-dev-guide.rust-lang.org/implementing_new_features.html#stability-in-code
https://rustc-dev-guide.rust-lang.org/implementing_new_features.html#stability-in-code
https://rustc-dev-guide.rust-lang.org/stability.html
https://rustc-dev-guide.rust-lang.org/stability.html
https://rustc-dev-guide.rust-lang.org/stability.html
https://rustc-dev-guide.rust-lang.org/stability.html
https://rustc-dev-guide.rust-lang.org/print.html#the-rfcbot-fcp-process
https://rustc-dev-guide.rust-lang.org/print.html#the-rfcbot-fcp-process
https://forge.rust-lang.org/compiler/mcp.html#public-facing-changes-require-rfcbot-fcp
https://forge.rust-lang.org/compiler/mcp.html#public-facing-changes-require-rfcbot-fcp

When an FCP is proposed, it requires all members of the team to sign off the FCP. After

they all do so, there's a 10-day-long "final comment period" (hence the name) where

everybody can comment, and if no concerns are raised, the PR/issue gets FCP approval.

The logistics of writing features

There are a few "logistic" hoops you might need to go through in order to implement a

feature in a working way.

Warning Cycles

In some cases, a feature or bugfix might break some existing programs in some edge

cases. In that case, you might want to do a crater run to assess the impact and possibly

add a future-compatibility lint, similar to those used for edition-gated lints.

Stability

We value the stability of Rust. Code that works and runs on stable should (mostly) not

break. Because of that, we don't want to release a feature to the world with only team

consensus and code review - we want to gain real-world experience on using that feature

on nightly, and we might want to change the feature based on that experience.

To allow for that, we must make sure users don't accidentally depend on that new feature

- otherwise, especially if experimentation takes time or is delayed and the feature takes

the trains to stable, it would end up de facto stable and we'll not be able to make changes

in it without breaking people's code.

The way we do that is that we make sure all new features are feature gated - they can't be

used without enabling a feature gate (#[feature(foo)]), which can't be done in a

stable/beta compiler. See the stability in code section for the technical details.

Eventually, after we gain enough experience using the feature, make the necessary

changes, and are satisfied, we expose it to the world using the stabilization process

described here. Until then, the feature is not set in stone: every part of the feature can be

changed, or the feature might be completely rewritten or removed. Features are not

supposed to gain tenure by being unstable and unchanged for a year.

Tracking Issues

To keep track of the status of an unstable feature, the experience we get while using it on

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

157 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#the-logistics-of-writing-features
https://rustc-dev-guide.rust-lang.org/print.html#the-logistics-of-writing-features
https://rustc-dev-guide.rust-lang.org/print.html#warning-cycles
https://rustc-dev-guide.rust-lang.org/print.html#warning-cycles
https://rustc-dev-guide.rust-lang.org/diagnostics.html#edition-gated-lints
https://rustc-dev-guide.rust-lang.org/diagnostics.html#edition-gated-lints
https://rustc-dev-guide.rust-lang.org/print.html#stability
https://rustc-dev-guide.rust-lang.org/print.html#stability
https://github.com/rust-lang/rfcs/blob/master/text/1122-language-semver.md
https://github.com/rust-lang/rfcs/blob/master/text/1122-language-semver.md
https://rustc-dev-guide.rust-lang.org/implementing_new_features.html#stability-in-code
https://rustc-dev-guide.rust-lang.org/implementing_new_features.html#stability-in-code
https://rustc-dev-guide.rust-lang.org/stabilization_guide.html
https://rustc-dev-guide.rust-lang.org/stabilization_guide.html
https://rustc-dev-guide.rust-lang.org/print.html#tracking-issues
https://rustc-dev-guide.rust-lang.org/print.html#tracking-issues

nightly, and of the concerns that block its stabilization, every feature-gate needs a

tracking issue. General discussions about the feature should be done on the tracking

issue.

For features that have an RFC, you should use the RFC's tracking issue for the feature.

For other features, you'll have to make a tracking issue for that feature. The issue title

should be "Tracking issue for YOUR FEATURE". Use the "Tracking Issue" issue template.

Stability in code

The below steps needs to be followed in order to implement a new unstable feature:

1. Open a tracking issue - if you have an RFC, you can use the tracking issue for the

RFC.

The tracking issue should be labeled with at least C-tracking-issue . For a

language feature, a label F-feature_name should be added as well.

2. Pick a name for the feature gate (for RFCs, use the name in the RFC).

3. Add the feature name to rustc_span/src/symbol.rs in the Symbols {...} block.

4. Add a feature gate declaration to rustc_feature/src/active.rs in the active

declare_features block.

where $edition has the type Option<Edition> , and is typically just None . If you

haven't yet opened a tracking issue (e.g. because you want initial feedback on

whether the feature is likely to be accepted), you can temporarily use None - but

make sure to update it before the PR is merged!

For example:

Features can be marked as incomplete, and trigger the warn-by-default

incomplete_features lint by setting their type to incomplete :

/// description of feature

(active, $feature_name, "CURRENT_RUSTC_VERSION",

Some($tracking_issue_number), $edition)

/// Allows defining identifiers beyond ASCII.

(active, non_ascii_idents, "CURRENT_RUSTC_VERSION", Some(55467), None),

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

158 of 660 8/30/23, 09:47

https://github.com/rust-lang/rust/issues/new?template=tracking_issue.md
https://github.com/rust-lang/rust/issues/new?template=tracking_issue.md
https://rustc-dev-guide.rust-lang.org/print.html#stability-in-code
https://rustc-dev-guide.rust-lang.org/print.html#stability-in-code
https://rustc-dev-guide.rust-lang.org/implementing_new_features.html#tracking-issues
https://rustc-dev-guide.rust-lang.org/implementing_new_features.html#tracking-issues
https://doc.rust-lang.org/rustc/lints/listing/warn-by-default.html#incomplete-features
https://doc.rust-lang.org/rustc/lints/listing/warn-by-default.html#incomplete-features
https://doc.rust-lang.org/rustc/lints/listing/warn-by-default.html#incomplete-features
https://doc.rust-lang.org/rustc/lints/listing/warn-by-default.html#incomplete-features

To avoid semantic merge conflicts, please use CURRENT_RUSTC_VERSION instead of

1.70 or another explicit version number.

5. Prevent usage of the new feature unless the feature gate is set. You can check it in

most places in the compiler using the expression tcx.features().$feature_name

(or sess.features_untracked().$feature_name if the tcx is unavailable)

If the feature gate is not set, you should either maintain the pre-feature behavior or

raise an error, depending on what makes sense. Errors should generally use

rustc_session::parse::feature_err . For an example of adding an error, see

#81015.

For features introducing new syntax, pre-expansion gating should be used instead.

To do so, extend the GatedSpans struct, add spans to it during parsing, and then

finally feature-gate all the spans in

rustc_ast_passes::feature_gate::check_crate .

6. Add a test to ensure the feature cannot be used without a feature gate, by creating

tests/ui/feature-gates/feature-gate-$feature_name.rs . You can generate the

corresponding .stderr file by running ./x test tests/ui/feature-gates/

--bless .

7. Add a section to the unstable book, in src/doc/unstable-book/src/language-

features/$feature_name.md .

8. Write a lot of tests for the new feature, preferably in tests/ui/$feature_name/ . PRs

without tests will not be accepted!

9. Get your PR reviewed and land it. You have now successfully implemented a feature

in Rust!

/// Allows unsized rvalues at arguments and parameters.

(incomplete, unsized_locals, "CURRENT_RUSTC_VERSION", Some(48055),

None),

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

159 of 660 8/30/23, 09:47

https://bors.tech/essay/2017/02/02/pitch/
https://bors.tech/essay/2017/02/02/pitch/
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_session/parse/fn.feature_err.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_session/parse/fn.feature_err.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_session/parse/fn.feature_err.html
https://github.com/rust-lang/rust/pull/81015
https://github.com/rust-lang/rust/pull/81015
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_session/parse/struct.GatedSpans.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_session/parse/struct.GatedSpans.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_session/parse/struct.GatedSpans.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_ast_passes/feature_gate/fn.check_crate.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_ast_passes/feature_gate/fn.check_crate.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_ast_passes/feature_gate/fn.check_crate.html

Stability attributes

This section is about the stability attributes and schemes that allow stable APIs to use

unstable APIs internally in the rustc standard library.

NOTE: this section is for library features, not language features. For instructions on

stabilizing a language feature see Stabilizing Features.

• unstable

• stable

• rustc_const_unstable

• rustc_const_stable

• Stabilizing a library feature

• allow_internal_unstable

• rustc_allow_const_fn_unstable

• staged_api

• deprecated

unstable

The #[unstable(feature = "foo", issue = "1234", reason = "lorem ipsum")]

attribute explicitly marks an item as unstable. Items that are marked as "unstable" cannot

be used without a corresponding #![feature] attribute on the crate, even on a nightly

compiler. This restriction only applies across crate boundaries, unstable items may be

used within the crate that defines them.

The issue field specifies the associated GitHub issue number. This field is required and

all unstable features should have an associated tracking issue. In rare cases where there

is no sensible value issue = "none" is used.

The unstable attribute infects all sub-items, where the attribute doesn't have to be

reapplied. So if you apply this to a module, all items in the module will be unstable.

You can make specific sub-items stable by using the #[stable] attribute on them. The

stability scheme works similarly to how pub works. You can have public functions of

nonpublic modules and you can have stable functions in unstable modules or vice versa.

Note, however, that due to a rustc bug, stable items inside unstable modules are available

to stable code in that location! So, for example, stable code can import

core::intrinsics::transmute even though intrinsics is an unstable module. Thus,

this kind of nesting should be avoided when possible.

The unstable attribute may also have the soft value, which makes it a future-

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

160 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#stability-attributes
https://rustc-dev-guide.rust-lang.org/print.html#stability-attributes
https://rustc-dev-guide.rust-lang.org/stabilization_guide.html
https://rustc-dev-guide.rust-lang.org/stabilization_guide.html
https://rustc-dev-guide.rust-lang.org/stability.html#unstable
https://rustc-dev-guide.rust-lang.org/stability.html#unstable
https://rustc-dev-guide.rust-lang.org/stability.html#stable
https://rustc-dev-guide.rust-lang.org/stability.html#stable
https://rustc-dev-guide.rust-lang.org/stability.html#rustc_const_unstable
https://rustc-dev-guide.rust-lang.org/stability.html#rustc_const_unstable
https://rustc-dev-guide.rust-lang.org/stability.html#rustc_const_stable
https://rustc-dev-guide.rust-lang.org/stability.html#rustc_const_stable
https://rustc-dev-guide.rust-lang.org/stability.html#stabilizing-a-library-feature
https://rustc-dev-guide.rust-lang.org/stability.html#stabilizing-a-library-feature
https://rustc-dev-guide.rust-lang.org/stability.html#allow_internal_unstable
https://rustc-dev-guide.rust-lang.org/stability.html#allow_internal_unstable
https://rustc-dev-guide.rust-lang.org/stability.html#rustc_allow_const_fn_unstable
https://rustc-dev-guide.rust-lang.org/stability.html#rustc_allow_const_fn_unstable
https://rustc-dev-guide.rust-lang.org/stability.html#staged_api
https://rustc-dev-guide.rust-lang.org/stability.html#staged_api
https://rustc-dev-guide.rust-lang.org/stability.html#deprecated
https://rustc-dev-guide.rust-lang.org/stability.html#deprecated
https://rustc-dev-guide.rust-lang.org/print.html#unstable
https://rustc-dev-guide.rust-lang.org/print.html#unstable
https://github.com/rust-lang/rust/issues
https://github.com/rust-lang/rust/issues
https://github.com/rust-lang/rust/issues/15702
https://github.com/rust-lang/rust/issues/15702

incompatible deny-by-default lint instead of a hard error. This is used by the bench

attribute which was accidentally accepted in the past. This prevents breaking

dependencies by leveraging Cargo's lint capping.

stable

The #[stable(feature = "foo", since = "1.420.69")] attribute explicitly marks an

item as stabilized. Note that stable functions may use unstable things in their body.

rustc_const_unstable

The #[rustc_const_unstable(feature = "foo", issue = "1234", reason = "lorem

ipsum")] has the same interface as the unstable attribute. It is used to mark const fn

as having their constness be unstable. This allows you to make a function stable without

stabilizing its constness or even just marking an existing stable function as const fn

without instantly stabilizing the const fn ness.

Furthermore this attribute is needed to mark an intrinsic as const fn , because there's

no way to add const to functions in extern blocks for now.

rustc_const_stable

The #[rustc_const_stable(feature = "foo", since = "1.420.69")] attribute explicitly

marks a const fn as having its constness be stable . This attribute can make sense

even on an unstable function, if that function is called from another

rustc_const_stable function.

Furthermore this attribute is needed to mark an intrinsic as callable from

rustc_const_stable functions.

Stabilizing a library feature

To stabilize a feature, follow these steps:

1. Ask a @T-libs-api member to start an FCP on the tracking issue and wait for the FCP

to complete (with disposition-merge).

2. Change #[unstable(...)] to #[stable(since = "CURRENT_RUSTC_VERSION")] .

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

161 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#stable
https://rustc-dev-guide.rust-lang.org/print.html#stable
https://rustc-dev-guide.rust-lang.org/print.html#rustc_const_unstable
https://rustc-dev-guide.rust-lang.org/print.html#rustc_const_unstable
https://rustc-dev-guide.rust-lang.org/print.html#rustc_const_stable
https://rustc-dev-guide.rust-lang.org/print.html#rustc_const_stable
https://rustc-dev-guide.rust-lang.org/print.html#stabilizing-a-library-feature
https://rustc-dev-guide.rust-lang.org/print.html#stabilizing-a-library-feature

3. Remove #![feature(...)] from any test or doc-test for this API. If the feature is

used in the compiler or tools, remove it from there as well.

4. If applicable, change #[rustc_const_unstable(...)] to

#[rustc_const_stable(since = "CURRENT_RUSTC_VERSION")] .

5. Open a PR against rust-lang/rust .

◦ Add the appropriate labels: @rustbot modify labels: +T-libs-api .

◦ Link to the tracking issue and say "Closes #XXXXX".

You can see an example of stabilizing a feature with tracking issue #81656 with FCP and

the associated implementation PR #84642.

allow_internal_unstable

Macros and compiler desugarings expose their bodies to the call site. To work around not

being able to use unstable things in the standard library's macros, there's the

#[allow_internal_unstable(feature1, feature2)] attribute that allows the given

features to be used in stable macros.

rustc_allow_const_fn_unstable

const fn , while not directly exposing their body to the world, are going to get evaluated

at compile time in stable crates. If their body does something const-unstable, that could

lock us into certain features indefinitely by accident. Thus no unstable const features are

allowed inside stable const fn .

However, sometimes we do know that a feature will get stabilized, just not when, or there

is a stable (but e.g. runtime-slow) workaround, so we could always fall back to some

stable version if we scrapped the unstable feature. In those cases, the

rustc_allow_const_fn_unstable attribute can be used to allow some unstable features in

the body of a stable const fn .

You also need to take care to uphold the const fn invariant that calling it at runtime and

compile-time needs to behave the same (see also this blog post). This means that you

may not create a const fn that e.g. transmutes a memory address to an integer,

because the addresses of things are nondeterministic and often unknown at compile-

time.

Always ping @rust-lang/wg-const-eval if you are adding more

rustc_allow_const_fn_unstable attributes to any const fn .

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

162 of 660 8/30/23, 09:47

https://github.com/rust-lang/rust/issues/81656
https://github.com/rust-lang/rust/issues/81656
https://github.com/rust-lang/rust/pull/84642
https://github.com/rust-lang/rust/pull/84642
https://rustc-dev-guide.rust-lang.org/print.html#allow_internal_unstable
https://rustc-dev-guide.rust-lang.org/print.html#allow_internal_unstable
https://rustc-dev-guide.rust-lang.org/print.html#rustc_allow_const_fn_unstable
https://rustc-dev-guide.rust-lang.org/print.html#rustc_allow_const_fn_unstable
https://www.ralfj.de/blog/2018/07/19/const.html
https://www.ralfj.de/blog/2018/07/19/const.html

staged_api

Any crate that uses the stable or unstable attributes must include the

#![feature(staged_api)] attribute on the crate.

deprecated

Deprecations in the standard library are nearly identical to deprecations in user code.

When #[deprecated] is used on an item, it must also have a stable or unstable

attribute.

deprecated has the following form:

The suggestion field is optional. If given, it should be a string that can be used as a

machine-applicable suggestion to correct the warning. This is typically used when the

identifier is renamed, but no other significant changes are necessary. When the

suggestion field is used, you need to have #![feature(deprecated_suggestion)] at the

crate root.

Another difference from user code is that the since field is actually checked against the

current version of rustc . If since is in a future version, then the deprecated_in_future

lint is triggered which is default allow , but most of the standard library raises it to a

warning with #![warn(deprecated_in_future)] .

#[deprecated(
 since = "1.38.0",
 note = "explanation for deprecation",
 suggestion = "other_function"
)]

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

163 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#staged_api
https://rustc-dev-guide.rust-lang.org/print.html#staged_api
https://rustc-dev-guide.rust-lang.org/print.html#deprecated
https://rustc-dev-guide.rust-lang.org/print.html#deprecated

Request for stabilization

NOTE: this page is about stabilizing language features. For stabilizing library features, see

Stabilizing a library feature.

Once an unstable feature has been well-tested with no outstanding concern, anyone may

push for its stabilization. It involves the following steps:

• Documentation PRs

• Write a stabilization report

• FCP

• Stabilization PR

◦ Updating the feature-gate listing

◦ Removing existing uses of the feature-gate

◦ Do not require the feature-gate to use the feature

Documentation PRs

If any documentation for this feature exists, it should be in the Unstable Book , located at

src/doc/unstable-book . If it exists, the page for the feature gate should be removed.

If there was documentation there, integrating it into the existing documentation is

needed.

If there wasn't documentation there, it needs to be added.

Places that may need updated documentation:

• The Reference: This must be updated, in full detail.

• The Book: This may or may not need updating, depends. If you're not sure, please

open an issue on this repository and it can be discussed.

• standard library documentation: As needed. Language features often don't need

this, but if it's a feature that changes how good examples are written, such as when

? was added to the language, updating examples is important.

• Rust by Example: As needed.

Prepare PRs to update documentation involving this new feature for repositories

mentioned above. Maintainers of these repositories will keep these PRs open until the

whole stabilization process has completed. Meanwhile, we can proceed to the next step.

Write a stabilization report

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

164 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#request-for-stabilization
https://rustc-dev-guide.rust-lang.org/print.html#request-for-stabilization
https://rustc-dev-guide.rust-lang.org/stability.html#stabilizing-a-library-feature
https://rustc-dev-guide.rust-lang.org/stability.html#stabilizing-a-library-feature
https://rustc-dev-guide.rust-lang.org/stabilization_guide.html#documentation-prs
https://rustc-dev-guide.rust-lang.org/stabilization_guide.html#documentation-prs
https://rustc-dev-guide.rust-lang.org/stabilization_guide.html#write-a-stabilization-report
https://rustc-dev-guide.rust-lang.org/stabilization_guide.html#write-a-stabilization-report
https://rustc-dev-guide.rust-lang.org/stabilization_guide.html#fcp
https://rustc-dev-guide.rust-lang.org/stabilization_guide.html#fcp
https://rustc-dev-guide.rust-lang.org/stabilization_guide.html#stabilization-pr
https://rustc-dev-guide.rust-lang.org/stabilization_guide.html#stabilization-pr
https://rustc-dev-guide.rust-lang.org/stabilization_guide.html#updating-the-feature-gate-listing
https://rustc-dev-guide.rust-lang.org/stabilization_guide.html#updating-the-feature-gate-listing
https://rustc-dev-guide.rust-lang.org/stabilization_guide.html#removing-existing-uses-of-the-feature-gate
https://rustc-dev-guide.rust-lang.org/stabilization_guide.html#removing-existing-uses-of-the-feature-gate
https://rustc-dev-guide.rust-lang.org/stabilization_guide.html#do-not-require-the-feature-gate-to-use-the-feature
https://rustc-dev-guide.rust-lang.org/stabilization_guide.html#do-not-require-the-feature-gate-to-use-the-feature
https://rustc-dev-guide.rust-lang.org/print.html#documentation-prs
https://rustc-dev-guide.rust-lang.org/print.html#documentation-prs
https://doc.rust-lang.org/unstable-book/index.html
https://doc.rust-lang.org/unstable-book/index.html
https://doc.rust-lang.org/unstable-book/index.html
https://github.com/rust-lang/rust/tree/master/src/doc/unstable-book
https://github.com/rust-lang/rust/tree/master/src/doc/unstable-book
https://github.com/rust-lang/rust/tree/master/src/doc/unstable-book
https://github.com/rust-lang/reference
https://github.com/rust-lang/reference
https://github.com/rust-lang/book
https://github.com/rust-lang/book
https://github.com/rust-lang/rust-by-example
https://github.com/rust-lang/rust-by-example
https://rustc-dev-guide.rust-lang.org/print.html#write-a-stabilization-report
https://rustc-dev-guide.rust-lang.org/print.html#write-a-stabilization-report

Find the tracking issue of the feature, and create a short stabilization report. Essentially

this would be a brief summary of the feature plus some links to test cases showing it

works as expected, along with a list of edge cases that came up and were considered. This

is a minimal "due diligence" that we do before stabilizing.

The report should contain:

• A summary, showing examples (e.g. code snippets) what is enabled by this feature.

• Links to test cases in our test suite regarding this feature and describe the feature's

behavior on encountering edge cases.

• Links to the documentations (the PRs we have made in the previous steps).

• Any other relevant information.

• The resolutions of any unresolved questions if the stabilization is for an RFC.

Examples of stabilization reports can be found in rust-lang/rust#44494 and rust-

lang/rust#28237 (these links will bring you directly to the comment containing the

stabilization report).

FCP

If any member of the team responsible for tracking this feature agrees with stabilizing

this feature, they will start the FCP (final-comment-period) process by commenting

The rest of the team members will review the proposal. If the final decision is to stabilize,

we proceed to do the actual code modification.

Stabilization PR

This is for stabilizing language features. If you are stabilizing a library feature, see the

stabilization chapter of the std dev guide instead.

Once we have decided to stabilize a feature, we need to have a PR that actually makes

that stabilization happen. These kinds of PRs are a great way to get involved in Rust, as

they take you on a little tour through the source code.

Here is a general guide to how to stabilize a feature -- every feature is different, of course,

so some features may require steps beyond what this guide talks about.

Note: Before we stabilize any feature, it's the rule that it should appear in the

documentation.

@rfcbot fcp merge

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

165 of 660 8/30/23, 09:47

https://github.com/rust-lang/rust/issues/44494#issuecomment-360191474
https://github.com/rust-lang/rust/issues/44494#issuecomment-360191474
https://github.com/rust-lang/rust/issues/28237#issuecomment-363374130
https://github.com/rust-lang/rust/issues/28237#issuecomment-363374130
https://github.com/rust-lang/rust/issues/28237#issuecomment-363374130
https://github.com/rust-lang/rust/issues/28237#issuecomment-363374130
https://rustc-dev-guide.rust-lang.org/print.html#fcp
https://rustc-dev-guide.rust-lang.org/print.html#fcp
https://rustc-dev-guide.rust-lang.org/print.html#stabilization-pr
https://rustc-dev-guide.rust-lang.org/print.html#stabilization-pr
https://std-dev-guide.rust-lang.org/feature-lifecycle/stabilization.html
https://std-dev-guide.rust-lang.org/feature-lifecycle/stabilization.html
https://std-dev-guide.rust-lang.org/feature-lifecycle/stabilization.html
https://std-dev-guide.rust-lang.org/feature-lifecycle/stabilization.html

Updating the feature-gate listing

There is a central listing of feature-gates in compiler/rustc_feature . Search for the

declare_features! macro. There should be an entry for the feature you are aiming to

stabilize, something like (this example is taken from rust-lang/rust#32409:

The above line should be moved down to the area for "accepted" features, declared

below in a separate call to declare_features! . When it is done, it should look like:

(Even though you will encounter version numbers in the file of past changes, you should

not put the rustc version you expect your stabilization to happen in, but instead

CURRENT_RUSTC_VERSION)

Removing existing uses of the feature-gate

Next search for the feature string (in this case, pub_restricted) in the codebase to find

where it appears. Change uses of #![feature(XXX)] from the std and any rustc crates

(this includes test folders under library/ and compiler/ but not the toplevel test/

one) to be #![cfg_attr(bootstrap, feature(XXX))] . This includes the feature-gate only

for stage0, which is built using the current beta (this is needed because the feature is still

unstable in the current beta).

Also, remove those strings from any tests. If there are tests specifically targeting the

feature-gate (i.e., testing that the feature-gate is required to use the feature, but nothing

else), simply remove the test.

Do not require the feature-gate to use the feature

Most importantly, remove the code which flags an error if the feature-gate is not present

(since the feature is now considered stable). If the feature can be detected because it

employs some new syntax, then a common place for that code to be is in the same

compiler/rustc_ast_passes/src/feature_gate.rs . For example, you might see code

like this:

// pub(restricted) visibilities (RFC 1422)
(active, pub_restricted, "CURRENT_RUSTC_VERSION", Some(32409)),

// pub(restricted) visibilities (RFC 1422)
(accepted, pub_restricted, "CURRENT_RUSTC_VERSION", Some(32409)),
// note that we changed this

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

166 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#updating-the-feature-gate-listing
https://rustc-dev-guide.rust-lang.org/print.html#updating-the-feature-gate-listing
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_feature/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_feature/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_feature/index.html
https://github.com/rust-lang/rust/issues/32409
https://github.com/rust-lang/rust/issues/32409
https://rustc-dev-guide.rust-lang.org/print.html#removing-existing-uses-of-the-feature-gate
https://rustc-dev-guide.rust-lang.org/print.html#removing-existing-uses-of-the-feature-gate
https://rustc-dev-guide.rust-lang.org/print.html#do-not-require-the-feature-gate-to-use-the-feature
https://rustc-dev-guide.rust-lang.org/print.html#do-not-require-the-feature-gate-to-use-the-feature

This gate_feature_post! macro prints an error if the pub_restricted feature is not

enabled. It is not needed now that #[pub_restricted] is stable.

For more subtle features, you may find code like this:

This pub_restricted field (obviously named after the feature) would ordinarily be false if

the feature flag is not present and true if it is. So transform the code to assume that the

field is true. In this case, that would mean removing the if and leaving just the /* XXX

*/ .

gate_feature_post!(&self, pub_restricted, span,
"`pub(restricted)` syntax is experimental");

if self.tcx.sess.features.borrow().pub_restricted { /* XXX */ }

if self.tcx.sess.features.borrow().pub_restricted { /* XXX */ }
becomes
/* XXX */

if self.tcx.sess.features.borrow().pub_restricted && something { /* XXX */ }
 becomes
if something { /* XXX */ }

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

167 of 660 8/30/23, 09:47

Feature Gates

This chapter is intended to provide basic help for adding, removing, and modifying

feature gates.

Note that this is specific to language feature gates; library feature gates use a different

mechanism.

Adding a feature gate

See "Stability in code" in the "Implementing new features" section for instructions.

Removing a feature gate

To remove a feature gate, follow these steps:

1. Remove the feature gate declaration in rustc_feature/src/active.rs . It will look

like this:

2. Add a modified version of the feature gate declaration that you just removed to

rustc_feature/src/removed.rs :

Renaming a feature gate

To rename a feature gate, follow these steps (the first two are the same steps to follow

when removing a feature gate):

1. Remove the old feature gate declaration in rustc_feature/src/active.rs . It will

/// description of feature

(active, $feature_name, "$version", Some($tracking_issue_number),

$edition)

/// description of feature

(removed, $old_feature_name, "$version", Some($tracking_issue_number),

$edition,

Some("$why_it_was_removed"))

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

168 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#feature-gates
https://rustc-dev-guide.rust-lang.org/print.html#feature-gates
https://rustc-dev-guide.rust-lang.org/stability.html
https://rustc-dev-guide.rust-lang.org/stability.html
https://rustc-dev-guide.rust-lang.org/stability.html
https://rustc-dev-guide.rust-lang.org/stability.html
https://rustc-dev-guide.rust-lang.org/print.html#adding-a-feature-gate
https://rustc-dev-guide.rust-lang.org/print.html#adding-a-feature-gate
https://rustc-dev-guide.rust-lang.org/implementing_new_features.html#stability-in-code
https://rustc-dev-guide.rust-lang.org/implementing_new_features.html#stability-in-code
https://rustc-dev-guide.rust-lang.org/print.html#removing-a-feature-gate
https://rustc-dev-guide.rust-lang.org/print.html#removing-a-feature-gate
https://rustc-dev-guide.rust-lang.org/print.html#renaming-a-feature-gate
https://rustc-dev-guide.rust-lang.org/print.html#renaming-a-feature-gate
https://rustc-dev-guide.rust-lang.org/feature-gates.html#removing-a-feature-gate
https://rustc-dev-guide.rust-lang.org/feature-gates.html#removing-a-feature-gate

look like this:

2. Add a modified version of the old feature gate declaration that you just removed to

rustc_feature/src/removed.rs :

3. Add a feature gate declaration with the new name to rustc_feature/src

/active.rs . It should look very similar to the old declaration:

Stabilizing a feature

See "Updating the feature-gate listing" in the "Stabilizing Features" chapter for

instructions. There are additional steps you will need to take beyond just updating the

declaration!

/// description of feature

(active, $old_feature_name, "$version", Some($tracking_issue_number),

$edition)

/// description of feature

/// Renamed to `$new_feature_name`

(removed, $old_feature_name, "$version", Some($tracking_issue_number),

$edition,

Some("renamed to `$new_feature_name`"))

/// description of feature

(active, $new_feature_name, "$version", Some($tracking_issue_number),

$edition)

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

169 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#stabilizing-a-feature
https://rustc-dev-guide.rust-lang.org/print.html#stabilizing-a-feature
https://rustc-dev-guide.rust-lang.org/stabilization_guide.html#updating-the-feature-gate-listing
https://rustc-dev-guide.rust-lang.org/stabilization_guide.html#updating-the-feature-gate-listing

This file offers some tips on the coding conventions for rustc. This chapter covers

formatting, coding for correctness, using crates from crates.io, and some tips on

structuring your PR for easy review.

Formatting and the tidy script

rustc is moving towards the Rust standard coding style.

However, for now we don't use stable rustfmt ; we use a pinned version with a special

config, so this may result in different style from normal rustfmt . Therefore, formatting

this repository using cargo fmt is not recommended.

Instead, formatting should be done using ./x fmt . It's a good habit to run ./x fmt

before every commit, as this reduces conflicts later.

Formatting is checked by the tidy script. It runs automatically when you do ./x test

and can be run in isolation with ./x fmt --check .

If you want to use format-on-save in your editor, the pinned version of rustfmt is built

under build/<target>/stage0/bin/rustfmt . You'll have to pass the --edition=2021

argument yourself when calling rustfmt directly.

Copyright notice

In the past, files began with a copyright and license notice. Please omit this notice for

new files licensed under the standard terms (dual MIT/Apache-2.0).

All of the copyright notices should be gone by now, but if you come across one in the

rust-lang/rust repo, feel free to open a PR to remove it.

Line length

Lines should be at most 100 characters. It's even better if you can keep things to 80.

Ignoring the line length limit. Sometimes – in particular for tests – it can be necessary

to exempt yourself from this limit. In that case, you can add a comment towards the top

of the file like so:

// ignore-tidy-linelength

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

170 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/conventions.html#formatting
https://rustc-dev-guide.rust-lang.org/conventions.html#formatting
https://rustc-dev-guide.rust-lang.org/conventions.html#cc
https://rustc-dev-guide.rust-lang.org/conventions.html#cc
https://rustc-dev-guide.rust-lang.org/conventions.html#cio
https://rustc-dev-guide.rust-lang.org/conventions.html#cio
https://rustc-dev-guide.rust-lang.org/conventions.html#er
https://rustc-dev-guide.rust-lang.org/conventions.html#er
https://rustc-dev-guide.rust-lang.org/print.html#formatting-and-the-tidy-script
https://rustc-dev-guide.rust-lang.org/print.html#formatting-and-the-tidy-script
https://github.com/rust-dev-tools/fmt-rfcs
https://github.com/rust-dev-tools/fmt-rfcs
https://github.com/rust-lang/rustfmt
https://github.com/rust-lang/rustfmt
https://github.com/rust-lang/rustfmt
https://rustc-dev-guide.rust-lang.org/print.html#copyright-notice
https://rustc-dev-guide.rust-lang.org/print.html#copyright-notice
https://rustc-dev-guide.rust-lang.org/print.html#line-length
https://rustc-dev-guide.rust-lang.org/print.html#line-length

Tabs vs spaces

Prefer 4-space indent.

Coding for correctness

Beyond formatting, there are a few other tips that are worth following.

Prefer exhaustive matches

Using _ in a match is convenient, but it means that when new variants are added to the

enum, they may not get handled correctly. Ask yourself: if a new variant were added to

this enum, what's the chance that it would want to use the _ code, versus having some

other treatment? Unless the answer is "low", then prefer an exhaustive match. (The same

advice applies to if let and while let , which are effectively tests for a single variant.)

Use "TODO" comments for things you don't want to

forget

As a useful tool to yourself, you can insert a // TODO comment for something that you

want to get back to before you land your PR:

The tidy script will report an error for a // TODO comment, so this code would not be

able to land until the TODO is fixed (or removed).

This can also be useful in a PR as a way to signal from one commit that you are leaving a

bug that a later commit will fix:

Using crates from crates.io

fn do_something() {
if something_else {

unimplemented!(); // TODO write this
 }
}

if foo {
return true; // TODO wrong, but will be fixed in a later commit

}

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

171 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#tabs-vs-spaces
https://rustc-dev-guide.rust-lang.org/print.html#tabs-vs-spaces
https://rustc-dev-guide.rust-lang.org/print.html#coding-for-correctness
https://rustc-dev-guide.rust-lang.org/print.html#coding-for-correctness
https://rustc-dev-guide.rust-lang.org/print.html#prefer-exhaustive-matches
https://rustc-dev-guide.rust-lang.org/print.html#prefer-exhaustive-matches
https://rustc-dev-guide.rust-lang.org/print.html#use-todo-comments-for-things-you-dont-want-to-forget
https://rustc-dev-guide.rust-lang.org/print.html#use-todo-comments-for-things-you-dont-want-to-forget
https://rustc-dev-guide.rust-lang.org/print.html#use-todo-comments-for-things-you-dont-want-to-forget
https://rustc-dev-guide.rust-lang.org/print.html#use-todo-comments-for-things-you-dont-want-to-forget
https://rustc-dev-guide.rust-lang.org/print.html#using-crates-from-cratesio
https://rustc-dev-guide.rust-lang.org/print.html#using-crates-from-cratesio

See the crates.io dependencies section.

How to structure your PR

How you prepare the commits in your PR can make a big difference for the reviewer.

Here are some tips.

Isolate "pure refactorings" into their own commit. For example, if you rename a

method, then put that rename into its own commit, along with the renames of all the

uses.

More commits is usually better. If you are doing a large change, it's almost always

better to break it up into smaller steps that can be independently understood. The one

thing to be aware of is that if you introduce some code following one strategy, then

change it dramatically (versus adding to it) in a later commit, that 'back-and-forth' can be

confusing.

Format liberally. While only the final commit of a PR must be correctly formatted, it is

both easier to review and less noisy to format each commit individually using ./x fmt .

No merges. We do not allow merge commits into our history, other than those by bors. If

you get a merge conflict, rebase instead via a command like git rebase -i rust-

lang/master (presuming you use the name rust-lang for your remote).

Individual commits do not have to build (but it's nice). We do not require that every

intermediate commit successfully builds – we only expect to be able to bisect at a PR

level. However, if you can make individual commits build, that is always helpful.

Naming conventions

Apart from normal Rust style/naming conventions, there are also some specific to the

compiler.

• cx tends to be short for "context" and is often used as a suffix. For example, tcx is

a common name for the Typing Context.

• 'tcx is used as the lifetime name for the Typing Context.

• Because crate is a keyword, if you need a variable to represent something crate-

related, often the spelling is changed to krate .

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

172 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/crates-io.html
https://rustc-dev-guide.rust-lang.org/crates-io.html
https://rustc-dev-guide.rust-lang.org/print.html#how-to-structure-your-pr
https://rustc-dev-guide.rust-lang.org/print.html#how-to-structure-your-pr
https://rustc-dev-guide.rust-lang.org/print.html#naming-conventions
https://rustc-dev-guide.rust-lang.org/print.html#naming-conventions
https://rustc-dev-guide.rust-lang.org/ty.html
https://rustc-dev-guide.rust-lang.org/ty.html
https://rustc-dev-guide.rust-lang.org/ty.html
https://rustc-dev-guide.rust-lang.org/ty.html
https://rustc-dev-guide.rust-lang.org/ty.html

Procedures for Breaking Changes

• Motivation

◦ What qualifies as a bug fix?

• Detailed design

◦ Tracking issue

◦ Tracking issue template

◦ Issuing future compatibility warnings

◦ Helpful techniques

◦ Crater and crates.io

◦ Is it ever acceptable to go directly to issuing errors?

◦ Stabilization

◦ Removing a lint

◦ Remove the lint.

◦ Add the lint to the list of removed lists.

◦ Update the places that issue the lint

◦ Update tests

◦ All done!

This page defines the best practices procedure for making bug fixes or soundness

corrections in the compiler that can cause existing code to stop compiling. This text is

based on RFC 1589.

Motivation

From time to time, we encounter the need to make a bug fix, soundness correction, or

other change in the compiler which will cause existing code to stop compiling. When this

happens, it is important that we handle the change in a way that gives users of Rust a

smooth transition. What we want to avoid is that existing programs suddenly stop

compiling with opaque error messages: we would prefer to have a gradual period of

warnings, with clear guidance as to what the problem is, how to fix it, and why the change

was made. This RFC describes the procedure that we have been developing for handling

breaking changes that aims to achieve that kind of smooth transition.

One of the key points of this policy is that (a) warnings should be issued initially rather

than hard errors if at all possible and (b) every change that causes existing code to stop

compiling will have an associated tracking issue. This issue provides a point to collect

feedback on the results of that change. Sometimes changes have unexpectedly large

consequences or there may be a way to avoid the change that was not considered. In

those cases, we may decide to change course and roll back the change, or find another

solution (if warnings are being used, this is particularly easy to do).

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

173 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#procedures-for-breaking-changes
https://rustc-dev-guide.rust-lang.org/print.html#procedures-for-breaking-changes
https://rustc-dev-guide.rust-lang.org/bug-fix-procedure.html#motivation
https://rustc-dev-guide.rust-lang.org/bug-fix-procedure.html#motivation
https://rustc-dev-guide.rust-lang.org/bug-fix-procedure.html#what-qualifies-as-a-bug-fix
https://rustc-dev-guide.rust-lang.org/bug-fix-procedure.html#what-qualifies-as-a-bug-fix
https://rustc-dev-guide.rust-lang.org/bug-fix-procedure.html#detailed-design
https://rustc-dev-guide.rust-lang.org/bug-fix-procedure.html#detailed-design
https://rustc-dev-guide.rust-lang.org/bug-fix-procedure.html#tracking-issue
https://rustc-dev-guide.rust-lang.org/bug-fix-procedure.html#tracking-issue
https://rustc-dev-guide.rust-lang.org/bug-fix-procedure.html#tracking-issue-template
https://rustc-dev-guide.rust-lang.org/bug-fix-procedure.html#tracking-issue-template
https://rustc-dev-guide.rust-lang.org/bug-fix-procedure.html#issuing-future-compatibility-warnings
https://rustc-dev-guide.rust-lang.org/bug-fix-procedure.html#issuing-future-compatibility-warnings
https://rustc-dev-guide.rust-lang.org/bug-fix-procedure.html#helpful-techniques
https://rustc-dev-guide.rust-lang.org/bug-fix-procedure.html#helpful-techniques
https://rustc-dev-guide.rust-lang.org/bug-fix-procedure.html#crater-and-cratesio
https://rustc-dev-guide.rust-lang.org/bug-fix-procedure.html#crater-and-cratesio
https://rustc-dev-guide.rust-lang.org/bug-fix-procedure.html#is-it-ever-acceptable-to-go-directly-to-issuing-errors
https://rustc-dev-guide.rust-lang.org/bug-fix-procedure.html#is-it-ever-acceptable-to-go-directly-to-issuing-errors
https://rustc-dev-guide.rust-lang.org/bug-fix-procedure.html#stabilization
https://rustc-dev-guide.rust-lang.org/bug-fix-procedure.html#stabilization
https://rustc-dev-guide.rust-lang.org/bug-fix-procedure.html#removing-a-lint
https://rustc-dev-guide.rust-lang.org/bug-fix-procedure.html#removing-a-lint
https://rustc-dev-guide.rust-lang.org/bug-fix-procedure.html#remove-the-lint
https://rustc-dev-guide.rust-lang.org/bug-fix-procedure.html#remove-the-lint
https://rustc-dev-guide.rust-lang.org/bug-fix-procedure.html#add-the-lint-to-the-list-of-removed-lists
https://rustc-dev-guide.rust-lang.org/bug-fix-procedure.html#add-the-lint-to-the-list-of-removed-lists
https://rustc-dev-guide.rust-lang.org/bug-fix-procedure.html#update-the-places-that-issue-the-lint
https://rustc-dev-guide.rust-lang.org/bug-fix-procedure.html#update-the-places-that-issue-the-lint
https://rustc-dev-guide.rust-lang.org/bug-fix-procedure.html#update-tests
https://rustc-dev-guide.rust-lang.org/bug-fix-procedure.html#update-tests
https://rustc-dev-guide.rust-lang.org/bug-fix-procedure.html#all-done
https://rustc-dev-guide.rust-lang.org/bug-fix-procedure.html#all-done
https://github.com/rust-lang/rfcs/blob/master/text/1589-rustc-bug-fix-procedure.md
https://github.com/rust-lang/rfcs/blob/master/text/1589-rustc-bug-fix-procedure.md
https://rustc-dev-guide.rust-lang.org/print.html#motivation
https://rustc-dev-guide.rust-lang.org/print.html#motivation

What qualifies as a bug fix?

Note that this RFC does not try to define when a breaking change is permitted. That is

already covered under RFC 1122. This document assumes that the change being made is

in accordance with those policies. Here is a summary of the conditions from RFC 1122:

• Soundness changes: Fixes to holes uncovered in the type system.

• Compiler bugs: Places where the compiler is not implementing the specified

semantics found in an RFC or lang-team decision.

• Underspecified language semantics: Clarifications to grey areas where the

compiler behaves inconsistently and no formal behavior had been previously

decided.

Please see the RFC for full details!

Detailed design

The procedure for making a breaking change is as follows (each of these steps is

described in more detail below):

1. Do a crater run to assess the impact of the change.

2. Make a special tracking issue dedicated to the change.

3. Do not report an error right away. Instead, issue forwards-compatibility lint

warnings.

◦ Sometimes this is not straightforward. See the text below for suggestions on

different techniques we have employed in the past.

◦ For cases where warnings are infeasible:

▪ Report errors, but make every effort to give a targeted error message

that directs users to the tracking issue

▪ Submit PRs to all known affected crates that fix the issue

▪ or, at minimum, alert the owners of those crates to the problem and

direct them to the tracking issue

4. Once the change has been in the wild for at least one cycle, we can stabilize the

change, converting those warnings into errors.

Finally, for changes to rustc_ast that will affect plugins, the general policy is to batch

these changes. That is discussed below in more detail.

Tracking issue

Every breaking change should be accompanied by a dedicated tracking issue for that

change. The main text of this issue should describe the change being made, with a focus

on what users must do to fix their code. The issue should be approachable and practical;

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

174 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#what-qualifies-as-a-bug-fix
https://rustc-dev-guide.rust-lang.org/print.html#what-qualifies-as-a-bug-fix
https://github.com/rust-lang/rfcs/blob/master/text/1122-language-semver.md
https://github.com/rust-lang/rfcs/blob/master/text/1122-language-semver.md
https://github.com/rust-lang/rfcs/blob/master/text/1122-language-semver.md
https://github.com/rust-lang/rfcs/blob/master/text/1122-language-semver.md
https://rustc-dev-guide.rust-lang.org/print.html#detailed-design
https://rustc-dev-guide.rust-lang.org/print.html#detailed-design
https://rustc-dev-guide.rust-lang.org/print.html#tracking-issue
https://rustc-dev-guide.rust-lang.org/print.html#tracking-issue

it may make sense to direct users to an RFC or some other issue for the full details. The

issue also serves as a place where users can comment with questions or other concerns.

A template for these breaking-change tracking issues can be found below. An example of

how such an issue should look can be found here.

The issue should be tagged with (at least) B-unstable and T-compiler .

Tracking issue template

This is a template to use for tracking issues:

Issuing future compatibility warnings

The best way to handle a breaking change is to begin by issuing future-compatibility

warnings. These are a special category of lint warning. Adding a new future-compatibility

warning can be done as follows.

This is the **summary issue** for the `YOUR_LINT_NAME_HERE`
future-compatibility warning and other related errors. The goal of
this page is describe why this change was made and how you can fix
code that is affected by it. It also provides a place to ask questions
or register a complaint if you feel the change should not be made. For
more information on the policy around future-compatibility warnings,
see our [breaking change policy guidelines][guidelines].

[guidelines]: LINK_TO_THIS_RFC

What is the warning for?

*Describe the conditions that trigger the warning and how they can be
fixed. Also explain why the change was made.**

When will this warning become a hard error?

At the beginning of each 6-week release cycle, the Rust compiler team
will review the set of outstanding future compatibility warnings and
nominate some of them for **Final Comment Period**. Toward the end of
the cycle, we will review any comments and make a final determination
whether to convert the warning into a hard error or remove it
entirely.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

175 of 660 8/30/23, 09:47

https://gist.github.com/nikomatsakis/631ec8b4af9a18b5d062d9d9b7d3d967
https://gist.github.com/nikomatsakis/631ec8b4af9a18b5d062d9d9b7d3d967
https://rustc-dev-guide.rust-lang.org/print.html#tracking-issue-template
https://rustc-dev-guide.rust-lang.org/print.html#tracking-issue-template
https://rustc-dev-guide.rust-lang.org/print.html#issuing-future-compatibility-warnings
https://rustc-dev-guide.rust-lang.org/print.html#issuing-future-compatibility-warnings

Helpful techniques

It can often be challenging to filter out new warnings from older, pre-existing errors. One

technique that has been used in the past is to run the older code unchanged and collect

the errors it would have reported. You can then issue warnings for any errors you would

give which do not appear in that original set. Another option is to abort compilation after

the original code completes if errors are reported: then you know that your new code will

only execute when there were no errors before.

Crater and crates.io

Crater is a bot that will compile all crates.io crates and many public github repos with the

compiler with your changes. A report will then be generated with crates that ceased to

compile with or began to compile with your changes. Crater runs can take a few days to

complete.

We should always do a crater run to assess impact. It is polite and considerate to at least

// 1. Define the lint in `compiler/rustc_middle/src/lint/builtin.rs`:
declare_lint! {

pub YOUR_ERROR_HERE,
 Warn,

"illegal use of foo bar baz"
}

// 2. Add to the list of HardwiredLints in the same file:
impl LintPass for HardwiredLints {

fn get_lints(&self) -> LintArray {
 lint_array!(
 ..,
 YOUR_ERROR_HERE
)
 }
}

// 3. Register the lint in `compiler/rustc_lint/src/lib.rs`:
store.register_future_incompatible(sess, vec![
 ...,
 FutureIncompatibleInfo {
 id: LintId::of(YOUR_ERROR_HERE),
 reference: "issue #1234", // your tracking issue here!
 },
]);

// 4. Report the lint:
tcx.lint_node(
 lint::builtin::YOUR_ERROR_HERE,
 path_id,
 binding.span,

format!("some helper message here"));

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

176 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#helpful-techniques
https://rustc-dev-guide.rust-lang.org/print.html#helpful-techniques
https://rustc-dev-guide.rust-lang.org/print.html#crater-and-cratesio
https://rustc-dev-guide.rust-lang.org/print.html#crater-and-cratesio
https://rustc-dev-guide.rust-lang.org/tests/crater.html
https://rustc-dev-guide.rust-lang.org/tests/crater.html

notify the authors of affected crates the breaking change. If we can submit PRs to fix the

problem, so much the better.

Is it ever acceptable to go directly to issuing errors?

Changes that are believed to have negligible impact can go directly to issuing an error.

One rule of thumb would be to check against crates.io : if fewer than 10 total affected

projects are found (not root errors), we can move straight to an error. In such cases, we

should still make the "breaking change" page as before, and we should ensure that the

error directs users to this page. In other words, everything should be the same except

that users are getting an error, and not a warning. Moreover, we should submit PRs to

the affected projects (ideally before the PR implementing the change lands in rustc).

If the impact is not believed to be negligible (e.g., more than 10 crates are affected), then

warnings are required (unless the compiler team agrees to grant a special exemption in

some particular case). If implementing warnings is not feasible, then we should make an

aggressive strategy of migrating crates before we land the change so as to lower the

number of affected crates. Here are some techniques for approaching this scenario:

1. Issue warnings for subparts of the problem, and reserve the new errors for the

smallest set of cases you can.

2. Try to give a very precise error message that suggests how to fix the problem and

directs users to the tracking issue.

3. It may also make sense to layer the fix:

◦ First, add warnings where possible and let those land before proceeding to

issue errors.

◦ Work with authors of affected crates to ensure that corrected versions are

available before the fix lands, so that downstream users can use them.

Stabilization

After a change is made, we will stabilize the change using the same process that we use

for unstable features:

• After a new release is made, we will go through the outstanding tracking issues

corresponding to breaking changes and nominate some of them for final comment

period (FCP).

• The FCP for such issues lasts for one cycle. In the final week or two of the cycle, we

will review comments and make a final determination:

◦ Convert to error: the change should be made into a hard error.

◦ Revert: we should remove the warning and continue to allow the older code to

compile.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

177 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#is-it-ever-acceptable-to-go-directly-to-issuing-errors
https://rustc-dev-guide.rust-lang.org/print.html#is-it-ever-acceptable-to-go-directly-to-issuing-errors
https://rustc-dev-guide.rust-lang.org/print.html#stabilization-1
https://rustc-dev-guide.rust-lang.org/print.html#stabilization-1

◦ Defer: can't decide yet, wait longer, or try other strategies.

Ideally, breaking changes should have landed on the stable branch of the compiler

before they are finalized.

Removing a lint

Once we have decided to make a "future warning" into a hard error, we need a PR that

removes the custom lint. As an example, here are the steps required to remove the

overlapping_inherent_impls compatibility lint. First, convert the name of the lint to

uppercase (OVERLAPPING_INHERENT_IMPLS) ripgrep through the source for that string. We

will basically by converting each place where this lint name is mentioned (in the compiler,

we use the upper-case name, and a macro automatically generates the lower-case string;

so searching for overlapping_inherent_impls would not find much).

NOTE: these exact files don't exist anymore, but the procedure is still the same.

Remove the lint.

The first reference you will likely find is the lint definition in rustc_session/src

/lint/builtin.rs that resembles this:

This declare_lint! macro creates the relevant data structures. Remove it. You will also

find that there is a mention of OVERLAPPING_INHERENT_IMPLS later in the file as part of a

lint_array! ; remove it too.

Next, you see a reference to OVERLAPPING_INHERENT_IMPLS in rustc_lint/src/lib.rs .

This is defining the lint as a "future compatibility lint":

Remove this too.

declare_lint! {
pub OVERLAPPING_INHERENT_IMPLS,

 Deny, // this may also say Warning
"two overlapping inherent impls define an item with the same name were

erroneously allowed"
}

FutureIncompatibleInfo {
 id: LintId::of(OVERLAPPING_INHERENT_IMPLS),
 reference: "issue #36889 <https://github.com/rust-lang/rust/issues
/36889>",
},

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

178 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#removing-a-lint
https://rustc-dev-guide.rust-lang.org/print.html#removing-a-lint
https://rustc-dev-guide.rust-lang.org/print.html#remove-the-lint
https://rustc-dev-guide.rust-lang.org/print.html#remove-the-lint
https://github.com/rust-lang/rust/blob/085d71c3efe453863739c1fb68fd9bd1beff214f/src/librustc/lint/builtin.rs#L171-L175
https://github.com/rust-lang/rust/blob/085d71c3efe453863739c1fb68fd9bd1beff214f/src/librustc/lint/builtin.rs#L171-L175
https://github.com/rust-lang/rust/blob/085d71c3efe453863739c1fb68fd9bd1beff214f/src/librustc/lint/builtin.rs#L171-L175
https://github.com/rust-lang/rust/blob/085d71c3efe453863739c1fb68fd9bd1beff214f/src/librustc/lint/builtin.rs#L171-L175
https://github.com/rust-lang/rust/blob/085d71c3efe453863739c1fb68fd9bd1beff214f/src/librustc/lint/builtin.rs#L171-L175
https://github.com/rust-lang/rust/blob/085d71c3efe453863739c1fb68fd9bd1beff214f/src/librustc/lint/builtin.rs#L171-L175
https://github.com/rust-lang/rust/blob/085d71c3efe453863739c1fb68fd9bd1beff214f/src/librustc/lint/builtin.rs#L171-L175
https://github.com/rust-lang/rust/blob/085d71c3efe453863739c1fb68fd9bd1beff214f/src/librustc/lint/builtin.rs#L171-L175
https://github.com/rust-lang/rust/blob/085d71c3efe453863739c1fb68fd9bd1beff214f/src/librustc/lint/builtin.rs#L252-L290
https://github.com/rust-lang/rust/blob/085d71c3efe453863739c1fb68fd9bd1beff214f/src/librustc/lint/builtin.rs#L252-L290
https://github.com/rust-lang/rust/blob/085d71c3efe453863739c1fb68fd9bd1beff214f/src/librustc/lint/builtin.rs#L252-L290
https://github.com/rust-lang/rust/blob/085d71c3efe453863739c1fb68fd9bd1beff214f/src/librustc/lint/builtin.rs#L252-L290
https://github.com/rust-lang/rust/blob/085d71c3efe453863739c1fb68fd9bd1beff214f/src/librustc/lint/builtin.rs#L252-L290
https://github.com/rust-lang/rust/blob/085d71c3efe453863739c1fb68fd9bd1beff214f/src/librustc_lint/lib.rs#L202-L205
https://github.com/rust-lang/rust/blob/085d71c3efe453863739c1fb68fd9bd1beff214f/src/librustc_lint/lib.rs#L202-L205
https://github.com/rust-lang/rust/blob/085d71c3efe453863739c1fb68fd9bd1beff214f/src/librustc_lint/lib.rs#L202-L205
https://github.com/rust-lang/rust/blob/085d71c3efe453863739c1fb68fd9bd1beff214f/src/librustc_lint/lib.rs#L202-L205
https://github.com/rust-lang/rust/blob/085d71c3efe453863739c1fb68fd9bd1beff214f/src/librustc_lint/lib.rs#L202-L205
https://github.com/rust-lang/rust/blob/085d71c3efe453863739c1fb68fd9bd1beff214f/src/librustc_lint/lib.rs#L202-L205
https://github.com/rust-lang/rust/blob/085d71c3efe453863739c1fb68fd9bd1beff214f/src/librustc_lint/lib.rs#L202-L205

Add the lint to the list of removed lists.

In compiler/rustc_lint/src/lib.rs there is a list of "renamed and removed lints". You

can add this lint to the list:

where #36889 is the tracking issue for your lint.

Update the places that issue the lint

Finally, the last class of references you will see are the places that actually trigger the lint

itself (i.e., what causes the warnings to appear). These you do not want to delete. Instead,

you want to convert them into errors. In this case, the add_lint call looks like this:

We want to convert this into an error. In some cases, there may be an existing error for

this scenario. In others, we will need to allocate a fresh diagnostic code. Instructions for

allocating a fresh diagnostic code can be found here. You may want to mention in the

extended description that the compiler behavior changed on this point, and include a

reference to the tracking issue for the change.

Let's say that we've adopted E0592 as our code. Then we can change the add_lint()

call above to something like:

Update tests

Finally, run the test suite. These should be some tests that used to reference the

overlapping_inherent_impls lint, those will need to be updated. In general, if the test

used to have #[deny(overlapping_inherent_impls)] , that can just be removed.

All done!

Open a PR. =)

store.register_removed("overlapping_inherent_impls", "converted into hard
error, see #36889");

self.tcx.sess.add_lint(lint::builtin::OVERLAPPING_INHERENT_IMPLS,
 node_id,

self.tcx.span_of_impl(item1).unwrap(),
 msg);

struct_span_err!(self.tcx.sess, self.tcx.span_of_impl(item1).unwrap(), msg)
 .emit();

./x test

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

179 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#add-the-lint-to-the-list-of-removed-lists
https://rustc-dev-guide.rust-lang.org/print.html#add-the-lint-to-the-list-of-removed-lists
https://rustc-dev-guide.rust-lang.org/print.html#update-the-places-that-issue-the-lint
https://rustc-dev-guide.rust-lang.org/print.html#update-the-places-that-issue-the-lint
https://github.com/rust-lang/rust/blob/085d71c3efe453863739c1fb68fd9bd1beff214f/src/librustc_typeck/coherence/inherent.rs#L300-L303
https://github.com/rust-lang/rust/blob/085d71c3efe453863739c1fb68fd9bd1beff214f/src/librustc_typeck/coherence/inherent.rs#L300-L303
https://github.com/rust-lang/rust/blob/085d71c3efe453863739c1fb68fd9bd1beff214f/src/librustc_typeck/coherence/inherent.rs#L300-L303
https://github.com/rust-lang/rust/blob/085d71c3efe453863739c1fb68fd9bd1beff214f/src/librustc_typeck/coherence/inherent.rs#L300-L303
https://rustc-dev-guide.rust-lang.org/diagnostics/error-codes.html
https://rustc-dev-guide.rust-lang.org/diagnostics/error-codes.html
https://rustc-dev-guide.rust-lang.org/diagnostics/error-codes.html
https://rustc-dev-guide.rust-lang.org/diagnostics/error-codes.html
https://rustc-dev-guide.rust-lang.org/print.html#update-tests
https://rustc-dev-guide.rust-lang.org/print.html#update-tests
https://rustc-dev-guide.rust-lang.org/print.html#all-done
https://rustc-dev-guide.rust-lang.org/print.html#all-done

Using External Repositories

The rust-lang/rust git repository depends on several other repos in the rust-lang

organization. There are three main ways we use dependencies:

1. As a Cargo dependency through crates.io (e.g. rustc-rayon)

2. As a git subtree (e.g. clippy)

3. As a git submodule (e.g. cargo)

As a general rule, use crates.io for libraries that could be useful for others in the

ecosystem; use subtrees for tools that depend on compiler internals and need to be

updated if there are breaking changes; and use submodules for tools that are

independent of the compiler.

External Dependencies (subtree)

As a developer to this repository, you don't have to treat the following external projects

differently from other crates that are directly in this repo:

• Clippy

• Miri

• rustfmt

• rust-analyzer

In contrast to submodule dependencies (see below for those), the subtree dependencies

are just regular files and directories which can be updated in tree. However, if possible,

enhancements, bug fixes, etc. specific to these tools should be filed against the tools

directly in their respective upstream repositories. The exception is that when rustc

changes are required to implement a new tool feature or test, that should happen in one

collective rustc PR.

Synchronizing a subtree

Periodically the changes made to subtree based dependencies need to be synchronized

between this repository and the upstream tool repositories.

Subtree synchronizations are typically handled by the respective tool maintainers. Other

users are welcome to submit synchronization PRs, however, in order to do so you will

need to modify your local git installation and follow a very precise set of instructions.

These instructions are documented, along with several useful tips and tricks, in the

syncing subtree changes section in Clippy's Contributing guide. The instructions are

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

180 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#using-external-repositories
https://rustc-dev-guide.rust-lang.org/print.html#using-external-repositories
https://rustc-dev-guide.rust-lang.org/print.html#external-dependencies-subtree
https://rustc-dev-guide.rust-lang.org/print.html#external-dependencies-subtree
https://github.com/rust-lang/rust-clippy
https://github.com/rust-lang/rust-clippy
https://github.com/rust-lang/miri
https://github.com/rust-lang/miri
https://github.com/rust-lang/rustfmt
https://github.com/rust-lang/rustfmt
https://github.com/rust-lang/rust-analyzer
https://github.com/rust-lang/rust-analyzer
https://rustc-dev-guide.rust-lang.org/print.html#synchronizing-a-subtree
https://rustc-dev-guide.rust-lang.org/print.html#synchronizing-a-subtree
https://doc.rust-lang.org/nightly/clippy/development/infrastructure/sync.html
https://doc.rust-lang.org/nightly/clippy/development/infrastructure/sync.html

applicable for use with any subtree based tool, just be sure to use the correct

corresponding subtree directory and remote repository.

The synchronization process goes in two directions: subtree push and subtree pull .

A subtree push takes all the changes that happened to the copy in this repo and creates

commits on the remote repo that match the local changes. Every local commit that

touched the subtree causes a commit on the remote repo, but is modified to move the

files from the specified directory to the tool repo root.

A subtree pull takes all changes since the last subtree pull from the tool repo and

adds these commits to the rustc repo along with a merge commit that moves the tool

changes into the specified directory in the Rust repository.

It is recommended that you always do a push first and get that merged to the tool master

branch. Then, when you do a pull, the merge works without conflicts. While it's definitely

possible to resolve conflicts during a pull, you may have to redo the conflict resolution if

your PR doesn't get merged fast enough and there are new conflicts. Do not try to rebase

the result of a git subtree pull , rebasing merge commits is a bad idea in general.

You always need to specify the -P prefix to the subtree directory and the corresponding

remote repository. If you specify the wrong directory or repository you'll get very fun

merges that try to push the wrong directory to the wrong remote repository. Luckily you

can just abort this without any consequences by throwing away either the pulled commits

in rustc or the pushed branch on the remote and try again. It is usually fairly obvious that

this is happening because you suddenly get thousands of commits that want to be

synchronized.

Creating a new subtree dependency

If you want to create a new subtree dependency from an existing repository, call (from

this repository's root directory!)

This will create a new commit, which you may not rebase under any circumstances!

Delete the commit and redo the operation if you need to rebase.

Now you're done, the src/tools/clippy directory behaves as if Clippy were part of the

rustc monorepo, so no one but you (or others that synchronize subtrees) actually needs

to use git subtree .

git subtree add -P src/tools/clippy https://github.com/rust-lang/rust-
clippy.git master

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

181 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#creating-a-new-subtree-dependency
https://rustc-dev-guide.rust-lang.org/print.html#creating-a-new-subtree-dependency

External Dependencies (submodules)

Building Rust will also use external git repositories tracked using git submodules. The

complete list may be found in the .gitmodules file. Some of these projects are required

(like stdarch for the standard library) and some of them are optional (like src/doc

/book).

Usage of submodules is discussed more in the Using Git chapter.

Some of the submodules are allowed to be in a "broken" state where they either don't

build or their tests don't pass, e.g. the documentation books like The Rust Reference.

Maintainers of these projects will be notified when the project is in a broken state, and

they should fix them as soon as possible. The current status is tracked on the toolstate

website. More information may be found on the Forge Toolstate chapter. In practice, it is

very rare for documentation to have broken toolstate.

Breakage is not allowed in the beta and stable channels, and must be addressed before

the PR is merged. They are also not allowed to be broken on master in the week leading

up to the beta cut.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

182 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#external-dependencies-submodules
https://rustc-dev-guide.rust-lang.org/print.html#external-dependencies-submodules
https://git-scm.com/book/en/v2/Git-Tools-Submodules
https://git-scm.com/book/en/v2/Git-Tools-Submodules
https://github.com/rust-lang/rust/blob/master/.gitmodules
https://github.com/rust-lang/rust/blob/master/.gitmodules
https://github.com/rust-lang/rust/blob/master/.gitmodules
https://rustc-dev-guide.rust-lang.org/git.html#git-submodules
https://rustc-dev-guide.rust-lang.org/git.html#git-submodules
https://github.com/rust-lang/reference/
https://github.com/rust-lang/reference/
https://rust-lang-nursery.github.io/rust-toolstate/
https://rust-lang-nursery.github.io/rust-toolstate/
https://rust-lang-nursery.github.io/rust-toolstate/
https://rust-lang-nursery.github.io/rust-toolstate/
https://forge.rust-lang.org/infra/toolstate.html
https://forge.rust-lang.org/infra/toolstate.html

Fuzzing

For the purposes of this guide, fuzzing is any testing methodology that involves compiling

a wide variety of programs in an attempt to uncover bugs in rustc. Fuzzing is often used

to find internal compiler errors (ICEs). Fuzzing can be beneficial, because it can find bugs

before users run into them and provide small, self-contained programs that make the

bug easier to track down. However, some common mistakes can reduce the helpfulness

of fuzzing and end up making contributors' lives harder. To maximize your positive

impact on the Rust project, please read this guide before reporting fuzzer-generated

bugs!

Guidelines

In a nutshell

Please do:

• Ensure the bug is still present on the latest nightly rustc

• Include a reasonably minimal, standalone example along with any bug report

• Include all of the information requested in the bug report template

• Search for existing reports with the same message and query stack

• Format the test case with rustfmt , if it maintains the bug

• Indicate that the bug was found by fuzzing

Please don't:

• Don't report lots of bugs that use internal features, including but not limited to

custom_mir , lang_items , no_core , and rustc_attrs .

• Don't seed your fuzzer with inputs that are known to crash rustc (details below).

Discussion

If you're not sure whether or not an ICE is a duplicate of one that's already been reported,

please go ahead and report it and link to issues you think might be related. In general,

ICEs on the same line but with different query stacks are usually distinct bugs. For

example, #109020 and #109129 had similar error messages:

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

183 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#fuzzing
https://rustc-dev-guide.rust-lang.org/print.html#fuzzing
https://rustc-dev-guide.rust-lang.org/print.html#guidelines
https://rustc-dev-guide.rust-lang.org/print.html#guidelines
https://rustc-dev-guide.rust-lang.org/print.html#in-a-nutshell
https://rustc-dev-guide.rust-lang.org/print.html#in-a-nutshell
https://rustc-dev-guide.rust-lang.org/print.html#discussion-1
https://rustc-dev-guide.rust-lang.org/print.html#discussion-1
https://github.com/rust-lang/rust/issues/109020
https://github.com/rust-lang/rust/issues/109020
https://github.com/rust-lang/rust/issues/109129
https://github.com/rust-lang/rust/issues/109129

but different query stacks:

Building a corpus

When building a corpus, be sure to avoid collecting tests that are already known to crash

rustc. A fuzzer that is seeded with such tests is more likely to generate bugs with the

same root cause, wasting everyone's time. The simplest way to avoid this is to loop over

each file in the corpus, see if it causes an ICE, and remove it if so.

To build a corpus, you may want to use:

• The rustc/rust-analyzer/clippy test suites (or even source code) --- though avoid tests

that are already known to cause failures, which often begin with comments like //

failure-status: 101 or // known-bug: #NNN .

• The already-fixed ICEs in Glacier --- though avoid the unfixed ones in ices/ !

Extra credit

Here are a few things you can do to help the Rust project after filing an ICE.

• Bisect the bug to figure out when it was introduced

error: internal compiler error: compiler/rustc_middle/src/ty
/normalize_erasing_regions.rs:195:90: Failed to normalize
<[closure@src/main.rs:36:25: 36:28] as
std::ops::FnOnce<(Emplacable<()>,)>>::Output, maybe try to call
`try_normalize_erasing_regions` instead

error: internal compiler error: compiler/rustc_middle/src/ty
/normalize_erasing_regions.rs:195:90: Failed to normalize <() as
Project>::Assoc, maybe try to call `try_normalize_erasing_regions` instead

query stack during panic:
#0 [fn_abi_of_instance] computing call ABI of `<[closure@src/main.rs:36:25:
36:28] as core::ops::function::FnOnce<(Emplacable<()>,)>>::call_once -
shim(vtable)`
end of query stack

query stack during panic:
#0 [check_mod_attrs] checking attributes in top-level module
#1 [analysis] running analysis passes on this crate
end of query stack

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

184 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#building-a-corpus
https://rustc-dev-guide.rust-lang.org/print.html#building-a-corpus
https://github.com/rust-lang/glacier
https://github.com/rust-lang/glacier
https://rustc-dev-guide.rust-lang.org/print.html#extra-credit
https://rustc-dev-guide.rust-lang.org/print.html#extra-credit
https://rust-lang.github.io/cargo-bisect-rustc/
https://rust-lang.github.io/cargo-bisect-rustc/

• Fix "distractions": problems with the test case that don't contribute to triggering the

ICE, such as syntax errors or borrow-checking errors

• Minimize the test case (see below)

• Add the minimal test case to Glacier

Minimization

It is helpful to carefully minimize the fuzzer-generated input. When minimizing, be careful

to preserve the original error, and avoid introducing distracting problems such as syntax,

type-checking, or borrow-checking errors.

There are some tools that can help with minimization. If you're not sure how to avoid

introducing syntax, type-, and borrow-checking errors while using these tools, post both

the complete and minimized test cases. Generally, syntax-aware tools give the best results

in the least amount of time. treereduce-rust and picireny are syntax-aware. halfempty

is not, but is generally a high-quality tool.

Effective fuzzing

When fuzzing rustc, you may want to avoid generating machine code, since this is mostly

done by LLVM. Try --emit=mir instead.

A variety of compiler flags can uncover different issues. -Zmir-opt-level=4 will turn on

MIR optimization passes that are not run by default, potentially uncovering interesting

bugs. -Zvalidate-mir can help uncover such bugs.

If you're fuzzing a compiler you built, you may want to build it with -C target-

cpu=native or even PGO/BOLT to squeeze out a few more executions per second. Of

course, it's best to try multiple build configurations and see what actually results in

superior throughput.

You may want to build rustc from source with debug assertions to find additional bugs,

though this is a trade-off: it can slow down fuzzing by requiring extra work for every

execution. To enable debug assertions, add this to config.toml when compiling rustc:

ICEs that require debug assertions to reproduce should be tagged requires-debug-

assertions .

[rust]
debug-assertions = true

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

185 of 660 8/30/23, 09:47

https://github.com/rust-lang/glacier
https://github.com/rust-lang/glacier
https://rustc-dev-guide.rust-lang.org/print.html#minimization
https://rustc-dev-guide.rust-lang.org/print.html#minimization
https://github.com/langston-barrett/treereduce
https://github.com/langston-barrett/treereduce
https://github.com/langston-barrett/treereduce
https://github.com/renatahodovan/picireny
https://github.com/renatahodovan/picireny
https://github.com/googleprojectzero/halfempty
https://github.com/googleprojectzero/halfempty
https://github.com/googleprojectzero/halfempty
https://rustc-dev-guide.rust-lang.org/print.html#effective-fuzzing
https://rustc-dev-guide.rust-lang.org/print.html#effective-fuzzing
https://github.com/rust-lang/rust/labels/requires-debug-assertions
https://github.com/rust-lang/rust/labels/requires-debug-assertions
https://github.com/rust-lang/rust/labels/requires-debug-assertions
https://github.com/rust-lang/rust/labels/requires-debug-assertions
https://github.com/rust-lang/rust/labels/requires-debug-assertions
https://github.com/rust-lang/rust/labels/requires-debug-assertions

Existing projects

• fuzz-rustc demonstrates how to fuzz rustc with libfuzzer

• icemaker runs rustc and other tools on a large number of source files with a variety

of flags to catch ICEs

• tree-splicer generates new source files by combining existing ones while

maintaining correct syntax

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

186 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#existing-projects
https://rustc-dev-guide.rust-lang.org/print.html#existing-projects
https://github.com/dwrensha/fuzz-rustc
https://github.com/dwrensha/fuzz-rustc
https://github.com/matthiaskrgr/icemaker/
https://github.com/matthiaskrgr/icemaker/
https://github.com/langston-barrett/tree-splicer/
https://github.com/langston-barrett/tree-splicer/

Notification groups

The notification groups are an easy way to help out with rustc in a "piece-meal" fashion,

without committing to a larger project. Notification groups are easy to join (just submit a

PR!) and joining does not entail any particular commitment.

Once you join a notification group, you will be added to a list that receives pings on github

whenever a new issue is found that fits the notification group's criteria. If you are

interested, you can then claim the issue and start working on it.

Of course, you don't have to wait for new issues to be tagged! If you prefer, you can use

the Github label for a notification group to search for existing issues that haven't been

claimed yet.

List of notification groups

Here's the list of the notification groups:

• ARM

• Cleanup Crew

• LLVM

• RISC-V

• Windows

What issues are a good fit for notification groups?

Notification groups tend to get pinged on isolated bugs, particularly those of middle

priority:

• By isolated, we mean that we do not expect large-scale refactoring to be required

to fix the bug.

• By middle priority, we mean that we'd like to see the bug fixed, but it's not such a

burning problem that we are dropping everything else to fix it. The danger with such

bugs, of course, is that they can accumulate over time, and the role of the

notification group is to try and stop that from happening!

Joining a notification group

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

187 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#notification-groups
https://rustc-dev-guide.rust-lang.org/print.html#notification-groups
https://rustc-dev-guide.rust-lang.org/notification-groups/about.html#join
https://rustc-dev-guide.rust-lang.org/notification-groups/about.html#join
https://rustc-dev-guide.rust-lang.org/notification-groups/about.html#join
https://rustc-dev-guide.rust-lang.org/notification-groups/about.html#join
https://forge.rust-lang.org/triagebot/issue-assignment.html
https://forge.rust-lang.org/triagebot/issue-assignment.html
https://rustc-dev-guide.rust-lang.org/print.html#list-of-notification-groups
https://rustc-dev-guide.rust-lang.org/print.html#list-of-notification-groups
https://rustc-dev-guide.rust-lang.org/notification-groups/arm.html
https://rustc-dev-guide.rust-lang.org/notification-groups/arm.html
https://rustc-dev-guide.rust-lang.org/notification-groups/cleanup-crew.html
https://rustc-dev-guide.rust-lang.org/notification-groups/cleanup-crew.html
https://rustc-dev-guide.rust-lang.org/notification-groups/llvm.html
https://rustc-dev-guide.rust-lang.org/notification-groups/llvm.html
https://rustc-dev-guide.rust-lang.org/notification-groups/risc-v.html
https://rustc-dev-guide.rust-lang.org/notification-groups/risc-v.html
https://rustc-dev-guide.rust-lang.org/notification-groups/windows.html
https://rustc-dev-guide.rust-lang.org/notification-groups/windows.html
https://rustc-dev-guide.rust-lang.org/print.html#what-issues-are-a-good-fit-for-notification-groups
https://rustc-dev-guide.rust-lang.org/print.html#what-issues-are-a-good-fit-for-notification-groups
https://rustc-dev-guide.rust-lang.org/print.html#joining-a-notification-group
https://rustc-dev-guide.rust-lang.org/print.html#joining-a-notification-group

To join a notification group, you just have to open a PR adding your Github username to

the appropriate file in the Rust team repository. See the "example PRs" below to get a

precise idea and to identify the file to edit.

Also, if you are not already a member of a Rust team then -- in addition to adding your

name to the file -- you have to checkout the repository and run the following command:

Example PRs:

• Example of adding yourself to the ARM group.

• Example of adding yourself to the Cleanup Crew.

• Example of adding yourself to the LLVM group.

• Example of adding yourself to the RISC-V group.

• Example of adding yourself to the Windows group.

Tagging an issue for a notification group

To tag an issue as appropriate for a notification group, you give rustbot a ping command

with the name of the notification group. For example:

To make some commands shorter and easier to remember, there are aliases, defined in

the triagebot.toml file. For example, all of these commands are equivalent and will ping

the Cleanup Crew:

Keep in mind that these aliases are meant to make humans' life easier. They might be

subject to change. If you need to ensure that a command will always be valid, prefer the

full invocations over the aliases.

Note though that this should only be done by compiler team members or

contributors, and is typically done as part of compiler team triage.

cargo run add-person $your_user_name

@rustbot ping llvm
@rustbot ping cleanup-crew
@rustbot ping windows
@rustbot ping arm

@rustbot ping cleanup
@rustbot ping bisect
@rustbot ping reduce

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

188 of 660 8/30/23, 09:47

https://github.com/rust-lang/team/pull/358
https://github.com/rust-lang/team/pull/358
https://github.com/rust-lang/team/pull/221
https://github.com/rust-lang/team/pull/221
https://github.com/rust-lang/team/pull/140
https://github.com/rust-lang/team/pull/140
https://github.com/rust-lang/team/pull/394
https://github.com/rust-lang/team/pull/394
https://github.com/rust-lang/team/pull/348
https://github.com/rust-lang/team/pull/348
https://rustc-dev-guide.rust-lang.org/print.html#tagging-an-issue-for-a-notification-group
https://rustc-dev-guide.rust-lang.org/print.html#tagging-an-issue-for-a-notification-group
https://github.com/rust-lang/triagebot/
https://github.com/rust-lang/triagebot/
https://forge.rust-lang.org/triagebot/pinging.html
https://forge.rust-lang.org/triagebot/pinging.html
https://forge.rust-lang.org/triagebot/pinging.html
https://github.com/rust-lang/rust/blob/master/triagebot.toml
https://github.com/rust-lang/rust/blob/master/triagebot.toml
https://github.com/rust-lang/rust/blob/master/triagebot.toml

ARM notification group

Github Label: O-ARM

This list will be used to ask for help both in diagnosing and testing ARM-related issues as

well as suggestions on how to resolve interesting questions regarding our ARM support.

The group also has an associated Zulip stream (#t-compiler/arm) where people can go

to pose questions and discuss ARM-specific topics.

So, if you are interested in participating, please sign up for the ARM group! To do so, open

a PR against the rust-lang/team repository. Just follow this example, but change the

username to your own!

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

189 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#arm-notification-group
https://rustc-dev-guide.rust-lang.org/print.html#arm-notification-group
https://github.com/rust-lang/rust/labels/O-ARM
https://github.com/rust-lang/rust/labels/O-ARM
https://rust-lang.zulipchat.com/#narrow/stream/242906-t-compiler.2Farm
https://rust-lang.zulipchat.com/#narrow/stream/242906-t-compiler.2Farm
https://rust-lang.zulipchat.com/#narrow/stream/242906-t-compiler.2Farm
https://github.com/rust-lang/team
https://github.com/rust-lang/team
https://github.com/rust-lang/team/pull/358
https://github.com/rust-lang/team/pull/358

Cleanup Crew

Github Label: ICEBreaker-Cleanup-Crew

The "Cleanup Crew" are focused on improving bug reports. Specifically, the goal is to try

to ensure that every bug report has all the information that will be needed for someone

to fix it:

• a minimal, standalone example that shows the problem

• links to duplicates or related bugs

• if the bug is a regression (something that used to work, but no longer does), then a

bisection to the PR or nightly that caused the regression

This kind of cleanup is invaluable in getting bugs fixed. Better still, it can be done by

anybody who knows Rust, without any particularly deep knowledge of the compiler.

Let's look a bit at the workflow for doing "cleanup crew" actions.

Finding a minimal, standalone example

Here the ultimate goal is to produce an example that reproduces the same problem but

without relying on any external crates. Such a test ought to contain as little code as

possible, as well. This will make it much easier to isolate the problem.

However, even if the "ultimate minimal test" cannot be achieved, it's still useful to post

incremental minimizations. For example, if you can eliminate some of the external

dependencies, that is helpful, and so forth.

It's particularly useful to reduce to an example that works in the Rust playground, rather

than requiring people to checkout a cargo build.

There are many resources for how to produce minimized test cases. Here are a few:

• The rust-reduce tool can try to reduce code automatically.

◦ The C-reduce tool also works on Rust code, though it requires that you start

from a single file. (A post explaining how to do it can be found here.)

• pnkfelix's Rust Bug Minimization Patterns blog post

◦ This post focuses on "heavy bore" techniques, where you are starting with a

large, complex cargo project that you wish to narrow down to something

standalone.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

190 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#cleanup-crew
https://rustc-dev-guide.rust-lang.org/print.html#cleanup-crew
https://github.com/rust-lang/rust/labels/ICEBreaker-Cleanup-Crew
https://github.com/rust-lang/rust/labels/ICEBreaker-Cleanup-Crew
https://rustc-dev-guide.rust-lang.org/print.html#finding-a-minimal-standalone-example
https://rustc-dev-guide.rust-lang.org/print.html#finding-a-minimal-standalone-example
https://play.rust-lang.org/
https://play.rust-lang.org/
https://github.com/jethrogb/rust-reduce
https://github.com/jethrogb/rust-reduce
https://github.com/csmith-project/creduce
https://github.com/csmith-project/creduce
https://insaneinside.net/2017/09/12/whole-crate-bug-reduction-with-creduce.html
https://insaneinside.net/2017/09/12/whole-crate-bug-reduction-with-creduce.html
http://blog.pnkfx.org/blog/2019/11/18/rust-bug-minimization-patterns/
http://blog.pnkfx.org/blog/2019/11/18/rust-bug-minimization-patterns/

Links to duplicate or related bugs

If you are on the "Cleanup Crew", you will sometimes see multiple bug reports that seem

very similar. You can link one to the other just by mentioning the other bug number in a

Github comment. Sometimes it is useful to close duplicate bugs. But if you do so, you

should always copy any test case from the bug you are closing to the other bug that

remains open, as sometimes duplicate-looking bugs will expose different facets of the

same problem.

Bisecting regressions

For regressions (something that used to work, but no longer does), it is super useful if we

can figure out precisely when the code stopped working. The gold standard is to be able

to identify the precise PR that broke the code, so we can ping the author, but even

narrowing it down to a nightly build is helpful, especially as that then gives us a range of

PRs. (One other challenge is that we sometimes land "rollup" PRs, which combine

multiple PRs into one.)

cargo-bisect-rustc

To help in figuring out the cause of a regression we have a tool called cargo-bisect-rustc.

It will automatically download and test various builds of rustc. For recent regressions, it is

even able to use the builds from our CI to track down the regression to a specific PR; for

older regressions, it will simply identify a nightly.

To learn to use cargo-bisect-rustc, check out this blog post, which gives a quick

introduction to how it works. Additionally, there is a Guide which goes into more detail on

how to use it. You can also ask questions at the Zulip stream #t-compiler/cargo-

bisect-rustc , or help in improving the tool.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

191 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#links-to-duplicate-or-related-bugs
https://rustc-dev-guide.rust-lang.org/print.html#links-to-duplicate-or-related-bugs
https://rustc-dev-guide.rust-lang.org/print.html#bisecting-regressions
https://rustc-dev-guide.rust-lang.org/print.html#bisecting-regressions
https://rustc-dev-guide.rust-lang.org/print.html#cargo-bisect-rustc
https://rustc-dev-guide.rust-lang.org/print.html#cargo-bisect-rustc
https://github.com/rust-lang/cargo-bisect-rustc/
https://github.com/rust-lang/cargo-bisect-rustc/
https://github.com/rust-lang/cargo-bisect-rustc/
https://github.com/rust-lang/cargo-bisect-rustc/
https://blog.rust-lang.org/inside-rust/2019/12/18/bisecting-rust-compiler.html
https://blog.rust-lang.org/inside-rust/2019/12/18/bisecting-rust-compiler.html
https://rust-lang.github.io/cargo-bisect-rustc/
https://rust-lang.github.io/cargo-bisect-rustc/
https://rust-lang.zulipchat.com/#narrow/stream/217417-t-compiler.2Fcargo-bisect-rustc
https://rust-lang.zulipchat.com/#narrow/stream/217417-t-compiler.2Fcargo-bisect-rustc
https://rust-lang.zulipchat.com/#narrow/stream/217417-t-compiler.2Fcargo-bisect-rustc
https://rust-lang.zulipchat.com/#narrow/stream/217417-t-compiler.2Fcargo-bisect-rustc
https://rust-lang.zulipchat.com/#narrow/stream/217417-t-compiler.2Fcargo-bisect-rustc
https://rust-lang.zulipchat.com/#narrow/stream/217417-t-compiler.2Fcargo-bisect-rustc

LLVM Notification group

Github Label: A-LLVM

The "LLVM Notification Group" are focused on bugs that center around LLVM. These bugs

often arise because of LLVM optimizations gone awry, or as the result of an LLVM

upgrade. The goal here is:

• to determine whether the bug is a result of us generating invalid LLVM IR, or LLVM

misoptimizing;

• if the former, to fix our IR;

• if the latter, to try and file a bug on LLVM (or identify an existing bug).

The group may also be asked to weigh in on other sorts of LLVM-focused questions.

Helpful tips and options

The "Debugging LLVM" section of the rustc-dev-guide gives a step-by-step process for

how to help debug bugs caused by LLVM. In particular, it discusses how to emit LLVM IR,

run the LLVM IR optimization pipelines, and so forth. You may also find it useful to look at

the various codegen options listed under -C help and the internal options under -Z

help -- there are a number that pertain to LLVM (just search for LLVM).

If you do narrow to an LLVM bug

The "Debugging LLVM" section also describes what to do once you've identified the bug.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

192 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#llvm-notification-group
https://rustc-dev-guide.rust-lang.org/print.html#llvm-notification-group
https://github.com/rust-lang/rust/labels/A-LLVM
https://github.com/rust-lang/rust/labels/A-LLVM
https://rustc-dev-guide.rust-lang.org/print.html#helpful-tips-and-options
https://rustc-dev-guide.rust-lang.org/print.html#helpful-tips-and-options
https://rustc-dev-guide.rust-lang.org/backend/debugging.html
https://rustc-dev-guide.rust-lang.org/backend/debugging.html
https://rustc-dev-guide.rust-lang.org/print.html#if-you-do-narrow-to-an-llvm-bug
https://rustc-dev-guide.rust-lang.org/print.html#if-you-do-narrow-to-an-llvm-bug
https://rustc-dev-guide.rust-lang.org/backend/debugging.html
https://rustc-dev-guide.rust-lang.org/backend/debugging.html

RISC-V notification group

Github Label: O-riscv

This list will be used to ask for help both in diagnosing and testing RISC-V-related issues

as well as suggestions on how to resolve interesting questions regarding our RISC-V

support.

The group also has an associated Zulip stream (#t-compiler/risc-v) where people can

go to pose questions and discuss RISC-V-specific topics.

So, if you are interested in participating, please sign up for the RISC-V group! To do so,

open a PR against the rust-lang/team repository. Just follow this example, but change the

username to your own!

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

193 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#risc-v-notification-group
https://rustc-dev-guide.rust-lang.org/print.html#risc-v-notification-group
https://github.com/rust-lang/rust/labels/O-riscv
https://github.com/rust-lang/rust/labels/O-riscv
https://rust-lang.zulipchat.com/#narrow/stream/250483-t-compiler.2Frisc-v
https://rust-lang.zulipchat.com/#narrow/stream/250483-t-compiler.2Frisc-v
https://rust-lang.zulipchat.com/#narrow/stream/250483-t-compiler.2Frisc-v
https://github.com/rust-lang/team
https://github.com/rust-lang/team
https://github.com/rust-lang/team/pull/394
https://github.com/rust-lang/team/pull/394

Windows notification group

Github Label: O-Windows

This list will be used to ask for help both in diagnosing and testing Windows-related

issues as well as suggestions on how to resolve interesting questions regarding our

Windows support.

The group also has an associated Zulip stream (#t-compiler/windows) where people can

go to pose questions and discuss Windows-specific topics.

To get a better idea for what the group will do, here are some examples of the kinds of

questions where we would have reached out to the group for advice in determining the

best course of action:

• Which versions of MinGW should we support?

• Should we remove the legacy InnoSetup GUI installer? #72569

• What names should we use for static libraries on Windows? #29520

So, if you are interested in participating, please sign up for the Windows group! To do so,

open a PR against the rust-lang/team repository. Just follow this example, but change the

username to your own!

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

194 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#windows-notification-group
https://rustc-dev-guide.rust-lang.org/print.html#windows-notification-group
https://github.com/rust-lang/rust/labels/O-Windows
https://github.com/rust-lang/rust/labels/O-Windows
https://rust-lang.zulipchat.com/#streams/242869/t-compiler.2Fwindows
https://rust-lang.zulipchat.com/#streams/242869/t-compiler.2Fwindows
https://rust-lang.zulipchat.com/#streams/242869/t-compiler.2Fwindows
https://github.com/rust-lang/rust/pull/72569
https://github.com/rust-lang/rust/pull/72569
https://github.com/rust-lang/rust/pull/29520
https://github.com/rust-lang/rust/pull/29520
https://github.com/rust-lang/team
https://github.com/rust-lang/team
https://github.com/rust-lang/team/pull/348/
https://github.com/rust-lang/team/pull/348/

rust-lang/rust Licenses

The rustc compiler source and standard library are dual licensed under the Apache

License v2.0 and the MIT License unless otherwise specified.

Detailed licensing information is available in the COPYRIGHT document of the rust-

lang/rust repository.

Guidelines for reviewers

In general, reviewers need to be looking not only for the code quality of contributions but

also that they are properly licensed. We have some tips below for things to look out for

when reviewing, but if you ever feel uncertain as to whether some code might be

properly licensed, err on the safe side — reach out to the Council or Compiler Team

Leads for feedback!

Things to watch out for:

• The PR author states that they copied, ported, or adapted the code from some other

source.

• There is a comment in the code pointing to a webpage or describing where the

algorithm was taken from.

• The algorithm or code pattern seems like it was likely copied from somewhere else.

• When adding new dependencies, double check the dependency's license.

In all of these cases, we will want to check that source to make sure it it is licensed in a

way that is compatible with Rust’s license.

Examples

• Porting C code from a GPL project, like GNU binutils, is not allowed. That would

require Rust itself to be licensed under the GPL.

• Copying code from an algorithms text book may be allowed, but some algorithms

are patented.

Porting

Contributions to rustc, especially around platform and compiler intrinsics, often include

porting over work from other projects, mainly LLVM and GCC.

Some general rules apply:

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

195 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#rust-langrust-licenses
https://rustc-dev-guide.rust-lang.org/print.html#rust-langrust-licenses
https://rustc-dev-guide.rust-lang.org/print.html#rust-langrust-licenses
https://rustc-dev-guide.rust-lang.org/print.html#rust-langrust-licenses
https://github.com/rust-lang/rust/blob/master/LICENSE-APACHE
https://github.com/rust-lang/rust/blob/master/LICENSE-APACHE
https://github.com/rust-lang/rust/blob/master/LICENSE-APACHE
https://github.com/rust-lang/rust/blob/master/LICENSE-APACHE
https://github.com/rust-lang/rust/blob/master/LICENSE-MIT
https://github.com/rust-lang/rust/blob/master/LICENSE-MIT
https://github.com/rust-lang/rust/blob/master/COPYRIGHT
https://github.com/rust-lang/rust/blob/master/COPYRIGHT
https://rustc-dev-guide.rust-lang.org/print.html#guidelines-for-reviewers
https://rustc-dev-guide.rust-lang.org/print.html#guidelines-for-reviewers
https://rustc-dev-guide.rust-lang.org/print.html#porting
https://rustc-dev-guide.rust-lang.org/print.html#porting

• Copying work needs to adhere to the original license

◦ This applies to direct copy & paste

◦ This also applies to code you looked at and ported

In general, taking inspiration from other codebases is fine, but please exercise caution

when porting code.

Ports of full libraries (e.g. C libraries shipped with LLVM) must keep the license of the

original library.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

196 of 660 8/30/23, 09:47

High-Level Compiler Architecture

The remaining parts of this guide discuss how the compiler works. They go through

everything from high-level structure of the compiler to how each stage of compilation

works. They should be friendly to both readers interested in the end-to-end process of

compilation and readers interested in learning about a specific system they wish to

contribute to. If anything is unclear, feel free to file an issue on the rustc-dev-guide repo

or contact the compiler team, as detailed in this chapter from Part 1.

In this part, we will look at the high-level architecture of the compiler. In particular, we will

look at three overarching design choices that impact the whole compiler: the query

system, incremental compilation, and interning.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

197 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#high-level-compiler-architecture
https://rustc-dev-guide.rust-lang.org/print.html#high-level-compiler-architecture
https://github.com/rust-lang/rustc-dev-guide/issues
https://github.com/rust-lang/rustc-dev-guide/issues
https://rustc-dev-guide.rust-lang.org/compiler-team.html
https://rustc-dev-guide.rust-lang.org/compiler-team.html

Overview of the compiler

• What the compiler does to your code

◦ Invocation

◦ Lexing and parsing

◦ HIR lowering

◦ MIR lowering

◦ Code generation

• How it does it

◦ Intermediate representations

◦ Queries

◦ ty::Ty

◦ Parallelism

◦ Bootstrapping

• References

This chapter is about the overall process of compiling a program -- how everything fits

together.

The Rust compiler is special in two ways: it does things to your code that other compilers

don't do (e.g. borrow checking) and it has a lot of unconventional implementation choices

(e.g. queries). We will talk about these in turn in this chapter, and in the rest of the guide,

we will look at all the individual pieces in more detail.

What the compiler does to your code

So first, let's look at what the compiler does to your code. For now, we will avoid

mentioning how the compiler implements these steps except as needed; we'll talk about

that later.

Invocation

Compilation begins when a user writes a Rust source program in text and invokes the

rustc compiler on it. The work that the compiler needs to perform is defined by

command-line options. For example, it is possible to enable nightly features (-Z flags),

perform check -only builds, or emit LLVM-IR rather than executable machine code. The

rustc executable call may be indirect through the use of cargo .

Command line argument parsing occurs in the rustc_driver . This crate defines the

compile configuration that is requested by the user and passes it to the rest of the

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

198 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#overview-of-the-compiler
https://rustc-dev-guide.rust-lang.org/print.html#overview-of-the-compiler
https://rustc-dev-guide.rust-lang.org/overview.html#what-the-compiler-does-to-your-code
https://rustc-dev-guide.rust-lang.org/overview.html#what-the-compiler-does-to-your-code
https://rustc-dev-guide.rust-lang.org/overview.html#invocation
https://rustc-dev-guide.rust-lang.org/overview.html#invocation
https://rustc-dev-guide.rust-lang.org/overview.html#lexing-and-parsing
https://rustc-dev-guide.rust-lang.org/overview.html#lexing-and-parsing
https://rustc-dev-guide.rust-lang.org/overview.html#hir-lowering
https://rustc-dev-guide.rust-lang.org/overview.html#hir-lowering
https://rustc-dev-guide.rust-lang.org/overview.html#mir-lowering
https://rustc-dev-guide.rust-lang.org/overview.html#mir-lowering
https://rustc-dev-guide.rust-lang.org/overview.html#code-generation
https://rustc-dev-guide.rust-lang.org/overview.html#code-generation
https://rustc-dev-guide.rust-lang.org/overview.html#how-it-does-it
https://rustc-dev-guide.rust-lang.org/overview.html#how-it-does-it
https://rustc-dev-guide.rust-lang.org/overview.html#intermediate-representations
https://rustc-dev-guide.rust-lang.org/overview.html#intermediate-representations
https://rustc-dev-guide.rust-lang.org/overview.html#queries
https://rustc-dev-guide.rust-lang.org/overview.html#queries
https://rustc-dev-guide.rust-lang.org/overview.html#tyty
https://rustc-dev-guide.rust-lang.org/overview.html#tyty
https://rustc-dev-guide.rust-lang.org/overview.html#tyty
https://rustc-dev-guide.rust-lang.org/overview.html#parallelism
https://rustc-dev-guide.rust-lang.org/overview.html#parallelism
https://rustc-dev-guide.rust-lang.org/overview.html#bootstrapping
https://rustc-dev-guide.rust-lang.org/overview.html#bootstrapping
https://rustc-dev-guide.rust-lang.org/overview.html#references
https://rustc-dev-guide.rust-lang.org/overview.html#references
https://rustc-dev-guide.rust-lang.org/print.html#what-the-compiler-does-to-your-code
https://rustc-dev-guide.rust-lang.org/print.html#what-the-compiler-does-to-your-code
https://rustc-dev-guide.rust-lang.org/print.html#invocation
https://rustc-dev-guide.rust-lang.org/print.html#invocation
https://rustc-dev-guide.rust-lang.org/rustc-driver.html
https://rustc-dev-guide.rust-lang.org/rustc-driver.html
https://rustc-dev-guide.rust-lang.org/rustc-driver.html

compilation process as a rustc_interface::Config .

Lexing and parsing

The raw Rust source text is analyzed by a low-level lexer located in rustc_lexer . At this

stage, the source text is turned into a stream of atomic source code units known as

tokens. The lexer supports the Unicode character encoding.

The token stream passes through a higher-level lexer located in rustc_parse to prepare

for the next stage of the compile process. The StringReader struct is used at this stage

to perform a set of validations and turn strings into interned symbols (interning is

discussed later). String interning is a way of storing only one immutable copy of each

distinct string value.

The lexer has a small interface and doesn't depend directly on the diagnostic

infrastructure in rustc . Instead it provides diagnostics as plain data which are emitted in

rustc_parse::lexer as real diagnostics. The lexer preserves full fidelity information for

both IDEs and proc macros.

The parser translates the token stream from the lexer into an Abstract Syntax Tree (AST).

It uses a recursive descent (top-down) approach to syntax analysis. The crate entry points

for the parser are the Parser::parse_crate_mod() and Parser::parse_mod() methods

found in rustc_parse::parser::Parser . The external module parsing entry point is

rustc_expand::module::parse_external_mod . And the macro parser entry point is

Parser::parse_nonterminal() .

Parsing is performed with a set of Parser utility methods including bump , check , eat ,

expect , look_ahead .

Parsing is organized by semantic construct. Separate parse_* methods can be found in

the rustc_parse directory. The source file name follows the construct name. For

example, the following files are found in the parser:

• expr.rs

• pat.rs

• ty.rs

• stmt.rs

This naming scheme is used across many compiler stages. You will find either a file or

directory with the same name across the parsing, lowering, type checking, THIR lowering,

and MIR building sources.

Macro expansion, AST validation, name resolution, and early linting also take place during

this stage.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

199 of 660 8/30/23, 09:47

https://doc.rust-lang.org/nightly/nightly-rustc/rustc_interface/interface/struct.Config.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_interface/interface/struct.Config.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_interface/interface/struct.Config.html
https://rustc-dev-guide.rust-lang.org/print.html#lexing-and-parsing
https://rustc-dev-guide.rust-lang.org/print.html#lexing-and-parsing
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_lexer/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_lexer/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_lexer/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_parse/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_parse/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_parse/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_parse/lexer/struct.StringReader.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_parse/lexer/struct.StringReader.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_parse/lexer/struct.StringReader.html
https://en.wikipedia.org/wiki/String_interning
https://en.wikipedia.org/wiki/String_interning
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_parse/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_parse/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_parse/parser/struct.Parser.html#method.parse_crate_mod
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_parse/parser/struct.Parser.html#method.parse_crate_mod
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_parse/parser/struct.Parser.html#method.parse_crate_mod
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_parse/parser/struct.Parser.html#method.parse_mod
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_parse/parser/struct.Parser.html#method.parse_mod
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_parse/parser/struct.Parser.html#method.parse_mod
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_parse/parser/struct.Parser.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_parse/parser/struct.Parser.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_parse/parser/struct.Parser.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_expand/module/fn.parse_external_mod.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_expand/module/fn.parse_external_mod.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_expand/module/fn.parse_external_mod.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_parse/parser/struct.Parser.html#method.parse_nonterminal
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_parse/parser/struct.Parser.html#method.parse_nonterminal
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_parse/parser/struct.Parser.html#method.parse_nonterminal
https://github.com/rust-lang/rust/tree/master/compiler/rustc_parse/src/parser
https://github.com/rust-lang/rust/tree/master/compiler/rustc_parse/src/parser
https://github.com/rust-lang/rust/tree/master/compiler/rustc_parse/src/parser

The parser uses the standard DiagnosticBuilder API for error handling, but we try to

recover, parsing a superset of Rust's grammar, while also emitting an error.

rustc_ast::ast::{Crate, Mod, Expr, Pat, ...} AST nodes are returned from the

parser.

HIR lowering

Next, we take the AST and convert it to High-Level Intermediate Representation (HIR), a

more compiler-friendly representation of the AST. This process is called "lowering". It

involves a lot of desugaring of things like loops and async fn .

We then use the HIR to do type inference (the process of automatic detection of the type

of an expression), trait solving (the process of pairing up an impl with each reference to a

trait), and type checking. Type checking is the process of converting the types found in the

HIR (hir::Ty), which represent what the user wrote, into the internal representation

used by the compiler (Ty<'tcx>). That information is used to verify the type safety,

correctness and coherence of the types used in the program.

MIR lowering

The HIR is then lowered to Mid-level Intermediate Representation (MIR), which is used for

borrow checking.

Along the way, we also construct the THIR, which is an even more desugared HIR. THIR is

used for pattern and exhaustiveness checking. It is also more convenient to convert into

MIR than HIR is.

We do many optimizations on the MIR because it is still generic and that improves the

code we generate later, improving compilation speed too. MIR is a higher level (and

generic) representation, so it is easier to do some optimizations at MIR level than at

LLVM-IR level. For example LLVM doesn't seem to be able to optimize the pattern the

simplify_try mir opt looks for.

Rust code is monomorphized, which means making copies of all the generic code with the

type parameters replaced by concrete types. To do this, we need to collect a list of what

concrete types to generate code for. This is called monomorphization collection and it

happens at the MIR level.

Code generation

We then begin what is vaguely called code generation or codegen. The code generation

stage is when higher level representations of source are turned into an executable binary.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

200 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#hir-lowering
https://rustc-dev-guide.rust-lang.org/print.html#hir-lowering
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/index.html
https://rustc-dev-guide.rust-lang.org/type-inference.html
https://rustc-dev-guide.rust-lang.org/type-inference.html
https://rustc-dev-guide.rust-lang.org/type-inference.html
https://rustc-dev-guide.rust-lang.org/traits/resolution.html
https://rustc-dev-guide.rust-lang.org/traits/resolution.html
https://rustc-dev-guide.rust-lang.org/traits/resolution.html
https://rustc-dev-guide.rust-lang.org/type-checking.html
https://rustc-dev-guide.rust-lang.org/type-checking.html
https://rustc-dev-guide.rust-lang.org/type-checking.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/hir/struct.Ty.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/hir/struct.Ty.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/hir/struct.Ty.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.Ty.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.Ty.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.Ty.html
https://rustc-dev-guide.rust-lang.org/print.html#mir-lowering
https://rustc-dev-guide.rust-lang.org/print.html#mir-lowering
https://rustc-dev-guide.rust-lang.org/mir/index.html
https://rustc-dev-guide.rust-lang.org/mir/index.html
https://rustc-dev-guide.rust-lang.org/borrow_check.html
https://rustc-dev-guide.rust-lang.org/borrow_check.html
https://rustc-dev-guide.rust-lang.org/mir/optimizations.html
https://rustc-dev-guide.rust-lang.org/mir/optimizations.html
https://github.com/rust-lang/rust/pull/66282
https://github.com/rust-lang/rust/pull/66282
https://github.com/rust-lang/rust/pull/66282
https://rustc-dev-guide.rust-lang.org/print.html#code-generation
https://rustc-dev-guide.rust-lang.org/print.html#code-generation
https://rustc-dev-guide.rust-lang.org/backend/codegen.html
https://rustc-dev-guide.rust-lang.org/backend/codegen.html
https://rustc-dev-guide.rust-lang.org/backend/codegen.html
https://rustc-dev-guide.rust-lang.org/backend/codegen.html

rustc uses LLVM for code generation. The first step is to convert the MIR to LLVM

Intermediate Representation (LLVM IR). This is where the MIR is actually monomorphized,

according to the list we created in the previous step. The LLVM IR is passed to LLVM,

which does a lot more optimizations on it. It then emits machine code. It is basically

assembly code with additional low-level types and annotations added (e.g. an ELF object

or WASM). The different libraries/binaries are then linked together to produce the final

binary.

How it does it

Ok, so now that we have a high-level view of what the compiler does to your code, let's

take a high-level view of how it does all that stuff. There are a lot of constraints and

conflicting goals that the compiler needs to satisfy/optimize for. For example,

• Compilation speed: how fast is it to compile a program. More/better compile-time

analyses often means compilation is slower.

◦ Also, we want to support incremental compilation, so we need to take that into

account. How can we keep track of what work needs to be redone and what

can be reused if the user modifies their program?

▪ Also we can't store too much stuff in the incremental cache because it

would take a long time to load from disk and it could take a lot of space

on the user's system...

• Compiler memory usage: while compiling a program, we don't want to use more

memory than we need.

• Program speed: how fast is your compiled program? More/better compile-time

analyses often means the compiler can do better optimizations.

• Program size: how large is the compiled binary? Similar to the previous point.

• Compiler compilation speed: how long does it take to compile the compiler? This

impacts contributors and compiler maintenance.

• Implementation complexity: building a compiler is one of the hardest things a

person/group can do, and Rust is not a very simple language, so how do we make

the compiler's code base manageable?

• Compiler correctness: the binaries produced by the compiler should do what the

input programs says they do, and should continue to do so despite the tremendous

amount of change constantly going on.

• Integration: a number of other tools need to use the compiler in various ways (e.g.

cargo, clippy, miri) that must be supported.

• Compiler stability: the compiler should not crash or fail ungracefully on the stable

channel.

• Rust stability: the compiler must respect Rust's stability guarantees by not breaking

programs that previously compiled despite the many changes that are always going

on to its implementation.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

201 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#how-it-does-it
https://rustc-dev-guide.rust-lang.org/print.html#how-it-does-it

• Limitations of other tools: rustc uses LLVM in its backend, and LLVM has some

strengths we leverage and some limitations/weaknesses we need to work around.

So, as you read through the rest of the guide, keep these things in mind. They will often

inform decisions that we make.

Intermediate representations

As with most compilers, rustc uses some intermediate representations (IRs) to facilitate

computations. In general, working directly with the source code is extremely inconvenient

and error-prone. Source code is designed to be human-friendly while at the same time

being unambiguous, but it's less convenient for doing something like, say, type checking.

Instead most compilers, including rustc , build some sort of IR out of the source code

which is easier to analyze. rustc has a few IRs, each optimized for different purposes:

• Token stream: the lexer produces a stream of tokens directly from the source code.

This stream of tokens is easier for the parser to deal with than raw text.

• Abstract Syntax Tree (AST): the abstract syntax tree is built from the stream of

tokens produced by the lexer. It represents pretty much exactly what the user

wrote. It helps to do some syntactic sanity checking (e.g. checking that a type is

expected where the user wrote one).

• High-level IR (HIR): This is a sort of desugared AST. It's still close to what the user

wrote syntactically, but it includes some implicit things such as some elided

lifetimes, etc. This IR is amenable to type checking.

• Typed HIR (THIR): This is an intermediate between HIR and MIR, and used to be

called High-level Abstract IR (HAIR). It is like the HIR but it is fully typed and a bit

more desugared (e.g. method calls and implicit dereferences are made fully explicit).

Moreover, it is easier to lower to MIR from THIR than from HIR.

• Middle-level IR (MIR): This IR is basically a Control-Flow Graph (CFG). A CFG is a type

of diagram that shows the basic blocks of a program and how control flow can go

between them. Likewise, MIR also has a bunch of basic blocks with simple typed

statements inside them (e.g. assignment, simple computations, etc) and control flow

edges to other basic blocks (e.g., calls, dropping values). MIR is used for borrow

checking and other important dataflow-based checks, such as checking for

uninitialized values. It is also used for a series of optimizations and for constant

evaluation (via MIRI). Because MIR is still generic, we can do a lot of analyses here

more efficiently than after monomorphization.

• LLVM IR: This is the standard form of all input to the LLVM compiler. LLVM IR is a

sort of typed assembly language with lots of annotations. It's a standard format that

is used by all compilers that use LLVM (e.g. the clang C compiler also outputs LLVM

IR). LLVM IR is designed to be easy for other compilers to emit and also rich enough

for LLVM to run a bunch of optimizations on it.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

202 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#intermediate-representations
https://rustc-dev-guide.rust-lang.org/print.html#intermediate-representations

One other thing to note is that many values in the compiler are interned. This is a

performance and memory optimization in which we allocate the values in a special

allocator called an arena. Then, we pass around references to the values allocated in the

arena. This allows us to make sure that identical values (e.g. types in your program) are

only allocated once and can be compared cheaply by comparing pointers. Many of the

intermediate representations are interned.

Queries

The first big implementation choice is the query system. The Rust compiler uses a query

system which is unlike most textbook compilers, which are organized as a series of

passes over the code that execute sequentially. The compiler does this to make

incremental compilation possible -- that is, if the user makes a change to their program

and recompiles, we want to do as little redundant work as possible to produce the new

binary.

In rustc , all the major steps above are organized as a bunch of queries that call each

other. For example, there is a query to ask for the type of something and another to ask

for the optimized MIR of a function. These queries can call each other and are all tracked

through the query system. The results of the queries are cached on disk so that we can

tell which queries' results changed from the last compilation and only redo those. This is

how incremental compilation works.

In principle, for the query-fied steps, we do each of the above for each item individually.

For example, we will take the HIR for a function and use queries to ask for the LLVM IR for

that HIR. This drives the generation of optimized MIR, which drives the borrow checker,

which drives the generation of MIR, and so on.

... except that this is very over-simplified. In fact, some queries are not cached on disk,

and some parts of the compiler have to run for all code anyway for correctness even if

the code is dead code (e.g. the borrow checker). For example, currently the

mir_borrowck query is first executed on all functions of a crate. Then the codegen

backend invokes the collect_and_partition_mono_items query, which first recursively

requests the optimized_mir for all reachable functions, which in turn runs

mir_borrowck for that function and then creates codegen units. This kind of split will

need to remain to ensure that unreachable functions still have their errors emitted.

Moreover, the compiler wasn't originally built to use a query system; the query system

has been retrofitted into the compiler, so parts of it are not query-fied yet. Also, LLVM

isn't our code, so that isn't querified either. The plan is to eventually query-fy all of the

steps listed in the previous section, but as of November 2022, only the steps between HIR

and LLVM IR are query-fied. That is, lexing, parsing, name resolution, and macro

expansion are done all at once for the whole program.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

203 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#queries
https://rustc-dev-guide.rust-lang.org/print.html#queries
https://github.com/rust-lang/rust/blob/e69c7306e2be08939d95f14229e3f96566fb206c/compiler/rustc_interface/src/passes.rs#L791
https://github.com/rust-lang/rust/blob/e69c7306e2be08939d95f14229e3f96566fb206c/compiler/rustc_interface/src/passes.rs#L791
https://github.com/rust-lang/rust/blob/e69c7306e2be08939d95f14229e3f96566fb206c/compiler/rustc_interface/src/passes.rs#L791
https://github.com/rust-lang/rust/blob/e69c7306e2be08939d95f14229e3f96566fb206c/compiler/rustc_interface/src/passes.rs#L791
https://github.com/rust-lang/rust/blob/e69c7306e2be08939d95f14229e3f96566fb206c/compiler/rustc_interface/src/passes.rs#L791
https://github.com/rust-lang/rust/blob/e69c7306e2be08939d95f14229e3f96566fb206c/compiler/rustc_interface/src/passes.rs#L791

One other thing to mention here is the all-important "typing context", TyCtxt , which is a

giant struct that is at the center of all things. (Note that the name is mostly historic. This is

not a "typing context" in the sense of Γ or Δ from type theory. The name is retained

because that's what the name of the struct is in the source code.) All queries are defined

as methods on the TyCtxt type, and the in-memory query cache is stored there too. In

the code, there is usually a variable called tcx which is a handle on the typing context.

You will also see lifetimes with the name 'tcx , which means that something is tied to the

lifetime of the TyCtxt (usually it is stored or interned there).

ty::Ty

Types are really important in Rust, and they form the core of a lot of compiler analyses.

The main type (in the compiler) that represents types (in the user's program) is

rustc_middle::ty::Ty . This is so important that we have a whole chapter on ty::Ty ,

but for now, we just want to mention that it exists and is the way rustc represents types!

Also note that the rustc_middle::ty module defines the TyCtxt struct we mentioned

before.

Parallelism

Compiler performance is a problem that we would like to improve on (and are always

working on). One aspect of that is parallelizing rustc itself.

Currently, there is only one part of rustc that is parallel by default: codegen.

However, the rest of the compiler is still not yet parallel. There have been lots of efforts

spent on this, but it is generally a hard problem. The current approach is to turn

RefCell s into Mutex s -- that is, we switch to thread-safe internal mutability. However,

there are ongoing challenges with lock contention, maintaining query-system invariants

under concurrency, and the complexity of the code base. One can try out the current

work by enabling parallel compilation in config.toml . It's still early days, but there are

already some promising performance improvements.

Bootstrapping

rustc itself is written in Rust. So how do we compile the compiler? We use an older

compiler to compile the newer compiler. This is called bootstrapping.

Bootstrapping has a lot of interesting implications. For example, it means that one of the

major users of Rust is the Rust compiler, so we are constantly testing our own software

("eating our own dogfood").

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

204 of 660 8/30/23, 09:47

https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.TyCtxt.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.TyCtxt.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.TyCtxt.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.TyCtxt.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.TyCtxt.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.TyCtxt.html
https://rustc-dev-guide.rust-lang.org/print.html#tyty
https://rustc-dev-guide.rust-lang.org/print.html#tyty
https://rustc-dev-guide.rust-lang.org/print.html#tyty
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.Ty.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.Ty.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.Ty.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.Ty.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.Ty.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.Ty.html
https://rustc-dev-guide.rust-lang.org/print.html#parallelism
https://rustc-dev-guide.rust-lang.org/print.html#parallelism
https://rustc-dev-guide.rust-lang.org/print.html#bootstrapping
https://rustc-dev-guide.rust-lang.org/print.html#bootstrapping
https://en.wikipedia.org/wiki/Bootstrapping_(compilers)
https://en.wikipedia.org/wiki/Bootstrapping_(compilers)
https://en.wikipedia.org/wiki/Bootstrapping_(compilers)

For more details on bootstrapping, see the bootstrapping section of the guide.

References

• Command line parsing

◦ Guide: The Rustc Driver and Interface

◦ Driver definition: rustc_driver

◦ Main entry point: rustc_session::config::build_session_options

• Lexical Analysis: Lex the user program to a stream of tokens

◦ Guide: Lexing and Parsing

◦ Lexer definition: rustc_lexer

◦ Main entry point: rustc_lexer::cursor::Cursor::advance_token

• Parsing: Parse the stream of tokens to an Abstract Syntax Tree (AST)

◦ Guide: Lexing and Parsing

◦ Guide: Macro Expansion

◦ Guide: Name Resolution

◦ Parser definition: rustc_parse

◦ Main entry points:

▪ Entry point for first file in crate

▪ Entry point for outline module parsing

▪ Entry point for macro fragments

◦ AST definition: rustc_ast

◦ Feature gating: TODO

◦ Early linting: TODO

• The High Level Intermediate Representation (HIR)

◦ Guide: The HIR

◦ Guide: Identifiers in the HIR

◦ Guide: The HIR Map

◦ Guide: Lowering AST to HIR

◦ How to view HIR representation for your code cargo rustc -- -Z

unpretty=hir-tree

◦ Rustc HIR definition: rustc_hir

◦ Main entry point: TODO

◦ Late linting: TODO

• Type Inference

◦ Guide: Type Inference

◦ Guide: The ty Module: Representing Types (semantics)

◦ Main entry point (type inference): InferCtxtBuilder::enter

◦ Main entry point (type checking bodies): the typeck query

▪ These two functions can't be decoupled.

• The Mid Level Intermediate Representation (MIR)

◦ Guide: The MIR (Mid level IR)

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

205 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/building/bootstrapping.html
https://rustc-dev-guide.rust-lang.org/building/bootstrapping.html
https://rustc-dev-guide.rust-lang.org/print.html#references
https://rustc-dev-guide.rust-lang.org/print.html#references
https://rustc-dev-guide.rust-lang.org/rustc-driver.html
https://rustc-dev-guide.rust-lang.org/rustc-driver.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_driver/
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_driver/
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_driver/
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_session/config/fn.build_session_options.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_session/config/fn.build_session_options.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_session/config/fn.build_session_options.html
https://rustc-dev-guide.rust-lang.org/the-parser.html
https://rustc-dev-guide.rust-lang.org/the-parser.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_lexer/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_lexer/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_lexer/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_lexer/cursor/struct.Cursor.html#method.advance_token
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_lexer/cursor/struct.Cursor.html#method.advance_token
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_lexer/cursor/struct.Cursor.html#method.advance_token
https://rustc-dev-guide.rust-lang.org/the-parser.html
https://rustc-dev-guide.rust-lang.org/the-parser.html
https://rustc-dev-guide.rust-lang.org/macro-expansion.html
https://rustc-dev-guide.rust-lang.org/macro-expansion.html
https://rustc-dev-guide.rust-lang.org/name-resolution.html
https://rustc-dev-guide.rust-lang.org/name-resolution.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_parse/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_parse/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_parse/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_interface/passes/fn.parse.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_interface/passes/fn.parse.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_expand/module/fn.parse_external_mod.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_expand/module/fn.parse_external_mod.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_parse/parser/struct.Parser.html#method.parse_nonterminal
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_parse/parser/struct.Parser.html#method.parse_nonterminal
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_ast/ast/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_ast/ast/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_ast/ast/index.html
https://rustc-dev-guide.rust-lang.org/hir.html
https://rustc-dev-guide.rust-lang.org/hir.html
https://rustc-dev-guide.rust-lang.org/hir.html#identifiers-in-the-hir
https://rustc-dev-guide.rust-lang.org/hir.html#identifiers-in-the-hir
https://rustc-dev-guide.rust-lang.org/hir.html#the-hir-map
https://rustc-dev-guide.rust-lang.org/hir.html#the-hir-map
https://rustc-dev-guide.rust-lang.org/lowering.html
https://rustc-dev-guide.rust-lang.org/lowering.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/index.html
https://rustc-dev-guide.rust-lang.org/type-inference.html
https://rustc-dev-guide.rust-lang.org/type-inference.html
https://rustc-dev-guide.rust-lang.org/ty.html
https://rustc-dev-guide.rust-lang.org/ty.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_infer/infer/struct.InferCtxtBuilder.html#method.enter
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_infer/infer/struct.InferCtxtBuilder.html#method.enter
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_infer/infer/struct.InferCtxtBuilder.html#method.enter
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.TyCtxt.html#method.typeck
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.TyCtxt.html#method.typeck
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.TyCtxt.html#method.typeck
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.TyCtxt.html#method.typeck
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.TyCtxt.html#method.typeck
https://rustc-dev-guide.rust-lang.org/mir/index.html
https://rustc-dev-guide.rust-lang.org/mir/index.html

◦ Definition: rustc_middle/src/mir

◦ Definition of sources that manipulates the MIR: rustc_mir_build ,

rustc_mir_dataflow , rustc_mir_transform

• The Borrow Checker

◦ Guide: MIR Borrow Check

◦ Definition: rustc_borrowck

◦ Main entry point: mir_borrowck query

• MIR Optimizations

◦ Guide: MIR Optimizations

◦ Definition: rustc_mir_transform

◦ Main entry point: optimized_mir query

• Code Generation

◦ Guide: Code Generation

◦ Generating Machine Code from LLVM IR with LLVM - TODO: reference?

◦ Main entry point: rustc_codegen_ssa::base::codegen_crate

▪ This monomorphizes and produces LLVM IR for one codegen unit. It then

starts a background thread to run LLVM, which must be joined later.

▪ Monomorphization happens lazily via FunctionCx::monomorphize and

rustc_codegen_ssa::base::codegen_instance

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

206 of 660 8/30/23, 09:47

https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_build/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_build/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_build/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_transform/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_transform/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_transform/index.html
https://rustc-dev-guide.rust-lang.org/borrow_check.html
https://rustc-dev-guide.rust-lang.org/borrow_check.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/fn.mir_borrowck.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/fn.mir_borrowck.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/fn.mir_borrowck.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/fn.mir_borrowck.html
https://rustc-dev-guide.rust-lang.org/mir/optimizations.html
https://rustc-dev-guide.rust-lang.org/mir/optimizations.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_transform/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_transform/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_transform/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_transform/fn.optimized_mir.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_transform/fn.optimized_mir.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_transform/fn.optimized_mir.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_transform/fn.optimized_mir.html
https://rustc-dev-guide.rust-lang.org/backend/codegen.html
https://rustc-dev-guide.rust-lang.org/backend/codegen.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_codegen_ssa/base/fn.codegen_crate.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_codegen_ssa/base/fn.codegen_crate.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_codegen_ssa/base/fn.codegen_crate.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_codegen_ssa/mir/struct.FunctionCx.html#method.monomorphize
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_codegen_ssa/mir/struct.FunctionCx.html#method.monomorphize
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_codegen_ssa/mir/struct.FunctionCx.html#method.monomorphize
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_codegen_ssa/base/fn.codegen_instance.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_codegen_ssa/base/fn.codegen_instance.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_codegen_ssa/base/fn.codegen_instance.html

High-level overview of the compiler

source

• Workspace structure

• Compiler

◦ Big picture

• rustdoc

• Tests

• Build System

• Standard library

• Other

Now that we have seen what the compiler does, let's take a look at the structure of the

rust-lang/rust repository, where the rustc source code lives.

You may find it helpful to read the "Overview of the compiler" chapter, which

introduces how the compiler works, before this one.

Workspace structure

The rust-lang/rust repository consists of a single large cargo workspace containing the

compiler, the standard libraries (core , alloc , std , proc_macro , etc), and rustdoc ,

along with the build system and a bunch of tools and submodules for building a full Rust

distribution.

The repository consists of three main directories:

• compiler/ contains the source code for rustc . It consists of many crates that

together make up the compiler.

• library/ contains the standard libraries (core , alloc , std , proc_macro , test),

as well as the Rust runtime (backtrace , rtstartup , lang_start).

• tests/ contains the compiler tests.

• src/ contains the source code for rustdoc, clippy, cargo, the build system, language

docs, etc.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

207 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#high-level-overview-of-the-compiler-source
https://rustc-dev-guide.rust-lang.org/print.html#high-level-overview-of-the-compiler-source
https://rustc-dev-guide.rust-lang.org/print.html#high-level-overview-of-the-compiler-source
https://rustc-dev-guide.rust-lang.org/print.html#high-level-overview-of-the-compiler-source
https://rustc-dev-guide.rust-lang.org/compiler-src.html#workspace-structure
https://rustc-dev-guide.rust-lang.org/compiler-src.html#workspace-structure
https://rustc-dev-guide.rust-lang.org/compiler-src.html#compiler
https://rustc-dev-guide.rust-lang.org/compiler-src.html#compiler
https://rustc-dev-guide.rust-lang.org/compiler-src.html#big-picture
https://rustc-dev-guide.rust-lang.org/compiler-src.html#big-picture
https://rustc-dev-guide.rust-lang.org/compiler-src.html#rustdoc
https://rustc-dev-guide.rust-lang.org/compiler-src.html#rustdoc
https://rustc-dev-guide.rust-lang.org/compiler-src.html#tests
https://rustc-dev-guide.rust-lang.org/compiler-src.html#tests
https://rustc-dev-guide.rust-lang.org/compiler-src.html#build-system
https://rustc-dev-guide.rust-lang.org/compiler-src.html#build-system
https://rustc-dev-guide.rust-lang.org/compiler-src.html#standard-library
https://rustc-dev-guide.rust-lang.org/compiler-src.html#standard-library
https://rustc-dev-guide.rust-lang.org/compiler-src.html#other
https://rustc-dev-guide.rust-lang.org/compiler-src.html#other
https://rustc-dev-guide.rust-lang.org/overview.html
https://rustc-dev-guide.rust-lang.org/overview.html
https://github.com/rust-lang/rust
https://github.com/rust-lang/rust
https://github.com/rust-lang/rust
https://rustc-dev-guide.rust-lang.org/overview.html
https://rustc-dev-guide.rust-lang.org/overview.html
https://rustc-dev-guide.rust-lang.org/print.html#workspace-structure
https://rustc-dev-guide.rust-lang.org/print.html#workspace-structure

Compiler

The compiler is implemented in the various compiler/ crates. The compiler/ crates all

have names starting with rustc_* . These are a collection of around 50 interdependent

crates ranging in size from tiny to huge. There is also the rustc crate which is the actual

binary (i.e. the main function); it doesn't actually do anything besides calling the

rustc_driver crate, which drives the various parts of compilation in other crates.

The dependency structure of these crates is complex, but roughly it is something like this:

• rustc (the binary) calls rustc_driver::main .

◦ rustc_driver depends on a lot of other crates, but the main one is

rustc_interface .

▪ rustc_interface depends on most of the other compiler crates. It is a

fairly generic interface for driving the whole compilation.

▪ Most of the other rustc_* crates depend on rustc_middle , which

defines a lot of central data structures in the compiler.

▪ rustc_middle and most of the other crates depend on a

handful of crates representing the early parts of the compiler

(e.g. the parser), fundamental data structures (e.g. Span), or

error reporting: rustc_data_structures , rustc_span ,

rustc_errors , etc.

You can see the exact dependencies by reading the Cargo.toml for the various crates,

just like a normal Rust crate.

One final thing: src/llvm-project is a submodule for our fork of LLVM. During

bootstrapping, LLVM is built and the compiler/rustc_llvm crate contains Rust wrappers

around LLVM (which is written in C++), so that the compiler can interface with it.

Most of this book is about the compiler, so we won't have any further explanation of

these crates here.

Big picture

The dependency structure is influenced by two main factors:

1. Organization. The compiler is a huge codebase; it would be an impossibly large

crate. In part, the dependency structure reflects the code structure of the compiler.

2. Compile time. By breaking the compiler into multiple crates, we can take better

advantage of incremental/parallel compilation using cargo. In particular, we try to

have as few dependencies between crates as possible so that we don't have to

rebuild as many crates if you change one.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

208 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#compiler
https://rustc-dev-guide.rust-lang.org/print.html#compiler
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_driver/fn.main.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_driver/fn.main.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_driver/fn.main.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_driver/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_driver/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_driver/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_interface/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_interface/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_interface/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_interface/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_interface/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_interface/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/struct.Span.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/struct.Span.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/struct.Span.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_data_structures/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_data_structures/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_data_structures/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_errors/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_errors/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_errors/index.html
https://github.com/rust-lang/rust/tree/master/src/
https://github.com/rust-lang/rust/tree/master/src/
https://github.com/rust-lang/rust/tree/master/src/
https://github.com/rust-lang/rust/tree/master/compiler/rustc_llvm
https://github.com/rust-lang/rust/tree/master/compiler/rustc_llvm
https://github.com/rust-lang/rust/tree/master/compiler/rustc_llvm
https://rustc-dev-guide.rust-lang.org/print.html#big-picture
https://rustc-dev-guide.rust-lang.org/print.html#big-picture

At the very bottom of the dependency tree are a handful of crates that are used by the

whole compiler (e.g. rustc_span). The very early parts of the compilation process (e.g.

parsing and the AST) depend on only these.

After the AST is constructed and other early analysis is done, the compiler's query system

gets set up. The query system is set up in a clever way using function pointers. This allows

us to break dependencies between crates, allowing more parallel compilation. The query

system is defined in rustc_middle , so nearly all subsequent parts of the compiler

depend on this crate. It is a really large crate, leading to long compile times. Some efforts

have been made to move stuff out of it with limited success. Another unfortunate side

effect is that sometimes related functionality gets scattered across different crates. For

example, linting functionality is scattered across earlier parts of the crate, rustc_lint ,

rustc_middle , and other places.

Ideally there would be fewer, more cohesive crates, with incremental and parallel

compilation making sure compile times stay reasonable. However, our incremental and

parallel compilation haven't gotten good enough for that yet, so breaking things into

separate crates has been our solution so far.

At the top of the dependency tree are the rustc_interface and rustc_driver crates.

rustc_interface is an unstable wrapper around the query system that helps to drive

the various stages of compilation. Other consumers of the compiler may use this

interface in different ways (e.g. rustdoc or maybe eventually rust-analyzer). The

rustc_driver crate first parses command line arguments and then uses

rustc_interface to drive the compilation to completion.

rustdoc

The bulk of rustdoc is in librustdoc . However, the rustdoc binary itself is src/tools

/rustdoc , which does nothing except call rustdoc::main .

There is also javascript and CSS for the rustdocs in src/tools/rustdoc-js and

src/tools/rustdoc-themes .

You can read more about rustdoc in this chapter.

Tests

The test suite for all of the above is in tests/ . You can read more about the test suite in

this chapter.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

209 of 660 8/30/23, 09:47

https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/index.html
https://rustc-dev-guide.rust-lang.org/query.html
https://rustc-dev-guide.rust-lang.org/query.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_lint/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_lint/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_lint/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_interface/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_interface/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_interface/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_driver/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_driver/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_driver/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_interface/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_interface/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_interface/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_driver/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_driver/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_driver/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_interface/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_interface/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_interface/index.html
https://rustc-dev-guide.rust-lang.org/print.html#rustdoc
https://rustc-dev-guide.rust-lang.org/print.html#rustdoc
https://doc.rust-lang.org/nightly/nightly-rustc/rustdoc/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustdoc/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustdoc/index.html
https://github.com/rust-lang/rust/tree/master/src/tools/rustdoc
https://github.com/rust-lang/rust/tree/master/src/tools/rustdoc
https://github.com/rust-lang/rust/tree/master/src/tools/rustdoc
https://github.com/rust-lang/rust/tree/master/src/tools/rustdoc
https://github.com/rust-lang/rust/tree/master/src/tools/rustdoc
https://github.com/rust-lang/rust/tree/master/src/tools/rustdoc
https://doc.rust-lang.org/nightly/nightly-rustc/rustdoc/fn.main.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustdoc/fn.main.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustdoc/fn.main.html
https://github.com/rust-lang/rust/tree/master/src/tools/rustdoc-js
https://github.com/rust-lang/rust/tree/master/src/tools/rustdoc-js
https://github.com/rust-lang/rust/tree/master/src/tools/rustdoc-js
https://github.com/rust-lang/rust/tree/master/src/tools/rustdoc-themes
https://github.com/rust-lang/rust/tree/master/src/tools/rustdoc-themes
https://github.com/rust-lang/rust/tree/master/src/tools/rustdoc-themes
https://rustc-dev-guide.rust-lang.org/rustdoc.html
https://rustc-dev-guide.rust-lang.org/rustdoc.html
https://rustc-dev-guide.rust-lang.org/print.html#tests-1
https://rustc-dev-guide.rust-lang.org/print.html#tests-1
https://github.com/rust-lang/rust/tree/master/tests
https://github.com/rust-lang/rust/tree/master/tests
https://github.com/rust-lang/rust/tree/master/tests
https://rustc-dev-guide.rust-lang.org/tests/intro.html
https://rustc-dev-guide.rust-lang.org/tests/intro.html
https://rustc-dev-guide.rust-lang.org/tests/intro.html
https://rustc-dev-guide.rust-lang.org/tests/intro.html

The test harness itself is in src/tools/compiletest .

Build System

There are a number of tools in the repository just for building the compiler, standard

library, rustdoc, etc, along with testing, building a full Rust distribution, etc.

One of the primary tools is src/bootstrap . You can read more about bootstrapping in

this chapter. The process may also use other tools from src/tools/ , such as tidy or

compiletest .

Standard library

The standard library crates are all in library/ . They have intuitive names like std ,

core , alloc , etc. There is also proc_macro , test , and other runtime libraries.

This code is fairly similar to most other Rust crates except that it must be built in a special

way because it can use unstable features.

Other

There are a lot of other things in the rust-lang/rust repo that are related to building a

full Rust distribution. Most of the time you don't need to worry about them.

These include:

• src/ci : The CI configuration. This actually quite extensive because we run a lot of

tests on a lot of platforms.

• src/doc : Various documentation, including submodules for a few books.

• src/etc : Miscellaneous utilities.

• And more...

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

210 of 660 8/30/23, 09:47

https://github.com/rust-lang/rust/tree/master/src/tools/compiletest
https://github.com/rust-lang/rust/tree/master/src/tools/compiletest
https://github.com/rust-lang/rust/tree/master/src/tools/compiletest
https://rustc-dev-guide.rust-lang.org/print.html#build-system
https://rustc-dev-guide.rust-lang.org/print.html#build-system
https://github.com/rust-lang/rust/tree/master/src/bootstrap
https://github.com/rust-lang/rust/tree/master/src/bootstrap
https://github.com/rust-lang/rust/tree/master/src/bootstrap
https://rustc-dev-guide.rust-lang.org/building/bootstrapping.html
https://rustc-dev-guide.rust-lang.org/building/bootstrapping.html
https://rustc-dev-guide.rust-lang.org/building/bootstrapping.html
https://rustc-dev-guide.rust-lang.org/building/bootstrapping.html
https://github.com/rust-lang/rust/tree/master/src/tools/tidy
https://github.com/rust-lang/rust/tree/master/src/tools/tidy
https://github.com/rust-lang/rust/tree/master/src/tools/tidy
https://github.com/rust-lang/rust/tree/master/src/tools/compiletest
https://github.com/rust-lang/rust/tree/master/src/tools/compiletest
https://github.com/rust-lang/rust/tree/master/src/tools/compiletest
https://rustc-dev-guide.rust-lang.org/print.html#standard-library
https://rustc-dev-guide.rust-lang.org/print.html#standard-library
https://rustc-dev-guide.rust-lang.org/print.html#other
https://rustc-dev-guide.rust-lang.org/print.html#other
https://github.com/rust-lang/rust/tree/master/src/ci
https://github.com/rust-lang/rust/tree/master/src/ci
https://github.com/rust-lang/rust/tree/master/src/ci
https://github.com/rust-lang/rust/tree/master/src/doc
https://github.com/rust-lang/rust/tree/master/src/doc
https://github.com/rust-lang/rust/tree/master/src/doc
https://github.com/rust-lang/rust/tree/master/src/etc
https://github.com/rust-lang/rust/tree/master/src/etc
https://github.com/rust-lang/rust/tree/master/src/etc

Bootstrapping the compiler

• Stages of bootstrapping

◦ Overview

◦ Stage 0: the pre-compiled compiler

◦ Stage 1: from current code, by an earlier compiler

◦ Stage 2: the truly current compiler

◦ Stage 3: the same-result test

◦ Building the stages

• Complications of bootstrapping

• Understanding stages of bootstrap

◦ Overview

▪ Build artifacts

▪ Examples

▪ Examples of what not to do

◦ Building vs. running

◦ Stages and std

◦ Cross-compiling rustc

◦ Why does only libstd use cfg(bootstrap) ?

◦ What is a 'sysroot'?

▪ -Z force-unstable-if-unmarked

• Passing flags to commands invoked by bootstrap

• Environment Variables

• Clarification of build command's stdout

◦ Building stage0 {std,compiler} artifacts

◦ Copying stage0 {std,rustc}

◦ Assembling stage1 compiler

Bootstrapping is the process of using a compiler to compile itself. More accurately, it

means using an older compiler to compile a newer version of the same compiler.

This raises a chicken-and-egg paradox: where did the first compiler come from? It must

have been written in a different language. In Rust's case it was written in OCaml. However

it was abandoned long ago and the only way to build a modern version of rustc is a

slightly less modern version.

This is exactly how x.py works: it downloads the current beta release of rustc, then uses

it to compile the new compiler.

Note that this documentation mostly covers user-facing information. See

bootstrap/README.md to read about bootstrap internals.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

211 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#bootstrapping-the-compiler
https://rustc-dev-guide.rust-lang.org/print.html#bootstrapping-the-compiler
https://rustc-dev-guide.rust-lang.org/building/bootstrapping.html#stages-of-bootstrapping
https://rustc-dev-guide.rust-lang.org/building/bootstrapping.html#stages-of-bootstrapping
https://rustc-dev-guide.rust-lang.org/building/bootstrapping.html#overview
https://rustc-dev-guide.rust-lang.org/building/bootstrapping.html#overview
https://rustc-dev-guide.rust-lang.org/building/bootstrapping.html#stage-0-the-pre-compiled-compiler
https://rustc-dev-guide.rust-lang.org/building/bootstrapping.html#stage-0-the-pre-compiled-compiler
https://rustc-dev-guide.rust-lang.org/building/bootstrapping.html#stage-1-from-current-code-by-an-earlier-compiler
https://rustc-dev-guide.rust-lang.org/building/bootstrapping.html#stage-1-from-current-code-by-an-earlier-compiler
https://rustc-dev-guide.rust-lang.org/building/bootstrapping.html#stage-2-the-truly-current-compiler
https://rustc-dev-guide.rust-lang.org/building/bootstrapping.html#stage-2-the-truly-current-compiler
https://rustc-dev-guide.rust-lang.org/building/bootstrapping.html#stage-3-the-same-result-test
https://rustc-dev-guide.rust-lang.org/building/bootstrapping.html#stage-3-the-same-result-test
https://rustc-dev-guide.rust-lang.org/building/bootstrapping.html#building-the-stages
https://rustc-dev-guide.rust-lang.org/building/bootstrapping.html#building-the-stages
https://rustc-dev-guide.rust-lang.org/building/bootstrapping.html#complications-of-bootstrapping
https://rustc-dev-guide.rust-lang.org/building/bootstrapping.html#complications-of-bootstrapping
https://rustc-dev-guide.rust-lang.org/building/bootstrapping.html#understanding-stages-of-bootstrap
https://rustc-dev-guide.rust-lang.org/building/bootstrapping.html#understanding-stages-of-bootstrap
https://rustc-dev-guide.rust-lang.org/building/bootstrapping.html#overview-1
https://rustc-dev-guide.rust-lang.org/building/bootstrapping.html#overview-1
https://rustc-dev-guide.rust-lang.org/building/bootstrapping.html#build-artifacts
https://rustc-dev-guide.rust-lang.org/building/bootstrapping.html#build-artifacts
https://rustc-dev-guide.rust-lang.org/building/bootstrapping.html#examples
https://rustc-dev-guide.rust-lang.org/building/bootstrapping.html#examples
https://rustc-dev-guide.rust-lang.org/building/bootstrapping.html#examples-of-what-not-to-do
https://rustc-dev-guide.rust-lang.org/building/bootstrapping.html#examples-of-what-not-to-do
https://rustc-dev-guide.rust-lang.org/building/bootstrapping.html#building-vs-running
https://rustc-dev-guide.rust-lang.org/building/bootstrapping.html#building-vs-running
https://rustc-dev-guide.rust-lang.org/building/bootstrapping.html#stages-and-std
https://rustc-dev-guide.rust-lang.org/building/bootstrapping.html#stages-and-std
https://rustc-dev-guide.rust-lang.org/building/bootstrapping.html#stages-and-std
https://rustc-dev-guide.rust-lang.org/building/bootstrapping.html#stages-and-std
https://rustc-dev-guide.rust-lang.org/building/bootstrapping.html#cross-compiling-rustc
https://rustc-dev-guide.rust-lang.org/building/bootstrapping.html#cross-compiling-rustc
https://rustc-dev-guide.rust-lang.org/building/bootstrapping.html#why-does-only-libstd-use-cfgbootstrap
https://rustc-dev-guide.rust-lang.org/building/bootstrapping.html#why-does-only-libstd-use-cfgbootstrap
https://rustc-dev-guide.rust-lang.org/building/bootstrapping.html#why-does-only-libstd-use-cfgbootstrap
https://rustc-dev-guide.rust-lang.org/building/bootstrapping.html#why-does-only-libstd-use-cfgbootstrap
https://rustc-dev-guide.rust-lang.org/building/bootstrapping.html#why-does-only-libstd-use-cfgbootstrap
https://rustc-dev-guide.rust-lang.org/building/bootstrapping.html#what-is-a-sysroot
https://rustc-dev-guide.rust-lang.org/building/bootstrapping.html#what-is-a-sysroot
https://rustc-dev-guide.rust-lang.org/building/bootstrapping.html#-z-force-unstable-if-unmarked
https://rustc-dev-guide.rust-lang.org/building/bootstrapping.html#-z-force-unstable-if-unmarked
https://rustc-dev-guide.rust-lang.org/building/bootstrapping.html#passing-flags-to-commands-invoked-by-bootstrap
https://rustc-dev-guide.rust-lang.org/building/bootstrapping.html#passing-flags-to-commands-invoked-by-bootstrap
https://rustc-dev-guide.rust-lang.org/building/bootstrapping.html#passing-flags-to-commands-invoked-by-bootstrap
https://rustc-dev-guide.rust-lang.org/building/bootstrapping.html#passing-flags-to-commands-invoked-by-bootstrap
https://rustc-dev-guide.rust-lang.org/building/bootstrapping.html#environment-variables
https://rustc-dev-guide.rust-lang.org/building/bootstrapping.html#environment-variables
https://rustc-dev-guide.rust-lang.org/building/bootstrapping.html#clarification-of-build-commands-stdout
https://rustc-dev-guide.rust-lang.org/building/bootstrapping.html#clarification-of-build-commands-stdout
https://rustc-dev-guide.rust-lang.org/building/bootstrapping.html#building-stage0-stdcompiler-artifacts
https://rustc-dev-guide.rust-lang.org/building/bootstrapping.html#building-stage0-stdcompiler-artifacts
https://rustc-dev-guide.rust-lang.org/building/bootstrapping.html#copying-stage0-stdrustc
https://rustc-dev-guide.rust-lang.org/building/bootstrapping.html#copying-stage0-stdrustc
https://rustc-dev-guide.rust-lang.org/building/bootstrapping.html#assembling-stage1-compiler
https://rustc-dev-guide.rust-lang.org/building/bootstrapping.html#assembling-stage1-compiler
https://en.wikipedia.org/wiki/Bootstrapping_(compilers)
https://en.wikipedia.org/wiki/Bootstrapping_(compilers)
https://en.wikipedia.org/wiki/Bootstrapping_(compilers)
https://github.com/rust-lang/rust/tree/ef75860a0a72f79f97216f8aaa5b388d98da6480/src/boot
https://github.com/rust-lang/rust/tree/ef75860a0a72f79f97216f8aaa5b388d98da6480/src/boot
https://github.com/rust-lang/rust/blob/master/src/bootstrap/README.md
https://github.com/rust-lang/rust/blob/master/src/bootstrap/README.md

Stages of bootstrapping

Overview

• Stage 0: the pre-compiled compiler

• Stage 1: from current code, by an earlier compiler

• Stage 2: the truly current compiler

• Stage 3: the same-result test

Compiling rustc is done in stages. Here's a diagram, adapted from Joshua Nelson's talk

on bootstrapping at RustConf 2022, with detailed explanations below.

The A , B , C , and D show the ordering of the stages of bootstrapping. Blue nodes are

downloaded, yellow nodes are built with the stage0 compiler, and green nodes are built

with the stage1 compiler.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

212 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#stages-of-bootstrapping
https://rustc-dev-guide.rust-lang.org/print.html#stages-of-bootstrapping
https://rustc-dev-guide.rust-lang.org/print.html#overview-1
https://rustc-dev-guide.rust-lang.org/print.html#overview-1
https://www.youtube.com/watch?v=oUIjG-y4zaA
https://www.youtube.com/watch?v=oUIjG-y4zaA
https://www.youtube.com/watch?v=oUIjG-y4zaA
https://www.youtube.com/watch?v=oUIjG-y4zaA

Stage 0: the pre-compiled compiler

The stage0 compiler is usually the current beta rustc compiler and its associated

dynamic libraries, which x.py will download for you. (You can also configure x.py to use

something else.)

The stage0 compiler is then used only to compile src/bootstrap , std , and rustc .

When compiling rustc , the stage0 compiler uses the freshly compiled std . There are

A

B

copy

C

D

copy

stage0 compiler (1.63)

stage0 std (1.64)

stage0 compiler artifacts (1.64)

stage1 compiler (1.64)

stage1 std (1.64)

stage1 compiler artifacts (1.64)

stage2 compiler

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

213 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#stage-0-the-pre-compiled-compiler
https://rustc-dev-guide.rust-lang.org/print.html#stage-0-the-pre-compiled-compiler

two concepts at play here: a compiler (with its set of dependencies) and its 'target' or

'object' libraries (std and rustc). Both are staged, but in a staggered manner.

Stage 1: from current code, by an earlier compiler

The rustc source code is then compiled with the stage0 compiler to produce the stage1

compiler.

Stage 2: the truly current compiler

We then rebuild our stage1 compiler with itself to produce the stage2 compiler.

In theory, the stage1 compiler is functionally identical to the stage2 compiler, but in

practice there are subtle differences. In particular, the stage1 compiler itself was built by

stage0 and hence not by the source in your working directory. This means that the ABI

generated by the stage0 compiler may not match the ABI that would have been made by

the stage1 compiler, which can cause problems for dynamic libraries, tests, and tools

using rustc_private .

Note that the proc_macro crate avoids this issue with a C FFI layer called

proc_macro::bridge , allowing it to be used with stage 1.

The stage2 compiler is the one distributed with rustup and all other install methods.

However, it takes a very long time to build because one must first build the new compiler

with an older compiler and then use that to build the new compiler with itself. For

development, you usually only want the stage1 compiler, which you can build with ./x

build library . See Building the compiler.

Stage 3: the same-result test

Stage 3 is optional. To sanity check our new compiler, we can build the libraries with the

stage2 compiler. The result ought to be identical to before, unless something has broken.

Building the stages

x tries to be helpful and pick the stage you most likely meant for each subcommand.

These defaults are as follows:

• check : --stage 0

• doc : --stage 0

• build : --stage 1

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

214 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#stage-1-from-current-code-by-an-earlier-compiler
https://rustc-dev-guide.rust-lang.org/print.html#stage-1-from-current-code-by-an-earlier-compiler
https://rustc-dev-guide.rust-lang.org/print.html#stage-2-the-truly-current-compiler
https://rustc-dev-guide.rust-lang.org/print.html#stage-2-the-truly-current-compiler
https://rustc-dev-guide.rust-lang.org/building/how-to-build-and-run.html#building-the-compiler
https://rustc-dev-guide.rust-lang.org/building/how-to-build-and-run.html#building-the-compiler
https://rustc-dev-guide.rust-lang.org/print.html#stage-3-the-same-result-test
https://rustc-dev-guide.rust-lang.org/print.html#stage-3-the-same-result-test
https://rustc-dev-guide.rust-lang.org/print.html#building-the-stages
https://rustc-dev-guide.rust-lang.org/print.html#building-the-stages

• test : --stage 1

• dist : --stage 2

• install : --stage 2

• bench : --stage 2

You can always override the stage by passing --stage N explicitly.

For more information about stages, see below.

Complications of bootstrapping

Since the build system uses the current beta compiler to build the stage-1 bootstrapping

compiler, the compiler source code can't use some features until they reach beta

(because otherwise the beta compiler doesn't support them). On the other hand, for

compiler intrinsics and internal features, the features have to be used. Additionally, the

compiler makes heavy use of nightly features (#![feature(...)]). How can we resolve

this problem?

There are two methods used:

1. The build system sets --cfg bootstrap when building with stage0 , so we can use

cfg(not(bootstrap)) to only use features when built with stage1 . This is useful

for e.g. features that were just stabilized, which require #![feature(...)] when

built with stage0 , but not for stage1 .

2. The build system sets RUSTC_BOOTSTRAP=1 . This special variable means to break the

stability guarantees of rust: Allow using #![feature(...)] with a compiler that's not

nightly. This should never be used except when bootstrapping the compiler.

Understanding stages of bootstrap

Overview

This is a detailed look into the separate bootstrap stages.

The convention x uses is that:

• A --stage N flag means to run the stage N compiler (stageN/rustc).

• A "stage N artifact" is a build artifact that is produced by the stage N compiler.

• The stage N+1 compiler is assembled from stage N artifacts. This process is called

uplifting.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

215 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/building/bootstrapping.html#understanding-stages-of-bootstrap
https://rustc-dev-guide.rust-lang.org/building/bootstrapping.html#understanding-stages-of-bootstrap
https://rustc-dev-guide.rust-lang.org/print.html#complications-of-bootstrapping
https://rustc-dev-guide.rust-lang.org/print.html#complications-of-bootstrapping
https://rustc-dev-guide.rust-lang.org/appendix/glossary.html#intrinsic
https://rustc-dev-guide.rust-lang.org/appendix/glossary.html#intrinsic
https://rustc-dev-guide.rust-lang.org/print.html#understanding-stages-of-bootstrap
https://rustc-dev-guide.rust-lang.org/print.html#understanding-stages-of-bootstrap
https://rustc-dev-guide.rust-lang.org/print.html#overview-2
https://rustc-dev-guide.rust-lang.org/print.html#overview-2

Build artifacts

Anything you can build with x is a build artifact. Build artifacts include, but are not limited

to:

• binaries, like stage0-rustc/rustc-main

• shared objects, like stage0-sysroot/rustlib/libstd-6fae108520cf72fe.so

• rlib files, like stage0-sysroot/rustlib/libstd-6fae108520cf72fe.rlib

• HTML files generated by rustdoc, like doc/std

Examples

• ./x build --stage 0 means to build with the beta rustc .

• ./x doc --stage 0 means to document using the beta rustdoc .

• ./x test --stage 0 library/std means to run tests on the standard library

without building rustc from source ('build with stage 0, then test the artifacts'). If

you're working on the standard library, this is normally the test command you want.

• ./x test tests/ui means to build the stage 1 compiler and run compiletest on

it. If you're working on the compiler, this is normally the test command you want.

Examples of what not to do

• ./x test --stage 0 tests/ui is not useful: it runs tests on the beta compiler and

doesn't build rustc from source. Use test tests/ui instead, which builds stage 1

from source.

• ./x test --stage 0 compiler/rustc builds the compiler but runs no tests: it's

running cargo test -p rustc , but cargo doesn't understand Rust's tests. You

shouldn't need to use this, use test instead (without arguments).

• ./x build --stage 0 compiler/rustc builds the compiler, but does not build

libstd or even libcore. Most of the time, you'll want ./x build library instead,

which allows compiling programs without needing to define lang items.

Building vs. running

Note that build --stage N compiler/rustc does not build the stage N compiler:

instead it builds the stage N+1 compiler using the stage N compiler.

In short, stage 0 uses the stage0 compiler to create stage0 artifacts which will later be uplifted

to be the stage1 compiler.

In each stage, two major steps are performed:

1. std is compiled by the stage N compiler.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

216 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#build-artifacts
https://rustc-dev-guide.rust-lang.org/print.html#build-artifacts
https://rustc-dev-guide.rust-lang.org/serialization.html
https://rustc-dev-guide.rust-lang.org/serialization.html
https://rustc-dev-guide.rust-lang.org/print.html#examples
https://rustc-dev-guide.rust-lang.org/print.html#examples
https://rustc-dev-guide.rust-lang.org/print.html#examples-of-what-not-to-do
https://rustc-dev-guide.rust-lang.org/print.html#examples-of-what-not-to-do
https://rustc-dev-guide.rust-lang.org/print.html#examples-of-what-not-to-do
https://rustc-dev-guide.rust-lang.org/print.html#examples-of-what-not-to-do
https://rustc-dev-guide.rust-lang.org/print.html#examples-of-what-not-to-do
https://rustc-dev-guide.rust-lang.org/print.html#building-vs-running
https://rustc-dev-guide.rust-lang.org/print.html#building-vs-running

2. That std is linked to programs built by the stage N compiler, including the stage N

artifacts (stage N+1 compiler).

This is somewhat intuitive if one thinks of the stage N artifacts as "just" another program

we are building with the stage N compiler: build --stage N compiler/rustc is linking

the stage N artifacts to the std built by the stage N compiler.

Stages and std

Note that there are two std libraries in play here:

1. The library linked to stageN/rustc , which was built by stage N-1 (stage N-1 std)

2. The library used to compile programs with stageN/rustc , which was built by stage N

(stage N std).

Stage N std is pretty much necessary for any useful work with the stage N compiler.

Without it, you can only compile programs with #![no_core] -- not terribly useful!

The reason these need to be different is because they aren't necessarily ABI-compatible:

there could be new layout optimizations, changes to MIR, or other changes to Rust

metadata on nightly that aren't present in beta.

This is also where --keep-stage 1 library/std comes into play. Since most changes to

the compiler don't actually change the ABI, once you've produced a std in stage 1, you

can probably just reuse it with a different compiler. If the ABI hasn't changed, you're good

to go, no need to spend time recompiling that std . --keep-stage simply assumes the

previous compile is fine and copies those artifacts into the appropriate place, skipping the

cargo invocation.

Cross-compiling rustc

Cross-compiling is the process of compiling code that will run on another architecture. For

instance, you might want to build an ARM version of rustc using an x86 machine. Building

stage2 std is different when you are cross-compiling.

This is because x uses a trick: if HOST and TARGET are the same, it will reuse stage1 std

for stage2! This is sound because stage1 std was compiled with the stage1 compiler, i.e.

a compiler using the source code you currently have checked out. So it should be

identical (and therefore ABI-compatible) to the std that stage2/rustc would compile.

However, when cross-compiling, stage1 std will only run on the host. So the stage2

compiler has to recompile std for the target.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

217 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#stages-and-std
https://rustc-dev-guide.rust-lang.org/print.html#stages-and-std
https://rustc-dev-guide.rust-lang.org/print.html#stages-and-std
https://rustc-dev-guide.rust-lang.org/print.html#stages-and-std
https://rustc-dev-guide.rust-lang.org/print.html#cross-compiling-rustc
https://rustc-dev-guide.rust-lang.org/print.html#cross-compiling-rustc

(See in the table how stage2 only builds non-host std targets).

Why does only libstd use cfg(bootstrap)?

NOTE: for docs on cfg(bootstrap) itself, see Complications of Bootstrapping.

The rustc generated by the stage0 compiler is linked to the freshly-built std , which

means that for the most part only std needs to be cfg-gated, so that rustc can use

features added to std immediately after their addition, without need for them to get into

the downloaded beta.

Note this is different from any other Rust program: stage1 rustc is built by the beta

compiler, but using the master version of libstd!

The only time rustc uses cfg(bootstrap) is when it adds internal lints that use

diagnostic items, or when it uses unstable library features that were recently changed.

What is a 'sysroot'?

When you build a project with cargo, the build artifacts for dependencies are normally

stored in target/debug/deps . This only contains dependencies cargo knows about; in

particular, it doesn't have the standard library. Where do std or proc_macro come

from? It comes from the sysroot, the root of a number of directories where the compiler

loads build artifacts at runtime. The sysroot doesn't just store the standard library,

though - it includes anything that needs to be loaded at runtime. That includes (but is not

limited to):

• libstd / libtest / libproc_macro

• The compiler crates themselves, when using rustc_private . In-tree these are

always present; out of tree, you need to install rustc-dev with rustup.

• libLLVM.so , the shared object file for the LLVM project. In-tree this is either built

from source or downloaded from CI; out-of-tree, you need to install llvm-tools-

preview with rustup.

All the artifacts listed so far are compiler runtime dependencies. You can see them with

rustc --print sysroot :

$ ls $(rustc --print sysroot)/lib
libchalk_derive-0685d79833dc9b2b.so libstd-25c6acf8063a3802.so
libLLVM-11-rust-1.50.0-nightly.so libtest-57470d2aa8f7aa83.so
librustc_driver-4f0cc9f50e53f0ba.so libtracing_attributes-
e4be92c35ab2a33b.so
librustc_macros-5f0ec4a119c6ac86.so rustlib

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

218 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#why-does-only-libstd-use-cfgbootstrap
https://rustc-dev-guide.rust-lang.org/print.html#why-does-only-libstd-use-cfgbootstrap
https://rustc-dev-guide.rust-lang.org/print.html#why-does-only-libstd-use-cfgbootstrap
https://rustc-dev-guide.rust-lang.org/print.html#why-does-only-libstd-use-cfgbootstrap
https://rustc-dev-guide.rust-lang.org/print.html#why-does-only-libstd-use-cfgbootstrap
https://rustc-dev-guide.rust-lang.org/building/bootstrapping.html#complications-of-bootstrapping
https://rustc-dev-guide.rust-lang.org/building/bootstrapping.html#complications-of-bootstrapping
https://rustc-dev-guide.rust-lang.org/print.html#what-is-a-sysroot
https://rustc-dev-guide.rust-lang.org/print.html#what-is-a-sysroot

There are also runtime dependencies for the standard library! These are in lib/rustlib ,

not lib/ directly.

rustlib includes libraries like hashbrown and cfg_if , which are not part of the public

API of the standard library, but are used to implement it. rustlib is part of the search

path for linkers, but lib will never be part of the search path.

-Z force-unstable-if-unmarked

Since rustlib is part of the search path, it means we have to be careful about which

crates are included in it. In particular, all crates except for the standard library are built

with the flag -Z force-unstable-if-unmarked , which means that you have to use

#![feature(rustc_private)] in order to load it (as opposed to the standard library,

which is always available).

The -Z force-unstable-if-unmarked flag has a variety of purposes to help enforce that

the correct crates are marked as unstable. It was introduced primarily to allow rustc and

the standard library to link to arbitrary crates on crates.io which do not themselves use

staged_api . rustc also relies on this flag to mark all of its crates as unstable with the

rustc_private feature so that each crate does not need to be carefully marked with

unstable .

This flag is automatically applied to all of rustc and the standard library by the bootstrap

scripts. This is needed because the compiler and all of its dependencies are shipped in

the sysroot to all users.

This flag has the following effects:

• Marks the crate as "unstable" with the rustc_private feature if it is not itself

marked as stable or unstable.

• Allows these crates to access other forced-unstable crates without any need for

attributes. Normally a crate would need a #![feature(rustc_private)] attribute to

use other unstable crates. However, that would make it impossible for a crate from

crates.io to access its own dependencies since that crate won't have a

feature(rustc_private) attribute, but everything is compiled with -Z force-

unstable-if-unmarked .

Code which does not use -Z force-unstable-if-unmarked should include the

$ ls $(rustc --print sysroot)/lib/rustlib/x86_64-unknown-linux-gnu/lib | head
-n 5
libaddr2line-6c8e02b8fedc1e5f.rlib
libadler-9ef2480568df55af.rlib
liballoc-9c4002b5f79ba0e1.rlib
libcfg_if-512eb53291f6de7e.rlib
libcompiler_builtins-ef2408da76957905.rlib

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

219 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#-z-force-unstable-if-unmarked
https://rustc-dev-guide.rust-lang.org/print.html#-z-force-unstable-if-unmarked

#![feature(rustc_private)] crate attribute to access these force-unstable crates. This

is needed for things that link rustc , such as miri or clippy .

You can find more discussion about sysroots in:

• The rustdoc PR explaining why it uses extern crate for dependencies loaded from

sysroot

• Discussions about sysroot on Zulip

• Discussions about building rustdoc out of tree

Passing flags to commands invoked by bootstrap

x allows you to pass stage-specific flags to rustc and cargo when bootstrapping. The

RUSTFLAGS_BOOTSTRAP environment variable is passed as RUSTFLAGS to the bootstrap

stage (stage0), and RUSTFLAGS_NOT_BOOTSTRAP is passed when building artifacts for later

stages. RUSTFLAGS will work, but also affects the build of bootstrap itself, so it will be

rare to want to use it. Finally, MAGIC_EXTRA_RUSTFLAGS bypasses the cargo cache to pass

flags to rustc without recompiling all dependencies.

RUSTDOCFLAGS , RUSTDOCFLAGS_BOOTSTRAP , and RUSTDOCFLAGS_NOT_BOOTSTRAP are

anologous to RUSTFLAGS , but for rustdoc.

CARGOFLAGS will pass arguments to cargo itself (e.g. --timings). CARGOFLAGS_BOOTSTRAP

and CARGOFLAGS_NOT_BOOTSTRAP work analogously to RUSTFLAGS_BOOTSTRAP .

--test-args will pass arguments through to the test runner. For tests/ui , this is

compiletest; for unit tests and doctests this is the libtest runner. Most test runner

accept --help , which you can use to find out the options accepted by the runner.

Environment Variables

During bootstrapping, there are a bunch of compiler-internal environment variables that

are used. If you are trying to run an intermediate version of rustc , sometimes you may

need to set some of these environment variables manually. Otherwise, you get an error

like the following:

If ./stageN/bin/rustc gives an error about environment variables, that usually means

something is quite wrong -- or you're trying to compile e.g. rustc or std or something

thread 'main' panicked at 'RUSTC_STAGE was not set: NotPresent', library/core
/src/result.rs:1165:5

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

220 of 660 8/30/23, 09:47

https://github.com/rust-lang/rust/pull/76728
https://github.com/rust-lang/rust/pull/76728
https://rust-lang.zulipchat.com/#narrow/stream/182449-t-compiler.2Fhelp/topic/deps.20in.20sysroot/
https://rust-lang.zulipchat.com/#narrow/stream/182449-t-compiler.2Fhelp/topic/deps.20in.20sysroot/
https://rust-lang.zulipchat.com/#narrow/stream/182449-t-compiler.2Fhelp/topic/How.20to.20create.20an.20executable.20accessing.20.60rustc_private.60.3F
https://rust-lang.zulipchat.com/#narrow/stream/182449-t-compiler.2Fhelp/topic/How.20to.20create.20an.20executable.20accessing.20.60rustc_private.60.3F
https://rustc-dev-guide.rust-lang.org/print.html#passing-flags-to-commands-invoked-by-bootstrap
https://rustc-dev-guide.rust-lang.org/print.html#passing-flags-to-commands-invoked-by-bootstrap
https://rustc-dev-guide.rust-lang.org/print.html#passing-flags-to-commands-invoked-by-bootstrap
https://rustc-dev-guide.rust-lang.org/print.html#passing-flags-to-commands-invoked-by-bootstrap
https://rustc-dev-guide.rust-lang.org/print.html#environment-variables
https://rustc-dev-guide.rust-lang.org/print.html#environment-variables

that depends on environment variables. In the unlikely case that you actually need to

invoke rustc in such a situation, you can tell the bootstrap shim to print all env variables

by adding -vvv to your x command.

Finally, bootstrap makes use of the cc-rs crate which has its own method of configuring C

compilers and C flags via environment variables.

Clarification of build command's stdout

In this part, we will investigate the build command's stdout in an action (similar, but more

detailed and complete documentation compare to topic above). When you execute x

build --dry-run command, the build output will be something like the following:

Building stage0 {std,compiler} artifacts

These steps use the provided (downloaded, usually) compiler to compile the local Rust

source into libraries we can use.

Copying stage0 {std,rustc}

This copies the library and compiler artifacts from Cargo into stage0-sysroot/lib

/rustlib/{target-triple}/lib

Assembling stage1 compiler

This copies the libraries we built in "building stage0 ... artifacts" into the stage1 compiler's

Building stage0 library artifacts (x86_64-unknown-linux-gnu -> x86_64-
unknown-linux-gnu)
Copying stage0 library from stage0 (x86_64-unknown-linux-gnu -> x86_64-
unknown-linux-gnu / x86_64-unknown-linux-gnu)
Building stage0 compiler artifacts (x86_64-unknown-linux-gnu -> x86_64-
unknown-linux-gnu)
Copying stage0 rustc from stage0 (x86_64-unknown-linux-gnu -> x86_64-unknown-
linux-gnu / x86_64-unknown-linux-gnu)
Assembling stage1 compiler (x86_64-unknown-linux-gnu)
Building stage1 library artifacts (x86_64-unknown-linux-gnu -> x86_64-
unknown-linux-gnu)
Copying stage1 library from stage1 (x86_64-unknown-linux-gnu -> x86_64-
unknown-linux-gnu / x86_64-unknown-linux-gnu)
Building stage1 tool rust-analyzer-proc-macro-srv (x86_64-unknown-linux-gnu)
Building rustdoc for stage1 (x86_64-unknown-linux-gnu)

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

221 of 660 8/30/23, 09:47

https://github.com/rust-lang/cc-rs
https://github.com/rust-lang/cc-rs
https://github.com/rust-lang/cc-rs#external-configuration-via-environment-variables
https://github.com/rust-lang/cc-rs#external-configuration-via-environment-variables
https://rustc-dev-guide.rust-lang.org/print.html#clarification-of-build-commands-stdout
https://rustc-dev-guide.rust-lang.org/print.html#clarification-of-build-commands-stdout
https://rustc-dev-guide.rust-lang.org/print.html#building-stage0-stdcompiler-artifacts
https://rustc-dev-guide.rust-lang.org/print.html#building-stage0-stdcompiler-artifacts
https://rustc-dev-guide.rust-lang.org/print.html#copying-stage0-stdrustc
https://rustc-dev-guide.rust-lang.org/print.html#copying-stage0-stdrustc
https://rustc-dev-guide.rust-lang.org/print.html#assembling-stage1-compiler
https://rustc-dev-guide.rust-lang.org/print.html#assembling-stage1-compiler

lib directory. These are the host libraries that the compiler itself uses to run. These aren't

actually used by artifacts the new compiler generates. This step also copies the rustc and

rustdoc binaries we generated into build/$HOST/stage/bin .

The stage1/bin/rustc is a fully functional compiler, but it doesn't yet have any libraries to

link built binaries or libraries to. The next 3 steps will provide those libraries for it; they

are mostly equivalent to constructing the stage1/bin compiler so we don't go through

them individually.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

222 of 660 8/30/23, 09:47

Queries: demand-driven compilation

• Invoking queries

• How the compiler executes a query

◦ Providers

◦ How providers are setup

• Adding a new query

• External links

As described in the high-level overview of the compiler, the Rust compiler is still (as of July

2021) transitioning from a traditional "pass-based" setup to a "demand-driven" system.

The compiler query system is the key to rustc's demand-driven organization. The idea is

pretty simple. Instead of entirely independent passes (parsing, type-checking, etc.), a set

of function-like queries compute information about the input source. For example, there

is a query called type_of that, given the DefId of some item, will compute the type of

that item and return it to you.

Query execution is memoized. The first time you invoke a query, it will go do the

computation, but the next time, the result is returned from a hashtable. Moreover, query

execution fits nicely into incremental computation; the idea is roughly that, when you

invoke a query, the result may be returned to you by loading stored data from disk.1

Eventually, we want the entire compiler control-flow to be query driven. There will

effectively be one top-level query (compile) that will run compilation on a crate; this will

in turn demand information about that crate, starting from the end. For example:

• The compile query might demand to get a list of codegen-units (i.e. modules that

need to be compiled by LLVM).

• But computing the list of codegen-units would invoke some subquery that returns

the list of all modules defined in the Rust source.

• That query in turn would invoke something asking for the HIR.

• This keeps going further and further back until we wind up doing the actual parsing.

Although this vision is not fully realized, large sections of the compiler (for example,

generating MIR) currently work exactly like this.

1 The "Incremental Compilation in Detail chapter gives a more in-depth description of what queries

are and how they work. If you intend to write a query of your own, this is a good read.

Invoking queries

Invoking a query is simple. The TyCtxt ("type context") struct offers a method for each

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

223 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#queries-demand-driven-compilation
https://rustc-dev-guide.rust-lang.org/print.html#queries-demand-driven-compilation
https://rustc-dev-guide.rust-lang.org/query.html#invoking-queries
https://rustc-dev-guide.rust-lang.org/query.html#invoking-queries
https://rustc-dev-guide.rust-lang.org/query.html#how-the-compiler-executes-a-query
https://rustc-dev-guide.rust-lang.org/query.html#how-the-compiler-executes-a-query
https://rustc-dev-guide.rust-lang.org/query.html#providers
https://rustc-dev-guide.rust-lang.org/query.html#providers
https://rustc-dev-guide.rust-lang.org/query.html#how-providers-are-setup
https://rustc-dev-guide.rust-lang.org/query.html#how-providers-are-setup
https://rustc-dev-guide.rust-lang.org/query.html#adding-a-new-query
https://rustc-dev-guide.rust-lang.org/query.html#adding-a-new-query
https://rustc-dev-guide.rust-lang.org/query.html#external-links
https://rustc-dev-guide.rust-lang.org/query.html#external-links
https://rustc-dev-guide.rust-lang.org/compiler-src.html
https://rustc-dev-guide.rust-lang.org/compiler-src.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/def_id/struct.DefId.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/def_id/struct.DefId.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/def_id/struct.DefId.html
https://rustc-dev-guide.rust-lang.org/print.html#incr-comp-detail
https://rustc-dev-guide.rust-lang.org/print.html#incr-comp-detail
https://rustc-dev-guide.rust-lang.org/mir/index.html
https://rustc-dev-guide.rust-lang.org/mir/index.html
https://rustc-dev-guide.rust-lang.org/queries/incremental-compilation-in-detail.html
https://rustc-dev-guide.rust-lang.org/queries/incremental-compilation-in-detail.html
https://rustc-dev-guide.rust-lang.org/print.html#invoking-queries
https://rustc-dev-guide.rust-lang.org/print.html#invoking-queries
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.TyCtxt.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.TyCtxt.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.TyCtxt.html

defined query. For example, to invoke the type_of query, you would just do this:

How the compiler executes a query

So you may be wondering what happens when you invoke a query method. The answer is

that, for each query, the compiler maintains a cache – if your query has already been

executed, then, the answer is simple: we clone the return value out of the cache and

return it (therefore, you should try to ensure that the return types of queries are cheaply

cloneable; insert an Rc if necessary).

Providers

If, however, the query is not in the cache, then the compiler will try to find a suitable

provider. A provider is a function that has been defined and linked into the compiler

somewhere that contains the code to compute the result of the query.

Providers are defined per-crate. The compiler maintains, internally, a table of providers

for every crate, at least conceptually. Right now, there are really two sets: the providers

for queries about the local crate (that is, the one being compiled) and providers for

queries about external crates (that is, dependencies of the local crate). Note that what

determines the crate that a query is targeting is not the kind of query, but the key. For

example, when you invoke tcx.type_of(def_id) , that could be a local query or an

external query, depending on what crate the def_id is referring to (see the

self::keys::Key trait for more information on how that works).

Providers always have the same signature:

Providers take two arguments: the tcx and the query key. They return the result of the

query.

How providers are setup

let ty = tcx.type_of(some_def_id);

fn provider<'tcx>(
 tcx: TyCtxt<'tcx>,
 key: QUERY_KEY,
) -> QUERY_RESULT {
 ...
}

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

224 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#how-the-compiler-executes-a-query
https://rustc-dev-guide.rust-lang.org/print.html#how-the-compiler-executes-a-query
https://rustc-dev-guide.rust-lang.org/print.html#providers
https://rustc-dev-guide.rust-lang.org/print.html#providers
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/query/keys/trait.Key.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/query/keys/trait.Key.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/query/keys/trait.Key.html
https://rustc-dev-guide.rust-lang.org/print.html#how-providers-are-setup
https://rustc-dev-guide.rust-lang.org/print.html#how-providers-are-setup

When the tcx is created, it is given the providers by its creator using the Providers

struct. This struct is generated by the macros here, but it is basically a big list of function

pointers:

At present, we have one copy of the struct for local crates, and one for external crates,

though the plan is that we may eventually have one per crate.

These Providers structs are ultimately created and populated by rustc_driver , but it

does this by distributing the work throughout the other rustc_* crates. This is done by

invoking various provide functions. These functions tend to look something like this:

That is, they take an &mut Providers and mutate it in place. Usually we use the

formulation above just because it looks nice, but you could as well do

providers.type_of = type_of , which would be equivalent. (Here, type_of would be a

top-level function, defined as we saw before.) So, if we want to add a provider for some

other query, let's call it fubar , into the crate above, we might modify the provide()

function like so:

N.B. Most of the rustc_* crates only provide local providers. Almost all extern

providers wind up going through the rustc_metadata crate, which loads the information

from the crate metadata. But in some cases there are crates that provide queries for both

local and external crates, in which case they define both a provide and a

provide_extern function, through wasm_import_module_map , that rustc_driver can

invoke.

struct Providers {
 type_of: for<'tcx> fn(TyCtxt<'tcx>, DefId) -> Ty<'tcx>,
 ...
}

pub fn provide(providers: &mut Providers) {
 *providers = Providers {
 type_of,
 ..*providers
 };
}

pub fn provide(providers: &mut Providers) {
 *providers = Providers {
 type_of,
 fubar,
 ..*providers
 };
}

fn fubar<'tcx>(tcx: TyCtxt<'tcx>, key: DefId) -> Fubar<'tcx> { ... }

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

225 of 660 8/30/23, 09:47

https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/query/struct.Providers.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/query/struct.Providers.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/query/struct.Providers.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/hir/fn.provide.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/hir/fn.provide.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/hir/fn.provide.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_metadata/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_metadata/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_metadata/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_metadata/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_codegen_ssa/back/symbol_export/fn.wasm_import_module_map.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_codegen_ssa/back/symbol_export/fn.wasm_import_module_map.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_codegen_ssa/back/symbol_export/fn.wasm_import_module_map.html

Adding a new query

How do you add a new query? Defining a query takes place in two steps:

1. Declare the query name, its arguments and description.

2. Supply query providers where needed.

To declare the query name and arguments, you simply add an entry to the big macro

invocation in compiler/rustc_middle/src/query/mod.rs . Then you need to add a

documentation comment to it with some internal description. Then, provide the desc

attribute which contains a user-facing description of the query. The desc attribute is

shown to the user in query cycles.

This looks something like:

A query definition has the following form:

Let's go over these elements one by one:

• Query keyword: indicates a start of a query definition.

• Name of query: the name of the query method (tcx.type_of(..)). Also used as

the name of a struct (ty::queries::type_of) that will be generated to represent

this query.

• Query key type: the type of the argument to this query. This type must implement

the ty::query::keys::Key trait, which defines (for example) how to map it to a

crate, and so forth.

• Result type of query: the type produced by this query. This type should (a) not use

RefCell or other interior mutability and (b) be cheaply cloneable. Interning or using

Rc or Arc is recommended for non-trivial data types.2

rustc_queries! {
/// Records the type of every item.

 query type_of(key: DefId) -> Ty<'tcx> {
 cache_on_disk_if { key.is_local() }
 desc { |tcx| "computing the type of `{}`", tcx.def_path_str(key) }
 }
 ...
}

query type_of(key: DefId) -> Ty<'tcx> { ... }
^^^^^ ^^^^^^^ ^^^^^ ^^^^^^^^ ^^^
| | | | |
| | | | query modifiers
| | | result type
| | query key type
| name of query
query keyword

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

226 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#adding-a-new-query
https://rustc-dev-guide.rust-lang.org/print.html#adding-a-new-query
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/query/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/query/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/query/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/query/keys/trait.Key.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/query/keys/trait.Key.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/query/keys/trait.Key.html
https://rustc-dev-guide.rust-lang.org/print.html#steal
https://rustc-dev-guide.rust-lang.org/print.html#steal

• Query modifiers: various flags and options that customize how the query is

processed (mostly with respect to incremental compilation).

So, to add a query:

• Add an entry to rustc_queries! using the format above.

• Link the provider by modifying the appropriate provide method; or add a new one

if needed and ensure that rustc_driver is invoking it.

2 The one exception to those rules is the ty::steal::Steal type, which is used to cheaply modify

MIR in place. See the definition of Steal for more details. New uses of Steal should not be added

without alerting @rust-lang/compiler .

External links

Related design ideas, and tracking issues:

• Design document: On-demand Rustc incremental design doc

• Tracking Issue: "Red/Green" dependency tracking in compiler

More discussion and issues:

• GitHub issue #42633

• Incremental Compilation Beta

• Incremental Compilation Announcement

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

227 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/queries/incremental-compilation-in-detail.html#query-modifiers
https://rustc-dev-guide.rust-lang.org/queries/incremental-compilation-in-detail.html#query-modifiers
https://rustc-dev-guide.rust-lang.org/print.html#external-links
https://rustc-dev-guide.rust-lang.org/print.html#external-links
https://github.com/nikomatsakis/rustc-on-demand-incremental-design-doc/blob/master/0000-rustc-on-demand-and-incremental.md
https://github.com/nikomatsakis/rustc-on-demand-incremental-design-doc/blob/master/0000-rustc-on-demand-and-incremental.md
https://github.com/rust-lang/rust/issues/42293
https://github.com/rust-lang/rust/issues/42293
https://github.com/rust-lang/rust/issues/42633
https://github.com/rust-lang/rust/issues/42633
https://internals.rust-lang.org/t/incremental-compilation-beta/4721
https://internals.rust-lang.org/t/incremental-compilation-beta/4721
https://blog.rust-lang.org/2016/09/08/incremental.html
https://blog.rust-lang.org/2016/09/08/incremental.html

The Query Evaluation Model in Detail

• What is a query?

• Caching/Memoization

• Input data

• An example execution trace of some queries

• Cycles

• "Steal" Queries

This chapter provides a deeper dive into the abstract model queries are built on. It does

not go into implementation details but tries to explain the underlying logic. The examples

here, therefore, have been stripped down and simplified and don't directly reflect the

compilers internal APIs.

What is a query?

Abstractly we view the compiler's knowledge about a given crate as a "database" and

queries are the way of asking the compiler questions about it, i.e. we "query" the

compiler's "database" for facts.

However, there's something special to this compiler database: It starts out empty and is

filled on-demand when queries are executed. Consequently, a query must know how to

compute its result if the database does not contain it yet. For doing so, it can access other

queries and certain input values that the database is pre-filled with on creation.

A query thus consists of the following things:

• A name that identifies the query

• A "key" that specifies what we want to look up

• A result type that specifies what kind of result it yields

• A "provider" which is a function that specifies how the result is to be computed if it

isn't already present in the database.

As an example, the name of the type_of query is type_of , its query key is a DefId

identifying the item we want to know the type of, the result type is Ty<'tcx> , and the

provider is a function that, given the query key and access to the rest of the database, can

compute the type of the item identified by the key.

So in some sense a query is just a function that maps the query key to the corresponding

result. However, we have to apply some restrictions in order for this to be sound:

• The key and result must be immutable values.

• The provider function must be a pure function in the sense that for the same key it

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

228 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#the-query-evaluation-model-in-detail
https://rustc-dev-guide.rust-lang.org/print.html#the-query-evaluation-model-in-detail
https://rustc-dev-guide.rust-lang.org/queries/query-evaluation-model-in-detail.html#what-is-a-query
https://rustc-dev-guide.rust-lang.org/queries/query-evaluation-model-in-detail.html#what-is-a-query
https://rustc-dev-guide.rust-lang.org/queries/query-evaluation-model-in-detail.html#cachingmemoization
https://rustc-dev-guide.rust-lang.org/queries/query-evaluation-model-in-detail.html#cachingmemoization
https://rustc-dev-guide.rust-lang.org/queries/query-evaluation-model-in-detail.html#input-data
https://rustc-dev-guide.rust-lang.org/queries/query-evaluation-model-in-detail.html#input-data
https://rustc-dev-guide.rust-lang.org/queries/query-evaluation-model-in-detail.html#an-example-execution-trace-of-some-queries
https://rustc-dev-guide.rust-lang.org/queries/query-evaluation-model-in-detail.html#an-example-execution-trace-of-some-queries
https://rustc-dev-guide.rust-lang.org/queries/query-evaluation-model-in-detail.html#cycles
https://rustc-dev-guide.rust-lang.org/queries/query-evaluation-model-in-detail.html#cycles
https://rustc-dev-guide.rust-lang.org/queries/query-evaluation-model-in-detail.html#steal-queries
https://rustc-dev-guide.rust-lang.org/queries/query-evaluation-model-in-detail.html#steal-queries
https://rustc-dev-guide.rust-lang.org/print.html#what-is-a-query
https://rustc-dev-guide.rust-lang.org/print.html#what-is-a-query

must always yield the same result.

• The only parameters a provider function takes are the key and a reference to the

"query context" (which provides access to the rest of the "database").

The database is built up lazily by invoking queries. The query providers will invoke other

queries, for which the result is either already cached or computed by calling another

query provider. These query provider invocations conceptually form a directed acyclic

graph (DAG) at the leaves of which are input values that are already known when the

query context is created.

Caching/Memoization

Results of query invocations are "memoized" which means that the query context will

cache the result in an internal table and, when the query is invoked with the same query

key again, will return the result from the cache instead of running the provider again.

This caching is crucial for making the query engine efficient. Without memoization the

system would still be sound (that is, it would yield the same results) but the same

computations would be done over and over again.

Memoization is one of the main reasons why query providers have to be pure functions.

If calling a provider function could yield different results for each invocation (because it

accesses some global mutable state) then we could not memoize the result.

Input data

When the query context is created, it is still empty: No queries have been executed, no

results are cached. But the context already provides access to "input" data, i.e. pieces of

immutable data that were computed before the context was created and that queries can

access to do their computations.

As of January 2021, this input data consists mainly of the HIR map, upstream crate

metadata, and the command-line options the compiler was invoked with; but in the

future inputs will just consist of command-line options and a list of source files -- the HIR

map will itself be provided by a query which processes these source files.

Without inputs, queries would live in a void without anything to compute their result from

(remember, query providers only have access to other queries and the context but not

any other outside state or information).

For a query provider, input data and results of other queries look exactly the same: It just

tells the context "give me the value of X". Because input data is immutable, the provider

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

229 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#cachingmemoization
https://rustc-dev-guide.rust-lang.org/print.html#cachingmemoization
https://rustc-dev-guide.rust-lang.org/print.html#input-data
https://rustc-dev-guide.rust-lang.org/print.html#input-data

can rely on it being the same across different query invocations, just as is the case for

query results.

An example execution trace of some queries

How does this DAG of query invocations come into existence? At some point the compiler

driver will create the, as yet empty, query context. It will then, from outside of the query

system, invoke the queries it needs to perform its task. This looks something like the

following:

The type_check_crate query provider would look something like the following:

We see that the type_check_crate query accesses input data

(tcx.hir_map.list_of_items()) and invokes other queries (type_check_item). The

type_check_item invocations will themselves access input data and/or invoke other

queries, so that in the end the DAG of query invocations will be built up backwards from

the node that was initially executed:

fn compile_crate() {
let cli_options = ...;
let hir_map = ...;

// Create the query context `tcx`
let tcx = TyCtxt::new(cli_options, hir_map);

// Do type checking by invoking the type check query
 tcx.type_check_crate();
}

fn type_check_crate_provider(tcx, _key: ()) {
let list_of_hir_items = tcx.hir_map.list_of_items();

for item_def_id in list_of_hir_items {
 tcx.type_check_item(item_def_id);
 }
}

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

230 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#an-example-execution-trace-of-some-queries
https://rustc-dev-guide.rust-lang.org/print.html#an-example-execution-trace-of-some-queries

We also see that often a query result can be read from the cache: type_of(bar) was

computed for type_check_item(foo) so when type_check_item(bar) needs it, it is

already in the cache.

Query results stay cached in the query context as long as the context lives. So if the

compiler driver invoked another query later on, the above graph would still exist and

already executed queries would not have to be re-done.

Cycles

Earlier we stated that query invocations form a DAG. However, it would be easy to form a

cyclic graph by, for example, having a query provider like the following:

Since query providers are regular functions, this would behave much as expected:

Evaluation would get stuck in an infinite recursion. A query like this would not be very

useful either. However, sometimes certain kinds of invalid user input can result in queries

being called in a cyclic way. The query engine includes a check for cyclic invocations and,

because cycles are an irrecoverable error, will abort execution with a "cycle error"

messages that tries to be human readable.

At some point the compiler had a notion of "cycle recovery", that is, one could "try" to

execute a query and if it ended up causing a cycle, proceed in some other fashion.

However, this was later removed because it is not entirely clear what the theoretical

consequences of this are, especially regarding incremental compilation.

 (2) (1)
 list_of_all_hir_items <----------------------------- type_check_crate()
 |
 (5) (4) (3) |
 Hir(foo) <--- type_of(foo) <--- type_check_item(foo) <-------+
 | |
 +-----------------+ |
 | |
 (7) v (6) (8) |
 Hir(bar) <--- type_of(bar) <--- type_check_item(bar) <-------+

// (x) denotes invocation order

fn cyclic_query_provider(tcx, key) -> u32 {
// Invoke the same query with the same key again

 tcx.cyclic_query(key)
}

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

231 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#cycles
https://rustc-dev-guide.rust-lang.org/print.html#cycles

"Steal" Queries

Some queries have their result wrapped in a Steal<T> struct. These queries behave

exactly the same as regular with one exception: Their result is expected to be "stolen" out

of the cache at some point, meaning some other part of the program is taking ownership

of it and the result cannot be accessed anymore.

This stealing mechanism exists purely as a performance optimization because some

result values are too costly to clone (e.g. the MIR of a function). It seems like result

stealing would violate the condition that query results must be immutable (after all we

are moving the result value out of the cache) but it is OK as long as the mutation is not

observable. This is achieved by two things:

• Before a result is stolen, we make sure to eagerly run all queries that might ever

need to read that result. This has to be done manually by calling those queries.

• Whenever a query tries to access a stolen result, we make an ICE (Internal Compiler

Error) so that such a condition cannot go unnoticed.

This is not an ideal setup because of the manual intervention needed, so it should be

used sparingly and only when it is well known which queries might access a given result.

In practice, however, stealing has not turned out to be much of a maintenance burden.

To summarize: "Steal queries" break some of the rules in a controlled way. There are

checks in place that make sure that nothing can go silently wrong.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

232 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#steal-queries
https://rustc-dev-guide.rust-lang.org/print.html#steal-queries

Incremental compilation

• The basic algorithm

◦ The try-mark-green algorithm

◦ The query DAG

• Improvements to the basic algorithm

• Resources

• Footnotes

The incremental compilation scheme is, in essence, a surprisingly simple extension to the

overall query system. We'll start by describing a slightly simplified variant of the real thing

– the "basic algorithm" – and then describe some possible improvements.

The basic algorithm

The basic algorithm is called the red-green algorithm1. The high-level idea is that, after

each run of the compiler, we will save the results of all the queries that we do, as well as

the query DAG. The query DAG is a DAG that indexes which queries executed which

other queries. So, for example, there would be an edge from a query Q1 to another query

Q2 if computing Q1 required computing Q2 (note that because queries cannot depend on

themselves, this results in a DAG and not a general graph).

On the next run of the compiler, then, we can sometimes reuse these query results to

avoid re-executing a query. We do this by assigning every query a color:

• If a query is colored red, that means that its result during this compilation has

changed from the previous compilation.

• If a query is colored green, that means that its result is the same as the previous

compilation.

There are two key insights here:

• First, if all the inputs to query Q are colored green, then the query Q must result in

the same value as last time and hence need not be re-executed (or else the compiler

is not deterministic).

• Second, even if some inputs to a query changes, it may be that it still produces the

same result as the previous compilation. In particular, the query may only use part

of its input.

◦ Therefore, after executing a query, we always check whether it produced the

same result as the previous time. If it did, we can still mark the query as

green, and hence avoid re-executing dependent queries.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

233 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#incremental-compilation
https://rustc-dev-guide.rust-lang.org/print.html#incremental-compilation
https://rustc-dev-guide.rust-lang.org/queries/incremental-compilation.html#the-basic-algorithm
https://rustc-dev-guide.rust-lang.org/queries/incremental-compilation.html#the-basic-algorithm
https://rustc-dev-guide.rust-lang.org/queries/incremental-compilation.html#the-try-mark-green-algorithm
https://rustc-dev-guide.rust-lang.org/queries/incremental-compilation.html#the-try-mark-green-algorithm
https://rustc-dev-guide.rust-lang.org/queries/incremental-compilation.html#the-query-dag
https://rustc-dev-guide.rust-lang.org/queries/incremental-compilation.html#the-query-dag
https://rustc-dev-guide.rust-lang.org/queries/incremental-compilation.html#improvements-to-the-basic-algorithm
https://rustc-dev-guide.rust-lang.org/queries/incremental-compilation.html#improvements-to-the-basic-algorithm
https://rustc-dev-guide.rust-lang.org/queries/incremental-compilation.html#resources
https://rustc-dev-guide.rust-lang.org/queries/incremental-compilation.html#resources
https://rustc-dev-guide.rust-lang.org/queries/incremental-compilation.html#footnotes
https://rustc-dev-guide.rust-lang.org/queries/incremental-compilation.html#footnotes
https://rustc-dev-guide.rust-lang.org/print.html#the-basic-algorithm
https://rustc-dev-guide.rust-lang.org/print.html#the-basic-algorithm
https://rustc-dev-guide.rust-lang.org/print.html#salsa
https://rustc-dev-guide.rust-lang.org/print.html#salsa
https://en.wikipedia.org/wiki/Directed_acyclic_graph
https://en.wikipedia.org/wiki/Directed_acyclic_graph
https://en.wikipedia.org/wiki/Glossary_of_graph_theory_terms#edge
https://en.wikipedia.org/wiki/Glossary_of_graph_theory_terms#edge

The try-mark-green algorithm

At the core of incremental compilation is an algorithm called "try-mark-green". It has the

job of determining the color of a given query Q (which must not have yet been executed).

In cases where Q has red inputs, determining Q's color may involve re-executing Q so that

we can compare its output, but if all of Q's inputs are green, then we can conclude that Q

must be green without re-executing it or inspecting its value at all. In the compiler, this

allows us to avoid deserializing the result from disk when we don't need it, and in fact

enables us to sometimes skip serializing the result as well (see the refinements section

below).

Try-mark-green works as follows:

• First check if the query Q was executed during the previous compilation.

◦ If not, we can just re-execute the query as normal, and assign it the color of

red.

• If yes, then load the 'dependent queries' of Q.

• If there is a saved result, then we load the reads(Q) vector from the query DAG.

The "reads" is the set of queries that Q executed during its execution.

◦ For each query R in reads(Q) , we recursively demand the color of R using try-

mark-green.

▪ Note: it is important that we visit each node in reads(Q) in same order

as they occurred in the original compilation. See the section on the query

DAG below.

▪ If any of the nodes in reads(Q) wind up colored red, then Q is dirty.

▪ We re-execute Q and compare the hash of its result to the hash of

the result from the previous compilation.

▪ If the hash has not changed, we can mark Q as green and return.

▪ Otherwise, all of the nodes in reads(Q) must be green. In that case, we

can color Q as green and return.

The query DAG

The query DAG code is stored in compiler/rustc_middle/src/dep_graph . Construction

of the DAG is done by instrumenting the query execution.

One key point is that the query DAG also tracks ordering; that is, for each query Q, we not

only track the queries that Q reads, we track the order in which they were read. This

allows try-mark-green to walk those queries back in the same order. This is important

because once a subquery comes back as red, we can no longer be sure that Q will

continue along the same path as before. That is, imagine a query like this:

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

234 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#the-try-mark-green-algorithm
https://rustc-dev-guide.rust-lang.org/print.html#the-try-mark-green-algorithm
https://rustc-dev-guide.rust-lang.org/queries/incremental-compilation.html#dag
https://rustc-dev-guide.rust-lang.org/queries/incremental-compilation.html#dag
https://rustc-dev-guide.rust-lang.org/queries/incremental-compilation.html#dag
https://rustc-dev-guide.rust-lang.org/queries/incremental-compilation.html#dag
https://rustc-dev-guide.rust-lang.org/print.html#the-query-dag
https://rustc-dev-guide.rust-lang.org/print.html#the-query-dag
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/dep_graph/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/dep_graph/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/dep_graph/index.html

Now imagine that in the first compilation, main_query starts by executing subquery1 ,

and this returns true. In that case, the next query main_query executes will be

subquery2 , and subquery3 will not be executed at all.

But now imagine that in the next compilation, the input has changed such that

subquery1 returns false. In this case, subquery2 would never execute. If try-mark-green

were to visit reads(main_query) out of order, however, it might visit subquery2 before

subquery1 , and hence execute it. This can lead to ICEs and other problems in the

compiler.

Improvements to the basic algorithm

In the description of the basic algorithm, we said that at the end of compilation we would

save the results of all the queries that were performed. In practice, this can be quite

wasteful – many of those results are very cheap to recompute, and serializing and

deserializing them is not a particular win. In practice, what we would do is to save the

hashes of all the subqueries that we performed. Then, in select cases, we also save the

results.

This is why the incremental algorithm separates computing the color of a node, which

often does not require its value, from computing the result of a node. Computing the

result is done via a simple algorithm like so:

• Check if a saved result for Q is available. If so, compute the color of Q. If Q is green,

deserialize and return the saved result.

• Otherwise, execute Q.

◦ We can then compare the hash of the result and color Q as green if it did not

change.

Resources

The initial design document can be found here, which expands on the memoization

details, provides more high-level overview and motivation for this system.

fn main_query(tcx) {
if tcx.subquery1() {

 tcx.subquery2()
 } else {
 tcx.subquery3()
 }
}

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

235 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#improvements-to-the-basic-algorithm
https://rustc-dev-guide.rust-lang.org/print.html#improvements-to-the-basic-algorithm
https://rustc-dev-guide.rust-lang.org/print.html#resources
https://rustc-dev-guide.rust-lang.org/print.html#resources
https://github.com/nikomatsakis/rustc-on-demand-incremental-design-doc/blob/master/0000-rustc-on-demand-and-incremental.md
https://github.com/nikomatsakis/rustc-on-demand-incremental-design-doc/blob/master/0000-rustc-on-demand-and-incremental.md

Footnotes

1 I have long wanted to rename it to the Salsa algorithm, but it never caught on. -@nikomatsakis

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

236 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#footnotes
https://rustc-dev-guide.rust-lang.org/print.html#footnotes

Incremental Compilation In Detail

• A Basic Algorithm For Incremental Query Evaluation

• The Problem With The Basic Algorithm: False Positives

• Improving Accuracy: The red-green Algorithm

• The Real World: How Persistence Makes Everything Complicated

◦ A Question Of Stability: Bridging The Gap Between Compilation Sessions

◦ Checking Query Results For Changes: HashStable And Fingerprints

◦ A Tale Of Two DepGraphs: The Old And The New

◦ Didn't You Forget Something?: Cache Promotion

• Incremental Compilation and the Compiler Backend

◦ Query Modifiers

◦ The Projection Query Pattern

• Shortcomings of the Current System

◦ Incrementality of on-disk data structures

◦ Unnecessary data dependencies

The incremental compilation scheme is, in essence, a surprisingly simple extension to the

overall query system. It relies on the fact that:

1. queries are pure functions -- given the same inputs, a query will always yield the

same result, and

2. the query model structures compilation in an acyclic graph that makes

dependencies between individual computations explicit.

This chapter will explain how we can use these properties for making things incremental

and then goes on to discuss version implementation issues.

A Basic Algorithm For Incremental Query Evaluation

As explained in the query evaluation model primer, query invocations form a directed-

acyclic graph. Here's the example from the previous chapter again:

Since every access from one query to another has to go through the query context, we

 list_of_all_hir_items <----------------------------- type_check_crate()
 |
 |
 Hir(foo) <--- type_of(foo) <--- type_check_item(foo) <-------+
 | |
 +-----------------+ |
 | |
 v |
 Hir(bar) <--- type_of(bar) <--- type_check_item(bar) <-------+

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

237 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#incremental-compilation-in-detail
https://rustc-dev-guide.rust-lang.org/print.html#incremental-compilation-in-detail
https://rustc-dev-guide.rust-lang.org/queries/incremental-compilation-in-detail.html#a-basic-algorithm-for-incremental-query-evaluation
https://rustc-dev-guide.rust-lang.org/queries/incremental-compilation-in-detail.html#a-basic-algorithm-for-incremental-query-evaluation
https://rustc-dev-guide.rust-lang.org/queries/incremental-compilation-in-detail.html#the-problem-with-the-basic-algorithm-false-positives
https://rustc-dev-guide.rust-lang.org/queries/incremental-compilation-in-detail.html#the-problem-with-the-basic-algorithm-false-positives
https://rustc-dev-guide.rust-lang.org/queries/incremental-compilation-in-detail.html#improving-accuracy-the-red-green-algorithm
https://rustc-dev-guide.rust-lang.org/queries/incremental-compilation-in-detail.html#improving-accuracy-the-red-green-algorithm
https://rustc-dev-guide.rust-lang.org/queries/incremental-compilation-in-detail.html#the-real-world-how-persistence-makes-everything-complicated
https://rustc-dev-guide.rust-lang.org/queries/incremental-compilation-in-detail.html#the-real-world-how-persistence-makes-everything-complicated
https://rustc-dev-guide.rust-lang.org/queries/incremental-compilation-in-detail.html#a-question-of-stability-bridging-the-gap-between-compilation-sessions
https://rustc-dev-guide.rust-lang.org/queries/incremental-compilation-in-detail.html#a-question-of-stability-bridging-the-gap-between-compilation-sessions
https://rustc-dev-guide.rust-lang.org/queries/incremental-compilation-in-detail.html#checking-query-results-for-changes-hashstable-and-fingerprints
https://rustc-dev-guide.rust-lang.org/queries/incremental-compilation-in-detail.html#checking-query-results-for-changes-hashstable-and-fingerprints
https://rustc-dev-guide.rust-lang.org/queries/incremental-compilation-in-detail.html#a-tale-of-two-depgraphs-the-old-and-the-new
https://rustc-dev-guide.rust-lang.org/queries/incremental-compilation-in-detail.html#a-tale-of-two-depgraphs-the-old-and-the-new
https://rustc-dev-guide.rust-lang.org/queries/incremental-compilation-in-detail.html#didnt-you-forget-something-cache-promotion
https://rustc-dev-guide.rust-lang.org/queries/incremental-compilation-in-detail.html#didnt-you-forget-something-cache-promotion
https://rustc-dev-guide.rust-lang.org/queries/incremental-compilation-in-detail.html#incremental-compilation-and-the-compiler-backend
https://rustc-dev-guide.rust-lang.org/queries/incremental-compilation-in-detail.html#incremental-compilation-and-the-compiler-backend
https://rustc-dev-guide.rust-lang.org/queries/incremental-compilation-in-detail.html#query-modifiers
https://rustc-dev-guide.rust-lang.org/queries/incremental-compilation-in-detail.html#query-modifiers
https://rustc-dev-guide.rust-lang.org/queries/incremental-compilation-in-detail.html#the-projection-query-pattern
https://rustc-dev-guide.rust-lang.org/queries/incremental-compilation-in-detail.html#the-projection-query-pattern
https://rustc-dev-guide.rust-lang.org/queries/incremental-compilation-in-detail.html#shortcomings-of-the-current-system
https://rustc-dev-guide.rust-lang.org/queries/incremental-compilation-in-detail.html#shortcomings-of-the-current-system
https://rustc-dev-guide.rust-lang.org/queries/incremental-compilation-in-detail.html#incrementality-of-on-disk-data-structures
https://rustc-dev-guide.rust-lang.org/queries/incremental-compilation-in-detail.html#incrementality-of-on-disk-data-structures
https://rustc-dev-guide.rust-lang.org/queries/incremental-compilation-in-detail.html#unnecessary-data-dependencies
https://rustc-dev-guide.rust-lang.org/queries/incremental-compilation-in-detail.html#unnecessary-data-dependencies
https://rustc-dev-guide.rust-lang.org/print.html#a-basic-algorithm-for-incremental-query-evaluation
https://rustc-dev-guide.rust-lang.org/print.html#a-basic-algorithm-for-incremental-query-evaluation
https://rustc-dev-guide.rust-lang.org/queries/query-evaluation-model-in-detail.html
https://rustc-dev-guide.rust-lang.org/queries/query-evaluation-model-in-detail.html

can record these accesses and thus actually build this dependency graph in memory.

With dependency tracking enabled, when compilation is done, we know which queries

were invoked (the nodes of the graph) and for each invocation, which other queries or

input has gone into computing the query's result (the edges of the graph).

Now suppose we change the source code of our program so that HIR of bar looks

different than before. Our goal is to only recompute those queries that are actually

affected by the change while re-using the cached results of all the other queries. Given

the dependency graph we can do exactly that. For a given query invocation, the graph

tells us exactly what data has gone into computing its results, we just have to follow the

edges until we reach something that has changed. If we don't encounter anything that

has changed, we know that the query still would evaluate to the same result we already

have in our cache.

Taking the type_of(foo) invocation from above as an example, we can check whether

the cached result is still valid by following the edges to its inputs. The only edge leads to

Hir(foo) , an input that has not been affected by the change. So we know that the

cached result for type_of(foo) is still valid.

The story is a bit different for type_check_item(foo) : We again walk the edges and

already know that type_of(foo) is fine. Then we get to type_of(bar) which we have

not checked yet, so we walk the edges of type_of(bar) and encounter Hir(bar) which

has changed. Consequently the result of type_of(bar) might yield a different result than

what we have in the cache and, transitively, the result of type_check_item(foo) might

have changed too. We thus re-run type_check_item(foo) , which in turn will re-run

type_of(bar) , which will yield an up-to-date result because it reads the up-to-date

version of Hir(bar) . Also, we re-run type_check_item(bar) because result of

type_of(bar) might have changed.

The Problem With The Basic Algorithm: False Positives

If you read the previous paragraph carefully you'll notice that it says that type_of(bar)

might have changed because one of its inputs has changed. There's also the possibility

that it might still yield exactly the same result even though its input has changed. Consider

an example with a simple query that just computes the sign of an integer:

Let's say that IntValue(x) starts out as 1000 and then is set to 2000 . Even though

IntValue(x) is different in the two cases, sign_of(x) yields the result + in both cases.

If we follow the basic algorithm, however, some_other_query(x) would have to

 IntValue(x) <---- sign_of(x) <--- some_other_query(x)

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

238 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#the-problem-with-the-basic-algorithm-false-positives
https://rustc-dev-guide.rust-lang.org/print.html#the-problem-with-the-basic-algorithm-false-positives

(unnecessarily) be re-evaluated because it transitively depends on a changed input.

Change detection yields a "false positive" in this case because it has to conservatively

assume that some_other_query(x) might be affected by that changed input.

Unfortunately it turns out that the actual queries in the compiler are full of examples like

this and small changes to the input often potentially affect very large parts of the output

binaries. As a consequence, we had to make the change detection system smarter and

more accurate.

Improving Accuracy: The red-green Algorithm

The "false positives" problem can be solved by interleaving change detection and query

re-evaluation. Instead of walking the graph all the way to the inputs when trying to find

out if some cached result is still valid, we can check if a result has actually changed after

we were forced to re-evaluate it.

We call this algorithm the red-green algorithm because nodes in the dependency graph

are assigned the color green if we were able to prove that its cached result is still valid

and the color red if the result has turned out to be different after re-evaluating it.

The meat of red-green change tracking is implemented in the try-mark-green algorithm,

that, you've guessed it, tries to mark a given node as green:

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

239 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#improving-accuracy-the-red-green-algorithm
https://rustc-dev-guide.rust-lang.org/print.html#improving-accuracy-the-red-green-algorithm

fn try_mark_green(tcx, current_node) -> bool {

// Fetch the inputs to `current_node`, i.e. get the nodes that the direct
// edges from `node` lead to.
let dependencies = tcx.dep_graph.get_dependencies_of(current_node);

// Now check all the inputs for changes
for dependency in dependencies {

match tcx.dep_graph.get_node_color(dependency) {
 Green => {

// This input has already been checked before and it has not
// changed; so we can go on to check the next one

 }
 Red => {

// We found an input that has changed. We cannot mark
// `current_node` as green without re-running the
// corresponding query.
return false

 }
 Unknown => {

// This is the first time we look at this node. Let's try
// to mark it green by calling try_mark_green() recursively.
if try_mark_green(tcx, dependency) {

// We successfully marked the input as green, on to the
// next.

 } else {
// We could *not* mark the input as green. This means we
// don't know if its value has changed. In order to find
// out, we re-run the corresponding query now!

 tcx.run_query_for(dependency);

// Fetch and check the node color again. Running the
query

// has forced it to either red (if it yielded a different
// result than we have in the cache) or green (if it
// yielded the same result).
match tcx.dep_graph.get_node_color(dependency) {

 Red => {
// The input turned out to be red, so we cannot
// mark `current_node` as green.
return false

 }
 Green => {

// Re-running the query paid off! The result is
the

// same as before, so this particular input does
// not invalidate `current_node`.

 }
 Unknown => {

// There is no way a node has no color after
// re-running the query.
panic!("unreachable")

 }
 }
 }

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

240 of 660 8/30/23, 09:47

NOTE: The actual implementation can be found in compiler/rustc_query_system

/src/dep_graph/graph.rs

By using red-green marking we can avoid the devastating cumulative effect of having

false positives during change detection. Whenever a query is executed in incremental

mode, we first check if its already green. If not, we run try_mark_green() on it. If it still

isn't green after that, then we actually invoke the query provider to re-compute the result.

The Real World: How Persistence Makes Everything

Complicated

The sections above described the underlying algorithm for incremental compilation but

because the compiler process exits after being finished and takes the query context with

its result cache with it into oblivion, we have to persist data to disk, so the next

compilation session can make use of it. This comes with a whole new set of

implementation challenges:

• The query result cache is stored to disk, so they are not readily available for change

comparison.

• A subsequent compilation session will start off with new version of the code that

has arbitrary changes applied to it. All kinds of IDs and indices that are generated

from a global, sequential counter (e.g. NodeId , DefId , etc) might have shifted,

making the persisted results on disk not immediately usable anymore because the

same numeric IDs and indices might refer to completely new things in the new

compilation session.

• Persisting things to disk comes at a cost, so not every tiny piece of information

should be actually cached in between compilation sessions. Fixed-sized, plain-old-

data is preferred to complex things that need to run through an expensive

(de-)serialization step.

 }
 }
 }

// If we have gotten through the entire loop, it means that all inputs
// have turned out to be green. If all inputs are unchanged, it means
// that the query result corresponding to `current_node` cannot have
// changed either.

 tcx.dep_graph.mark_green(current_node);

true
}

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

241 of 660 8/30/23, 09:47

https://doc.rust-lang.org/nightly/nightly-rustc/src/rustc_query_system/dep_graph/graph.rs.html
https://doc.rust-lang.org/nightly/nightly-rustc/src/rustc_query_system/dep_graph/graph.rs.html
https://doc.rust-lang.org/nightly/nightly-rustc/src/rustc_query_system/dep_graph/graph.rs.html
https://doc.rust-lang.org/nightly/nightly-rustc/src/rustc_query_system/dep_graph/graph.rs.html
https://doc.rust-lang.org/nightly/nightly-rustc/src/rustc_query_system/dep_graph/graph.rs.html
https://doc.rust-lang.org/nightly/nightly-rustc/src/rustc_query_system/dep_graph/graph.rs.html
https://rustc-dev-guide.rust-lang.org/print.html#the-real-world-how-persistence-makes-everything-complicated
https://rustc-dev-guide.rust-lang.org/print.html#the-real-world-how-persistence-makes-everything-complicated
https://rustc-dev-guide.rust-lang.org/print.html#the-real-world-how-persistence-makes-everything-complicated
https://rustc-dev-guide.rust-lang.org/print.html#the-real-world-how-persistence-makes-everything-complicated

The following sections describe how the compiler solves these issues.

A Question Of Stability: Bridging The Gap Between Compilation

Sessions

As noted before, various IDs (like DefId) are generated by the compiler in a way that

depends on the contents of the source code being compiled. ID assignment is usually

deterministic, that is, if the exact same code is compiled twice, the same things will end

up with the same IDs. However, if something changes, e.g. a function is added in the

middle of a file, there is no guarantee that anything will have the same ID as it had

before.

As a consequence we cannot represent the data in our on-disk cache the same way it is

represented in memory. For example, if we just stored a piece of type information like

TyKind::FnDef(DefId, &'tcx Substs<'tcx>) (as we do in memory) and then the

contained DefId points to a different function in a new compilation session we'd be in

trouble.

The solution to this problem is to find "stable" forms for IDs which remain valid in

between compilation sessions. For the most important case, DefId s, these are the so-

called DefPath s. Each DefId has a corresponding DefPath but in place of a numeric ID,

a DefPath is based on the path to the identified item, e.g. std::collections::HashMap .

The advantage of an ID like this is that it is not affected by unrelated changes. For

example, one can add a new function to std::collections but

std::collections::HashMap would still be std::collections::HashMap . A DefPath is

"stable" across changes made to the source code while a DefId isn't.

There is also the DefPathHash which is just a 128-bit hash value of the DefPath . The two

contain the same information and we mostly use the DefPathHash because it simpler to

handle, being Copy and self-contained.

This principle of stable identifiers is used to make the data in the on-disk cache resilient

to source code changes. Instead of storing a DefId , we store the DefPathHash and when

we deserialize something from the cache, we map the DefPathHash to the corresponding

DefId in the current compilation session (which is just a simple hash table lookup).

The HirId , used for identifying HIR components that don't have their own DefId , is

another such stable ID. It is (conceptually) a pair of a DefPath and a LocalId , where the

LocalId identifies something (e.g. a hir::Expr) locally within its "owner" (e.g. a

hir::Item). If the owner is moved around, the LocalId s within it are still the same.

Checking Query Results For Changes: HashStable And Fingerprints

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

242 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#a-question-of-stability-bridging-the-gap-between-compilation-sessions
https://rustc-dev-guide.rust-lang.org/print.html#a-question-of-stability-bridging-the-gap-between-compilation-sessions
https://rustc-dev-guide.rust-lang.org/print.html#a-question-of-stability-bridging-the-gap-between-compilation-sessions
https://rustc-dev-guide.rust-lang.org/print.html#a-question-of-stability-bridging-the-gap-between-compilation-sessions
https://rustc-dev-guide.rust-lang.org/print.html#checking-query-results-for-changes-hashstable-and-fingerprints
https://rustc-dev-guide.rust-lang.org/print.html#checking-query-results-for-changes-hashstable-and-fingerprints

In order to do red-green-marking we often need to check if the result of a query has

changed compared to the result it had during the previous compilation session. There are

two performance problems with this though:

• We'd like to avoid having to load the previous result from disk just for doing the

comparison. We already computed the new result and will use that. Also loading a

result from disk will "pollute" the interners with data that is unlikely to ever be used.

• We don't want to store each and every result in the on-disk cache. For example, it

would be wasted effort to persist things to disk that are already available in

upstream crates.

The compiler avoids these problems by using so-called Fingerprint s. Each time a new

query result is computed, the query engine will compute a 128 bit hash value of the

result. We call this hash value "the Fingerprint of the query result". The hashing is (and

has to be) done "in a stable way". This means that whenever something is hashed that

might change in between compilation sessions (e.g. a DefId), we instead hash its stable

equivalent (e.g. the corresponding DefPath). That's what the whole HashStable

infrastructure is for. This way Fingerprint s computed in two different compilation

sessions are still comparable.

The next step is to store these fingerprints along with the dependency graph. This is

cheap since fingerprints are just bytes to be copied. It's also cheap to load the entire set

of fingerprints together with the dependency graph.

Now, when red-green-marking reaches the point where it needs to check if a result has

changed, it can just compare the (already loaded) previous fingerprint to the fingerprint

of the new result.

This approach works rather well but it's not without flaws:

• There is a small possibility of hash collisions. That is, two different results could have

the same fingerprint and the system would erroneously assume that the result

hasn't changed, leading to a missed update.

We mitigate this risk by using a high-quality hash function and a 128 bit wide hash

value. Due to these measures the practical risk of a hash collision is negligible.

• Computing fingerprints is quite costly. It is the main reason why incremental

compilation can be slower than non-incremental compilation. We are forced to use

a good and thus expensive hash function, and we have to map things to their stable

equivalents while doing the hashing.

A Tale Of Two DepGraphs: The Old And The New

The initial description of dependency tracking glosses over a few details that quickly

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

243 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#a-tale-of-two-depgraphs-the-old-and-the-new
https://rustc-dev-guide.rust-lang.org/print.html#a-tale-of-two-depgraphs-the-old-and-the-new

become a head scratcher when actually trying to implement things. In particular it's easy

to overlook that we are actually dealing with two dependency graphs: The one we built

during the previous compilation session and the one that we are building for the current

compilation session.

When a compilation session starts, the compiler loads the previous dependency graph

into memory as an immutable piece of data. Then, when a query is invoked, it will first try

to mark the corresponding node in the graph as green. This means really that we are

trying to mark the node in the previous dep-graph as green that corresponds to the query

key in the current session. How do we do this mapping between current query key and

previous DepNode ? The answer is again Fingerprint s: Nodes in the dependency graph

are identified by a fingerprint of the query key. Since fingerprints are stable across

compilation sessions, computing one in the current session allows us to find a node in the

dependency graph from the previous session. If we don't find a node with the given

fingerprint, it means that the query key refers to something that did not yet exist in the

previous session.

So, having found the dep-node in the previous dependency graph, we can look up its

dependencies (i.e. also dep-nodes in the previous graph) and continue with the rest of the

try-mark-green algorithm. The next interesting thing happens when we successfully

marked the node as green. At that point we copy the node and the edges to its

dependencies from the old graph into the new graph. We have to do this because the

new dep-graph cannot acquire the node and edges via the regular dependency tracking.

The tracking system can only record edges while actually running a query -- but running

the query, although we have the result already cached, is exactly what we want to avoid.

Once the compilation session has finished, all the unchanged parts have been copied

over from the old into the new dependency graph, while the changed parts have been

added to the new graph by the tracking system. At this point, the new graph is serialized

out to disk, alongside the query result cache, and can act as the previous dep-graph in a

subsequent compilation session.

Didn't You Forget Something?: Cache Promotion

The system described so far has a somewhat subtle property: If all inputs of a dep-node

are green then the dep-node itself can be marked as green without computing or loading

the corresponding query result. Applying this property transitively often leads to the

situation that some intermediate results are never actually loaded from disk, as in the

following example:

The compiler might need the value of leaf_query(C) in order to generate some output

artifact. If it can mark leaf_query(C) as green, it will load the result from the on-disk

 input(A) <-- intermediate_query(B) <-- leaf_query(C)

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

244 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#didnt-you-forget-something-cache-promotion
https://rustc-dev-guide.rust-lang.org/print.html#didnt-you-forget-something-cache-promotion

cache. The result of intermediate_query(B) is never loaded though. As a consequence,

when the compiler persists the new result cache by writing all in-memory query results to

disk, intermediate_query(B) will not be in memory and thus will be missing from the

new result cache.

If there subsequently is another compilation session that actually needs the result of

intermediate_query(B) it will have to be re-computed even though we had a perfectly

valid result for it in the cache just before.

In order to prevent this from happening, the compiler does something called "cache

promotion": Before emitting the new result cache it will walk all green dep-nodes and

make sure that their query result is loaded into memory. That way the result cache

doesn't unnecessarily shrink again.

Incremental Compilation and the

Compiler Backend

The compiler backend, the part involving LLVM, is using the query system but it is not

implemented in terms of queries itself. As a consequence it does not automatically

partake in dependency tracking. However, the manual integration with the tracking

system is pretty straight-forward. The compiler simply tracks what queries get invoked

when generating the initial LLVM version of each codegen unit, which results in a dep-

node for each of them. In subsequent compilation sessions it then tries to mark the dep-

node for a CGU as green. If it succeeds it knows that the corresponding object and

bitcode files on disk are still valid. If it doesn't succeed, the entire codegen unit has to be

recompiled.

This is the same approach that is used for regular queries. The main differences are:

• that we cannot easily compute a fingerprint for LLVM modules (because they are

opaque C++ objects),

• that the logic for dealing with cached values is rather different from regular queries

because here we have bitcode and object files instead of serialized Rust values in

the common result cache file, and

• the operations around LLVM are so expensive in terms of computation time and

memory consumption that we need to have tight control over what is executed

when and what stays in memory for how long.

The query system could probably be extended with general purpose mechanisms to deal

with all of the above but so far that seemed like more trouble than it would save.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

245 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#incremental-compilation-and-the-compiler-backend
https://rustc-dev-guide.rust-lang.org/print.html#incremental-compilation-and-the-compiler-backend
https://rustc-dev-guide.rust-lang.org/print.html#incremental-compilation-and-the-compiler-backend
https://rustc-dev-guide.rust-lang.org/print.html#incremental-compilation-and-the-compiler-backend

Query Modifiers

The query system allows for applying modifiers to queries. These modifiers affect certain

aspects of how the system treats the query with respect to incremental compilation:

• eval_always - A query with the eval_always attribute is re-executed

unconditionally during incremental compilation. I.e. the system will not even try to

mark the query's dep-node as green. This attribute has two use cases:

◦ eval_always queries can read inputs (from files, global state, etc). They can

also produce side effects like writing to files and changing global state.

◦ Some queries are very likely to be re-evaluated because their result depends

on the entire source code. In this case eval_always can be used as an

optimization because the system can skip recording dependencies in the first

place.

• no_hash - Applying no_hash to a query tells the system to not compute the

fingerprint of the query's result. This has two consequences:

◦ Not computing the fingerprint can save quite a bit of time because

fingerprinting is expensive, especially for large, complex values.

◦ Without the fingerprint, the system has to unconditionally assume that the

result of the query has changed. As a consequence anything depending on a

no_hash query will always be re-executed.

Using no_hash for a query can make sense in two circumstances:

◦ If the result of the query is very likely to change whenever one of its inputs

changes, e.g. a function like |a, b, c| -> (a * b * c) . In such a case

recomputing the query will always yield a red node if one of the inputs is red

so we can spare us the trouble and default to red immediately. A counter

example would be a function like |a| -> (a == 42) where the result does not

change for most changes of a .

◦ If the result of a query is a big, monolithic collection (e.g. index_hir) and there

are "projection queries" reading from that collection (e.g. hir_owner). In such

a case the big collection will likely fulfill the condition above (any changed input

means recomputing the whole collection) and the results of the projection

queries will be hashed anyway. If we also hashed the collection query it would

mean that we effectively hash the same data twice: once when hashing the

collection and another time when hashing all the projection query results.

no_hash allows us to avoid that redundancy and the projection queries act as

a "firewall", shielding their dependents from the unconditionally red no_hash

node.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

246 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#query-modifiers
https://rustc-dev-guide.rust-lang.org/print.html#query-modifiers
https://rustc-dev-guide.rust-lang.org/query.html#adding-a-new-kind-of-query
https://rustc-dev-guide.rust-lang.org/query.html#adding-a-new-kind-of-query

• cache_on_disk_if - This attribute is what determines which query results are

persisted in the incremental compilation query result cache. The attribute takes an

expression that allows per query invocation decisions. For example, it makes no

sense to store values from upstream crates in the cache because they are already

available in the upstream crate's metadata.

• anon - This attribute makes the system use "anonymous" dep-nodes for the given

query. An anonymous dep-node is not identified by the corresponding query key,

instead its ID is computed from the IDs of its dependencies. This allows the red-

green system to do its change detection even if there is no query key available for a

given dep-node -- something which is needed for handling trait selection because it

is not based on queries.

The Projection Query Pattern

It's interesting to note that eval_always and no_hash can be used together in the so-

called "projection query" pattern. It is often the case that there is one query that depends

on the entirety of the compiler's input (e.g. the indexed HIR) and another query that

projects individual values out of this monolithic value (e.g. a HIR item with a certain

DefId). These projection queries allow for building change propagation "firewalls"

because even if the result of the monolithic query changes (which it is very likely to do)

the small projections can still mostly be marked as green.

Let's assume that the result monolithic_query changes so that also the result of

projection(x) has changed, i.e. both their dep-nodes are being marked as red. As a

consequence foo(a) needs to be re-executed; but bar(b) and baz(c) can be marked

as green. However, if foo , bar , and baz would have directly depended on

monolithic_query then all of them would have had to be re-evaluated.

This pattern works even without eval_always and no_hash but the two modifiers can be

used to avoid unnecessary overhead. If the monolithic query is likely to change at any

 +------------+
 | | +---------------+ +--------+
 | | <---------| projection(x) | <---------| foo(a) |
 | | +---------------+ +--------+
 | |
 | monolithic | +---------------+ +--------+
 | query | <---------| projection(y) | <---------| bar(b) |
 | | +---------------+ +--------+
 | |
 | | +---------------+ +--------+
 | | <---------| projection(z) | <---------| baz(c) |
 | | +---------------+ +--------+
 +------------+

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

247 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#the-projection-query-pattern
https://rustc-dev-guide.rust-lang.org/print.html#the-projection-query-pattern

minor modification of the compiler's input it makes sense to mark it as eval_always ,

thus getting rid of its dependency tracking cost. And it always makes sense to mark the

monolithic query as no_hash because we have the projections to take care of keeping

things green as much as possible.

Shortcomings of the Current System

There are many things that still can be improved.

Incrementality of on-disk data structures

The current system is not able to update on-disk caches and the dependency graph in-

place. Instead it has to rewrite each file entirely in each compilation session. The

overhead of doing so is a few percent of total compilation time.

Unnecessary data dependencies

Data structures used as query results could be factored in a way that removes edges

from the dependency graph. Especially "span" information is very volatile, so including it

in query result will increase the chance that that result won't be reusable. See

https://github.com/rust-lang/rust/issues/47389 for more information.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

248 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#shortcomings-of-the-current-system
https://rustc-dev-guide.rust-lang.org/print.html#shortcomings-of-the-current-system
https://rustc-dev-guide.rust-lang.org/print.html#incrementality-of-on-disk-data-structures
https://rustc-dev-guide.rust-lang.org/print.html#incrementality-of-on-disk-data-structures
https://rustc-dev-guide.rust-lang.org/print.html#unnecessary-data-dependencies
https://rustc-dev-guide.rust-lang.org/print.html#unnecessary-data-dependencies
https://github.com/rust-lang/rust/issues/47389
https://github.com/rust-lang/rust/issues/47389

Debugging and Testing Dependencies

Testing the dependency graph

There are various ways to write tests against the dependency graph. The simplest

mechanisms are the #[rustc_if_this_changed] and #[rustc_then_this_would_need]

annotations. These are used in ui tests to test whether the expected set of paths exist in

the dependency graph. As an example, see tests/ui/dep-graph/dep-graph-caller-

callee.rs .

The idea is that you can annotate a test like:

This will check whether there is a path in the dependency graph from Hir(foo) to

TypeckTables(bar) . An error is reported for each #[rustc_then_this_would_need]

annotation that indicates whether a path exists. //~ ERROR annotations can then be

used to test if a path is found (as demonstrated above).

Debugging the dependency graph

Dumping the graph

The compiler is also capable of dumping the dependency graph for your debugging

pleasure. To do so, pass the -Z dump-dep-graph flag. The graph will be dumped to

dep_graph.{txt,dot} in the current directory. You can override the filename with the

RUST_DEP_GRAPH environment variable.

Frequently, though, the full dep graph is quite overwhelming and not particularly helpful.

Therefore, the compiler also allows you to filter the graph. You can filter in three ways:

1. All edges originating in a particular set of nodes (usually a single node).

2. All edges reaching a particular set of nodes.

#[rustc_if_this_changed]
fn foo() { }

#[rustc_then_this_would_need(TypeckTables)] //~ ERROR OK
fn bar() { foo(); }

#[rustc_then_this_would_need(TypeckTables)] //~ ERROR no path
fn baz() { }

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

249 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#debugging-and-testing-dependencies
https://rustc-dev-guide.rust-lang.org/print.html#debugging-and-testing-dependencies
https://rustc-dev-guide.rust-lang.org/print.html#testing-the-dependency-graph
https://rustc-dev-guide.rust-lang.org/print.html#testing-the-dependency-graph
https://rustc-dev-guide.rust-lang.org/print.html#debugging-the-dependency-graph
https://rustc-dev-guide.rust-lang.org/print.html#debugging-the-dependency-graph
https://rustc-dev-guide.rust-lang.org/print.html#dumping-the-graph
https://rustc-dev-guide.rust-lang.org/print.html#dumping-the-graph

3. All edges that lie between given start and end nodes.

To filter, use the RUST_DEP_GRAPH_FILTER environment variable, which should look like

one of the following:

source_filter and target_filter are a & -separated list of strings. A node is

considered to match a filter if all of those strings appear in its label. So, for example:

would select the predecessors of all TypeckTables nodes. Usually though you want the

TypeckTables node for some particular fn, so you might write:

This will select only the predecessors of TypeckTables nodes for functions with bar in

their name.

Perhaps you are finding that when you change foo you need to re-type-check bar , but

you don't think you should have to. In that case, you might do:

This will dump out all the nodes that lead from Hir(foo) to TypeckTables(bar) , from

which you can (hopefully) see the source of the erroneous edge.

Tracking down incorrect edges

Sometimes, after you dump the dependency graph, you will find some path that should

not exist, but you will not be quite sure how it came to be. When the compiler is built

with debug assertions, it can help you track that down. Simply set the

RUST_FORBID_DEP_GRAPH_EDGE environment variable to a filter. Every edge created in the

dep-graph will be tested against that filter – if it matches, a bug! is reported, so you can

easily see the backtrace (RUST_BACKTRACE=1).

The syntax for these filters is the same as described in the previous section. However,

note that this filter is applied to every edge and doesn't handle longer paths in the graph,

unlike the previous section.

source_filter // nodes originating from source_filter
-> target_filter // nodes that can reach target_filter
source_filter -> target_filter // nodes in between source_filter and
target_filter

RUST_DEP_GRAPH_FILTER='-> TypeckTables'

RUST_DEP_GRAPH_FILTER='-> TypeckTables & bar'

RUST_DEP_GRAPH_FILTER='Hir & foo -> TypeckTables & bar'

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

250 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#tracking-down-incorrect-edges
https://rustc-dev-guide.rust-lang.org/print.html#tracking-down-incorrect-edges

Example:

You find that there is a path from the Hir of foo to the type check of bar and you don't

think there should be. You dump the dep-graph as described in the previous section and

open dep-graph.txt to see something like:

That first edge looks suspicious to you. So you set RUST_FORBID_DEP_GRAPH_EDGE to

Hir&foo -> Collect&bar , re-run, and then observe the backtrace. Voila, bug fixed!

Hir(foo) -> Collect(bar)
Collect(bar) -> TypeckTables(bar)

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

251 of 660 8/30/23, 09:47

How Salsa works

• What is Salsa?

• How does it work?

• Key Salsa concepts

◦ Query

◦ Database

◦ Query Groups

This chapter is based on the explanation given by Niko Matsakis in this video about Salsa.

To find out more you may want to watch Salsa In More Depth, also by Niko Matsakis.

As of November 2022, although Salsa is inspired by (among other things) rustc's

query system, it is not used directly in rustc. It is used in chalk and extensively in

rust-analyzer , but there are no medium or long-term concrete plans to integrate

it into the compiler.

What is Salsa?

Salsa is a library for incremental recomputation. This means it allows reusing

computations that were already done in the past to increase the efficiency of future

computations.

The objectives of Salsa are:

• Provide that functionality in an automatic way, so reusing old computations is done

automatically by the library

• Doing so in a "sound", or "correct", way, therefore leading to the same results as if it

had been done from scratch

Salsa's actual model is much richer, allowing many kinds of inputs and many different

outputs. For example, integrating Salsa with an IDE could mean that the inputs could be

the manifest (Cargo.toml), entire source files (foo.rs), snippets and so on; the outputs

of such an integration could range from a binary executable, to lints, types (for example,

if a user selects a certain variable and wishes to see its type), completions, etc.

How does it work?

The first thing that Salsa has to do is identify the "base inputs" that are not something

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

252 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#how-salsa-works
https://rustc-dev-guide.rust-lang.org/print.html#how-salsa-works
https://rustc-dev-guide.rust-lang.org/salsa.html#what-is-salsa
https://rustc-dev-guide.rust-lang.org/salsa.html#what-is-salsa
https://rustc-dev-guide.rust-lang.org/salsa.html#how-does-it-work
https://rustc-dev-guide.rust-lang.org/salsa.html#how-does-it-work
https://rustc-dev-guide.rust-lang.org/salsa.html#key-salsa-concepts
https://rustc-dev-guide.rust-lang.org/salsa.html#key-salsa-concepts
https://rustc-dev-guide.rust-lang.org/salsa.html#query
https://rustc-dev-guide.rust-lang.org/salsa.html#query
https://rustc-dev-guide.rust-lang.org/salsa.html#database
https://rustc-dev-guide.rust-lang.org/salsa.html#database
https://rustc-dev-guide.rust-lang.org/salsa.html#query-groups
https://rustc-dev-guide.rust-lang.org/salsa.html#query-groups
https://www.youtube.com/watch?v=_muY4HjSqVw
https://www.youtube.com/watch?v=_muY4HjSqVw
https://github.com/salsa-rs/salsa
https://github.com/salsa-rs/salsa
https://www.youtube.com/watch?v=i_IhACacPRY
https://www.youtube.com/watch?v=i_IhACacPRY
https://rustc-dev-guide.rust-lang.org/print.html#what-is-salsa
https://rustc-dev-guide.rust-lang.org/print.html#what-is-salsa
https://rustc-dev-guide.rust-lang.org/print.html#how-does-it-work
https://rustc-dev-guide.rust-lang.org/print.html#how-does-it-work

computed but given as input.

Then Salsa has to also identify intermediate, "derived" values, which are something that

the library produces, but, for each derived value there's a "pure" function that computes

the derived value.

For example, there might be a function ast(x: Path) -> AST . The produced AST isn't a

final value, it's an intermediate value that the library would use for the computation.

This means that when you try to compute with the library, Salsa is going to compute

various derived values, and eventually read the input and produce the result for the

asked computation.

In the course of computing, Salsa tracks which inputs were accessed and which values are

derived. This information is used to determine what's going to happen when the inputs

change: are the derived values still valid?

This doesn't necessarily mean that each computation downstream from the input is going

to be checked, which could be costly. Salsa only needs to check each downstream

computation until it finds one that isn't changed. At that point, it won't check other

derived computations since they wouldn't need to change.

It's helpful to think about this as a graph with nodes. Each derived value has a

dependency on other values, which could themselves be either base or derived. Base

values don't have a dependency.

When an input I changes, the derived value A could change. The derived value B ,

which does not depend on I , A , or any value derived from A or I , is not subject to

change. Therefore, Salsa can reuse the computation done for B in the past, without

having to compute it again.

The computation could also terminate early. Keeping the same graph as before, say that

input I has changed in some way (and input J hasn't), but when computing A again, it's

found that A hasn't changed from the previous computation. This leads to an "early

termination", because there's no need to check if C needs to change, since both C direct

inputs, A and B , haven't changed.

Key Salsa concepts

I <- A <- C ...
 |
J <- B <--+

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

253 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#key-salsa-concepts
https://rustc-dev-guide.rust-lang.org/print.html#key-salsa-concepts

Query

A query is some value that Salsa can access in the course of computation. Each query can

have a number of keys (from 0 to many), and all queries have a result, akin to functions.

0-key queries are called "input" queries.

Database

The database is basically the context for the entire computation, it's meant to store

Salsa's internal state, all intermediate values for each query, and anything else that the

computation might need. The database must know all the queries that the library is going

to do before it can be built, but they don't need to be specified in the same place.

After the database is formed, it can be accessed with queries that are very similar to

functions. Since each query's result is stored in the database, when a query is invoked N

times, it will return N cloned results, without having to recompute the query (unless the

input has changed in such a way that it warrants recomputation).

For each input query (0-key), a "set" method is generated, allowing the user to change the

output of such query, and trigger previous memoized values to be potentially invalidated.

Query Groups

A query group is a set of queries which have been defined together as a unit. The

database is formed by combining query groups. Query groups are akin to "Salsa

modules".

A set of queries in a query group are just a set of methods in a trait.

To create a query group a trait annotated with a specific attribute

(#[salsa::query_group(...)]) has to be created.

An argument must also be provided to said attribute as it will be used by Salsa to create a

struct to be used later when the database is created.

Example input query group:

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

254 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#query
https://rustc-dev-guide.rust-lang.org/print.html#query
https://rustc-dev-guide.rust-lang.org/print.html#database
https://rustc-dev-guide.rust-lang.org/print.html#database
https://rustc-dev-guide.rust-lang.org/print.html#query-groups
https://rustc-dev-guide.rust-lang.org/print.html#query-groups

To create a derived query group, one must specify which other query groups this one

depends on by specifying them as supertraits, as seen in the following example:

When creating a derived query the implementation of said query must be defined outside

the trait. The definition must take a database parameter as an impl Trait (or dyn

Trait), where Trait is the query group that the definition belongs to, in addition to the

other keys.

/// This attribute will process this tree, produce this tree as output, and
produce
/// a bunch of intermediate stuff that Salsa also uses. One of these things
is a
/// "StorageStruct", whose name we have specified in the attribute.
///
/// This query group is a bunch of **input** queries, that do not rely on any
/// derived input.
#[salsa::query_group(InputsStorage)]
pub trait Inputs {

/// This attribute (`#[salsa::input]`) indicates that this query is a
base

/// input, therefore `set_manifest` is going to be auto-generated
#[salsa::input]
fn manifest(&self) -> Manifest;

#[salsa::input]
fn source_text(&self, name: String) -> String;

}

/// This query group is going to contain queries that depend on derived
values. A
/// query group can access another query group's queries by specifying the
/// dependency as a super trait. Query groups can be stacked as much as
needed using
/// that pattern.
#[salsa::query_group(ParserStorage)]
pub trait Parser: Inputs {

/// This query `ast` is not an input query, it's a derived query this
means

/// that a definition is necessary.
fn ast(&self, name: String) -> String;

}

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

255 of 660 8/30/23, 09:47

Eventually, after all the query groups have been defined, the database can be created by

declaring a struct.

To specify which query groups are going to be part of the database an attribute

(#[salsa::database(...)]) must be added. The argument of said attribute is a list of

identifiers, specifying the query groups storages.

Example usage:

///This is going to be the definition of the `ast` query in the `Parser`
trait.
///So, when the query `ast` is invoked, and it needs to be recomputed, Salsa
is going to call this function
///and it's going to give it the database as `impl Parser`.
///The function doesn't need to be aware of all the queries of all the query
groups
fn ast(db: &impl Parser, name: String) -> String {

//! Note, `impl Parser` is used here but `dyn Parser` works just as well
/* code */
///By passing an `impl Parser`, this is allowed
let source_text = db.input_file(name);
/* do the actual parsing */
return ast;

}

///This attribute specifies which query groups are going to be in the
database
#[salsa::database(InputsStorage, ParserStorage)]
#[derive(Default)] //optional!
struct MyDatabase {

///You also need this one field
 runtime : salsa::Runtime<MyDatabase>,
}
///And this trait has to be implemented
impl salsa::Database for MyDatabase {

fn salsa_runtime(&self) -> &salsa::Runtime<MyDatabase> {
 &self.runtime
 }
}

fn main() {
let db = MyDatabase::default();

 db.set_manifest(...);
 db.set_source_text(...);

loop {
 db.ast(...); //will reuse results
 db.set_source_text(...);
 }
}

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

256 of 660 8/30/23, 09:47

Memory Management in Rustc

Rustc tries to be pretty careful how it manages memory. The compiler allocates a lot of

data structures throughout compilation, and if we are not careful, it will take a lot of time

and space to do so.

One of the main way the compiler manages this is using arenas and interning.

Arenas and Interning

We create a LOT of data structures during compilation. For performance reasons, we

allocate them from a global memory pool; they are each allocated once from a long-lived

arena. This is called arena allocation. This system reduces allocations/deallocations of

memory. It also allows for easy comparison of types for equality: for each interned type

X , we implemented PartialEq for X , so we can just compare pointers. The

CtxtInterners type contains a bunch of maps of interned types and the arena itself.

Example: ty::TyKind

Taking the example of ty::TyKind which represents a type in the compiler (you can read

more here). Each time we want to construct a type, the compiler doesn’t naively allocate

from the buffer. Instead, we check if that type was already constructed. If it was, we just

get the same pointer we had before, otherwise we make a fresh pointer. With this

schema if we want to know if two types are the same, all we need to do is compare the

pointers which is efficient. TyKind should never be constructed on the stack, and it

would be unusable if done so. You always allocate them from this arena and you always

intern them so they are unique.

At the beginning of the compilation we make a buffer and each time we need to allocate a

type we use some of this memory buffer. If we run out of space we get another one. The

lifetime of that buffer is 'tcx . Our types are tied to that lifetime, so when compilation

finishes all the memory related to that buffer is freed and our 'tcx references would be

invalid.

In addition to types, there are a number of other arena-allocated data structures that you

can allocate, and which are found in this module. Here are a few examples:

• GenericArgs , allocated with mk_args – this will intern a slice of types, often used to

specify the values to be substituted for generics args (e.g. HashMap<i32, u32>

would be represented as a slice &'tcx [tcx.types.i32, tcx.types.u32]).

• TraitRef , typically passed by value – a trait reference consists of a reference to a

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

257 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#memory-management-in-rustc
https://rustc-dev-guide.rust-lang.org/print.html#memory-management-in-rustc
https://rustc-dev-guide.rust-lang.org/print.html#arenas-and--interning
https://rustc-dev-guide.rust-lang.org/print.html#arenas-and--interning
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.Ty.html#implementations
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.Ty.html#implementations
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.Ty.html#implementations
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.CtxtInterners.html#structfield.arena
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.CtxtInterners.html#structfield.arena
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.CtxtInterners.html#structfield.arena
https://rustc-dev-guide.rust-lang.org/print.html#example-tytykind
https://rustc-dev-guide.rust-lang.org/print.html#example-tytykind
https://rustc-dev-guide.rust-lang.org/print.html#example-tytykind
https://rustc-dev-guide.rust-lang.org/print.html#example-tytykind
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/sty/type.TyKind.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/sty/type.TyKind.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/sty/type.TyKind.html
https://rustc-dev-guide.rust-lang.org/ty.html
https://rustc-dev-guide.rust-lang.org/ty.html
https://rustc-dev-guide.rust-lang.org/generic_arguments.html#GenericArgs
https://rustc-dev-guide.rust-lang.org/generic_arguments.html#GenericArgs
https://rustc-dev-guide.rust-lang.org/generic_arguments.html#GenericArgs
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.TraitRef.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.TraitRef.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.TraitRef.html

trait along with its various type parameters (including Self), like i32: Display

(here, the def-id would reference the Display trait, and the args would contain

i32). Note that def-id is defined and discussed in depth in the AdtDef and DefId

section.

• Predicate defines something the trait system has to prove (see traits module).

The tcx and how it uses lifetimes

The tcx ("typing context") is the central data structure in the compiler. It is the context

that you use to perform all manner of queries. The struct TyCtxt defines a reference to

this shared context:

As you can see, the TyCtxt type takes a lifetime parameter. When you see a reference

with a lifetime like 'tcx , you know that it refers to arena-allocated data (or data that lives

as long as the arenas, anyhow).

A Note On Lifetimes

The Rust compiler is a fairly large program containing lots of big data structures (e.g. the

AST, HIR, and the type system) and as such, arenas and references are heavily relied upon

to minimize unnecessary memory use. This manifests itself in the way people can plug

into the compiler (i.e. the driver), preferring a "push"-style API (callbacks) instead of the

more Rust-ic "pull" style (think the Iterator trait).

Thread-local storage and interning are used a lot through the compiler to reduce

duplication while also preventing a lot of the ergonomic issues due to many pervasive

lifetimes. The rustc_middle::ty::tls module is used to access these thread-locals,

although you should rarely need to touch it.

tcx: TyCtxt<'tcx>
// ----
// |
// arena lifetime

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

258 of 660 8/30/23, 09:47

https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.Predicate.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.Predicate.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.Predicate.html
https://rustc-dev-guide.rust-lang.org/print.html#the-tcx-and-how-it-uses-lifetimes
https://rustc-dev-guide.rust-lang.org/print.html#the-tcx-and-how-it-uses-lifetimes
https://rustc-dev-guide.rust-lang.org/print.html#a-note-on-lifetimes
https://rustc-dev-guide.rust-lang.org/print.html#a-note-on-lifetimes
https://rustc-dev-guide.rust-lang.org/rustc-driver.html
https://rustc-dev-guide.rust-lang.org/rustc-driver.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/tls/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/tls/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/tls/index.html

Serialization in Rustc

Rustc has to serialize and deserialize various data during compilation. Specifically:

• "Crate metadata", mainly query outputs, are serialized in a binary format into rlib

and rmeta files that are output when compiling a library crate, these are then

deserialized by crates that depend on that library.

• Certain query outputs are serialized in a binary format to persist incremental

compilation results.

• The -Z ast-json and -Z ast-json-noexpand flags serialize the AST to json and

output the result to stdout.

• CrateInfo is serialized to json when the -Z no-link flag is used, and deserialized

from json when the -Z link-only flag is used.

The Encodable and Decodable traits

The rustc_serialize crate defines two traits for types which can be serialized:

It also defines implementations of these for integer types, floating point types, bool ,

char , str and various common standard library types.

For types that are constructed from those types, Encodable and Decodable are usually

implemented by derives. These generate implementations that forward deserialization to

the fields of the struct or enum. For a struct those impls look something like this:

pub trait Encodable<S: Encoder> {
fn encode(&self, s: &mut S) -> Result<(), S::Error>;

}

pub trait Decodable<D: Decoder>: Sized {
fn decode(d: &mut D) -> Result<Self, D::Error>;

}

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

259 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#serialization-in-rustc
https://rustc-dev-guide.rust-lang.org/print.html#serialization-in-rustc
https://en.wikipedia.org/wiki/Serialization
https://en.wikipedia.org/wiki/Serialization
https://rustc-dev-guide.rust-lang.org/queries/incremental-compilation-in-detail.html#the-real-world-how-persistence-makes-everything-complicated
https://rustc-dev-guide.rust-lang.org/queries/incremental-compilation-in-detail.html#the-real-world-how-persistence-makes-everything-complicated
https://rustc-dev-guide.rust-lang.org/queries/incremental-compilation-in-detail.html#the-real-world-how-persistence-makes-everything-complicated
https://rustc-dev-guide.rust-lang.org/queries/incremental-compilation-in-detail.html#the-real-world-how-persistence-makes-everything-complicated
https://rustc-dev-guide.rust-lang.org/the-parser.html
https://rustc-dev-guide.rust-lang.org/the-parser.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_codegen_ssa/struct.CrateInfo.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_codegen_ssa/struct.CrateInfo.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_codegen_ssa/struct.CrateInfo.html
https://rustc-dev-guide.rust-lang.org/print.html#the-encodable-and-decodable-traits
https://rustc-dev-guide.rust-lang.org/print.html#the-encodable-and-decodable-traits
https://rustc-dev-guide.rust-lang.org/print.html#the-encodable-and-decodable-traits
https://rustc-dev-guide.rust-lang.org/print.html#the-encodable-and-decodable-traits
https://rustc-dev-guide.rust-lang.org/print.html#the-encodable-and-decodable-traits
https://rustc-dev-guide.rust-lang.org/print.html#the-encodable-and-decodable-traits
https://rustc-dev-guide.rust-lang.org/print.html#the-encodable-and-decodable-traits
https://rustc-dev-guide.rust-lang.org/print.html#the-encodable-and-decodable-traits
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_serialize/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_serialize/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_serialize/index.html
https://rustc-dev-guide.rust-lang.org/serialization.html#derive-macros
https://rustc-dev-guide.rust-lang.org/serialization.html#derive-macros

Encoding and Decoding arena allocated types

Rustc has a lot of arena allocated types. Deserializing these types isn't possible without

access to the arena that they need to be allocated on. The TyDecoder and TyEncoder

traits are supertraits of Decoder and Encoder that allow access to a TyCtxt .

Types which contain arena allocated types can then bound the type parameter of their

Encodable and Decodable implementations with these traits. For example

The TyEncodable and TyDecodable derive macros will expand to such an

implementation.

Decoding the actual arena allocated type is harder, because some of the implementations

can't be written due to the orphan rules. To work around this, the RefDecodable trait is

defined in rustc_middle . This can then be implemented for any type. The TyDecodable

macro will call RefDecodable to decode references, but various generic code needs types

#![feature(rustc_private)]
extern crate rustc_serialize;
use rustc_serialize::{Decodable, Decoder, Encodable, Encoder};

struct MyStruct {
 int: u32,
 float: f32,
}

impl<E: Encoder> Encodable<E> for MyStruct {
fn encode(&self, s: &mut E) -> Result<(), E::Error> {

 s.emit_struct("MyStruct", 2, |s| {
 s.emit_struct_field("int", 0, |s| self.int.encode(s))?;
 s.emit_struct_field("float", 1, |s| self.float.encode(s))
 })
 }
}
impl<D: Decoder> Decodable<D> for MyStruct {

fn decode(s: &mut D) -> Result<MyStruct, D::Error> {
 s.read_struct("MyStruct", 2, |d| {

let int = d.read_struct_field("int", 0, Decodable::decode)?;
let float = d.read_struct_field("float", 1, Decodable::decode)?;

Ok(MyStruct { int, float })
 })
 }
}

impl<'tcx, D: TyDecoder<'tcx>> Decodable<D> for MyStruct<'tcx> {
/* ... */

}

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

260 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#encoding-and-decoding-arena-allocated-types
https://rustc-dev-guide.rust-lang.org/print.html#encoding-and-decoding-arena-allocated-types
https://rustc-dev-guide.rust-lang.org/memory.html
https://rustc-dev-guide.rust-lang.org/memory.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/codec/trait.TyDecoder.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/codec/trait.TyDecoder.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/codec/trait.TyDecoder.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/codec/trait.TyEncoder.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/codec/trait.TyEncoder.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/codec/trait.TyEncoder.html
https://rustc-dev-guide.rust-lang.org/serialization.html#derive-macros
https://rustc-dev-guide.rust-lang.org/serialization.html#derive-macros
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/codec/trait.RefDecodable.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/codec/trait.RefDecodable.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/codec/trait.RefDecodable.html

to actually be Decodable with a specific decoder.

For interned types instead of manually implementing RefDecodable , using a new type

wrapper, like ty::Predicate and manually implementing Encodable and Decodable

may be simpler.

Derive macros

The rustc_macros crate defines various derives to help implement Decodable and

Encodable .

• The Encodable and Decodable macros generate implementations that apply to all

Encoders and Decoders . These should be used in crates that don't depend on

rustc_middle , or that have to be serialized by a type that does not implement

TyEncoder .

• MetadataEncodable and MetadataDecodable generate implementations that only

allow decoding by rustc_metadata::rmeta::encoder::EncodeContext and

rustc_metadata::rmeta::decoder::DecodeContext . These are used for types that

contain rustc_metadata::rmeta::Lazy .

• TyEncodable and TyDecodable generate implementation that apply to any

TyEncoder or TyDecoder . These should be used for types that are only serialized in

crate metadata and/or the incremental cache, which is most serializable types in

rustc_middle .

Shorthands

Ty can be deeply recursive, if each Ty was encoded naively then crate metadata would

be very large. To handle this, each TyEncoder has a cache of locations in its output where

it has serialized types. If a type being encoded is in the cache, then instead of serializing

the type as usual, the byte offset within the file being written is encoded instead. A similar

scheme is used for ty::Predicate .

LazyValue<T>

Crate metadata is initially loaded before the TyCtxt<'tcx> is created, so some

deserialization needs to be deferred from the initial loading of metadata. The

LazyValue<T> type wraps the (relative) offset in the crate metadata where a T has been

serialized. There are also some variants, LazyArray<T> and LazyTable<I, T> .

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

261 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#derive-macros
https://rustc-dev-guide.rust-lang.org/print.html#derive-macros
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_metadata/rmeta/encoder/struct.EncodeContext.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_metadata/rmeta/encoder/struct.EncodeContext.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_metadata/rmeta/encoder/struct.EncodeContext.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_metadata/rmeta/decoder/struct.DecodeContext.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_metadata/rmeta/decoder/struct.DecodeContext.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_metadata/rmeta/decoder/struct.DecodeContext.html
https://rustc-dev-guide.rust-lang.org/print.html#shorthands
https://rustc-dev-guide.rust-lang.org/print.html#shorthands
https://rustc-dev-guide.rust-lang.org/print.html#lazyvaluet
https://rustc-dev-guide.rust-lang.org/print.html#lazyvaluet
https://rustc-dev-guide.rust-lang.org/print.html#lazyvaluet
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_metadata/rmeta/struct.LazyValue.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_metadata/rmeta/struct.LazyValue.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_metadata/rmeta/struct.LazyValue.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_metadata/rmeta/struct.LazyValue.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_metadata/rmeta/struct.LazyValue.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_metadata/rmeta/struct.LazyValue.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_metadata/rmeta/struct.LazyValue.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_metadata/rmeta/struct.LazyValue.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_metadata/rmeta/struct.LazyValue.html

The Lazy<[T]> and LazyTable<I, T> types provide some functionality over

Lazy<Vec<T>> and Lazy<HashMap<I, T>> :

• It's possible to encode a LazyArray<T> directly from an iterator, without first

collecting into a Vec<T> .

• Indexing into a LazyTable<I, T> does not require decoding entries other than the

one being read.

note: LazyValue<T> does not cache its value after being deserialized the first time.

Instead the query system is the main way of caching these results.

Specialization

A few types, most notably DefId , need to have different implementations for different

Encoder s. This is currently handled by ad-hoc specializations: DefId has a default

implementation of Encodable<E> and a specialized one for Encodable<CacheEncoder> .

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

262 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#specialization
https://rustc-dev-guide.rust-lang.org/print.html#specialization

Parallel Compilation

As of August 2022, the only stage of the compiler that is already parallel is codegen. Some

parts of the compiler already have parallel implementations, such as query evaluation,

type check and monomorphization, but the general version of the compiler does not

include these parallelization functions. To try out the current parallel compiler, one

can install rustc from source code with parallel-compiler = true in the config.toml .

The lack of parallelism at other stages (for example, macro expansion) also represents an

opportunity for improving compiler performance.

These next few sections describe where and how parallelism is currently used, and the

current status of making parallel compilation the default in rustc .

Codegen

During monomorphization the compiler splits up all the code to be generated into

smaller chunks called codegen units. These are then generated by independent instances

of LLVM running in parallel. At the end, the linker is run to combine all the codegen units

together into one binary. This process occurs in the rustc_codegen_ssa::base module.

Data Structures

The underlying thread-safe data-structures used in the parallel compiler can be found in

the rustc_data_structures::sync module. These data structures are implemented

differently depending on whether parallel-compiler is true.

data structure parallel

Lrc std::sync::Arc std::rc::Rc

Weak std::sync::Weak std::rc::Weak

Atomic{Bool}/{Usize}

/{U32}/{U64}
std::sync::atomic::Atomic{Bool}/{Usize}/{U32}/{U64}

(std::cell::Cell<bool/usize

/u32/u64>)

OnceCell std::sync::OnceLock std::cell::OnceCell

Lock<T> (parking_lot::Mutex<T>) (std::cell::RefCell)

RwLock<T> (parking_lot::RwLock<T>) (std::cell::RefCell)

MTRef<'a, T> &'a T &'a mut T

MTLock<T> (Lock<T>) (T)

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

263 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#parallel-compilation
https://rustc-dev-guide.rust-lang.org/print.html#parallel-compilation
https://rustc-dev-guide.rust-lang.org/print.html#codegen
https://rustc-dev-guide.rust-lang.org/print.html#codegen
https://rustc-dev-guide.rust-lang.org/backend/monomorph.html
https://rustc-dev-guide.rust-lang.org/backend/monomorph.html
https://rustc-dev-guide.rust-lang.org/print.html#data-structures
https://rustc-dev-guide.rust-lang.org/print.html#data-structures

data structure parallel

ReadGuard parking_lot::RwLockReadGuard std::cell::Ref

MappedReadGuard parking_lot::MappedRwLockReadGuard std::cell::Ref

WriteGuard parking_lot::RwLockWriteGuard std::cell::RefMut

MappedWriteGuard parking_lot::MappedRwLockWriteGuard std::cell::RefMut

LockGuard parking_lot::MutexGuard std::cell::RefMut

MappedLockGuard parking_lot::MappedMutexGuard std::cell::RefMut

• These thread-safe data structures interspersed during compilation can cause a lot

of lock contention, which actually degrades performance as the number of threads

increases beyond 4. This inspires us to audit the use of these data structures,

leading to either refactoring to reduce use of shared state, or persistent

documentation covering invariants, atomicity, and lock orderings.

• On the other hand, we still need to figure out what other invariants during

compilation might not hold in parallel compilation.

WorkLocal

WorkLocal is a special data structure implemented for parallel compiler. It holds worker-

locals values for each thread in a thread pool. You can only access the worker local value

through the Deref impl on the thread pool it was constructed on. It will panic otherwise.

WorkLocal is used to implement the Arena allocator in the parallel environment, which

is critical in parallel queries. Its implementation is located in the rustc-rayon-

core::worker_local module. However, in the non-parallel compiler, it is implemented as

(OneThread<T>) , whose T can be accessed directly through Deref::deref .

Parallel Iterator

The parallel iterators provided by the rayon crate are easy ways to implement

parallelism. In the current implementation of the parallel compiler we use a custom fork

of rayon to run tasks in parallel.

Some iterator functions are implemented to run loops in parallel when parallel-

compiler is true.

Function(Omit Send and Sync) Introduction

par_iter<T: IntoParallelIterator>(t: T) ->

T::Iter
generate a parallel iterator

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

264 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#worklocal
https://rustc-dev-guide.rust-lang.org/print.html#worklocal
https://rustc-dev-guide.rust-lang.org/print.html#parallel-iterator
https://rustc-dev-guide.rust-lang.org/print.html#parallel-iterator
https://crates.io/crates/rayon
https://crates.io/crates/rayon
https://crates.io/crates/rayon
https://github.com/rust-lang/rustc-rayon
https://github.com/rust-lang/rustc-rayon
https://crates.io/crates/rayon
https://crates.io/crates/rayon
https://crates.io/crates/rayon

Function(Omit Send and Sync) Introduction

par_for_each_in<T:

IntoParallelIterator>(t: T, for_each: impl

Fn(T::Item))

generate a parallel iterator and run for_each

Map::par_body_owners(self, f: impl

Fn(LocalDefId))
run f on all hir owners in the crate

Map::par_for_each_module(self, f: impl

Fn(LocalDefId))
run f on all modules and sub modules in the crate

ModuleItems::par_items(&self, f: impl

Fn(ItemId))
run f on all items in the module

ModuleItems::par_trait_items(&self, f:

impl Fn(TraitItemId))
run f on all trait items in the module

ModuleItems::par_impl_items(&self, f:

impl Fn(ImplItemId))
run f on all impl items in the module

ModuleItems::par_foreign_items(&self,

f: impl Fn(ForeignItemId))
run f on all foreign items in the module

There are a lot of loops in the compiler which can possibly be parallelized using these

functions. As of August 2022, scenarios where the parallel iterator function has been used

are as follows:

caller

rustc_metadata::rmeta::encoder::prefetch_mir Prefetch queries which will be needed later by

rustc_monomorphize::collector::collect_crate_mono_items Collect monomorphized items reachable from

rustc_interface::passes::analysis Check the validity of the match statements

rustc_interface::passes::analysis MIR borrow check

rustc_typeck::check::typeck_item_bodies Type check

rustc_interface::passes::hir_id_validator::check_crate Check the validity of hir

rustc_interface::passes::analysis Check the validity of loops body, attributes, na

rustc_interface::passes::analysis Liveness and intrinsic checking of MIR

rustc_interface::passes::analysis Deathness checking

rustc_interface::passes::analysis Privacy checking

rustc_lint::late::check_crate Run per-module lints

rustc_typeck::check_crate Well-formedness checking

There are still many loops that have the potential to use parallel iterators.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

265 of 660 8/30/23, 09:47

Query System

The query model has some properties that make it actually feasible to evaluate multiple

queries in parallel without too much of an effort:

• All data a query provider can access is accessed via the query context, so the query

context can take care of synchronizing access.

• Query results are required to be immutable so they can safely be used by different

threads concurrently.

When a query foo is evaluated, the cache table for foo is locked.

• If there already is a result, we can clone it, release the lock and we are done.

• If there is no cache entry and no other active query invocation computing the same

result, we mark the key as being "in progress", release the lock and start evaluating.

• If there is another query invocation for the same key in progress, we release the

lock, and just block the thread until the other invocation has computed the result we

are waiting for. Cycle error detection in the parallel compiler requires more

complex logic than in single-threaded mode. When worker threads in parallel

queries stop making progress due to interdependence, the compiler uses an extra

thread (named deadlock handler) to detect, remove and report the cycle error.

Parallel query still has a lot of work to do, most of which is related to the previous Data

Structures and Parallel Iterators . See this tracking issue.

Rustdoc

As of November 2022, there are still a number of steps to complete before rustdoc

rendering can be made parallel. More details on this issue can be found here.

Resources

Here are some resources that can be used to learn more (note that some of them are a

bit out of date):

• This IRLO thread by Zoxc, one of the pioneers of the effort

• This list of interior mutability in the compiler by nikomatsakis

• This IRLO thread by alexchricton about performance

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

266 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#query-system
https://rustc-dev-guide.rust-lang.org/print.html#query-system
https://github.com/rust-lang/rust/issues/48685
https://github.com/rust-lang/rust/issues/48685
https://rustc-dev-guide.rust-lang.org/print.html#rustdoc-1
https://rustc-dev-guide.rust-lang.org/print.html#rustdoc-1
https://github.com/rust-lang/rust/issues/82741
https://github.com/rust-lang/rust/issues/82741
https://rustc-dev-guide.rust-lang.org/print.html#resources-1
https://rustc-dev-guide.rust-lang.org/print.html#resources-1
https://internals.rust-lang.org/t/parallelizing-rustc-using-rayon/6606
https://internals.rust-lang.org/t/parallelizing-rustc-using-rayon/6606
https://github.com/nikomatsakis/rustc-parallelization/blob/master/interior-mutability-list.md
https://github.com/nikomatsakis/rustc-parallelization/blob/master/interior-mutability-list.md
https://internals.rust-lang.org/t/help-test-parallel-rustc/11503
https://internals.rust-lang.org/t/help-test-parallel-rustc/11503

Rustdoc internals

• From crate to clean

◦ Passes anything but a gas station

• From clean to HTML

◦ From soup to nuts

• Other tricks up its sleeve

• Dotting i's and crossing t's

• Testing locally

• See also

This page describes rustdoc's passes and modes. For an overview of rustdoc, see the

"Rustdoc overview" chapter.

From crate to clean

In core.rs are two central items: the DocContext struct, and the run_global_ctxt

function. The latter is where rustdoc calls out to rustc to compile a crate to the point

where rustdoc can take over. The former is a state container used when crawling through

a crate to gather its documentation.

The main process of crate crawling is done in clean/mod.rs through several functions

with names that start with clean_ . Each function accepts an hir or ty data structure,

and outputs a clean structure used by rustdoc. For example, this function for converting

lifetimes:

clean/mod.rs also defines the types for the "cleaned" AST used later on to render

documentation pages. Each usually accompanies a clean function that takes some AST

fn clean_lifetime<'tcx>(lifetime: &hir::Lifetime, cx: &mut DocContext<'tcx>)
-> Lifetime {

let def = cx.tcx.named_bound_var(lifetime.hir_id);
if let Some(

 rbv::ResolvedArg::EarlyBound(node_id)
 | rbv::ResolvedArg::LateBound(_, _, node_id)
 | rbv::ResolvedArg::Free(_, node_id),
) = def
 {

if let Some(lt) = cx.args.get(&node_id).and_then(|p|
p.as_lt()).cloned() {

return lt;
 }
 }
 Lifetime(lifetime.ident.name)
}

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

267 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#rustdoc-internals
https://rustc-dev-guide.rust-lang.org/print.html#rustdoc-internals
https://rustc-dev-guide.rust-lang.org/rustdoc-internals.html#from-crate-to-clean
https://rustc-dev-guide.rust-lang.org/rustdoc-internals.html#from-crate-to-clean
https://rustc-dev-guide.rust-lang.org/rustdoc-internals.html#passes-anything-but-a-gas-station
https://rustc-dev-guide.rust-lang.org/rustdoc-internals.html#passes-anything-but-a-gas-station
https://rustc-dev-guide.rust-lang.org/rustdoc-internals.html#from-clean-to-html
https://rustc-dev-guide.rust-lang.org/rustdoc-internals.html#from-clean-to-html
https://rustc-dev-guide.rust-lang.org/rustdoc-internals.html#from-soup-to-nuts
https://rustc-dev-guide.rust-lang.org/rustdoc-internals.html#from-soup-to-nuts
https://rustc-dev-guide.rust-lang.org/rustdoc-internals.html#other-tricks-up-its-sleeve
https://rustc-dev-guide.rust-lang.org/rustdoc-internals.html#other-tricks-up-its-sleeve
https://rustc-dev-guide.rust-lang.org/rustdoc-internals.html#dotting-is-and-crossing-ts
https://rustc-dev-guide.rust-lang.org/rustdoc-internals.html#dotting-is-and-crossing-ts
https://rustc-dev-guide.rust-lang.org/rustdoc-internals.html#testing-locally
https://rustc-dev-guide.rust-lang.org/rustdoc-internals.html#testing-locally
https://rustc-dev-guide.rust-lang.org/rustdoc-internals.html#see-also
https://rustc-dev-guide.rust-lang.org/rustdoc-internals.html#see-also
https://rustc-dev-guide.rust-lang.org/rustdoc.html
https://rustc-dev-guide.rust-lang.org/rustdoc.html
https://rustc-dev-guide.rust-lang.org/print.html#from-crate-to-clean
https://rustc-dev-guide.rust-lang.org/print.html#from-crate-to-clean

or HIR type from rustc and converts it into the appropriate "cleaned" type. "Big" items like

modules or associated items may have some extra processing in its clean function, but

for the most part these impls are straightforward conversions. The "entry point" to this

module is clean::krate , which is called by run_global_ctxt above.

The first step in clean::krate is to invoke visit_ast::RustdocVisitor to process the

module tree into an intermediate visit_ast::Module . This is the step that actually

crawls the rustc_hir::Crate , normalizing various aspects of name resolution, such as:

• showing #[macro_export] -ed macros at the crate root, regardless of where they're

defined

• inlining public use exports of private items, or showing a "Reexport" line in the

module page

• inlining items with #[doc(hidden)] if the base item is hidden but the reexport is

not

• handling #[doc(inline)] and #[doc(no_inline)]

• handling import globs and cycles, so there are no duplicates or infinite directory

trees

After this step, clean::krate invokes clean_doc_module , which actually converts the

HIR items to the cleaned AST. This is also the step where cross- crate inlining is

performed, which requires converting rustc_middle data structures into the cleaned

AST instead.

The other major thing that happens in clean/mod.rs is the collection of doc comments

and #[doc=""] attributes into a separate field of the Attributes struct, present on

anything that gets hand-written documentation. This makes it easier to collect this

documentation later in the process.

The primary output of this process is a clean::Crate with a tree of Items which describe

the publicly-documentable items in the target crate.

Passes anything but a gas station

(alternate title: hot potato)

Before moving on to the next major step, a few important "passes" occur over the

cleaned AST. Several of these passes are lints and reports, but some of them mutate or

generate new items.

These are all implemented in the passes/ directory, one file per pass. By default, all of

these passes are run on a crate, but the ones regarding dropping private/hidden items

can be bypassed by passing --document-private-items to rustdoc. Note that unlike the

previous set of AST transformations, the passes are run on the cleaned crate.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

268 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#passes-anything-but-a-gas-station
https://rustc-dev-guide.rust-lang.org/print.html#passes-anything-but-a-gas-station
https://www.youtube.com/watch?v=WNFBIt5HxdY
https://www.youtube.com/watch?v=WNFBIt5HxdY

Here is the list of passes as of March 2023:

• calculate-doc-coverage calculates information used for the --show-coverage

flag.

• check-doc-test-visibility runs doctest visibility–related lints. This pass runs

before strip-private , which is why it needs to be separate from run-lints .

• collect-intra-doc-links resolves intra-doc links.

• collect-trait-impls collects trait impls for each item in the crate. For example, if

we define a struct that implements a trait, this pass will note that the struct

implements that trait.

• propagate-doc-cfg propagates #[doc(cfg(...))] to child items.

• run-lints runs some of rustdoc's lints, defined in passes/lint . This is the last

pass to run.

◦ bare_urls detects links that are not linkified, e.g., in Markdown such as Go

to https://example.com/. It suggests wrapping the link with angle brackets:

Go to <https://example.com/>. to linkify it. This is the code behind the

rustdoc::bare_urls lint.

◦ check_code_block_syntax validates syntax inside Rust code blocks (```rust)

◦ html_tags detects invalid HTML (like an unclosed) in doc comments.

• strip-hidden and strip-private strip all doc(hidden) and private items from

the output. strip-private implies strip-priv-imports . Basically, the goal is to

remove items that are not relevant for public documentation. This pass is skipped

when --document-hidden-items is passed.

• strip-priv-imports strips all private import statements (use , extern crate)

from a crate. This is necessary because rustdoc will handle public imports by either

inlining the item's documentation to the module or creating a "Reexports" section

with the import in it. The pass ensures that all of these imports are actually relevant

to documentation. It is technically only run when --document-private-items is

passed, but strip-private accomplishes the same thing.

• strip-private strips all private items from a crate which cannot be seen

externally. This pass is skipped when --document-private-items is passed.

There is also a stripper module in passes/ , but it is a collection of utility functions for

the strip-* passes and is not a pass itself.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

269 of 660 8/30/23, 09:47

https://doc.rust-lang.org/nightly/rustdoc/write-documentation/linking-to-items-by-name.html
https://doc.rust-lang.org/nightly/rustdoc/write-documentation/linking-to-items-by-name.html

From clean to HTML

This is where the "second phase" in rustdoc begins. This phase primarily lives in the

formats/ and html/ folders, and it all starts with formats::run_format . This code is

responsible for setting up a type that impl FormatRenderer , which for HTML is Context .

This structure contains methods that get called by run_format to drive the doc

rendering, which includes:

• init generates static.files , as well as search index and src/

• item generates the item HTML files themselves

• after_krate generates other global resources like all.html

In item , the "page rendering" occurs, via a mixture of Askama templates and manual

write!() calls, starting in html/layout.rs . The parts that have not been converted to

templates occur within a series of std::fmt::Display implementations and functions

that pass around a &mut std::fmt::Formatter .

The parts that actually generate HTML from the items and documentation start with

print_item defined in html/render/print_item.rs , which switches out to one of

several item_* functions based on kind of Item being rendered.

Depending on what kind of rendering code you're looking for, you'll probably find it either

in html/render/mod.rs for major items like "what sections should I print for a struct

page" or html/format/mod.rs for smaller component pieces like "how should I print a

where clause as part of some other item".

Whenever rustdoc comes across an item that should print hand-written documentation

alongside, it calls out to html/markdown.rs which interfaces with the Markdown parser.

This is exposed as a series of types that wrap a string of Markdown, and implement

fmt::Display to emit HTML text. It takes special care to enable certain features like

footnotes and tables and add syntax highlighting to Rust code blocks (via

html/highlight.rs) before running the Markdown parser. There's also a function in

here (find_testable_code) that specifically scans for Rust code blocks so the test-runner

code can find all the doctests in the crate.

From soup to nuts

(alternate title: "An unbroken thread that stretches from those first Cell s to us")

It's important to note that rustdoc can ask the compiler for type information directly,

even during HTML generation. This didn't used to be the case, and a lot of rustdoc's

architecture was designed around not doing that, but a TyCtxt is now passed to

formats::renderer::run_format , which is used to run generation for both HTML and

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

270 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#from-clean-to-html
https://rustc-dev-guide.rust-lang.org/print.html#from-clean-to-html
https://doc.rust-lang.org/nightly/nightly-rustc/rustdoc/html/render/context/struct.Context.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustdoc/html/render/context/struct.Context.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustdoc/html/render/context/struct.Context.html
https://docs.rs/askama/latest/askama/
https://docs.rs/askama/latest/askama/
https://rustc-dev-guide.rust-lang.org/print.html#from-soup-to-nuts
https://rustc-dev-guide.rust-lang.org/print.html#from-soup-to-nuts
https://www.youtube.com/watch?v=hOLAGYmUQV0
https://www.youtube.com/watch?v=hOLAGYmUQV0
https://www.youtube.com/watch?v=hOLAGYmUQV0
https://www.youtube.com/watch?v=hOLAGYmUQV0
https://www.youtube.com/watch?v=hOLAGYmUQV0
https://github.com/rust-lang/rust/pull/80090
https://github.com/rust-lang/rust/pull/80090

the (unstable as of March 2023) JSON format.

This change has allowed other changes to remove data from the "clean" AST that can be

easily derived from TyCtxt queries, and we'll usually accept PRs that remove fields from

"clean" (it's been soft-deprecated), but this is complicated from two other constraints that

rustdoc runs under:

• Docs can be generated for crates that don't actually pass type checking. This is used

for generating docs that cover mutually-exclusive platform configurations, such as

libstd having a single package of docs that cover all supported operating systems.

This means rustdoc has to be able to generate docs from HIR.

• Docs can inline across crates. Since crate metadata doesn't contain HIR, it must be

possible to generate inlined docs from the rustc_middle data.

The "clean" AST acts as a common output format for both input formats. There is also

some data in clean that doesn't correspond directly to HIR, such as synthetic impl s for

auto traits and blanket impl s generated by the collect-trait-impls pass.

Some additional data is stored in html::render::context::{Context, SharedContext} .

These two types serve as ways to segregate rustdoc's data for an eventual future with

multithreaded doc generation, as well as just keeping things organized:

• Context stores data used for generating the current page, such as its path, a list of

HTML IDs that have been used (to avoid duplicate id=""), and the pointer to

SharedContext .

• SharedContext stores data that does not vary by page, such as the tcx pointer,

and a list of all types.

Other tricks up its sleeve

All this describes the process for generating HTML documentation from a Rust crate, but

there are couple other major modes that rustdoc runs in. It can also be run on a

standalone Markdown file, or it can run doctests on Rust code or standalone Markdown

files. For the former, it shortcuts straight to html/markdown.rs , optionally including a

mode which inserts a Table of Contents to the output HTML.

For the latter, rustdoc runs a similar partial-compilation to get relevant documentation in

test.rs , but instead of going through the full clean and render process, it runs a much

simpler crate walk to grab just the hand-written documentation. Combined with the

aforementioned " find_testable_code " in html/markdown.rs , it builds up a collection of

tests to run before handing them off to the test runner. One notable location in test.rs

is the function make_test , which is where hand-written doctests get transformed into

something that can be executed.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

271 of 660 8/30/23, 09:47

https://doc.rust-lang.org/nightly/nightly-rustc/rustdoc/html/render/context/struct.Context.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustdoc/html/render/context/struct.Context.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustdoc/html/render/context/struct.Context.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustdoc/html/render/context/struct.SharedContext.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustdoc/html/render/context/struct.SharedContext.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustdoc/html/render/context/struct.SharedContext.html
https://rustc-dev-guide.rust-lang.org/print.html#other-tricks-up-its-sleeve
https://rustc-dev-guide.rust-lang.org/print.html#other-tricks-up-its-sleeve

Some extra reading about make_test can be found here.

Dotting i's and crossing t's

So that's rustdoc's code in a nutshell, but there's more things in the repo that deal with it.

Since we have the full compiletest suite at hand, there's a set of tests in tests/rustdoc

that make sure the final HTML is what we expect in various situations. These tests also

use a supplementary script, src/etc/htmldocck.py , that allows it to look through the

final HTML using XPath notation to get a precise look at the output. The full description of

all the commands available to rustdoc tests (e.g. @has and @matches) is in

htmldocck.py .

To use multiple crates in a rustdoc test, add // aux-build:filename.rs to the top of the

test file. filename.rs should be placed in an auxiliary directory relative to the test file

with the comment. If you need to build docs for the auxiliary file, use // build-aux-

docs .

In addition, there are separate tests for the search index and rustdoc's ability to query it.

The files in tests/rustdoc-js each contain a different search query and the expected

results, broken out by search tab. These files are processed by a script in src/tools

/rustdoc-js and the Node.js runtime. These tests don't have as thorough of a writeup,

but a broad example that features results in all tabs can be found in basic.js . The basic

idea is that you match a given QUERY with a set of EXPECTED results, complete with the

full item path of each item.

Testing locally

Some features of the generated HTML documentation might require local storage to be

used across pages, which doesn't work well without an HTTP server. To test these

features locally, you can run a local HTTP server, like this:

Now you can browse your documentation just like you would if it was hosted on the

internet. For example, the url for std will be `/std/".

$./x doc library
The documentation has been generated into `build/[YOUR ARCH]/doc`.
$ python3 -m http.server -d build/[YOUR ARCH]/doc

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

272 of 660 8/30/23, 09:47

https://quietmisdreavus.net/code/2018/02/23/how-the-doctests-get-made/
https://quietmisdreavus.net/code/2018/02/23/how-the-doctests-get-made/
https://rustc-dev-guide.rust-lang.org/print.html#dotting-is-and-crossing-ts
https://rustc-dev-guide.rust-lang.org/print.html#dotting-is-and-crossing-ts
https://github.com/rust-lang/rust/blob/master/src/etc/htmldocck.py#L39
https://github.com/rust-lang/rust/blob/master/src/etc/htmldocck.py#L39
https://github.com/rust-lang/rust/blob/master/src/etc/htmldocck.py#L39
https://github.com/rust-lang/rust/blob/master/src/etc/htmldocck.py#L44
https://github.com/rust-lang/rust/blob/master/src/etc/htmldocck.py#L44
https://github.com/rust-lang/rust/blob/master/src/etc/htmldocck.py#L44
https://github.com/rust-lang/rust/blob/master/src/etc/htmldocck.py
https://github.com/rust-lang/rust/blob/master/src/etc/htmldocck.py
https://github.com/rust-lang/rust/blob/master/src/etc/htmldocck.py
https://rustc-dev-guide.rust-lang.org/print.html#testing-locally
https://rustc-dev-guide.rust-lang.org/print.html#testing-locally

See also

• The rustdoc api docs

• An overview of rustdoc

• The rustdoc user guide

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

273 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#see-also
https://rustc-dev-guide.rust-lang.org/print.html#see-also
https://doc.rust-lang.org/nightly/nightly-rustc/rustdoc/
https://doc.rust-lang.org/nightly/nightly-rustc/rustdoc/
https://doc.rust-lang.org/nightly/nightly-rustc/rustdoc/
https://doc.rust-lang.org/nightly/nightly-rustc/rustdoc/
https://rustc-dev-guide.rust-lang.org/rustdoc.html
https://rustc-dev-guide.rust-lang.org/rustdoc.html
https://rustc-dev-guide.rust-lang.org/rustdoc.html
https://rustc-dev-guide.rust-lang.org/rustdoc.html
https://doc.rust-lang.org/nightly/rustdoc/
https://doc.rust-lang.org/nightly/rustdoc/

Source Code Representation

This part describes the process of taking raw source code from the user and transforming

it into various forms that the compiler can work with easily. These are called intermediate

representations (IRs).

This process starts with compiler understanding what the user has asked for: parsing the

command line arguments given and determining what it is to compile. After that, the

compiler transforms the user input into a series of IRs that look progressively less like

what the user wrote.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

274 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#source-code-representation
https://rustc-dev-guide.rust-lang.org/print.html#source-code-representation

Command-line Arguments

Command-line flags are documented in the rustc book. All stable flags should be

documented there. Unstable flags should be documented in the unstable book.

See the forge guide for new options for details on the procedure for adding a new

command-line argument.

Guidelines

• Flags should be orthogonal to each other. For example, if we'd have a json-emitting

variant of multiple actions foo and bar , an additional --json flag is better than

adding --foo-json and --bar-json .

• Avoid flags with the no- prefix. Instead, use the parse_bool function, such as -C

embed-bitcode=no .

• Consider the behavior if the flag is passed multiple times. In some situations, the

values should be accumulated (in order!). In other situations, subsequent flags

should override previous flags (for example, the lint-level flags). And some flags (like

-o) should generate an error if it is too ambiguous what multiple flags would mean.

• Always give options a long descriptive name, if only for more understandable

compiler scripts.

• The --verbose flag is for adding verbose information to rustc output. For

example, using it with the --version flag gives information about the hashes of the

compiler code.

• Experimental flags and options must be guarded behind the -Z unstable-options

flag.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

275 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#command-line-arguments
https://rustc-dev-guide.rust-lang.org/print.html#command-line-arguments
https://doc.rust-lang.org/rustc/command-line-arguments.html
https://doc.rust-lang.org/rustc/command-line-arguments.html
https://doc.rust-lang.org/nightly/unstable-book/
https://doc.rust-lang.org/nightly/unstable-book/
https://forge.rust-lang.org/compiler/new_option.html
https://forge.rust-lang.org/compiler/new_option.html
https://rustc-dev-guide.rust-lang.org/print.html#guidelines-1
https://rustc-dev-guide.rust-lang.org/print.html#guidelines-1
https://github.com/rust-lang/rust/blob/e5335592e78354e33d798d20c04bcd677c1df62d/src/librustc_session/options.rs#L307-L313
https://github.com/rust-lang/rust/blob/e5335592e78354e33d798d20c04bcd677c1df62d/src/librustc_session/options.rs#L307-L313
https://github.com/rust-lang/rust/blob/e5335592e78354e33d798d20c04bcd677c1df62d/src/librustc_session/options.rs#L307-L313

rustc_driver and rustc_interface

The rustc_driver is essentially rustc 's main() function. It acts as the glue for running

the various phases of the compiler in the correct order, using the interface defined in the

rustc_interface crate.

The rustc_interface crate provides external users with an (unstable) API for running

code at particular times during the compilation process, allowing third parties to

effectively use rustc 's internals as a library for analyzing a crate or emulating the

compiler in-process (e.g. rustdoc).

For those using rustc as a library, the rustc_interface::run_compiler() function is

the main entrypoint to the compiler. It takes a configuration for the compiler and a

closure that takes a Compiler . run_compiler creates a Compiler from the configuration

and passes it to the closure. Inside the closure, you can use the Compiler to drive

queries to compile a crate and get the results. This is what the rustc_driver does too.

You can see a minimal example of how to use rustc_interface here.

You can see what queries are currently available through the rustdocs for Compiler . You

can see an example of how to use them by looking at the rustc_driver implementation,

specifically the rustc_driver::run_compiler function (not to be confused with

rustc_interface::run_compiler). The rustc_driver::run_compiler function takes a

bunch of command-line args and some other configurations and drives the compilation

to completion.

rustc_driver::run_compiler also takes a Callbacks , a trait that allows for custom

compiler configuration, as well as allowing some custom code run after different phases

of the compilation.

Warning: By its very nature, the internal compiler APIs are always going to be

unstable. That said, we do try not to break things unnecessarily.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

276 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#rustc_driver-and-rustc_interface
https://rustc-dev-guide.rust-lang.org/print.html#rustc_driver-and-rustc_interface
https://rustc-dev-guide.rust-lang.org/print.html#rustc_driver-and-rustc_interface
https://rustc-dev-guide.rust-lang.org/print.html#rustc_driver-and-rustc_interface
https://rustc-dev-guide.rust-lang.org/print.html#rustc_driver-and-rustc_interface
https://rustc-dev-guide.rust-lang.org/print.html#rustc_driver-and-rustc_interface
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_driver/
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_driver/
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_driver/
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_interface/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_interface/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_interface/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_interface/interface/fn.run_compiler.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_interface/interface/fn.run_compiler.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_interface/interface/fn.run_compiler.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_interface/interface/struct.Compiler.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_interface/interface/struct.Compiler.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_interface/interface/struct.Compiler.html
https://github.com/rust-lang/rustc-dev-guide/blob/master/examples/rustc-driver-example.rs
https://github.com/rust-lang/rustc-dev-guide/blob/master/examples/rustc-driver-example.rs
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_interface/interface/struct.Compiler.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_interface/interface/struct.Compiler.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_interface/interface/struct.Compiler.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_driver_impl/fn.run_compiler.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_driver_impl/fn.run_compiler.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_driver_impl/fn.run_compiler.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_driver_impl/fn.run_compiler.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_interface/interface/fn.run_compiler.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_interface/interface/fn.run_compiler.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_interface/interface/fn.run_compiler.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_driver/trait.Callbacks.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_driver/trait.Callbacks.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_driver/trait.Callbacks.html

Example: Type checking through

rustc_interface

rustc_interface allows you to interact with Rust code at various stages of compilation.

Getting the type of an expression

To get the type of an expression, use the global_ctxt to get a TyCtxt . The following

was tested with nightly-2023-03-27 :

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

277 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#example-type-checking-through-rustc_interface
https://rustc-dev-guide.rust-lang.org/print.html#example-type-checking-through-rustc_interface
https://rustc-dev-guide.rust-lang.org/print.html#example-type-checking-through-rustc_interface
https://rustc-dev-guide.rust-lang.org/print.html#example-type-checking-through-rustc_interface
https://rustc-dev-guide.rust-lang.org/print.html#example-type-checking-through-rustc_interface
https://rustc-dev-guide.rust-lang.org/print.html#getting-the-type-of-an-expression
https://rustc-dev-guide.rust-lang.org/print.html#getting-the-type-of-an-expression

#![feature(rustc_private)]

extern crate rustc_ast_pretty;
extern crate rustc_driver;
extern crate rustc_error_codes;
extern crate rustc_errors;
extern crate rustc_hash;
extern crate rustc_hir;
extern crate rustc_interface;
extern crate rustc_session;
extern crate rustc_span;

use std::{path, process, str};

use rustc_ast_pretty::pprust::item_to_string;
use rustc_errors::registry;
use rustc_session::config::{self, CheckCfg};
use rustc_span::source_map;

fn main() {
let out = process::Command::new("rustc")

 .arg("--print=sysroot")
 .current_dir(".")
 .output()
 .unwrap();

let sysroot = str::from_utf8(&out.stdout).unwrap().trim();
let config = rustc_interface::Config {

 opts: config::Options {
 maybe_sysroot: Some(path::PathBuf::from(sysroot)),
 ..config::Options::default()
 },
 input: config::Input::Str {
 name: source_map::FileName::Custom("main.rs".to_string()),
 input: r#"
fn main() {
 let message = "Hello, World!";
 println!("{message}");
}
"#
 .to_string(),
 },
 crate_cfg: rustc_hash::FxHashSet::default(),
 crate_check_cfg: CheckCfg::default(),
 output_dir: None,
 output_file: None,
 file_loader: None,
 locale_resources: rustc_driver::DEFAULT_LOCALE_RESOURCES,
 lint_caps: rustc_hash::FxHashMap::default(),
 parse_sess_created: None,
 register_lints: None,
 override_queries: None,
 make_codegen_backend: None,
 registry: registry::Registry::new(&rustc_error_codes::DIAGNOSTICS),
 };
 rustc_interface::run_compiler(config, |compiler| {
 compiler.enter(|queries| {

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

278 of 660 8/30/23, 09:47

// TODO: add this to -Z unpretty
let ast_krate = queries.parse().unwrap().get_mut().clone();
for item in ast_krate.items {

println!("{}", item_to_string(&item));
 }

// Analyze the crate and inspect the types under the cursor.
 queries.global_ctxt().unwrap().enter(|tcx| {

// Every compilation contains a single crate.
let hir_krate = tcx.hir();
// Iterate over the top-level items in the crate, looking for

the main function.
for id in hir_krate.items() {

let item = hir_krate.item(id);
// Use pattern-matching to find a specific node inside

the main function.
if let rustc_hir::ItemKind::Fn(_, _, body_id) = item.kind

{
let expr = &tcx.hir().body(body_id).value;
if let rustc_hir::ExprKind::Block(block, _) =

expr.kind {
if let rustc_hir::StmtKind::Local(local) =

block.stmts[0].kind {
if let Some(expr) = local.init {

let hir_id = expr.hir_id; // hir_id
identifies the string "Hello, world!"

let def_id = item.hir_id().owner.def_id;
// def_id identifies the main function

let ty =
tcx.typeck(def_id).node_type(hir_id);

println!("{expr:#?}: {ty:?}");
 }
 }
 }
 }
 }
 })
 });
 });
}

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

279 of 660 8/30/23, 09:47

Example: Getting diagnostic through

rustc_interface

rustc_interface allows you to intercept diagnostics that would otherwise be printed to

stderr.

Getting diagnostics

To get diagnostics from the compiler, configure rustc_interface::Config to output

diagnostic to a buffer, and run TyCtxt.analysis . The following was tested with

nightly-2023-03-27 :

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

280 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#example-getting-diagnostic-through-rustc_interface
https://rustc-dev-guide.rust-lang.org/print.html#example-getting-diagnostic-through-rustc_interface
https://rustc-dev-guide.rust-lang.org/print.html#example-getting-diagnostic-through-rustc_interface
https://rustc-dev-guide.rust-lang.org/print.html#example-getting-diagnostic-through-rustc_interface
https://rustc-dev-guide.rust-lang.org/print.html#example-getting-diagnostic-through-rustc_interface
https://rustc-dev-guide.rust-lang.org/print.html#getting-diagnostics
https://rustc-dev-guide.rust-lang.org/print.html#getting-diagnostics

#![feature(rustc_private)]

extern crate rustc_driver;
extern crate rustc_error_codes;
extern crate rustc_errors;
extern crate rustc_hash;
extern crate rustc_hir;
extern crate rustc_interface;
extern crate rustc_session;
extern crate rustc_span;

use rustc_errors::registry;
use rustc_session::config::{self, CheckCfg};
use rustc_span::source_map;
use std::io;
use std::path;
use std::process;
use std::str;
use std::sync;

// Buffer diagnostics in a Vec<u8>.
#[derive(Clone)]
pub struct DiagnosticSink(sync::Arc<sync::Mutex<Vec<u8>>>);

impl io::Write for DiagnosticSink {
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {

self.0.lock().unwrap().write(buf)
 }

fn flush(&mut self) -> io::Result<()> {
self.0.lock().unwrap().flush()

 }
}

fn main() {
let out = process::Command::new("rustc")

 .arg("--print=sysroot")
 .current_dir(".")
 .output()
 .unwrap();

let sysroot = str::from_utf8(&out.stdout).unwrap().trim();
let buffer = sync::Arc::new(sync::Mutex::new(Vec::new()));
let config = rustc_interface::Config {

 opts: config::Options {
 maybe_sysroot: Some(path::PathBuf::from(sysroot)),

// Configure the compiler to emit diagnostics in compact JSON
format.
 error_format: config::ErrorOutputType::Json {
 pretty: false,
 json_rendered:
rustc_errors::emitter::HumanReadableErrorType::Default(
 rustc_errors::emitter::ColorConfig::Never,
),
 },
 ..config::Options::default()
 },

// This program contains a type error.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

281 of 660 8/30/23, 09:47

 input: config::Input::Str {
 name: source_map::FileName::Custom("main.rs".into()),
 input: "
fn main() {
 let x: &str = 1;
}
"
 .into(),
 },
 crate_cfg: rustc_hash::FxHashSet::default(),
 crate_check_cfg: CheckCfg::default(),
 output_dir: None,
 output_file: None,
 file_loader: None,
 locale_resources: rustc_driver::DEFAULT_LOCALE_RESOURCES,
 lint_caps: rustc_hash::FxHashMap::default(),
 parse_sess_created: None,
 register_lints: None,
 override_queries: None,
 registry: registry::Registry::new(&rustc_error_codes::DIAGNOSTICS),
 make_codegen_backend: None,
 };
 rustc_interface::run_compiler(config, |compiler| {
 compiler.enter(|queries| {
 queries.global_ctxt().unwrap().enter(|tcx| {

// Run the analysis phase on the local crate to trigger the
type error.

let _ = tcx.analysis(());
 });
 });
 });

// Read buffered diagnostics.
let diagnostics =

String::from_utf8(buffer.lock().unwrap().clone()).unwrap();
println!("{diagnostics}");

}

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

282 of 660 8/30/23, 09:47

Syntax and the AST

Working directly with source code is very inconvenient and error-prone. Thus, before we

do anything else, we convert raw source code into an AST. It turns out that doing even

this involves a lot of work, including lexing, parsing, macro expansion, name resolution,

conditional compilation, feature-gate checking, and validation of the AST. In this chapter,

we take a look at all of these steps.

Notably, there isn't always a clean ordering between these tasks. For example, macro

expansion relies on name resolution to resolve the names of macros and imports. And

parsing requires macro expansion, which in turn may require parsing the output of the

macro.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

283 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#syntax-and-the-ast
https://rustc-dev-guide.rust-lang.org/print.html#syntax-and-the-ast

Lexing and Parsing

The very first thing the compiler does is take the program (in Unicode characters) and

turn it into something the compiler can work with more conveniently than strings. This

happens in two stages: Lexing and Parsing.

Lexing takes strings and turns them into streams of tokens. For example, a.b + c would

be turned into the tokens a , . , b , + , and c . The lexer lives in rustc_lexer .

Parsing then takes streams of tokens and turns them into a structured form which is

easier for the compiler to work with, usually called an Abstract Syntax Tree (AST). An AST

mirrors the structure of a Rust program in memory, using a Span to link a particular AST

node back to its source text.

The AST is defined in rustc_ast , along with some definitions for tokens and token

streams, data structures/traits for mutating ASTs, and shared definitions for other AST-

related parts of the compiler (like the lexer and macro-expansion).

The parser is defined in rustc_parse , along with a high-level interface to the lexer and

some validation routines that run after macro expansion. In particular, the

rustc_parse::parser contains the parser implementation.

The main entrypoint to the parser is via the various parse_* functions and others in the

parser crate. They let you do things like turn a SourceFile (e.g. the source in a single file)

into a token stream, create a parser from the token stream, and then execute the parser

to get a Crate (the root AST node).

To minimize the amount of copying that is done, both StringReader and Parser have

lifetimes which bind them to the parent ParseSess . This contains all the information

needed while parsing, as well as the SourceMap itself.

Note that while parsing, we may encounter macro definitions or invocations. We set these

aside to be expanded (see this chapter). Expansion may itself require parsing the output

of the macro, which may reveal more macros to be expanded, and so on.

More on Lexical Analysis

Code for lexical analysis is split between two crates:

• rustc_lexer crate is responsible for breaking a &str into chunks constituting

tokens. Although it is popular to implement lexers as generated finite state

machines, the lexer in rustc_lexer is hand-written.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

284 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#lexing-and-parsing-1
https://rustc-dev-guide.rust-lang.org/print.html#lexing-and-parsing-1
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_ast/token/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_ast/token/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_lexer/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_lexer/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_lexer/index.html
https://en.wikipedia.org/wiki/Abstract_syntax_tree
https://en.wikipedia.org/wiki/Abstract_syntax_tree
https://en.wikipedia.org/wiki/Abstract_syntax_tree
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_ast/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_ast/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_ast/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_parse/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_parse/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_parse/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_parse/parser/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_parse/parser/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_parse/parser/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_parse/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_parse/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/struct.SourceFile.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/struct.SourceFile.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/struct.SourceFile.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_parse/lexer/struct.StringReader.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_parse/lexer/struct.StringReader.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_parse/lexer/struct.StringReader.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_parse/parser/struct.Parser.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_parse/parser/struct.Parser.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_parse/parser/struct.Parser.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/source_map/struct.SourceMap.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/source_map/struct.SourceMap.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/source_map/struct.SourceMap.html
https://rustc-dev-guide.rust-lang.org/macro-expansion.html
https://rustc-dev-guide.rust-lang.org/macro-expansion.html
https://rustc-dev-guide.rust-lang.org/print.html#more-on-lexical-analysis
https://rustc-dev-guide.rust-lang.org/print.html#more-on-lexical-analysis

• StringReader integrates rustc_lexer with data structures specific to rustc .

Specifically, it adds Span information to tokens returned by rustc_lexer and

interns identifiers.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

285 of 660 8/30/23, 09:47

https://doc.rust-lang.org/nightly/nightly-rustc/rustc_parse/lexer/struct.StringReader.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_parse/lexer/struct.StringReader.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_parse/lexer/struct.StringReader.html

Macro expansion

• Expansion and AST Integration

◦ Error Recovery

◦ Name Resolution

◦ Eager Expansion

◦ Other Data Structures

• Hygiene and Hierarchies

◦ The Expansion Order Hierarchy

◦ The Macro Definition Hierarchy

◦ The Call-site Hierarchy

◦ Macro Backtraces

• Producing Macro Output

• Macros By Example

◦ Example

◦ The MBE parser

◦ macro s and Macros 2.0

• Procedural Macros

◦ Custom Derive

rustc_ast , rustc_expand , and rustc_builtin_macros are all undergoing

refactoring, so some of the links in this chapter may be broken.

Rust has a very powerful macro system. In the previous chapter, we saw how the parser

sets aside macros to be expanded (it temporarily uses placeholders). This chapter is

about the process of expanding those macros iteratively until we have a complete AST for

our crate with no unexpanded macros (or a compile error).

First, we will discuss the algorithm that expands and integrates macro output into ASTs.

Next, we will take a look at how hygiene data is collected. Finally, we will look at the

specifics of expanding different types of macros.

Many of the algorithms and data structures described below are in rustc_expand , with

basic data structures in rustc_expand::base .

Also of note, cfg and cfg_attr are treated specially from other macros, and are

handled in rustc_expand::config .

Expansion and AST Integration

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

286 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#macro-expansion
https://rustc-dev-guide.rust-lang.org/print.html#macro-expansion
https://rustc-dev-guide.rust-lang.org/macro-expansion.html#expansion-and-ast-integration
https://rustc-dev-guide.rust-lang.org/macro-expansion.html#expansion-and-ast-integration
https://rustc-dev-guide.rust-lang.org/macro-expansion.html#error-recovery
https://rustc-dev-guide.rust-lang.org/macro-expansion.html#error-recovery
https://rustc-dev-guide.rust-lang.org/macro-expansion.html#name-resolution
https://rustc-dev-guide.rust-lang.org/macro-expansion.html#name-resolution
https://rustc-dev-guide.rust-lang.org/macro-expansion.html#eager-expansion
https://rustc-dev-guide.rust-lang.org/macro-expansion.html#eager-expansion
https://rustc-dev-guide.rust-lang.org/macro-expansion.html#other-data-structures
https://rustc-dev-guide.rust-lang.org/macro-expansion.html#other-data-structures
https://rustc-dev-guide.rust-lang.org/macro-expansion.html#hygiene-and-hierarchies
https://rustc-dev-guide.rust-lang.org/macro-expansion.html#hygiene-and-hierarchies
https://rustc-dev-guide.rust-lang.org/macro-expansion.html#the-expansion-order-hierarchy
https://rustc-dev-guide.rust-lang.org/macro-expansion.html#the-expansion-order-hierarchy
https://rustc-dev-guide.rust-lang.org/macro-expansion.html#the-macro-definition-hierarchy
https://rustc-dev-guide.rust-lang.org/macro-expansion.html#the-macro-definition-hierarchy
https://rustc-dev-guide.rust-lang.org/macro-expansion.html#the-call-site-hierarchy
https://rustc-dev-guide.rust-lang.org/macro-expansion.html#the-call-site-hierarchy
https://rustc-dev-guide.rust-lang.org/macro-expansion.html#macro-backtraces
https://rustc-dev-guide.rust-lang.org/macro-expansion.html#macro-backtraces
https://rustc-dev-guide.rust-lang.org/macro-expansion.html#producing-macro-output
https://rustc-dev-guide.rust-lang.org/macro-expansion.html#producing-macro-output
https://rustc-dev-guide.rust-lang.org/macro-expansion.html#macros-by-example
https://rustc-dev-guide.rust-lang.org/macro-expansion.html#macros-by-example
https://rustc-dev-guide.rust-lang.org/macro-expansion.html#example
https://rustc-dev-guide.rust-lang.org/macro-expansion.html#example
https://rustc-dev-guide.rust-lang.org/macro-expansion.html#the-mbe-parser
https://rustc-dev-guide.rust-lang.org/macro-expansion.html#the-mbe-parser
https://rustc-dev-guide.rust-lang.org/macro-expansion.html#macros-and-macros-20
https://rustc-dev-guide.rust-lang.org/macro-expansion.html#macros-and-macros-20
https://rustc-dev-guide.rust-lang.org/macro-expansion.html#macros-and-macros-20
https://rustc-dev-guide.rust-lang.org/macro-expansion.html#macros-and-macros-20
https://rustc-dev-guide.rust-lang.org/macro-expansion.html#procedural-macros
https://rustc-dev-guide.rust-lang.org/macro-expansion.html#procedural-macros
https://rustc-dev-guide.rust-lang.org/macro-expansion.html#custom-derive
https://rustc-dev-guide.rust-lang.org/macro-expansion.html#custom-derive
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_expand/placeholders/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_expand/placeholders/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_expand/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_expand/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_expand/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_expand/base/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_expand/base/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_expand/base/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_expand/config/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_expand/config/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_expand/config/index.html
https://rustc-dev-guide.rust-lang.org/print.html#expansion-and-ast-integration
https://rustc-dev-guide.rust-lang.org/print.html#expansion-and-ast-integration

First of all, expansion happens at the crate level. Given a raw source code for a crate, the

compiler will produce a massive AST with all macros expanded, all modules inlined, etc.

The primary entry point for this process is the MacroExpander::fully_expand_fragment

method. With few exceptions, we use this method on the whole crate (see "Eager

Expansion" below for more detailed discussion of edge case expansion issues).

At a high level, fully_expand_fragment works in iterations. We keep a queue of

unresolved macro invocations (that is, macros we haven't found the definition of yet). We

repeatedly try to pick a macro from the queue, resolve it, expand it, and integrate it back.

If we can't make progress in an iteration, this represents a compile error. Here is the

algorithm:

1. Initialize a queue of unresolved macros.

2. Repeat until queue is empty (or we make no progress, which is an error):

1. Resolve imports in our partially built crate as much as possible.

2. Collect as many macro Invocation s as possible from our partially built crate

(fn-like, attributes, derives) and add them to the queue.

3. Dequeue the first element, and attempt to resolve it.

4. If it's resolved:

1. Run the macro's expander function that consumes a TokenStream or AST

and produces a TokenStream or AstFragment (depending on the macro

kind). (A TokenStream is a collection of TokenTree s, each of which are a

token (punctuation, identifier, or literal) or a delimited group (anything

inside () / [] / {})).

▪ At this point, we know everything about the macro itself and can call

set_expn_data to fill in its properties in the global data; that is the

hygiene data associated with ExpnId . (See the "Hygiene" section

below).

2. Integrate that piece of AST into the big existing partially built AST. This is

essentially where the "token-like mass" becomes a proper set-in-stone

AST with side-tables. It happens as follows:

▪ If the macro produces tokens (e.g. a proc macro), we parse into an

AST, which may produce parse errors.

▪ During expansion, we create SyntaxContext s (hierarchy 2). (See the

"Hygiene" section below)

▪ These three passes happen one after another on every AST

fragment freshly expanded from a macro:

▪ NodeId s are assigned by InvocationCollector . This also

collects new macro calls from this new AST piece and adds

them to the queue.

▪ "Def paths" are created and DefId s are assigned to them by

DefCollector .

▪ Names are put into modules (from the resolver's point of view)

by BuildReducedGraphVisitor .

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

287 of 660 8/30/23, 09:47

https://doc.rust-lang.org/nightly/nightly-rustc/rustc_expand/expand/struct.MacroExpander.html#method.fully_expand_fragment
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_expand/expand/struct.MacroExpander.html#method.fully_expand_fragment
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_expand/expand/struct.MacroExpander.html#method.fully_expand_fragment
https://rustc-dev-guide.rust-lang.org/macro-expansion.html#eager-expansion
https://rustc-dev-guide.rust-lang.org/macro-expansion.html#eager-expansion
https://rustc-dev-guide.rust-lang.org/macro-expansion.html#eager-expansion
https://rustc-dev-guide.rust-lang.org/macro-expansion.html#eager-expansion
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_expand/expand/struct.MacroExpander.html#method.fully_expand_fragment
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_expand/expand/struct.MacroExpander.html#method.fully_expand_fragment
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_expand/expand/struct.MacroExpander.html#method.fully_expand_fragment
https://github.com/rust-lang/rust/pull/53778#issuecomment-419224049
https://github.com/rust-lang/rust/pull/53778#issuecomment-419224049
https://rustc-dev-guide.rust-lang.org/name-resolution.html
https://rustc-dev-guide.rust-lang.org/name-resolution.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_expand/expand/struct.Invocation.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_expand/expand/struct.Invocation.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_expand/expand/struct.Invocation.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_expand/expand/struct.Invocation.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_ast/tokenstream/struct.TokenStream.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_ast/tokenstream/struct.TokenStream.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_ast/tokenstream/struct.TokenStream.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_ast/tokenstream/struct.TokenStream.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_ast/tokenstream/struct.TokenStream.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_ast/tokenstream/struct.TokenStream.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_expand/expand/enum.AstFragment.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_expand/expand/enum.AstFragment.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_expand/expand/enum.AstFragment.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_ast/tokenstream/enum.TokenTree.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_ast/tokenstream/enum.TokenTree.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_ast/tokenstream/enum.TokenTree.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_ast/tokenstream/enum.TokenTree.html
https://rustc-dev-guide.rust-lang.org/macro-expansion.html#hygiene-and-hierarchies
https://rustc-dev-guide.rust-lang.org/macro-expansion.html#hygiene-and-hierarchies
https://rustc-dev-guide.rust-lang.org/macro-expansion.html#hygiene-and-hierarchies
https://rustc-dev-guide.rust-lang.org/macro-expansion.html#hygiene-and-hierarchies
https://rustc-dev-guide.rust-lang.org/macro-expansion.html#hygiene-and-hierarchies
https://rustc-dev-guide.rust-lang.org/macro-expansion.html#hygiene-and-hierarchies
https://rustc-dev-guide.rust-lang.org/macro-expansion.html#hygiene-and-hierarchies
https://rustc-dev-guide.rust-lang.org/macro-expansion.html#hygiene-and-hierarchies
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_ast/node_id/struct.NodeId.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_ast/node_id/struct.NodeId.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_ast/node_id/struct.NodeId.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_expand/expand/struct.InvocationCollector.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_expand/expand/struct.InvocationCollector.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_expand/expand/struct.InvocationCollector.html
https://rustc-dev-guide.rust-lang.org/hir.html#identifiers-in-the-hir
https://rustc-dev-guide.rust-lang.org/hir.html#identifiers-in-the-hir
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/def_id/struct.DefId.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/def_id/struct.DefId.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/def_id/struct.DefId.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_resolve/def_collector/struct.DefCollector.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_resolve/def_collector/struct.DefCollector.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_resolve/def_collector/struct.DefCollector.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_resolve/build_reduced_graph/struct.BuildReducedGraphVisitor.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_resolve/build_reduced_graph/struct.BuildReducedGraphVisitor.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_resolve/build_reduced_graph/struct.BuildReducedGraphVisitor.html

3. After expanding a single macro and integrating its output, continue to the

next iteration of fully_expand_fragment .

5. If it's not resolved:

1. Put the macro back in the queue

2. Continue to next iteration...

Error Recovery

If we make no progress in an iteration, then we have reached a compilation error (e.g. an

undefined macro). We attempt to recover from failures (unresolved macros or imports)

for the sake of diagnostics. This allows compilation to continue past the first error, so that

we can report more errors at a time. Recovery can't cause compilation to succeed. We

know that it will fail at this point. The recovery happens by expanding unresolved macros

into ExprKind::Err .

Name Resolution

Notice that name resolution is involved here: we need to resolve imports and macro

names in the above algorithm. This is done in rustc_resolve::macros , which resolves

macro paths, validates those resolutions, and reports various errors (e.g. "not found" or

"found, but it's unstable" or "expected x, found y"). However, we don't try to resolve other

names yet. This happens later, as we will see in the next chapter.

Eager Expansion

Eager expansion means that we expand the arguments of a macro invocation before the

macro invocation itself. This is implemented only for a few special built-in macros that

expect literals; expanding arguments first for some of these macro results in a smoother

user experience. As an example, consider the following:

A lazy expansion would expand foo! first. An eager expansion would expand bar! first.

Eager expansion is not a generally available feature of Rust. Implementing eager

expansion more generally would be challenging, but we implement it for a few special

built-in macros for the sake of user experience. The built-in macros are implemented in

rustc_builtin_macros , along with some other early code generation facilities like

injection of standard library imports or generation of test harness. There are some

macro bar($i: ident) { $i }
macro foo($i: ident) { $i }

foo!(bar!(baz));

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

288 of 660 8/30/23, 09:47

https://doc.rust-lang.org/nightly/nightly-rustc/rustc_expand/expand/struct.MacroExpander.html#method.fully_expand_fragment
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_expand/expand/struct.MacroExpander.html#method.fully_expand_fragment
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_expand/expand/struct.MacroExpander.html#method.fully_expand_fragment
https://rustc-dev-guide.rust-lang.org/print.html#error-recovery
https://rustc-dev-guide.rust-lang.org/print.html#error-recovery
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_ast/ast/enum.ExprKind.html#variant.Err
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_ast/ast/enum.ExprKind.html#variant.Err
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_ast/ast/enum.ExprKind.html#variant.Err
https://rustc-dev-guide.rust-lang.org/print.html#name-resolution
https://rustc-dev-guide.rust-lang.org/print.html#name-resolution
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_resolve/macros/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_resolve/macros/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_resolve/macros/index.html
https://rustc-dev-guide.rust-lang.org/name-resolution.html
https://rustc-dev-guide.rust-lang.org/name-resolution.html
https://rustc-dev-guide.rust-lang.org/print.html#eager-expansion
https://rustc-dev-guide.rust-lang.org/print.html#eager-expansion
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_builtin_macros/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_builtin_macros/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_builtin_macros/index.html

additional helpers for building their AST fragments in rustc_expand::build . Eager

expansion generally performs a subset of the things that lazy (normal) expansion does. It

is done by invoking fully_expand_fragment on only part of a crate (as opposed to the

whole crate, like we normally do).

Other Data Structures

Here are some other notable data structures involved in expansion and integration:

• ResolverExpand - a trait used to break crate dependencies. This allows the resolver

services to be used in rustc_ast , despite rustc_resolve and pretty much

everything else depending on rustc_ast .

• ExtCtxt / ExpansionData - various intermediate data kept and used by expansion

infrastructure in the process of its work

• Annotatable - a piece of AST that can be an attribute target, almost same thing as

AstFragment except for types and patterns that can be produced by macros but

cannot be annotated with attributes

• MacResult - a "polymorphic" AST fragment, something that can turn into a different

AstFragment depending on its AstFragmentKind - item, or expression, or pattern

etc.

Hygiene and Hierarchies

If you have ever used C/C++ preprocessor macros, you know that there are some

annoying and hard-to-debug gotchas! For example, consider the following C code:

Most people avoid writing C like this – and for good reason: it doesn't compile. The

struct Bar defined by the macro clashes names with the struct Bar defined in the

code. Consider also the following example:

#define DEFINE_FOO struct Bar {int x;}; struct Foo {Bar bar;};

// Then, somewhere else
struct Bar {
 ...
};

DEFINE_FOO

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

289 of 660 8/30/23, 09:47

https://doc.rust-lang.org/nightly/nightly-rustc/rustc_expand/build/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_expand/build/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_expand/build/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_expand/expand/struct.MacroExpander.html#method.fully_expand_fragment
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_expand/expand/struct.MacroExpander.html#method.fully_expand_fragment
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_expand/expand/struct.MacroExpander.html#method.fully_expand_fragment
https://rustc-dev-guide.rust-lang.org/print.html#other-data-structures
https://rustc-dev-guide.rust-lang.org/print.html#other-data-structures
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_expand/base/trait.ResolverExpand.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_expand/base/trait.ResolverExpand.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_expand/base/trait.ResolverExpand.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_ast/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_ast/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_ast/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_resolve/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_resolve/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_resolve/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_ast/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_ast/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_ast/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_expand/base/struct.ExtCtxt.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_expand/base/struct.ExtCtxt.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_expand/base/struct.ExtCtxt.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_expand/base/struct.ExpansionData.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_expand/base/struct.ExpansionData.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_expand/base/struct.ExpansionData.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_expand/base/enum.Annotatable.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_expand/base/enum.Annotatable.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_expand/base/enum.Annotatable.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_expand/base/trait.MacResult.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_expand/base/trait.MacResult.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_expand/base/trait.MacResult.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_expand/expand/enum.AstFragmentKind.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_expand/expand/enum.AstFragmentKind.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_expand/expand/enum.AstFragmentKind.html
https://rustc-dev-guide.rust-lang.org/print.html#hygiene-and-hierarchies
https://rustc-dev-guide.rust-lang.org/print.html#hygiene-and-hierarchies

Do you see the problem? We wanted to generate a call foo(22, 0) , but instead we got

foo(0, 0) because the macro defined its own y !

These are both examples of macro hygiene issues. Hygiene relates to how to handle names

defined within a macro. In particular, a hygienic macro system prevents errors due to

names introduced within a macro. Rust macros are hygienic in that they do not allow one

to write the sorts of bugs above.

At a high level, hygiene within the Rust compiler is accomplished by keeping track of the

context where a name is introduced and used. We can then disambiguate names based

on that context. Future iterations of the macro system will allow greater control to the

macro author to use that context. For example, a macro author may want to introduce a

new name to the context where the macro was called. Alternately, the macro author may

be defining a variable for use only within the macro (i.e. it should not be visible outside

the macro).

The context is attached to AST nodes. All AST nodes generated by macros have context

attached. Additionally, there may be other nodes that have context attached, such as

some desugared syntax (non-macro-expanded nodes are considered to just have the

"root" context, as described below). Throughout the compiler, we use

rustc_span::Span s to refer to code locations. This struct also has hygiene information

attached to it, as we will see later.

Because macros invocations and definitions can be nested, the syntax context of a node

must be a hierarchy. For example, if we expand a macro and there is another macro

invocation or definition in the generated output, then the syntax context should reflect

the nesting.

However, it turns out that there are actually a few types of context we may want to track

for different purposes. Thus, there are not just one but three expansion hierarchies that

together comprise the hygiene information for a crate.

All of these hierarchies need some sort of "macro ID" to identify individual elements in

the chain of expansions. This ID is ExpnId . All macros receive an integer ID, assigned

continuously starting from 0 as we discover new macro calls. All hierarchies start at

ExpnId::root() , which is its own parent.

rustc_span::hygiene contains all of the hygiene-related algorithms (with the exception

#define DO_FOO(x) {\
 int y = 0;\
 foo(x, y);\
 }

// Then elsewhere
int y = 22;
DO_FOO(y);

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

290 of 660 8/30/23, 09:47

https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/struct.Span.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/struct.Span.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/struct.Span.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/struct.Span.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/hygiene/struct.ExpnId.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/hygiene/struct.ExpnId.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/hygiene/struct.ExpnId.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/hygiene/struct.ExpnId.html#method.root
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/hygiene/struct.ExpnId.html#method.root
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/hygiene/struct.ExpnId.html#method.root
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/hygiene/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/hygiene/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/hygiene/index.html

of some hacks in Resolver::resolve_crate_root) and structures related to hygiene and

expansion that are kept in global data.

The actual hierarchies are stored in HygieneData . This is a global piece of data containing

hygiene and expansion info that can be accessed from any Ident without any context.

The Expansion Order Hierarchy

The first hierarchy tracks the order of expansions, i.e., when a macro invocation is in the

output of another macro.

Here, the children in the hierarchy will be the "innermost" tokens. The ExpnData struct

itself contains a subset of properties from both macro definition and macro call available

through global data. ExpnData::parent tracks the child -> parent link in this hierarchy.

For example,

In this code, the AST nodes that are finally generated would have hierarchy:

The Macro Definition Hierarchy

The second hierarchy tracks the order of macro definitions, i.e., when we are expanding

one macro another macro definition is revealed in its output. This one is a bit tricky and

more complex than the other two hierarchies.

SyntaxContext represents a whole chain in this hierarchy via an ID. SyntaxContextData

contains data associated with the given SyntaxContext ; mostly it is a cache for results of

filtering that chain in different ways. SyntaxContextData::parent is the child -> parent

link here, and SyntaxContextData::outer_expns are individual elements in the chain.

The "chaining operator" is SyntaxContext::apply_mark in compiler code.

A Span , mentioned above, is actually just a compact representation of a code location

and SyntaxContext . Likewise, an Ident is just an interned Symbol + Span (i.e. an

interned string + hygiene data).

For built-in macros, we use the context: SyntaxContext::empty().apply_mark(expn_id) ,

macro_rules! foo { () => { println!(); } }

fn main() { foo!(); }

root
 expn_id_foo
 expn_id_println

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

291 of 660 8/30/23, 09:47

https://doc.rust-lang.org/nightly/nightly-rustc/rustc_resolve/struct.Resolver.html#method.resolve_crate_root
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_resolve/struct.Resolver.html#method.resolve_crate_root
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_resolve/struct.Resolver.html#method.resolve_crate_root
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/hygiene/struct.HygieneData.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/hygiene/struct.HygieneData.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/hygiene/struct.HygieneData.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/symbol/struct.Ident.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/symbol/struct.Ident.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/symbol/struct.Ident.html
https://rustc-dev-guide.rust-lang.org/print.html#the-expansion-order-hierarchy
https://rustc-dev-guide.rust-lang.org/print.html#the-expansion-order-hierarchy
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/hygiene/struct.ExpnData.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/hygiene/struct.ExpnData.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/hygiene/struct.ExpnData.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/hygiene/struct.ExpnData.html#structfield.parent
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/hygiene/struct.ExpnData.html#structfield.parent
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/hygiene/struct.ExpnData.html#structfield.parent
https://rustc-dev-guide.rust-lang.org/print.html#the-macro-definition-hierarchy
https://rustc-dev-guide.rust-lang.org/print.html#the-macro-definition-hierarchy
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/hygiene/struct.SyntaxContext.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/hygiene/struct.SyntaxContext.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/hygiene/struct.SyntaxContext.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/hygiene/struct.SyntaxContextData.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/hygiene/struct.SyntaxContextData.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/hygiene/struct.SyntaxContextData.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/hygiene/struct.SyntaxContextData.html#structfield.parent
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/hygiene/struct.SyntaxContextData.html#structfield.parent
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/hygiene/struct.SyntaxContextData.html#structfield.parent
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/hygiene/struct.SyntaxContextData.html#structfield.outer_expn
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/hygiene/struct.SyntaxContextData.html#structfield.outer_expn
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/hygiene/struct.SyntaxContextData.html#structfield.outer_expn
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/hygiene/struct.SyntaxContext.html#method.apply_mark
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/hygiene/struct.SyntaxContext.html#method.apply_mark
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/hygiene/struct.SyntaxContext.html#method.apply_mark
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/struct.Span.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/struct.Span.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/struct.Span.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/symbol/struct.Ident.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/symbol/struct.Ident.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/symbol/struct.Ident.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/symbol/struct.Symbol.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/symbol/struct.Symbol.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/symbol/struct.Symbol.html

and such macros are considered to be defined at the hierarchy root. We do the same for

proc-macros because we haven't implemented cross-crate hygiene yet.

If the token had context X before being produced by a macro then after being produced

by the macro it has context X -> macro_id . Here are some examples:

Example 0:

Here ident originally has context SyntaxContext::root() . ident has context ROOT ->

id(m) after it's produced by m .

Example 1:

In this example the ident has context ROOT originally, then ROOT -> id(m) after the

first expansion, then ROOT -> id(m) -> id(n) .

Example 2:

Note that these chains are not entirely determined by their last element, in other words

ExpnId is not isomorphic to SyntaxContext .

After all expansions, foo has context ROOT -> id(n) and bar has context ROOT ->

id(m) -> id(n) .

Finally, one last thing to mention is that currently, this hierarchy is subject to the "context

transplantation hack". Basically, the more modern (and experimental) macro macros

have stronger hygiene than the older MBE system, but this can result in weird

interactions between the two. The hack is intended to make things "just work" for now.

The Call-site Hierarchy

The third and final hierarchy tracks the location of macro invocations.

macro m() { ident }

m!();

macro m() { macro n() { ident } }

m!();
n!();

macro m($i: ident) { macro n() { ($i, bar) } }

m!(foo);

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

292 of 660 8/30/23, 09:47

https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/hygiene/struct.SyntaxContext.html#method.root
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/hygiene/struct.SyntaxContext.html#method.root
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/hygiene/struct.SyntaxContext.html#method.root
https://github.com/rust-lang/rust/pull/51762#issuecomment-401400732
https://github.com/rust-lang/rust/pull/51762#issuecomment-401400732
https://github.com/rust-lang/rust/pull/51762#issuecomment-401400732
https://github.com/rust-lang/rust/pull/51762#issuecomment-401400732
https://rustc-dev-guide.rust-lang.org/print.html#the-call-site-hierarchy
https://rustc-dev-guide.rust-lang.org/print.html#the-call-site-hierarchy

In this hierarchy ExpnData::call_site is the child -> parent link.

Here is an example:

For the baz AST node in the final output, the first hierarchy is ROOT -> id(foo) ->

id(bar) -> baz , while the third hierarchy is ROOT -> baz .

Macro Backtraces

Macro backtraces are implemented in rustc_span using the hygiene machinery in

rustc_span::hygiene .

Producing Macro Output

Above, we saw how the output of a macro is integrated into the AST for a crate, and we

also saw how the hygiene data for a crate is generated. But how do we actually produce

the output of a macro? It depends on the type of macro.

There are two types of macros in Rust: macro_rules! macros (a.k.a. "Macros By

Example" (MBE)) and procedural macros (or "proc macros"; including custom derives).

During the parsing phase, the normal Rust parser will set aside the contents of macros

and their invocations. Later, macros are expanded using these portions of the code.

Some important data structures/interfaces here:

• SyntaxExtension - a lowered macro representation, contains its expander function,

which transforms a TokenStream or AST into another TokenStream or AST + some

additional data like stability, or a list of unstable features allowed inside the macro.

• SyntaxExtensionKind - expander functions may have several different signatures

(take one token stream, or two, or a piece of AST, etc). This is an enum that lists

them.

• BangProcMacro / TTMacroExpander / AttrProcMacro / MultiItemModifier - traits

representing the expander function signatures.

Macros By Example

macro bar($i: ident) { $i }
macro foo($i: ident) { $i }

foo!(bar!(baz));

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

293 of 660 8/30/23, 09:47

https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/hygiene/struct.ExpnData.html#structfield.call_site
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/hygiene/struct.ExpnData.html#structfield.call_site
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/hygiene/struct.ExpnData.html#structfield.call_site
https://rustc-dev-guide.rust-lang.org/print.html#macro-backtraces
https://rustc-dev-guide.rust-lang.org/print.html#macro-backtraces
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/hygiene/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/hygiene/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/hygiene/index.html
https://rustc-dev-guide.rust-lang.org/print.html#producing-macro-output
https://rustc-dev-guide.rust-lang.org/print.html#producing-macro-output
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_expand/base/struct.SyntaxExtension.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_expand/base/struct.SyntaxExtension.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_expand/base/struct.SyntaxExtension.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_expand/base/enum.SyntaxExtensionKind.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_expand/base/enum.SyntaxExtensionKind.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_expand/base/enum.SyntaxExtensionKind.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_expand/base/trait.BangProcMacro.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_expand/base/trait.BangProcMacro.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_expand/base/trait.BangProcMacro.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_expand/base/trait.TTMacroExpander.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_expand/base/trait.TTMacroExpander.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_expand/base/trait.TTMacroExpander.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_expand/base/trait.AttrProcMacro.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_expand/base/trait.AttrProcMacro.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_expand/base/trait.AttrProcMacro.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_expand/base/trait.MultiItemModifier.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_expand/base/trait.MultiItemModifier.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_expand/base/trait.MultiItemModifier.html
https://rustc-dev-guide.rust-lang.org/print.html#macros-by-example
https://rustc-dev-guide.rust-lang.org/print.html#macros-by-example

MBEs have their own parser distinct from the normal Rust parser. When macros are

expanded, we may invoke the MBE parser to parse and expand a macro. The MBE parser,

in turn, may call the normal Rust parser when it needs to bind a metavariable (e.g.

$my_expr) while parsing the contents of a macro invocation. The code for macro

expansion is in compiler/rustc_expand/src/mbe/ .

Example

It's helpful to have an example to refer to. For the remainder of this chapter, whenever

we refer to the "example definition", we mean the following:

$mvar is called a metavariable. Unlike normal variables, rather than binding to a value in

a computation, a metavariable binds at compile time to a tree of tokens. A token is a single

"unit" of the grammar, such as an identifier (e.g. foo) or punctuation (e.g. =>). There are

also other special tokens, such as EOF , which indicates that there are no more tokens.

Token trees resulting from paired parentheses-like characters ((...) , [...] , and { ... })

– they include the open and close and all the tokens in between (we do require that

parentheses-like characters be balanced). Having macro expansion operate on token

streams rather than the raw bytes of a source file abstracts away a lot of complexity. The

macro expander (and much of the rest of the compiler) doesn't really care that much

about the exact line and column of some syntactic construct in the code; it cares about

what constructs are used in the code. Using tokens allows us to care about what without

worrying about where. For more information about tokens, see the Parsing chapter of this

book.

Whenever we refer to the "example invocation", we mean the following snippet:

The process of expanding the macro invocation into the syntax tree println!("{}",

foo) and then expanding that into a call to Display::fmt is called macro expansion, and

it is the topic of this chapter.

macro_rules! printer {
 (print $mvar:ident) => {

println!("{}", $mvar);
 };
 (print twice $mvar:ident) => {

println!("{}", $mvar);
println!("{}", $mvar);

 };
}

printer!(print foo); // Assume `foo` is a variable defined somewhere else...

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

294 of 660 8/30/23, 09:47

https://github.com/rust-lang/rust/tree/master/compiler/rustc_expand/src/mbe
https://github.com/rust-lang/rust/tree/master/compiler/rustc_expand/src/mbe
https://github.com/rust-lang/rust/tree/master/compiler/rustc_expand/src/mbe
https://rustc-dev-guide.rust-lang.org/print.html#example
https://rustc-dev-guide.rust-lang.org/print.html#example
https://rustc-dev-guide.rust-lang.org/the-parser.html
https://rustc-dev-guide.rust-lang.org/the-parser.html

The MBE parser

There are two parts to MBE expansion: parsing the definition and parsing the invocations.

Interestingly, both are done by the macro parser.

Basically, the MBE parser is like an NFA-based regex parser. It uses an algorithm similar in

spirit to the Earley parsing algorithm. The macro parser is defined in

compiler/rustc_expand/src/mbe/macro_parser.rs .

The interface of the macro parser is as follows (this is slightly simplified):

We use these items in macro parser:

• parser is a reference to the state of a normal Rust parser, including the token

stream and parsing session. The token stream is what we are about to ask the MBE

parser to parse. We will consume the raw stream of tokens and output a binding of

metavariables to corresponding token trees. The parsing session can be used to

report parser errors.

• matcher is a sequence of MatcherLoc s that we want to match the token stream

against. They're converted from token trees before matching.

In the analogy of a regex parser, the token stream is the input and we are matching it

against the pattern matcher . Using our examples, the token stream could be the stream

of tokens containing the inside of the example invocation print foo , while matcher

might be the sequence of token (trees) print $mvar:ident .

The output of the parser is a ParseResult , which indicates which of three cases has

occurred:

• Success: the token stream matches the given matcher , and we have produced a

binding from metavariables to the corresponding token trees.

• Failure: the token stream does not match matcher . This results in an error message

such as "No rule expected token blah".

• Error: some fatal error has occurred in the parser. For example, this happens if there

is more than one pattern match, since that indicates the macro is ambiguous.

The full interface is defined here.

The macro parser does pretty much exactly the same as a normal regex parser with one

exception: in order to parse different types of metavariables, such as ident , block ,

expr , etc., the macro parser must sometimes call back to the normal Rust parser.

fn parse_tt(
 &mut self,
 parser: &mut Cow<'_, Parser<'_>>,
 matcher: &[MatcherLoc]
) -> ParseResult

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

295 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#the-mbe-parser
https://rustc-dev-guide.rust-lang.org/print.html#the-mbe-parser
https://en.wikipedia.org/wiki/Earley_parser
https://en.wikipedia.org/wiki/Earley_parser
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_expand/mbe/macro_parser
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_expand/mbe/macro_parser
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_expand/mbe/macro_parser
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_expand/mbe/macro_parser/enum.ParseResult.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_expand/mbe/macro_parser/enum.ParseResult.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_expand/mbe/macro_parser/enum.ParseResult.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_expand/mbe/macro_parser/struct.TtParser.html#method.parse_tt
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_expand/mbe/macro_parser/struct.TtParser.html#method.parse_tt

As mentioned above, both definitions and invocations of macros are parsed using the

macro parser. This is extremely non-intuitive and self-referential. The code to parse

macro definitions is in compiler/rustc_expand/src/mbe/macro_rules.rs . It defines the

pattern for matching for a macro definition as $($lhs:tt => $rhs:tt);+ . In other

words, a macro_rules definition should have in its body at least one occurrence of a

token tree followed by => followed by another token tree. When the compiler comes to a

macro_rules definition, it uses this pattern to match the two token trees per rule in the

definition of the macro using the macro parser itself. In our example definition, the

metavariable $lhs would match the patterns of both arms: (print $mvar:ident) and

(print twice $mvar:ident) . And $rhs would match the bodies of both arms: {

println!("{}", $mvar); } and { println!("{}", $mvar); println!("{}", $mvar); } .

The parser would keep this knowledge around for when it needs to expand a macro

invocation.

When the compiler comes to a macro invocation, it parses that invocation using the same

NFA-based macro parser that is described above. However, the matcher used is the first

token tree ($lhs) extracted from the arms of the macro definition. Using our example, we

would try to match the token stream print foo from the invocation against the

matchers print $mvar:ident and print twice $mvar:ident that we previously

extracted from the definition. The algorithm is exactly the same, but when the macro

parser comes to a place in the current matcher where it needs to match a non-terminal

(e.g. $mvar:ident), it calls back to the normal Rust parser to get the contents of that non-

terminal. In this case, the Rust parser would look for an ident token, which it finds (foo)

and returns to the macro parser. Then, the macro parser proceeds in parsing as normal.

Also, note that exactly one of the matchers from the various arms should match the

invocation; if there is more than one match, the parse is ambiguous, while if there are no

matches at all, there is a syntax error.

For more information about the macro parser's implementation, see the comments in

compiler/rustc_expand/src/mbe/macro_parser.rs .

macros and Macros 2.0

There is an old and mostly undocumented effort to improve the MBE system, give it more

hygiene-related features, better scoping and visibility rules, etc. There hasn't been a lot of

work on this recently, unfortunately. Internally, macro macros use the same machinery

as today's MBEs; they just have additional syntactic sugar and are allowed to be in

namespaces.

Procedural Macros

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

296 of 660 8/30/23, 09:47

https://doc.rust-lang.org/nightly/nightly-rustc/rustc_expand/mbe/macro_rules
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_expand/mbe/macro_rules
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_expand/mbe/macro_rules
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_expand/mbe/macro_parser
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_expand/mbe/macro_parser
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_expand/mbe/macro_parser
https://rustc-dev-guide.rust-lang.org/print.html#macros-and-macros-20
https://rustc-dev-guide.rust-lang.org/print.html#macros-and-macros-20
https://rustc-dev-guide.rust-lang.org/print.html#macros-and-macros-20
https://rustc-dev-guide.rust-lang.org/print.html#macros-and-macros-20
https://rustc-dev-guide.rust-lang.org/print.html#procedural-macros
https://rustc-dev-guide.rust-lang.org/print.html#procedural-macros

Procedural macros are also expanded during parsing, as mentioned above. However,

they use a rather different mechanism. Rather than having a parser in the compiler,

procedural macros are implemented as custom, third-party crates. The compiler will

compile the proc macro crate and specially annotated functions in them (i.e. the proc

macro itself), passing them a stream of tokens.

The proc macro can then transform the token stream and output a new token stream,

which is synthesized into the AST.

It's worth noting that the token stream type used by proc macros is stable, so rustc does

not use it internally (since our internal data structures are unstable). The compiler's token

stream is rustc_ast::tokenstream::TokenStream , as previously. This is converted into

the stable proc_macro::TokenStream and back in rustc_expand::proc_macro and

rustc_expand::proc_macro_server . Because the Rust ABI is unstable, we use the C ABI

for this conversion.

TODO: more here. #1160

Custom Derive

Custom derives are a special type of proc macro.

TODO: more? #1160

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

297 of 660 8/30/23, 09:47

https://doc.rust-lang.org/nightly/nightly-rustc/rustc_ast/tokenstream/struct.TokenStream.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_ast/tokenstream/struct.TokenStream.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_ast/tokenstream/struct.TokenStream.html
https://doc.rust-lang.org/proc_macro/struct.TokenStream.html
https://doc.rust-lang.org/proc_macro/struct.TokenStream.html
https://doc.rust-lang.org/proc_macro/struct.TokenStream.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_expand/proc_macro/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_expand/proc_macro/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_expand/proc_macro/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_expand/proc_macro_server/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_expand/proc_macro_server/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_expand/proc_macro_server/index.html
https://github.com/rust-lang/rustc-dev-guide/issues/1160
https://github.com/rust-lang/rustc-dev-guide/issues/1160
https://rustc-dev-guide.rust-lang.org/print.html#custom-derive
https://rustc-dev-guide.rust-lang.org/print.html#custom-derive
https://github.com/rust-lang/rustc-dev-guide/issues/1160
https://github.com/rust-lang/rustc-dev-guide/issues/1160

Name resolution

• Basics

• Namespaces

• Scopes and ribs

• Overall strategy

• Speculative crate loading

• TODO: #16

In the previous chapters, we saw how the AST is built with all macros expanded. We saw

how doing that requires doing some name resolution to resolve imports and macro

names. In this chapter, we show how this is actually done and more.

In fact, we don't do full name resolution during macro expansion -- we only resolve

imports and macros at that time. This is required to know what to even expand. Later,

after we have the whole AST, we do full name resolution to resolve all names in the crate.

This happens in rustc_resolve::late . Unlike during macro expansion, in this late

expansion, we only need to try to resolve a name once, since no new names can be

added. If we fail to resolve a name now, then it is a compiler error.

Name resolution can be complex. There are a few different namespaces (e.g. macros,

values, types, lifetimes), and names may be valid at different (nested) scopes. Also,

different types of names can fail to be resolved differently, and failures can happen

differently at different scopes. For example, for a module scope, failure means no

unexpanded macros and no unresolved glob imports in that module. On the other hand,

in a function body, failure requires that a name be absent from the block we are in, all

outer scopes, and the global scope.

Basics

In our programs we can refer to variables, types, functions, etc, by giving them a name.

These names are not always unique. For example, take this valid Rust program:

How do we know on line 3 whether x is a type (u32) or a value (1)? These conflicts are

resolved during name resolution. In this specific case, name resolution defines that type

names and variable names live in separate namespaces and therefore can co-exist.

The name resolution in Rust is a two-phase process. In the first phase, which runs during

macro expansion, we build a tree of modules and resolve imports. Macro expansion and

type x = u32;
let x: x = 1;
let y: x = 2;

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

298 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#name-resolution-1
https://rustc-dev-guide.rust-lang.org/print.html#name-resolution-1
https://rustc-dev-guide.rust-lang.org/name-resolution.html#basics
https://rustc-dev-guide.rust-lang.org/name-resolution.html#basics
https://rustc-dev-guide.rust-lang.org/name-resolution.html#namespaces
https://rustc-dev-guide.rust-lang.org/name-resolution.html#namespaces
https://rustc-dev-guide.rust-lang.org/name-resolution.html#scopes-and-ribs
https://rustc-dev-guide.rust-lang.org/name-resolution.html#scopes-and-ribs
https://rustc-dev-guide.rust-lang.org/name-resolution.html#overall-strategy
https://rustc-dev-guide.rust-lang.org/name-resolution.html#overall-strategy
https://rustc-dev-guide.rust-lang.org/name-resolution.html#speculative-crate-loading
https://rustc-dev-guide.rust-lang.org/name-resolution.html#speculative-crate-loading
https://rustc-dev-guide.rust-lang.org/name-resolution.html#todo-16
https://rustc-dev-guide.rust-lang.org/name-resolution.html#todo-16
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_resolve/late/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_resolve/late/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_resolve/late/index.html
https://rustc-dev-guide.rust-lang.org/print.html#basics
https://rustc-dev-guide.rust-lang.org/print.html#basics

name resolution communicate with each other via the ResolverAstLoweringExt trait.

The input to the second phase is the syntax tree, produced by parsing input files and

expanding macros. This phase produces links from all the names in the source to relevant

places where the name was introduced. It also generates helpful error messages, like

typo suggestions, traits to import or lints about unused items.

A successful run of the second phase (Resolver::resolve_crate) creates kind of an

index the rest of the compilation may use to ask about the present names (through the

hir::lowering::Resolver interface).

The name resolution lives in the rustc_resolve crate, with the meat in lib.rs and

some helpers or symbol-type specific logic in the other modules.

Namespaces

Different kind of symbols live in different namespaces ‒ e.g. types don't clash with

variables. This usually doesn't happen, because variables start with lower-case letter

while types with upper case one, but this is only a convention. This is legal Rust code

that'll compile (with warnings):

To cope with this, and with slightly different scoping rules for these namespaces, the

resolver keeps them separated and builds separate structures for them.

In other words, when the code talks about namespaces, it doesn't mean the module

hierarchy, it's types vs. values vs. macros.

Scopes and ribs

A name is visible only in certain area in the source code. This forms a hierarchical

structure, but not necessarily a simple one ‒ if one scope is part of another, it doesn't

mean the name visible in the outer one is also visible in the inner one, or that it refers to

the same thing.

To cope with that, the compiler introduces the concept of Ribs. This is an abstraction of a

scope. Every time the set of visible names potentially changes, a new rib is pushed onto a

stack. The places where this can happen include for example:

type x = u32;
let x: x = 1;
let y: x = 2; // See? x is still a type here.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

299 of 660 8/30/23, 09:47

https://doc.rust-lang.org/nightly/nightly-rustc/rustc_ast_lowering/trait.ResolverAstLoweringExt.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_ast_lowering/trait.ResolverAstLoweringExt.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_ast_lowering/trait.ResolverAstLoweringExt.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_resolve/struct.Resolver.html#method.resolve_crate
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_resolve/struct.Resolver.html#method.resolve_crate
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_resolve/struct.Resolver.html#method.resolve_crate
https://rustc-dev-guide.rust-lang.org/print.html#namespaces
https://rustc-dev-guide.rust-lang.org/print.html#namespaces
https://rustc-dev-guide.rust-lang.org/print.html#scopes-and-ribs
https://rustc-dev-guide.rust-lang.org/print.html#scopes-and-ribs

• The obvious places ‒ curly braces enclosing a block, function boundaries, modules.

• Introducing a let binding ‒ this can shadow another binding with the same name.

• Macro expansion border ‒ to cope with macro hygiene.

When searching for a name, the stack of ribs is traversed from the innermost outwards.

This helps to find the closest meaning of the name (the one not shadowed by anything

else). The transition to outer rib may also affect what names are usable ‒ if there are

nested functions (not closures), the inner one can't access parameters and local bindings

of the outer one, even though they should be visible by ordinary scoping rules. An

example:

Because the rules for different namespaces are a bit different, each namespace has its

own independent rib stack that is constructed in parallel to the others. In addition, there's

also a rib stack for local labels (e.g. names of loops or blocks), which isn't a full

namespace in its own right.

Overall strategy

To perform the name resolution of the whole crate, the syntax tree is traversed top-down

and every encountered name is resolved. This works for most kinds of names, because at

the point of use of a name it is already introduced in the Rib hierarchy.

There are some exceptions to this. Items are bit tricky, because they can be used even

before encountered ‒ therefore every block needs to be first scanned for items to fill in its

Rib.

Other, even more problematic ones, are imports which need recursive fixed-point

resolution and macros, that need to be resolved and expanded before the rest of the

code can be processed.

fn do_something<T: Default>(val: T) { // <- New rib in both types and values
(1)

// `val` is accessible, as is the helper function
// `T` is accessible
let helper = || { // New rib on `helper` (2) and another on the block (3)

// `val` is accessible here
 }; // End of (3)

// `val` is accessible, `helper` variable shadows `helper` function
fn helper() { // <- New rib in both types and values (4)

// `val` is not accessible here, (4) is not transparent for locals
// `T` is not accessible here

 } // End of (4)
let val = T::default(); // New rib (5)
// `val` is the variable, not the parameter here

} // End of (5), (2) and (1)

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

300 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#overall-strategy
https://rustc-dev-guide.rust-lang.org/print.html#overall-strategy

Therefore, the resolution is performed in multiple stages.

Speculative crate loading

To give useful errors, rustc suggests importing paths into scope if they're not found. How

does it do this? It looks through every module of every crate and looks for possible

matches. This even includes crates that haven't yet been loaded!

Loading crates for import suggestions that haven't yet been loaded is called speculative

crate loading, because any errors it encounters shouldn't be reported: resolve decided to

load them, not the user. The function that does this is lookup_import_candidates and

lives in rustc_resolve/src/diagnostics.rs .

To tell the difference between speculative loads and loads initiated by the user, resolve

passes around a record_used parameter, which is false when the load is speculative.

TODO: #16

This is a result of the first pass of learning the code. It is definitely incomplete and not

detailed enough. It also might be inaccurate in places. Still, it probably provides useful

first guidepost to what happens in there.

• What exactly does it link to and how is that published and consumed by following

stages of compilation?

• Who calls it and how it is actually used.

• Is it a pass and then the result is only used, or can it be computed incrementally?

• The overall strategy description is a bit vague.

• Where does the name Rib come from?

• Does this thing have its own tests, or is it tested only as part of some e2e testing?

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

301 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#speculative-crate-loading
https://rustc-dev-guide.rust-lang.org/print.html#speculative-crate-loading
https://rustc-dev-guide.rust-lang.org/print.html#todo-16
https://rustc-dev-guide.rust-lang.org/print.html#todo-16
https://github.com/rust-lang/rustc-dev-guide/issues/16
https://github.com/rust-lang/rustc-dev-guide/issues/16

The #[test] attribute

• Step 1: Re-Exporting

• Step 2: Harness Generation

• Step 3: Test Object Generation

• Inspecting the generated code

Today, Rust programmers rely on a built in attribute called #[test] . All you have to do is

mark a function as a test and include some asserts like so:

When this program is compiled using rustc --test or cargo test , it will produce an

executable that can run this, and any other test function. This method of testing allows

tests to live alongside code in an organic way. You can even put tests inside private

modules:

Private items can thus be easily tested without worrying about how to expose them to

any sort of external testing apparatus. This is key to the ergonomics of testing in Rust.

Semantically, however, it's rather odd. How does any sort of main function invoke these

tests if they're not visible? What exactly is rustc --test doing?

#[test] is implemented as a syntactic transformation inside the compiler's rustc_ast

crate. Essentially, it's a fancy macro, that rewrites the crate in 3 steps:

Step 1: Re-Exporting

As mentioned earlier, tests can exist inside private modules, so we need a way of

exposing them to the main function, without breaking any existing code. To that end,

rustc_ast will create local modules called __test_reexports that recursively reexport

tests. This expansion translates the above example into:

#[test]
fn my_test() {

assert!(2+2 == 4);
}

mod my_priv_mod {
fn my_priv_func() -> bool {}

#[test]
fn test_priv_func() {

assert!(my_priv_func());
 }
}

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

302 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#the-test-attribute
https://rustc-dev-guide.rust-lang.org/print.html#the-test-attribute
https://rustc-dev-guide.rust-lang.org/print.html#the-test-attribute
https://rustc-dev-guide.rust-lang.org/print.html#the-test-attribute
https://rustc-dev-guide.rust-lang.org/print.html#the-test-attribute
https://rustc-dev-guide.rust-lang.org/test-implementation.html#step-1-re-exporting
https://rustc-dev-guide.rust-lang.org/test-implementation.html#step-1-re-exporting
https://rustc-dev-guide.rust-lang.org/test-implementation.html#step-2-harness-generation
https://rustc-dev-guide.rust-lang.org/test-implementation.html#step-2-harness-generation
https://rustc-dev-guide.rust-lang.org/test-implementation.html#step-3-test-object-generation
https://rustc-dev-guide.rust-lang.org/test-implementation.html#step-3-test-object-generation
https://rustc-dev-guide.rust-lang.org/test-implementation.html#inspecting-the-generated-code
https://rustc-dev-guide.rust-lang.org/test-implementation.html#inspecting-the-generated-code
https://github.com/rust-lang/rust/tree/master/compiler/rustc_ast
https://github.com/rust-lang/rust/tree/master/compiler/rustc_ast
https://github.com/rust-lang/rust/tree/master/compiler/rustc_ast
https://github.com/rust-lang/rust/tree/master/compiler/rustc_ast
https://github.com/rust-lang/rust/tree/master/compiler/rustc_ast
https://rustc-dev-guide.rust-lang.org/print.html#step-1-re-exporting
https://rustc-dev-guide.rust-lang.org/print.html#step-1-re-exporting

Now, our test can be accessed as my_priv_mod::__test_reexports::test_priv_func .

For deeper module structures, __test_reexports will reexport modules that contain

tests, so a test at a::b::my_test becomes

a::__test_reexports::b::__test_reexports::my_test . While this process seems pretty

safe, what happens if there is an existing __test_reexports module? The answer:

nothing.

To explain, we need to understand how the AST represents identifiers. The name of every

function, variable, module, etc. is not stored as a string, but rather as an opaque Symbol

which is essentially an ID number for each identifier. The compiler keeps a separate

hashtable that allows us to recover the human-readable name of a Symbol when

necessary (such as when printing a syntax error). When the compiler generates the

__test_reexports module, it generates a new Symbol for the identifier, so while the

compiler-generated __test_reexports may share a name with your hand-written one, it

will not share a Symbol. This technique prevents name collision during code generation

and is the foundation of Rust's macro hygiene.

Step 2: Harness Generation

Now that our tests are accessible from the root of our crate, we need to do something

with them. rustc_ast generates a module like so:

where path::to::test1 is a constant of type test::TestDescAndFn .

While this transformation is simple, it gives us a lot of insight into how tests are actually

run. The tests are aggregated into an array and passed to a test runner called

test_main_static . We'll come back to exactly what TestDescAndFn is, but for now, the

mod my_priv_mod {
fn my_priv_func() -> bool {}

pub fn test_priv_func() {
assert!(my_priv_func());

 }

pub mod __test_reexports {
pub use super::test_priv_func;

 }
}

#[main]
pub fn main() {

extern crate test;
 test::test_main_static(&[&path::to::test1, /*...*/]);
}

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

303 of 660 8/30/23, 09:47

https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/symbol/struct.Ident.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/symbol/struct.Ident.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/symbol/struct.Symbol.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/symbol/struct.Symbol.html
https://rustc-dev-guide.rust-lang.org/print.html#step-2-harness-generation
https://rustc-dev-guide.rust-lang.org/print.html#step-2-harness-generation

key takeaway is that there is a crate called test that is part of Rust core, that implements

all of the runtime for testing. test 's interface is unstable, so the only stable way to

interact with it is through the #[test] macro.

Step 3: Test Object Generation

If you've written tests in Rust before, you may be familiar with some of the optional

attributes available on test functions. For example, a test can be annotated with

#[should_panic] if we expect the test to cause a panic. It looks something like this:

This means our tests are more than just simple functions, they have configuration

information as well. test encodes this configuration data into a struct called TestDesc .

For each test function in a crate, rustc_ast will parse its attributes and generate a

TestDesc instance. It then combines the TestDesc and test function into the predictably

named TestDescAndFn struct, that test_main_static operates on. For a given test, the

generated TestDescAndFn instance looks like so:

Once we've constructed an array of these test objects, they're passed to the test runner

via the harness generated in step 2.

Inspecting the generated code

On nightly rust, there's an unstable flag called unpretty that you can use to print out the

module source after macro expansion:

#[test]
#[should_panic]
fn foo() {

panic!("intentional");
}

self::test::TestDescAndFn{
 desc: self::test::TestDesc{
 name: self::test::StaticTestName("foo"),
 ignore: false,
 should_panic: self::test::ShouldPanic::Yes,
 allow_fail: false,
 },
 testfn: self::test::StaticTestFn(||
 self::test::assert_test_result(::crate::__test_reexports::foo())),
}

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

304 of 660 8/30/23, 09:47

https://doc.rust-lang.org/test/index.html
https://doc.rust-lang.org/test/index.html
https://doc.rust-lang.org/test/index.html
https://rustc-dev-guide.rust-lang.org/print.html#step-3-test-object-generation
https://rustc-dev-guide.rust-lang.org/print.html#step-3-test-object-generation
https://doc.rust-lang.org/test/struct.TestDesc.html
https://doc.rust-lang.org/test/struct.TestDesc.html
https://doc.rust-lang.org/test/struct.TestDesc.html
https://rustc-dev-guide.rust-lang.org/print.html#inspecting-the-generated-code
https://rustc-dev-guide.rust-lang.org/print.html#inspecting-the-generated-code

$ rustc my_mod.rs -Z unpretty=hir

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

305 of 660 8/30/23, 09:47

Panicking in rust

• Step 1: Invocation of the panic! macro.

◦ core definition of panic!

◦ std implementation of panic!

• Step 2: The panic runtime

Step 1: Invocation of the panic! macro.

There are actually two panic macros - one defined in core , and one defined in std . This

is due to the fact that code in core can panic. core is built before std , but we want

panics to use the same machinery at runtime, whether they originate in core or std .

core definition of panic!

The core panic! macro eventually makes the following call (in library/core

/src/panicking.rs):

Actually resolving this goes through several layers of indirection:

1. In compiler/rustc_middle/src/middle/weak_lang_items.rs , panic_impl is

declared as 'weak lang item', with the symbol rust_begin_unwind . This is used in

rustc_hir_analysis/src/collect.rs to set the actual symbol name to

rust_begin_unwind .

Note that panic_impl is declared in an extern "Rust" block, which means that

core will attempt to call a foreign symbol called rust_begin_unwind (to be resolved

at link time)

2. In library/std/src/panicking.rs , we have this definition:

// NOTE This function never crosses the FFI boundary; it's a Rust-to-Rust
call
extern "Rust" {

#[lang = "panic_impl"]
fn panic_impl(pi: &PanicInfo<'_>) -> !;

}

let pi = PanicInfo::internal_constructor(Some(&fmt), location);
unsafe { panic_impl(&pi) }

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

306 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#panicking-in-rust
https://rustc-dev-guide.rust-lang.org/print.html#panicking-in-rust
https://rustc-dev-guide.rust-lang.org/panic-implementation.html#step-1-invocation-of-the-panic-macro
https://rustc-dev-guide.rust-lang.org/panic-implementation.html#step-1-invocation-of-the-panic-macro
https://rustc-dev-guide.rust-lang.org/panic-implementation.html#step-1-invocation-of-the-panic-macro
https://rustc-dev-guide.rust-lang.org/panic-implementation.html#step-1-invocation-of-the-panic-macro
https://rustc-dev-guide.rust-lang.org/panic-implementation.html#step-1-invocation-of-the-panic-macro
https://rustc-dev-guide.rust-lang.org/panic-implementation.html#core-definition-of-panic
https://rustc-dev-guide.rust-lang.org/panic-implementation.html#core-definition-of-panic
https://rustc-dev-guide.rust-lang.org/panic-implementation.html#std-implementation-of-panic
https://rustc-dev-guide.rust-lang.org/panic-implementation.html#std-implementation-of-panic
https://rustc-dev-guide.rust-lang.org/panic-implementation.html#step-2-the-panic-runtime
https://rustc-dev-guide.rust-lang.org/panic-implementation.html#step-2-the-panic-runtime
https://rustc-dev-guide.rust-lang.org/print.html#step-1-invocation-of-the-panic-macro
https://rustc-dev-guide.rust-lang.org/print.html#step-1-invocation-of-the-panic-macro
https://rustc-dev-guide.rust-lang.org/print.html#step-1-invocation-of-the-panic-macro
https://rustc-dev-guide.rust-lang.org/print.html#step-1-invocation-of-the-panic-macro
https://rustc-dev-guide.rust-lang.org/print.html#step-1-invocation-of-the-panic-macro
https://rustc-dev-guide.rust-lang.org/print.html#core-definition-of-panic
https://rustc-dev-guide.rust-lang.org/print.html#core-definition-of-panic

The special panic_handler attribute is resolved via compiler/rustc_middle/src/middle

/lang_items . The extract function converts the panic_handler attribute to a

panic_impl lang item.

Now, we have a matching panic_handler lang item in the std . This function goes

through the same process as the extern { fn panic_impl } definition in core , ending

up with a symbol name of rust_begin_unwind . At link time, the symbol reference in

core will be resolved to the definition of std (the function called begin_panic_handler

in the Rust source).

Thus, control flow will pass from core to std at runtime. This allows panics from core to

go through the same infrastructure that other panics use (panic hooks, unwinding, etc)

std implementation of panic!

This is where the actual panic-related logic begins. In library/std/src/panicking.rs ,

control passes to rust_panic_with_hook . This method is responsible for invoking the

global panic hook, and checking for double panics. Finally, we call __rust_start_panic ,

which is provided by the panic runtime.

The call to __rust_start_panic is very weird - it is passed a *mut &mut dyn BoxMeUp ,

converted to an usize . Let's break this type down:

1. BoxMeUp is an internal trait. It is implemented for PanicPayload (a wrapper around

the user-supplied payload type), and has a method fn box_me_up(&mut self) ->

*mut (dyn Any + Send) . This method takes the user-provided payload (T: Any +

Send), boxes it, and converts the box to a raw pointer.

2. When we call __rust_start_panic , we have an &mut dyn BoxMeUp . However, this is

a fat pointer (twice the size of a usize). To pass this to the panic runtime across an

FFI boundary, we take a mutable reference to this mutable reference (&mut &mut dyn

BoxMeUp), and convert it to a raw pointer (*mut &mut dyn BoxMeUp). The outer raw

pointer is a thin pointer, since it points to a Sized type (a mutable reference).

Therefore, we can convert this thin pointer into a usize , which is suitable for

passing across an FFI boundary.

Finally, we call __rust_start_panic with this usize . We have now entered the panic

/// Entry point of panic from the core crate.
#[cfg(not(test))]
#[panic_handler]
#[unwind(allowed)]
pub fn begin_panic_handler(info: &PanicInfo<'_>) -> ! {
 ...
}

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

307 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#std-implementation-of-panic
https://rustc-dev-guide.rust-lang.org/print.html#std-implementation-of-panic

runtime.

Step 2: The panic runtime

Rust provides two panic runtimes: panic_abort and panic_unwind . The user chooses

between them at build time via their Cargo.toml

panic_abort is extremely simple: its implementation of __rust_start_panic just aborts,

as you would expect.

panic_unwind is the more interesting case.

In its implementation of __rust_start_panic , we take the usize , convert it back to a

*mut &mut dyn BoxMeUp , dereference it, and call box_me_up on the &mut dyn BoxMeUp .

At this point, we have a raw pointer to the payload itself (a *mut (dyn Send + Any)): that

is, a raw pointer to the actual value provided by the user who called panic! .

At this point, the platform-independent code ends. We now call into platform-specific

unwinding logic (e.g unwind). This code is responsible for unwinding the stack, running

any 'landing pads' associated with each frame (currently, running destructors), and

transferring control to the catch_unwind frame.

Note that all panics either abort the process or get caught by some call to catch_unwind :

in library/std/src/rt.rs , the call to the user-provided main function is wrapped in

catch_unwind .

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

308 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#step-2-the-panic-runtime
https://rustc-dev-guide.rust-lang.org/print.html#step-2-the-panic-runtime

AST Validation

• About

• Validations

About

AST validation is a separate AST pass that visits each item in the tree and performs simple

checks. This pass doesn't perform any complex analysis, type checking or name

resolution.

Before performing any validation, the compiler first expands the macros. Then this pass

performs validations to check that each AST item is in the correct state. And when this

pass is done, the compiler runs the crate resolution pass.

Validations

Validations are defined in AstValidator type, which itself is located in

rustc_ast_passes crate. This type implements various simple checks which emit errors

when certain language rules are broken.

In addition, AstValidator implements Visitor trait that defines how to visit AST items

(which can be functions, traits, enums, etc).

For each item, visitor performs specific checks. For example, when visiting a function

declaration, AstValidator checks that the function has:

• no more than u16::MAX parameters;

• c-variadic functions are declared with at least one named argument;

• c-variadic argument goes the last in the declaration;

• documentation comments aren't applied to function parameters;

• and other validations.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

309 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#ast-validation
https://rustc-dev-guide.rust-lang.org/print.html#ast-validation
https://rustc-dev-guide.rust-lang.org/ast-validation.html#about
https://rustc-dev-guide.rust-lang.org/ast-validation.html#about
https://rustc-dev-guide.rust-lang.org/ast-validation.html#validations
https://rustc-dev-guide.rust-lang.org/ast-validation.html#validations
https://rustc-dev-guide.rust-lang.org/print.html#about
https://rustc-dev-guide.rust-lang.org/print.html#about
https://rustc-dev-guide.rust-lang.org/print.html#validations
https://rustc-dev-guide.rust-lang.org/print.html#validations

Feature Gate Checking

TODO: this chapter #1158

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

310 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#feature-gate-checking
https://rustc-dev-guide.rust-lang.org/print.html#feature-gate-checking
https://github.com/rust-lang/rustc-dev-guide/issues/1158
https://github.com/rust-lang/rustc-dev-guide/issues/1158

Lang items

The compiler has certain pluggable operations; that is, functionality that isn't hard-coded

into the language, but is implemented in libraries, with a special marker to tell the

compiler it exists. The marker is the attribute #[lang = "..."] , and there are various

different values of ... , i.e. various different 'lang items'.

Many such lang items can be implemented only in one sensible way, such as add (trait

core::ops::Add) or future_trait (trait core::future::Future). Others can be

overridden to achieve some specific goals; for example, you can control your binary's

entrypoint.

Features provided by lang items include:

• overloadable operators via traits: the traits corresponding to the == , < ,

dereference (*), + , etc. operators are all marked with lang items; those specific

four are eq , ord , deref , and add respectively.

• panicking and stack unwinding; the eh_personality , panic and

panic_bounds_checks lang items.

• the traits in std::marker used to indicate properties of types used by the compiler;

lang items send , sync and copy .

• the special marker types used for variance indicators found in core::marker ; lang

item phantom_data .

Lang items are loaded lazily by the compiler; e.g. if one never uses Box then there is no

need to define functions for exchange_malloc and box_free . rustc will emit an error

when an item is needed but not found in the current crate or any that it depends on.

Most lang items are defined by the core library, but if you're trying to build an

executable with #![no_std] , you'll still need to define a few lang items that are usually

provided by std .

Retrieving a language item

You can retrieve lang items by calling tcx.lang_items() .

Here's a small example of retrieving the trait Sized {} language item:

// Note that in case of `#![no_core]`, the trait is not available.
if let Some(sized_trait_def_id) = tcx.lang_items().sized_trait() {

// do something with `sized_trait_def_id`
}

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

311 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#lang-items
https://rustc-dev-guide.rust-lang.org/print.html#lang-items
https://rustc-dev-guide.rust-lang.org/print.html#retrieving-a-language-item
https://rustc-dev-guide.rust-lang.org/print.html#retrieving-a-language-item
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.TyCtxt.html#method.lang_items
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.TyCtxt.html#method.lang_items
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.TyCtxt.html#method.lang_items

Note that sized_trait() returns an Option , not the DefId itself. That's because

language items are defined in the standard library, so if someone compiles with

#![no_core] (or for some lang items, #![no_std]), the lang item may not be present.

You can either:

• Give a hard error if the lang item is necessary to continue (don't panic, since this can

happen in user code).

• Proceed with limited functionality, by just omitting whatever you were going to do

with the DefId .

List of all language items

You can find language items in the following places:

• An exhaustive reference in the compiler documentation: rustc_hir::LangItem

• An auto-generated list with source locations by using ripgrep: rg '#\[.*lang ='

library/

Note that language items are explicitly unstable and may change in any new release.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

312 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#list-of-all-language-items
https://rustc-dev-guide.rust-lang.org/print.html#list-of-all-language-items
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/lang_items/enum.LangItem.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/lang_items/enum.LangItem.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/lang_items/enum.LangItem.html

The HIR

• Out-of-band storage and the Crate type

• Identifiers in the HIR

• The HIR Map

• HIR Bodies

The HIR – "High-Level Intermediate Representation" – is the primary IR used in most of

rustc. It is a compiler-friendly representation of the abstract syntax tree (AST) that is

generated after parsing, macro expansion, and name resolution (see Lowering for how

the HIR is created). Many parts of HIR resemble Rust surface syntax quite closely, with the

exception that some of Rust's expression forms have been desugared away. For example,

for loops are converted into a loop and do not appear in the HIR. This makes HIR more

amenable to analysis than a normal AST.

This chapter covers the main concepts of the HIR.

You can view the HIR representation of your code by passing the -Z unpretty=hir-tree

flag to rustc:

Out-of-band storage and the Crate type

The top-level data-structure in the HIR is the Crate , which stores the contents of the

crate currently being compiled (we only ever construct HIR for the current crate).

Whereas in the AST the crate data structure basically just contains the root module, the

HIR Crate structure contains a number of maps and other things that serve to organize

the content of the crate for easier access.

For example, the contents of individual items (e.g. modules, functions, traits, impls, etc) in

the HIR are not immediately accessible in the parents. So, for example, if there is a

module item foo containing a function bar() :

then in the HIR the representation of module foo (the Mod struct) would only have the

ItemId I of bar() . To get the details of the function bar() , we would lookup I in the

items map.

cargo rustc -- -Z unpretty=hir-tree

mod foo {
fn bar() { }

}

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

313 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#the-hir
https://rustc-dev-guide.rust-lang.org/print.html#the-hir
https://rustc-dev-guide.rust-lang.org/hir.html#out-of-band-storage-and-the-crate-type
https://rustc-dev-guide.rust-lang.org/hir.html#out-of-band-storage-and-the-crate-type
https://rustc-dev-guide.rust-lang.org/hir.html#out-of-band-storage-and-the-crate-type
https://rustc-dev-guide.rust-lang.org/hir.html#out-of-band-storage-and-the-crate-type
https://rustc-dev-guide.rust-lang.org/hir.html#out-of-band-storage-and-the-crate-type
https://rustc-dev-guide.rust-lang.org/hir.html#identifiers-in-the-hir
https://rustc-dev-guide.rust-lang.org/hir.html#identifiers-in-the-hir
https://rustc-dev-guide.rust-lang.org/hir.html#the-hir-map
https://rustc-dev-guide.rust-lang.org/hir.html#the-hir-map
https://rustc-dev-guide.rust-lang.org/hir.html#hir-bodies
https://rustc-dev-guide.rust-lang.org/hir.html#hir-bodies
https://rustc-dev-guide.rust-lang.org/lowering.html
https://rustc-dev-guide.rust-lang.org/lowering.html
https://rustc-dev-guide.rust-lang.org/print.html#out-of-band-storage-and-the-crate-type
https://rustc-dev-guide.rust-lang.org/print.html#out-of-band-storage-and-the-crate-type
https://rustc-dev-guide.rust-lang.org/print.html#out-of-band-storage-and-the-crate-type
https://rustc-dev-guide.rust-lang.org/print.html#out-of-band-storage-and-the-crate-type
https://rustc-dev-guide.rust-lang.org/print.html#out-of-band-storage-and-the-crate-type
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/struct.Crate.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/struct.Crate.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/struct.Crate.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/struct.Mod.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/struct.Mod.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/struct.Mod.html

One nice result from this representation is that one can iterate over all items in the crate

by iterating over the key-value pairs in these maps (without the need to trawl through the

whole HIR). There are similar maps for things like trait items and impl items, as well as

"bodies" (explained below).

The other reason to set up the representation this way is for better integration with

incremental compilation. This way, if you gain access to an &rustc_hir::Item (e.g. for

the mod foo), you do not immediately gain access to the contents of the function bar() .

Instead, you only gain access to the id for bar() , and you must invoke some function to

lookup the contents of bar() given its id; this gives the compiler a chance to observe

that you accessed the data for bar() , and then record the dependency.

Identifiers in the HIR

There are a bunch of different identifiers to refer to other nodes or definitions in the HIR.

In short:

• A DefId refers to a definition in any crate.

• A LocalDefId refers to a definition in the currently compiled crate.

• A HirId refers to any node in the HIR.

For more detailed information, check out the chapter on identifiers.

The HIR Map

Most of the time when you are working with the HIR, you will do so via the HIR Map,

accessible in the tcx via tcx.hir() (and defined in the hir::map module). The HIR map

contains a number of methods to convert between IDs of various kinds and to lookup

data associated with a HIR node.

For example, if you have a LocalDefId , and you would like to convert it to a HirId , you

can use tcx.hir().local_def_id_to_hir_id(def_id) . You need a LocalDefId , rather

than a DefId , since only local items have HIR nodes.

Similarly, you can use tcx.hir().find(n) to lookup the node for a HirId . This returns a

Option<Node<'hir>> , where Node is an enum defined in the map. By matching on this,

you can find out what sort of node the HirId referred to and also get a pointer to the

data itself. Often, you know what sort of node n is – e.g. if you know that n must be

some HIR expression, you can do tcx.hir().expect_expr(n) , which will extract and

return the &hir::Expr , panicking if n is not in fact an expression.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

314 of 660 8/30/23, 09:47

https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/struct.Item.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/struct.Item.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/struct.Item.html
https://rustc-dev-guide.rust-lang.org/print.html#identifiers-in-the-hir
https://rustc-dev-guide.rust-lang.org/print.html#identifiers-in-the-hir
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/def_id/struct.DefId.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/def_id/struct.DefId.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/def_id/struct.DefId.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/def_id/struct.LocalDefId.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/def_id/struct.LocalDefId.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/def_id/struct.LocalDefId.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/hir_id/struct.HirId.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/hir_id/struct.HirId.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/hir_id/struct.HirId.html
https://rustc-dev-guide.rust-lang.org/identifiers.html#in-the-hir
https://rustc-dev-guide.rust-lang.org/identifiers.html#in-the-hir
https://rustc-dev-guide.rust-lang.org/print.html#the-hir-map
https://rustc-dev-guide.rust-lang.org/print.html#the-hir-map
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.TyCtxt.html#method.hir
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.TyCtxt.html#method.hir
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.TyCtxt.html#method.hir
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/hir/map/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/hir/map/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/hir/map/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/hir/map/struct.Map.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/hir/map/struct.Map.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/hir/map/struct.Map.html#methods
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/hir/map/struct.Map.html#methods
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/def_id/struct.LocalDefId.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/def_id/struct.LocalDefId.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/def_id/struct.LocalDefId.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/hir_id/struct.HirId.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/hir_id/struct.HirId.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/hir_id/struct.HirId.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/hir/map/struct.Map.html#method.local_def_id_to_hir_id
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/hir/map/struct.Map.html#method.local_def_id_to_hir_id
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/hir/map/struct.Map.html#method.local_def_id_to_hir_id
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/hir/map/struct.Map.html#method.find
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/hir/map/struct.Map.html#method.find
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/hir/map/struct.Map.html#method.find
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/hir_id/struct.HirId.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/hir_id/struct.HirId.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/hir_id/struct.HirId.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/enum.Node.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/enum.Node.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/enum.Node.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/hir/map/struct.Map.html#method.expect_expr
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/hir/map/struct.Map.html#method.expect_expr
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/hir/map/struct.Map.html#method.expect_expr
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/struct.Expr.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/struct.Expr.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/struct.Expr.html

Finally, you can use the HIR map to find the parents of nodes, via calls like

tcx.hir().get_parent(n) .

HIR Bodies

A rustc_hir::Body represents some kind of executable code, such as the body of a

function/closure or the definition of a constant. Bodies are associated with an owner,

which is typically some kind of item (e.g. an fn() or const), but could also be a closure

expression (e.g. |x, y| x + y). You can use the HIR map to find the body associated

with a given def-id (maybe_body_owned_by) or to find the owner of a body

(body_owner_def_id).

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

315 of 660 8/30/23, 09:47

https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/hir/map/struct.Map.html#method.get_parent
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/hir/map/struct.Map.html#method.get_parent
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/hir/map/struct.Map.html#method.get_parent
https://rustc-dev-guide.rust-lang.org/print.html#hir-bodies
https://rustc-dev-guide.rust-lang.org/print.html#hir-bodies
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/struct.Body.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/struct.Body.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/struct.Body.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/hir/map/struct.Map.html#method.maybe_body_owned_by
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/hir/map/struct.Map.html#method.maybe_body_owned_by
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/hir/map/struct.Map.html#method.maybe_body_owned_by
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/hir/map/struct.Map.html#method.body_owner_def_id
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/hir/map/struct.Map.html#method.body_owner_def_id
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/hir/map/struct.Map.html#method.body_owner_def_id

Lowering

The lowering step converts AST to HIR. This means many structures are removed if they

are irrelevant for type analysis or similar syntax agnostic analyses. Examples of such

structures include but are not limited to

• Parenthesis

◦ Removed without replacement, the tree structure makes order explicit

• for loops and while (let) loops

◦ Converted to loop + match and some let bindings

• if let

◦ Converted to match

• Universal impl Trait

◦ Converted to generic arguments (but with some flags, to know that the user

didn't write them)

• Existential impl Trait

◦ Converted to a virtual existential type declaration

Lowering needs to uphold several invariants in order to not trigger the sanity checks in

compiler/rustc_passes/src/hir_id_validator.rs :

1. A HirId must be used if created. So if you use the lower_node_id , you must use

the resulting NodeId or HirId (either is fine, since any NodeId s in the HIR are

checked for existing HirId s)

2. Lowering a HirId must be done in the scope of the owning item. This means you

need to use with_hir_id_owner if you are creating parts of an item other than the

one being currently lowered. This happens for example during the lowering of

existential impl Trait

3. A NodeId that will be placed into a HIR structure must be lowered, even if its HirId

is unused. Calling let _ = self.lower_node_id(node_id); is perfectly legitimate.

4. If you are creating new nodes that didn't exist in the AST , you must create new ids

for them. This is done by calling the next_id method, which produces both a new

NodeId as well as automatically lowering it for you so you also get the HirId .

If you are creating new DefId s, since each DefId needs to have a corresponding

NodeId , it is advisable to add these NodeId s to the AST so you don't have to generate

new ones during lowering. This has the advantage of creating a way to find the DefId of

something via its NodeId . If lowering needs this DefId in multiple places, you can't

generate a new NodeId in all those places because you'd also get a new DefId then.

With a NodeId from the AST this is not an issue.

Having the NodeId also allows the DefCollector to generate the DefId s instead of

lowering having to do it on the fly. Centralizing the DefId generation in one place makes

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

316 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#lowering
https://rustc-dev-guide.rust-lang.org/print.html#lowering
https://rustc-dev-guide.rust-lang.org/hir.html
https://rustc-dev-guide.rust-lang.org/hir.html

it easier to refactor and reason about.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

317 of 660 8/30/23, 09:47

HIR Debugging

The -Z unpretty=hir-tree flag will dump out the HIR.

If you are trying to correlate NodeId s or DefId s with source code, the -Z

unpretty=expanded,identified flag may be useful.

TODO: anything else? #1159

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

318 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#hir-debugging
https://rustc-dev-guide.rust-lang.org/print.html#hir-debugging
https://github.com/rust-lang/rustc-dev-guide/issues/1159
https://github.com/rust-lang/rustc-dev-guide/issues/1159

The THIR

The THIR ("Typed High-Level Intermediate Representation"), previously called HAIR for

"High-Level Abstract IR", is another IR used by rustc that is generated after type checking.

It is (as of April 2022) only used for MIR construction and exhaustiveness checking. There

is also an experimental unsafety checker that operates on the THIR as a replacement for

the current MIR unsafety checker, and can be used instead of the MIR unsafety checker

by passing the -Z thir-unsafeck flag to rustc .

As the name might suggest, the THIR is a lowered version of the HIR where all the types

have been filled in, which is possible after type checking has completed. But it has some

other interesting features that distinguish it from the HIR:

• Like the MIR, the THIR only represents bodies, i.e. "executable code"; this includes

function bodies, but also const initializers, for example. Specifically, all body

owners have THIR created. Consequently, the THIR has no representation for items

like struct s or trait s.

• Each body of THIR is only stored temporarily and is dropped as soon as it's no

longer needed, as opposed to being stored until the end of the compilation process

(which is what is done with the HIR).

• Besides making the types of all nodes available, the THIR also has additional

desugaring compared to the HIR. For example, automatic references and

dereferences are made explicit, and method calls and overloaded operators are

converted into plain function calls. Destruction scopes are also made explicit.

• Statements, expressions, and match arms are stored separately. For example,

statements in the stmts array reference expressions by their index (represented as

a ExprId) in the exprs array.

The THIR lives in rustc_mir_build::thir . To construct a thir::Expr , you can use the

thir_body function, passing in the memory arena where the THIR will be allocated.

Dropping this arena will result in the THIR being destroyed, which is useful to keep peak

memory in check. Having a THIR representation of all bodies of a crate in memory at the

same time would be very heavy.

You can get a debug representation of the THIR by passing the -Zunpretty=thir-tree

flag to rustc .

To demonstrate, let's use the following example:

fn main() {
let x = 1 + 2;

}

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

319 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#the-thir
https://rustc-dev-guide.rust-lang.org/print.html#the-thir
https://rustc-dev-guide.rust-lang.org/type-checking.html
https://rustc-dev-guide.rust-lang.org/type-checking.html
https://rustc-dev-guide.rust-lang.org/mir/construction.html
https://rustc-dev-guide.rust-lang.org/mir/construction.html
https://rustc-dev-guide.rust-lang.org/pat-exhaustive-checking.html
https://rustc-dev-guide.rust-lang.org/pat-exhaustive-checking.html
https://github.com/rust-lang/compiler-team/issues/402
https://github.com/rust-lang/compiler-team/issues/402
https://rustc-dev-guide.rust-lang.org/hir.html
https://rustc-dev-guide.rust-lang.org/hir.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/enum.BodyOwnerKind.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/enum.BodyOwnerKind.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/enum.BodyOwnerKind.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/enum.BodyOwnerKind.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/thir/struct.ExprId.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/thir/struct.ExprId.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/thir/struct.ExprId.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_build/thir/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_build/thir/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_build/thir/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/thir/struct.Expr.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/thir/struct.Expr.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/thir/struct.Expr.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/context/struct.TyCtxt.html#method.thir_body
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/context/struct.TyCtxt.html#method.thir_body
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/context/struct.TyCtxt.html#method.thir_body

Here is how that gets represented in THIR (as of Aug 2022):

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

320 of 660 8/30/23, 09:47

Thir {
// no match arms

 arms: [],
 exprs: [

// expression 0, a literal with a value of 1
 Expr {
 ty: i32,
 temp_lifetime: Some(
 Node(1),
),
 span: oneplustwo.rs:2:13: 2:14 (#0),
 kind: Literal {
 lit: Spanned {
 node: Int(

1,
 Unsuffixed,
),
 span: oneplustwo.rs:2:13: 2:14 (#0),
 },
 neg: false,
 },
 },

// expression 1, scope surrounding literal 1
 Expr {
 ty: i32,
 temp_lifetime: Some(
 Node(1),
),
 span: oneplustwo.rs:2:13: 2:14 (#0),
 kind: Scope {

// reference to expression 0 above
 region_scope: Node(3),
 lint_level: Explicit(
 HirId {
 owner: DefId(0:3 ~ oneplustwo[6932]::main),
 local_id: 3,
 },
),
 value: e0,
 },
 },

// expression 2, literal 2
 Expr {
 ty: i32,
 temp_lifetime: Some(
 Node(1),
),
 span: oneplustwo.rs:2:17: 2:18 (#0),
 kind: Literal {
 lit: Spanned {
 node: Int(

2,
 Unsuffixed,
),
 span: oneplustwo.rs:2:17: 2:18 (#0),
 },

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

321 of 660 8/30/23, 09:47

 neg: false,
 },
 },

// expression 3, scope surrounding literal 2
 Expr {
 ty: i32,
 temp_lifetime: Some(
 Node(1),
),
 span: oneplustwo.rs:2:17: 2:18 (#0),
 kind: Scope {
 region_scope: Node(4),
 lint_level: Explicit(
 HirId {
 owner: DefId(0:3 ~ oneplustwo[6932]::main),
 local_id: 4,
 },
),

// reference to expression 2 above
 value: e2,
 },
 },

// expression 4, represents 1 + 2
 Expr {
 ty: i32,
 temp_lifetime: Some(
 Node(1),
),
 span: oneplustwo.rs:2:13: 2:18 (#0),
 kind: Binary {
 op: Add,

// references to scopes surronding literals above
 lhs: e1,
 rhs: e3,
 },
 },

// expression 5, scope surronding expression 4
 Expr {
 ty: i32,
 temp_lifetime: Some(
 Node(1),
),
 span: oneplustwo.rs:2:13: 2:18 (#0),
 kind: Scope {
 region_scope: Node(5),
 lint_level: Explicit(
 HirId {
 owner: DefId(0:3 ~ oneplustwo[6932]::main),
 local_id: 5,
 },
),
 value: e4,
 },
 },

// expression 6, block around statement
 Expr {
 ty: (),

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

322 of 660 8/30/23, 09:47

 temp_lifetime: Some(
 Node(9),
),
 span: oneplustwo.rs:1:11: 3:2 (#0),
 kind: Block {
 body: Block {
 targeted_by_break: false,
 region_scope: Node(8),
 opt_destruction_scope: None,
 span: oneplustwo.rs:1:11: 3:2 (#0),

// reference to statement 0 below
 stmts: [
 s0,
],
 expr: None,
 safety_mode: Safe,
 },
 },
 },

// expression 7, scope around block in expression 6
 Expr {
 ty: (),
 temp_lifetime: Some(
 Node(9),
),
 span: oneplustwo.rs:1:11: 3:2 (#0),
 kind: Scope {
 region_scope: Node(9),
 lint_level: Explicit(
 HirId {
 owner: DefId(0:3 ~ oneplustwo[6932]::main),
 local_id: 9,
 },
),
 value: e6,
 },
 },

// destruction scope around expression 7
 Expr {
 ty: (),
 temp_lifetime: Some(
 Node(9),
),
 span: oneplustwo.rs:1:11: 3:2 (#0),
 kind: Scope {
 region_scope: Destruction(9),
 lint_level: Inherited,
 value: e7,
 },
 },
],
 stmts: [

// let statement
 Stmt {
 kind: Let {
 remainder_scope: Remainder { block: 8, first_statement_index:
0},

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

323 of 660 8/30/23, 09:47

 init_scope: Node(1),
 pattern: Pat {
 ty: i32,
 span: oneplustwo.rs:2:9: 2:10 (#0),
 kind: Binding {
 mutability: Not,
 name: "x",
 mode: ByValue,
 var: LocalVarId(
 HirId {
 owner: DefId(0:3 ~ oneplustwo[6932]::main),
 local_id: 7,
 },
),
 ty: i32,
 subpattern: None,
 is_primary: true,
 },
 },
 initializer: Some(
 e5,
),
 else_block: None,
 lint_level: Explicit(
 HirId {
 owner: DefId(0:3 ~ oneplustwo[6932]::main),
 local_id: 6,
 },
),
 },
 opt_destruction_scope: Some(
 Destruction(1),
),
 },
],
}

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

324 of 660 8/30/23, 09:47

The MIR (Mid-level IR)

• Introduction to MIR

• Key MIR vocabulary

• MIR data types

• Representing constants

◦ Promoted constants

MIR is Rust's Mid-level Intermediate Representation. It is constructed from HIR. MIR was

introduced in RFC 1211. It is a radically simplified form of Rust that is used for certain

flow-sensitive safety checks – notably the borrow checker! – and also for optimization and

code generation.

If you'd like a very high-level introduction to MIR, as well as some of the compiler

concepts that it relies on (such as control-flow graphs and desugaring), you may enjoy the

rust-lang blog post that introduced MIR.

Introduction to MIR

MIR is defined in the compiler/rustc_middle/src/mir/ module, but much of the code

that manipulates it is found in compiler/rustc_mir_build ,

compiler/rustc_mir_transform , and compiler/rustc_mir_dataflow .

Some of the key characteristics of MIR are:

• It is based on a control-flow graph.

• It does not have nested expressions.

• All types in MIR are fully explicit.

Key MIR vocabulary

This section introduces the key concepts of MIR, summarized here:

• Basic blocks: units of the control-flow graph, consisting of:

◦ statements: actions with one successor

◦ terminators: actions with potentially multiple successors; always at the end of

a block

◦ (if you're not familiar with the term basic block, see the background chapter)

• Locals: Memory locations allocated on the stack (conceptually, at least), such as

function arguments, local variables, and temporaries. These are identified by an

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

325 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#the-mir-mid-level-ir
https://rustc-dev-guide.rust-lang.org/print.html#the-mir-mid-level-ir
https://rustc-dev-guide.rust-lang.org/mir/index.html#introduction-to-mir
https://rustc-dev-guide.rust-lang.org/mir/index.html#introduction-to-mir
https://rustc-dev-guide.rust-lang.org/mir/index.html#key-mir-vocabulary
https://rustc-dev-guide.rust-lang.org/mir/index.html#key-mir-vocabulary
https://rustc-dev-guide.rust-lang.org/mir/index.html#mir-data-types
https://rustc-dev-guide.rust-lang.org/mir/index.html#mir-data-types
https://rustc-dev-guide.rust-lang.org/mir/index.html#representing-constants
https://rustc-dev-guide.rust-lang.org/mir/index.html#representing-constants
https://rustc-dev-guide.rust-lang.org/mir/index.html#promoted-constants
https://rustc-dev-guide.rust-lang.org/mir/index.html#promoted-constants
https://rustc-dev-guide.rust-lang.org/hir.html
https://rustc-dev-guide.rust-lang.org/hir.html
https://rust-lang.github.io/rfcs/1211-mir.html
https://rust-lang.github.io/rfcs/1211-mir.html
https://blog.rust-lang.org/2016/04/19/MIR.html
https://blog.rust-lang.org/2016/04/19/MIR.html
https://rustc-dev-guide.rust-lang.org/print.html#introduction-to-mir
https://rustc-dev-guide.rust-lang.org/print.html#introduction-to-mir
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_build/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_build/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_build/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_transform/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_transform/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_transform/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/index.html
https://rustc-dev-guide.rust-lang.org/appendix/background.html#cfg
https://rustc-dev-guide.rust-lang.org/appendix/background.html#cfg
https://rustc-dev-guide.rust-lang.org/print.html#key-mir-vocabulary
https://rustc-dev-guide.rust-lang.org/print.html#key-mir-vocabulary
https://rustc-dev-guide.rust-lang.org/appendix/background.html#cfg
https://rustc-dev-guide.rust-lang.org/appendix/background.html#cfg

index, written with a leading underscore, like _1 . There is also a special "local" (_0)

allocated to store the return value.

• Places: expressions that identify a location in memory, like _1 or _1.f .

• Rvalues: expressions that produce a value. The "R" stands for the fact that these are

the "right-hand side" of an assignment.

◦ Operands: the arguments to an rvalue, which can either be a constant (like

22) or a place (like _1).

You can get a feeling for how MIR is constructed by translating simple programs into MIR

and reading the pretty printed output. In fact, the playground makes this easy, since it

supplies a MIR button that will show you the MIR for your program. Try putting this

program into play (or clicking on this link), and then clicking the "MIR" button on the top:

You should see something like:

This is the MIR format for the main function.

Variable declarations. If we drill in a bit, we'll see it begins with a bunch of variable

declarations. They look like this:

You can see that variables in MIR don't have names, they have indices, like _0 or _1 . We

also intermingle the user's variables (e.g., _1) with temporary values (e.g., _2 or _3).

You can tell apart user-defined variables because they have debuginfo associated to them

(see below).

User variable debuginfo. Below the variable declarations, we find the only hint that _1

represents a user variable:

fn main() {
let mut vec = Vec::new();

 vec.push(1);
 vec.push(2);
}

// WARNING: This output format is intended for human consumers only
// and is subject to change without notice. Knock yourself out.
fn main() -> () {
 ...
}

let mut _0: (); // return place
let mut _1: std::vec::Vec<i32>; // in scope 0 at src/main.rs:2:9: 2:16
let mut _2: ();
let mut _3: &mut std::vec::Vec<i32>;
let mut _4: ();
let mut _5: &mut std::vec::Vec<i32>;

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

326 of 660 8/30/23, 09:47

https://play.rust-lang.org/?gist=30074856e62e74e91f06abd19bd72ece&version=stable
https://play.rust-lang.org/?gist=30074856e62e74e91f06abd19bd72ece&version=stable

Each debug <Name> => <Place>; annotation describes a named user variable, and where

(i.e. the place) a debugger can find the data of that variable. Here the mapping is trivial,

but optimizations may complicate the place, or lead to multiple user variables sharing the

same place. Additionally, closure captures are described using the same system, and so

they're complicated even without optimizations, e.g.: debug x => (*((*_1).0: &T)); .

The "scope" blocks (e.g., scope 1 { .. }) describe the lexical structure of the source

program (which names were in scope when), so any part of the program annotated with

// in scope 0 would be missing vec , if you were stepping through the code in a

debugger, for example.

Basic blocks. Reading further, we see our first basic block (naturally it may look slightly

different when you view it, and I am ignoring some of the comments):

A basic block is defined by a series of statements and a final terminator. In this case,

there is one statement:

This statement indicates that the variable _1 is "live", meaning that it may be used later –

this will persist until we encounter a StorageDead(_1) statement, which indicates that

the variable _1 is done being used. These "storage statements" are used by LLVM to

allocate stack space.

The terminator of the block bb0 is the call to Vec::new :

Terminators are different from statements because they can have more than one

successor – that is, control may flow to different places. Function calls like the call to

Vec::new are always terminators because of the possibility of unwinding, although in the

case of Vec::new we are able to see that indeed unwinding is not possible, and hence we

list only one successor block, bb2 .

If we look ahead to bb2 , we will see it looks like this:

scope 1 {
 debug vec => _1; // in scope 1 at src/main.rs:2:9: 2:16
}

bb0: {
 StorageLive(_1);
 _1 = const <std::vec::Vec<T>>::new() -> bb2;
}

StorageLive(_1);

_1 = const <std::vec::Vec<T>>::new() -> bb2;

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

327 of 660 8/30/23, 09:47

Here there are two statements: another StorageLive , introducing the _3 temporary,

and then an assignment:

Assignments in general have the form:

A place is an expression like _3 , _3.f or *_3 – it denotes a location in memory. An

Rvalue is an expression that creates a value: in this case, the rvalue is a mutable borrow

expression, which looks like &mut <Place> . So we can kind of define a grammar for

rvalues like so:

As you can see from this grammar, rvalues cannot be nested – they can only reference

places and constants. Moreover, when you use a place, we indicate whether we are

copying it (which requires that the place have a type T where T: Copy) or moving it

(which works for a place of any type). So, for example, if we had the expression x = a +

b + c in Rust, that would get compiled to two statements and a temporary:

(Try it and see, though you may want to do release mode to skip over the overflow

checks.)

MIR data types

bb2: {
 StorageLive(_3);
 _3 = &mut _1;
 _2 = const <std::vec::Vec<T>>::push(move _3, const 1i32) -> [return: bb3,
unwind: bb4];
}

_3 = &mut _1;

<Place> = <Rvalue>

<Rvalue> = & (mut)? <Place>
 | <Operand> + <Operand>
 | <Operand> - <Operand>
 | ...

<Operand> = Constant
 | copy Place
 | move Place

TMP1 = a + b
x = TMP1 + c

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

328 of 660 8/30/23, 09:47

https://play.rust-lang.org/?gist=1751196d63b2a71f8208119e59d8a5b6&version=stable
https://play.rust-lang.org/?gist=1751196d63b2a71f8208119e59d8a5b6&version=stable
https://rustc-dev-guide.rust-lang.org/print.html#mir-data-types
https://rustc-dev-guide.rust-lang.org/print.html#mir-data-types

The MIR data types are defined in the compiler/rustc_middle/src/mir/ module. Each of

the key concepts mentioned in the previous section maps in a fairly straightforward way

to a Rust type.

The main MIR data type is Body . It contains the data for a single function (along with sub-

instances of Mir for "promoted constants", but you can read about those below).

• Basic blocks: The basic blocks are stored in the field Body::basic_blocks ; this is a

vector of BasicBlockData structures. Nobody ever references a basic block directly:

instead, we pass around BasicBlock values, which are newtype'd indices into this

vector.

• Statements are represented by the type Statement .

• Terminators are represented by the Terminator .

• Locals are represented by a newtype'd index type Local . The data for a local

variable is found in the Body::local_decls vector. There is also a special constant

RETURN_PLACE identifying the special "local" representing the return value.

• Places are identified by the struct Place . There are a few fields:

◦ Local variables like _1

◦ Projections, which are fields or other things that "project out" from a base

place. These are represented by the newtype'd type ProjectionElem . So e.g.

the place _1.f is a projection, with f being the "projection element" and _1

being the base path. *_1 is also a projection, with the * being represented by

the ProjectionElem::Deref element.

• Rvalues are represented by the enum Rvalue .

• Operands are represented by the enum Operand .

Representing constants

to be written

Promoted constants

See the const-eval WG's docs on promotion.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

329 of 660 8/30/23, 09:47

https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.Body.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.Body.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.Body.html
https://rustc-dev-guide.rust-lang.org/mir/index.html#promoted
https://rustc-dev-guide.rust-lang.org/mir/index.html#promoted
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.Body.html#structfield.basic_blocks
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.Body.html#structfield.basic_blocks
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.Body.html#structfield.basic_blocks
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.BasicBlockData.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.BasicBlockData.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.BasicBlockData.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.BasicBlock.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.BasicBlock.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.BasicBlock.html
https://rustc-dev-guide.rust-lang.org/appendix/glossary.html#newtype
https://rustc-dev-guide.rust-lang.org/appendix/glossary.html#newtype
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.Statement.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.Statement.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.Statement.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/terminator/struct.Terminator.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/terminator/struct.Terminator.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/terminator/struct.Terminator.html
https://rustc-dev-guide.rust-lang.org/appendix/glossary.html#newtype
https://rustc-dev-guide.rust-lang.org/appendix/glossary.html#newtype
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.Local.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.Local.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.Local.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.Body.html#structfield.local_decls
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.Body.html#structfield.local_decls
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.Body.html#structfield.local_decls
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/constant.RETURN_PLACE.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/constant.RETURN_PLACE.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/constant.RETURN_PLACE.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.Place.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.Place.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.Place.html
https://rustc-dev-guide.rust-lang.org/appendix/glossary.html#newtype
https://rustc-dev-guide.rust-lang.org/appendix/glossary.html#newtype
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/enum.ProjectionElem.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/enum.ProjectionElem.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/enum.ProjectionElem.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/enum.ProjectionElem.html#variant.Deref
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/enum.ProjectionElem.html#variant.Deref
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/enum.ProjectionElem.html#variant.Deref
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/enum.Rvalue.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/enum.Rvalue.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/enum.Rvalue.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/enum.Operand.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/enum.Operand.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/enum.Operand.html
https://rustc-dev-guide.rust-lang.org/print.html#representing-constants
https://rustc-dev-guide.rust-lang.org/print.html#representing-constants
https://rustc-dev-guide.rust-lang.org/print.html#promoted-constants
https://rustc-dev-guide.rust-lang.org/print.html#promoted-constants
https://github.com/rust-lang/const-eval/blob/master/promotion.md
https://github.com/rust-lang/const-eval/blob/master/promotion.md

MIR construction

• unpack! all the things

• Lowering expressions into the desired MIR

• Operator lowering

• Method call lowering

• Conditions

◦ Pattern matching

• Aggregate construction

The lowering of HIR to MIR occurs for the following (probably incomplete) list of items:

• Function and closure bodies

• Initializers of static and const items

• Initializers of enum discriminants

• Glue and shims of any kind

◦ Tuple struct initializer functions

◦ Drop code (the Drop::drop function is not called directly)

◦ Drop implementations of types without an explicit Drop implementation

The lowering is triggered by calling the mir_built query. The MIR builder does not

actually use the HIR but operates on the THIR instead, processing THIR expressions

recursively.

The lowering creates local variables for every argument as specified in the signature.

Next, it creates local variables for every binding specified (e.g. (a, b): (i32, String))

produces 3 bindings, one for the argument, and two for the bindings. Next, it generates

field accesses that read the fields from the argument and writes the value to the binding

variable.

With this initialization out of the way, the lowering triggers a recursive call to a function

that generates the MIR for the body (a Block expression) and writes the result into the

RETURN_PLACE .

unpack! all the things

Functions that generate MIR tend to fall into one of two patterns. First, if the function

generates only statements, then it will take a basic block as argument onto which those

statements should be appended. It can then return a result as normal:

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

330 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#mir-construction
https://rustc-dev-guide.rust-lang.org/print.html#mir-construction
https://rustc-dev-guide.rust-lang.org/mir/construction.html#unpack-all-the-things
https://rustc-dev-guide.rust-lang.org/mir/construction.html#unpack-all-the-things
https://rustc-dev-guide.rust-lang.org/mir/construction.html#unpack-all-the-things
https://rustc-dev-guide.rust-lang.org/mir/construction.html#unpack-all-the-things
https://rustc-dev-guide.rust-lang.org/mir/construction.html#lowering-expressions-into-the-desired-mir
https://rustc-dev-guide.rust-lang.org/mir/construction.html#lowering-expressions-into-the-desired-mir
https://rustc-dev-guide.rust-lang.org/mir/construction.html#operator-lowering
https://rustc-dev-guide.rust-lang.org/mir/construction.html#operator-lowering
https://rustc-dev-guide.rust-lang.org/mir/construction.html#method-call-lowering
https://rustc-dev-guide.rust-lang.org/mir/construction.html#method-call-lowering
https://rustc-dev-guide.rust-lang.org/mir/construction.html#conditions
https://rustc-dev-guide.rust-lang.org/mir/construction.html#conditions
https://rustc-dev-guide.rust-lang.org/mir/construction.html#pattern-matching
https://rustc-dev-guide.rust-lang.org/mir/construction.html#pattern-matching
https://rustc-dev-guide.rust-lang.org/mir/construction.html#aggregate-construction
https://rustc-dev-guide.rust-lang.org/mir/construction.html#aggregate-construction
https://rustc-dev-guide.rust-lang.org/hir.html
https://rustc-dev-guide.rust-lang.org/hir.html
https://rustc-dev-guide.rust-lang.org/mir/index.html
https://rustc-dev-guide.rust-lang.org/mir/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_build/build/fn.mir_built.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_build/build/fn.mir_built.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_build/build/fn.mir_built.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_build/thir/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_build/thir/index.html
https://rustc-dev-guide.rust-lang.org/print.html#unpack-all-the-things
https://rustc-dev-guide.rust-lang.org/print.html#unpack-all-the-things
https://rustc-dev-guide.rust-lang.org/print.html#unpack-all-the-things
https://rustc-dev-guide.rust-lang.org/print.html#unpack-all-the-things

But there are other functions that may generate new basic blocks as well. For example,

lowering an expression like if foo { 22 } else { 44 } requires generating a small

"diamond-shaped graph". In this case, the functions take a basic block where their code

starts and return a (potentially) new basic block where the code generation ends. The

BlockAnd type is used to represent this:

When you invoke these functions, it is common to have a local variable block that is

effectively a "cursor". It represents the point at which we are adding new MIR. When you

invoke generate_more_mir , you want to update this cursor. You can do this manually,

but it's tedious:

For this reason, we offer a macro that lets you write let v = unpack!(block =

self.generate_more_mir(...)) . It simply extracts the new block and overwrites the

variable block that you named in the unpack! .

Lowering expressions into the desired MIR

There are essentially four kinds of representations one might want of an expression:

• Place refers to a (or part of a) preexisting memory location (local, static, promoted)

• Rvalue is something that can be assigned to a Place

• Operand is an argument to e.g. a + operation or a function call

• a temporary variable containing a copy of the value

The following image depicts a general overview of the interactions between the

representations:

fn generate_some_mir(&mut self, block: BasicBlock) -> ResultType {
 ...
}

fn generate_more_mir(&mut self, block: BasicBlock) -> BlockAnd<ResultType> {
 ...
}

let mut block;
let v = match self.generate_more_mir(..) {
 BlockAnd { block: new_block, value: v } => {
 block = new_block;
 v
 }
};

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

331 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#lowering-expressions-into-the-desired-mir
https://rustc-dev-guide.rust-lang.org/print.html#lowering-expressions-into-the-desired-mir

Operand

Constant Place

Projection Local

Rvalue Assignment

Click here for a more detailed view

We start out with lowering the function body to an Rvalue so we can create an

assignment to RETURN_PLACE , This Rvalue lowering will in turn trigger lowering to

Operand for its arguments (if any). Operand lowering either produces a const operand,

or moves/copies out of a Place , thus triggering a Place lowering. An expression being

lowered to a Place can in turn trigger a temporary to be created if the expression being

lowered contains operations. This is where the snake bites its own tail and we need to

trigger an Rvalue lowering for the expression to be written into the local.

Operator lowering

Operators on builtin types are not lowered to function calls (which would end up being

infinite recursion calls, because the trait impls just contain the operation itself again).

Instead there are Rvalue s for binary and unary operators and index operations. These

Rvalue s later get codegened to llvm primitive operations or llvm intrinsics.

Operators on all other types get lowered to a function call to their impl of the operator's

corresponding trait.

Regardless of the lowering kind, the arguments to the operator are lowered to Operand s.

This means all arguments are either constants, or refer to an already existing value

somewhere in a local or static.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

332 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/mir/mir_detailed.svg
https://rustc-dev-guide.rust-lang.org/mir/mir_detailed.svg
https://rustc-dev-guide.rust-lang.org/print.html#operator-lowering
https://rustc-dev-guide.rust-lang.org/print.html#operator-lowering

Method call lowering

Method calls are lowered to the same TerminatorKind that function calls are. In MIR

there is no difference between method calls and function calls anymore.

Conditions

if conditions and match statements for enum s without variants with fields are lowered

to TerminatorKind::SwitchInt . Each possible value (so 0 and 1 for if conditions) has

a corresponding BasicBlock to which the code continues. The argument being branched

on is (again) an Operand representing the value of the if condition.

Pattern matching

match statements for enum s with variants that have fields are lowered to

TerminatorKind::SwitchInt , too, but the Operand refers to a Place where the

discriminant of the value can be found. This often involves reading the discriminant to a

new temporary variable.

Aggregate construction

Aggregate values of any kind (e.g. structs or tuples) are built via Rvalue::Aggregate . All

fields are lowered to Operator s. This is essentially equivalent to one assignment

statement per aggregate field plus an assignment to the discriminant in the case of

enum s.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

333 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#method-call-lowering
https://rustc-dev-guide.rust-lang.org/print.html#method-call-lowering
https://rustc-dev-guide.rust-lang.org/mir/index.html
https://rustc-dev-guide.rust-lang.org/mir/index.html
https://rustc-dev-guide.rust-lang.org/print.html#conditions
https://rustc-dev-guide.rust-lang.org/print.html#conditions
https://rustc-dev-guide.rust-lang.org/print.html#pattern-matching
https://rustc-dev-guide.rust-lang.org/print.html#pattern-matching
https://rustc-dev-guide.rust-lang.org/print.html#aggregate-construction
https://rustc-dev-guide.rust-lang.org/print.html#aggregate-construction

MIR visitor

The MIR visitor is a convenient tool for traversing the MIR and either looking for things or

making changes to it. The visitor traits are defined in the rustc_middle::mir::visit

module – there are two of them, generated via a single macro: Visitor (which operates

on a &Mir and gives back shared references) and MutVisitor (which operates on a

&mut Mir and gives back mutable references).

To implement a visitor, you have to create a type that represents your visitor. Typically,

this type wants to "hang on" to whatever state you will need while processing MIR:

and you then implement the Visitor or MutVisitor trait for that type:

As shown above, within the impl, you can override any of the visit_foo methods (e.g.,

visit_terminator) in order to write some code that will execute whenever a foo is

found. If you want to recursively walk the contents of the foo , you then invoke the

super_foo method. (NB. You never want to override super_foo .)

A very simple example of a visitor can be found in LocalUseVisitor . By implementing

visit_local method, this visitor counts how many times each local is mutably used.

Traversal

In addition the visitor, the rustc_middle::mir::traversal module contains useful

functions for walking the MIR CFG in different standard orders (e.g. pre-order, reverse

post-order, and so forth).

struct MyVisitor<...> {
 tcx: TyCtxt<'tcx>,
 ...
}

impl<'tcx> MutVisitor<'tcx> for MyVisitor {
fn visit_foo(&mut self, ...) {

 ...
self.super_foo(...);

 }
}

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

334 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#mir-visitor
https://rustc-dev-guide.rust-lang.org/print.html#mir-visitor
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/visit/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/visit/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/visit/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/visit/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/visit/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/visit/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_transform/const_debuginfo/struct.LocalUseVisitor.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_transform/const_debuginfo/struct.LocalUseVisitor.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_transform/const_debuginfo/struct.LocalUseVisitor.html
https://rustc-dev-guide.rust-lang.org/print.html#traversal
https://rustc-dev-guide.rust-lang.org/print.html#traversal
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/traversal/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/traversal/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/traversal/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/traversal/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/traversal/index.html
https://en.wikipedia.org/wiki/Tree_traversal
https://en.wikipedia.org/wiki/Tree_traversal

MIR passes

If you would like to get the MIR for a function (or constant, etc), you can use the

optimized_mir(def_id) query. This will give you back the final, optimized MIR. For

foreign def-ids, we simply read the MIR from the other crate's metadata. But for local def-

ids, the query will construct the MIR and then iteratively optimize it by applying a series of

passes. This section describes how those passes work and how you can extend them.

To produce the optimized_mir(D) for a given def-id D , the MIR passes through several

suites of optimizations, each represented by a query. Each suite consists of multiple

optimizations and transformations. These suites represent useful intermediate points

where we want to access the MIR for type checking or other purposes:

• mir_build(D) – not a query, but this constructs the initial MIR

• mir_const(D) – applies some simple transformations to make MIR ready for

constant evaluation;

• mir_validated(D) – applies some more transformations, making MIR ready for

borrow checking;

• optimized_mir(D) – the final state, after all optimizations have been performed.

Implementing and registering a pass

A MirPass is some bit of code that processes the MIR, typically – but not always –

transforming it along the way somehow. For example, it might perform an optimization.

The MirPass trait itself is found in the rustc_mir_transform crate, and it basically

consists of one method, run_pass , that simply gets an &mut Mir (along with the tcx and

some information about where it came from). The MIR is therefore modified in place

(which helps to keep things efficient).

A basic example of a MIR pass is RemoveStorageMarkers , which walks the MIR and

removes all storage marks if they won't be emitted during codegen. As you can see from

its source, a MIR pass is defined by first defining a dummy type, a struct with no fields,

something like:

for which you then implement the MirPass trait. You can then insert this pass into the

appropriate list of passes found in a query like optimized_mir , mir_validated , etc. (If

this is an optimization, it should go into the optimized_mir list.)

If you are writing a pass, there's a good chance that you are going to want to use a MIR

visitor. MIR visitors are a handy way to walk all the parts of the MIR, either to search for

something or to make small edits.

struct MyPass;

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

335 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#mir-passes
https://rustc-dev-guide.rust-lang.org/print.html#mir-passes
https://rustc-dev-guide.rust-lang.org/print.html#implementing-and-registering-a-pass
https://rustc-dev-guide.rust-lang.org/print.html#implementing-and-registering-a-pass
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_transform/
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_transform/
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_transform/
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_transform/
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_transform/
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_transform/remove_storage_markers/struct.RemoveStorageMarkers.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_transform/remove_storage_markers/struct.RemoveStorageMarkers.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_transform/remove_storage_markers/struct.RemoveStorageMarkers.html
https://rustc-dev-guide.rust-lang.org/mir/visitor.html
https://rustc-dev-guide.rust-lang.org/mir/visitor.html
https://rustc-dev-guide.rust-lang.org/mir/visitor.html
https://rustc-dev-guide.rust-lang.org/mir/visitor.html

Stealing

The intermediate queries mir_const() and mir_validated() yield up a &'tcx

Steal<Mir<'tcx>> , allocated using tcx.alloc_steal_mir() . This indicates that the result

may be stolen by the next suite of optimizations – this is an optimization to avoid cloning

the MIR. Attempting to use a stolen result will cause a panic in the compiler. Therefore, it

is important that you do not read directly from these intermediate queries except as part

of the MIR processing pipeline.

Because of this stealing mechanism, some care must also be taken to ensure that, before

the MIR at a particular phase in the processing pipeline is stolen, anyone who may want

to read from it has already done so. Concretely, this means that if you have some query

foo(D) that wants to access the result of mir_const(D) or mir_validated(D) , you need

to have the successor pass "force" foo(D) using ty::queries::foo::force(...) . This

will force a query to execute even though you don't directly require its result.

As an example, consider MIR const qualification. It wants to read the result produced by

the mir_const() suite. However, that result will be stolen by the mir_validated() suite.

If nothing was done, then mir_const_qualif(D) would succeed if it came before

mir_validated(D) , but fail otherwise. Therefore, mir_validated(D) will force

mir_const_qualif before it actually steals, thus ensuring that the reads have already

happened (remember that queries are memoized, so executing a query twice simply

loads from a cache the second time):

This mechanism is a bit dodgy. There is a discussion of more elegant alternatives in rust-

lang/rust#41710.

mir_const(D) --read-by--> mir_const_qualif(D)
 | ^
 stolen-by |
 | (forces)
 v |
mir_validated(D) ------------+

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

336 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#stealing
https://rustc-dev-guide.rust-lang.org/print.html#stealing
https://rustc-dev-guide.rust-lang.org/query.html
https://rustc-dev-guide.rust-lang.org/query.html
https://github.com/rust-lang/rust/issues/41710
https://github.com/rust-lang/rust/issues/41710
https://github.com/rust-lang/rust/issues/41710
https://github.com/rust-lang/rust/issues/41710

Identifiers in the compiler

If you have read the few previous chapters, you now know that rustc uses many

different intermediate representations to perform different kinds of analyses. However,

like in every data structure, you need a way to traverse the structure and refer to other

elements. In this chapter, you will find information on the different identifiers rustc uses

for each intermediate representation.

In the AST

A NodeId is an identifier number that uniquely identifies an AST node within a crate.

Every node in the AST has its own NodeId , including top-level items such as structs, but

also individual statements and expressions.

However, because they are absolute within a crate, adding or removing a single node in

the AST causes all the subsequent NodeId s to change. This renders NodeId s pretty much

useless for incremental compilation, where you want as few things as possible to change.

NodeId s are used in all the rustc bits that operate directly on the AST, like macro

expansion and name resolution.

In the HIR

The HIR uses a bunch of different identifiers that coexist and serve different purposes.

• A DefId , as the name suggests, identifies a particular definition, or top-level item, in

a given crate. It is composed of two parts: a CrateNum which identifies the crate the

definition comes from, and a DefIndex which identifies the definition within the

crate. Unlike HirId s, there isn't a DefId for every expression, which makes them

more stable across compilations.

• A LocalDefId is basically a DefId that is known to come from the current crate.

This allows us to drop the CrateNum part, and use the type system to ensure that

only local definitions are passed to functions that expect a local definition.

• A HirId uniquely identifies a node in the HIR of the current crate. It is composed of

two parts: an owner and a local_id that is unique within the owner . This

combination makes for more stable values which are helpful for incremental

compilation. Unlike DefId s, a HirId can refer to fine-grained entities like

expressions, but stays local to the current crate.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

337 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#identifiers-in-the-compiler
https://rustc-dev-guide.rust-lang.org/print.html#identifiers-in-the-compiler
https://rustc-dev-guide.rust-lang.org/print.html#in-the-ast
https://rustc-dev-guide.rust-lang.org/print.html#in-the-ast
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_ast/node_id/struct.NodeId.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_ast/node_id/struct.NodeId.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_ast/node_id/struct.NodeId.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_ast/node_id/struct.NodeId.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_ast/node_id/struct.NodeId.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_ast/node_id/struct.NodeId.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_ast/node_id/struct.NodeId.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_ast/node_id/struct.NodeId.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_ast/node_id/struct.NodeId.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_ast/node_id/struct.NodeId.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_ast/node_id/struct.NodeId.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_ast/node_id/struct.NodeId.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_ast/node_id/struct.NodeId.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_ast/node_id/struct.NodeId.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_ast/node_id/struct.NodeId.html
https://rustc-dev-guide.rust-lang.org/print.html#in-the-hir
https://rustc-dev-guide.rust-lang.org/print.html#in-the-hir
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/def_id/struct.DefId.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/def_id/struct.DefId.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/def_id/struct.DefId.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/def_id/struct.CrateNum.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/def_id/struct.CrateNum.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/def_id/struct.CrateNum.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/def_id/struct.DefIndex.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/def_id/struct.DefIndex.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/def_id/struct.DefIndex.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/hir_id/struct.HirId.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/hir_id/struct.HirId.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/hir_id/struct.HirId.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/def_id/struct.DefId.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/def_id/struct.DefId.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/def_id/struct.DefId.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/def_id/struct.LocalDefId.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/def_id/struct.LocalDefId.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/def_id/struct.LocalDefId.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/def_id/struct.DefId.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/def_id/struct.DefId.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/def_id/struct.DefId.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/def_id/struct.CrateNum.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/def_id/struct.CrateNum.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/def_id/struct.CrateNum.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/hir_id/struct.HirId.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/hir_id/struct.HirId.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/hir_id/struct.HirId.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/def_id/struct.DefId.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/def_id/struct.DefId.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/def_id/struct.DefId.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/hir_id/struct.HirId.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/hir_id/struct.HirId.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/hir_id/struct.HirId.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/hir/enum.Node.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/hir/enum.Node.html

• A BodyId identifies a HIR Body in the current crate. It is currently only a wrapper

around a HirId . For more info about HIR bodies, please refer to the HIR chapter.

These identifiers can be converted into one another through the HIR map. See the HIR

chapter for more detailed information.

In the MIR

• BasicBlock identifies a basic block. It points to an instance of BasicBlockData ,

which can be retrieved by indexing into Body.basic_blocks .

• Local identifies a local variable in a function. Its associated data is in LocalDecl ,

which can be retrieved by indexing into Body.local_decls .

• FieldIdx identifies a struct's, union's, or enum variant's field. It is used as a

"projection" in Place .

• SourceScope identifies a name scope in the original source code. Used for

diagnostics and for debuginfo in debuggers. It points to an instance of

SourceScopeData , which can be retrieved by indexing into Body.source_scopes .

• Promoted identifies a promoted constant within another item (related to const

evaluation). Note: it is unique only locally within the item, so it should be associated

with a DefId . GlobalId will give you a more specific identifier.

• GlobalId identifies a global variable: a const , a static , a const fn where all

arguments are zero-sized types, or a promoted constant.

• Location represents the location in the MIR of a statement or terminator. It

identifies the block (using BasicBlock) and the index of the statement or

terminator in the block.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

338 of 660 8/30/23, 09:47

https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/struct.BodyId.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/struct.BodyId.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/struct.BodyId.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/struct.Body.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/struct.Body.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/struct.Body.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/hir_id/struct.HirId.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/hir_id/struct.HirId.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/hir_id/struct.HirId.html
https://rustc-dev-guide.rust-lang.org/hir.html#hir-bodies
https://rustc-dev-guide.rust-lang.org/hir.html#hir-bodies
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/hir/map/struct.Map.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/hir/map/struct.Map.html
https://rustc-dev-guide.rust-lang.org/hir.html#the-hir-map
https://rustc-dev-guide.rust-lang.org/hir.html#the-hir-map
https://rustc-dev-guide.rust-lang.org/hir.html#the-hir-map
https://rustc-dev-guide.rust-lang.org/hir.html#the-hir-map
https://rustc-dev-guide.rust-lang.org/print.html#in-the-mir
https://rustc-dev-guide.rust-lang.org/print.html#in-the-mir
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.BasicBlock.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.BasicBlock.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.BasicBlock.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.BasicBlockData.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.BasicBlockData.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.BasicBlockData.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.Body.html#structfield.basic_blocks
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.Body.html#structfield.basic_blocks
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.Body.html#structfield.basic_blocks
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.Local.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.Local.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.Local.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.LocalDecl.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.LocalDecl.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.LocalDecl.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.Body.html#structfield.local_decls
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.Body.html#structfield.local_decls
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.Body.html#structfield.local_decls
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_abi/struct.FieldIdx.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_abi/struct.FieldIdx.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_abi/struct.FieldIdx.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.Place.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.Place.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.Place.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.SourceScope.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.SourceScope.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.SourceScope.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.SourceScopeData.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.SourceScopeData.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.SourceScopeData.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.Body.html#structfield.source_scopes
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.Body.html#structfield.source_scopes
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.Body.html#structfield.source_scopes
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.Promoted.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.Promoted.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.Promoted.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/interpret/struct.GlobalId.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/interpret/struct.GlobalId.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/interpret/struct.GlobalId.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/interpret/struct.GlobalId.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/interpret/struct.GlobalId.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/interpret/struct.GlobalId.html
https://doc.rust-lang.org/nomicon/exotic-sizes.html#zero-sized-types-zsts
https://doc.rust-lang.org/nomicon/exotic-sizes.html#zero-sized-types-zsts
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.Location.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.Location.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.Location.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.BasicBlock.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.BasicBlock.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.BasicBlock.html

Closure Expansion in rustc

This section describes how rustc handles closures. Closures in Rust are effectively

"desugared" into structs that contain the values they use (or references to the values they

use) from their creator's stack frame. rustc has the job of figuring out which values a

closure uses and how, so it can decide whether to capture a given variable by shared

reference, mutable reference, or by move. rustc also has to figure out which of the

closure traits (Fn , FnMut , or FnOnce) a closure is capable of implementing.

Let's start with a few examples:

Example 1

To start, let's take a look at how the closure in the following example is desugared:

Let's say the above is the content of a file called immut.rs . If we compile immut.rs using

the following command. The -Z dump-mir=all flag will cause rustc to generate and

dump the MIR to a directory called mir_dump .

After we run this command, we will see a newly generated directory in our current

working directory called mir_dump , which will contain several files. If we look at file

rustc.main.-------.mir_map.0.mir , we will find, among other things, it also contains

this line:

Note that in the MIR examples in this chapter, _1 is x .

Here in first line _4 = &_1; , the mir_dump tells us that x was borrowed as an

immutable reference. This is what we would hope as our closure just reads x .

fn closure(f: impl Fn()) {
 f();
}

fn main() {
let x: i32 = 10;

 closure(|| println!("Hi {}", x)); // The closure just reads x.
println!("Value of x after return {}", x);

}

> rustc +stage1 immut.rs -Z dump-mir=all

_4 = &_1;
_3 = [closure@immut.rs:7:13: 7:36] { x: move _4 };

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

339 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#closure-expansion-in-rustc
https://rustc-dev-guide.rust-lang.org/print.html#closure-expansion-in-rustc
https://doc.rust-lang.org/std/ops/trait.Fn.html
https://doc.rust-lang.org/std/ops/trait.Fn.html
https://doc.rust-lang.org/std/ops/trait.Fn.html
https://doc.rust-lang.org/std/ops/trait.FnMut.html
https://doc.rust-lang.org/std/ops/trait.FnMut.html
https://doc.rust-lang.org/std/ops/trait.FnMut.html
https://doc.rust-lang.org/std/ops/trait.FnOnce.html
https://doc.rust-lang.org/std/ops/trait.FnOnce.html
https://doc.rust-lang.org/std/ops/trait.FnOnce.html
https://rustc-dev-guide.rust-lang.org/print.html#example-1
https://rustc-dev-guide.rust-lang.org/print.html#example-1
https://rustc-dev-guide.rust-lang.org/mir/passes.html
https://rustc-dev-guide.rust-lang.org/mir/passes.html
https://rustc-dev-guide.rust-lang.org/mir/passes.html
https://rustc-dev-guide.rust-lang.org/mir/index.html
https://rustc-dev-guide.rust-lang.org/mir/index.html

Example 2

Here is another example:

This time along, in the line _4 = &mut _1; , we see that the borrow is changed to mutable

borrow. Fair enough! The closure increments x by 10.

Example 3

One more example:

Here, x is directly moved into the closure and the access to it will not be permitted after

the closure.

fn closure(mut f: impl FnMut()) {
 f();
}

fn main() {
let mut x: i32 = 10;

 closure(|| {
 x += 10; // The closure mutates the value of x

println!("Hi {}", x)
 });

println!("Value of x after return {}", x);
}

_4 = &mut _1;
_3 = [closure@mut.rs:7:13: 10:6] { x: move _4 };

fn closure(f: impl FnOnce()) {
 f();
}

fn main() {
let x = vec![21];

 closure(|| {
drop(x); // Makes x unusable after the fact.

 });
// println!("Value of x after return {:?}", x);

}

_6 = [closure@move.rs:7:13: 9:6] { x: move _1 }; // bb16[3]: scope 1 at
move.rs:7:13: 9:6

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

340 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#example-2
https://rustc-dev-guide.rust-lang.org/print.html#example-2
https://rustc-dev-guide.rust-lang.org/print.html#example-3
https://rustc-dev-guide.rust-lang.org/print.html#example-3

Inferences in the compiler

Now let's dive into rustc code and see how all these inferences are done by the compiler.

Let's start with defining a term that we will be using quite a bit in the rest of the

discussion - upvar. An upvar is a variable that is local to the function where the closure is

defined. So, in the above examples, x will be an upvar to the closure. They are also

sometimes referred to as the free variables meaning they are not bound to the context of

the closure. compiler/rustc_passes/src/upvars.rs defines a query called

upvars_mentioned for this purpose.

Other than lazy invocation, one other thing that distinguishes a closure from a normal

function is that it can use the upvars. It borrows these upvars from its surrounding

context; therefore the compiler has to determine the upvar's borrow type. The compiler

starts with assigning an immutable borrow type and lowers the restriction (that is,

changes it from immutable to mutable to move) as needed, based on the usage. In the

Example 1 above, the closure only uses the variable for printing but does not modify it in

any way and therefore, in the mir_dump , we find the borrow type for the upvar x to be

immutable. In example 2, however, the closure modifies x and increments it by some

value. Because of this mutation, the compiler, which started off assigning x as an

immutable reference type, has to adjust it as a mutable reference. Likewise in the third

example, the closure drops the vector and therefore this requires the variable x to be

moved into the closure. Depending on the borrow kind, the closure has to implement the

appropriate trait: Fn trait for immutable borrow, FnMut for mutable borrow, and

FnOnce for move semantics.

Most of the code related to the closure is in the compiler/rustc_hir_typeck

/src/upvar.rs file and the data structures are declared in the file

compiler/rustc_middle/src/ty/mod.rs .

Before we go any further, let's discuss how we can examine the flow of control through

the rustc codebase. For closures specifically, set the RUSTC_LOG env variable as below and

collect the output in a file:

This uses the stage1 compiler and enables debug! logging for the

rustc_hir_typeck::upvar module.

The other option is to step through the code using lldb or gdb.

1. rust-lldb build/host/stage1/bin/rustc test.rs

2. In lldb:

1. b upvar.rs:134 // Setting the breakpoint on a certain line in the upvar.rs file`

> RUSTC_LOG=rustc_hir_typeck::upvar rustc +stage1 -Z dump-mir=all \
 <.rs file to compile> 2> <file where the output will be dumped>

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

341 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#inferences-in-the-compiler
https://rustc-dev-guide.rust-lang.org/print.html#inferences-in-the-compiler
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_passes/upvars/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_passes/upvars/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_passes/upvars/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir_typeck/upvar/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir_typeck/upvar/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir_typeck/upvar/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir_typeck/upvar/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir_typeck/upvar/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir_typeck/upvar/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/index.html

2. r // Run the program until it hits the breakpoint

Let's start with upvar.rs . This file has something called the euv::ExprUseVisitor which

walks the source of the closure and invokes a callback for each upvar that is borrowed,

mutated, or moved.

In the above example, our visitor will be called twice, for the lines marked 1 and 2, once

for a shared borrow and another one for a mutable borrow. It will also tell us what was

borrowed.

The callbacks are defined by implementing the Delegate trait. The InferBorrowKind

type implements Delegate and keeps a map that records for each upvar which mode of

capture was required. The modes of capture can be ByValue (moved) or ByRef

(borrowed). For ByRef borrows, the possible BorrowKind s are ImmBorrow ,

UniqueImmBorrow , MutBorrow as defined in the compiler/rustc_middle/src/ty/mod.rs .

Delegate defines a few different methods (the different callbacks): consume for move of

a variable, borrow for a borrow of some kind (shared or mutable), and mutate when we

see an assignment of something.

All of these callbacks have a common argument cmt which stands for Category, Mutability

and Type and is defined in compiler/rustc_middle/src/middle/mem_categorization.rs .

Borrowing from the code comments, " cmt is a complete categorization of a value

indicating where it originated and how it is located, as well as the mutability of the

memory in which the value is stored". Based on the callback (consume, borrow etc.), we

will call the relevant adjust_upvar_borrow_kind_for_<something> and pass the cmt

along. Once the borrow type is adjusted, we store it in the table, which basically says what

borrows were made for each closure.

fn main() {
let mut x = vec![21];
let _cl = || {

let y = x[0]; // 1.
 x[0] += 1; // 2.
 };
}

self.tables
 .borrow_mut()
 .upvar_capture_map
 .extend(delegate.adjust_upvar_captures);

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

342 of 660 8/30/23, 09:47

https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir_typeck/upvar/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir_typeck/upvar/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir_typeck/upvar/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir_typeck/expr_use_visitor/struct.ExprUseVisitor.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir_typeck/expr_use_visitor/struct.ExprUseVisitor.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir_typeck/expr_use_visitor/struct.ExprUseVisitor.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir_typeck/expr_use_visitor/trait.Delegate.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir_typeck/expr_use_visitor/trait.Delegate.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir_typeck/expr_use_visitor/trait.Delegate.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir_typeck/upvar/struct.InferBorrowKind.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir_typeck/upvar/struct.InferBorrowKind.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir_typeck/upvar/struct.InferBorrowKind.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/enum.BorrowKind.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/enum.BorrowKind.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/enum.BorrowKind.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir_typeck/mem_categorization/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir_typeck/mem_categorization/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir_typeck/mem_categorization/index.html

Inline assembly

• Overview

• AST

• HIR

• Type checking

• THIR

• MIR

• Codegen

• Adding support for new architectures

• Tests

Overview

Inline assembly in rustc mostly revolves around taking an asm! macro invocation and

plumbing it through all of the compiler layers down to LLVM codegen. Throughout the

various stages, an InlineAsm generally consists of 3 components:

• The template string, which is stored as an array of InlineAsmTemplatePiece . Each

piece represents either a literal or a placeholder for an operand (just like format

strings).

• The list of operands to the asm! (in , [late]out , in[late]out , sym , const).

These are represented differently at each stage of lowering, but follow a common

pattern:

◦ in , out and inout all have an associated register class (reg) or explicit

register ("eax").

◦ inout has 2 forms: one with a single expression that is both read from and

written to, and one with two separate expressions for the input and output

parts.

◦ out and inout have a late flag (lateout / inlateout) to indicate that the

register allocator is allowed to reuse an input register for this output.

◦ out and the split variant of inout allow _ to be specified for an output,

which means that the output is discarded. This is used to allocate scratch

pub enum InlineAsmTemplatePiece {

String(String),

 Placeholder { operand_idx: usize, modifier: Option<char>, span: Span

},

}

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

343 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#inline-assembly
https://rustc-dev-guide.rust-lang.org/print.html#inline-assembly
https://rustc-dev-guide.rust-lang.org/asm.html#overview
https://rustc-dev-guide.rust-lang.org/asm.html#overview
https://rustc-dev-guide.rust-lang.org/asm.html#ast
https://rustc-dev-guide.rust-lang.org/asm.html#ast
https://rustc-dev-guide.rust-lang.org/asm.html#hir
https://rustc-dev-guide.rust-lang.org/asm.html#hir
https://rustc-dev-guide.rust-lang.org/asm.html#type-checking
https://rustc-dev-guide.rust-lang.org/asm.html#type-checking
https://rustc-dev-guide.rust-lang.org/asm.html#thir
https://rustc-dev-guide.rust-lang.org/asm.html#thir
https://rustc-dev-guide.rust-lang.org/asm.html#mir
https://rustc-dev-guide.rust-lang.org/asm.html#mir
https://rustc-dev-guide.rust-lang.org/asm.html#codegen
https://rustc-dev-guide.rust-lang.org/asm.html#codegen
https://rustc-dev-guide.rust-lang.org/asm.html#adding-support-for-new-architectures
https://rustc-dev-guide.rust-lang.org/asm.html#adding-support-for-new-architectures
https://rustc-dev-guide.rust-lang.org/asm.html#tests
https://rustc-dev-guide.rust-lang.org/asm.html#tests
https://rustc-dev-guide.rust-lang.org/print.html#overview-3
https://rustc-dev-guide.rust-lang.org/print.html#overview-3

registers for assembly code.

◦ const refers to an anonymous constants and generally works like an inline

const.

◦ sym is a bit special since it only accepts a path expression, which must point to

a static or a fn .

• The options set at the end of the asm! macro. The only ones that are of particular

interest to rustc are NORETURN which makes asm! return ! instead of () , and RAW

which disables format string parsing. The remaining options are mostly passed

through to LLVM with little processing.

AST

InlineAsm is represented as an expression in the AST:

bitflags::bitflags! {

pub struct InlineAsmOptions: u16 {

const PURE = 1 << 0;

const NOMEM = 1 << 1;

const READONLY = 1 << 2;

const PRESERVES_FLAGS = 1 << 3;

const NORETURN = 1 << 4;

const NOSTACK = 1 << 5;

const ATT_SYNTAX = 1 << 6;

const RAW = 1 << 7;

const MAY_UNWIND = 1 << 8;

 }

}

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

344 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#ast
https://rustc-dev-guide.rust-lang.org/print.html#ast

The asm! macro is implemented in rustc_builtin_macros and outputs an InlineAsm

AST node. The template string is parsed using fmt_macros , positional and named

operands are resolved to explicit operand indices. Since target information is not

available to macro invocations, validation of the registers and register classes is deferred

to AST lowering.

HIR

pub struct InlineAsm {
pub template: Vec<InlineAsmTemplatePiece>,
pub template_strs: Box<[(Symbol, Option<Symbol>, Span)]>,
pub operands: Vec<(InlineAsmOperand, Span)>,
pub clobber_abi: Option<(Symbol, Span)>,
pub options: InlineAsmOptions,
pub line_spans: Vec,

}

pub enum InlineAsmRegOrRegClass {
 Reg(Symbol),
 RegClass(Symbol),
}

pub enum InlineAsmOperand {
 In {
 reg: InlineAsmRegOrRegClass,
 expr: P<Expr>,
 },
 Out {
 reg: InlineAsmRegOrRegClass,
 late: bool,
 expr: Option<P<Expr>>,
 },
 InOut {
 reg: InlineAsmRegOrRegClass,
 late: bool,
 expr: P<Expr>,
 },
 SplitInOut {
 reg: InlineAsmRegOrRegClass,
 late: bool,
 in_expr: P<Expr>,
 out_expr: Option<P<Expr>>,
 },
 Const {
 anon_const: AnonConst,
 },
 Sym {
 expr: P<Expr>,
 },
}

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

345 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#hir
https://rustc-dev-guide.rust-lang.org/print.html#hir

InlineAsm is represented as an expression in the HIR:

AST lowering is where InlineAsmRegOrRegClass is converted from Symbol s to an actual

register or register class. If any modifiers are specified for a template string placeholder,

these are validated against the set allowed for that operand type. Finally, explicit registers

for inputs and outputs are checked for conflicts (same register used for different

operands).

Type checking

pub struct InlineAsm<'hir> {
pub template: &'hir [InlineAsmTemplatePiece],
pub template_strs: &'hir [(Symbol, Option<Symbol>, Span)],
pub operands: &'hir [(InlineAsmOperand<'hir>, Span)],
pub options: InlineAsmOptions,
pub line_spans: &'hir [Span],

}

pub enum InlineAsmRegOrRegClass {
 Reg(InlineAsmReg),
 RegClass(InlineAsmRegClass),
}

pub enum InlineAsmOperand<'hir> {
 In {
 reg: InlineAsmRegOrRegClass,
 expr: Expr<'hir>,
 },
 Out {
 reg: InlineAsmRegOrRegClass,
 late: bool,
 expr: Option<Expr<'hir>>,
 },
 InOut {
 reg: InlineAsmRegOrRegClass,
 late: bool,
 expr: Expr<'hir>,
 },
 SplitInOut {
 reg: InlineAsmRegOrRegClass,
 late: bool,
 in_expr: Expr<'hir>,
 out_expr: Option<Expr<'hir>>,
 },
 Const {
 anon_const: AnonConst,
 },
 Sym {
 expr: Expr<'hir>,
 },
}

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

346 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#type-checking
https://rustc-dev-guide.rust-lang.org/print.html#type-checking

Each register class has a whitelist of types that it may be used with. After the types of all

operands have been determined, the intrinsicck pass will check that these types are in

the whitelist. It also checks that split inout operands have compatible types and that

const operands are integers or floats. Suggestions are emitted where needed if a

template modifier should be used for an operand based on the type that was passed into

it.

THIR

InlineAsm is represented as an expression in the THIR:

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

347 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#thir
https://rustc-dev-guide.rust-lang.org/print.html#thir

The only significant change compared to HIR is that Sym has been lowered to either a

SymFn whose expr is a Literal ZST of the fn , or a SymStatic which points to the

DefId of a static .

MIR

InlineAsm is represented as a Terminator in the MIR:

crate enum ExprKind<'tcx> {
// [..]

 InlineAsm {
 template: &'tcx [InlineAsmTemplatePiece],
 operands: Box<[InlineAsmOperand<'tcx>]>,
 options: InlineAsmOptions,
 line_spans: &'tcx [Span],
 },
}
crate enum InlineAsmOperand<'tcx> {
 In {
 reg: InlineAsmRegOrRegClass,
 expr: ExprId,
 },
 Out {
 reg: InlineAsmRegOrRegClass,
 late: bool,
 expr: Option<ExprId>,
 },
 InOut {
 reg: InlineAsmRegOrRegClass,
 late: bool,
 expr: ExprId,
 },
 SplitInOut {
 reg: InlineAsmRegOrRegClass,
 late: bool,
 in_expr: ExprId,
 out_expr: Option<ExprId>,
 },
 Const {
 value: &'tcx Const<'tcx>,
 span: Span,
 },
 SymFn {
 expr: ExprId,
 },
 SymStatic {
 def_id: DefId,
 },
}

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

348 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#mir
https://rustc-dev-guide.rust-lang.org/print.html#mir

As part of THIR lowering, InOut and SplitInOut operands are lowered to a split form

with a separate in_value and out_place .

pub enum TerminatorKind<'tcx> {
// [..]

/// Block ends with an inline assembly block. This is a terminator since
/// inline assembly is allowed to diverge.

 InlineAsm {
/// The template for the inline assembly, with placeholders.

 template: &'tcx [InlineAsmTemplatePiece],

/// The operands for the inline assembly, as `Operand`s or `Place`s.
 operands: Vec<InlineAsmOperand<'tcx>>,

/// Miscellaneous options for the inline assembly.
 options: InlineAsmOptions,

/// Source spans for each line of the inline assembly code. These are
/// used to map assembler errors back to the line in the source code.

 line_spans: &'tcx [Span],

/// Destination block after the inline assembly returns, unless it is
/// diverging (InlineAsmOptions::NORETURN).

 destination: Option<BasicBlock>,
 },
}

pub enum InlineAsmOperand<'tcx> {
 In {
 reg: InlineAsmRegOrRegClass,
 value: Operand<'tcx>,
 },
 Out {
 reg: InlineAsmRegOrRegClass,
 late: bool,
 place: Option<Place<'tcx>>,
 },
 InOut {
 reg: InlineAsmRegOrRegClass,
 late: bool,
 in_value: Operand<'tcx>,
 out_place: Option<Place<'tcx>>,
 },
 Const {
 value: Box<Constant<'tcx>>,
 },
 SymFn {
 value: Box<Constant<'tcx>>,
 },
 SymStatic {
 def_id: DefId,
 },
}

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

349 of 660 8/30/23, 09:47

Semantically, the InlineAsm terminator is similar to the Call terminator except that it

has multiple output places where a Call only has a single return place output.

Codegen

Operands are lowered one more time before being passed to LLVM codegen:

The operands are lowered to LLVM operands and constraint codes as follow:

• out and the output part of inout operands are added first, as required by LLVM.

Late output operands have a = prefix added to their constraint code, non-late

output operands have a =& prefix added to their constraint code.

• in operands are added normally.

• inout operands are tied to the matching output operand.

• sym operands are passed as function pointers or pointers, using the "s"

constraint.

• const operands are formatted to a string and directly inserted in the template

string.

The template string is converted to LLVM form:

pub enum InlineAsmOperandRef<'tcx, B: BackendTypes + ?Sized> {
 In {
 reg: InlineAsmRegOrRegClass,
 value: OperandRef<'tcx, B::Value>,
 },
 Out {
 reg: InlineAsmRegOrRegClass,
 late: bool,
 place: Option<PlaceRef<'tcx, B::Value>>,
 },
 InOut {
 reg: InlineAsmRegOrRegClass,
 late: bool,
 in_value: OperandRef<'tcx, B::Value>,
 out_place: Option<PlaceRef<'tcx, B::Value>>,
 },
 Const {
 string: String,
 },
 SymFn {
 instance: Instance<'tcx>,
 },
 SymStatic {
 def_id: DefId,
 },
}

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

350 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#codegen-1
https://rustc-dev-guide.rust-lang.org/print.html#codegen-1

• $ characters are escaped as $$.

• const operands are converted to strings and inserted directly.

• Placeholders are formatted as ${X:M} where X is the operand index and M is the

modifier character. Modifiers are converted from the Rust form to the LLVM form.

The various options are converted to clobber constraints or LLVM attributes, refer to the

RFC for more details.

Note that LLVM is sometimes rather picky about what types it accepts for certain

constraint codes so we sometimes need to insert conversions to/from a supported type.

See the target-specific ISelLowering.cpp files in LLVM for details of what types are

supported for each register class.

Adding support for new architectures

Adding inline assembly support to an architecture is mostly a matter of defining the

registers and register classes for that architecture. All the definitions for register classes

are located in compiler/rustc_target/asm/ .

Additionally you will need to implement lowering of these register classes to LLVM

constraint codes in compiler/rustc_codegen_llvm/asm.rs .

When adding a new architecture, make sure to cross-reference with the LLVM source

code:

• LLVM has restrictions on which types can be used with a particular constraint code.

Refer to the getRegForInlineAsmConstraint function in lib/Target/${ARCH}

/${ARCH}ISelLowering.cpp .

• LLVM reserves certain registers for its internal use, which causes them to not be

saved/restored properly around inline assembly blocks. These registers are listed in

the getReservedRegs function in lib/Target/${ARCH}/${ARCH}RegisterInfo.cpp .

Any "conditionally" reserved register such as the frame/base pointer must always be

treated as reserved for Rust purposes because we can't know ahead of time

whether a function will require a frame/base pointer.

Tests

Various tests for inline assembly are available:

• tests/assembly/asm

• tests/ui/asm

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

351 of 660 8/30/23, 09:47

https://github.com/Amanieu/rfcs/blob/inline-asm/text/0000-inline-asm.md#mapping-to-llvm-ir
https://github.com/Amanieu/rfcs/blob/inline-asm/text/0000-inline-asm.md#mapping-to-llvm-ir
https://rustc-dev-guide.rust-lang.org/print.html#adding-support-for-new-architectures
https://rustc-dev-guide.rust-lang.org/print.html#adding-support-for-new-architectures
https://rustc-dev-guide.rust-lang.org/print.html#tests-2
https://rustc-dev-guide.rust-lang.org/print.html#tests-2

• tests/codegen/asm-*

Every architecture supported by inline assembly must have exhaustive tests in

tests/assembly/asm which test all combinations of register classes and types.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

352 of 660 8/30/23, 09:47

Analysis

This part discusses the many analyses that the compiler uses to check various properties

of the code and to inform later stages. Typically, this is what people mean when they talk

about "Rust's type system". This includes the representation, inference, and checking of

types, the trait system, and the borrow checker. These analyses do not happen as one big

pass or set of contiguous passes. Rather, they are spread out throughout various parts of

the compilation process and use different intermediate representations. For example,

type checking happens on the HIR, while borrow checking happens on the MIR.

Nonetheless, for the sake of presentation, we will discuss all of these analyses in this part

of the guide.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

353 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#analysis-1
https://rustc-dev-guide.rust-lang.org/print.html#analysis-1

The ty module: representing types

• ty::Ty

• rustc_hir::Ty vs ty::Ty

• ty::Ty implementation

• Allocating and working with types

• Comparing types

• ty::TyKind Variants

• Import conventions

• ADTs Representation

• Type errors

• Question: Why not substitute “inside” the AdtDef ?

The ty module defines how the Rust compiler represents types internally. It also defines

the typing context (tcx or TyCtxt), which is the central data structure in the compiler.

ty::Ty

When we talk about how rustc represents types, we usually refer to a type called Ty .

There are quite a few modules and types for Ty in the compiler (Ty documentation).

The specific Ty we are referring to is rustc_middle::ty::Ty (and not rustc_hir::Ty).

The distinction is important, so we will discuss it first before going into the details of

ty::Ty .

rustc_hir::Ty vs ty::Ty

The HIR in rustc can be thought of as the high-level intermediate representation. It is

more or less the AST (see this chapter) as it represents the syntax that the user wrote,

and is obtained after parsing and some desugaring. It has a representation of types, but in

reality it reflects more of what the user wrote, that is, what they wrote so as to represent

that type.

In contrast, ty::Ty represents the semantics of a type, that is, the meaning of what the

user wrote. For example, rustc_hir::Ty would record the fact that a user used the

name u32 twice in their program, but the ty::Ty would record the fact that both usages

refer to the same type.

Example: fn foo(x: u32) → u32 { x }

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

354 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#the-ty-module-representing-types
https://rustc-dev-guide.rust-lang.org/print.html#the-ty-module-representing-types
https://rustc-dev-guide.rust-lang.org/print.html#the-ty-module-representing-types
https://rustc-dev-guide.rust-lang.org/print.html#the-ty-module-representing-types
https://rustc-dev-guide.rust-lang.org/print.html#the-ty-module-representing-types
https://rustc-dev-guide.rust-lang.org/ty.html#tyty
https://rustc-dev-guide.rust-lang.org/ty.html#tyty
https://rustc-dev-guide.rust-lang.org/ty.html#tyty
https://rustc-dev-guide.rust-lang.org/ty.html#rustc_hirty-vs-tyty
https://rustc-dev-guide.rust-lang.org/ty.html#rustc_hirty-vs-tyty
https://rustc-dev-guide.rust-lang.org/ty.html#rustc_hirty-vs-tyty
https://rustc-dev-guide.rust-lang.org/ty.html#rustc_hirty-vs-tyty
https://rustc-dev-guide.rust-lang.org/ty.html#rustc_hirty-vs-tyty
https://rustc-dev-guide.rust-lang.org/ty.html#rustc_hirty-vs-tyty
https://rustc-dev-guide.rust-lang.org/ty.html#tyty-implementation
https://rustc-dev-guide.rust-lang.org/ty.html#tyty-implementation
https://rustc-dev-guide.rust-lang.org/ty.html#tyty-implementation
https://rustc-dev-guide.rust-lang.org/ty.html#tyty-implementation
https://rustc-dev-guide.rust-lang.org/ty.html#allocating-and-working-with-types
https://rustc-dev-guide.rust-lang.org/ty.html#allocating-and-working-with-types
https://rustc-dev-guide.rust-lang.org/ty.html#comparing-types
https://rustc-dev-guide.rust-lang.org/ty.html#comparing-types
https://rustc-dev-guide.rust-lang.org/ty.html#tytykind-variants
https://rustc-dev-guide.rust-lang.org/ty.html#tytykind-variants
https://rustc-dev-guide.rust-lang.org/ty.html#tytykind-variants
https://rustc-dev-guide.rust-lang.org/ty.html#tytykind-variants
https://rustc-dev-guide.rust-lang.org/ty.html#import-conventions
https://rustc-dev-guide.rust-lang.org/ty.html#import-conventions
https://rustc-dev-guide.rust-lang.org/ty.html#adts-representation
https://rustc-dev-guide.rust-lang.org/ty.html#adts-representation
https://rustc-dev-guide.rust-lang.org/ty.html#type-errors
https://rustc-dev-guide.rust-lang.org/ty.html#type-errors
https://rustc-dev-guide.rust-lang.org/ty.html#question-why-not-substitute-inside-the-adtdef
https://rustc-dev-guide.rust-lang.org/ty.html#question-why-not-substitute-inside-the-adtdef
https://rustc-dev-guide.rust-lang.org/ty.html#question-why-not-substitute-inside-the-adtdef
https://rustc-dev-guide.rust-lang.org/ty.html#question-why-not-substitute-inside-the-adtdef
https://rustc-dev-guide.rust-lang.org/ty.html#question-why-not-substitute-inside-the-adtdef
https://rustc-dev-guide.rust-lang.org/print.html#tyty-1
https://rustc-dev-guide.rust-lang.org/print.html#tyty-1
https://rustc-dev-guide.rust-lang.org/print.html#tyty-1
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.Ty.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.Ty.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.Ty.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/struct.Ty.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/struct.Ty.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/struct.Ty.html
https://rustc-dev-guide.rust-lang.org/print.html#rustc_hirty-vs-tyty
https://rustc-dev-guide.rust-lang.org/print.html#rustc_hirty-vs-tyty
https://rustc-dev-guide.rust-lang.org/print.html#rustc_hirty-vs-tyty
https://rustc-dev-guide.rust-lang.org/print.html#rustc_hirty-vs-tyty
https://rustc-dev-guide.rust-lang.org/print.html#rustc_hirty-vs-tyty
https://rustc-dev-guide.rust-lang.org/print.html#rustc_hirty-vs-tyty
https://rustc-dev-guide.rust-lang.org/hir.html
https://rustc-dev-guide.rust-lang.org/hir.html

In this function, we see that u32 appears twice. We know that that is the same type, i.e.

the function takes an argument and returns an argument of the same type, but from the

point of view of the HIR, there would be two distinct type instances because these are

occurring in two different places in the program. That is, they have two different Span s

(locations).

Example: fn foo(x: &u32) -> &u32

In addition, HIR might have information left out. This type &u32 is incomplete, since in

the full Rust type there is actually a lifetime, but we didn’t need to write those lifetimes.

There are also some elision rules that insert information. The result may look like fn

foo<'a>(x: &'a u32) -> &'a u32 .

In the HIR level, these things are not spelled out and you can say the picture is rather

incomplete. However, at the ty::Ty level, these details are added and it is complete.

Moreover, we will have exactly one ty::Ty for a given type, like u32 , and that ty::Ty is

used for all u32 s in the whole program, not a specific usage, unlike rustc_hir::Ty .

Here is a summary:

rustc_hir::Ty

Describe the syntax of a

type: what the user wrote

(with some desugaring).

Describe the semantics of a type: the meaning of what the user wrote.

Each rustc_hir::Ty has

its own spans

corresponding to the

appropriate place in the

program.

Doesn’t correspond to a single place in the user’s program.

rustc_hir::Ty has

generics and lifetimes;

however, some of those

lifetimes are special

markers like

LifetimeName::Implicit

.

ty::Ty has the full type, including generics and lifetimes, even if the user left

fn foo(x: u32) → u32 {
} - Two rustc_hir::Ty

representing each usage

of u32 , each has its own

Span s, and

rustc_hir::Ty doesn’t

tell us that both are the

same type

fn foo(x: u32) → u32 {
} - One ty::Ty for all instances of u32 throughout the program, and

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

355 of 660 8/30/23, 09:47

https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/struct.Span.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/struct.Span.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/struct.Span.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/struct.Span.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/struct.Ty.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/struct.Ty.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/struct.Ty.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/enum.LifetimeName.html#variant.Implicit
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/enum.LifetimeName.html#variant.Implicit
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/enum.LifetimeName.html#variant.Implicit

rustc_hir::Ty

fn foo(x: &u32) ->

&u32) - Two

rustc_hir::Ty again.

Lifetimes for the

references show up in

the rustc_hir::Ty s

using a special marker,

LifetimeName::Implicit

.

fn foo(x: &u32) -> &u32) - A single ty::Ty . The ty::Ty

Order

HIR is built directly from the AST, so it happens before any ty::Ty is produced. After HIR

is built, some basic type inference and type checking is done. During the type inference,

we figure out what the ty::Ty of everything is and we also check if the type of

something is ambiguous. The ty::Ty is then used for type checking while making sure

everything has the expected type. The astconv module is where the code responsible for

converting a rustc_hir::Ty into a ty::Ty is located. The main routine used is

ast_ty_to_ty . This occurs during the type-checking phase, but also in other parts of the

compiler that want to ask questions like "what argument types does this function

expect?"

How semantics drive the two instances of Ty

You can think of HIR as the perspective of the type information that assumes the least.

We assume two things are distinct until they are proven to be the same thing. In other

words, we know less about them, so we should assume less about them.

They are syntactically two strings: "u32" at line N column 20 and "u32" at line N column

35. We don’t know that they are the same yet. So, in the HIR we treat them as if they are

different. Later, we determine that they semantically are the same type and that’s the

ty::Ty we use.

Consider another example: fn foo<T>(x: T) -> u32 . Suppose that someone invokes

foo::<u32>(0) . This means that T and u32 (in this invocation) actually turns out to be

the same type, so we would eventually end up with the same ty::Ty in the end, but we

have distinct rustc_hir::Ty . (This is a bit over-simplified, though, since during type

checking, we would check the function generically and would still have a T distinct from

u32 . Later, when doing code generation, we would always be handling

"monomorphized" (fully substituted) versions of each function, and hence we would know

what T represents (and specifically that it is u32).)

Here is one more example:

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

356 of 660 8/30/23, 09:47

https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/struct.Ty.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/struct.Ty.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/struct.Ty.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/enum.LifetimeName.html#variant.Implicit
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/enum.LifetimeName.html#variant.Implicit
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/enum.LifetimeName.html#variant.Implicit
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir_analysis/astconv/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir_analysis/astconv/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir_analysis/astconv/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir_analysis/astconv/index.html

Here the type X will vary depending on context, clearly. If you look at the

rustc_hir::Ty , you will get back that X is an alias in both cases (though it will be

mapped via name resolution to distinct aliases). But if you look at the ty::Ty signature,

it will be either fn(u32) -> u32 or fn(i32) -> i32 (with type aliases fully expanded).

ty::Ty implementation

rustc_middle::ty::Ty is actually a wrapper around

Interned<WithCachedTypeInfo<TyKind>> . You can ignore Interned in general; you will

basically never access it explicitly. We always hide them within Ty and skip over it via

Deref impls or methods. TyKind is a big enum with variants to represent many different

Rust types (e.g. primitives, references, abstract data types, generics, lifetimes, etc).

WithCachedTypeInfo has a few cached values like flags and outer_exclusive_binder .

They are convenient hacks for efficiency and summarize information about the type that

we may want to know, but they don’t come into the picture as much here. Finally,

Interned allows the ty::Ty to be a thin pointer-like type. This allows us to do cheap

comparisons for equality, along with the other benefits of interning.

Allocating and working with types

To allocate a new type, you can use the various new_* methods defined on Ty . These

have names that correspond mostly to the various kinds of types. For example:

These methods all return a Ty<'tcx> – note that the lifetime you get back is the lifetime

of the arena that this tcx has access to. Types are always canonicalized and interned (so

we never allocate exactly the same type twice).

You can also find various common types in the tcx itself by accessing its fields:

tcx.types.bool , tcx.types.char , etc. (See CommonTypes for more.)

mod a {
type X = u32;
pub fn foo(x: X) -> u32 { 22 }

}
mod b {

type X = i32;
pub fn foo(x: X) -> i32 { x }

}

let array_ty = Ty::new_array_with_const_len(tcx, ty, count);

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

357 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#tyty-implementation
https://rustc-dev-guide.rust-lang.org/print.html#tyty-implementation
https://rustc-dev-guide.rust-lang.org/print.html#tyty-implementation
https://rustc-dev-guide.rust-lang.org/print.html#tyty-implementation
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.Ty.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.Ty.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.Ty.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_type_ir/sty/enum.TyKind.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_type_ir/sty/enum.TyKind.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_type_ir/sty/enum.TyKind.html
https://rustc-dev-guide.rust-lang.org/memory.html
https://rustc-dev-guide.rust-lang.org/memory.html
https://rustc-dev-guide.rust-lang.org/memory.html
https://rustc-dev-guide.rust-lang.org/print.html#allocating-and-working-with-types
https://rustc-dev-guide.rust-lang.org/print.html#allocating-and-working-with-types
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.Ty.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.Ty.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.Ty.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/context/struct.CommonTypes.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/context/struct.CommonTypes.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/context/struct.CommonTypes.html

Comparing types

Because types are interned, it is possible to compare them for equality efficiently using

== – however, this is almost never what you want to do unless you happen to be hashing

and looking for duplicates. This is because often in Rust there are multiple ways to

represent the same type, particularly once inference is involved.

For example, the type {integer} (ty::Infer(ty::IntVar(..)) an integer inference

variable, the type of an integer literal like 0) and u8 (ty::UInt(..)) should often be

treated as equal when testing whether they can be assigned to each other (which is a

common operation in diagnostics code). == on them will return false though, since

they are different types.

The simplest way to compare two types correctly requires an inference context (infcx).

If you have one, you can use infcx.can_eq(param_env, ty1, ty2) to check whether the

types can be made equal. This is typically what you want to check during diagnostics,

which is concerned with questions such as whether two types can be assigned to each

other, not whether they're represented identically in the compiler's type-checking layer.

When working with an inference context, you have to be careful to ensure that potential

inference variables inside the types actually belong to that inference context. If you are in

a function that has access to an inference context already, this should be the case.

Specifically, this is the case during HIR type checking or MIR borrow checking.

Another consideration is normalization. Two types may actually be the same, but one is

behind an associated type. To compare them correctly, you have to normalize the types

first. This is primarily a concern during HIR type checking and with all types from a

TyCtxt query (for example from tcx.type_of()).

When a FnCtxt or an ObligationCtxt is available during type checking,

.normalize(ty) should be used on them to normalize the type. After type checking,

diagnostics code can use tcx.normalize_erasing_regions(ty) .

There are also cases where using == on Ty is fine. This is for example the case in late

lints or after monomorphization, since type checking has been completed, meaning all

inference variables are resolved and all regions have been erased. In these cases, if you

know that inference variables or normalization won't be a concern, #[allow] or

#[expect] ing the lint is recommended.

When diagnostics code does not have access to an inference context, it should be

threaded through the function calls if one is available in some place (like during type

checking).

If no inference context is available at all, then one can be created as described in type-

inference. But this is only useful when the involved types (for example, if they came from

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

358 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#comparing-types
https://rustc-dev-guide.rust-lang.org/print.html#comparing-types
https://rustc-dev-guide.rust-lang.org/type-inference.html#creating-an-inference-context
https://rustc-dev-guide.rust-lang.org/type-inference.html#creating-an-inference-context
https://rustc-dev-guide.rust-lang.org/type-inference.html#creating-an-inference-context
https://rustc-dev-guide.rust-lang.org/type-inference.html#creating-an-inference-context

a query like tcx.type_of()) are actually substituted with fresh inference variables using

fresh_args_for_item . This can be used to answer questions like "can Vec<T> for any T

be unified with Vec<u32> ?".

ty::TyKind Variants

Note: TyKind is NOT the functional programming concept of Kind.

Whenever working with a Ty in the compiler, it is common to match on the kind of type:

The kind field is of type TyKind<'tcx> , which is an enum defining all of the different

kinds of types in the compiler.

N.B. inspecting the kind field on types during type inference can be risky, as there

may be inference variables and other things to consider, or sometimes types are not

yet known and will become known later.

There are a lot of related types, and we’ll cover them in time (e.g regions/lifetimes,

“substitutions”, etc).

There are many variants on the TyKind enum, which you can see by looking at its

documentation. Here is a sampling:

• Algebraic Data Types (ADTs) An algebraic data type is a struct , enum or union .

Under the hood, struct , enum and union are actually implemented the same way:

they are all ty::TyKind::Adt . It’s basically a user defined type. We will talk more

about these later.

• Foreign Corresponds to extern type T .

• Str Is the type str. When the user writes &str , Str is the how we represent the

str part of that type.

• Slice Corresponds to [T] .

• Array Corresponds to [T; n] .

• RawPtr Corresponds to *mut T or *const T .

• Ref Ref stands for safe references, &'a mut T or &'a T . Ref has some

associated parts, like Ty<'tcx> which is the type that the reference references.

Region<'tcx> is the lifetime or region of the reference and Mutability if the

fn foo(x: Ty<'tcx>) {
match x.kind {

 ...
 }
}

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

359 of 660 8/30/23, 09:47

https://doc.rust-lang.org/beta/nightly-rustc/rustc_infer/infer/struct.InferCtxt.html#method.fresh_substs_for_item
https://doc.rust-lang.org/beta/nightly-rustc/rustc_infer/infer/struct.InferCtxt.html#method.fresh_substs_for_item
https://doc.rust-lang.org/beta/nightly-rustc/rustc_infer/infer/struct.InferCtxt.html#method.fresh_substs_for_item
https://rustc-dev-guide.rust-lang.org/print.html#tytykind-variants
https://rustc-dev-guide.rust-lang.org/print.html#tytykind-variants
https://rustc-dev-guide.rust-lang.org/print.html#tytykind-variants
https://rustc-dev-guide.rust-lang.org/print.html#tytykind-variants
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_type_ir/sty/enum.TyKind.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_type_ir/sty/enum.TyKind.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_type_ir/sty/enum.TyKind.html#variant.Adt
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_type_ir/sty/enum.TyKind.html#variant.Adt
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_type_ir/sty/enum.TyKind.html#variant.Adt
https://en.wikipedia.org/wiki/Algebraic_data_type
https://en.wikipedia.org/wiki/Algebraic_data_type
https://en.wikipedia.org/wiki/Algebraic_data_type
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_type_ir/sty/enum.TyKind.html#variant.Adt
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_type_ir/sty/enum.TyKind.html#variant.Adt
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_type_ir/sty/enum.TyKind.html#variant.Adt
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_type_ir/sty/enum.TyKind.html#variant.Foreign
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_type_ir/sty/enum.TyKind.html#variant.Foreign
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_type_ir/sty/enum.TyKind.html#variant.Foreign
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_type_ir/sty/enum.TyKind.html#variant.Str
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_type_ir/sty/enum.TyKind.html#variant.Str
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_type_ir/sty/enum.TyKind.html#variant.Str
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_type_ir/sty/enum.TyKind.html#variant.Slice
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_type_ir/sty/enum.TyKind.html#variant.Slice
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_type_ir/sty/enum.TyKind.html#variant.Slice
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_type_ir/sty/enum.TyKind.html#variant.Array
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_type_ir/sty/enum.TyKind.html#variant.Array
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_type_ir/sty/enum.TyKind.html#variant.Array
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_type_ir/sty/enum.TyKind.html#variant.RawPtr
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_type_ir/sty/enum.TyKind.html#variant.RawPtr
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_type_ir/sty/enum.TyKind.html#variant.RawPtr
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_type_ir/sty/enum.TyKind.html#variant.Ref
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_type_ir/sty/enum.TyKind.html#variant.Ref
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_type_ir/sty/enum.TyKind.html#variant.Ref

reference is mutable or not.

• Param Represents a type parameter (e.g. the T in Vec<T>).

• Error Represents a type error somewhere so that we can print better diagnostics.

We will discuss this more later.

• And many more...

Import conventions

Although there is no hard and fast rule, the ty module tends to be used like so:

In particular, since they are so common, the Ty and TyCtxt types are imported directly.

Other types are often referenced with an explicit ty:: prefix (e.g. ty::TraitRef<'tcx>).

But some modules choose to import a larger or smaller set of names explicitly.

ADTs Representation

Let's consider the example of a type like MyStruct<u32> , where MyStruct is defined like

so:

The type MyStruct<u32> would be an instance of TyKind::Adt :

There are two parts:

• The AdtDef references the struct/enum/union but without the values for its type

parameters. In our example, this is the MyStruct part without the argument u32 .

(Note that in the HIR, structs, enums and unions are represented differently, but in

ty::Ty , they are all represented using TyKind::Adt .)

• The GenericArgsRef is an interned list of values that are to be substituted for the

generic parameters. In our example of MyStruct<u32> , we would end up with a list

like [u32] . We’ll dig more into generics and substitutions in a little bit.

use ty::{self, Ty, TyCtxt};

struct MyStruct<T> { x: u32, y: T }

Adt(&'tcx AdtDef, GenericArgsRef<'tcx>)
// ------------ ---------------
// (1) (2)
//
// (1) represents the `MyStruct` part
// (2) represents the `<u32>`, or "substitutions" / generic arguments

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

360 of 660 8/30/23, 09:47

https://doc.rust-lang.org/nightly/nightly-rustc/rustc_type_ir/sty/enum.TyKind.html#variant.Param
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_type_ir/sty/enum.TyKind.html#variant.Param
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_type_ir/sty/enum.TyKind.html#variant.Param
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_type_ir/sty/enum.TyKind.html#variant.Error
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_type_ir/sty/enum.TyKind.html#variant.Error
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_type_ir/sty/enum.TyKind.html#variant.Error
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_type_ir/sty/enum.TyKind.html#variants
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_type_ir/sty/enum.TyKind.html#variants
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_type_ir/sty/enum.TyKind.html#variants
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_type_ir/sty/enum.TyKind.html#variants
https://rustc-dev-guide.rust-lang.org/print.html#import-conventions
https://rustc-dev-guide.rust-lang.org/print.html#import-conventions
https://rustc-dev-guide.rust-lang.org/print.html#adts-representation
https://rustc-dev-guide.rust-lang.org/print.html#adts-representation
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.AdtDef.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.AdtDef.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.AdtDef.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/subst/type.GenericArgsRef.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/subst/type.GenericArgsRef.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/subst/type.GenericArgsRef.html

AdtDef and DefId

For every type defined in the source code, there is a unique DefId (see this chapter). This

includes ADTs and generics. In the MyStruct<T> definition we gave above, there are two

DefId s: one for MyStruct and one for T . Notice that the code above does not generate

a new DefId for u32 because it is not defined in that code (it is only referenced).

AdtDef is more or less a wrapper around DefId with lots of useful helper methods.

There is essentially a one-to-one relationship between AdtDef and DefId . You can get

the AdtDef for a DefId with the tcx.adt_def(def_id) query. AdtDef s are all interned,

as shown by the 'tcx lifetime.

Type errors

There is a TyKind::Error that is produced when the user makes a type error. The idea is

that we would propagate this type and suppress other errors that come up due to it so as

not to overwhelm the user with cascading compiler error messages.

There is an important invariant for TyKind::Error . The compiler should never

produce Error unless we know that an error has already been reported to the user. This

is usually because (a) you just reported it right there or (b) you are propagating an

existing Error type (in which case the error should've been reported when that error type

was produced).

It's important to maintain this invariant because the whole point of the Error type is to

suppress other errors -- i.e., we don't report them. If we were to produce an Error type

without actually emitting an error to the user, then this could cause later errors to be

suppressed, and the compilation might inadvertently succeed!

Sometimes there is a third case. You believe that an error has been reported, but you

believe it would've been reported earlier in the compilation, not locally. In that case, you

can invoke delay_span_bug This will make a note that you expect compilation to yield an

error -- if however compilation should succeed, then it will trigger a compiler bug report.

For added safety, it's not actually possible to produce a TyKind::Error value outside of

rustc_middle::ty ; there is a private member of TyKind::Error that prevents it from

being constructable elsewhere. Instead, one should use the TyCtxt::ty_error or

TyCtxt::ty_error_with_message methods. These methods automatically call

delay_span_bug before returning an interned Ty of kind Error . If you were already

planning to use delay_span_bug , then you can just pass the span and message to

ty_error_with_message instead to avoid delaying a redundant span bug.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

361 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/hir.html#identifiers-in-the-hir
https://rustc-dev-guide.rust-lang.org/hir.html#identifiers-in-the-hir
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.TyCtxt.html#method.adt_def
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.TyCtxt.html#method.adt_def
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.TyCtxt.html#method.adt_def
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.TyCtxt.html#method.adt_def
https://rustc-dev-guide.rust-lang.org/print.html#type-errors
https://rustc-dev-guide.rust-lang.org/print.html#type-errors
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_session/struct.Session.html#method.delay_span_bug
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_session/struct.Session.html#method.delay_span_bug
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_session/struct.Session.html#method.delay_span_bug
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.TyCtxt.html#method.ty_error
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.TyCtxt.html#method.ty_error
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.TyCtxt.html#method.ty_error
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.TyCtxt.html#method.ty_error_with_message
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.TyCtxt.html#method.ty_error_with_message
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.TyCtxt.html#method.ty_error_with_message
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_session/struct.Session.html#method.delay_span_bug
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_session/struct.Session.html#method.delay_span_bug
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_session/struct.Session.html#method.delay_span_bug
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.TyCtxt.html#method.ty_error_with_message
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.TyCtxt.html#method.ty_error_with_message
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.TyCtxt.html#method.ty_error_with_message

Question: Why not substitute “inside” the AdtDef?

Recall that we represent a generic struct with (AdtDef, args) . So why bother with this

scheme?

Well, the alternate way we could have chosen to represent types would be to always

create a new, fully-substituted form of the AdtDef where all the types are already

substituted. This seems like less of a hassle. However, the (AdtDef, args) scheme has

some advantages over this.

First, (AdtDef, args) scheme has an efficiency win:

in an example like this, we can subst from MyStruct<A> to MyStruct (and so on) very

cheaply, by just replacing the one reference to A with B . But if we eagerly substituted all

the fields, that could be a lot more work because we might have to go through all of the

fields in the AdtDef and update all of their types.

A bit more deeply, this corresponds to structs in Rust being nominal types — which

means that they are defined by their name (and that their contents are then indexed from

the definition of that name, and not carried along “within” the type itself).

struct MyStruct<T> {
 ... 100s of fields ...
}

// Want to do: MyStruct<A> ==> MyStruct

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

362 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#question-why-not-substitute-inside-the-adtdef
https://rustc-dev-guide.rust-lang.org/print.html#question-why-not-substitute-inside-the-adtdef
https://rustc-dev-guide.rust-lang.org/print.html#question-why-not-substitute-inside-the-adtdef
https://rustc-dev-guide.rust-lang.org/print.html#question-why-not-substitute-inside-the-adtdef
https://rustc-dev-guide.rust-lang.org/print.html#question-why-not-substitute-inside-the-adtdef
https://en.wikipedia.org/wiki/Nominal_type_system
https://en.wikipedia.org/wiki/Nominal_type_system
https://en.wikipedia.org/wiki/Nominal_type_system
https://en.wikipedia.org/wiki/Nominal_type_system

Generics and GenericArgs

Given a generic type MyType<A, B, …> , we may want to swap out the generics A, B, …

for some other types (possibly other generics or concrete types). We do this a lot while

doing type inference, type checking, and trait solving. Conceptually, during these routines,

we may find out that one type is equal to another type and want to swap one out for the

other and then swap that out for another type and so on until we eventually get some

concrete types (or an error).

In rustc this is done using GenericArgsRef. Conceptually, you can think of

GenericArgsRef as a list of types that are to be substituted for the generic type

parameters of the ADT.

GenericArgsRef is a type alias of &'tcx List<GenericArg<'tcx>> (see List rustdocs).

GenericArg is essentially a space-efficient wrapper around GenericArgKind , which is an

enum indicating what kind of generic the type parameter is (type, lifetime, or const). Thus,

GenericArgsRef is conceptually like a &'tcx [GenericArgKind<'tcx>] slice (but it is

actually a List).

So why do we use this List type instead of making it really a slice? It has the length

"inline", so &List is only 32 bits. As a consequence, it cannot be "subsliced" (that only

works if the length is out of line).

This also implies that you can check two List s for equality via == (which would be not

be possible for ordinary slices). This is precisely because they never represent a "sub-list",

only the complete List , which has been hashed and interned.

So pulling it all together, let’s go back to our example above:

• There would be an AdtDef (and corresponding DefId) for MyStruct .

• There would be a TyKind::Param (and corresponding DefId) for T (more later).

• There would be a GenericArgsRef containing the list

[GenericArgKind::Type(Ty(T))]

◦ The Ty(T) here is my shorthand for entire other ty::Ty that has

TyKind::Param , which we mentioned in the previous point.

• This is one TyKind::Adt containing the AdtDef of MyStruct with the

GenericArgsRef above.

Finally, we will quickly mention the Generics type. It is used to give information about

the type parameters of a type.

struct MyStruct<T>

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

363 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#generics-and-genericargs
https://rustc-dev-guide.rust-lang.org/print.html#generics-and-genericargs
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/type.GenericArgsRef.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/type.GenericArgsRef.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.List.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.List.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.List.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.List.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.GenericArg.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.GenericArg.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.GenericArg.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/enum.GenericArgKind.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/enum.GenericArgKind.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/enum.GenericArgKind.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.Generics.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.Generics.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.Generics.html

Unsubstituted Generics

So above, recall that in our example the MyStruct struct had a generic type T . When we

are (for example) type checking functions that use MyStruct , we will need to be able to

refer to this type T without actually knowing what it is. In general, this is true inside all

generic definitions: we need to be able to work with unknown types. This is done via

TyKind::Param (which we mentioned in the example above).

Each TyKind::Param contains two things: the name and the index. In general, the index

fully defines the parameter and is used by most of the code. The name is included for

debug print-outs. There are two reasons for this. First, the index is convenient, it allows

you to include into the list of generic arguments when substituting. Second, the index is

more robust. For example, you could in principle have two distinct type parameters that

use the same name, e.g. impl<A> Foo<A> { fn bar<A>() { .. } } , although the rules

against shadowing make this difficult (but those language rules could change in the

future).

The index of the type parameter is an integer indicating its order in the list of the type

parameters. Moreover, we consider the list to include all of the type parameters from

outer scopes. Consider the following example:

When we are working inside the generic definition, we will use TyKind::Param just like

any other TyKind ; it is just a type after all. However, if we want to use the generic type

somewhere, then we will need to do substitutions.

For example suppose that the Foo<A, B> type from the previous example has a field that

is a Vec<A> . Observe that Vec is also a generic type. We want to tell the compiler that

the type parameter of Vec should be replaced with the A type parameter of Foo<A, B> .

We do that with substitutions:

struct Foo<A, B> {
// A would have index 0
// B would have index 1

 .. // some fields
}
impl<X, Y> Foo<X, Y> {
fn method<Z>() {
// inside here, X, Y and Z are all in scope
// X has index 0
// Y has index 1
// Z has index 2

 }
}

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

364 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#unsubstituted-generics
https://rustc-dev-guide.rust-lang.org/print.html#unsubstituted-generics

This example has a few different substitutions:

• In the definition of Foo , in the type of the field x , we replace Vec 's type parameter

with Param(0) , the first parameter of Foo<A, B> , so that the type of x is Vec<A> .

• In the function bar , we specify that we want a Foo<u32, f32> . This means that we

will substitute Param(0) and Param(1) with u32 and f32 .

• In the body of bar , we access foo.x , which has type Vec<Param(0)> , but

Param(0) has been substituted for u32 , so foo.x has type Vec<u32> .

Let’s look a bit more closely at that last substitution to see why we use indexes. If we want

to find the type of foo.x , we can get generic type of x , which is Vec<Param(0)> . Now we

can take the index 0 and use it to find the right type substitution: looking at Foo 's

GenericArgsRef , we have the list [u32, f32] , since we want to replace index 0 , we

take the 0-th index of this list, which is u32 . Voila!

You may have a couple of followup questions…

type_of How do we get the "generic type of x "? You can get the type of pretty much

anything with the tcx.type_of(def_id) query. In this case, we would pass the DefId of

the field x . The type_of query always returns the definition with the generics that are in

scope of the definition. For example, tcx.type_of(def_id_of_my_struct) would return

the “self-view” of MyStruct : Adt(Foo, &[Param(0), Param(1)]) .

How do we actually do the substitutions? There is a function for that too! You use

instantiate to replace a GenericArgsRef with another list of types.

Here is an example of actually using instantiate in the compiler. The exact details are

not too important, but in this piece of code, we happen to be converting from the

rustc_hir::Ty to a real ty::Ty . You can see that we first get some args (args). Then

we call type_of to get a type and call ty.instantiate(tcx, args) to get a new version

of ty with the args made.

Note on indices: It is possible for the indices in Param to not match with what we expect.

For example, the index could be out of bounds or it could be the index of a lifetime when

we were expecting a type. These sorts of errors would be caught earlier in the compiler

when translating from a rustc_hir::Ty to a ty::Ty . If they occur later, that is a

compiler bug.

struct Foo<A, B> { // Adt(Foo, &[Param(0), Param(1)])
 x: Vec<A>, // Adt(Vec, &[Param(0)])
 ..
}

fn bar(foo: Foo<u32, f32>) { // Adt(Foo, &[u32, f32])
let y = foo.x; // Vec<Param(0)> => Vec<u32>

}

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

365 of 660 8/30/23, 09:47

https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/generic_args/struct.EarlyBinder.html#method.instantiate
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/generic_args/struct.EarlyBinder.html#method.instantiate
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/generic_args/struct.EarlyBinder.html#method.instantiate
https://github.com/rust-lang/rust/blob/8a562f9671e36cf29c9c794c2646bcf252d55535/compiler/rustc_hir_analysis/src/astconv/mod.rs#L905-L927
https://github.com/rust-lang/rust/blob/8a562f9671e36cf29c9c794c2646bcf252d55535/compiler/rustc_hir_analysis/src/astconv/mod.rs#L905-L927
https://github.com/rust-lang/rust/blob/8a562f9671e36cf29c9c794c2646bcf252d55535/compiler/rustc_hir_analysis/src/astconv/mod.rs#L905-L927
https://github.com/rust-lang/rust/blob/8a562f9671e36cf29c9c794c2646bcf252d55535/compiler/rustc_hir_analysis/src/astconv/mod.rs#L905-L927
https://github.com/rust-lang/rust/blob/8a562f9671e36cf29c9c794c2646bcf252d55535/compiler/rustc_hir_analysis/src/astconv/mod.rs#L905-L927

TypeFoldable and TypeFolder

How is this subst query actually implemented? As you can imagine, we might want to do

substitutions on a lot of different things. For example, we might want to do a substitution

directly on a type like we did with Vec above. But we might also have a more complex

type with other types nested inside that also need substitutions.

The answer is a couple of traits: TypeFoldable and TypeFolder .

• TypeFoldable is implemented by types that embed type information. It allows you

to recursively process the contents of the TypeFoldable and do stuff to them.

• TypeFolder defines what you want to do with the types you encounter while

processing the TypeFoldable .

For example, the TypeFolder trait has a method fold_ty that takes a type as input and

returns a new type as a result. TypeFoldable invokes the TypeFolder fold_foo

methods on itself, giving the TypeFolder access to its contents (the types, regions, etc

that are contained within).

You can think of it with this analogy to the iterator combinators we have come to love in

rust:

So to reiterate:

• TypeFolder is a trait that defines a “map” operation.

• TypeFoldable is a trait that is implemented by things that embed types.

In the case of subst , we can see that it is implemented as a TypeFolder : SubstFolder .

Looking at its implementation, we see where the actual substitutions are happening.

However, you might also notice that the implementation calls this super_fold_with

method. What is that? It is a method of TypeFoldable . Consider the following

TypeFoldable type MyFoldable :

The TypeFolder can call super_fold_with on MyFoldable if it just wants to replace

some of the fields of MyFoldable with new values. If it instead wants to replace the whole

vec.iter().map(|e1| foo(e2)).collect()
// ^^^^^^^^^^^^ analogous to `TypeFolder`
// ^^^ analogous to `TypeFoldable`

struct MyFoldable<'tcx> {
 def_id: DefId,
 ty: Ty<'tcx>,
}

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

366 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#typefoldable-and-typefolder
https://rustc-dev-guide.rust-lang.org/print.html#typefoldable-and-typefolder
https://rustc-dev-guide.rust-lang.org/print.html#typefoldable-and-typefolder
https://rustc-dev-guide.rust-lang.org/print.html#typefoldable-and-typefolder
https://rustc-dev-guide.rust-lang.org/print.html#typefoldable-and-typefolder
https://rustc-dev-guide.rust-lang.org/print.html#typefoldable-and-typefolder
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/fold/trait.TypeFoldable.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/fold/trait.TypeFoldable.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/fold/trait.TypeFoldable.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/fold/trait.TypeFolder.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/fold/trait.TypeFolder.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/fold/trait.TypeFolder.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/fold/trait.TypeFolder.html#method.fold_ty
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/fold/trait.TypeFolder.html#method.fold_ty
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/fold/trait.TypeFolder.html#method.fold_ty
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/subst/struct.SubstFolder.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/subst/struct.SubstFolder.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/subst/struct.SubstFolder.html

MyFoldable with a different one, it would call fold_with instead (a different method on

TypeFoldable).

In almost all cases, we don’t want to replace the whole struct; we only want to replace

ty::Ty s in the struct, so usually we call super_fold_with . A typical implementation that

MyFoldable could have might do something like this:

Notice that here, we implement super_fold_with to go over the fields of MyFoldable

and call fold_with on them. That is, a folder may replace def_id and ty , but not the

whole MyFoldable struct.

Here is another example to put things together: suppose we have a type like

Vec<Vec<X>> . The ty::Ty would look like: Adt(Vec, &[Adt(Vec, &[Param(X)])]) . If we

want to do subst(X => u32) , then we would first look at the overall type. We would see

that there are no substitutions to be made at the outer level, so we would descend one

level and look at Adt(Vec, &[Param(X)]) . There are still no substitutions to be made

here, so we would descend again. Now we are looking at Param(X) , which can be

substituted, so we replace it with u32 . We can’t descend any more, so we are done, and

the overall result is Adt(Vec, &[Adt(Vec, &[u32])]) .

One last thing to mention: often when folding over a TypeFoldable , we don’t want to

change most things. We only want to do something when we reach a type. That means

there may be a lot of TypeFoldable types whose implementations basically just forward

to their fields’ TypeFoldable implementations. Such implementations of TypeFoldable

tend to be pretty tedious to write by hand. For this reason, there is a derive macro that

allows you to #![derive(TypeFoldable)] . It is defined here.

subst In the case of substitutions the actual folder is going to be doing the indexing

we’ve already mentioned. There we define a Folder and call fold_with on the

TypeFoldable to process yourself. Then fold_ty the method that process each type it

looks for a ty::Param and for those it replaces it for something from the list of

substitutions, otherwise recursively process the type. To replace it, calls ty_for_param and

my_foldable: MyFoldable<'tcx>
my_foldable.subst(..., subst)

impl TypeFoldable for MyFoldable {
fn super_fold_with(&self, folder: &mut impl TypeFolder<'tcx>) -> MyFoldable

{
 MyFoldable {
 def_id: self.def_id.fold_with(folder),
 ty: self.ty.fold_with(folder),
 }
 }

fn super_visit_with(..) { }
}

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

367 of 660 8/30/23, 09:47

https://github.com/rust-lang/rust/blob/master/compiler/rustc_macros/src/type_foldable.rs
https://github.com/rust-lang/rust/blob/master/compiler/rustc_macros/src/type_foldable.rs
https://github.com/rust-lang/rust/blob/75ff3110ac6d8a0259023b83fd20d7ab295f8dd6/src/librustc_middle/ty/subst.rs#L440-L451
https://github.com/rust-lang/rust/blob/75ff3110ac6d8a0259023b83fd20d7ab295f8dd6/src/librustc_middle/ty/subst.rs#L440-L451
https://github.com/rust-lang/rust/blob/75ff3110ac6d8a0259023b83fd20d7ab295f8dd6/src/librustc_middle/ty/subst.rs#L512-L536
https://github.com/rust-lang/rust/blob/75ff3110ac6d8a0259023b83fd20d7ab295f8dd6/src/librustc_middle/ty/subst.rs#L512-L536
https://github.com/rust-lang/rust/blob/75ff3110ac6d8a0259023b83fd20d7ab295f8dd6/src/librustc_middle/ty/subst.rs#L552-L587
https://github.com/rust-lang/rust/blob/75ff3110ac6d8a0259023b83fd20d7ab295f8dd6/src/librustc_middle/ty/subst.rs#L552-L587

all that does is index into the list of substitutions with the index of the Param .

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

368 of 660 8/30/23, 09:47

Generic arguments

A ty::GenericArg<'tcx> represents some entity in the type system: a type (Ty<'tcx>),

lifetime (ty::Region<'tcx>) or constant (ty::Const<'tcx>). GenericArg is used to

perform instantiation of generic parameters to concrete arguments, such as when calling

a function with generic parameters explicitly with type arguments. Instantiations are

represented using the GenericArgs type as described below.

GenericArgs

ty::GenericArgs<'tcx> is intuitively simply a slice of GenericArg<'tcx> s, acting as an

ordered list of generic parameters instantiated to concrete arguments (such as types,

lifetimes and consts).

For example, given a HashMap<K, V> with two type parameters, K and V , an

instantiation of the parameters, for example HashMap<i32, u32> , would be represented

by &'tcx [tcx.types.i32, tcx.types.u32] .

GenericArgs provides various convenience methods to instantiate generic arguments

given item definitions, which should generally be used rather than explicitly instantiating

such slices.

GenericArg

The actual GenericArg struct is optimised for space, storing the type, lifetime or const as

an interned pointer containing a tag identifying its kind (in the lowest 2 bits). Unless you

are working with the GenericArgs implementation specifically, you should generally not

have to deal with GenericArg and instead make use of the safe GenericArgKind

abstraction.

GenericArgKind

As GenericArg itself is not type-safe, the GenericArgKind enum provides a more

convenient and safe interface for dealing with generic arguments. An GenericArgKind

can be converted to a raw GenericArg using GenericArg::from() (or simply .into()

when the context is clear). As mentioned earlier, instantiation lists store raw

GenericArg s, so before dealing with them, it is preferable to convert them to

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

369 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#generic-arguments
https://rustc-dev-guide.rust-lang.org/print.html#generic-arguments
https://rustc-dev-guide.rust-lang.org/generic_arguments.html#genericargs
https://rustc-dev-guide.rust-lang.org/generic_arguments.html#genericargs
https://rustc-dev-guide.rust-lang.org/generic_arguments.html#genericargs
https://rustc-dev-guide.rust-lang.org/generic_arguments.html#genericargs
https://rustc-dev-guide.rust-lang.org/print.html#genericargs
https://rustc-dev-guide.rust-lang.org/print.html#genericargs
https://rustc-dev-guide.rust-lang.org/print.html#genericargs
https://rustc-dev-guide.rust-lang.org/print.html#genericarg
https://rustc-dev-guide.rust-lang.org/print.html#genericarg
https://rustc-dev-guide.rust-lang.org/print.html#genericarg
https://rustc-dev-guide.rust-lang.org/generic_arguments.html#genericargkind
https://rustc-dev-guide.rust-lang.org/generic_arguments.html#genericargkind
https://rustc-dev-guide.rust-lang.org/generic_arguments.html#genericargkind
https://rustc-dev-guide.rust-lang.org/print.html#genericargkind
https://rustc-dev-guide.rust-lang.org/print.html#genericargkind
https://rustc-dev-guide.rust-lang.org/print.html#genericargkind

GenericArgKind s first. This is done by calling the .unpack() method.

// An example of unpacking and packing a generic argument.
fn deal_with_generic_arg<'tcx>(generic_arg: GenericArg<'tcx>) ->
GenericArg<'tcx> {

// Unpack a raw `GenericArg` to deal with it safely.
let new_generic_arg: GenericArgKind<'tcx> = match generic_arg.unpack() {

 GenericArgKind::Type(ty) => { /* ... */ }
 GenericArgKind::Lifetime(lt) => { /* ... */ }
 GenericArgKind::Const(ct) => { /* ... */ }
 };

// Pack the `GenericArgKind` to store it in a generic args list.
 new_generic_arg.into()
}

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

370 of 660 8/30/23, 09:47

Constants in the type system

Constants used in the type system are represented as ty::Const . The variants of their

ty::ConstKind mostly mirror the variants of ty::TyKind with the two additional variants

being ConstKind::Value and ConstKind::Unevaluated .

WithOptConstParam and dealing with the query

system

To typecheck constants used in the type system, we have to know their expected type.

For const arguments in type dependent paths, e.g. x.foo::<{ 3 + 4 }>() , we don't

know the expected type for { 3 + 4 } until we are typechecking the containing function.

As we may however have to evaluate that constant during this typecheck, we would get a

cycle error. For more details, you can look at this document.

Unevaluated constants

This section talks about what's happening with feature(generic_const_exprs) enabled. On

stable we do not yet supply any generic parameters to anonymous constants, avoiding most of

the issues mentioned here.

Unless a constant is either a simple literal, e.g. [u8; 3] or foo::<{ 'c' }>() , or a

generic parameter, e.g. [u8; N] , converting a constant to its ty::Const representation

returns an unevaluated constant. Even fully concrete constants which do not depend on

generic parameters are not evaluated right away.

Anonymous constants are typechecked separately from their containing item, e.g.

is treated as

fn foo<const N: usize>() -> [u8; N + 1] {
 [0; N + 1]
}

const ANON_CONST_1<const N: usize> = N + 1;
const ANON_CONST_2<const N: usize> = N + 1;
fn foo<const N: usize>() -> [u8; ANON_CONST_1::<N>] {
 [0; ANON_CONST_2::<N>]
}

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

371 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#constants-in-the-type-system
https://rustc-dev-guide.rust-lang.org/print.html#constants-in-the-type-system
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.Const.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.Const.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.Const.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_type_ir/sty/enum.ConstKind.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_type_ir/sty/enum.ConstKind.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_type_ir/sty/enum.ConstKind.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_type_ir/sty/enum.TyKind.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_type_ir/sty/enum.TyKind.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_type_ir/sty/enum.TyKind.html
https://rustc-dev-guide.rust-lang.org/print.html#withoptconstparam-and-dealing-with-the-query-system
https://rustc-dev-guide.rust-lang.org/print.html#withoptconstparam-and-dealing-with-the-query-system
https://rustc-dev-guide.rust-lang.org/print.html#withoptconstparam-and-dealing-with-the-query-system
https://rustc-dev-guide.rust-lang.org/print.html#withoptconstparam-and-dealing-with-the-query-system
https://rustc-dev-guide.rust-lang.org/print.html#withoptconstparam-and-dealing-with-the-query-system
https://rustc-dev-guide.rust-lang.org/print.html#withoptconstparam-and-dealing-with-the-query-system
https://hackmd.io/@rust-const-generics/Bk5GHW-Iq
https://hackmd.io/@rust-const-generics/Bk5GHW-Iq
https://rustc-dev-guide.rust-lang.org/print.html#unevaluated-constants
https://rustc-dev-guide.rust-lang.org/print.html#unevaluated-constants
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.Const.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.Const.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.Const.html

Unifying constants

For the compiler, ANON_CONST_1 and ANON_CONST_2 are completely different, so we have

to somehow look into unevaluated constants to check whether they should unify.

For this we use InferCtxt::try_unify_abstract_consts. This builds a custom AST for the two

inputs from their THIR. This is then used for the actual comparison.

Lazy normalization for constants

We do not eagerly evaluate constant as they can be used in the where -clauses of their

parent item, for example:

The constant <T as Trait>::ASSOC + 1 depends on the T: Trait bound of its parents

caller bounds, but is also part of another bound itself. If we were to eagerly evaluate this

constant while computing its parents bounds this would cause a query cycle.

Unused generic arguments of anonymous constants

Anonymous constants inherit the generic parameters of their parent, which is why the

array length in foo<const N: usize>() -> [u8; N + 1] can use N .

Without any manual adjustments, this causes us to include parameters even if the

constant doesn't use them in any way. This can cause some interesting errors and breaks

some already stable code.

#[feature(generic_const_exprs)]
fn foo<T: Trait>()
where
 [u8; <T as Trait>::ASSOC + 1]: SomeOtherTrait,
{}

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

372 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#unifying-constants
https://rustc-dev-guide.rust-lang.org/print.html#unifying-constants
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_infer/infer/struct.InferCtxt.html#method.try_unify_abstract_consts
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_infer/infer/struct.InferCtxt.html#method.try_unify_abstract_consts
https://rustc-dev-guide.rust-lang.org/print.html#lazy-normalization-for-constants
https://rustc-dev-guide.rust-lang.org/print.html#lazy-normalization-for-constants
https://rustc-dev-guide.rust-lang.org/print.html#unused-generic-arguments-of-anonymous-constants
https://rustc-dev-guide.rust-lang.org/print.html#unused-generic-arguments-of-anonymous-constants
https://github.com/rust-lang/project-const-generics/issues/33
https://github.com/rust-lang/project-const-generics/issues/33

Bound vars and parameters

Early-bound parameters

Early-bound parameters in rustc are identified by an index, stored in the ParamTy struct

for types or the EarlyBoundRegion struct for lifetimes. The index counts from the

outermost declaration in scope. This means that as you add more binders inside, the

index doesn't change.

For example,

Here, the type (Self, T, U) would be ($0, $1, $2) , where $N means a ParamTy with

the index of N .

In rustc, the Generics structure carries this information. So the Generics for Bar above

would be just like for U and would indicate the 'parent' generics of Foo , which declares

Self and T . You can read more in this chapter.

Late-bound parameters

Late-bound parameters in rustc are handled differently. We indicate their presence by a

Binder type. The Binder doesn't know how many variables there are at that binding

level. This can only be determined by walking the type itself and collecting them. So a type

like for<'a, 'b> ('a, 'b) would be for (^0.a, ^0.b) . Here, we just write for

because we don't know the names of the things bound within.

Moreover, a reference to a late-bound lifetime is written ^0.a :

• The 0 is the index; it identifies that this lifetime is bound in the innermost binder

(the for).

• The a is the "name"; late-bound lifetimes in rustc are identified by a "name" -- the

BoundRegionKind enum. This enum can contain a DefId or it might have various

"anonymous" numbered names. The latter arise from types like fn(&u32, &u32) ,

which are equivalent to something like for<'a, 'b> fn(&'a u32, &'b u32) , but

the names of those lifetimes must be generated.

trait Foo<T> {
type Bar<U> = (Self, T, U);

}

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

373 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#bound-vars-and-parameters
https://rustc-dev-guide.rust-lang.org/print.html#bound-vars-and-parameters
https://rustc-dev-guide.rust-lang.org/print.html#early-bound-parameters
https://rustc-dev-guide.rust-lang.org/print.html#early-bound-parameters
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.ParamTy.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.ParamTy.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.ParamTy.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.EarlyBoundRegion.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.EarlyBoundRegion.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.EarlyBoundRegion.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.ParamTy.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.ParamTy.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.ParamTy.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.Generics.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.Generics.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.Generics.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.Generics.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.Generics.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.Generics.html
https://rustc-dev-guide.rust-lang.org/generics.html
https://rustc-dev-guide.rust-lang.org/generics.html
https://rustc-dev-guide.rust-lang.org/print.html#late-bound-parameters
https://rustc-dev-guide.rust-lang.org/print.html#late-bound-parameters
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.Binder.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.Binder.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.Binder.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.Binder.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.Binder.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.Binder.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/enum.BoundRegionKind.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/enum.BoundRegionKind.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/enum.BoundRegionKind.html
https://rustc-dev-guide.rust-lang.org/hir.html#identifiers-in-the-hir
https://rustc-dev-guide.rust-lang.org/hir.html#identifiers-in-the-hir
https://rustc-dev-guide.rust-lang.org/hir.html#identifiers-in-the-hir

This setup of not knowing the full set of variables at a binding level has some advantages

and some disadvantages. The disadvantage is that you must walk the type to find out

what is bound at the given level and so forth. The advantage is primarily that, when

constructing types from Rust syntax, if we encounter anonymous regions like in

fn(&u32) , we just create a fresh index and don't have to update the binder.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

374 of 660 8/30/23, 09:47

Type inference

• A note on terminology

• Creating an inference context

• Inference variables

• Enforcing equality / subtyping

• "Trying" equality

• Snapshots

• Subtyping obligations

• Region constraints

• Solving region constraints

• Lexical region resolution

Type inference is the process of automatic detection of the type of an expression.

It is what allows Rust to work with fewer or no type annotations, making things easier for

users:

Here, the type of things is inferred to be Vec<&str> because of the value we push into

things .

The type inference is based on the standard Hindley-Milner (HM) type inference

algorithm, but extended in various way to accommodate subtyping, region inference, and

higher-ranked types.

A note on terminology

We use the notation ?T to refer to inference variables, also called existential variables.

We use the terms "region" and "lifetime" interchangeably. Both refer to the 'a in &'a T .

The term "bound region" refers to a region that is bound in a function signature, such as

the 'a in for<'a> fn(&'a u32) . A region is "free" if it is not bound.

Creating an inference context

fn main() {
let mut things = vec![];

 things.push("thing");
}

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

375 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#type-inference
https://rustc-dev-guide.rust-lang.org/print.html#type-inference
https://rustc-dev-guide.rust-lang.org/type-inference.html#a-note-on-terminology
https://rustc-dev-guide.rust-lang.org/type-inference.html#a-note-on-terminology
https://rustc-dev-guide.rust-lang.org/type-inference.html#creating-an-inference-context
https://rustc-dev-guide.rust-lang.org/type-inference.html#creating-an-inference-context
https://rustc-dev-guide.rust-lang.org/type-inference.html#inference-variables
https://rustc-dev-guide.rust-lang.org/type-inference.html#inference-variables
https://rustc-dev-guide.rust-lang.org/type-inference.html#enforcing-equality--subtyping
https://rustc-dev-guide.rust-lang.org/type-inference.html#enforcing-equality--subtyping
https://rustc-dev-guide.rust-lang.org/type-inference.html#trying-equality
https://rustc-dev-guide.rust-lang.org/type-inference.html#trying-equality
https://rustc-dev-guide.rust-lang.org/type-inference.html#snapshots
https://rustc-dev-guide.rust-lang.org/type-inference.html#snapshots
https://rustc-dev-guide.rust-lang.org/type-inference.html#subtyping-obligations
https://rustc-dev-guide.rust-lang.org/type-inference.html#subtyping-obligations
https://rustc-dev-guide.rust-lang.org/type-inference.html#region-constraints
https://rustc-dev-guide.rust-lang.org/type-inference.html#region-constraints
https://rustc-dev-guide.rust-lang.org/type-inference.html#solving-region-constraints
https://rustc-dev-guide.rust-lang.org/type-inference.html#solving-region-constraints
https://rustc-dev-guide.rust-lang.org/type-inference.html#lexical-region-resolution
https://rustc-dev-guide.rust-lang.org/type-inference.html#lexical-region-resolution
https://rustc-dev-guide.rust-lang.org/print.html#a-note-on-terminology
https://rustc-dev-guide.rust-lang.org/print.html#a-note-on-terminology
https://rustc-dev-guide.rust-lang.org/print.html#creating-an-inference-context
https://rustc-dev-guide.rust-lang.org/print.html#creating-an-inference-context

You create an inference context by doing something like the following:

infcx has the type InferCtxt<'tcx> , the same 'tcx lifetime as on the tcx it was built

from.

The tcx.infer_ctxt method actually returns a builder, which means there are some

kinds of configuration you can do before the infcx is created. See InferCtxtBuilder

for more information.

Inference variables

The main purpose of the inference context is to house a bunch of inference variables –

these represent types or regions whose precise value is not yet known, but will be

uncovered as we perform type-checking.

If you're familiar with the basic ideas of unification from H-M type systems, or logic

languages like Prolog, this is the same concept. If you're not, you might want to read a

tutorial on how H-M type inference works, or perhaps this blog post on unification in the

Chalk project.

All told, the inference context stores five kinds of inference variables (as of March 2023):

• Type variables, which come in three varieties:

◦ General type variables (the most common). These can be unified with any type.

◦ Integral type variables, which can only be unified with an integral type, and

arise from an integer literal expression like 22 .

◦ Float type variables, which can only be unified with a float type, and arise from

a float literal expression like 22.0 .

• Region variables, which represent lifetimes, and arise all over the place.

• Const variables, which represent constants.

All the type variables work in much the same way: you can create a new type variable,

and what you get is Ty<'tcx> representing an unresolved type ?T . Then later you can

apply the various operations that the inferencer supports, such as equality or subtyping,

and it will possibly instantiate (or bind) that ?T to a specific value as a result.

The region variables work somewhat differently, and are described below in a separate

section.

let infcx = tcx.infer_ctxt().build();
// Use the inference context `infcx` here.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

376 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#inference-variables
https://rustc-dev-guide.rust-lang.org/print.html#inference-variables
http://smallcultfollowing.com/babysteps/blog/2017/03/25/unification-in-chalk-part-1/
http://smallcultfollowing.com/babysteps/blog/2017/03/25/unification-in-chalk-part-1/
http://smallcultfollowing.com/babysteps/blog/2017/03/25/unification-in-chalk-part-1/
http://smallcultfollowing.com/babysteps/blog/2017/03/25/unification-in-chalk-part-1/

Enforcing equality / subtyping

The most basic operations you can perform in the type inferencer is equality, which

forces two types T and U to be the same. The recommended way to add an equality

constraint is to use the at method, roughly like so:

The first at() call provides a bit of context, i.e. why you are doing this unification, and in

what environment, and the eq method performs the actual equality constraint.

When you equate things, you force them to be precisely equal. Equating returns an

InferResult – if it returns Err(err) , then equating failed, and the enclosing TypeError

will tell you what went wrong.

The success case is perhaps more interesting. The "primary" return type of eq is () –

that is, when it succeeds, it doesn't return a value of any particular interest. Rather, it is

executed for its side-effects of constraining type variables and so forth. However, the

actual return type is not () , but rather InferOk<()> . The InferOk type is used to carry

extra trait obligations – your job is to ensure that these are fulfilled (typically by enrolling

them in a fulfillment context). See the trait chapter for more background on that.

You can similarly enforce subtyping through infcx.at(..).sub(..) . The same basic

concepts as above apply.

"Trying" equality

Sometimes you would like to know if it is possible to equate two types without error. You

can test that with infcx.can_eq (or infcx.can_sub for subtyping). If this returns Ok ,

then equality is possible – but in all cases, any side-effects are reversed.

Be aware, though, that the success or failure of these methods is always modulo regions.

That is, two types &'a u32 and &'b u32 will return Ok for can_eq , even if 'a != 'b .

This falls out from the "two-phase" nature of how we solve region constraints.

Snapshots

As described in the previous section on can_eq , often it is useful to be able to do a series

of operations and then roll back their side-effects. This is done for various reasons: one of

them is to be able to backtrack, trying out multiple possibilities before settling on which

infcx.at(...).eq(t, u);

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

377 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#enforcing-equality--subtyping
https://rustc-dev-guide.rust-lang.org/print.html#enforcing-equality--subtyping
https://rustc-dev-guide.rust-lang.org/traits/resolution.html
https://rustc-dev-guide.rust-lang.org/traits/resolution.html
https://rustc-dev-guide.rust-lang.org/print.html#trying-equality
https://rustc-dev-guide.rust-lang.org/print.html#trying-equality
https://rustc-dev-guide.rust-lang.org/print.html#snapshots
https://rustc-dev-guide.rust-lang.org/print.html#snapshots

path to take. Another is in order to ensure that a series of smaller changes take place

atomically or not at all.

To allow for this, the inference context supports a snapshot method. When you call it, it

will start recording changes that occur from the operations you perform. When you are

done, you can either invoke rollback_to , which will undo those changes, or else

confirm , which will make them permanent. Snapshots can be nested as long as you

follow a stack-like discipline.

Rather than use snapshots directly, it is often helpful to use the methods like

commit_if_ok or probe that encapsulate higher-level patterns.

Subtyping obligations

One thing worth discussing is subtyping obligations. When you force two types to be a

subtype, like ?T <: i32 , we can often convert those into equality constraints. This

follows from Rust's rather limited notion of subtyping: so, in the above case, ?T <: i32 is

equivalent to ?T = i32 .

However, in some cases we have to be more careful. For example, when regions are

involved. So if you have ?T <: &'a i32 , what we would do is to first "generalize" &'a

i32 into a type with a region variable: &'?b i32 , and then unify ?T with that (?T =

&'?b i32). We then relate this new variable with the original bound:

This will result in a region constraint (see below) of '?b: 'a .

One final interesting case is relating two unbound type variables, like ?T <: ?U . In that

case, we can't make progress, so we enqueue an obligation Subtype(?T, ?U) and return

it via the InferOk mechanism. You'll have to try again when more details about ?T or

?U are known.

Region constraints

Regions are inferenced somewhat differently from types. Rather than eagerly unifying

things, we simply collect constraints as we go, but make (almost) no attempt to solve

regions. These constraints have the form of an "outlives" constraint:

&'?b i32 <: &'a i32

'a: 'b

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

378 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#subtyping-obligations
https://rustc-dev-guide.rust-lang.org/print.html#subtyping-obligations
https://rustc-dev-guide.rust-lang.org/print.html#region-constraints
https://rustc-dev-guide.rust-lang.org/print.html#region-constraints

Actually the code tends to view them as a subregion relation, but it's the same idea:

(There are various other kinds of constraints, such as "verifys"; see the

region_constraints module for details.)

There is one case where we do some amount of eager unification. If you have an equality

constraint between two regions

we will record that fact in a unification table. You can then use

opportunistic_resolve_var to convert 'b to 'a (or vice versa). This is sometimes

needed to ensure termination of fixed-point algorithms.

Solving region constraints

Region constraints are only solved at the very end of typechecking, once all other

constraints are known and all other obligations have been proven. There are two ways to

solve region constraints right now: lexical and non-lexical. Eventually there will only be

one.

An exception here is the leak-check which is used during trait solving and relies on region

constraints containing higher-ranked regions. Region constraints in the root universe (i.e.

not arising from a for<'a>) must not influence the trait system, as these regions are all

erased during codegen.

To solve lexical region constraints, you invoke resolve_regions_and_report_errors .

This "closes" the region constraint process and invokes the lexical_region_resolve

code. Once this is done, any further attempt to equate or create a subtyping relationship

will yield an ICE.

The NLL solver (actually, the MIR type-checker) does things slightly differently. It uses

canonical queries for trait solving which use take_and_reset_region_constraints at the

end. This extracts all of the outlives constraints added during the canonical query. This is

required as the NLL solver must not only know what regions outlive each other, but also

where. Finally, the NLL solver invokes take_region_var_origins , providing all region

variables to the solver.

Lexical region resolution

'b <= 'a

'a = 'b

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

379 of 660 8/30/23, 09:47

https://doc.rust-lang.org/nightly/nightly-rustc/rustc_infer/infer/region_constraints/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_infer/infer/region_constraints/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_infer/infer/region_constraints/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_infer/infer/region_constraints/struct.RegionConstraintCollector.html#method.opportunistic_resolve_var
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_infer/infer/region_constraints/struct.RegionConstraintCollector.html#method.opportunistic_resolve_var
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_infer/infer/region_constraints/struct.RegionConstraintCollector.html#method.opportunistic_resolve_var
https://rustc-dev-guide.rust-lang.org/print.html#solving-region-constraints
https://rustc-dev-guide.rust-lang.org/print.html#solving-region-constraints
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_infer/infer/struct.InferCtxt.html#method.resolve_regions_and_report_errors
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_infer/infer/struct.InferCtxt.html#method.resolve_regions_and_report_errors
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_infer/infer/struct.InferCtxt.html#method.resolve_regions_and_report_errors
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_infer/infer/lexical_region_resolve/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_infer/infer/lexical_region_resolve/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_infer/infer/lexical_region_resolve/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_infer/infer/struct.InferCtxt.html#method.take_and_reset_region_constraints
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_infer/infer/struct.InferCtxt.html#method.take_and_reset_region_constraints
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_infer/infer/struct.InferCtxt.html#method.take_and_reset_region_constraints
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_infer/infer/struct.InferCtxt.html#method.take_region_var_origins
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_infer/infer/struct.InferCtxt.html#method.take_region_var_origins
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_infer/infer/struct.InferCtxt.html#method.take_region_var_origins
https://rustc-dev-guide.rust-lang.org/print.html#lexical-region-resolution
https://rustc-dev-guide.rust-lang.org/print.html#lexical-region-resolution

Lexical region resolution is done by initially assigning each region variable to an empty

value. We then process each outlives constraint repeatedly, growing region variables until

a fixed-point is reached. Region variables can be grown using a least-upper-bound

relation on the region lattice in a fairly straightforward fashion.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

380 of 660 8/30/23, 09:47

Trait resolution (old-style)

• Major concepts

• Overview

• Selection

◦ Candidate assembly

▪ Winnowing: Resolving ambiguities

▪ where clauses

◦ Confirmation

◦ Selection during codegen

This chapter describes the general process of trait resolution and points out some non-

obvious things.

Note: This chapter (and its subchapters) describe how the trait solver currently works.

However, we are in the process of designing a new trait solver. If you'd prefer to read

about that, see this subchapter.

Major concepts

Trait resolution is the process of pairing up an impl with each reference to a trait. So, for

example, if there is a generic function like:

and then a call to that function:

it is the job of trait resolution to figure out whether there exists an impl of (in this case)

isize : Clone .

Note that in some cases, like generic functions, we may not be able to find a specific impl,

but we can figure out that the caller must provide an impl. For example, consider the

body of clone_slice :

fn clone_slice<T:Clone>(x: &[T]) -> Vec<T> { ... }

let v: Vec<isize> = clone_slice(&[1, 2, 3])

fn clone_slice<T:Clone>(x: &[T]) -> Vec<T> {
let mut v = Vec::new();
for e in &x {

 v.push((*e).clone()); // (*)
 }
}

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

381 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#trait-resolution-old-style
https://rustc-dev-guide.rust-lang.org/print.html#trait-resolution-old-style
https://rustc-dev-guide.rust-lang.org/traits/resolution.html#major-concepts
https://rustc-dev-guide.rust-lang.org/traits/resolution.html#major-concepts
https://rustc-dev-guide.rust-lang.org/traits/resolution.html#overview
https://rustc-dev-guide.rust-lang.org/traits/resolution.html#overview
https://rustc-dev-guide.rust-lang.org/traits/resolution.html#selection
https://rustc-dev-guide.rust-lang.org/traits/resolution.html#selection
https://rustc-dev-guide.rust-lang.org/traits/resolution.html#candidate-assembly
https://rustc-dev-guide.rust-lang.org/traits/resolution.html#candidate-assembly
https://rustc-dev-guide.rust-lang.org/traits/resolution.html#winnowing-resolving-ambiguities
https://rustc-dev-guide.rust-lang.org/traits/resolution.html#winnowing-resolving-ambiguities
https://rustc-dev-guide.rust-lang.org/traits/resolution.html#where-clauses
https://rustc-dev-guide.rust-lang.org/traits/resolution.html#where-clauses
https://rustc-dev-guide.rust-lang.org/traits/resolution.html#where-clauses
https://rustc-dev-guide.rust-lang.org/traits/resolution.html#where-clauses
https://rustc-dev-guide.rust-lang.org/traits/resolution.html#confirmation
https://rustc-dev-guide.rust-lang.org/traits/resolution.html#confirmation
https://rustc-dev-guide.rust-lang.org/traits/resolution.html#selection-during-codegen
https://rustc-dev-guide.rust-lang.org/traits/resolution.html#selection-during-codegen
https://rustc-dev-guide.rust-lang.org/traits/chalk.html
https://rustc-dev-guide.rust-lang.org/traits/chalk.html
https://rustc-dev-guide.rust-lang.org/traits/chalk.html
https://rustc-dev-guide.rust-lang.org/traits/chalk.html
https://rustc-dev-guide.rust-lang.org/print.html#major-concepts
https://rustc-dev-guide.rust-lang.org/print.html#major-concepts

The line marked (*) is only legal if T (the type of *e) implements the Clone trait.

Naturally, since we don't know what T is, we can't find the specific impl; but based on the

bound T:Clone , we can say that there exists an impl which the caller must provide.

We use the term obligation to refer to a trait reference in need of an impl. Basically, the

trait resolution system resolves an obligation by proving that an appropriate impl does

exist.

During type checking, we do not store the results of trait selection. We simply wish to

verify that trait selection will succeed. Then later, at codegen time, when we have all

concrete types available, we can repeat the trait selection to choose an actual

implementation, which will then be generated in the output binary.

Overview

Trait resolution consists of three major parts:

• Selection: Deciding how to resolve a specific obligation. For example, selection

might decide that a specific obligation can be resolved by employing an impl which

matches the Self type, or by using a parameter bound (e.g. T: Trait). In the case

of an impl, selecting one obligation can create nested obligations because of where

clauses on the impl itself. It may also require evaluating those nested obligations to

resolve ambiguities.

• Fulfillment: The fulfillment code is what tracks that obligations are completely

fulfilled. Basically it is a worklist of obligations to be selected: once selection is

successful, the obligation is removed from the worklist and any nested obligations

are enqueued. Fulfillment constrains inference variables.

• Evaluation: Checks whether obligations holds without constraining any inference

variables. Used by selection.

Selection

Selection is the process of deciding whether an obligation can be resolved and, if so, how

it is to be resolved (via impl, where clause, etc). The main interface is the select()

function, which takes an obligation and returns a SelectionResult . There are three

possible outcomes:

• Ok(Some(selection)) – yes, the obligation can be resolved, and selection

indicates how. If the impl was resolved via an impl, then selection may also

indicate nested obligations that are required by the impl.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

382 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#overview-4
https://rustc-dev-guide.rust-lang.org/print.html#overview-4
https://rustc-dev-guide.rust-lang.org/print.html#selection
https://rustc-dev-guide.rust-lang.org/print.html#selection

• Ok(None) – we are not yet sure whether the obligation can be resolved or not. This

happens most commonly when the obligation contains unbound type variables.

• Err(err) – the obligation definitely cannot be resolved due to a type error or

because there are no impls that could possibly apply.

The basic algorithm for selection is broken into two big phases: candidate assembly and

confirmation.

Note that because of how lifetime inference works, it is not possible to give back

immediate feedback as to whether a unification or subtype relationship between

lifetimes holds or not. Therefore, lifetime matching is not considered during selection.

This is reflected in the fact that subregion assignment is infallible. This may yield lifetime

constraints that will later be found to be in error (in contrast, the non-lifetime-constraints

have already been checked during selection and can never cause an error, though

naturally they may lead to other errors downstream).

Candidate assembly

TODO: Talk about why we have different candidates, and why it needs to happen in a

probe.

Searches for impls/where-clauses/etc that might possibly be used to satisfy the

obligation. Each of those is called a candidate. To avoid ambiguity, we want to find exactly

one candidate that is definitively applicable. In some cases, we may not know whether an

impl/where-clause applies or not – this occurs when the obligation contains unbound

inference variables.

The subroutines that decide whether a particular impl/where-clause/etc applies to a

particular obligation are collectively referred to as the process of matching. For impl

candidates , this amounts to unifying the impl header (the Self type and the trait

arguments) while ignoring nested obligations. If matching succeeds then we add it to a

set of candidates. There are other rules when assembling candidates for built-in traits

such as Copy , Sized , and CoerceUnsized .

Once this first pass is done, we can examine the set of candidates. If it is a singleton set,

then we are done: this is the only impl in scope that could possibly apply. Otherwise, we

can winnow down the set of candidates by using where clauses and other conditions.

Winnowing uses evaluate_candidate to check whether the nested obligations may

apply. If this still leaves more than 1 candidate, we use fn

candidate_should_be_dropped_in_favor_of to prefer some candidates over others.

If this reduced set yields a single, unambiguous entry, we're good to go, otherwise the

result is considered ambiguous.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

383 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#candidate-assembly
https://rustc-dev-guide.rust-lang.org/print.html#candidate-assembly

Winnowing: Resolving ambiguities

But what happens if there are multiple impls where all the types unify? Consider this

example:

What happens when we invoke get(&Box::new(1_u16)) , for example? In this case, the

Self type is Box<u16> – that unifies with both impls, because the first applies to all types

T , and the second to all Box<T> . In order for this to be unambiguous, the compiler does

a winnowing pass that considers where clauses and attempts to remove candidates. In

this case, the first impl only applies if Box<u16> : Copy , which doesn't hold. After

winnowing, then, we are left with just one candidate, so we can proceed.

where clauses

Besides an impl, the other major way to resolve an obligation is via a where clause. The

selection process is always given a parameter environment which contains a list of where

clauses, which are basically obligations that we can assume are satisfiable. We will iterate

over that list and check whether our current obligation can be found in that list. If so, it is

considered satisfied. More precisely, we want to check whether there is a where-clause

obligation that is for the same trait (or some subtrait) and which can match against the

obligation.

Consider this simple example:

trait Get {
fn get(&self) -> Self;

}

impl<T: Copy> Get for T {
fn get(&self) -> T {

 *self
 }
}

impl<T: Get> Get for Box<T> {
fn get(&self) -> Box<T> {

Box::new(<T>::get(self))
 }
}

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

384 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#winnowing-resolving-ambiguities
https://rustc-dev-guide.rust-lang.org/print.html#winnowing-resolving-ambiguities
https://rustc-dev-guide.rust-lang.org/print.html#where-clauses
https://rustc-dev-guide.rust-lang.org/print.html#where-clauses
https://rustc-dev-guide.rust-lang.org/print.html#where-clauses
https://rustc-dev-guide.rust-lang.org/print.html#where-clauses
https://rustc-dev-guide.rust-lang.org/param_env.html
https://rustc-dev-guide.rust-lang.org/param_env.html

In the body of foo , clearly we can use methods of A1 , A2 , or B on variable x . The line

marked (*) will incur an obligation X: A1 , while the line marked (#) will incur an

obligation X: B . Meanwhile, the parameter environment will contain two where-clauses:

X : A2 and X : B . For each obligation, then, we search this list of where-clauses. The

obligation X: B trivially matches against the where-clause X: B . To resolve an obligation

X:A1 , we would note that X:A2 implies that X:A1 .

Confirmation

Confirmation unifies the output type parameters of the trait with the values found in the

obligation, possibly yielding a type error.

Suppose we have the following variation of the Convert example in the previous section:

Confirmation is where an error would be reported because the impl specified that

Target would be usize , but the obligation reported char . Hence the result of selection

would be an error.

Note that the candidate impl is chosen based on the Self type, but confirmation is done

based on (in this case) the Target type parameter.

Selection during codegen

trait A1 {
fn do_a1(&self);

}
trait A2 : A1 { ... }

trait B {
fn do_b(&self);

}

fn foo<X:A2+B>(x: X) {
 x.do_a1(); // (*)
 x.do_b(); // (#)
}

trait Convert<Target> {
fn convert(&self) -> Target;

}

impl Convert<usize> for isize { ... } // isize -> usize
impl Convert<isize> for usize { ... } // usize -> isize

let x: isize = ...;
let y: char = x.convert(); // NOTE: `y: char` now!

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

385 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#confirmation
https://rustc-dev-guide.rust-lang.org/print.html#confirmation
https://rustc-dev-guide.rust-lang.org/print.html#selection-during-codegen
https://rustc-dev-guide.rust-lang.org/print.html#selection-during-codegen

As mentioned above, during type checking, we do not store the results of trait selection.

At codegen time, we repeat the trait selection to choose a particular impl for each

method call. This is done using fn codegen_select_candidate . In this second selection,

we do not consider any where-clauses to be in scope because we know that each

resolution will resolve to a particular impl.

One interesting twist has to do with nested obligations. In general, in codegen, we only

need to figure out which candidate applies, and we do not care about nested obligations,

as these are already assumed to be true. Nonetheless, we do currently fulfill all of them.

That is because it can sometimes inform the results of type inference. That is, we do not

have the full substitutions in terms of the type variables of the impl available to us, so we

must run trait selection to figure everything out.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

386 of 660 8/30/23, 09:47

Early and Late Bound Parameter

Definitions

Understanding this page likely requires a rudimentary understanding of higher ranked

trait bounds/ for<'a> and also what types such as dyn for<'a> Trait<'a> and for<'a>

fn(&'a u32) mean. Reading the nomincon chapter on HRTB may be useful for

understanding this syntax. The meaning of for<'a> fn(&'a u32) is incredibly similar to

the meaning of T: for<'a> Trait<'a> .

If you are looking for information on the RegionKind variants ReLateBound and

ReEarlyBound you should look at the section on bound vars and params. This section

discusses what makes generic parameters on functions and closures late/early bound.

Not the general concept of bound vars and generic parameters which RegionKind has

named somewhat confusingly with this topic.

What does it mean for parameters to be early or late

bound

All function definitions conceptually have a ZST (this is represented by TyKind::FnDef in

rustc). The only generics on this ZST are the early bound parameters of the function

definition. e.g.

In order to call b the late bound parameters do need to be provided, these are inferred

at the call site instead of when we refer to foo .

Because late bound parameters are not part of the FnDef 's args this allows us to prove

fn foo<'a>(_: &'a u32) {}

fn main() {
let b = foo;
// ^ `b` has type `FnDef(foo, [])` (no args because `'a` is late bound)
assert!(std::mem::size_of_val(&b) == 0);

}

fn main() {
let b = foo;
let a: &'static u32 = &10;

 foo(a);
// the lifetime argument for `'a` on `foo` is inferred at the callsite
// the generic parameter `'a` on `foo` is inferred to `'static` here

}

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

387 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#early-and-late-bound-parameter-definitions
https://rustc-dev-guide.rust-lang.org/print.html#early-and-late-bound-parameter-definitions
https://rustc-dev-guide.rust-lang.org/print.html#early-and-late-bound-parameter-definitions
https://rustc-dev-guide.rust-lang.org/print.html#early-and-late-bound-parameter-definitions
https://doc.rust-lang.org/nomicon/hrtb.html
https://doc.rust-lang.org/nomicon/hrtb.html
https://rustc-dev-guide.rust-lang.org/bound-vars-and-params.html
https://rustc-dev-guide.rust-lang.org/bound-vars-and-params.html
https://rustc-dev-guide.rust-lang.org/print.html#what-does-it-mean-for-parameters-to-be-early-or-late-bound
https://rustc-dev-guide.rust-lang.org/print.html#what-does-it-mean-for-parameters-to-be-early-or-late-bound
https://rustc-dev-guide.rust-lang.org/print.html#what-does-it-mean-for-parameters-to-be-early-or-late-bound
https://rustc-dev-guide.rust-lang.org/print.html#what-does-it-mean-for-parameters-to-be-early-or-late-bound

trait bounds such as F: for<'a> Fn(&'a u32) where F is foo 's FnDef . e.g.

Early bound parameters are present on the FnDef . Late bound generic parameters are

not present on the FnDef but are instead constrained by the builtin Fn* impl.

The same distinction applies to closures. Instead of FnDef we are talking about the

anonymous closure type. Closures are currently unsound in ways that are closely related

to the distinction between early/late bound parameters (more on this later)

The early/late boundness of generic parameters is only relevent for the desugaring of

functions/closures into types with builtin Fn* impls. It does not make sense to talk about

in other contexts.

The generics_of query in rustc only contains early bound parameters. In this way it acts

more like generics_of(my_func) is the generics for the FnDef than the generics provided

to the function body although it's not clear to the author of this section if this was the

actual justification for making generics_of behave this way.

What parameters are currently late bound

Below are the current requirements for determining if a generic parameter is late bound.

It is worth keeping in mind that these are not necessarily set in stone and it is almost

fn foo_early<'a, T: Trait<'a>>(_: &'a u32, _: T) {}
fn foo_late<'a, T>(_: &'a u32, _: T) {}

fn accepts_hr_func<F: for<'a> Fn(&'a u32, u32)>(_: F) {}

fn main() {
// doesnt work, the substituted bound is `for<'a> FnDef<'?0>: Fn(&'a u32,

u32)`
// `foo_early` only implements `for<'a> FnDef<'a>: Fn(&'a u32, u32)`- the

lifetime
// of the borrow in the function argument must be the same as the

lifetime
// on the `FnDef`.

 accepts_hr_func(foo_early);

// works, the substituted bound is `for<'a> FnDef: Fn(&'a u32, u32)`
 accepts_hr_func(foo_late);
}

// the builtin `Fn` impls for `foo_early` and `foo_late` look something like:
// `foo_early`
impl<'a, T: Trait<'a>> Fn(&'a u32, T) for FooEarlyFnDef<'a, T> { ... }
// `foo_late`
impl<'a, T> Fn(&'a u32, T) for FooLateFnDef<T> { ... }

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

388 of 660 8/30/23, 09:47

https://github.com/rust-lang/rust/issues/84366
https://github.com/rust-lang/rust/issues/84366
https://rustc-dev-guide.rust-lang.org/print.html#what-parameters-are-currently-late-bound
https://rustc-dev-guide.rust-lang.org/print.html#what-parameters-are-currently-late-bound

certainly possible to be more flexible.

Must be a lifetime parameter

Rust can't support types such as for<T> dyn Trait<T> or for<T> fn(T) , this is a

fundamental limitation of the language as we are required to monomorphize type/const

parameters and cannot do so behind dynamic dispatch. (technically we could probably

support for<T> dyn MarkerTrait<T> as there is nothing to monomorphize)

Not being able to support for<T> dyn Trait<T> resulted in making all type and const

parameters early bound. Only lifetime parameters can be late bound.

Must not appear in the where clauses

In order for a generic parameter to be late bound it must not appear in any where

clauses. This is currently an incredibly simplistic check that causes lifetimes to be early

bound even if the where clause they appear in are always true, or implied by well

formedness of function arguments. e.g.

The reason for this requirement is that we cannot represent the T: Trait<'a> or 'a:

'b clauses on a function pointer. for<'a, 'b> fn(Inv<&'a ()>, Inv<&'b ()>) is not a

valid function pointer to represent foo4 as it would allow calling the function without

'b: 'a holding.

fn foo1<'a: 'a>(_: &'a u32) {}
// ^^ early bound parameter because it's in a `'a: 'a` clause
// even though the bound obviously holds all the time
fn foo2<'a, T: Trait<'a>(a: T, b: &'a u32) {}
// ^^ early bound parameter because it's used in the `T: Trait<'a>`
clause
fn foo3<'a, T: 'a>(_: &'a T) {}
// ^^ early bound parameter because it's used in the `T: 'a` clause
// even though that bound is implied by wellformedness of `&'a T`
fn foo4<'a, 'b: 'a>(_: Inv<&'a ()>, _: Inv<&'b ()>) {}
// ^^ ^^ ^^^ note:
// ^^ ^^ `Inv` stands for `Invariant` and is used to
// ^^ ^^ make the the type parameter invariant. This
// ^^ ^^ is necessary for demonstration purposes as
// ^^ ^^ `for<'a, 'b> fn(&'a (), &'b ())` and
// ^^ ^^ `for<'a> fn(&'a u32, &'a u32)` are subtypes-
// ^^ ^^ of eachother which makes the bound trivially
// ^^ ^^ satisfiable when making the fnptr. `Inv`
// ^^ ^^ disables this subtyping.
// ^^ ^^
// ^^^^^^ both early bound parameters because they are present in the
// `'b: 'a` clause

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

389 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#must-be-a-lifetime-parameter
https://rustc-dev-guide.rust-lang.org/print.html#must-be-a-lifetime-parameter
https://rustc-dev-guide.rust-lang.org/print.html#must-not-appear-in-the-where-clauses
https://rustc-dev-guide.rust-lang.org/print.html#must-not-appear-in-the-where-clauses

Must be constrained by where clauses or function argument types

The builtin impls of the Fn* traits for closures and FnDef s cannot not have any

unconstrained parameters. For example the following impl is illegal:

We must not end up with a similar impl for the Fn* traits e.g.

Violating this rule can trivially lead to unsoundness as seen in #84366. Additionally if we

ever support late bound type params then an impl like:

would break the compiler in various ways.

In order to ensure that everything functions correctly, we do not allow generic

parameters to be late bound if it would result in a builtin impl that does not constrain all

of the generic parameters on the builtin impl. Making a generic parameter be early

bound trivially makes it be constrained by the builtin impl as it ends up on the self type.

Because of the requirement that late bound parameters must not appear in where

clauses, checking this is simpler than the rules for checking impl headers constrain all the

parameters on the impl. We only have to ensure that all late bound parameters appear at

least once in the function argument types outside of an alias (e.g. an associated type).

The requirement that they not indirectly be in the args of an alias for it to count is the

same as why the follow code is forbidden:

There is no guarantee that <T as Trait>::Assoc will normalize to different types for

every instantiation of T . If we were to allow this impl we could get overlapping impls and

the same is true of the builtin Fn* impls.

Making more generic parameters late bound

It is generally considered desirable for more parameters to be late bound as it makes the

builtin Fn* impls more flexible. Right now many of the requirements for making a

parameter late bound are overly restrictive as they are tied to what we can currently (or

can ever) do with fn ptrs.

impl<'a> Trait for u32 { type Assoc = &'a u32; }

impl<'a> Fn<()> for FnDef { type Assoc = &'a u32 }

impl<T> Fn<()> for FnDef { type Assoc = T; }

impl<T: Trait> OtherTrait for <T as Trait>::Assoc { type Assoc = T }

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

390 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#must-be-constrained-by-where-clauses-or-function-argument-types
https://rustc-dev-guide.rust-lang.org/print.html#must-be-constrained-by-where-clauses-or-function-argument-types
https://github.com/rust-lang/rust/issues/84366
https://github.com/rust-lang/rust/issues/84366
https://rustc-dev-guide.rust-lang.org/print.html#making-more-generic-parameters-late-bound
https://rustc-dev-guide.rust-lang.org/print.html#making-more-generic-parameters-late-bound

It would be theoretically possible to support late bound params in where -clauses in the

language by introducing implication types which would allow us to express types such as:

for<'a, 'b: 'a> fn(Inv<&'a u32>, Inv<&'b u32>) which would ensure 'b: 'a is

upheld when calling the function pointer.

It would also be theoretically possible to support it by making the coercion to a fn ptr

instantiate the parameter with an infer var while still allowing the FnDef to not have the

generic parameter present as trait impls are perfectly capable of representing the where

clauses on the function on the impl itself. This would also allow us to support late bound

type/const vars allowing bounds like F: for<T> Fn(T) to hold.

It is almost somewhat unclear if we can change the Fn traits to be structured differently

so that we never have to make a parameter early bound just to make the builtin impl

have all generics be constrained. Of all the possible causes of a generic parameter being

early bound this seems the most difficult to remove.

Whether these would be good ideas to implement is a separate question- they are only

brought up to illustrate that the current rules are not necessarily set in stone and a result

of "its the only way of doing this".

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

391 of 660 8/30/23, 09:47

Higher-ranked trait bounds

One of the more subtle concepts in trait resolution is higher-ranked trait bounds. An

example of such a bound is for<'a> MyTrait<&'a isize> . Let's walk through how

selection on higher-ranked trait references works.

Basic matching and placeholder leaks

Suppose we have a trait Foo :

Let's say we have a function want_hrtb that wants a type which implements Foo<&'a

isize> for any 'a :

Now we have a struct AnyInt that implements Foo<&'a isize> for any 'a :

And the question is, does AnyInt : for<'a> Foo<&'a isize> ? We want the answer to be

yes. The algorithm for figuring it out is closely related to the subtyping for higher-ranked

types (which is described here and also in a paper by SPJ. If you wish to understand

higher-ranked subtyping, we recommend you read the paper). There are a few parts:

1. Replace bound regions in the obligation with placeholders.

2. Match the impl against the placeholder obligation.

3. Check for placeholder leaks.

So let's work through our example.

1. The first thing we would do is to replace the bound region in the obligation with a

placeholder, yielding AnyInt : Foo<&'0 isize> (here '0 represents placeholder

region #0). Note that we now have no quantifiers; in terms of the compiler type, this

changes from a ty::PolyTraitRef to a TraitRef . We would then create the

TraitRef from the impl, using fresh variables for it's bound regions (and thus

getting Foo<&'$a isize> , where '$a is the inference variable for 'a).

trait Foo<X> {
fn foo(&self, x: X) { }

}

fn want_hrtb<T>() where T : for<'a> Foo<&'a isize> { ... }

struct AnyInt;
impl<'a> Foo<&'a isize> for AnyInt { }

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

392 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#higher-ranked-trait-bounds
https://rustc-dev-guide.rust-lang.org/print.html#higher-ranked-trait-bounds
https://rustc-dev-guide.rust-lang.org/print.html#basic-matching-and-placeholder-leaks
https://rustc-dev-guide.rust-lang.org/print.html#basic-matching-and-placeholder-leaks
https://rustc-dev-guide.rust-lang.org/traits/hrtb.html
https://rustc-dev-guide.rust-lang.org/traits/hrtb.html
https://www.microsoft.com/en-us/research/publication/practical-type-inference-for-arbitrary-rank-types
https://www.microsoft.com/en-us/research/publication/practical-type-inference-for-arbitrary-rank-types
https://rustc-dev-guide.rust-lang.org/appendix/glossary.html#placeholder
https://rustc-dev-guide.rust-lang.org/appendix/glossary.html#placeholder

2. Next we relate the two trait refs, yielding a graph with the constraint that '0 ==

'$a .

3. Finally, we check for placeholder "leaks" – a leak is basically any attempt to relate a

placeholder region to another placeholder region, or to any region that pre-existed

the impl match. The leak check is done by searching from the placeholder region to

find the set of regions that it is related to in any way. This is called the "taint" set. To

pass the check, that set must consist solely of itself and region variables from the

impl. If the taint set includes any other region, then the match is a failure. In this

case, the taint set for '0 is {'0, '$a} , and hence the check will succeed.

Let's consider a failure case. Imagine we also have a struct

We want the obligation StaticInt : for<'a> Foo<&'a isize> to be considered

unsatisfied. The check begins just as before. 'a is replaced with a placeholder '0 and

the impl trait reference is instantiated to Foo<&'static isize> . When we relate those

two, we get a constraint like 'static == '0 . This means that the taint set for '0 is {'0,

'static} , which fails the leak check.

TODO: This is because 'static is not a region variable but is in the taint set, right?

Higher-ranked trait obligations

Once the basic matching is done, we get to another interesting topic: how to deal with

impl obligations. I'll work through a simple example here. Imagine we have the traits Foo

and Bar and an associated impl:

Now let's say we have an obligation Baz: for<'a> Foo<&'a isize> and we match this

impl. What obligation is generated as a result? We want to get Baz: for<'a> Bar<&'a

struct StaticInt;
impl Foo<&'static isize> for StaticInt;

trait Foo<X> {
fn foo(&self, x: X) { }

}

trait Bar<X> {
fn bar(&self, x: X) { }

}

impl<X,F> Foo<X> for F
where F : Bar<X>

{
}

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

393 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#higher-ranked-trait-obligations
https://rustc-dev-guide.rust-lang.org/print.html#higher-ranked-trait-obligations

isize> , but how does that happen?

After the matching, we are in a position where we have a placeholder substitution like X

=> &'0 isize . If we apply this substitution to the impl obligations, we get F : Bar<&'0

isize> . Obviously this is not directly usable because the placeholder region '0 cannot

leak out of our computation.

What we do is to create an inverse mapping from the taint set of '0 back to the original

bound region ('a , here) that '0 resulted from. (This is done in

higher_ranked::plug_leaks). We know that the leak check passed, so this taint set

consists solely of the placeholder region itself plus various intermediate region variables.

We then walk the trait-reference and convert every region in that taint set back to a late-

bound region, so in this case we'd wind up with Baz: for<'a> Bar<&'a isize> .

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

394 of 660 8/30/23, 09:47

Caching and subtle considerations

therewith

In general, we attempt to cache the results of trait selection. This is a somewhat complex

process. Part of the reason for this is that we want to be able to cache results even when

all the types in the trait reference are not fully known. In that case, it may happen that the

trait selection process is also influencing type variables, so we have to be able to not only

cache the result of the selection process, but replay its effects on the type variables.

An example

The high-level idea of how the cache works is that we first replace all unbound inference

variables with placeholder versions. Therefore, if we had a trait reference usize :

Foo<$t> , where $t is an unbound inference variable, we might replace it with usize :

Foo<$0> , where $0 is a placeholder type. We would then look this up in the cache.

If we found a hit, the hit would tell us the immediate next step to take in the selection

process (e.g. apply impl #22, or apply where clause X : Foo<Y>).

On the other hand, if there is no hit, we need to go through the selection process from

scratch. Suppose, we come to the conclusion that the only possible impl is this one, with

def-id 22:

We would then record in the cache usize : Foo<$0> => ImplCandidate(22) . Next we

would confirm ImplCandidate(22) , which would (as a side-effect) unify $t with isize .

Now, at some later time, we might come along and see a usize : Foo<$u> . When

replaced with a placeholder, this would yield usize : Foo<$0> , just as before, and hence

the cache lookup would succeed, yielding ImplCandidate(22) . We would confirm

ImplCandidate(22) which would (as a side-effect) unify $u with isize .

Where clauses and the local vs global cache

One subtle interaction is that the results of trait lookup will vary depending on what

where clauses are in scope. Therefore, we actually have two caches, a local and a global

cache. The local cache is attached to the ParamEnv , and the global cache attached to the

tcx . We use the local cache whenever the result might depend on the where clauses that

impl Foo<isize> for usize { ... } // Impl #22

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

395 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#caching-and-subtle-considerations-therewith
https://rustc-dev-guide.rust-lang.org/print.html#caching-and-subtle-considerations-therewith
https://rustc-dev-guide.rust-lang.org/print.html#caching-and-subtle-considerations-therewith
https://rustc-dev-guide.rust-lang.org/print.html#caching-and-subtle-considerations-therewith
https://rustc-dev-guide.rust-lang.org/print.html#an-example
https://rustc-dev-guide.rust-lang.org/print.html#an-example
https://rustc-dev-guide.rust-lang.org/traits/resolution.html#selection
https://rustc-dev-guide.rust-lang.org/traits/resolution.html#selection
https://rustc-dev-guide.rust-lang.org/traits/resolution.html#confirmation
https://rustc-dev-guide.rust-lang.org/traits/resolution.html#confirmation
https://rustc-dev-guide.rust-lang.org/print.html#where-clauses-and-the-local-vs-global-cache
https://rustc-dev-guide.rust-lang.org/print.html#where-clauses-and-the-local-vs-global-cache
https://rustc-dev-guide.rust-lang.org/param_env.html
https://rustc-dev-guide.rust-lang.org/param_env.html
https://rustc-dev-guide.rust-lang.org/param_env.html
https://rustc-dev-guide.rust-lang.org/ty.html
https://rustc-dev-guide.rust-lang.org/ty.html
https://rustc-dev-guide.rust-lang.org/ty.html

are in scope. The determination of which cache to use is done by the method

pick_candidate_cache in select.rs . At the moment, we use a very simple, conservative

rule: if there are any where-clauses in scope, then we use the local cache. We used to try

and draw finer-grained distinctions, but that led to a series of annoying and weird bugs

like #22019 and #18290. This simple rule seems to be pretty clearly safe and also still

retains a very high hit rate (~95% when compiling rustc).

TODO: it looks like pick_candidate_cache no longer exists. In general, is this section still

accurate at all?

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

396 of 660 8/30/23, 09:47

https://github.com/rust-lang/rust/issues/22019
https://github.com/rust-lang/rust/issues/22019
https://github.com/rust-lang/rust/issues/18290
https://github.com/rust-lang/rust/issues/18290

Specialization

TODO: where does Chalk fit in? Should we mention/discuss it here?

Defined in the specialize module.

The basic strategy is to build up a specialization graph during coherence checking (recall

that coherence checking looks for overlapping impls). Insertion into the graph locates the

right place to put an impl in the specialization hierarchy; if there is no right place (due to

partial overlap but no containment), you get an overlap error. Specialization is consulted

when selecting an impl (of course), and the graph is consulted when propagating defaults

down the specialization hierarchy.

You might expect that the specialization graph would be used during selection – i.e. when

actually performing specialization. This is not done for two reasons:

• It's merely an optimization: given a set of candidates that apply, we can determine

the most specialized one by comparing them directly for specialization, rather than

consulting the graph. Given that we also cache the results of selection, the benefit of

this optimization is questionable.

• To build the specialization graph in the first place, we need to use selection (because

we need to determine whether one impl specializes another). Dealing with this

reentrancy would require some additional mode switch for selection. Given that

there seems to be no strong reason to use the graph anyway, we stick with a

simpler approach in selection, and use the graph only for propagating default

implementations.

Trait impl selection can succeed even when multiple impls can apply, as long as they are

part of the same specialization family. In that case, it returns a single impl on success –

this is the most specialized impl known to apply. However, if there are any inference

variables in play, the returned impl may not be the actual impl we will use at codegen

time. Thus, we take special care to avoid projecting associated types unless either (1) the

associated type does not use default and thus cannot be overridden or (2) all input

types are known concretely.

Additional Resources

This talk by @sunjay may be useful. Keep in mind that the talk only gives a broad

overview of the problem and the solution (it was presented about halfway through

@sunjay's work). Also, it was given in June 2018, and some things may have changed by

the time you watch it.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

397 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#specialization-1
https://rustc-dev-guide.rust-lang.org/print.html#specialization-1
https://rustc-dev-guide.rust-lang.org/print.html#additional-resources
https://rustc-dev-guide.rust-lang.org/print.html#additional-resources
https://www.youtube.com/watch?v=rZqS4bLPL24
https://www.youtube.com/watch?v=rZqS4bLPL24

Chalk-based trait solving

Chalk is an experimental trait solver for Rust that is (as of May 2022) under development

by the Types team. Its goal is to enable a lot of trait system features and bug fixes that are

hard to implement (e.g. GATs or specialization). If you would like to help in hacking on the

new solver, drop by on the rust-lang Zulip in the #t-types stream and say hello!

The new-style trait solver is based on the work done in chalk. Chalk recasts Rust's trait

system explicitly in terms of logic programming. It does this by "lowering" Rust code into

a kind of logic program we can then execute queries against.

The key observation here is that the Rust trait system is basically a kind of logic, and it can

be mapped onto standard logical inference rules. We can then look for solutions to those

inference rules in a very similar fashion to how e.g. a Prolog solver works. It turns out that

we can't quite use Prolog rules (also called Horn clauses) but rather need a somewhat

more expressive variant.

You can read more about chalk itself in the Chalk book section.

Ongoing work

The design of the new-style trait solving happens in two places:

chalk. The chalk repository is where we experiment with new ideas and designs for the

trait system.

rustc. Once we are happy with the logical rules, we proceed to implementing them in

rustc. We map our struct, trait, and impl declarations into logical inference rules in the

lowering module in rustc.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

398 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#chalk-based-trait-solving
https://rustc-dev-guide.rust-lang.org/print.html#chalk-based-trait-solving
https://github.com/rust-lang/chalk
https://github.com/rust-lang/chalk
https://github.com/rust-lang/types-team
https://github.com/rust-lang/types-team
https://rust-lang.zulipchat.com/#narrow/stream/144729-t-types
https://rust-lang.zulipchat.com/#narrow/stream/144729-t-types
https://rust-lang.zulipchat.com/#narrow/stream/144729-t-types
https://github.com/rust-lang/chalk
https://github.com/rust-lang/chalk
https://en.wikipedia.org/wiki/Prolog
https://en.wikipedia.org/wiki/Prolog
https://rust-lang.github.io/chalk/book/
https://rust-lang.github.io/chalk/book/
https://rustc-dev-guide.rust-lang.org/print.html#ongoing-work
https://rustc-dev-guide.rust-lang.org/print.html#ongoing-work
https://github.com/rust-lang/chalk
https://github.com/rust-lang/chalk

Lowering to logic

• Rust traits and logic

• Type-checking normal functions

• Type-checking generic functions: beyond Horn clauses

• Source

The key observation here is that the Rust trait system is basically a kind of logic, and it can

be mapped onto standard logical inference rules. We can then look for solutions to those

inference rules in a very similar fashion to how e.g. a Prolog solver works. It turns out that

we can't quite use Prolog rules (also called Horn clauses) but rather need a somewhat

more expressive variant.

Rust traits and logic

One of the first observations is that the Rust trait system is basically a kind of logic. As

such, we can map our struct, trait, and impl declarations into logical inference rules. For

the most part, these are basically Horn clauses, though we'll see that to capture the full

richness of Rust – and in particular to support generic programming – we have to go a bit

further than standard Horn clauses.

To see how this mapping works, let's start with an example. Imagine we declare a trait

and a few impls, like so:

We could map these declarations to some Horn clauses, written in a Prolog-like notation,

as follows:

In Prolog terms, we might say that Clone(Foo) – where Foo is some Rust type – is a

predicate that represents the idea that the type Foo implements Clone . These rules are

program clauses; they state the conditions under which that predicate can be proven

(i.e., considered true). So the first rule just says "Clone is implemented for usize ". The

next rule says "for any type ?T , Clone is implemented for Vec<?T> if clone is

implemented for ?T ". So e.g. if we wanted to prove that Clone(Vec<Vec<usize>>) , we

trait Clone { }
impl Clone for usize { }
impl<T> Clone for Vec<T> where T: Clone { }

Clone(usize).
Clone(Vec<?T>) :- Clone(?T).

// The notation `A :- B` means "A is true if B is true".
// Or, put another way, B implies A.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

399 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#lowering-to-logic
https://rustc-dev-guide.rust-lang.org/print.html#lowering-to-logic
https://rustc-dev-guide.rust-lang.org/traits/lowering-to-logic.html#rust-traits-and-logic
https://rustc-dev-guide.rust-lang.org/traits/lowering-to-logic.html#rust-traits-and-logic
https://rustc-dev-guide.rust-lang.org/traits/lowering-to-logic.html#type-checking-normal-functions
https://rustc-dev-guide.rust-lang.org/traits/lowering-to-logic.html#type-checking-normal-functions
https://rustc-dev-guide.rust-lang.org/traits/lowering-to-logic.html#type-checking-generic-functions-beyond-horn-clauses
https://rustc-dev-guide.rust-lang.org/traits/lowering-to-logic.html#type-checking-generic-functions-beyond-horn-clauses
https://rustc-dev-guide.rust-lang.org/traits/lowering-to-logic.html#source
https://rustc-dev-guide.rust-lang.org/traits/lowering-to-logic.html#source
https://en.wikipedia.org/wiki/Prolog
https://en.wikipedia.org/wiki/Prolog
https://rustc-dev-guide.rust-lang.org/print.html#rust-traits-and-logic
https://rustc-dev-guide.rust-lang.org/print.html#rust-traits-and-logic

would do so by applying the rules recursively:

• Clone(Vec<Vec<usize>>) is provable if:

◦ Clone(Vec<usize>) is provable if:

▪ Clone(usize) is provable. (Which it is, so we're all good.)

But now suppose we tried to prove that Clone(Vec<Bar>) . This would fail (after all, I

didn't give an impl of Clone for Bar):

• Clone(Vec<Bar>) is provable if:

◦ Clone(Bar) is provable. (But it is not, as there are no applicable rules.)

We can easily extend the example above to cover generic traits with more than one input

type. So imagine the Eq<T> trait, which declares that Self is equatable with a value of

type T :

That could be mapped as follows:

So far so good.

Type-checking normal functions

OK, now that we have defined some logical rules that are able to express when traits are

implemented and to handle associated types, let's turn our focus a bit towards type-

checking. Type-checking is interesting because it is what gives us the goals that we need

to prove. That is, everything we've seen so far has been about how we derive the rules by

which we can prove goals from the traits and impls in the program; but we are also

interested in how to derive the goals that we need to prove, and those come from type-

checking.

Consider type-checking the function foo() here:

This function is very simple, of course: all it does is to call bar::<usize>() . Now, looking

at the definition of bar() , we can see that it has one where-clause U: Eq<U> . So, that

trait Eq<T> { ... }
impl Eq<usize> for usize { }
impl<T: Eq<U>> Eq<Vec<U>> for Vec<T> { }

Eq(usize, usize).
Eq(Vec<?T>, Vec<?U>) :- Eq(?T, ?U).

fn foo() { bar::<usize>() }
fn bar<U: Eq<U>>() { }

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

400 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#type-checking-normal-functions
https://rustc-dev-guide.rust-lang.org/print.html#type-checking-normal-functions

means that foo() will have to prove that usize: Eq<usize> in order to show that it can

call bar() with usize as the type argument.

If we wanted, we could write a Prolog predicate that defines the conditions under which

bar() can be called. We'll say that those conditions are called being "well-formed":

Then we can say that foo() type-checks if the reference to bar::<usize> (that is, bar()

applied to the type usize) is well-formed:

If we try to prove the goal fooTypeChecks , it will succeed:

• fooTypeChecks is provable if:

◦ barWellFormed(usize) , which is provable if:

▪ Eq(usize, usize) , which is provable because of an impl.

Ok, so far so good. Let's move on to type-checking a more complex function.

Type-checking generic functions: beyond Horn clauses

In the last section, we used standard Prolog horn-clauses (augmented with Rust's notion

of type equality) to type-check some simple Rust functions. But that only works when we

are type-checking non-generic functions. If we want to type-check a generic function, it

turns out we need a stronger notion of goal than what Prolog can provide. To see what

I'm talking about, let's revamp our previous example to make foo generic:

To type-check the body of foo , we need to be able to hold the type T "abstract". That is,

we need to check that the body of foo is type-safe for all types T , not just for some

specific type. We might express this like so:

barWellFormed(?U) :- Eq(?U, ?U).

fooTypeChecks :- barWellFormed(usize).

fn foo<T: Eq<T>>() { bar::<T>() }
fn bar<U: Eq<U>>() { }

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

401 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#type-checking-generic-functions-beyond-horn-clauses
https://rustc-dev-guide.rust-lang.org/print.html#type-checking-generic-functions-beyond-horn-clauses

This notation I'm using here is the notation I've been using in my prototype

implementation; it's similar to standard mathematical notation but a bit Rustified.

Anyway, the problem is that standard Horn clauses don't allow universal quantification

(forall) or implication (if) in goals (though many Prolog engines do support them, as

an extension). For this reason, we need to accept something called "first-order hereditary

harrop" (FOHH) clauses – this long name basically means "standard Horn clauses with

forall and if in the body". But it's nice to know the proper name, because there is a

lot of work describing how to efficiently handle FOHH clauses; see for example Gopalan

Nadathur's excellent "A Proof Procedure for the Logic of Hereditary Harrop Formulas" in

the bibliography of Chalk Book.

It turns out that supporting FOHH is not really all that hard. And once we are able to do

that, we can easily describe the type-checking rule for generic functions like foo in our

logic.

Source

This page is a lightly adapted version of a blog post by Nicholas Matsakis.

fooTypeChecks :-
 // for all types T...
 forall<T> {
 // ...if we assume that Eq(T, T) is provable...
 if (Eq(T, T)) {
 // ...then we can prove that `barWellFormed(T)` holds.
 barWellFormed(T)
 }
 }.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

402 of 660 8/30/23, 09:47

https://rust-lang.github.io/chalk/book/bibliography.html#pphhf
https://rust-lang.github.io/chalk/book/bibliography.html#pphhf
https://rust-lang.github.io/chalk/book/bibliography.html
https://rust-lang.github.io/chalk/book/bibliography.html
https://rustc-dev-guide.rust-lang.org/print.html#source
https://rustc-dev-guide.rust-lang.org/print.html#source
http://smallcultfollowing.com/babysteps/blog/2017/01/26/lowering-rust-traits-to-logic/
http://smallcultfollowing.com/babysteps/blog/2017/01/26/lowering-rust-traits-to-logic/

Goals and clauses

• Goals and clauses meta structure

• Domain goals

◦ Implemented(TraitRef)

◦ ProjectionEq(Projection = Type)

◦ Normalize(Projection -> Type)

◦ FromEnv(TraitRef)

◦ FromEnv(Type)

◦ WellFormed(Item)

◦ Outlives(Type: Region), Outlives(Region: Region)

• Coinductive goals

• Incomplete chapter

In logic programming terms, a goal is something that you must prove and a clause is

something that you know is true. As described in the lowering to logic chapter, Rust's trait

solver is based on an extension of hereditary harrop (HH) clauses, which extend

traditional Prolog Horn clauses with a few new superpowers.

Goals and clauses meta structure

In Rust's solver, goals and clauses have the following forms (note that the two definitions

reference one another):

The proof procedure for these sorts of goals is actually quite straightforward. Essentially,

it's a form of depth-first search. The paper "A Proof Procedure for the Logic of Hereditary

Harrop Formulas" gives the details.

Goal = DomainGoal // defined in the section below
 | Goal && Goal
 | Goal || Goal
 | exists<K> { Goal } // existential quantification
 | forall<K> { Goal } // universal quantification
 | if (Clause) { Goal } // implication
 | true // something that's trivially true
 | ambiguous // something that's never provable

Clause = DomainGoal
 | Clause :- Goal // if can prove Goal, then Clause is true
 | Clause && Clause
 | forall<K> { Clause }

K = <type> // a "kind"
 | <lifetime>

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

403 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#goals-and-clauses
https://rustc-dev-guide.rust-lang.org/print.html#goals-and-clauses
https://rustc-dev-guide.rust-lang.org/traits/goals-and-clauses.html#goals-and-clauses-meta-structure
https://rustc-dev-guide.rust-lang.org/traits/goals-and-clauses.html#goals-and-clauses-meta-structure
https://rustc-dev-guide.rust-lang.org/traits/goals-and-clauses.html#domain-goals
https://rustc-dev-guide.rust-lang.org/traits/goals-and-clauses.html#domain-goals
https://rustc-dev-guide.rust-lang.org/traits/goals-and-clauses.html#implementedtraitref
https://rustc-dev-guide.rust-lang.org/traits/goals-and-clauses.html#implementedtraitref
https://rustc-dev-guide.rust-lang.org/traits/goals-and-clauses.html#projectioneqprojection--type
https://rustc-dev-guide.rust-lang.org/traits/goals-and-clauses.html#projectioneqprojection--type
https://rustc-dev-guide.rust-lang.org/traits/goals-and-clauses.html#normalizeprojection---type
https://rustc-dev-guide.rust-lang.org/traits/goals-and-clauses.html#normalizeprojection---type
https://rustc-dev-guide.rust-lang.org/traits/goals-and-clauses.html#fromenvtraitref
https://rustc-dev-guide.rust-lang.org/traits/goals-and-clauses.html#fromenvtraitref
https://rustc-dev-guide.rust-lang.org/traits/goals-and-clauses.html#fromenvtype
https://rustc-dev-guide.rust-lang.org/traits/goals-and-clauses.html#fromenvtype
https://rustc-dev-guide.rust-lang.org/traits/goals-and-clauses.html#wellformeditem
https://rustc-dev-guide.rust-lang.org/traits/goals-and-clauses.html#wellformeditem
https://rustc-dev-guide.rust-lang.org/traits/goals-and-clauses.html#outlivestype-region-outlivesregion-region
https://rustc-dev-guide.rust-lang.org/traits/goals-and-clauses.html#outlivestype-region-outlivesregion-region
https://rustc-dev-guide.rust-lang.org/traits/goals-and-clauses.html#coinductive-goals
https://rustc-dev-guide.rust-lang.org/traits/goals-and-clauses.html#coinductive-goals
https://rustc-dev-guide.rust-lang.org/traits/goals-and-clauses.html#incomplete-chapter
https://rustc-dev-guide.rust-lang.org/traits/goals-and-clauses.html#incomplete-chapter
https://rustc-dev-guide.rust-lang.org/traits/lowering-to-logic.html
https://rustc-dev-guide.rust-lang.org/traits/lowering-to-logic.html
https://rustc-dev-guide.rust-lang.org/print.html#goals-and-clauses-meta-structure
https://rustc-dev-guide.rust-lang.org/print.html#goals-and-clauses-meta-structure
https://rust-lang.github.io/chalk/book/bibliography.html#pphhf
https://rust-lang.github.io/chalk/book/bibliography.html#pphhf
https://rust-lang.github.io/chalk/book/bibliography.html#pphhf
https://rust-lang.github.io/chalk/book/bibliography.html#pphhf

In terms of code, these types are defined in rustc_middle/src/traits/mod.rs in rustc,

and in chalk-ir/src/lib.rs in chalk.

Domain goals

Domain goals are the atoms of the trait logic. As can be seen in the definitions given

above, general goals basically consist in a combination of domain goals.

Moreover, flattening a bit the definition of clauses given previously, one can see that

clauses are always of the form:

hence domain goals are in fact clauses' LHS. That is, at the most granular level, domain

goals are what the trait solver will end up trying to prove.

To define the set of domain goals in our system, we need to first introduce a few simple

formulations. A trait reference consists of the name of a trait along with a suitable set of

inputs P0..Pn:

So, for example, u32: Display is a trait reference, as is Vec<T>: IntoIterator . Note

that Rust surface syntax also permits some extra things, like associated type bindings

(Vec<T>: IntoIterator<Item = T>), that are not part of a trait reference.

A projection consists of an associated item reference along with its inputs P0..Pm:

Given these, we can define a DomainGoal as follows:

WhereClause refers to a where clause that a Rust user would actually be able to write in

forall<K1, ..., Kn> { DomainGoal :- Goal }

TraitRef = P0: TraitName<P1..Pn>

Projection = <P0 as TraitName<P1..Pn>>::AssocItem<Pn+1..Pm>

DomainGoal = Holds(WhereClause)
 | FromEnv(TraitRef)
 | FromEnv(Type)
 | WellFormed(TraitRef)
 | WellFormed(Type)
 | Normalize(Projection -> Type)

WhereClause = Implemented(TraitRef)
 | ProjectionEq(Projection = Type)
 | Outlives(Type: Region)
 | Outlives(Region: Region)

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

404 of 660 8/30/23, 09:47

https://github.com/rust-lang/rust/blob/master/compiler/rustc_middle/src/traits/mod.rs
https://github.com/rust-lang/rust/blob/master/compiler/rustc_middle/src/traits/mod.rs
https://github.com/rust-lang/rust/blob/master/compiler/rustc_middle/src/traits/mod.rs
https://github.com/rust-lang/chalk/blob/master/chalk-ir/src/lib.rs
https://github.com/rust-lang/chalk/blob/master/chalk-ir/src/lib.rs
https://github.com/rust-lang/chalk/blob/master/chalk-ir/src/lib.rs
https://rustc-dev-guide.rust-lang.org/print.html#domain-goals
https://rustc-dev-guide.rust-lang.org/print.html#domain-goals

a Rust program. This abstraction exists only as a convenience as we sometimes want to

only deal with domain goals that are effectively writable in Rust.

Let's break down each one of these, one-by-one.

Implemented(TraitRef)

e.g. Implemented(i32: Copy)

True if the given trait is implemented for the given input types and lifetimes.

ProjectionEq(Projection = Type)

e.g. ProjectionEq<T as Iterator>::Item = u8

The given associated type Projection is equal to Type ; this can be proved with either

normalization or using placeholder associated types. See the section on associated types

in Chalk Book.

Normalize(Projection -> Type)

e.g. ProjectionEq<T as Iterator>::Item -> u8

The given associated type Projection can be normalized to Type .

As discussed in the section on associated types in Chalk Book, Normalize implies

ProjectionEq , but not vice versa. In general, proving Normalize(<T as Trait>::Item

-> U) also requires proving Implemented(T: Trait) .

FromEnv(TraitRef)

e.g. FromEnv(Self: Add<i32>)

True if the inner TraitRef is assumed to be true, that is, if it can be derived from the in-

scope where clauses.

For example, given the following function:

Inside the body of our function, we would have FromEnv(T: Clone) . In-scope where

clauses nest, so a function body inside an impl body inherits the impl body's where

fn loud_clone<T: Clone>(stuff: &T) -> T {
println!("cloning!");

 stuff.clone()
}

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

405 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#implementedtraitref
https://rustc-dev-guide.rust-lang.org/print.html#implementedtraitref
https://rustc-dev-guide.rust-lang.org/print.html#projectioneqprojection--type
https://rustc-dev-guide.rust-lang.org/print.html#projectioneqprojection--type
https://rust-lang.github.io/chalk/book/clauses/type_equality.html
https://rust-lang.github.io/chalk/book/clauses/type_equality.html
https://rust-lang.github.io/chalk/book/clauses/type_equality.html
https://rust-lang.github.io/chalk/book/clauses/type_equality.html
https://rustc-dev-guide.rust-lang.org/print.html#normalizeprojection---type
https://rustc-dev-guide.rust-lang.org/print.html#normalizeprojection---type
https://rust-lang.github.io/chalk/book/clauses/type_equality.html#normalize
https://rust-lang.github.io/chalk/book/clauses/type_equality.html#normalize
https://rust-lang.github.io/chalk/book/clauses/type_equality.html
https://rust-lang.github.io/chalk/book/clauses/type_equality.html
https://rustc-dev-guide.rust-lang.org/print.html#fromenvtraitref
https://rustc-dev-guide.rust-lang.org/print.html#fromenvtraitref

clauses, too.

This and the next rule are used to implement implied bounds. As we'll see in the section

on lowering, FromEnv(TraitRef) implies Implemented(TraitRef) , but not vice versa.

This distinction is crucial to implied bounds.

FromEnv(Type)

e.g. FromEnv(HashSet<K>)

True if the inner Type is assumed to be well-formed, that is, if it is an input type of a

function or an impl.

For example, given the following code:

HashSet<K> is an input type of the loud_insert function. Hence, we assume it to be

well-formed, so we would have FromEnv(HashSet<K>) inside the body of our function. As

we'll see in the section on lowering, FromEnv(HashSet<K>) implies Implemented(K:

Hash) because the HashSet declaration was written with a K: Hash where clause.

Hence, we don't need to repeat that bound on the loud_insert function: we rather

automatically assume that it is true.

WellFormed(Item)

These goals imply that the given item is well-formed.

We can talk about different types of items being well-formed:

• Types, like WellFormed(Vec<i32>) , which is true in Rust, or WellFormed(Vec<str>) ,

which is not (because str is not Sized .)

• TraitRefs, like WellFormed(Vec<i32>: Clone) .

Well-formedness is important to implied bounds. In particular, the reason it is okay to

assume FromEnv(T: Clone) in the loud_clone example is that we also verify

WellFormed(T: Clone) for each call site of loud_clone . Similarly, it is okay to assume

FromEnv(HashSet<K>) in the loud_insert example because we will verify

WellFormed(HashSet<K>) for each call site of loud_insert .

struct HashSet<K> where K: Hash { ... }

fn loud_insert<K>(set: &mut HashSet<K>, item: K) {
println!("inserting!");

 set.insert(item);
}

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

406 of 660 8/30/23, 09:47

https://rust-lang.github.io/chalk/book/clauses/implied_bounds.html#implied-bounds
https://rust-lang.github.io/chalk/book/clauses/implied_bounds.html#implied-bounds
https://rustc-dev-guide.rust-lang.org/print.html#fromenvtype
https://rustc-dev-guide.rust-lang.org/print.html#fromenvtype
https://rustc-dev-guide.rust-lang.org/print.html#wellformeditem
https://rustc-dev-guide.rust-lang.org/print.html#wellformeditem
https://rust-lang.github.io/chalk/book/clauses/implied_bounds.html#implied-bounds
https://rust-lang.github.io/chalk/book/clauses/implied_bounds.html#implied-bounds

Outlives(Type: Region), Outlives(Region: Region)

e.g. Outlives(&'a str: 'b) , Outlives('a: 'static)

True if the given type or region on the left outlives the right-hand region.

Coinductive goals

Most goals in our system are "inductive". In an inductive goal, circular reasoning is

disallowed. Consider this example clause:

Considered inductively, this clause is useless: if we are trying to prove Implemented(Foo:

Bar) , we would then recursively have to prove Implemented(Foo: Bar) , and that cycle

would continue ad infinitum (the trait solver will terminate here, it would just consider

that Implemented(Foo: Bar) is not known to be true).

However, some goals are co-inductive. Simply put, this means that cycles are OK. So, if

Bar were a co-inductive trait, then the rule above would be perfectly valid, and it would

indicate that Implemented(Foo: Bar) is true.

Auto traits are one example in Rust where co-inductive goals are used. Consider the Send

trait, and imagine that we have this struct:

The default rules for auto traits say that Foo is Send if the types of its fields are Send .

Therefore, we would have a rule like

As you can probably imagine, proving that Option<Box<Foo>>: Send is going to wind up

circularly requiring us to prove that Foo: Send again. So this would be an example where

we wind up in a cycle – but that's ok, we do consider Foo: Send to hold, even though it

references itself.

In general, co-inductive traits are used in Rust trait solving when we want to enumerate a

fixed set of possibilities. In the case of auto traits, we are enumerating the set of

reachable types from a given starting point (i.e., Foo can reach values of type

 Implemented(Foo: Bar) :-
 Implemented(Foo: Bar).

struct Foo {
 next: Option<Box<Foo>>
}

Implemented(Foo: Send) :-
 Implemented(Option<Box<Foo>>: Send).

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

407 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#outlivestype-region-outlivesregion-region
https://rustc-dev-guide.rust-lang.org/print.html#outlivestype-region-outlivesregion-region
https://rustc-dev-guide.rust-lang.org/print.html#coinductive-goals
https://rustc-dev-guide.rust-lang.org/print.html#coinductive-goals

Option<Box<Foo>> , which implies it can reach values of type Box<Foo> , and then of type

Foo , and then the cycle is complete).

In addition to auto traits, WellFormed predicates are co-inductive. These are used to

achieve a similar "enumerate all the cases" pattern, as described in the section on implied

bounds.

Incomplete chapter

Some topics yet to be written:

• Elaborate on the proof procedure

• SLG solving – introduce negative reasoning

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

408 of 660 8/30/23, 09:47

https://rust-lang.github.io/chalk/book/clauses/implied_bounds.html#implied-bounds
https://rust-lang.github.io/chalk/book/clauses/implied_bounds.html#implied-bounds
https://rust-lang.github.io/chalk/book/clauses/implied_bounds.html#implied-bounds
https://rust-lang.github.io/chalk/book/clauses/implied_bounds.html#implied-bounds
https://rustc-dev-guide.rust-lang.org/print.html#incomplete-chapter
https://rustc-dev-guide.rust-lang.org/print.html#incomplete-chapter

Canonical queries

The "start" of the trait system is the canonical query (these are both queries in the more

general sense of the word – something you would like to know the answer to – and in the

rustc-specific sense). The idea is that the type checker or other parts of the system, may

in the course of doing their thing want to know whether some trait is implemented for

some type (e.g., is u32: Debug true?). Or they may want to normalize some associated

type.

This section covers queries at a fairly high level of abstraction. The subsections look a bit

more closely at how these ideas are implemented in rustc.

The traditional, interactive Prolog query

In a traditional Prolog system, when you start a query, the solver will run off and start

supplying you with every possible answer it can find. So given something like this:

The solver might answer:

This continue bit is interesting. The idea in Prolog is that the solver is finding all possible

instantiations of your query that are true. In this case, if we instantiate ?U = [i32] , then

the query is true (note that a traditional Prolog interface does not, directly, tell us a value

for ?U , but we can infer one by unifying the response with our original query – Rust's

solver gives back a substitution instead). If we were to hit y , the solver might then give us

another possible answer:

This answer derives from the fact that there is a reflexive impl (impl<T> AsRef<T> for T)

for AsRef . If were to hit y again, then we might get back a negative response:

Naturally, in some cases, there may be no possible answers, and hence the solver will just

give me back no right away:

?- Vec<i32>: AsRef<?U>

Vec<i32>: AsRef<[i32]>
 continue? (y/n)

Vec<i32>: AsRef<Vec<i32>>
 continue? (y/n)

no

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

409 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#canonical-queries
https://rustc-dev-guide.rust-lang.org/print.html#canonical-queries
https://rustc-dev-guide.rust-lang.org/query.html
https://rustc-dev-guide.rust-lang.org/query.html
https://rustc-dev-guide.rust-lang.org/print.html#the-traditional-interactive-prolog-query
https://rustc-dev-guide.rust-lang.org/print.html#the-traditional-interactive-prolog-query

In some cases, there might be an infinite number of responses. So for example if I gave

this query, and I kept hitting y , then the solver would never stop giving me back answers:

As you can imagine, the solver will gleefully keep adding another layer of Box until we

ask it to stop, or it runs out of memory.

Another interesting thing is that queries might still have variables in them. For example:

might produce the answer:

After all, Rc<?T> is true no matter what type ?T is.

A trait query in rustc

The trait queries in rustc work somewhat differently. Instead of trying to enumerate all

possible answers for you, they are looking for an unambiguous answer. In particular,

when they tell you the value for a type variable, that means that this is the only possible

instantiation that you could use, given the current set of impls and where-clauses, that

would be provable.

The response to a trait query in rustc is typically a Result<QueryResult<T>, NoSolution>

(where the T will vary a bit depending on the query itself). The Err(NoSolution) case

indicates that the query was false and had no answers (e.g., Box<i32>: Copy). Otherwise,

the QueryResult gives back information about the possible answer(s) we did find. It

consists of four parts:

?- Box<i32>: Copy
 no

?- Vec<?U>: Clone
 Vec<i32>: Clone
 continue? (y/n)
 Vec<Box<i32>>: Clone
 continue? (y/n)
 Vec<Box<Box<i32>>>: Clone
 continue? (y/n)
 Vec<Box<Box<Box<i32>>>>: Clone
 continue? (y/n)

?- Rc<?T>: Clone

Rc<?T>: Clone
 continue? (y/n)

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

410 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#a-trait-query-in-rustc
https://rustc-dev-guide.rust-lang.org/print.html#a-trait-query-in-rustc

• Certainty: tells you how sure we are of this answer. It can have two values:

◦ Proven means that the result is known to be true.

▪ This might be the result for trying to prove Vec<i32>: Clone , say, or

Rc<?T>: Clone .

◦ Ambiguous means that there were things we could not yet prove to be either

true or false, typically because more type information was needed. (We'll see

an example shortly.)

▪ This might be the result for trying to prove Vec<?T>: Clone .

• Var values: Values for each of the unbound inference variables (like ?T) that

appeared in your original query. (Remember that in Prolog, we had to infer these.)

◦ As we'll see in the example below, we can get back var values even for

Ambiguous cases.

• Region constraints: these are relations that must hold between the lifetimes that

you supplied as inputs. We'll ignore these here.

• Value: The query result also comes with a value of type T . For some specialized

queries – like normalizing associated types – this is used to carry back an extra

result, but it's often just () .

Examples

Let's work through an example query to see what all the parts mean. Consider the

Borrow trait. This trait has a number of impls; among them, there are these two (for

clarity, I've written the Sized bounds explicitly):

Example 1. Imagine we are type-checking this (rather artificial) bit of code:

As the comments indicate, we first create two variables t and u ; t is an empty vector

and u is a None option. Both of these variables have unbound inference variables in

their type: ?T represents the elements in the vector t and ?U represents the value

stored in the option u . Next, we invoke foo ; comparing the signature of foo to its

arguments, we wind up with A = Vec<?T> and B = ?U . Therefore, the where clause on

foo requires that Vec<?T>: Borrow<?U> . This is thus our first example trait query.

impl<T> Borrow<T> for T where T: ?Sized
impl<T> Borrow<[T]> for Vec<T> where T: Sized

fn foo<A, B>(a: A, vec_b: Option) where A: Borrow { }

fn main() {
let mut t: Vec<_> = vec![]; // Type: Vec<?T>
let mut u: Option<_> = None; // Type: Option<?U>

 foo(t, u); // Example 1: requires `Vec<?T>: Borrow<?U>`
 ...
}

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

411 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#examples-1
https://rustc-dev-guide.rust-lang.org/print.html#examples-1
https://doc.rust-lang.org/std/borrow/trait.Borrow.html
https://doc.rust-lang.org/std/borrow/trait.Borrow.html
https://doc.rust-lang.org/std/borrow/trait.Borrow.html
https://doc.rust-lang.org/std/borrow/trait.Borrow.html
https://doc.rust-lang.org/std/borrow/trait.Borrow.html
https://doc.rust-lang.org/std/borrow/trait.Borrow.html

There are many possible solutions to the query Vec<?T>: Borrow<?U> ; for example:

• ?U = Vec<?T> ,

• ?U = [?T] ,

• ?T = u32, ?U = [u32]

• and so forth.

Therefore, the result we get back would be as follows (I'm going to ignore region

constraints and the "value"):

• Certainty: Ambiguous – we're not sure yet if this holds

• Var values: [?T = ?T, ?U = ?U] – we learned nothing about the values of the

variables

In short, the query result says that it is too soon to say much about whether this trait is

proven. During type-checking, this is not an immediate error: instead, the type checker

would hold on to this requirement (Vec<?T>: Borrow<?U>) and wait. As we'll see in the

next example, it may happen that ?T and ?U wind up constrained from other sources, in

which case we can try the trait query again.

Example 2. We can now extend our previous example a bit, and assign a value to u :

As a result of this assignment, the type of u is forced to be Option<Vec<?V>> , where ?V

represents the element type of the vector. This in turn implies that ?U is unified to

Vec<?V> .

Let's suppose that the type checker decides to revisit the "as-yet-unproven" trait

obligation we saw before, Vec<?T>: Borrow<?U> . ?U is no longer an unbound inference

variable; it now has a value, Vec<?V> . So, if we "refresh" the query with that value, we get:

This time, there is only one impl that applies, the reflexive impl:

fn foo<A, B>(a: A, vec_b: Option) where A: Borrow { }

fn main() {
// What we saw before:
let mut t: Vec<_> = vec![]; // Type: Vec<?T>
let mut u: Option<_> = None; // Type: Option<?U>

 foo(t, u); // `Vec<?T>: Borrow<?U>` => ambiguous

// New stuff:
 u = Some(vec![]); // ?U = Vec<?V>
}

Vec<?T>: Borrow<Vec<?V>>

impl<T> Borrow<T> for T where T: ?Sized

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

412 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/type-checking.html
https://rustc-dev-guide.rust-lang.org/type-checking.html

Therefore, the trait checker will answer:

• Certainty: Proven

• Var values: [?T = ?T, ?V = ?T]

Here, it is saying that we have indeed proven that the obligation holds, and we also know

that ?T and ?V are the same type (but we don't know what that type is yet!).

(In fact, as the function ends here, the type checker would give an error at this point, since

the element types of t and u are still not yet known, even though they are known to be

the same.)

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

413 of 660 8/30/23, 09:47

Trait solving (new)

This chapter describes how trait solving works with the new WIP solver located in

rustc_trait_selection/solve . Feel free to also look at the docs for the current solver

and the chalk solver can be found separately.

Core concepts

The goal of the trait system is to check whether a given trait bound is satisfied. Most

notably when typechecking the body of - potentially generic - functions. For example:

Here the call to x.clone() requires us to prove that Vec<T> implements Clone given

the assumption that T: Clone is true. We can assume T: Clone as that will be proven

by callers of this function.

The concept of "prove the Vec<T>: Clone with the assumption T: Clone " is called a

Goal . Both Vec<T>: Clone and T: Clone are represented using Predicate . There are

other predicates, most notably equality bounds on associated items: <Vec<T> as

IntoIterator>::Item == T . See the PredicateKind enum for an exhaustive list. A Goal

is represented as the predicate we have to prove and the param_env in which this

predicate has to hold.

We prove goals by checking whether each possible Candidate applies for the given goal

by recursively proving its nested goals. For a list of possible candidates with examples,

look at CandidateSource . The most important candidates are Impl candidates, i.e. trait

implementations written by the user, and ParamEnv candidates, i.e. assumptions in our

current environment.

Looking at the above example, to prove Vec<T>: Clone we first use impl<T: Clone>

Clone for Vec<T> . To use this impl we have to prove the nested goal that T: Clone

holds. This can use the assumption T: Clone from the ParamEnv which does not have

any nested goals. Therefore Vec<T>: Clone holds.

The trait solver can either return success, ambiguity or an error as a CanonicalResponse .

For success and ambiguity it also returns constraints inference and region constraints.

fn uses_vec_clone<T: Clone>(x: Vec<T>) -> (Vec<T>, Vec<T>) {
 (x.clone(), x)
}

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

414 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#trait-solving-new
https://rustc-dev-guide.rust-lang.org/print.html#trait-solving-new
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_trait_selection/solve/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_trait_selection/solve/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_trait_selection/solve/index.html
https://rustc-dev-guide.rust-lang.org/traits/resolution.html
https://rustc-dev-guide.rust-lang.org/traits/resolution.html
https://rustc-dev-guide.rust-lang.org/traits/chalk.html
https://rustc-dev-guide.rust-lang.org/traits/chalk.html
https://rustc-dev-guide.rust-lang.org/print.html#core-concepts
https://rustc-dev-guide.rust-lang.org/print.html#core-concepts
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_trait_selection/traits/solve/struct.Goal.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_trait_selection/traits/solve/struct.Goal.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_trait_selection/traits/solve/struct.Goal.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.Predicate.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.Predicate.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.Predicate.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_trait_selection/solve/assembly/struct.Candidate.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_trait_selection/solve/assembly/struct.Candidate.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_trait_selection/solve/assembly/struct.Candidate.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_trait_selection/solve/assembly/enum.CandidateSource.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_trait_selection/solve/assembly/enum.CandidateSource.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_trait_selection/solve/assembly/enum.CandidateSource.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_trait_selection/traits/solve/type.CanonicalResponse.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_trait_selection/traits/solve/type.CanonicalResponse.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_trait_selection/traits/solve/type.CanonicalResponse.html

Requirements

Before we dive into the new solver lets first take the time to go through all of our

requirements on the trait system. We can then use these to guide our design later on.

TODO: elaborate on these rules and get more precise about their meaning. Also add

issues where each of these rules have been broken in the past (or still are).

1. The trait solver has to be sound

This means that we must never return success for goals for which no impl exists. That

would simply be unsound by assuming a trait is implemented even though it is not. When

using predicates from the where -bounds, the impl will be proved by the user of the

item.

2. If type checker solves generic goal concrete instantiations of that

goal have the same result

Pretty much: If we successfully typecheck a generic function concrete instantiations of

that function should also typeck. We should not get errors post-monomorphization. We

can however get overflow as in the following snippet:

3. Trait goals in empty environments are proven by a unique impl

If a trait goal holds with an empty environment, there is a unique impl , either user-

defined or builtin, which is used to prove that goal.

This is necessary for codegen to select a unique method. An exception here are marker

traits which are allowed to overlap.

4. Normalization in empty environments results in a unique type

Normalization for alias types/consts has a unique result. Otherwise we can easily

implement transmute in safe code. Given the following function, we have to make sure

that the input and output types always get normalized to the same concrete type.

fn foo<T: Trait>(x:)

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

415 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#requirements
https://rustc-dev-guide.rust-lang.org/print.html#requirements
https://rustc-dev-guide.rust-lang.org/print.html#1-the-trait-solver-has-to-be-sound
https://rustc-dev-guide.rust-lang.org/print.html#1-the-trait-solver-has-to-be-sound
https://rustc-dev-guide.rust-lang.org/print.html#1-the-trait-solver-has-to-be-sound
https://rustc-dev-guide.rust-lang.org/print.html#1-the-trait-solver-has-to-be-sound
https://rustc-dev-guide.rust-lang.org/print.html#2-if-type-checker-solves-generic-goal-concrete-instantiations-of-that-goal-have-the-same-result
https://rustc-dev-guide.rust-lang.org/print.html#2-if-type-checker-solves-generic-goal-concrete-instantiations-of-that-goal-have-the-same-result
https://rustc-dev-guide.rust-lang.org/print.html#2-if-type-checker-solves-generic-goal-concrete-instantiations-of-that-goal-have-the-same-result
https://rustc-dev-guide.rust-lang.org/print.html#2-if-type-checker-solves-generic-goal-concrete-instantiations-of-that-goal-have-the-same-result
https://rustc-dev-guide.rust-lang.org/print.html#3-trait-goals-in-empty-environments-are-proven-by-a-unique-impl
https://rustc-dev-guide.rust-lang.org/print.html#3-trait-goals-in-empty-environments-are-proven-by-a-unique-impl
https://rustc-dev-guide.rust-lang.org/print.html#4-normalization-in-empty-environments-results-in-a-unique-type
https://rustc-dev-guide.rust-lang.org/print.html#4-normalization-in-empty-environments-results-in-a-unique-type

5. During coherence trait solving has to be complete

During coherence we never return error for goals which can be proven. This allows

overlapping impls which would break rule 3.

6. Trait solving must be (free) lifetime agnostic

Trait solving during codegen should have the same result as during typeck. As we erase

all free regions during codegen we must not rely on them during typeck. A noteworthy

example is special behavior for 'static .

We also have to be careful with relying on equality of regions in the trait solver. This is

fine for codegen, as we treat all erased regions as equal. We can however lose equality

information from HIR to MIR typeck.

7. Removing ambiguity makes strictly more things compile

We should not rely on ambiguity for things to compile. Not doing that will cause future

improvements to be breaking changes.

8. semantic equality implies structural equality

Two types being equal in the type system must mean that they have the same TypeId .

fn foo<T: Trait>(
 x: <T as Trait>::Assoc
) -> <T as Trait>::Assoc {
 x
}

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

416 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#5-during-coherence-trait-solving-has-to-be-complete
https://rustc-dev-guide.rust-lang.org/print.html#5-during-coherence-trait-solving-has-to-be-complete
https://rustc-dev-guide.rust-lang.org/print.html#6-trait-solving-must-be-free-lifetime-agnostic
https://rustc-dev-guide.rust-lang.org/print.html#6-trait-solving-must-be-free-lifetime-agnostic
https://rustc-dev-guide.rust-lang.org/print.html#7-removing-ambiguity-makes-strictly-more-things-compile
https://rustc-dev-guide.rust-lang.org/print.html#7-removing-ambiguity-makes-strictly-more-things-compile
https://rustc-dev-guide.rust-lang.org/print.html#8-semantic-equality-implies-structural-equality
https://rustc-dev-guide.rust-lang.org/print.html#8-semantic-equality-implies-structural-equality

The solver

Also consider reading the documentation for the recursive solver in chalk as it is very

similar to this implementation and also talks about limitations of this approach.

The basic structure of the solver is a pure function fn evaluate_goal(goal:

Goal<'tcx>) -> Response . While the actual solver is not fully pure to deal with overflow

and cycles, we are going to defer that for now.

To deal with inference variables and to improve caching, we use canonicalization.

TODO: write the remaining code for this as well.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

417 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#the-solver
https://rustc-dev-guide.rust-lang.org/print.html#the-solver
https://rust-lang.github.io/chalk/book/recursive.html
https://rust-lang.github.io/chalk/book/recursive.html
https://rustc-dev-guide.rust-lang.org/solve/canonicalization.html
https://rustc-dev-guide.rust-lang.org/solve/canonicalization.html

Canonicalization

Canonicalization is the process of isolating a value from its context and is necessary for

global caching of goals which include inference variables.

The idea is that given the goals u32: Trait<?x> and u32: Trait<?y> , where ?x and ?y

are two different currently unconstrained inference variables, we should get the same

result for both goals. We can therefore prove the canonical query exists<T> u32:

Trait<T> once and reuse the result.

Let's first go over the way canonical queries work and then dive into the specifics of how

canonicalization works.

A walkthrough of canonical queries

To make this a bit easier, let's use the trait goal u32: Trait<?x> as an example with the

assumption that the only relevant impl is impl<T> Trait<Vec<T>> for u32 .

Canonicalizing the input

We start by canonicalizing the goal, replacing inference variables with existential and

placeholders with universal bound variables. This would result in the canonical goal

exists<T> u32: Trait<T> .

We remember the original values of all bound variables in the original context. Here this

would map T back to ?x . These original values are used later on when dealing with the

query response.

We now call the canonical query with the canonical goal.

Instantiating the canonical goal inside of the query

To actually try to prove the canonical goal we start by instantiating the bound variables

with inference variables and placeholders again.

This happens inside of the query in a completely separate InferCtxt . Inside of the query

we now have a goal u32: Trait<?0> . We also remember which value we've used to

instantiate the bound variables in the canonical goal, which maps T to ?0 .

We now compute the goal u32: Trait<?0> and figure out that this holds, but we've

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

418 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#canonicalization
https://rustc-dev-guide.rust-lang.org/print.html#canonicalization
https://rustc-dev-guide.rust-lang.org/print.html#a-walkthrough-of-canonical-queries
https://rustc-dev-guide.rust-lang.org/print.html#a-walkthrough-of-canonical-queries
https://rustc-dev-guide.rust-lang.org/print.html#canonicalizing-the-input
https://rustc-dev-guide.rust-lang.org/print.html#canonicalizing-the-input
https://rustc-dev-guide.rust-lang.org/print.html#instantiating-the-canonical-goal-inside-of-the-query
https://rustc-dev-guide.rust-lang.org/print.html#instantiating-the-canonical-goal-inside-of-the-query

constrained ?0 to Vec<?1> . We finally convert this result to something useful to the

caller.

Canonicalizing the query response

We have to return to the caller both whether the goal holds, and the inference constraints

from inside of the query.

To return the inference results to the caller we canonicalize the mapping from bound

variables to the instantiated values in the query. This means that the query response is

Certainty::Yes and a mapping from T to exists<U> Vec<U> .

Instantiating the query response

The caller now has to apply the constraints returned by the query. For this they first

instantiate the bound variables of the canonical response with inference variables and

placeholders again, so the mapping in the response is now from T to Vec<?z> .

It now equates the original value of T (?x) with the value for T in the response

(Vec<?z>), which correctly constrains ?x to Vec<?z> .

ExternalConstraints

Computing a trait goal may not only constrain inference variables, it can also add region

obligations, e.g. given a goal (): AOutlivesB<'a, 'b> we would like to return the fact

that 'a: 'b has to hold.

This is done by not only returning the mapping from bound variables to the instantiated

values from the query but also extracting additional ExternalConstraints from the

InferCtxt context while building the response.

How exactly does canonicalization work

TODO: link to code once the PR lands and elaborate

• types and consts: infer to existentially bound var, placeholder to universally bound

var, considering universes

• generic parameters in the input get treated as placeholders in the root universe

• all regions in the input get all mapped to existentially bound vars and we "uniquify"

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

419 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#canonicalizing-the-query-response
https://rustc-dev-guide.rust-lang.org/print.html#canonicalizing-the-query-response
https://rustc-dev-guide.rust-lang.org/print.html#instantiating-the-query-response
https://rustc-dev-guide.rust-lang.org/print.html#instantiating-the-query-response
https://rustc-dev-guide.rust-lang.org/print.html#externalconstraints
https://rustc-dev-guide.rust-lang.org/print.html#externalconstraints
https://rustc-dev-guide.rust-lang.org/print.html#externalconstraints
https://rustc-dev-guide.rust-lang.org/print.html#how-exactly-does-canonicalization-work
https://rustc-dev-guide.rust-lang.org/print.html#how-exactly-does-canonicalization-work

them. &'a (): Trait<'a> gets canonicalized to exists<'0, '1> &'0 ():

Trait<'1> . We do not care about their universes and simply put all regions into the

highest universe of the input.

• once we collected all canonical vars we compress their universes, see comment in

finalize .

• in the output everything in a universe of the caller gets put into the root universe

and only gets its correct universe when we unify the var values with the orig values

of the caller

• we do not uniquify regions in the response and don't canonicalize 'static

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

420 of 660 8/30/23, 09:47

Coinduction

The trait solver may use coinduction when proving goals. Coinduction is fairly subtle so

we're giving it its own chapter.

Coinduction and induction

With induction, we recursively apply proofs until we end up with a finite proof tree.

Consider the example of Vec<Vec<Vec<u32>>>: Debug which results in the following tree.

• Vec<Vec<Vec<u32>>>: Debug

◦ Vec<Vec<u32>>: Debug

▪ Vec<u32>: Debug

▪ u32: Debug

This tree is finite. But not all goals we would want to hold have finite proof trees, consider

the following example:

For List<T>: Send to hold all its fields have to recursively implement Send as well. This

would result in the following proof tree:

• List<T>: Send

◦ T: Send

◦ Option<Box<List<T>>>: Send

▪ Box<List<T>>: Send

▪ List<T>: Send

▪ T: Send

▪ Option<Box<List<T>>>: Send

▪ Box<List<T>>: Send

▪ ...

This tree would be infinitely large which is exactly what coinduction is about.

To inductively prove a goal you need to provide a finite proof tree for it. To

coinductively prove a goal the provided proof tree may be infinite.

struct List<T> {
 value: T,
 next: Option<Box<List<T>>>,
}

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

421 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#coinduction
https://rustc-dev-guide.rust-lang.org/print.html#coinduction
https://rustc-dev-guide.rust-lang.org/print.html#coinduction-and-induction
https://rustc-dev-guide.rust-lang.org/print.html#coinduction-and-induction

Why is coinduction correct

When checking whether some trait goals holds, we're asking "does there exist an impl

which satisfies this bound". Even if are infinite chains of nested goals, we still have a

unique impl which should be used.

How to implement coinduction

While our implementation can not check for coinduction by trying to construct an infinite

tree as that would take infinite resources, it still makes sense to think of coinduction from

this perspective.

As we cannot check for infinite trees, we instead search for patterns for which we know

that they would result in an infinite proof tree. The currently pattern we detect are

(canonical) cycles. If T: Send relies on T: Send then it's pretty clear that this will just go

on forever.

With cycles we have to be careful with caching. Because of canonicalization of regions and

inference variables encountering a cycle doesn't mean that we would get an infinite proof

tree. Looking at the following example:

Proving Wrapper<?0>: Foo uses the impl impl<T> Foo for Wrapper<Wrapper<T>> which

constrains ?0 to Wrapper<?1> and then requires Wrapper<?1>: Foo . Due to

canonicalization this would be detected as a cycle.

The idea to solve is to return a provisional result whenever we detect a cycle and

repeatedly retry goals until the provisional result is equal to the final result of that goal.

We start out by using Yes with no constraints as the result and then update it to the

result of the previous iteration whenever we have to rerun.

TODO: elaborate here. We use the same approach as chalk for coinductive cycles. Note

that the treatment for inductive cycles currently differs by simply returning Overflow .

See the relevant chapters in the chalk book.

trait Foo {}
struct Wrapper<T>(T);

impl<T> Foo for Wrapper<Wrapper<T>>
where
 Wrapper<T>: Foo
{}

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

422 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#why-is-coinduction-correct
https://rustc-dev-guide.rust-lang.org/print.html#why-is-coinduction-correct
https://rustc-dev-guide.rust-lang.org/print.html#how-to-implement-coinduction
https://rustc-dev-guide.rust-lang.org/print.html#how-to-implement-coinduction
https://rust-lang.github.io/chalk/book/recursive/inductive_cycles.html
https://rust-lang.github.io/chalk/book/recursive/inductive_cycles.html

Future work

We currently only consider auto-traits, Sized , and WF -goals to be coinductive. In the

future we pretty much intend for all goals to be coinductive. Lets first elaborate on why

allowing more coinductive proofs is even desirable.

Recursive data types already rely on coinduction...

...they just tend to avoid them in the trait solver.

We are using tail.clone() in this impl. For this we have to prove Box<List<T>>: Clone

which requires List<T>: Clone but that relies on the impl which we are currently

checking. By adding that requirement to the where -clauses of the impl, which is what we

would do with perfect derive, we move that cycle into the trait solver and get an error.

Recursive data types

We also need coinduction to reason about recursive types containing projections, e.g. the

following currently fails to compile even though it should be valid.

This issue has been known since at least 2015, see #23714 if you want to know more.

Explicitly checked implied bounds

When checking an impl, we assume that the types in the impl headers are well-formed.

This means that when using instantiating the impl we have to prove that's actually the

enum List<T> {
 Nil,
 Succ(T, Box<List<T>>),
}

impl<T: Clone> Clone for List<T> {
fn clone(&self) -> Self {

match self {
 List::Nil => List::Nil,
 List::Succ(head, tail) => List::Succ(head.clone(), tail.clone()),
 }
 }
}

use std::borrow::Cow;
pub struct Foo<'a>(Cow<'a, [Foo<'a>]>);

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

423 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#future-work
https://rustc-dev-guide.rust-lang.org/print.html#future-work
https://rustc-dev-guide.rust-lang.org/print.html#recursive-data-types-already-rely-on-coinduction
https://rustc-dev-guide.rust-lang.org/print.html#recursive-data-types-already-rely-on-coinduction
https://smallcultfollowing.com/babysteps/blog/2022/04/12/implied-bounds-and-perfect-derive
https://smallcultfollowing.com/babysteps/blog/2022/04/12/implied-bounds-and-perfect-derive
https://play.rust-lang.org/?version=stable&mode=debug&edition=2021&gist=0a9c3830b93a2380e6978d6328df8f72
https://play.rust-lang.org/?version=stable&mode=debug&edition=2021&gist=0a9c3830b93a2380e6978d6328df8f72
https://rustc-dev-guide.rust-lang.org/print.html#recursive-data-types
https://rustc-dev-guide.rust-lang.org/print.html#recursive-data-types
https://github.com/rust-lang/rust/issues/23714
https://github.com/rust-lang/rust/issues/23714
https://rustc-dev-guide.rust-lang.org/print.html#explicitly-checked-implied-bounds
https://rustc-dev-guide.rust-lang.org/print.html#explicitly-checked-implied-bounds

case. #100051 shows that this is not the case. To fix this, we have to add WF predicates

for the types in impl headers. Without coinduction for all traits, this even breaks core .

When checking that the impl of FromResidual is well formed we get the following cycle:

The impl is well formed if <Ready<T> as Try>::Residual and Ready<T> are well formed.

• wf(<Ready<T> as Try>::Residual) requires

• Ready<T>: Try , which requires because of the super trait

• Ready<T>: FromResidual<Ready<T> as Try>::Residual> , because of implied

bounds on impl

• wf(<Ready<T> as Try>::Residual) :tada: cycle

Issues when extending coinduction to more goals

There are some additional issues to keep in mind when extending coinduction. The issues

here are not relevant for the current solver.

Implied super trait bounds

Our trait system currently treats super traits, e.g. trait Trait: SuperTrait , by 1)

requiring that SuperTrait has to hold for all types which implement Trait , and 2)

assuming SuperTrait holds if Trait holds.

Relying on 2) while proving 1) is unsound. This can only be observed in case of

coinductive cycles. Without cycles, whenever we rely on 2) we must have also proven 1)

without relying on 2) for the used impl of Trait .

trait FromResidual<R> {}
trait Try: FromResidual<<Self as Try>::Residual> {

type Residual;
}

struct Ready<T>(T);
impl<T> Try for Ready<T> {

type Residual = Ready<()>;
}
impl<T> FromResidual<<Ready<T> as Try>::Residual> for Ready<T> {}

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

424 of 660 8/30/23, 09:47

https://github.com/rust-lang/rust/issues/100051
https://github.com/rust-lang/rust/issues/100051
https://rustc-dev-guide.rust-lang.org/print.html#issues-when-extending-coinduction-to-more-goals
https://rustc-dev-guide.rust-lang.org/print.html#issues-when-extending-coinduction-to-more-goals
https://rustc-dev-guide.rust-lang.org/print.html#implied-super-trait-bounds
https://rustc-dev-guide.rust-lang.org/print.html#implied-super-trait-bounds

This is not really fundamental to coinduction but rather an existing property which is

made unsound because of it.

Possible solutions

The easiest way to solve this would be to completely remove 2) and always elaborate T:

Trait to T: Trait and T: SuperTrait outside of the trait solver. This would allow us to

also remove 1), but as we still have to prove ordinary where -bounds on traits, that's just

additional work.

While one could imagine ways to disable cyclic uses of 2) when checking 1), at least the

ideas of myself - @lcnr - are all far to complex to be reasonable.

normalizes_to goals and progress

A normalizes_to goal represents the requirement that <T as Trait>::Assoc

normalizes to some U . This is achieved by defacto first normalizing <T as

Trait>::Assoc and then equating the resulting type with U . It should be a mapping as

each projection should normalize to exactly one type. By simply allowing infinite proof

trees, we would get the following behavior:

If we now compute normalizes_to(<() as Trait>::Assoc, Vec<u32>) , we would

resolve the impl and get the associated type <() as Trait>::Assoc . We then equate

that with the expected type, causing us to check normalizes_to(<() as Trait>::Assoc,

Vec<u32>) again. This just goes on forever, resulting in an infinite proof tree.

This means that <() as Trait>::Assoc would be equal to any other type which is

unsound.

trait Trait: SuperTrait {}

impl<T: Trait> Trait for T {}

// Keeping the current setup for coinduction
// would allow this compile. Uff :<
fn sup<T: SuperTrait>() {}
fn requires_trait<T: Trait>() { sup::<T>() }
fn generic<T>() { requires_trait::<T>() }

trait Trait {
type Assoc;

}

impl Trait for () {
type Assoc = <() as Trait>::Assoc;

}

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

425 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#possible-solutions
https://rustc-dev-guide.rust-lang.org/print.html#possible-solutions
https://rustc-dev-guide.rust-lang.org/print.html#normalizes_to-goals-and-progress
https://rustc-dev-guide.rust-lang.org/print.html#normalizes_to-goals-and-progress
https://rustc-dev-guide.rust-lang.org/print.html#normalizes_to-goals-and-progress
https://rustc-dev-guide.rust-lang.org/print.html#normalizes_to-goals-and-progress

How to solve this

WARNING: THIS IS SUBTLE AND MIGHT BE WRONG

Unlike trait goals, normalizes_to has to be productive1. A normalizes_to goal is

productive once the projection normalizes to a rigid type constructor, so <() as

Trait>::Assoc normalizing to Vec<<() as Trait>::Assoc> would be productive.

A normalizes_to goal has two kinds of nested goals. Nested requirements needed to

actually normalize the projection, and the equality between the normalized projection

and the expected type. Only the equality has to be productive. A branch in the proof tree

is productive if it is either finite, or contains at least one normalizes_to where the alias is

resolved to a rigid type constructor.

Alternatively, we could simply always treat the equate branch of normalizes_to as

inductive. Any cycles should result in infinite types, which aren't supported anyways and

would only result in overflow when deeply normalizing for codegen.

experimentation and examples: https://hackmd.io/-8p0AHnzSq2VAE6HE_wX-w?view

Another attempt at a summary.

• in projection eq, we must make progress with constraining the rhs

• a cycle is only ok if while equating we have a rigid ty on the lhs after norm at least

once

• cycles outside of the recursive eq call of normalizes_to are always fine

1 related: https://coq.inria.fr/refman/language/core/coinductive.html#top-level-definitions-of-

corecursive-functions

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

426 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#how-to-solve-this
https://rustc-dev-guide.rust-lang.org/print.html#how-to-solve-this
https://rustc-dev-guide.rust-lang.org/print.html#1
https://rustc-dev-guide.rust-lang.org/print.html#1

Proof trees

The trait solver can optionally emit a "proof tree", a tree representation of what

happened while trying to prove a goal.

The used datastructures for which are currently stored in

rustc_middle::traits::solve::inspect .

What are they used for

There are 3 intended uses for proof trees. These uses are not yet implemented as the

representation of proof trees itself is currently still unstable.

They should be used by type system diagnostics to get information about why a goal

failed or remained ambiguous. They should be used by rustdoc to get the auto-trait

implementations for user-defined types, and they should be usable to vastly improve the

debugging experience of the trait solver.

For debugging you can use -Zdump-solver-proof-tree which dumps the proof tree for

all goals proven by the trait solver in the current session.

Requirements and design constraints for proof trees

The trait solver uses Canonicalization and uses completely separate InferCtxt for each

nested goal. Both diagnostics and auto-traits in rustdoc need to correctly handle "looking

into nested goals". Given a goal like Vec<Vec<?x>>: Debug , we canonicalize to

exists<T0> Vec<Vec<T0>>: Debug , instantiate that goal as Vec<Vec<?0>>: Debug , get a

nested goal Vec<?0>: Debug , canonicalize this to get exists<T0> Vec<T0>: Debug ,

instantiate this as Vec<?0>: Debug which then results in a nested ?0: Debug goal which

is ambiguous.

We need to be able to figure out that ?x corresponds to ?0 in the nested queries.

The debug output should also accurately represent the state at each point in the solver.

This means that even though a goal like fn(?0): FnOnce(i32) infers ?0 to i32 , the

proof tree should still store fn(<some infer var>): FnOnce(i32) instead of fn(i32):

FnOnce(i32) until we actually infer ?0 to i32 .

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

427 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#proof-trees
https://rustc-dev-guide.rust-lang.org/print.html#proof-trees
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/traits/solve/inspect/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/traits/solve/inspect/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/traits/solve/inspect/index.html
https://rustc-dev-guide.rust-lang.org/print.html#what-are-they-used-for
https://rustc-dev-guide.rust-lang.org/print.html#what-are-they-used-for
https://rustc-dev-guide.rust-lang.org/print.html#requirements-and-design-constraints-for-proof-trees
https://rustc-dev-guide.rust-lang.org/print.html#requirements-and-design-constraints-for-proof-trees
https://rustc-dev-guide.rust-lang.org/solve/canonicalization.html
https://rustc-dev-guide.rust-lang.org/solve/canonicalization.html

The current implementation and how to extract

information from proof trees.

Proof trees will be quite involved as they should accurately represent everything the trait

solver does, which includes fixpoint iterations and performance optimizations.

We intend to provide a lossy user interface for all usecases.

TODO: implement this user interface and explain how it can be used here.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

428 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#the-current-implementation-and-how-to-extract-information-from-proof-trees
https://rustc-dev-guide.rust-lang.org/print.html#the-current-implementation-and-how-to-extract-information-from-proof-trees
https://rustc-dev-guide.rust-lang.org/print.html#the-current-implementation-and-how-to-extract-information-from-proof-trees
https://rustc-dev-guide.rust-lang.org/print.html#the-current-implementation-and-how-to-extract-information-from-proof-trees

Normalization in the new solver

With the new solver we've made some fairly significant changes to normalization when

compared to the existing implementation.

We now differentiate between "shallow normalization" and "deep normalization".

"Shallow normalization" normalizes a type until it is no-longer a potentially normalizeable

alias; it does not recurse into the type. "deep normalization" replaces all normalizeable

aliases in a type with its underlying type.

The old trait solver currently always deeply normalizes via Projection obligations. This is

the only way to normalize in the old solver. By replacing projections with a new inference

variable and then emitting Projection(<T as Trait>::Assoc, ?new_infer) the old

solver successfully deeply normalizes even in the case of ambiguity. This approach does

not work for projections referencing bound variables.

Inside of the trait solver

Normalization in the new solver exclusively happens via Projection 1 goals. This only

succeeds by first normalizing the alias by one level and then equating it with the expected

type. This differs from the behavior of projection clauses which can also be proven by

successfully equating the projection without normalizating. This means that Projection 1

goals must only be used in places where we have to normalize to make progress. To

normalize <T as Trait>::Assoc , we first create a fresh inference variable ?normalized

and then prove Projection(<T as Trait>::Assoc, ?normalized) 1. ?normalized is then

constrained to the underlying type.

Inside of the trait solver we never deeply normalize. we only apply shallow normalization

in assemble_candidates_after_normalizing_self_ty and inside for AliasRelate goals

for the normalizes-to candidates.

Outside of the trait solver

The core type system - relating types and trait solving - will not need deep normalization

with the new solver. There are still some areas which depend on it. For these areas there

is the function At::deeply_normalize . Without additional trait solver support deep

normalization does not always work in case of ambiguity. Luckily deep normalization is

currently only necessary in places where there is no ambiguity. At::deeply_normalize

immediately fails if there's ambiguity.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

429 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#normalization-in-the-new-solver
https://rustc-dev-guide.rust-lang.org/print.html#normalization-in-the-new-solver
https://rustc-dev-guide.rust-lang.org/print.html#inside-of-the-trait-solver
https://rustc-dev-guide.rust-lang.org/print.html#inside-of-the-trait-solver
https://rustc-dev-guide.rust-lang.org/print.html#0
https://rustc-dev-guide.rust-lang.org/print.html#0
https://github.com/rust-lang/trait-system-refactor-initiative/issues/1
https://github.com/rust-lang/trait-system-refactor-initiative/issues/1
https://rustc-dev-guide.rust-lang.org/print.html#0
https://rustc-dev-guide.rust-lang.org/print.html#0
https://rustc-dev-guide.rust-lang.org/print.html#0
https://rustc-dev-guide.rust-lang.org/print.html#0
https://github.com/rust-lang/rust/blob/1b6d4cdc4d923c148198ad4df230af48cdaca59e/compiler/rustc_trait_selection/src/solve/assembly/mod.rs#L330-L378
https://github.com/rust-lang/rust/blob/1b6d4cdc4d923c148198ad4df230af48cdaca59e/compiler/rustc_trait_selection/src/solve/assembly/mod.rs#L330-L378
https://github.com/rust-lang/rust/blob/1b6d4cdc4d923c148198ad4df230af48cdaca59e/compiler/rustc_trait_selection/src/solve/assembly/mod.rs#L330-L378
https://github.com/rust-lang/rust/blob/1b6d4cdc4d923c148198ad4df230af48cdaca59e/compiler/rustc_trait_selection/src/solve/alias_relate.rs#L16-L102
https://github.com/rust-lang/rust/blob/1b6d4cdc4d923c148198ad4df230af48cdaca59e/compiler/rustc_trait_selection/src/solve/alias_relate.rs#L16-L102
https://github.com/rust-lang/rust/blob/1b6d4cdc4d923c148198ad4df230af48cdaca59e/compiler/rustc_trait_selection/src/solve/alias_relate.rs#L16-L102
https://github.com/rust-lang/rust/blob/1b6d4cdc4d923c148198ad4df230af48cdaca59e/compiler/rustc_trait_selection/src/solve/alias_relate.rs#L105-L151
https://github.com/rust-lang/rust/blob/1b6d4cdc4d923c148198ad4df230af48cdaca59e/compiler/rustc_trait_selection/src/solve/alias_relate.rs#L105-L151
https://github.com/rust-lang/rust/blob/1b6d4cdc4d923c148198ad4df230af48cdaca59e/compiler/rustc_trait_selection/src/solve/alias_relate.rs#L105-L151
https://github.com/rust-lang/rust/blob/1b6d4cdc4d923c148198ad4df230af48cdaca59e/compiler/rustc_trait_selection/src/solve/alias_relate.rs#L105-L151
https://rustc-dev-guide.rust-lang.org/print.html#outside-of-the-trait-solver
https://rustc-dev-guide.rust-lang.org/print.html#outside-of-the-trait-solver

If we only care about the outermost layer of types, we instead use

At::structurally_normalize or FnCtxt::(try_)structurally_resolve_type . Unlike

At::deeply_normalize , shallow normalization is also used in cases where we have to

handle ambiguity. At::structurally_normalize normalizes until the self type is either

rigid or an inference variable and we're stuck with ambiguity. This means that the self

type may not be fully normalized after At::structurally_normalize was called.

Because this may result in behavior changes depending on how the trait solver handles

ambiguity, it is safer to also require full normalization there. This happens in

FnCtxt::structurally_resolve_type which always emits a hard error if the self type

ends up as an inference variable. There are some existing places which have a fallback for

inference variables instead. These places use try_structurally_resolve_type instead.

Why deep normalization with ambiguity is hard

Fully correct deep normalization is very challenging, especially with the new solver given

that we do not want to deeply normalize inside of the solver. Mostly deeply normalizing

but sometimes failing to do so is bound to cause very hard to minimize and understand

bugs. If possible, avoiding any reliance on deep normalization entirely therefore feels

preferable.

If the solver itself does not deeply normalize, any inference constraints returned by the

solver would require normalization. Handling this correctly is ugly. This also means that

we change goals we provide to the trait solver by "normalizing away" some projections.

The way we (mostly) guarantee deep normalization with the old solver is by eagerly

replacing the projection with an inference variable and emitting a nested Projection

goal. This works as Projection goals in the old solver deeply normalize. Unless we add

another PredicateKind for deep normalization to the new solver we cannot emulate this

behavior. This does not work for projections with bound variables, sometimes leaving

them unnormalized. An approach which also supports projections with bound variables

will be even more involved.

1 TODO: currently refactoring this to use NormalizesTo predicates instead.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

430 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#why-deep-normalization-with-ambiguity-is-hard
https://rustc-dev-guide.rust-lang.org/print.html#why-deep-normalization-with-ambiguity-is-hard

Type checking

The hir_analysis crate contains the source for "type collection" as well as a bunch of

related functionality. Checking the bodies of functions is implemented in the hir_typeck

crate. These crates draw heavily on the type inference and trait solving.

Type collection

Type "collection" is the process of converting the types found in the HIR (hir::Ty), which

represent the syntactic things that the user wrote, into the internal representation used

by the compiler (Ty<'tcx>) – we also do similar conversions for where-clauses and other

bits of the function signature.

To try and get a sense for the difference, consider this function:

Those two parameters x and y each have the same type: but they will have distinct

hir::Ty nodes. Those nodes will have different spans, and of course they encode the

path somewhat differently. But once they are "collected" into Ty<'tcx> nodes, they will

be represented by the exact same internal type.

Collection is defined as a bundle of queries for computing information about the various

functions, traits, and other items in the crate being compiled. Note that each of these

queries is concerned with interprocedural things – for example, for a function definition,

collection will figure out the type and signature of the function, but it will not visit the

body of the function in any way, nor examine type annotations on local variables (that's

the job of type checking).

For more details, see the collect module.

TODO: actually talk about type checking... #1161

struct Foo { }
fn foo(x: Foo, y: self::Foo) { ... }
// ^^^ ^^^^^^^^^

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

431 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#type-checking-1
https://rustc-dev-guide.rust-lang.org/print.html#type-checking-1
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir_analysis/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir_analysis/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir_analysis/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir_typeck/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir_typeck/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir_typeck/index.html
https://rustc-dev-guide.rust-lang.org/type-inference.html
https://rustc-dev-guide.rust-lang.org/type-inference.html
https://rustc-dev-guide.rust-lang.org/traits/resolution.html
https://rustc-dev-guide.rust-lang.org/traits/resolution.html
https://rustc-dev-guide.rust-lang.org/print.html#type-collection
https://rustc-dev-guide.rust-lang.org/print.html#type-collection
https://rustc-dev-guide.rust-lang.org/query.html
https://rustc-dev-guide.rust-lang.org/query.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir_analysis/collect/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir_analysis/collect/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir_analysis/collect/index.html
https://github.com/rust-lang/rustc-dev-guide/issues/1161
https://github.com/rust-lang/rustc-dev-guide/issues/1161

Method lookup

Method lookup can be rather complex due to the interaction of a number of factors, such

as self types, autoderef, trait lookup, etc. This file provides an overview of the process.

More detailed notes are in the code itself, naturally.

One way to think of method lookup is that we convert an expression of the form

receiver.method(...) into a more explicit fully-qualified syntax (formerly called UFCS):

• Trait::method(ADJ(receiver), ...) for a trait call

• ReceiverType::method(ADJ(receiver), ...) for an inherent method call

Here ADJ is some kind of adjustment, which is typically a series of autoderefs and then

possibly an autoref (e.g., &**receiver). However we sometimes do other adjustments

and coercions along the way, in particular unsizing (e.g., converting from [T; n] to [T]).

Method lookup is divided into two major phases:

1. Probing (probe.rs). The probe phase is when we decide what method to call and

how to adjust the receiver.

2. Confirmation (confirm.rs). The confirmation phase "applies" this selection,

updating the side-tables, unifying type variables, and otherwise doing side-effectful

things.

One reason for this division is to be more amenable to caching. The probe phase

produces a "pick" (probe::Pick), which is designed to be cacheable across method-call

sites. Therefore, it does not include inference variables or other information.

The Probe phase

Steps

The first thing that the probe phase does is to create a series of steps. This is done by

progressively dereferencing the receiver type until it cannot be deref'd anymore, as well

as applying an optional "unsize" step. So if the receiver has type Rc<Box<[T; 3]>> , this

might yield:

1. Rc<Box<[T; 3]>>

2. Box<[T; 3]>

3. [T; 3]

4. [T]

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

432 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#method-lookup
https://rustc-dev-guide.rust-lang.org/print.html#method-lookup
https://doc.rust-lang.org/nightly/book/ch19-03-advanced-traits.html#fully-qualified-syntax-for-disambiguation-calling-methods-with-the-same-name
https://doc.rust-lang.org/nightly/book/ch19-03-advanced-traits.html#fully-qualified-syntax-for-disambiguation-calling-methods-with-the-same-name
https://github.com/rust-lang/rfcs/blob/master/text/0132-ufcs.md
https://github.com/rust-lang/rfcs/blob/master/text/0132-ufcs.md
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir_typeck/method/probe/
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir_typeck/method/probe/
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir_typeck/method/probe/
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir_typeck/method/confirm/
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir_typeck/method/confirm/
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir_typeck/method/confirm/
https://rustc-dev-guide.rust-lang.org/print.html#the-probe-phase
https://rustc-dev-guide.rust-lang.org/print.html#the-probe-phase
https://rustc-dev-guide.rust-lang.org/print.html#steps
https://rustc-dev-guide.rust-lang.org/print.html#steps

Candidate assembly

We then search along those steps to create a list of candidates. A Candidate is a method

item that might plausibly be the method being invoked. For each candidate, we'll derive a

"transformed self type" that takes into account explicit self.

Candidates are grouped into two kinds, inherent and extension.

Inherent candidates are those that are derived from the type of the receiver itself. So, if

you have a receiver of some nominal type Foo (e.g., a struct), any methods defined

within an impl like impl Foo are inherent methods. Nothing needs to be imported to use

an inherent method, they are associated with the type itself (note that inherent impls can

only be defined in the same crate as the type itself).

FIXME: Inherent candidates are not always derived from impls. If you have a trait object,

such as a value of type Box<ToString> , then the trait methods (to_string() , in this

case) are inherently associated with it. Another case is type parameters, in which case the

methods of their bounds are inherent. However, this part of the rules is subject to

change: when DST's "impl Trait for Trait" is complete, trait object dispatch could be

subsumed into trait matching, and the type parameter behavior should be reconsidered

in light of where clauses.

TODO: Is this FIXME still accurate?

Extension candidates are derived from imported traits. If I have the trait ToString

imported, and I call to_string() as a method, then we will list the to_string()

definition in each impl of ToString as a candidate. These kinds of method calls are called

"extension methods".

So, let's continue our example. Imagine that we were calling a method foo with the

receiver Rc<Box<[T; 3]>> and there is a trait Foo that defines it with &self for the type

Rc<U> as well as a method on the type Box that defines foo but with &mut self . Then

we might have two candidates:

• &Rc<U> as an extension candidate

• &mut Box<U> as an inherent candidate

Candidate search

Finally, to actually pick the method, we will search down the steps, trying to match the

receiver type against the candidate types. At each step, we also consider an auto-ref and

auto-mut-ref to see whether that makes any of the candidates match. For each resulting

receiver type, we consider inherent candidates before extension candidates. If there are

multiple matching candidates in a group, we report an error, except that multiple impls of

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

433 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#candidate-assembly-1
https://rustc-dev-guide.rust-lang.org/print.html#candidate-assembly-1
https://rustc-dev-guide.rust-lang.org/print.html#candidate-search
https://rustc-dev-guide.rust-lang.org/print.html#candidate-search

the same trait are treated as a single match. Otherwise we pick the first match we find.

In the case of our example, the first step is Rc<Box<[T; 3]>> , which does not itself match

any candidate. But when we autoref it, we get the type &Rc<Box<[T; 3]>> which matches

&Rc<U> . We would then recursively consider all where-clauses that appear on the impl: if

those match (or we cannot rule out that they do), then this is the method we would pick.

Otherwise, we would continue down the series of steps.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

434 of 660 8/30/23, 09:47

Variance of type and lifetime parameters

• The algorithm

• Constraints

◦ Dependency graph management

• Addendum: Variance on traits

◦ Variance and object types

◦ Trait variance and vtable resolution

◦ Variance and associated types

For a more general background on variance, see the background appendix.

During type checking we must infer the variance of type and lifetime parameters. The

algorithm is taken from Section 4 of the paper "Taming the Wildcards: Combining

Definition- and Use-Site Variance" published in PLDI'11 and written by Altidor et al., and

hereafter referred to as The Paper.

This inference is explicitly designed not to consider the uses of types within code. To

determine the variance of type parameters defined on type X , we only consider the

definition of the type X and the definitions of any types it references.

We only infer variance for type parameters found on data types like structs and enums. In

these cases, there is a fairly straightforward explanation for what variance means. The

variance of the type or lifetime parameters defines whether T<A> is a subtype of T

(resp. T<'a> and T<'b>) based on the relationship of A and B (resp. 'a and 'b).

We do not infer variance for type parameters found on traits, functions, or impls.

Variance on trait parameters can indeed make sense (and we used to compute it) but it is

actually rather subtle in meaning and not that useful in practice, so we removed it. See

the addendum for some details. Variances on function/impl parameters, on the other

hand, doesn't make sense because these parameters are instantiated and then forgotten,

they don't persist in types or compiled byproducts.

Notation

We use the notation of The Paper throughout this chapter:

• + is covariance.

• - is contravariance.

• * is bivariance.

• o is invariance.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

435 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#variance-of-type-and-lifetime-parameters
https://rustc-dev-guide.rust-lang.org/print.html#variance-of-type-and-lifetime-parameters
https://rustc-dev-guide.rust-lang.org/variance.html#the-algorithm
https://rustc-dev-guide.rust-lang.org/variance.html#the-algorithm
https://rustc-dev-guide.rust-lang.org/variance.html#constraints
https://rustc-dev-guide.rust-lang.org/variance.html#constraints
https://rustc-dev-guide.rust-lang.org/variance.html#dependency-graph-management
https://rustc-dev-guide.rust-lang.org/variance.html#dependency-graph-management
https://rustc-dev-guide.rust-lang.org/variance.html#addendum-variance-on-traits
https://rustc-dev-guide.rust-lang.org/variance.html#addendum-variance-on-traits
https://rustc-dev-guide.rust-lang.org/variance.html#variance-and-object-types
https://rustc-dev-guide.rust-lang.org/variance.html#variance-and-object-types
https://rustc-dev-guide.rust-lang.org/variance.html#trait-variance-and-vtable-resolution
https://rustc-dev-guide.rust-lang.org/variance.html#trait-variance-and-vtable-resolution
https://rustc-dev-guide.rust-lang.org/variance.html#variance-and-associated-types
https://rustc-dev-guide.rust-lang.org/variance.html#variance-and-associated-types
https://rustc-dev-guide.rust-lang.org/appendix/background.html
https://rustc-dev-guide.rust-lang.org/appendix/background.html
https://people.cs.umass.edu/~yannis/variance-extended2011.pdf
https://people.cs.umass.edu/~yannis/variance-extended2011.pdf
https://people.cs.umass.edu/~yannis/variance-extended2011.pdf
https://people.cs.umass.edu/~yannis/variance-extended2011.pdf
https://rustc-dev-guide.rust-lang.org/variance.html#addendum
https://rustc-dev-guide.rust-lang.org/variance.html#addendum

The algorithm

The basic idea is quite straightforward. We iterate over the types defined and, for each

use of a type parameter X , accumulate a constraint indicating that the variance of X

must be valid for the variance of that use site. We then iteratively refine the variance of X

until all constraints are met. There is always a solution, because at the limit we can

declare all type parameters to be invariant and all constraints will be satisfied.

As a simple example, consider:

Here, we will generate the constraints:

These indicate that (1) the variance of A must be at most covariant; (2) the variance of B

must be at most contravariant; and (3, 4) the variance of C must be at most covariant and

contravariant. All of these results are based on a variance lattice defined as follows:

Based on this lattice, the solution V(A)=+ , V(B)=- , V(C)=o is the optimal solution. Note

that there is always a naive solution which just declares all variables to be invariant.

You may be wondering why fixed-point iteration is required. The reason is that the

variance of a use site may itself be a function of the variance of other type parameters. In

full generality, our constraints take the form:

Here the notation V(X) indicates the variance of a type/region parameter X with respect

to its defining class. Term x Term represents the "variance transform" as defined in the

paper:

If the variance of a type variable X in type expression E is V2 and the definition-

site variance of the corresponding type parameter of a class C is V1 , then the

enum Option<A> { Some(A), None }
enum OptionalFn { Some(|B|), None }
enum OptionalMap<C> { Some(|C| -> C), None }

1. V(A) <= +
2. V(B) <= -
3. V(C) <= +
4. V(C) <= -

 * Top (bivariant)
- +
 o Bottom (invariant)

V(X) <= Term
Term := + | - | * | o | V(X) | Term x Term

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

436 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#the-algorithm
https://rustc-dev-guide.rust-lang.org/print.html#the-algorithm

variance of X in the type expression C<E> is V3 = V1.xform(V2) .

Constraints

If I have a struct or enum with where clauses:

you might wonder whether the variance of T with respect to Bar affects the variance T

with respect to Foo . I claim no. The reason: assume that T is invariant with respect to

Bar but covariant with respect to Foo . And then we have a Foo<X> that is upcast to

Foo<Y> , where X <: Y . However, while X : Bar , Y : Bar does not hold. In that case,

the upcast will be illegal, but not because of a variance failure, but rather because the

target type Foo<Y> is itself just not well-formed. Basically we get to assume well-

formedness of all types involved before considering variance.

Dependency graph management

Because variance is a whole-crate inference, its dependency graph can become quite

muddled if we are not careful. To resolve this, we refactor into two queries:

• crate_variances computes the variance for all items in the current crate.

• variances_of accesses the variance for an individual reading; it works by

requesting crate_variances and extracting the relevant data.

If you limit yourself to reading variances_of , your code will only depend then on the

inference of that particular item.

Ultimately, this setup relies on the red-green algorithm. In particular, every variance

query effectively depends on all type definitions in the entire crate (through

crate_variances), but since most changes will not result in a change to the actual results

from variance inference, the variances_of query will wind up being considered green

after it is re-evaluated.

Addendum: Variance on traits

As mentioned above, we used to permit variance on traits. This was computed based on

the appearance of trait type parameters in method signatures and was used to represent

the compatibility of vtables in trait objects (and also "virtual" vtables or dictionary in trait

struct Foo<T: Bar> { ... }

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

437 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#constraints-1
https://rustc-dev-guide.rust-lang.org/print.html#constraints-1
https://rustc-dev-guide.rust-lang.org/print.html#dependency-graph-management
https://rustc-dev-guide.rust-lang.org/print.html#dependency-graph-management
https://rustc-dev-guide.rust-lang.org/queries/incremental-compilation.html
https://rustc-dev-guide.rust-lang.org/queries/incremental-compilation.html
https://rustc-dev-guide.rust-lang.org/print.html#addendum-variance-on-traits
https://rustc-dev-guide.rust-lang.org/print.html#addendum-variance-on-traits

bounds). One complication was that variance for associated types is less obvious, since

they can be projected out and put to myriad uses, so it's not clear when it is safe to allow

X<A>::Bar to vary (or indeed just what that means). Moreover (as covered below) all

inputs on any trait with an associated type had to be invariant, limiting the applicability.

Finally, the annotations (MarkerTrait , PhantomFn) needed to ensure that all trait type

parameters had a variance were confusing and annoying for little benefit.

Just for historical reference, I am going to preserve some text indicating how one could

interpret variance and trait matching.

Variance and object types

Just as with structs and enums, we can decide the subtyping relationship between two

object types &Trait<A> and &Trait based on the relationship of A and B . Note that

for object types we ignore the Self type parameter – it is unknown, and the nature of

dynamic dispatch ensures that we will always call a function that is expected the

appropriate Self type. However, we must be careful with the other type parameters, or

else we could end up calling a function that is expecting one type but provided another.

To see what I mean, consider a trait like so:

Intuitively, If we had one object O=&ConvertTo<Object> and another S=&

ConvertTo<String> , then S <: O because String <: Object (presuming Java-like

"string" and "object" types, my go to examples for subtyping). The actual algorithm would

be to compare the (explicit) type parameters pairwise respecting their variance: here, the

type parameter A is covariant (it appears only in a return position), and hence we require

that String <: Object .

You'll note though that we did not consider the binding for the (implicit) Self type

parameter: in fact, it is unknown, so that's good. The reason we can ignore that

parameter is precisely because we don't need to know its value until a call occurs, and at

that time (as you said) the dynamic nature of virtual dispatch means the code we run will

be correct for whatever value Self happens to be bound to for the particular object

whose method we called. Self is thus different from A , because the caller requires that

A be known in order to know the return type of the method convertTo() . (As an aside,

we have rules preventing methods where Self appears outside of the receiver position

from being called via an object.)

trait ConvertTo<A> {
fn convertTo(&self) -> A;

}

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

438 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#variance-and-object-types
https://rustc-dev-guide.rust-lang.org/print.html#variance-and-object-types

Trait variance and vtable resolution

But traits aren't only used with objects. They're also used when deciding whether a given

impl satisfies a given trait bound. To set the scene here, imagine I had a function:

Now imagine that I have an implementation of ConvertTo for Object :

And I want to call convertAll on an array of strings. Suppose further that for whatever

reason I specifically supply the value of String for the type parameter T :

Is this legal? To put another way, can we apply the impl for Object to the type String ?

The answer is yes, but to see why we have to expand out what will happen:

• convertAll will create a pointer to one of the entries in the vector, which will have

type &String

• It will then call the impl of convertTo() that is intended for use with objects. This

has the type fn(self: &Object) -> i32 .

It is OK to provide a value for self of type &String because &String <: &Object .

OK, so intuitively we want this to be legal, so let's bring this back to variance and see

whether we are computing the correct result. We must first figure out how to phrase the

question "is an impl for Object,i32 usable where an impl for String,i32 is expected?"

Maybe it's helpful to think of a dictionary-passing implementation of type classes. In that

case, convertAll() takes an implicit parameter representing the impl. In short, we have

an impl of type:

and the function prototype expects an impl of type:

As with any argument, this is legal if the type of the value given (V_O) is a subtype of the

type expected (V_S). So is V_O <: V_S ? The answer will depend on the variance of the

various parameters. In this case, because the Self parameter is contravariant and A is

fn convertAll<A,T:ConvertTo<A>>(v: &[T]) { ... }

impl ConvertTo<i32> for Object { ... }

let mut vector = vec!["string", ...];
convertAll::<i32, String>(vector);

V_O = ConvertTo<i32> for Object

V_S = ConvertTo<i32> for String

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

439 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#trait-variance-and-vtable-resolution
https://rustc-dev-guide.rust-lang.org/print.html#trait-variance-and-vtable-resolution

covariant, it means that:

These conditions are satisfied and so we are happy.

Variance and associated types

Traits with associated types – or at minimum projection expressions – must be invariant

with respect to all of their inputs. To see why this makes sense, consider what subtyping

for a trait reference means:

means that if I know that T as Trait , I also know that U as Trait . Moreover, if you

think of it as dictionary passing style, it means that a dictionary for <T as Trait> is safe

to use where a dictionary for <U as Trait> is expected.

The problem is that when you can project types out from <T as Trait> , the relationship

to types projected out of <U as Trait> is completely unknown unless T==U (see #21726

for more details). Making Trait invariant ensures that this is true.

Another related reason is that if we didn't make traits with associated types invariant,

then projection is no longer a function with a single result. Consider:

Now if I have <&'static () as Identity>::Out , this can be validly derived as &'a ()

for any 'a :

This change otoh means that <'static () as Identity>::Out is always &'static ()

(which might then be upcast to 'a () , separately). This was helpful in solving #21750.

V_O <: V_S iff
 i32 <: i32
 String <: Object

<T as Trait> <: <U as Trait>

trait Identity { type Out; fn foo(&self); }
impl<T> Identity for T { type Out = T; ... }

<&'a () as Identity> <: <&'static () as Identity>
if &'static () < : &'a () -- Identity is contravariant in Self
if 'static : 'a -- Subtyping rules for relations

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

440 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#variance-and-associated-types
https://rustc-dev-guide.rust-lang.org/print.html#variance-and-associated-types

Opaque types (type alias impl Trait)

Opaque types are syntax to declare an opaque type alias that only exposes a specific set

of traits as their interface; the concrete type in the background is inferred from a certain

set of use sites of the opaque type.

This is expressed by using impl Trait within type aliases, for example:

This declares an opaque type named Foo , of which the only information is that it

implements Bar . Therefore, any of Bar 's interface can be used on a Foo , but nothing

else (regardless of whether it implements any other traits).

Since there needs to be a concrete background type, you can (as of January 2021) express

that type by using the opaque type in a "defining use site".

Any other "defining use site" needs to produce the exact same type.

Defining use site(s)

Currently only the return value of a function can be a defining use site of an opaque type

(and only if the return type of that function contains the opaque type).

The defining use of an opaque type can be any code within the parent of the opaque type

definition. This includes any siblings of the opaque type and all children of the siblings.

The initiative for "not causing fatal brain damage to developers due to accidentally running

infinite loops in their brain while trying to comprehend what the type system is doing" has

decided to disallow children of opaque types to be defining use sites.

Associated opaque types

Associated opaque types can be defined by any other associated item on the same trait

impl or a child of these associated items. For instance:

type Foo = impl Bar;

struct Struct;
impl Bar for Struct { /* stuff */ }
fn foo() -> Foo {
 Struct
}

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

441 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#opaque-types-type-alias-impl-trait
https://rustc-dev-guide.rust-lang.org/print.html#opaque-types-type-alias-impl-trait
https://rustc-dev-guide.rust-lang.org/print.html#opaque-types-type-alias-impl-trait
https://rustc-dev-guide.rust-lang.org/print.html#opaque-types-type-alias-impl-trait
https://rustc-dev-guide.rust-lang.org/print.html#opaque-types-type-alias-impl-trait
https://rustc-dev-guide.rust-lang.org/print.html#defining-use-sites
https://rustc-dev-guide.rust-lang.org/print.html#defining-use-sites
https://rustc-dev-guide.rust-lang.org/print.html#associated-opaque-types
https://rustc-dev-guide.rust-lang.org/print.html#associated-opaque-types

trait Baz {
type Foo;
fn foo() -> Self::Foo;

}

struct Quux;

impl Baz for Quux {
type Foo = impl Bar;
fn foo() -> Self::Foo { ... }

}

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

442 of 660 8/30/23, 09:47

Inference of opaque types (impl Trait)

This page describes how the compiler infers the hidden type for an opaque type. This

kind of type inference is particularly complex because, unlike other kinds of type

inference, it can work across functions and function bodies.

Running example

To help explain how it works, let's consider an example.

In this code, the opaque type is Seq<T> . Its defining scope is the module m . Its hidden type

is Vec<T> , which is inferred from m::produce_singleton and m::produce_doubleton .

In the main function, the opaque type is out of its defining scope. When main calls

m::produce_singleton , it gets back a reference to the opaque type Seq<i32> . The

is_send call checks that Seq<i32>: Send . Send is not listed amongst the bounds of the

impl trait, but because of auto-trait leakage, we are able to infer that it holds. The for

loop desugaring requires that Seq<T>: IntoIterator , which is provable from the

bounds declared on Seq<T> .

Type-checking main

mod m {
pub type Seq<T> = impl IntoIterator<Item = T>;

pub fn produce_singleton<T>(t: T) -> Seq<T> {
vec![t]

 }

pub fn produce_doubleton<T>(t: T, u: T) -> Seq<T> {
vec![t, u]

 }
}

fn is_send<T: Send>(_: &T) {}

pub fn main() {
let elems = m::produce_singleton(22);

 is_send(&elems);

for elem in elems {
println!("elem = {:?}", elem);

 }
}

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

443 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#inference-of-opaque-types-impl-trait
https://rustc-dev-guide.rust-lang.org/print.html#inference-of-opaque-types-impl-trait
https://rustc-dev-guide.rust-lang.org/print.html#inference-of-opaque-types-impl-trait
https://rustc-dev-guide.rust-lang.org/print.html#inference-of-opaque-types-impl-trait
https://rustc-dev-guide.rust-lang.org/print.html#inference-of-opaque-types-impl-trait
https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference/member_constraints.html?highlight=%22hidden%20type%22#member-constraints
https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference/member_constraints.html?highlight=%22hidden%20type%22#member-constraints
https://rustc-dev-guide.rust-lang.org/opaque-types-type-alias-impl-trait.html
https://rustc-dev-guide.rust-lang.org/opaque-types-type-alias-impl-trait.html
https://rustc-dev-guide.rust-lang.org/print.html#running-example
https://rustc-dev-guide.rust-lang.org/print.html#running-example
https://rustc-dev-guide.rust-lang.org/print.html#type-checking-main
https://rustc-dev-guide.rust-lang.org/print.html#type-checking-main
https://rustc-dev-guide.rust-lang.org/print.html#type-checking-main
https://rustc-dev-guide.rust-lang.org/print.html#type-checking-main

Let's start by looking what happens when we type-check main . Initially we invoke

produce_singleton and the return type is an opaque type OpaqueTy .

Type-checking the for loop

The for loop desugars the in elems part to IntoIterator::into_iter(elems) . elems is

of type Seq<T> , so the type checker registers a Seq<T>: IntoIterator obligation. This

obligation is trivially satisfied, because Seq<T> is an opaque type (impl

IntoIterator<Item = T>) that has a bound for the trait. Similar to how a U: Foo where

bound allows U to trivially satisfy Foo , opaque types' bounds are available to the type

checker and are used to fulfill obligations.

The type of elem in the for loop is inferred to be <Seq<T> as IntoIterator>::Item ,

which is T . At no point is the type checker interested in the hidden type.

Type-checking the is_send call

When trying to prove auto trait bounds, we first repeat the process as above, to see if the

auto trait is in the bound list of the opaque type. If that fails, we reveal the hidden type of

the opaque type, but only to prove this specific trait bound, not in general. Revealing is

done by invoking the type_of query on the DefId of the opaque type. The query will

internally request the hidden types from the defining function(s) and return that (see the

section on type_of for more details).

Flowchart of type checking steps

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

444 of 660 8/30/23, 09:47

https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/enum.ItemKind.html#variant.OpaqueTy
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/enum.ItemKind.html#variant.OpaqueTy
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/enum.ItemKind.html#variant.OpaqueTy
https://rustc-dev-guide.rust-lang.org/print.html#type-checking-the-for-loop
https://rustc-dev-guide.rust-lang.org/print.html#type-checking-the-for-loop
https://rustc-dev-guide.rust-lang.org/print.html#type-checking-the-is_send-call
https://rustc-dev-guide.rust-lang.org/print.html#type-checking-the-is_send-call
https://rustc-dev-guide.rust-lang.org/print.html#type-checking-the-is_send-call
https://rustc-dev-guide.rust-lang.org/print.html#type-checking-the-is_send-call
https://rustc-dev-guide.rust-lang.org/print.html#type-checking-the-is_send-call
https://rustc-dev-guide.rust-lang.org/opaque-types-impl-trait-inference.html#Within-the-type_of-query
https://rustc-dev-guide.rust-lang.org/opaque-types-impl-trait-inference.html#Within-the-type_of-query
https://rustc-dev-guide.rust-lang.org/opaque-types-impl-trait-inference.html#Within-the-type_of-query
https://rustc-dev-guide.rust-lang.org/opaque-types-impl-trait-inference.html#Within-the-type_of-query
https://rustc-dev-guide.rust-lang.org/opaque-types-impl-trait-inference.html#Within-the-type_of-query
https://rustc-dev-guide.rust-lang.org/opaque-types-impl-trait-inference.html#Within-the-type_of-query
https://rustc-dev-guide.rust-lang.org/print.html#flowchart-of-type-checking-steps
https://rustc-dev-guide.rust-lang.org/print.html#flowchart-of-type-checking-steps

type_of(Seq) query

trait code for auto traits

Walk the HIR for the module `m`
to find the hidden types from each

function/const/static within

visit `produce_singleton`

`produce_singleton` hidden type is `Vec`
keep searching

visit `produce_doubleton`

`produce_doubleton` hidden type is also Vec
this matches what we saw before ��

No more items to look at in scope
Return `Vec`

type checking `main`

`borrow_check(produce_singleton)`

`type_check(produce_singleton)`

`borrow_check(produce_doubleton)`

`type_check(produce_doubleton)`

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

445 of 660 8/30/23, 09:47

Within the type_of query

The type_of query, when applied to an opaque type O, returns the hidden type. That

hidden type is computed by combining the results from each constraining function within

the defining scope of O.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

446 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#within-the-type_of-query
https://rustc-dev-guide.rust-lang.org/print.html#within-the-type_of-query
https://rustc-dev-guide.rust-lang.org/print.html#within-the-type_of-query
https://rustc-dev-guide.rust-lang.org/print.html#within-the-type_of-query
https://rustc-dev-guide.rust-lang.org/print.html#within-the-type_of-query

Relating an opaque type to another type

There is one central place where an opaque type gets its hidden type constrained, and

that is the handle_opaque_type function. Amusingly it takes two types, so you can pass

any two types, but one of them should be an opaque type. The order is only important for

diagnostics.

find_opaque_ty_constraints

For each item
I does not

constrain O

I constrains O

Yes

No

All constraints found

type_of query

FindOpaqueTyConstraints

Iterate over each item in defining scope

Check typeck(I) to see if it constraints O

Invoke mir_borrowck(I) to get hidden type
for O computed by I

Hidden type from I
same as any previous hidden type

found so far?

Item I complete

Report an error

Done

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

447 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#relating-an-opaque-type-to-another-type
https://rustc-dev-guide.rust-lang.org/print.html#relating-an-opaque-type-to-another-type

Interactions with queries

When queries handle opaque types, they cannot figure out whether they are in a defining

scope, so they just assume they are.

The registered hidden types are stored into the QueryResponse struct in the

opaque_types field (the function take_opaque_types_for_query_response reads them

out).

When the QueryResponse is instantiated into the surrounding infcx in

query_response_substitution_guess , we convert each hidden type constraint by

invoking handle_opaque_type (as above).

infcx.handle_opaque_type

Yes

No

YesNo

No Yes

Defining two opaque types simultaneously?

Report error

Opaque type X already has
a registered value?

Register opaque type with
other type as value

In defining scope OR in query?

Register opaque type bounds
as obligations for hidden type

Equate new hidden type
with old hidden type

type check comparison routines

equate.rs sub.rs lub.rs

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

448 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#interactions-with-queries
https://rustc-dev-guide.rust-lang.org/print.html#interactions-with-queries

There is one bit of "weirdness". The instantiated opaque types have an order (if one

opaque type was compared with another, and we have to pick one opaque type to use as

the one that gets its hidden type assigned). We use the one that is considered "expected".

But really both of the opaque types may have defining uses. When the query result is

instantiated, that will be re-evaluated from the context that is using the query. The final

context (typeck of a function, mir borrowck or wf-checks) will know which opaque type

can actually be instantiated and then handle it correctly.

Within the MIR borrow checker

The MIR borrow checker relates things via nll_relate and only cares about regions. Any

type relation will trigger the binding of hidden types, so the borrow checker is doing the

same thing as the type checker, but ignores obviously dead code (e.g. after a panic). The

borrow checker is also the source of truth when it comes to hidden types, as it is the only

one who can properly figure out what lifetimes on the hidden type correspond to which

lifetimes on the opaque type declaration.

Backwards compatibility hacks

impl Trait in return position has various quirks that were not part of any RFCs and are

likely accidental stabilization. To support these, the

replace_opaque_types_with_inference_vars is being used to reintroduce the previous

behaviour.

There are three backwards compatibility hacks:

1. All return sites share the same inference variable, so some return sites may only

compile if another return site uses a concrete type.

2. Associated type equality constraints for impl Trait can be used as long as the

hidden type satisfies the trait bounds on the associated type. The opaque impl

Trait signature does not need to satisfy them.

fn foo() -> impl Debug {

if false {

return std::iter::empty().collect();

 }

vec![42]

}

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

449 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#within-the-mir-borrow-checker
https://rustc-dev-guide.rust-lang.org/print.html#within-the-mir-borrow-checker
https://rustc-dev-guide.rust-lang.org/print.html#backwards-compatibility-hacks
https://rustc-dev-guide.rust-lang.org/print.html#backwards-compatibility-hacks

3. Closures cannot create hidden types for their parent function's impl Trait . This

point is mostly moot, because of point 1 introducing inference vars, so the closure

only ever sees the inference var, but should we fix 1, this will become a problem.

trait Duh {}

impl Duh for i32 {}

trait Trait {

type Assoc: Duh;

}

// the fact that `R` is the `::Output` projection on `F` causes

// an intermediate inference var to be generated which is then later

// compared against the actually found `Assoc` type.

impl<R: Duh, F: FnMut() -> R> Trait for F {

type Assoc = R;

}

// The `impl Send` here is then later compared against the inference var

// created, causing the inference var to be set to `impl Send` instead

of

// the hidden type. We already have obligations registered on the

inference

// var to make it uphold the `: Duh` bound on `Trait::Assoc`. The opaque

// type does not implement `Duh`, even if its hidden type does.

// Lazy TAIT would error out, but we inserted a hack to make it work

again,

// keeping backwards compatibility.

fn foo() -> impl Trait<Assoc = impl Send> {

 || 42

}

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

450 of 660 8/30/23, 09:47

Return Position Impl Trait In Trait

Return-position impl trait in trait (RPITIT) is conceptually (and as of #112988, literally)

sugar that turns RPITs in trait methods into generic associated types (GATs) without the

user having to define that GAT either on the trait side or impl side.

RPITIT was originally implemented in #101224, which added support for async fn in trait

(AFIT), since the implementation for RPITIT came for free as a part of implementing AFIT

which had been RFC'd previously. It was then RFC'd independently in RFC 3425, which was

recently approved by T-lang.

How does it work?

This doc is ordered mostly via the compilation pipeline. AST -> HIR -> astconv -> typeck.

AST and HIR

AST -> HIR lowering for RPITITs is almost the same as lowering RPITs. We still lower them

as hir::ItemKind::OpaqueTy . The two differences are that:

We record in_trait for the opaque. This will signify that the opaque is an RPITIT for

astconv, diagnostics that deal with HIR, etc.

We record lifetime_mapping s for the opaque type, described below.

Aside: Opaque lifetime duplication

All opaques (not just RPITITs) end up duplicating their captured lifetimes into new lifetime

parameters local to the opaque. The main reason we do this is because RPITs need to be

able to "reify"1 any captured late-bound arguments, or make them into early-bound ones.

This is so they can be used as generic args for the opaque, and later to instantiate hidden

types. Since we don't know which lifetimes are early- or late-bound during AST lowering,

we just do this for all lifetimes.

1 This is compiler-errors terminology, I'm not claiming it's accurate :^)

The main addition for RPITITs is that during lowering we track the relationship between

the captured lifetimes and the corresponding duplicated lifetimes in an additional field,

OpaqueTy::lifetime_mapping . We use this lifetime mapping later on in predicates_of

to install bounds that enforce equality between these duplicated lifetimes and their

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

451 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#return-position-impl-trait-in-trait
https://rustc-dev-guide.rust-lang.org/print.html#return-position-impl-trait-in-trait
https://github.com/rust-lang/rust/pull/112988
https://github.com/rust-lang/rust/pull/112988
https://github.com/rust-lang/rust/pull/101224
https://github.com/rust-lang/rust/pull/101224
https://github.com/rust-lang/rfcs/pull/3425
https://github.com/rust-lang/rfcs/pull/3425
https://rustc-dev-guide.rust-lang.org/print.html#how-does-it-work-1
https://rustc-dev-guide.rust-lang.org/print.html#how-does-it-work-1
https://rustc-dev-guide.rust-lang.org/print.html#ast-and-hir
https://rustc-dev-guide.rust-lang.org/print.html#ast-and-hir
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/hir/struct.OpaqueTy.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/hir/struct.OpaqueTy.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/hir/struct.OpaqueTy.html
https://rustc-dev-guide.rust-lang.org/print.html#aside-opaque-lifetime-duplication
https://rustc-dev-guide.rust-lang.org/print.html#aside-opaque-lifetime-duplication
https://rustc-dev-guide.rust-lang.org/print.html#1
https://rustc-dev-guide.rust-lang.org/print.html#1
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/hir/struct.OpaqueTy.html#structfield.lifetime_mapping
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/hir/struct.OpaqueTy.html#structfield.lifetime_mapping
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/hir/struct.OpaqueTy.html#structfield.lifetime_mapping

source lifetimes in order to properly typecheck these GATs, which will be discussed

below.

note:

It may be better if we were able to lower without duplicates and for that I think we would

need to stop distinguishing between early and late bound lifetimes. So we would need a

solution like Account for late-bound lifetimes in generics #103448 and then also a PR

similar to Inherit function lifetimes for impl-trait #103449.

Astconv

The main change to astconv is that we lower hir::TyKind::OpaqueDef for an RPITIT to a

projection instead of an opaque, using a newly synthesized def-id for a new associated

type in the trait. We'll describe how exactly we get this def-id in the next section.

This means that any time we call ast_ty_to_ty on the RPITIT, we end up getting a

projection back instead of an opaque. This projection can then be normalized to the right

value -- either the original opaque if we're in the trait, or the inferred type of the RPITIT if

we're in an impl.

Lowering to synthetic associated types

Using query feeding, we synthesize new associated types on both the trait side and impl

side for RPITITs that show up in methods.

Lowering RPITITs in traits

When tcx.associated_item_def_ids(trait_def_id) is called on a trait to gather all of

the trait's associated types, the query previously just returned the def-ids of the HIR items

that are children of the trait. After #112988, additionally, for each method in the trait, we

add the def-ids returned by

tcx.associated_types_for_impl_traits_in_associated_fn(trait_method_def_id) ,

which walks through each trait method, gathers any RPITITs that show up in the

signature, and then calls associated_type_for_impl_trait_in_trait for each RPITIT,

which synthesizes a new associated type.

Lowering RPITITs in impls

Similarly, along with the impl's HIR items, for each impl method, we additionally add all of

the associated_types_for_impl_traits_in_associated_fn for the impl method. This

calls associated_type_for_impl_trait_in_impl , which will synthesize an associated

type definition for each RPITIT that comes from the corresponding trait method.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

452 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#note
https://rustc-dev-guide.rust-lang.org/print.html#note
https://github.com/rust-lang/rust/pull/103448
https://github.com/rust-lang/rust/pull/103448
https://github.com/rust-lang/rust/pull/103449
https://github.com/rust-lang/rust/pull/103449
https://rustc-dev-guide.rust-lang.org/print.html#astconv
https://rustc-dev-guide.rust-lang.org/print.html#astconv
https://rustc-dev-guide.rust-lang.org/print.html#lowering-to-synthetic-associated-types
https://rustc-dev-guide.rust-lang.org/print.html#lowering-to-synthetic-associated-types
https://rustc-dev-guide.rust-lang.org/print.html#lowering-rpitits-in-traits
https://rustc-dev-guide.rust-lang.org/print.html#lowering-rpitits-in-traits
https://github.com/rust-lang/rust/pull/112988
https://github.com/rust-lang/rust/pull/112988
https://rustc-dev-guide.rust-lang.org/print.html#lowering-rpitits-in-impls
https://rustc-dev-guide.rust-lang.org/print.html#lowering-rpitits-in-impls

Synthesizing new associated types

We use query feeding (TyCtxtAt::create_def) to synthesize a new def-id for the

synthetic GATs for each RPITIT.

Locally, most of rustc's queries match on the HIR of an item to compute their values.

Since the RPITIT doesn't really have HIR associated with it, or at least not HIR that

corresponds to an associated type, we must compute many queries eagerly and feed

them, like opt_def_kind , associated_item , visibility , and defaultness .

The values for most of these queries is obvious, since the RPITIT conceptually inherits

most of its information from the parent function (e.g. visibility), or because it's

trivially knowable because it's an associated type (opt_def_kind).

Some other queries are more involved, or cannot be feeded, and we document the

interesting ones of those below:

generics_of for the trait

The GAT for an RPITIT conceptually inherits the same generics as the RPIT it comes from.

However, instead of having the method as the generics' parent, the trait is the parent.

Currently we get away with taking the RPIT's generics and method generics and flattening

them both into a new generics list, preserving the def-id of each of the parameters. (This

may cause issues with def-ids having the wrong parents, but in the worst case this will

cause diagnostics issues. If this ends up being an issue, we can synthesize new def-ids for

generic params whose parent is the GAT.)

▸ An illustrated example

generics_of for the impl

The generics for an impl's GAT are a bit more interesting. They are composed of RPITIT's

own generics (from the trait definition), appended onto the impl's methods generics. This

has the same issue as above, where the generics for the GAT have parameters whose def-

ids have the wrong parent, but this should only cause issues in diagnostics.

We could fix this similarly if we were to synthesize new generics def-ids, but this can be

done later in a forwards-compatible way, perhaps by a interested new contributor.

opt_rpitit_info

Some queries rely on computing information that would result in cycles if we were to feed

them eagerly, like explicit_predicates_of . Therefore we defer to the predicates_of

provider to return the right value for our RPITIT's GAT. We do this by detecting early on in

the query if the associated type is synthetic by using opt_rpitit_info , which returns

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

453 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#synthesizing-new-associated-types
https://rustc-dev-guide.rust-lang.org/print.html#synthesizing-new-associated-types
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/query/plumbing/struct.TyCtxtAt.html#method.create_def
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/query/plumbing/struct.TyCtxtAt.html#method.create_def
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/query/plumbing/struct.TyCtxtAt.html#method.create_def
https://github.com/rust-lang/rust/pull/104940
https://github.com/rust-lang/rust/pull/104940
https://rustc-dev-guide.rust-lang.org/print.html#generics_of-for-the-trait
https://rustc-dev-guide.rust-lang.org/print.html#generics_of-for-the-trait
https://rustc-dev-guide.rust-lang.org/print.html#generics_of-for-the-trait
https://rustc-dev-guide.rust-lang.org/print.html#generics_of-for-the-trait
https://rustc-dev-guide.rust-lang.org/print.html#generics_of-for-the-impl
https://rustc-dev-guide.rust-lang.org/print.html#generics_of-for-the-impl
https://rustc-dev-guide.rust-lang.org/print.html#generics_of-for-the-impl
https://rustc-dev-guide.rust-lang.org/print.html#generics_of-for-the-impl
https://rustc-dev-guide.rust-lang.org/print.html#opt_rpitit_info
https://rustc-dev-guide.rust-lang.org/print.html#opt_rpitit_info
https://rustc-dev-guide.rust-lang.org/print.html#opt_rpitit_info
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/context/struct.TyCtxt.html#method.opt_rpitit_info
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/context/struct.TyCtxt.html#method.opt_rpitit_info
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/context/struct.TyCtxt.html#method.opt_rpitit_info

Some if the associated type is synthetic.

Then, during a query like explicit_predicates_of , we can detect if an associated type is

synthetic like:

explicit_predicates_of

RPITITs begin by copying the predicates of the method that defined it, both on the trait

and impl side.

Additionally, we install "bidirectional outlives" predicates. Specifically, we add region-

outlives predicates in both directions for each captured early-bound lifetime that

constrains it to be equal to the duplicated early-bound lifetime that results from lowering.

This is best illustrated in an example:

assumed_wf_types

The GATs in both the trait and impl inherit the assumed_wf_types of the trait method

that defines the RPITIT. This is to make sure that the following code is well formed when

lowered.

fn explicit_predicates_of(tcx: TyCtxt<'_>, def_id: LocalDefId) -> ... {
if let Some(rpitit_info) = tcx.opt_rpitit_info(def_id) {

// Do something special for RPITITs...
return ...;

 }

// The regular computation which relies on access to the HIR of `def_id`.
}

trait Foo<'a> {
fn bar() -> impl Sized + 'a;

}

// Desugars into...

trait Foo<'a> {
type Gat<'a_duplicated>: Sized + 'a
where

'a: 'a_duplicated,
'a_duplicated: 'a;

//~^ Specifically, we should be able to assume that the
// duplicated `'a_duplicated` lifetime always stays in
// sync with the `'a` lifetime.

fn bar() -> Self::Gat<'a>;
}

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

454 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#explicit_predicates_of
https://rustc-dev-guide.rust-lang.org/print.html#explicit_predicates_of
https://rustc-dev-guide.rust-lang.org/print.html#explicit_predicates_of
https://rustc-dev-guide.rust-lang.org/print.html#assumed_wf_types
https://rustc-dev-guide.rust-lang.org/print.html#assumed_wf_types
https://rustc-dev-guide.rust-lang.org/print.html#assumed_wf_types

Because assumed_wf_types is only defined for local def ids, in order to properly

implement assumed_wf_types for impls of foreign traits with RPITs, we need to encode

the assumed wf types of RPITITs in an extern query assumed_wf_types_for_rpitit .

Typechecking

The RPITIT inference algorithm

The RPITIT inference algorithm is implemented in

collect_return_position_impl_trait_in_trait_tys .

High-level: Given a impl method and a trait method, we take the trait method and

instantiate each RPITIT in the signature with an infer var. We then equate this trait

method signature with the impl method signature, and process all obligations that fall out

in order to infer the type of all of the RPITITs in the method.

The method is also responsible for making sure that the hidden types for each RPITIT

actually satisfy the bounds of the impl Trait , i.e. that if we infer impl Trait = Foo ,

that Foo: Trait holds.

▸ An example...

Default trait body

Type-checking a default trait body, like:

trait Foo {
fn iter<'a, T>(x: &'a [T]) -> impl Iterator<Item = &'a T>;

}

// which is lowered to...

trait FooDesugared {
type Iter<'a, T>: Iterator<Item = &'a T>;
//~^ assumed wf: `&'a [T]`
// Without assumed wf types, the GAT would not be well-formed on its own.

fn iter<'a, T>(x: &'a [T]) -> Self::Iter<'a, T>;
}

trait Foo {
fn bar() -> impl Sized {

1i32
 }
}

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

455 of 660 8/30/23, 09:47

https://github.com/rust-lang/rust/blob/a17c7968b727d8413801961fc4e89869b6ab00d3/compiler/rustc_ty_utils/src/implied_bounds.rs#L14
https://github.com/rust-lang/rust/blob/a17c7968b727d8413801961fc4e89869b6ab00d3/compiler/rustc_ty_utils/src/implied_bounds.rs#L14
https://github.com/rust-lang/rust/blob/a17c7968b727d8413801961fc4e89869b6ab00d3/compiler/rustc_ty_utils/src/implied_bounds.rs#L14
https://rustc-dev-guide.rust-lang.org/print.html#typechecking
https://rustc-dev-guide.rust-lang.org/print.html#typechecking
https://rustc-dev-guide.rust-lang.org/print.html#the-rpitit-inference-algorithm
https://rustc-dev-guide.rust-lang.org/print.html#the-rpitit-inference-algorithm
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir_analysis/check/compare_impl_item/fn.collect_return_position_impl_trait_in_trait_tys.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir_analysis/check/compare_impl_item/fn.collect_return_position_impl_trait_in_trait_tys.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir_analysis/check/compare_impl_item/fn.collect_return_position_impl_trait_in_trait_tys.html
https://rustc-dev-guide.rust-lang.org/print.html#default-trait-body
https://rustc-dev-guide.rust-lang.org/print.html#default-trait-body

requires one interesting hack. We need to install a projection predicate into the param-

env of Foo::bar allowing us to assume that the RPITIT's GAT normalizes to the RPITIT's

opaque type. This relies on the observation that a trait method and RPITIT's GAT will

always be "in sync". That is, one will only ever be overridden if the other one is as well.

Compare this to a similar desugaring of the code above, which would fail because we

cannot rely on this same assumption:

Failing because a down-stream impl could theoretically provide an implementation for

RPITIT without providing an implementation of foo :

Well-formedness checking

We check well-formedness of RPITITs just like regular associated types.

Since we added lifetime bounds in predicates_of that link the duplicated early-bound

lifetimes to their original lifetimes, and we implemented assumed_wf_types which

inherits the WF types of the method from which the RPITIT originates (#113704), we have

no issues WF-checking the GAT as if it were a regular GAT.

What's broken, what's weird, etc.

#![feature(impl_trait_in_assoc_type)]
#![feature(associated_type_defaults)]

trait Foo {
type RPITIT = impl Sized;

fn bar() -> Self::RPITIT {
01i32

 }
}

error[E0308]: mismatched types
--> src/lib.rs:8:9
 |
5 | type RPITIT = impl Sized;
 | ------------------------- associated type defaults can't be assumed
inside the trait defining them
6 |
7 | fn bar() -> Self::RPITIT {
 | ------------ expected `<Self as Foo>::RPITIT` because of
return type
8 | 01i32
 | ^^^^^ expected associated type, found `i32`
 |
 = note: expected associated type `<Self as Foo>::RPITIT`
 found type `i32`

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

456 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#well-formedness-checking
https://rustc-dev-guide.rust-lang.org/print.html#well-formedness-checking
https://github.com/rust-lang/rust/pull/113704
https://github.com/rust-lang/rust/pull/113704
https://rustc-dev-guide.rust-lang.org/print.html#whats-broken-whats-weird-etc
https://rustc-dev-guide.rust-lang.org/print.html#whats-broken-whats-weird-etc

Specialization is super busted

The "default trait methods" described above does not interact well with specialization,

because we only install those projection bounds in trait default methods, and not in impl

methods. Given that specialization is already pretty busted, I won't go into detail, but it's

currently a bug tracked in: * tests/ui/impl-trait/in-trait/specialization-broken.rs

Projections don't have variances

This code fails because projections don't have variances:

This is because we can't relate <T as Foo>::Rpitit<'a> and <T as Foo>::Rpitit<'b> ,

even if they don't capture their lifetime. If we were using regular opaque types, this would

work, because they would be bivariant in that lifetime parameter:

This is probably okay though, since RPITITs will likely have their captures behavior

changed to capture all in-scope lifetimes anyways. This could also be relaxed later in a

forwards-compatible way if we were to consider variances of RPITITs when relating

projections.

#![feature(return_position_impl_trait_in_trait)]

trait Foo {
// Note that the RPITIT below does *not* capture `'lt`.
fn bar<'lt: 'lt>() -> impl Eq;

}

fn test<'a, 'b, T: Foo>() -> bool {
 <T as Foo>::bar::<'a>() == <T as Foo>::bar::<'b>()

//~^ ERROR
// (requires that `'a == 'b`)

}

#![feature(return_position_impl_trait_in_trait)]

fn bar<'lt: 'lt>() -> impl Eq {
 ()
}

fn test<'a, 'b>() -> bool {
 bar::<'a>() == bar::<'b>()
}

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

457 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#specialization-is-super-busted
https://rustc-dev-guide.rust-lang.org/print.html#specialization-is-super-busted
https://rustc-dev-guide.rust-lang.org/print.html#projections-dont-have-variances
https://rustc-dev-guide.rust-lang.org/print.html#projections-dont-have-variances

Pattern and Exhaustiveness Checking

In Rust, pattern matching and bindings have a few very helpful properties. The compiler

will check that bindings are irrefutable when made and that match arms are exhaustive.

Pattern usefulness

The central question that usefulness checking answers is: "in this match expression, is

that branch reachable?". More precisely, it boils down to computing whether, given a list

of patterns we have already seen, a given new pattern might match any new value.

For example, in the following match expression, we ask in turn whether each pattern

might match something that wasn't matched by the patterns above it. Here we see the

4th pattern is redundant with the 1st; that branch will get an "unreachable" warning. The

3rd pattern may or may not be useful, depending on whether Foo has other variants

than Bar . Finally, we can ask whether the whole match is exhaustive by asking whether

the wildcard pattern (_) is useful relative to the list of all the patterns in that match. Here

we can see that _ is useful (it would catch (false, None)); this expression would

therefore get a "non-exhaustive match" error.

Thus usefulness is used for two purposes: detecting unreachable code (which is useful to

the user), and ensuring that matches are exhaustive (which is important for soundness,

because a match expression can return a value).

Where it happens

This check is done to any expression that desugars to a match expression in MIR. That

includes actual match expressions, but also anything that looks like pattern matching,

including if let , destructuring let , and similar expressions.

// x: (bool, Option<Foo>)
match x {
 (true, _) => {} // 1
 (false, Some(Foo::Bar)) => {} // 2
 (false, Some(_)) => {} // 3
 (true, None) => {} // 4
}

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

458 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#pattern-and-exhaustiveness-checking
https://rustc-dev-guide.rust-lang.org/print.html#pattern-and-exhaustiveness-checking
https://rustc-dev-guide.rust-lang.org/print.html#pattern-usefulness
https://rustc-dev-guide.rust-lang.org/print.html#pattern-usefulness
https://rustc-dev-guide.rust-lang.org/print.html#where-it-happens
https://rustc-dev-guide.rust-lang.org/print.html#where-it-happens

The algorithm

Exhaustiveness checking is implemented in check_match . The core of the algorithm is in

usefulness . That file contains a detailed description of the algorithm.

// `match`
// Usefulness can detect unreachable branches and forbid non-exhaustive
matches.
match foo() {

Ok(x) => x,
Err(_) => panic!(),

}

// `if let`
// Usefulness can detect unreachable branches.
if let Some(x) = foo() {

// ...
}

// `while let`
// Usefulness can detect infinite loops and dead loops.
while let Some(x) = it.next() {

// ...
}

// Destructuring `let`
// Usefulness can forbid non-exhaustive patterns.
let Foo::Bar(x, y) = foo();

// Destructuring function arguments
// Usefulness can forbid non-exhaustive patterns.
fn foo(Foo { x, y }: Foo) {

// ...
}

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

459 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#the-algorithm-1
https://rustc-dev-guide.rust-lang.org/print.html#the-algorithm-1
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_build/thir/pattern/check_match/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_build/thir/pattern/check_match/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_build/thir/pattern/check_match/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_build/thir/pattern/usefulness/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_build/thir/pattern/usefulness/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_build/thir/pattern/usefulness/index.html

Dataflow Analysis

• Defining a Dataflow Analysis

◦ Transfer Functions and Effects

◦ "Before" Effects

◦ Convergence

• A Brief Example

• Inspecting the Results of a Dataflow Analysis

◦ Graphviz Diagrams

If you work on the MIR, you will frequently come across various flavors of dataflow

analysis. rustc uses dataflow to find uninitialized variables, determine what variables

are live across a generator yield statement, and compute which Place s are borrowed

at a given point in the control-flow graph. Dataflow analysis is a fundamental concept in

modern compilers, and knowledge of the subject will be helpful to prospective

contributors.

However, this documentation is not a general introduction to dataflow analysis. It is

merely a description of the framework used to define these analyses in rustc . It

assumes that the reader is familiar with the core ideas as well as some basic terminology,

such as "transfer function", "fixpoint" and "lattice". If you're unfamiliar with these terms,

or if you want a quick refresher, Static Program Analysis by Anders Møller and Michael I.

Schwartzbach is an excellent, freely available textbook. For those who prefer audiovisual

learning, we previously recommended a series of short lectures by the Goethe University

Frankfurt on YouTube, but it has since been deleted. See this PR for the context and this

comment for the alternative lectures.

Defining a Dataflow Analysis

The interface for dataflow analyses is split into three traits. The first is AnalysisDomain ,

which must be implemented by all analyses. In addition to the type of the dataflow state,

this trait defines the initial value of that state at entry to each block, as well as the

direction of the analysis, either forward or backward. The domain of your dataflow

analysis must be a lattice (strictly speaking a join-semilattice) with a well-behaved join

operator. See documentation for the lattice module, as well as the JoinSemiLattice

trait, for more information.

You must then provide either a direct implementation of the Analysis trait or an

implementation of the proxy trait GenKillAnalysis . The latter is for so-called "gen-kill"

problems, which have a simple class of transfer function that can be applied very

efficiently. Analyses whose domain is not a BitSet of some index type, or whose transfer

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

460 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#dataflow-analysis
https://rustc-dev-guide.rust-lang.org/print.html#dataflow-analysis
https://rustc-dev-guide.rust-lang.org/mir/dataflow.html#defining-a-dataflow-analysis
https://rustc-dev-guide.rust-lang.org/mir/dataflow.html#defining-a-dataflow-analysis
https://rustc-dev-guide.rust-lang.org/mir/dataflow.html#transfer-functions-and-effects
https://rustc-dev-guide.rust-lang.org/mir/dataflow.html#transfer-functions-and-effects
https://rustc-dev-guide.rust-lang.org/mir/dataflow.html#before-effects
https://rustc-dev-guide.rust-lang.org/mir/dataflow.html#before-effects
https://rustc-dev-guide.rust-lang.org/mir/dataflow.html#convergence
https://rustc-dev-guide.rust-lang.org/mir/dataflow.html#convergence
https://rustc-dev-guide.rust-lang.org/mir/dataflow.html#a-brief-example
https://rustc-dev-guide.rust-lang.org/mir/dataflow.html#a-brief-example
https://rustc-dev-guide.rust-lang.org/mir/dataflow.html#inspecting-the-results-of-a-dataflow-analysis
https://rustc-dev-guide.rust-lang.org/mir/dataflow.html#inspecting-the-results-of-a-dataflow-analysis
https://rustc-dev-guide.rust-lang.org/mir/dataflow.html#graphviz-diagrams
https://rustc-dev-guide.rust-lang.org/mir/dataflow.html#graphviz-diagrams
https://en.wikipedia.org/wiki/Data-flow_analysis#Basic_principles
https://en.wikipedia.org/wiki/Data-flow_analysis#Basic_principles
https://en.wikipedia.org/wiki/Data-flow_analysis#Basic_principles
https://en.wikipedia.org/wiki/Data-flow_analysis#Basic_principles
https://cs.au.dk/~amoeller/spa/
https://cs.au.dk/~amoeller/spa/
https://cs.au.dk/~amoeller/spa/
https://github.com/rust-lang/rustc-dev-guide/pull/1295
https://github.com/rust-lang/rustc-dev-guide/pull/1295
https://github.com/rust-lang/rustc-dev-guide/pull/1295#issuecomment-1118131294
https://github.com/rust-lang/rustc-dev-guide/pull/1295#issuecomment-1118131294
https://github.com/rust-lang/rustc-dev-guide/pull/1295#issuecomment-1118131294
https://github.com/rust-lang/rustc-dev-guide/pull/1295#issuecomment-1118131294
https://rustc-dev-guide.rust-lang.org/print.html#defining-a-dataflow-analysis
https://rustc-dev-guide.rust-lang.org/print.html#defining-a-dataflow-analysis
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/trait.AnalysisDomain.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/trait.AnalysisDomain.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/trait.AnalysisDomain.html
https://en.wikipedia.org/wiki/Lattice_(order)
https://en.wikipedia.org/wiki/Lattice_(order)
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/lattice/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/lattice/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/lattice/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/lattice/trait.JoinSemiLattice.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/lattice/trait.JoinSemiLattice.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/lattice/trait.JoinSemiLattice.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/trait.Analysis.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/trait.Analysis.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/trait.Analysis.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/trait.GenKillAnalysis.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/trait.GenKillAnalysis.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/trait.GenKillAnalysis.html
https://en.wikipedia.org/wiki/Data-flow_analysis#Bit_vector_problems
https://en.wikipedia.org/wiki/Data-flow_analysis#Bit_vector_problems
https://en.wikipedia.org/wiki/Data-flow_analysis#Bit_vector_problems
https://en.wikipedia.org/wiki/Data-flow_analysis#Bit_vector_problems

functions cannot be expressed through "gen" and "kill" operations, must implement

Analysis directly, and will run slower as a result. All implementers of GenKillAnalysis

also implement Analysis automatically via a default impl .

Transfer Functions and Effects

The dataflow framework in rustc allows each statement (and terminator) inside a basic

block to define its own transfer function. For brevity, these individual transfer functions

are known as "effects". Each effect is applied successively in dataflow order, and together

they define the transfer function for the entire basic block. It's also possible to define an

effect for particular outgoing edges of some terminators (e.g.

apply_call_return_effect for the success edge of a Call terminator). Collectively,

these are referred to as "per-edge effects".

The only meaningful difference (besides the "apply" prefix) between the methods of the

GenKillAnalysis trait and the Analysis trait is that an Analysis has direct, mutable

access to the dataflow state, whereas a GenKillAnalysis only sees an implementer of

the GenKill trait, which only allows the gen and kill operations for mutation.

"Before" Effects

Observant readers of the documentation may notice that there are actually two possible

effects for each statement and terminator, the "before" effect and the unprefixed (or

"primary") effect. The "before" effects are applied immediately before the unprefixed

effect regardless of the direction of the analysis. In other words, a backward analysis

will apply the "before" effect and then the "primary" effect when computing the transfer

function for a basic block, just like a forward analysis.

The vast majority of analyses should use only the unprefixed effects: Having multiple

effects for each statement makes it difficult for consumers to know where they should be

looking. However, the "before" variants can be useful in some scenarios, such as when

 AnalysisDomain
 ^
 | | = has as a supertrait
 | . = provides a default impl for
 |
 Analysis
 ^ ^
 | .
 | .
 | .
 GenKillAnalysis

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

461 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#transfer-functions-and-effects
https://rustc-dev-guide.rust-lang.org/print.html#transfer-functions-and-effects
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/trait.Analysis.html#tymethod.apply_call_return_effect
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/trait.Analysis.html#tymethod.apply_call_return_effect
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/trait.Analysis.html#tymethod.apply_call_return_effect
https://rustc-dev-guide.rust-lang.org/print.html#before-effects
https://rustc-dev-guide.rust-lang.org/print.html#before-effects

the effect of the right-hand side of an assignment statement must be considered

separately from the left-hand side.

Convergence

Your analysis must converge to "fixpoint", otherwise it will run forever. Converging to

fixpoint is just another way of saying "reaching equilibrium". In order to reach

equilibrium, your analysis must obey some laws. One of the laws it must obey is that the

bottom value1 joined with some other value equals the second value. Or, as an equation:

bottom join x = x

Another law is that your analysis must have a "top value" such that

top join x = top

Having a top value ensures that your semilattice has a finite height, and the law state

above ensures that once the dataflow state reaches top, it will no longer change (the

fixpoint will be top).

1 The bottom value's primary purpose is as the initial dataflow state. Each basic block's entry state

is initialized to bottom before the analysis starts.

A Brief Example

This section provides a brief example of a simple data-flow analysis at a high level. It

doesn't explain everything you need to know, but hopefully it will make the rest of this

page clearer.

Let's say we want to do a simple analysis to find if mem::transmute may have been called

by a certain point in the program. Our analysis domain will just be a bool that records

whether transmute has been called so far. The bottom value will be false , since by

default transmute has not been called. The top value will be true , since our analysis is

done as soon as we determine that transmute has been called. Our join operator will

just be the boolean OR (||) operator. We use OR and not AND because of this case:

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

462 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#convergence
https://rustc-dev-guide.rust-lang.org/print.html#convergence
https://rustc-dev-guide.rust-lang.org/print.html#bottom-purpose
https://rustc-dev-guide.rust-lang.org/print.html#bottom-purpose
https://rustc-dev-guide.rust-lang.org/print.html#a-brief-example
https://rustc-dev-guide.rust-lang.org/print.html#a-brief-example

Inspecting the Results of a Dataflow Analysis

Once you have constructed an analysis, you must pass it to an Engine , which is

responsible for finding the steady-state solution to your dataflow problem. You should

use the into_engine method defined on the Analysis trait for this, since it will use the

more efficient Engine::new_gen_kill constructor when possible.

Calling iterate_to_fixpoint on your Engine will return a Results , which contains the

dataflow state at fixpoint upon entry of each block. Once you have a Results , you can

inspect the dataflow state at fixpoint at any point in the CFG. If you only need the state at

a few locations (e.g., each Drop terminator) use a ResultsCursor . If you need the state

at every location, a ResultsVisitor will be more efficient.

For example, the following code uses a ResultsVisitor ...

let x = if some_cond {
 std::mem::transmute<i32, u32>(0_i32); // transmute was called!
} else {
 1_u32; // transmute was not called
};

// Has transmute been called by this point? We conservatively approximate
that
// as yes, and that is why we use the OR operator.
println!("x: {}", x);

 Analysis
 |
 | into_engine(…)
 |
 Engine
 |
 | iterate_to_fixpoint()
 |
 Results
 / \
 into_results_cursor(…) / \ visit_with(…)
 / \
 ResultsCursor ResultsVisitor

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

463 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#inspecting-the-results-of-a-dataflow-analysis
https://rustc-dev-guide.rust-lang.org/print.html#inspecting-the-results-of-a-dataflow-analysis
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/struct.Engine.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/struct.Engine.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/struct.Engine.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/trait.Analysis.html#method.into_engine
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/trait.Analysis.html#method.into_engine
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/trait.Analysis.html#method.into_engine
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/struct.ResultsCursor.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/struct.ResultsCursor.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/struct.ResultsCursor.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/trait.ResultsVisitor.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/trait.ResultsVisitor.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/trait.ResultsVisitor.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/trait.ResultsVisitor.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/trait.ResultsVisitor.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/trait.ResultsVisitor.html

whereas this code uses ResultsCursor :

Graphviz Diagrams

When the results of a dataflow analysis are not what you expect, it often helps to visualize

them. This can be done with the -Z dump-mir flags described in Debugging MIR. Start

with -Z dump-mir=F -Z dump-mir-dataflow , where F is either "all" or the name of the

MIR body you are interested in.

These .dot files will be saved in your mir_dump directory and will have the NAME of the

analysis (e.g. maybe_inits) as part of their filename. Each visualization will display the full

dataflow state at entry and exit of each block, as well as any changes that occur in each

statement and terminator. See the example below:

// Assuming `MyVisitor` implements `ResultsVisitor<FlowState =
MyAnalysis::Domain>`...
let mut my_visitor = MyVisitor::new();

// inspect the fixpoint state for every location within every block in RPO.
let results = MyAnalysis::new()
 .into_engine(tcx, body, def_id)
 .iterate_to_fixpoint()
 .visit_in_rpo_with(body, &mut my_visitor);

let mut results = MyAnalysis::new()
 .into_engine(tcx, body, def_id)
 .iterate_to_fixpoint()
 .into_results_cursor(body);

// Inspect the fixpoint state immediately before each `Drop` terminator.
for (bb, block) in body.basic_blocks().iter_enumerated() {

if let TerminatorKind::Drop { .. } = block.terminator().kind {
 results.seek_before_primary_effect(body.terminator_loc(bb));

let state = results.get();
println!("state before drop: {:#?}", state);

 }
}

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

464 of 660 8/30/23, 09:47

https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/struct.ResultsCursor.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/struct.ResultsCursor.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/struct.ResultsCursor.html
https://rustc-dev-guide.rust-lang.org/print.html#graphviz-diagrams
https://rustc-dev-guide.rust-lang.org/print.html#graphviz-diagrams
https://rustc-dev-guide.rust-lang.org/mir/debugging.html
https://rustc-dev-guide.rust-lang.org/mir/debugging.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/trait.AnalysisDomain.html#associatedconstant.NAME
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/trait.AnalysisDomain.html#associatedconstant.NAME
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/trait.AnalysisDomain.html#associatedconstant.NAME

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

465 of 660 8/30/23, 09:47

Drop elaboration

• Dynamic drops

• Drop obligations

• Drop elaboration

• Drop elaboration in rustc

◦ Open drops

◦ Cleanup paths

• Aside: drop elaboration and const-eval

Dynamic drops

According to the reference:

When an initialized variable or temporary goes out of scope, its destructor is run, or

it is dropped. Assignment also runs the destructor of its left-hand operand, if it's

initialized. If a variable has been partially initialized, only its initialized fields are

dropped.

When building the MIR, the Drop and DropAndReplace terminators represent places

where drops may occur. However, in this phase, the presence of these terminators does

not guarantee that a destructor will run. That's because the target of a drop may be

uninitialized (usually because it has been moved from) before the terminator is reached.

In general, we cannot know at compile-time whether a variable is initialized.

In these cases, we need to keep track of whether a variable is initialized dynamically. The

rules are laid out in detail in RFC 320: Non-zeroing dynamic drops.

Drop obligations

let mut y = vec![];

{
let x = vec![1, 2, 3];
if std::process::id() % 2 == 0 {

 y = x; // conditionally move `x` into `y`
 }
} // `x` goes out of scope here. Should it be dropped?

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

466 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#drop-elaboration
https://rustc-dev-guide.rust-lang.org/print.html#drop-elaboration
https://rustc-dev-guide.rust-lang.org/mir/drop-elaboration.html#dynamic-drops
https://rustc-dev-guide.rust-lang.org/mir/drop-elaboration.html#dynamic-drops
https://rustc-dev-guide.rust-lang.org/mir/drop-elaboration.html#drop-obligations
https://rustc-dev-guide.rust-lang.org/mir/drop-elaboration.html#drop-obligations
https://rustc-dev-guide.rust-lang.org/mir/drop-elaboration.html#drop-elaboration
https://rustc-dev-guide.rust-lang.org/mir/drop-elaboration.html#drop-elaboration
https://rustc-dev-guide.rust-lang.org/mir/drop-elaboration.html#drop-elaboration-in-rustc
https://rustc-dev-guide.rust-lang.org/mir/drop-elaboration.html#drop-elaboration-in-rustc
https://rustc-dev-guide.rust-lang.org/mir/drop-elaboration.html#drop-elaboration-in-rustc
https://rustc-dev-guide.rust-lang.org/mir/drop-elaboration.html#drop-elaboration-in-rustc
https://rustc-dev-guide.rust-lang.org/mir/drop-elaboration.html#open-drops
https://rustc-dev-guide.rust-lang.org/mir/drop-elaboration.html#open-drops
https://rustc-dev-guide.rust-lang.org/mir/drop-elaboration.html#open-drops
https://rustc-dev-guide.rust-lang.org/mir/drop-elaboration.html#open-drops
https://rustc-dev-guide.rust-lang.org/mir/drop-elaboration.html#cleanup-paths
https://rustc-dev-guide.rust-lang.org/mir/drop-elaboration.html#cleanup-paths
https://rustc-dev-guide.rust-lang.org/mir/drop-elaboration.html#aside-drop-elaboration-and-const-eval
https://rustc-dev-guide.rust-lang.org/mir/drop-elaboration.html#aside-drop-elaboration-and-const-eval
https://rustc-dev-guide.rust-lang.org/print.html#dynamic-drops
https://rustc-dev-guide.rust-lang.org/print.html#dynamic-drops
https://doc.rust-lang.org/reference/destructors.html
https://doc.rust-lang.org/reference/destructors.html
https://rust-lang.github.io/rfcs/0320-nonzeroing-dynamic-drop.html
https://rust-lang.github.io/rfcs/0320-nonzeroing-dynamic-drop.html
https://rustc-dev-guide.rust-lang.org/print.html#drop-obligations
https://rustc-dev-guide.rust-lang.org/print.html#drop-obligations

From the RFC:

When a local variable becomes initialized, it establishes a set of "drop obligations": a

set of structural paths (e.g. a local a , or a path to a field b.f.y) that need to be

dropped.

The drop obligations for a local variable x of struct-type T are computed from

analyzing the structure of T . If T itself implements Drop , then x is a drop

obligation. If T does not implement Drop , then the set of drop obligations is the

union of the drop obligations of the fields of T .

When a structural path is moved from (and thus becomes uninitialized), any drop

obligations for that path or its descendants (path.f , path.f.g.h , etc.) are released.

Types with Drop implementations do not permit moves from individual fields, so there is

no need to track initializedness through them.

When a local variable goes out of scope (Drop), or when a structural path is overwritten

via assignment (DropAndReplace), we check for any drop obligations for that variable or

path. Unless that obligation has been released by this point, its associated Drop

implementation will be called. For enum types, only fields corresponding to the "active"

variant need to be dropped. When processing drop obligations for such types, we first

check the discriminant to determine the active variant. All drop obligations for variants

besides the active one are ignored.

Here are a few interesting types to help illustrate these rules:

Drop elaboration

struct NoDrop(u8); // No `Drop` impl. No fields with `Drop` impls.

struct NeedsDrop(Vec<u8>); // No `Drop` impl but has fields with `Drop`
impls.

struct ThinVec(*const u8); // Custom `Drop` impl. Individual fields cannot be
moved from.

impl Drop for ThinVec {
fn drop(&mut self) { /* ... */ }

}

enum MaybeDrop {
 Yes(NeedsDrop),
 No(NoDrop),
}

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

467 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#drop-elaboration-1
https://rustc-dev-guide.rust-lang.org/print.html#drop-elaboration-1

One valid model for these rules is to keep a boolean flag (a "drop flag") for every

structural path that is used at any point in the function. This flag is set when its path is

initialized and is cleared when the path is moved from. When a Drop occurs, we check

the flags for every obligation associated with the target of the Drop and call the

associated Drop impl for those that are still applicable.

This process—transforming the newly built MIR with its imprecise Drop and

DropAndReplace terminators into one with drop flags—is known as drop elaboration.

When a MIR statement causes a variable to become initialized (or uninitialized), drop

elaboration inserts code that sets (or clears) the drop flag for that variable. It wraps Drop

terminators in conditionals that check the newly inserted drop flags.

Drop elaboration also splits DropAndReplace terminators into a Drop of the target and a

write of the newly dropped place. This is somewhat unrelated to what we've discussed

above.

Once this is complete, Drop terminators in the MIR correspond to a call to the "drop

glue" or "drop shim" for the type of the dropped place. The drop glue for a type calls the

Drop impl for that type (if one exists), and then recursively calls the drop glue for all

fields of that type.

Drop elaboration in rustc

The approach described above is more expensive than necessary. One can imagine a few

optimizations:

• Only paths that are the target of a Drop (or have the target as a prefix) need drop

flags.

• Some variables are known to be initialized (or uninitialized) when they are dropped.

These do not need drop flags.

• If a set of paths are only dropped or moved from via a shared prefix, those paths

can share a single drop flag.

A subset of these are implemented in rustc .

In the compiler, drop elaboration is split across several modules. The pass itself is defined

here, but the main logic is defined elsewhere since it is also used to build drop shims.

Drop elaboration designates each Drop in the newly built MIR as one of four kinds:

• Static , the target is always initialized.

• Dead , the target is always uninitialized.

• Conditional , the target is either wholly initialized or wholly uninitialized. It is not

partly initialized.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

468 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#drop-elaboration-in-rustc
https://rustc-dev-guide.rust-lang.org/print.html#drop-elaboration-in-rustc
https://rustc-dev-guide.rust-lang.org/print.html#drop-elaboration-in-rustc
https://rustc-dev-guide.rust-lang.org/print.html#drop-elaboration-in-rustc
https://github.com/rust-lang/rust/blob/master/compiler/rustc_mir_dataflow/src/elaborate_drops.rs
https://github.com/rust-lang/rust/blob/master/compiler/rustc_mir_dataflow/src/elaborate_drops.rs
https://github.com/rust-lang/rust/blob/master/compiler/rustc_mir_dataflow/src/elaborate_drops.rs
https://github.com/rust-lang/rust/blob/master/compiler/rustc_mir_dataflow/src/elaborate_drops.rs
https://github.com/rust-lang/rust/blob/master/compiler/rustc_mir_transform/src/shim.rs
https://github.com/rust-lang/rust/blob/master/compiler/rustc_mir_transform/src/shim.rs

• Open , the target may be partly initialized.

For this, it uses a pair of dataflow analyses, MaybeInitializedPlaces and

MaybeUninitializedPlaces . If a place is in one but not the other, then the initializedness

of the target is known at compile-time (Dead or Static). In this case, drop elaboration

does not add a flag for the target. It simply removes (Dead) or preserves (Static) the

Drop terminator.

For Conditional drops, we know that the initializedness of the variable as a whole is the

same as the initializedness of its fields. Therefore, once we generate a drop flag for the

target of that drop, it's safe to call the drop glue for that target.

Open drops

Open drops are the most complex, since we need to break down a single Drop

terminator into several different ones, one for each field of the target whose type has

drop glue (Ty::needs_drop). We cannot call the drop glue for the target itself because

that requires all fields of the target to be initialized. Remember, variables whose type has

a custom Drop impl do not allow Open drops because their fields cannot be moved

from.

This is accomplished by recursively categorizing each field as Dead , Static ,

Conditional or Open . Fields whose type does not have drop glue are automatically

Dead and need not be considered during the recursion. When we reach a field whose

kind is not Open , we handle it as we did above. If the field is also Open , the recursion

continues.

It's worth noting how we handle Open drops of enums. Inside drop elaboration, each

variant of the enum is treated like a field, with the invariant that only one of those

"variant fields" can be initialized at any given time. In the general case, we do not know

which variant is the active one, so we will have to call the drop glue for the enum (which

checks the discriminant) or check the discriminant ourselves as part of an elaborated

Open drop. However, in certain cases (within a match arm, for example) we do know

which variant of an enum is active. This information is encoded in the

MaybeInitializedPlaces and MaybeUninitializedPlaces dataflow analyses by marking

all places corresponding to inactive variants as uninitialized.

Cleanup paths

TODO: Discuss drop elaboration and unwinding.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

469 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#open-drops
https://rustc-dev-guide.rust-lang.org/print.html#open-drops
https://rustc-dev-guide.rust-lang.org/print.html#open-drops
https://rustc-dev-guide.rust-lang.org/print.html#open-drops
https://rustc-dev-guide.rust-lang.org/print.html#cleanup-paths
https://rustc-dev-guide.rust-lang.org/print.html#cleanup-paths

Aside: drop elaboration and const-eval

In Rust, functions that are eligible for evaluation at compile-time must be marked

explicitly using the const keyword. This includes implementations of the Drop trait,

which may or may not be const . Code that is eligible for compile-time evaluation may

only call const functions, so any calls to non-const Drop implementations in such code

must be forbidden.

A call to a Drop impl is encoded as a Drop terminator in the MIR. However, as we

discussed above, a Drop terminator in newly built MIR does not necessarily result in a

call to Drop::drop . The drop target may be uninitialized at that point. This means that

checking for non-const Drop s on the newly built MIR can result in spurious errors.

Instead, we wait until after drop elaboration runs, which eliminates Dead drops (ones

where the target is known to be uninitialized) to run these checks.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

470 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#aside-drop-elaboration-and-const-eval
https://rustc-dev-guide.rust-lang.org/print.html#aside-drop-elaboration-and-const-eval

MIR borrow check

The borrow check is Rust's "secret sauce" – it is tasked with enforcing a number of

properties:

• That all variables are initialized before they are used.

• That you can't move the same value twice.

• That you can't move a value while it is borrowed.

• That you can't access a place while it is mutably borrowed (except through the

reference).

• That you can't mutate a place while it is immutably borrowed.

• etc

The borrow checker operates on the MIR. An older implementation operated on the HIR.

Doing borrow checking on MIR has several advantages:

• The MIR is far less complex than the HIR; the radical desugaring helps prevent bugs

in the borrow checker. (If you're curious, you can see a list of bugs that the MIR-

based borrow checker fixes here.)

• Even more importantly, using the MIR enables "non-lexical lifetimes", which are

regions derived from the control-flow graph.

Major phases of the borrow checker

The borrow checker source is found in the rustc_borrowck crate. The main entry point is

the mir_borrowck query.

• We first create a local copy of the MIR. In the coming steps, we will modify this copy

in place to modify the types and things to include references to the new regions that

we are computing.

• We then invoke replace_regions_in_mir to modify our local MIR. Among other

things, this function will replace all of the regions in the MIR with fresh inference

variables.

• Next, we perform a number of dataflow analyses that compute what data is moved

and when.

• We then do a second type check across the MIR: the purpose of this type check is to

determine all of the constraints between different regions.

• Next, we do region inference, which computes the values of each region — basically,

the points in the control-flow graph where each lifetime must be valid according to

the constraints we collected.

• At this point, we can compute the "borrows in scope" at each point.

• Finally, we do a second walk over the MIR, looking at the actions it does and

reporting errors. For example, if we see a statement like *a + 1 , then we would

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

471 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#mir-borrow-check
https://rustc-dev-guide.rust-lang.org/print.html#mir-borrow-check
https://github.com/rust-lang/rust/issues/47366
https://github.com/rust-lang/rust/issues/47366
https://github.com/rust-lang/rust/issues/47366
https://github.com/rust-lang/rust/issues/47366
https://rust-lang.github.io/rfcs/2094-nll.html
https://rust-lang.github.io/rfcs/2094-nll.html
https://rustc-dev-guide.rust-lang.org/print.html#major-phases-of-the-borrow-checker
https://rustc-dev-guide.rust-lang.org/print.html#major-phases-of-the-borrow-checker
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/fn.mir_borrowck.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/fn.mir_borrowck.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/fn.mir_borrowck.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/nll/fn.replace_regions_in_mir.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/nll/fn.replace_regions_in_mir.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/nll/fn.replace_regions_in_mir.html
https://rustc-dev-guide.rust-lang.org/appendix/glossary.html#region
https://rustc-dev-guide.rust-lang.org/appendix/glossary.html#region
https://rustc-dev-guide.rust-lang.org/appendix/glossary.html#inf-var
https://rustc-dev-guide.rust-lang.org/appendix/glossary.html#inf-var
https://rustc-dev-guide.rust-lang.org/appendix/glossary.html#inf-var
https://rustc-dev-guide.rust-lang.org/appendix/glossary.html#inf-var
https://rustc-dev-guide.rust-lang.org/appendix/background.html#dataflow
https://rustc-dev-guide.rust-lang.org/appendix/background.html#dataflow
https://rustc-dev-guide.rust-lang.org/borrow_check/type_check.html
https://rustc-dev-guide.rust-lang.org/borrow_check/type_check.html
https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference.html
https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference.html

check that the variable a is initialized and that it is not mutably borrowed, as either

of those would require an error to be reported. Doing this check requires the results

of all the previous analyses.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

472 of 660 8/30/23, 09:47

Tracking moves and initialization

Part of the borrow checker's job is to track which variables are "initialized" at any given

point in time -- this also requires figuring out where moves occur and tracking those.

Initialization and moves

From a user's perspective, initialization -- giving a variable some value -- and moves --

transferring ownership to another place -- might seem like distinct topics. Indeed, our

borrow checker error messages often talk about them differently. But within the borrow

checker, they are not nearly as separate. Roughly speaking, the borrow checker tracks

the set of "initialized places" at any point in the source code. Assigning to a previously

uninitialized local variable adds it to that set; moving from a local variable removes it

from that set.

Consider this example:

Here you can see that a starts off as uninitialized; once it is assigned, it becomes

initialized. But when drop(a) is called, that moves a into the call, and hence it becomes

uninitialized again.

Subsections

To make it easier to peruse, this section is broken into a number of subsections:

• Move paths the move path concept that we use to track which local variables (or

parts of local variables, in some cases) are initialized.

fn foo() {
let a: Vec<u32>;

// a is not initialized yet

 a = vec![22];

// a is initialized here

 std::mem::drop(a); // a is moved here

// a is no longer initialized here

let l = a.len(); //~ ERROR
}

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

473 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#tracking-moves-and-initialization
https://rustc-dev-guide.rust-lang.org/print.html#tracking-moves-and-initialization
https://rustc-dev-guide.rust-lang.org/print.html#initialization-and-moves
https://rustc-dev-guide.rust-lang.org/print.html#initialization-and-moves
https://rustc-dev-guide.rust-lang.org/print.html#subsections
https://rustc-dev-guide.rust-lang.org/print.html#subsections
https://rustc-dev-guide.rust-lang.org/borrow_check/moves_and_initialization/move_paths.html
https://rustc-dev-guide.rust-lang.org/borrow_check/moves_and_initialization/move_paths.html

• TODO Rest not yet written =)

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

474 of 660 8/30/23, 09:47

Move paths

• Move path indices

• Building move paths

◦ Illegal move paths

• Looking up a move-path

• Cross-references

In reality, it's not enough to track initialization at the granularity of local variables. Rust

also allows us to do moves and initialization at the field granularity:

To handle this, we track initialization at the granularity of a move path. A MovePath

represents some location that the user can initialize, move, etc. So e.g. there is a move-

path representing the local variable a , and there is a move-path representing a.0 . Move

paths roughly correspond to the concept of a Place from MIR, but they are indexed in

ways that enable us to do move analysis more efficiently.

Move path indices

Although there is a MovePath data structure, they are never referenced directly. Instead,

all the code passes around indices of type MovePathIndex . If you need to get information

about a move path, you use this index with the move_paths field of the MoveData . For

example, to convert a MovePathIndex mpi into a MIR Place , you might access the

MovePath::place field like so:

Building move paths

fn foo() {
let a: (Vec<u32>, Vec<u32>) = (vec![22], vec![44]);

// a.0 and a.1 are both initialized

let b = a.0; // moves a.0

// a.0 is not initialized, but a.1 still is

let c = a.0; // ERROR
let d = a.1; // OK

}

move_data.move_paths[mpi].place

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

475 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#move-paths
https://rustc-dev-guide.rust-lang.org/print.html#move-paths
https://rustc-dev-guide.rust-lang.org/borrow_check/moves_and_initialization/move_paths.html#move-path-indices
https://rustc-dev-guide.rust-lang.org/borrow_check/moves_and_initialization/move_paths.html#move-path-indices
https://rustc-dev-guide.rust-lang.org/borrow_check/moves_and_initialization/move_paths.html#building-move-paths
https://rustc-dev-guide.rust-lang.org/borrow_check/moves_and_initialization/move_paths.html#building-move-paths
https://rustc-dev-guide.rust-lang.org/borrow_check/moves_and_initialization/move_paths.html#illegal-move-paths
https://rustc-dev-guide.rust-lang.org/borrow_check/moves_and_initialization/move_paths.html#illegal-move-paths
https://rustc-dev-guide.rust-lang.org/borrow_check/moves_and_initialization/move_paths.html#looking-up-a-move-path
https://rustc-dev-guide.rust-lang.org/borrow_check/moves_and_initialization/move_paths.html#looking-up-a-move-path
https://rustc-dev-guide.rust-lang.org/borrow_check/moves_and_initialization/move_paths.html#cross-references
https://rustc-dev-guide.rust-lang.org/borrow_check/moves_and_initialization/move_paths.html#cross-references
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/move_paths/struct.MovePath.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/move_paths/struct.MovePath.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/move_paths/struct.MovePath.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.Place.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.Place.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.Place.html
https://rustc-dev-guide.rust-lang.org/print.html#move-path-indices
https://rustc-dev-guide.rust-lang.org/print.html#move-path-indices
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/move_paths/struct.MovePath.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/move_paths/struct.MovePath.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/move_paths/struct.MovePath.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/move_paths/struct.MovePathIndex.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/move_paths/struct.MovePathIndex.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/move_paths/struct.MovePathIndex.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/move_paths/struct.MoveData.html#structfield.move_paths
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/move_paths/struct.MoveData.html#structfield.move_paths
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/move_paths/struct.MoveData.html#structfield.move_paths
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/move_paths/struct.MoveData.html#structfield.move_paths
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/move_paths/struct.MoveData.html#structfield.move_paths
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/move_paths/struct.MoveData.html#structfield.move_paths
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/move_paths/struct.MovePathIndex.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/move_paths/struct.MovePathIndex.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/move_paths/struct.MovePathIndex.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.Place.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.Place.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.Place.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/move_paths/struct.MovePath.html#structfield.place
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/move_paths/struct.MovePath.html#structfield.place
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/move_paths/struct.MovePath.html#structfield.place
https://rustc-dev-guide.rust-lang.org/print.html#building-move-paths
https://rustc-dev-guide.rust-lang.org/print.html#building-move-paths

One of the first things we do in the MIR borrow check is to construct the set of move

paths. This is done as part of the MoveData::gather_moves function. This function uses a

MIR visitor called Gatherer to walk the MIR and look at how each Place within is

accessed. For each such Place , it constructs a corresponding MovePathIndex . It also

records when/where that particular move path is moved/initialized, but we'll get to that in

a later section.

Illegal move paths

We don't actually create a move-path for every Place that gets used. In particular, if it is

illegal to move from a Place , then there is no need for a MovePathIndex . Some

examples:

• You cannot move from a static variable, so we do not create a MovePathIndex for

static variables.

• You cannot move an individual element of an array, so if we have e.g. foo:

[String; 3] , there would be no move-path for foo[1] .

• You cannot move from inside of a borrowed reference, so if we have e.g. foo:

&String , there would be no move-path for *foo .

These rules are enforced by the move_path_for function, which converts a Place into a

MovePathIndex -- in error cases like those just discussed, the function returns an Err .

This in turn means we don't have to bother tracking whether those places are initialized

(which lowers overhead).

Looking up a move-path

If you have a Place and you would like to convert it to a MovePathIndex , you can do that

using the MovePathLookup structure found in the rev_lookup field of MoveData . There

are two different methods:

• find_local , which takes a mir::Local representing a local variable. This is the

easier method, because we always create a MovePathIndex for every local variable.

• find , which takes an arbitrary Place . This method is a bit more annoying to use,

precisely because we don't have a MovePathIndex for every Place (as we just

discussed in the "illegal move paths" section). Therefore, find returns a

LookupResult indicating the closest path it was able to find that exists (e.g., for

foo[1] , it might return just the path for foo).

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

476 of 660 8/30/23, 09:47

https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/move_paths/struct.MoveData.html#method.gather_moves
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/move_paths/struct.MoveData.html#method.gather_moves
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/move_paths/struct.MoveData.html#method.gather_moves
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/move_paths/builder/struct.Gatherer.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/move_paths/builder/struct.Gatherer.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/move_paths/builder/struct.Gatherer.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.Place.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.Place.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.Place.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.Place.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.Place.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.Place.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/move_paths/struct.MovePathIndex.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/move_paths/struct.MovePathIndex.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/move_paths/struct.MovePathIndex.html
https://rustc-dev-guide.rust-lang.org/print.html#illegal-move-paths
https://rustc-dev-guide.rust-lang.org/print.html#illegal-move-paths
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.Place.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.Place.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.Place.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.Place.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.Place.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.Place.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/move_paths/struct.MovePathIndex.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/move_paths/struct.MovePathIndex.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/move_paths/struct.MovePathIndex.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/move_paths/struct.MovePathIndex.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/move_paths/struct.MovePathIndex.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/move_paths/struct.MovePathIndex.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/move_paths/builder/struct.Gatherer.html#method.move_path_for
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/move_paths/builder/struct.Gatherer.html#method.move_path_for
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/move_paths/builder/struct.Gatherer.html#method.move_path_for
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.Place.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.Place.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.Place.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/move_paths/struct.MovePathIndex.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/move_paths/struct.MovePathIndex.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/move_paths/struct.MovePathIndex.html
https://rustc-dev-guide.rust-lang.org/print.html#looking-up-a-move-path
https://rustc-dev-guide.rust-lang.org/print.html#looking-up-a-move-path
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.Place.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.Place.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.Place.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/move_paths/struct.MovePathIndex.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/move_paths/struct.MovePathIndex.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/move_paths/struct.MovePathIndex.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/move_paths/struct.MovePathLookup.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/move_paths/struct.MovePathLookup.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/move_paths/struct.MovePathLookup.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/move_paths/struct.MoveData.html#structfield.rev_lookup
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/move_paths/struct.MoveData.html#structfield.rev_lookup
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/move_paths/struct.MoveData.html#structfield.rev_lookup
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/move_paths/struct.MoveData.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/move_paths/struct.MoveData.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/move_paths/struct.MoveData.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/move_paths/struct.MovePathLookup.html#method.find_local
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/move_paths/struct.MovePathLookup.html#method.find_local
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/move_paths/struct.MovePathLookup.html#method.find_local
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.Local.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.Local.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.Local.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/move_paths/struct.MovePathIndex.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/move_paths/struct.MovePathIndex.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/move_paths/struct.MovePathIndex.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/move_paths/struct.MovePathLookup.html#method.find
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/move_paths/struct.MovePathLookup.html#method.find
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/move_paths/struct.MovePathLookup.html#method.find
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.Place.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.Place.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.Place.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/move_paths/struct.MovePathIndex.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/move_paths/struct.MovePathIndex.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/move_paths/struct.MovePathIndex.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.Place.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.Place.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.Place.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/move_paths/struct.MovePathLookup.html#method.find
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/move_paths/struct.MovePathLookup.html#method.find
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/move_paths/struct.MovePathLookup.html#method.find
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/move_paths/enum.LookupResult.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/move_paths/enum.LookupResult.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/move_paths/enum.LookupResult.html

Cross-references

As we noted above, move-paths are stored in a big vector and referenced via their

MovePathIndex . However, within this vector, they are also structured into a tree. So for

example if you have the MovePathIndex for a.b.c , you can go to its parent move-path

a.b . You can also iterate over all children paths: so, from a.b , you might iterate to find

the path a.b.c (here you are iterating just over the paths that are actually referenced

in the source, not all possible paths that could have been referenced). These references

are used for example in the find_in_move_path_or_its_descendants function, which

determines whether a move-path (e.g., a.b) or any child of that move-path (e.g., a.b.c)

matches a given predicate.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

477 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#cross-references
https://rustc-dev-guide.rust-lang.org/print.html#cross-references
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/move_paths/struct.MovePathIndex.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/move_paths/struct.MovePathIndex.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/move_paths/struct.MovePathIndex.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/move_paths/struct.MovePathIndex.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/move_paths/struct.MovePathIndex.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/move_paths/struct.MovePathIndex.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/move_paths/struct.MoveData.html#method.find_in_move_path_or_its_descendants
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/move_paths/struct.MoveData.html#method.find_in_move_path_or_its_descendants
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/move_paths/struct.MoveData.html#method.find_in_move_path_or_its_descendants

The MIR type-check

A key component of the borrow check is the MIR type-check. This check walks the MIR

and does a complete "type check" -- the same kind you might find in any other language.

In the process of doing this type-check, we also uncover the region constraints that apply

to the program.

TODO -- elaborate further? Maybe? :)

User types

At the start of MIR type-check, we replace all regions in the body with new unconstrained

regions. However, this would cause us to accept the following program:

By erasing the lifetimes in the type of y we no longer know that it is supposed to be

'static , ignoring the intentions of the user.

To deal with this we remember all places where the user explicitly mentioned a type

during HIR type-check as CanonicalUserTypeAnnotations .

There are two different annotations we care about:

• explicit type ascriptions, e.g. let y: &'static u32 results in

UserType::Ty(&'static u32) .

• explicit generic arguments, e.g. x.foo<&'a u32, Vec<String>> results in

UserType::TypeOf(foo_def_id, [&'a u32, Vec<String>]) .

As we do not want the region inference from the HIR type-check to influence MIR typeck,

we store the user type right after lowering it from the HIR. This means that it may still

contain inference variables, which is why we are using canonical user type annotations.

We replace all inference variables with existential bound variables instead. Something like

let x: Vec<_> would therefore result in exists<T> UserType::Ty(Vec<T>) .

A pattern like let Foo(x): Foo<&'a u32> has a user type Foo<&'a u32> but the actual

type of x should only be &'a u32 . For this, we use a UserTypeProjection .

In the MIR, we deal with user types in two slightly different ways.

Given a MIR local corresponding to a variable in a pattern which has an explicit type

fn foo<'a>(x: &'a u32) {
let y: &'static u32 = x;

}

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

478 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#the-mir-type-check
https://rustc-dev-guide.rust-lang.org/print.html#the-mir-type-check
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/type_check/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/type_check/index.html
https://rustc-dev-guide.rust-lang.org/print.html#user-types
https://rustc-dev-guide.rust-lang.org/print.html#user-types
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.CanonicalUserTypeAnnotation.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.CanonicalUserTypeAnnotation.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.CanonicalUserTypeAnnotation.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.UserTypeProjection.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.UserTypeProjection.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.UserTypeProjection.html

annotation, we require the type of that local to be equal to the type of the

UserTypeProjection . This is directly stored in the LocalDecl .

We also constrain the type of scrutinee expressions, e.g. the type of x in let _: &'a

u32 = x; . Here T_x only has to be a subtype of the user type, so we instead use

StatementKind::AscribeUserType for that.

Note that we do not directly use the user type as the MIR typechecker doesn't really deal

with type and const inference variables. We instead store the final inferred_type from

the HIR type-checker. During MIR typeck, we then replace its regions with new nll

inference vars and relate it with the actual UserType to get the correct region constraints

again.

After the MIR type-check, all user type annotations get discarded, as they aren't needed

anymore.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

479 of 660 8/30/23, 09:47

https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.UserTypeProjection.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.UserTypeProjection.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.UserTypeProjection.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.LocalDecl.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.LocalDecl.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.LocalDecl.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/enum.StatementKind.html#variant.AscribeUserType
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/enum.StatementKind.html#variant.AscribeUserType
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/enum.StatementKind.html#variant.AscribeUserType
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.CanonicalUserTypeAnnotation.html#structfield.inferred_ty
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.CanonicalUserTypeAnnotation.html#structfield.inferred_ty
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.CanonicalUserTypeAnnotation.html#structfield.inferred_ty

Drop Check

We generally require the type of locals to be well-formed whenever the local is used. This

includes proving the where-bounds of the local and also requires all regions used by it to

be live.

The only exception to this is when implicitly dropping values when they go out of scope.

This does not necessarily require the value to be live:

This is only sound if dropping the value does not try to access any dead region. We check

this by requiring the type of the value to be drop-live. The requirements for which are

computed in fn dropck_outlives .

The rest of this section uses the following type definition for a type which requires its

region parameter to be live:

How values are dropped

At its core, a value of type T is dropped by executing its "drop glue". Drop glue is

compiler generated and first calls <T as Drop>::drop and then recursively calls the drop

glue of any recursively owned values.

• If T has an explicit Drop impl, call <T as Drop>::drop .

• Regardless of whether T implements Drop , recurse into all values owned by T :

◦ references, raw pointers, function pointers, function items, trait objects1, and

scalars do not own anything.

fn main() {
let x = vec![];

 {
let y = String::from("I am temporary");

 x.push(&y);
 }

// `x` goes out of scope here, after the reference to `y`
// is invalidated. This means that while dropping `x` its type
// is not well-formed as it contain regions which are not live.

}

struct PrintOnDrop<'a>(&'a str);
impl<'a> Drop for PrintOnDrop<'_> {

fn drop(&mut self) {
println!("{}", self.0);

 }
}

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

480 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#drop-check
https://rustc-dev-guide.rust-lang.org/print.html#drop-check
https://rustc-dev-guide.rust-lang.org/print.html#how-values-are-dropped
https://rustc-dev-guide.rust-lang.org/print.html#how-values-are-dropped
https://rustc-dev-guide.rust-lang.org/print.html#traitobj
https://rustc-dev-guide.rust-lang.org/print.html#traitobj

◦ tuples, slices, and arrays consider their elements to be owned. For arrays of

length zero we do not own any value of the element type.

◦ all fields (of all variants) of ADTs are considered owned. We consider all

variants for enums. The exception here is ManuallyDrop<U> which is not

considered to own U . PhantomData<U> also does not own anything. closures

and generators own their captured upvars.

Whether a type has drop glue is returned by fn Ty::needs_drop .

Partially dropping a local

For types which do not implement Drop themselves, we can also partially move parts of

the value before dropping the rest. In this case only the drop glue for the not-yet moved

values is called, e.g.

During MIR building we assume that a local may get dropped whenever it goes out of

scope as long as its type needs drop. Computing the exact drop glue for a variable happens

after borrowck in the ElaborateDrops pass. This means that even if some part of the

local have been dropped previously, dropck still requires this value to be live. This is the

case even if we completely moved a local.

It should be possible to add some amount of drop elaboration before borrowck, allowing

this example to compile. There is an unstable feature to move drop elaboration before

const checking: #73255. Such a feature gate does not exist for doing some drop

elaboration before borrowck, although there's a relevant MCP.

1 you can consider trait objects to have a builtin Drop implementation which directly uses the

drop_in_place provided by the vtable. This Drop implementation requires all its generic

parameters to be live.

fn main() {
let mut x = (PrintOnDrop("third"), PrintOnDrop("first"));
drop(x.1);
println!("second")

}

fn main() {
let mut x;

 {
let temp = String::from("I am temporary");

 x = PrintOnDrop(&temp);
drop(x);

 }
} //~ ERROR `temp` does not live long enough.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

481 of 660 8/30/23, 09:47

https://github.com/rust-lang/rust/blob/320b412f9c55bf480d26276ff0ab480e4ecb29c0/compiler/rustc_middle/src/ty/util.rs#L1086-L1108
https://github.com/rust-lang/rust/blob/320b412f9c55bf480d26276ff0ab480e4ecb29c0/compiler/rustc_middle/src/ty/util.rs#L1086-L1108
https://github.com/rust-lang/rust/blob/320b412f9c55bf480d26276ff0ab480e4ecb29c0/compiler/rustc_middle/src/ty/util.rs#L1086-L1108
https://rustc-dev-guide.rust-lang.org/print.html#partially-dropping-a-local
https://rustc-dev-guide.rust-lang.org/print.html#partially-dropping-a-local
https://github.com/rust-lang/rust/issues/73255
https://github.com/rust-lang/rust/issues/73255
https://github.com/rust-lang/compiler-team/issues/558
https://github.com/rust-lang/compiler-team/issues/558

dropck_outlives

There are two distinct "liveness" computations that we perform:

• a value v is use-live at location L if it may be "used" later; a use here is basically

anything that is not a drop

• a value v is drop-live at location L if it maybe dropped later

When things are use-live, their entire type must be valid at L . When they are drop-live, all

regions that are required by dropck must be valid at L . The values dropped in the MIR

are places.

The constraints computed by dropck_outlives for a type closely match the generated

drop glue for that type. Unlike drop glue, dropck_outlives cares about the types of

owned values, not the values itself. For a value of type T

• if T has an explicit Drop , require all generic arguments to be live, unless they are

marked with #[may_dangle] in which case they are fully ignored

• regardless of whether T has an explicit Drop , recurse into all types owned by T

◦ references, raw pointers, function pointers, function items, trait objects1, and

scalars do not own anything.

◦ tuples, slices and arrays consider their element type to be owned. For arrays

we currently do not check whether their length is zero.

◦ all fields (of all variants) of ADTs are considered owned. The exception here is

ManuallyDrop<U> which is not considered to own U . We consider

PhantomData<U> to own U .

◦ closures and generators own their captured upvars.

The sections marked in bold are cases where dropck_outlives considers types to be

owned which are ignored by Ty::needs_drop . We only rely on dropck_outlives if

Ty::needs_drop for the containing local returned true .This means liveness

requirements can change depending on whether a type is contained in a larger local. This

is inconsistent, and should be fixed: an example for arrays and for PhantomData .2

One possible way these inconsistencies can be fixed is by MIR building to be more

pessimistic, probably by making Ty::needs_drop weaker, or alternatively, changing

dropck_outlives to be more precise, requiring fewer regions to be live.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

482 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#dropck_outlives
https://rustc-dev-guide.rust-lang.org/print.html#dropck_outlives
https://rustc-dev-guide.rust-lang.org/print.html#dropck_outlives
https://rustc-dev-guide.rust-lang.org/print.html#traitobj
https://rustc-dev-guide.rust-lang.org/print.html#traitobj
https://play.rust-lang.org/?version=stable&mode=debug&edition=2021&gist=8b5f5f005a03971b22edb1c20c5e6cbe
https://play.rust-lang.org/?version=stable&mode=debug&edition=2021&gist=8b5f5f005a03971b22edb1c20c5e6cbe
https://play.rust-lang.org/?version=stable&mode=debug&edition=2021&gist=44c6e2b1fae826329fd54c347603b6c8
https://play.rust-lang.org/?version=stable&mode=debug&edition=2021&gist=44c6e2b1fae826329fd54c347603b6c8
https://play.rust-lang.org/?version=stable&mode=debug&edition=2021&gist=44c6e2b1fae826329fd54c347603b6c8
https://play.rust-lang.org/?version=stable&mode=debug&edition=2021&gist=44c6e2b1fae826329fd54c347603b6c8
https://rustc-dev-guide.rust-lang.org/print.html#core
https://rustc-dev-guide.rust-lang.org/print.html#core

Region inference (NLL)

• Universal regions

• Region variables

• Constraints

• Inference Overview

◦ Example

◦ Some details

The MIR-based region checking code is located in the rustc_mir::borrow_check module.

The MIR-based region analysis consists of two major functions:

• replace_regions_in_mir , invoked first, has two jobs:

◦ First, it finds the set of regions that appear within the signature of the function

(e.g., 'a in fn foo<'a>(&'a u32) { ... }). These are called the "universal"

or "free" regions – in particular, they are the regions that appear free in the

function body.

◦ Second, it replaces all the regions from the function body with fresh inference

variables. This is because (presently) those regions are the results of lexical

region inference and hence are not of much interest. The intention is that –

eventually – they will be "erased regions" (i.e., no information at all), since we

won't be doing lexical region inference at all.

• compute_regions , invoked second: this is given as argument the results of move

analysis. It has the job of computing values for all the inference variables that

replace_regions_in_mir introduced.

◦ To do that, it first runs the MIR type checker. This is basically a normal type-

checker but specialized to MIR, which is much simpler than full Rust, of course.

Running the MIR type checker will however create various constraints between

region variables, indicating their potential values and relationships to one

another.

◦ After this, we perform constraint propagation by creating a

RegionInferenceContext and invoking its solve method.

◦ The NLL RFC also includes fairly thorough (and hopefully readable) coverage.

Universal regions

The UniversalRegions type represents a collection of universal regions corresponding to

some MIR DefId . It is constructed in replace_regions_in_mir when we replace all

regions with fresh inference variables. UniversalRegions contains indices for all the free

regions in the given MIR along with any relationships that are known to hold between

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

483 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#region-inference-nll
https://rustc-dev-guide.rust-lang.org/print.html#region-inference-nll
https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference.html#universal-regions
https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference.html#universal-regions
https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference.html#region-variables
https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference.html#region-variables
https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference.html#constraints
https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference.html#constraints
https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference.html#inference-overview
https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference.html#inference-overview
https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference.html#example
https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference.html#example
https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference.html#some-details
https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference.html#some-details
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/nll/fn.replace_regions_in_mir.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/nll/fn.replace_regions_in_mir.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/nll/fn.replace_regions_in_mir.html
https://rustc-dev-guide.rust-lang.org/appendix/background.html#free-vs-bound
https://rustc-dev-guide.rust-lang.org/appendix/background.html#free-vs-bound
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/nll/fn.compute_regions.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/nll/fn.compute_regions.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/nll/fn.compute_regions.html
https://rustc-dev-guide.rust-lang.org/borrow_check/type_check.html
https://rustc-dev-guide.rust-lang.org/borrow_check/type_check.html
https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference/constraint_propagation.html
https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference/constraint_propagation.html
https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference/constraint_propagation.html
https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference/constraint_propagation.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/region_infer/struct.RegionInferenceContext.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/region_infer/struct.RegionInferenceContext.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/region_infer/struct.RegionInferenceContext.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/region_infer/struct.RegionInferenceContext.html#method.solve
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/region_infer/struct.RegionInferenceContext.html#method.solve
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/region_infer/struct.RegionInferenceContext.html#method.solve
https://rust-lang.github.io/rfcs/2094-nll.html
https://rust-lang.github.io/rfcs/2094-nll.html
https://rustc-dev-guide.rust-lang.org/print.html#universal-regions
https://rustc-dev-guide.rust-lang.org/print.html#universal-regions
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/universal_regions/struct.UniversalRegions.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/universal_regions/struct.UniversalRegions.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/universal_regions/struct.UniversalRegions.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/nll/fn.replace_regions_in_mir.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/nll/fn.replace_regions_in_mir.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/nll/fn.replace_regions_in_mir.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/universal_regions/struct.UniversalRegions.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/universal_regions/struct.UniversalRegions.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/universal_regions/struct.UniversalRegions.html

them (e.g. implied bounds, where clauses, etc.).

For example, given the MIR for the following function:

we would create a universal region for 'a and one for 'static . There may also be some

complications for handling closures, but we will ignore those for the moment.

TODO: write about how these regions are computed.

Region variables

The value of a region can be thought of as a set. This set contains all points in the MIR

where the region is valid along with any regions that are outlived by this region (e.g. if

'a: 'b , then end('b) is in the set for 'a); we call the domain of this set a

RegionElement . In the code, the value for all regions is maintained in the

rustc_borrowck::region_infer module. For each region we maintain a set storing what

elements are present in its value (to make this efficient, we give each kind of element an

index, the RegionElementIndex , and use sparse bitsets).

The kinds of region elements are as follows:

• Each location in the MIR control-flow graph: a location is just the pair of a basic

block and an index. This identifies the point on entry to the statement with that

index (or the terminator, if the index is equal to statements.len()).

• There is an element end('a) for each universal region 'a , corresponding to some

portion of the caller's (or caller's caller, etc) control-flow graph.

• Similarly, there is an element denoted end('static) corresponding to the

remainder of program execution after this function returns.

• There is an element !1 for each placeholder region !1 . This corresponds

(intuitively) to some unknown set of other elements – for details on placeholders,

see the section placeholders and universes.

Constraints

Before we can infer the value of regions, we need to collect constraints on the regions.

The full set of constraints is described in the section on constraint propagation, but the

two most common sorts of constraints are:

fn foo<'a>(x: &'a u32) {
// ...

}

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

484 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#region-variables
https://rustc-dev-guide.rust-lang.org/print.html#region-variables
https://github.com/rust-lang/rust/tree/master/compiler/rustc_borrowck/src/region_infer
https://github.com/rust-lang/rust/tree/master/compiler/rustc_borrowck/src/region_infer
https://github.com/rust-lang/rust/tree/master/compiler/rustc_borrowck/src/region_infer
https://github.com/rust-lang/rust/tree/master/compiler/rustc_borrowck/src/region_infer
https://github.com/rust-lang/rust/tree/master/compiler/rustc_borrowck/src/region_infer
https://github.com/rust-lang/rust/tree/master/compiler/rustc_borrowck/src/region_infer
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.Location.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.Location.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.Location.html
https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference/placeholders_and_universes.html
https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference/placeholders_and_universes.html
https://rustc-dev-guide.rust-lang.org/print.html#constraints-2
https://rustc-dev-guide.rust-lang.org/print.html#constraints-2
https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference/constraint_propagation.html
https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference/constraint_propagation.html

1. Outlives constraints. These are constraints that one region outlives another (e.g.

'a: 'b). Outlives constraints are generated by the MIR type checker.

2. Liveness constraints. Each region needs to be live at points where it can be used.

These constraints are collected by generate_constraints .

Inference Overview

So how do we compute the contents of a region? This process is called region inference.

The high-level idea is pretty simple, but there are some details we need to take care of.

Here is the high-level idea: we start off each region with the MIR locations we know must

be in it from the liveness constraints. From there, we use all of the outlives constraints

computed from the type checker to propagate the constraints: for each region 'a , if 'a:

'b , then we add all elements of 'b to 'a , including end('b) . This all happens in

propagate_constraints .

Then, we will check for errors. We first check that type tests are satisfied by calling

check_type_tests . This checks constraints like T: 'a . Second, we check that universal

regions are not "too big". This is done by calling check_universal_regions . This checks

that for each region 'a if 'a contains the element end('b) , then we must already know

that 'a: 'b holds (e.g. from a where clause). If we don't already know this, that is an

error... well, almost. There is some special handling for closures that we will discuss later.

Example

Consider the following example:

Clearly, this should not compile because we don't know if 'a outlives 'b (if it doesn't

then the return value could be a dangling reference).

Let's back up a bit. We need to introduce some free inference variables (as is done in

replace_regions_in_mir). This example doesn't use the exact regions produced, but it

(hopefully) is enough to get the idea across.

fn foo<'a, 'b>(x: &'a usize) -> &'b usize {
 x
}

fn foo<'a, 'b>(x: &'a /* '#1 */ usize) -> &'b /* '#3 */ usize {
 x // '#2, location L1
}

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

485 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/borrow_check/type_check.html
https://rustc-dev-guide.rust-lang.org/borrow_check/type_check.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/constraint_generation/fn.generate_constraints.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/constraint_generation/fn.generate_constraints.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/constraint_generation/fn.generate_constraints.html
https://rustc-dev-guide.rust-lang.org/print.html#inference-overview
https://rustc-dev-guide.rust-lang.org/print.html#inference-overview
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/region_infer/struct.RegionInferenceContext.html#method.propagate_constraints
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/region_infer/struct.RegionInferenceContext.html#method.propagate_constraints
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/region_infer/struct.RegionInferenceContext.html#method.propagate_constraints
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/region_infer/struct.RegionInferenceContext.html#method.check_type_tests
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/region_infer/struct.RegionInferenceContext.html#method.check_type_tests
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/region_infer/struct.RegionInferenceContext.html#method.check_type_tests
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/region_infer/struct.RegionInferenceContext.html#method.check_universal_regions
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/region_infer/struct.RegionInferenceContext.html#method.check_universal_regions
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/region_infer/struct.RegionInferenceContext.html#method.check_universal_regions
https://rustc-dev-guide.rust-lang.org/print.html#example-1
https://rustc-dev-guide.rust-lang.org/print.html#example-1
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/nll/fn.replace_regions_in_mir.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/nll/fn.replace_regions_in_mir.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/nll/fn.replace_regions_in_mir.html

Some notation: '#1 , '#3 , and '#2 represent the universal regions for the argument,

return value, and the expression x , respectively. Additionally, I will call the location of the

expression x L1 .

So now we can use the liveness constraints to get the following starting points:

Region Contents

'#1

'#2 L1

'#3 L1

Now we use the outlives constraints to expand each region. Specifically, we know that

'#2: '#3 ...

Region Contents

'#1 L1

'#2 L1, end('#3) // add contents of '#3 and end('#3)

'#3 L1

... and '#1: '#2 , so ...

Region Contents

'#1 L1, end('#2), end('#3) // add contents of '#2 and end('#2)

'#2 L1, end('#3)

'#3 L1

Now, we need to check that no regions were too big (we don't have any type tests to

check in this case). Notice that '#1 now contains end('#3) , but we have no where

clause or implied bound to say that 'a: 'b ... that's an error!

Some details

The RegionInferenceContext type contains all of the information needed to do

inference, including the universal regions from replace_regions_in_mir and the

constraints computed for each region. It is constructed just after we compute the liveness

constraints.

Here are some of the fields of the struct:

• constraints : contains all the outlives constraints.

• liveness_constraints : contains all the liveness constraints.

• universal_regions : contains the UniversalRegions returned by

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

486 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#some-details
https://rustc-dev-guide.rust-lang.org/print.html#some-details
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/region_infer/struct.RegionInferenceContext.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/region_infer/struct.RegionInferenceContext.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/region_infer/struct.RegionInferenceContext.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/nll/fn.replace_regions_in_mir.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/nll/fn.replace_regions_in_mir.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/nll/fn.replace_regions_in_mir.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/region_infer/struct.RegionInferenceContext.html#structfield.constraints
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/region_infer/struct.RegionInferenceContext.html#structfield.constraints
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/region_infer/struct.RegionInferenceContext.html#structfield.constraints
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/region_infer/struct.RegionInferenceContext.html#structfield.liveness_constraints
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/region_infer/struct.RegionInferenceContext.html#structfield.liveness_constraints
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/region_infer/struct.RegionInferenceContext.html#structfield.liveness_constraints
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/region_infer/struct.RegionInferenceContext.html#structfield.universal_regions
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/region_infer/struct.RegionInferenceContext.html#structfield.universal_regions
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/region_infer/struct.RegionInferenceContext.html#structfield.universal_regions

replace_regions_in_mir .

• universal_region_relations : contains relations known to be true about universal

regions. For example, if we have a where clause that 'a: 'b , that relation is

assumed to be true while borrow checking the implementation (it is checked at the

caller), so universal_region_relations would contain 'a: 'b .

• type_tests : contains some constraints on types that we must check after inference

(e.g. T: 'a).

• closure_bounds_mapping : used for propagating region constraints from closures

back out to the creator of the closure.

TODO: should we discuss any of the others fields? What about the SCCs?

Ok, now that we have constructed a RegionInferenceContext , we can do inference. This

is done by calling the solve method on the context. This is where we call

propagate_constraints and then check the resulting type tests and universal regions, as

discussed above.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

487 of 660 8/30/23, 09:47

https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/nll/fn.replace_regions_in_mir.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/nll/fn.replace_regions_in_mir.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/nll/fn.replace_regions_in_mir.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/region_infer/struct.RegionInferenceContext.html#structfield.universal_region_relations
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/region_infer/struct.RegionInferenceContext.html#structfield.universal_region_relations
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/region_infer/struct.RegionInferenceContext.html#structfield.universal_region_relations
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/region_infer/struct.RegionInferenceContext.html#structfield.type_tests
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/region_infer/struct.RegionInferenceContext.html#structfield.type_tests
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/region_infer/struct.RegionInferenceContext.html#structfield.type_tests
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/region_infer/struct.RegionInferenceContext.html#structfield.closure_bounds_mapping
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/region_infer/struct.RegionInferenceContext.html#structfield.closure_bounds_mapping
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/region_infer/struct.RegionInferenceContext.html#structfield.closure_bounds_mapping
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/region_infer/struct.RegionInferenceContext.html#method.solve
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/region_infer/struct.RegionInferenceContext.html#method.solve
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/region_infer/struct.RegionInferenceContext.html#method.solve
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/region_infer/struct.RegionInferenceContext.html#method.propagate_constraints
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/region_infer/struct.RegionInferenceContext.html#method.propagate_constraints
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/region_infer/struct.RegionInferenceContext.html#method.propagate_constraints

Constraint propagation

• Notation and high-level concepts

• Liveness constraints

• Outlives constraints

◦ The outlives constraint graph and SCCs

◦ Applying liveness constraints to SCCs

◦ Applying outlives constraints

The main work of the region inference is constraint propagation, which is done in the

propagate_constraints function. There are three sorts of constraints that are used in

NLL, and we'll explain how propagate_constraints works by "layering" those sorts of

constraints on one at a time (each of them is fairly independent from the others):

• liveness constraints (R live at E), which arise from liveness;

• outlives constraints (R1: R2), which arise from subtyping;

• member constraints (member R_m of [R_c...]), which arise from impl Trait.

In this chapter, we'll explain the "heart" of constraint propagation, covering both liveness

and outlives constraints.

Notation and high-level concepts

Conceptually, region inference is a "fixed-point" computation. It is given some set of

constraints {C} and it computes a set of values Values: R -> {E} that maps each

region R to a set of elements {E} (see here for more notes on region elements):

• Initially, each region is mapped to an empty set, so Values(R) = {} for all regions

R .

• Next, we process the constraints repeatedly until a fixed-point is reached:

◦ For each constraint C:

▪ Update Values as needed to satisfy the constraint

As a simple example, if we have a liveness constraint R live at E , then we can apply

Values(R) = Values(R) union {E} to make the constraint be satisfied. Similarly, if we

have an outlives constraints R1: R2 , we can apply Values(R1) = Values(R1) union

Values(R2) . (Member constraints are more complex and we discuss them in this section.)

In practice, however, we are a bit more clever. Instead of applying the constraints in a

loop, we can analyze the constraints and figure out the correct order to apply them, so

that we only have to apply each constraint once in order to find the final result.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

488 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#constraint-propagation
https://rustc-dev-guide.rust-lang.org/print.html#constraint-propagation
https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference/constraint_propagation.html#notation-and-high-level-concepts
https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference/constraint_propagation.html#notation-and-high-level-concepts
https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference/constraint_propagation.html#liveness-constraints
https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference/constraint_propagation.html#liveness-constraints
https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference/constraint_propagation.html#outlives-constraints
https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference/constraint_propagation.html#outlives-constraints
https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference/constraint_propagation.html#the-outlives-constraint-graph-and-sccs
https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference/constraint_propagation.html#the-outlives-constraint-graph-and-sccs
https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference/constraint_propagation.html#applying-liveness-constraints-to-sccs
https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference/constraint_propagation.html#applying-liveness-constraints-to-sccs
https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference/constraint_propagation.html#applying-outlives-constraints
https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference/constraint_propagation.html#applying-outlives-constraints
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/region_infer/struct.RegionInferenceContext.html#method.propagate_constraints
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/region_infer/struct.RegionInferenceContext.html#method.propagate_constraints
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/region_infer/struct.RegionInferenceContext.html#method.propagate_constraints
https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference/member_constraints.html
https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference/member_constraints.html
https://rustc-dev-guide.rust-lang.org/print.html#notation-and-high-level-concepts
https://rustc-dev-guide.rust-lang.org/print.html#notation-and-high-level-concepts
https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference.html#region-variables
https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference.html#region-variables
https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference/member_constraints.html
https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference/member_constraints.html

Similarly, in the implementation, the Values set is stored in the scc_values field, but

they are indexed not by a region but by a strongly connected component (SCC). SCCs are an

optimization that avoids a lot of redundant storage and computation. They are explained

in the section on outlives constraints.

Liveness constraints

A liveness constraint arises when some variable whose type includes a region R is live at

some point P. This simply means that the value of R must include the point P. Liveness

constraints are computed by the MIR type checker.

A liveness constraint R live at E is satisfied if E is a member of Values(R) . So to

"apply" such a constraint to Values , we just have to compute Values(R) = Values(R)

union {E} .

The liveness values are computed in the type-check and passed to the region inference

upon creation in the liveness_constraints argument. These are not represented as

individual constraints like R live at E though; instead, we store a (sparse) bitset per

region variable (of type LivenessValues). This way we only need a single bit for each

liveness constraint.

One thing that is worth mentioning: All lifetime parameters are always considered to be

live over the entire function body. This is because they correspond to some portion of the

caller's execution, and that execution clearly includes the time spent in this function, since

the caller is waiting for us to return.

Outlives constraints

An outlives constraint 'a: 'b indicates that the value of 'a must be a superset of the

value of 'b . That is, an outlives constraint R1: R2 is satisfied if Values(R1) is a superset

of Values(R2) . So to "apply" such a constraint to Values , we just have to compute

Values(R1) = Values(R1) union Values(R2) .

One observation that follows from this is that if you have R1: R2 and R2: R1 , then R1

= R2 must be true. Similarly, if you have:

R1: R2
R2: R3
R3: R4
R4: R1

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

489 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#liveness-constraints
https://rustc-dev-guide.rust-lang.org/print.html#liveness-constraints
https://rustc-dev-guide.rust-lang.org/appendix/glossary.html#point
https://rustc-dev-guide.rust-lang.org/appendix/glossary.html#point
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/region_infer/values/struct.LivenessValues.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/region_infer/values/struct.LivenessValues.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/region_infer/values/struct.LivenessValues.html
https://rustc-dev-guide.rust-lang.org/print.html#outlives-constraints
https://rustc-dev-guide.rust-lang.org/print.html#outlives-constraints

then R1 = R2 = R3 = R4 follows. We take advantage of this to make things much faster,

as described shortly.

In the code, the set of outlives constraints is given to the region inference context on

creation in a parameter of type OutlivesConstraintSet . The constraint set is basically

just a list of 'a: 'b constraints.

The outlives constraint graph and SCCs

In order to work more efficiently with outlives constraints, they are converted into the

form of a graph, where the nodes of the graph are region variables ('a , 'b) and each

constraint 'a: 'b induces an edge 'a -> 'b . This conversion happens in the

RegionInferenceContext::new function that creates the inference context.

When using a graph representation, we can detect regions that must be equal by looking

for cycles. That is, if you have a constraint like

then this will correspond to a cycle in the graph containing the elements 'a...'d .

Therefore, one of the first things that we do in propagating region values is to compute

the strongly connected components (SCCs) in the constraint graph. The result is stored

in the constraint_sccs field. You can then easily find the SCC that a region r is a part of

by invoking constraint_sccs.scc(r) .

Working in terms of SCCs allows us to be more efficient: if we have a set of regions

'a...'d that are part of a single SCC, we don't have to compute/store their values

separately. We can just store one value for the SCC, since they must all be equal.

If you look over the region inference code, you will see that a number of fields are defined

in terms of SCCs. For example, the scc_values field stores the values of each SCC. To get

the value of a specific region 'a then, we first figure out the SCC that the region is a part

of, and then find the value of that SCC.

When we compute SCCs, we not only figure out which regions are a member of each SCC,

we also figure out the edges between them. So for example consider this set of outlives

constraints:

'a: 'b
'b: 'c
'c: 'd
'd: 'a

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

490 of 660 8/30/23, 09:47

https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/constraints/struct.OutlivesConstraintSet.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/constraints/struct.OutlivesConstraintSet.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/constraints/struct.OutlivesConstraintSet.html
https://rustc-dev-guide.rust-lang.org/print.html#the-outlives-constraint-graph-and-sccs
https://rustc-dev-guide.rust-lang.org/print.html#the-outlives-constraint-graph-and-sccs
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/constraints/struct.OutlivesConstraintSet.html#method.graph
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/constraints/struct.OutlivesConstraintSet.html#method.graph
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/constraints/struct.OutlivesConstraintSet.html#method.graph
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/constraints/struct.OutlivesConstraintSet.html#method.graph
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/region_infer/struct.RegionInferenceContext.html#method.new
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/region_infer/struct.RegionInferenceContext.html#method.new
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/region_infer/struct.RegionInferenceContext.html#method.new
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/region_infer/struct.RegionInferenceContext.html#structfield.constraint_sccs
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/region_infer/struct.RegionInferenceContext.html#structfield.constraint_sccs
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/region_infer/struct.RegionInferenceContext.html#structfield.constraint_sccs
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/region_infer/struct.RegionInferenceContext.html#structfield.scc_values
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/region_infer/struct.RegionInferenceContext.html#structfield.scc_values
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/region_infer/struct.RegionInferenceContext.html#structfield.scc_values

Here we have two SCCs: S0 contains 'a and 'b , and S1 contains 'c and 'd . But these

SCCs are not independent: because 'a: 'c , that means that S0: S1 as well. That is --

the value of S0 must be a superset of the value of S1 . One crucial thing is that this graph

of SCCs is always a DAG -- that is, it never has cycles. This is because all the cycles have

been removed to form the SCCs themselves.

Applying liveness constraints to SCCs

The liveness constraints that come in from the type-checker are expressed in terms of

regions -- that is, we have a map like Liveness: R -> {E} . But we want our final result to

be expressed in terms of SCCs -- we can integrate these liveness constraints very easily

just by taking the union:

In the region inferencer, this step is done in RegionInferenceContext::new .

Applying outlives constraints

Once we have computed the DAG of SCCs, we use that to structure out entire

computation. If we have an edge S1 -> S2 between two SCCs, that means that

Values(S1) >= Values(S2) must hold. So, to compute the value of S1 , we first compute

the values of each successor S2 . Then we simply union all of those values together. To

use a quasi-iterator-like notation:

In the code, this work starts in the propagate_constraints function, which iterates over

all the SCCs. For each SCC S1 , we compute its value by first computing the value of its

successors. Since SCCs form a DAG, we don't have to be concerned about cycles, though

'a: 'b
'b: 'a

'a: 'c

'c: 'd
'd: 'c

for each region R:
 let S be the SCC that contains R
 Values(S) = Values(S) union Liveness(R)

Values(S1) =
 s1.successors()
 .map(|s2| Values(s2))
 .union()

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

491 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#applying-liveness-constraints-to-sccs
https://rustc-dev-guide.rust-lang.org/print.html#applying-liveness-constraints-to-sccs
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/region_infer/struct.RegionInferenceContext.html#method.new
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/region_infer/struct.RegionInferenceContext.html#method.new
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/region_infer/struct.RegionInferenceContext.html#method.new
https://rustc-dev-guide.rust-lang.org/print.html#applying-outlives-constraints
https://rustc-dev-guide.rust-lang.org/print.html#applying-outlives-constraints
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/region_infer/struct.RegionInferenceContext.html#method.propagate_constraints
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/region_infer/struct.RegionInferenceContext.html#method.propagate_constraints
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/region_infer/struct.RegionInferenceContext.html#method.propagate_constraints

we do need to keep a set around to track whether we have already processed a given SCC

or not. For each successor S2 , once we have computed S2 's value, we can union those

elements into the value for S1 . (Although we have to be careful in this process to

properly handle higher-ranked placeholders. Note that the value for S1 already contains

the liveness constraints, since they were added in RegionInferenceContext::new .

Once that process is done, we now have the "minimal value" for S1 , taking into account

all of the liveness and outlives constraints. However, in order to complete the process, we

must also consider member constraints, which are described in a later section.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

492 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference/placeholders_and_universes.html
https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference/placeholders_and_universes.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/region_infer/struct.RegionInferenceContext.html#method.new
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/region_infer/struct.RegionInferenceContext.html#method.new
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/region_infer/struct.RegionInferenceContext.html#method.new
https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference/member_constraints.html
https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference/member_constraints.html
https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference/member_constraints.html
https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference/member_constraints.html

Universal regions

• Universal regions and their relationships to one another

• Everything is a region variable

• Universal lifetimes as the elements of a region's value

• The "value" of a universal region

• Liveness and universal regions

• Propagating outlives constraints for universal regions

• Detecting errors

"Universal regions" is the name that the code uses to refer to "named lifetimes" -- e.g.,

lifetime parameters and 'static . The name derives from the fact that such lifetimes are

"universally quantified" (i.e., we must make sure the code is true for all values of those

lifetimes). It is worth spending a bit of discussing how lifetime parameters are handled

during region inference. Consider this example:

This example is intended not to compile, because we are returning x , which has type

&'a u32 , but our signature promises that we will return a &'b u32 value. But how are

lifetimes like 'a and 'b integrated into region inference, and how this error wind up

being detected?

Universal regions and their relationships to one

another

Early on in region inference, one of the first things we do is to construct a

UniversalRegions struct. This struct tracks the various universal regions in scope on a

particular function. We also create a UniversalRegionRelations struct, which tracks

their relationships to one another. So if you have e.g. where 'a: 'b , then the

UniversalRegionRelations struct would track that 'a: 'b is known to hold (which

could be tested with the outlives function.

Everything is a region variable

One important aspect of how NLL region inference works is that all lifetimes are

represented as numbered variables. This means that the only variant of ty::RegionKind

fn foo<'a, 'b>(x: &'a u32, y: &'b u32) -> &'b u32 {
 x
}

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

493 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#universal-regions-1
https://rustc-dev-guide.rust-lang.org/print.html#universal-regions-1
https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference/lifetime_parameters.html#universal-regions-and-their-relationships-to-one-another
https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference/lifetime_parameters.html#universal-regions-and-their-relationships-to-one-another
https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference/lifetime_parameters.html#everything-is-a-region-variable
https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference/lifetime_parameters.html#everything-is-a-region-variable
https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference/lifetime_parameters.html#universal-lifetimes-as-the-elements-of-a-regions-value
https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference/lifetime_parameters.html#universal-lifetimes-as-the-elements-of-a-regions-value
https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference/lifetime_parameters.html#the-value-of-a-universal-region
https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference/lifetime_parameters.html#the-value-of-a-universal-region
https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference/lifetime_parameters.html#liveness-and-universal-regions
https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference/lifetime_parameters.html#liveness-and-universal-regions
https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference/lifetime_parameters.html#propagating-outlives-constraints-for-universal-regions
https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference/lifetime_parameters.html#propagating-outlives-constraints-for-universal-regions
https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference/lifetime_parameters.html#detecting-errors
https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference/lifetime_parameters.html#detecting-errors
https://rustc-dev-guide.rust-lang.org/print.html#universal-regions-and-their-relationships-to-one-another
https://rustc-dev-guide.rust-lang.org/print.html#universal-regions-and-their-relationships-to-one-another
https://rustc-dev-guide.rust-lang.org/print.html#universal-regions-and-their-relationships-to-one-another
https://rustc-dev-guide.rust-lang.org/print.html#universal-regions-and-their-relationships-to-one-another
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/universal_regions/struct.UniversalRegions.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/universal_regions/struct.UniversalRegions.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/universal_regions/struct.UniversalRegions.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/type_check/free_region_relations/struct.UniversalRegionRelations.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/type_check/free_region_relations/struct.UniversalRegionRelations.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/type_check/free_region_relations/struct.UniversalRegionRelations.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/type_check/free_region_relations/struct.UniversalRegionRelations.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/type_check/free_region_relations/struct.UniversalRegionRelations.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/type_check/free_region_relations/struct.UniversalRegionRelations.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/type_check/free_region_relations/struct.UniversalRegionRelations.html#method.outlives
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/type_check/free_region_relations/struct.UniversalRegionRelations.html#method.outlives
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/type_check/free_region_relations/struct.UniversalRegionRelations.html#method.outlives
https://rustc-dev-guide.rust-lang.org/print.html#everything-is-a-region-variable
https://rustc-dev-guide.rust-lang.org/print.html#everything-is-a-region-variable
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_type_ir/sty/enum.RegionKind.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_type_ir/sty/enum.RegionKind.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_type_ir/sty/enum.RegionKind.html

that we use is the ReVar variant. These region variables are broken into two major

categories, based on their index:

• 0..N: universal regions -- the ones we are discussing here. In this case, the code must

be correct with respect to any value of those variables that meets the declared

relationships.

• N..M: existential regions -- inference variables where the region inferencer is tasked

with finding some suitable value.

In fact, the universal regions can be further subdivided based on where they were

brought into scope (see the RegionClassification type). These subdivisions are not

important for the topics discussed here, but become important when we consider closure

constraint propagation, so we discuss them there.

Universal lifetimes as the elements of a region's value

As noted previously, the value that we infer for each region is a set {E} . The elements of

this set can be points in the control-flow graph, but they can also be an element end('a)

corresponding to each universal lifetime 'a . If the value for some region R0 includes

end('a), then this implies that R0 must extend until the end of 'a in the caller.

The "value" of a universal region

During region inference, we compute a value for each universal region in the same way as

we compute values for other regions. This value represents, effectively, the lower bound

on that universal region -- the things that it must outlive. We now describe how we use

this value to check for errors.

Liveness and universal regions

All universal regions have an initial liveness constraint that includes the entire function

body. This is because lifetime parameters are defined in the caller and must include the

entirety of the function call that invokes this particular function. In addition, each

universal region 'a includes itself (that is, end('a)) in its liveness constraint (i.e., 'a

must extend until the end of itself). In the code, these liveness constraints are setup in

init_free_and_bound_regions .

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

494 of 660 8/30/23, 09:47

https://doc.rust-lang.org/nightly/nightly-rustc/rustc_type_ir/sty/enum.RegionKind.html#variant.ReVar
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_type_ir/sty/enum.RegionKind.html#variant.ReVar
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_type_ir/sty/enum.RegionKind.html#variant.ReVar
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/universal_regions/enum.RegionClassification.html#variant.Local
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/universal_regions/enum.RegionClassification.html#variant.Local
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/universal_regions/enum.RegionClassification.html#variant.Local
https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference/closure_constraints.html
https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference/closure_constraints.html
https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference/closure_constraints.html
https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference/closure_constraints.html
https://rustc-dev-guide.rust-lang.org/print.html#universal-lifetimes-as-the-elements-of-a-regions-value
https://rustc-dev-guide.rust-lang.org/print.html#universal-lifetimes-as-the-elements-of-a-regions-value
https://rustc-dev-guide.rust-lang.org/print.html#the-value-of-a-universal-region
https://rustc-dev-guide.rust-lang.org/print.html#the-value-of-a-universal-region
https://rustc-dev-guide.rust-lang.org/print.html#liveness-and-universal-regions
https://rustc-dev-guide.rust-lang.org/print.html#liveness-and-universal-regions
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/region_infer/struct.RegionInferenceContext.html#method.init_free_and_bound_regions
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/region_infer/struct.RegionInferenceContext.html#method.init_free_and_bound_regions
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/region_infer/struct.RegionInferenceContext.html#method.init_free_and_bound_regions

Propagating outlives constraints for universal regions

So, consider the first example of this section:

Here, returning x requires that &'a u32 <: &'b u32 , which gives rise to an outlives

constraint 'a: 'b . Combined with our default liveness constraints we get:

When we process the 'a: 'b constraint, therefore, we will add end('b) into the value

for 'a , resulting in a final value of {B, end('a), end('b)} .

Detecting errors

Once we have finished constraint propagation, we then enforce a constraint that if some

universal region 'a includes an element end('b) , then 'a: 'b must be declared in the

function's bounds. If not, as in our example, that is an error. This check is done in the

check_universal_regions function, which simply iterates over all universal regions,

inspects their final value, and tests against the declared UniversalRegionRelations .

fn foo<'a, 'b>(x: &'a u32, y: &'b u32) -> &'b u32 {
 x
}

'a live at {B, end('a)} // B represents the "function body"
'b live at {B, end('b)}
'a: 'b

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

495 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#propagating-outlives-constraints-for-universal-regions
https://rustc-dev-guide.rust-lang.org/print.html#propagating-outlives-constraints-for-universal-regions
https://rustc-dev-guide.rust-lang.org/print.html#detecting-errors
https://rustc-dev-guide.rust-lang.org/print.html#detecting-errors
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/region_infer/struct.RegionInferenceContext.html#method.check_universal_regions
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/region_infer/struct.RegionInferenceContext.html#method.check_universal_regions
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/region_infer/struct.RegionInferenceContext.html#method.check_universal_regions
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/type_check/free_region_relations/struct.UniversalRegionRelations.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/type_check/free_region_relations/struct.UniversalRegionRelations.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/type_check/free_region_relations/struct.UniversalRegionRelations.html

Member constraints

• Detailed example

• Choices are always lifetime parameters

• Applying member constraints

◦ Lower bounds

◦ Upper bounds

◦ Minimal choice

◦ Collecting upper bounds in the implementation

A member constraint 'm member of ['c_1..'c_N] expresses that the region 'm must be

equal to some choice regions 'c_i (for some i). These constraints cannot be

expressed by users, but they arise from impl Trait due to its lifetime capture rules.

Consider a function such as the following:

Here, the true return type (often called the "hidden type") is only permitted to capture the

lifetimes 'a or 'b . You can kind of see this more clearly by desugaring that impl Trait

return type into its more explicit form:

Here, the idea is that the hidden type must be some type that could have been written in

place of the impl Trait<'x, 'y> -- but clearly such a type can only reference the regions

'x or 'y (or 'static !), as those are the only names in scope. This limitation is then

translated into a restriction to only access 'a or 'b because we are returning

MakeReturn<'a, 'b> , where 'x and 'y have been replaced with 'a and 'b

respectively.

Detailed example

To help us explain member constraints in more detail, let's spell out the make example in

a bit more detail. First off, let's assume that you have some dummy trait:

and this is the make function (in desugared form):

fn make(a: &'a u32, b: &'b u32) -> impl Trait<'a, 'b> { .. }

type MakeReturn<'x, 'y> = impl Trait<'x, 'y>;
fn make(a: &'a u32, b: &'b u32) -> MakeReturn<'a, 'b> { .. }

trait Trait<'a, 'b> { }
impl<T> Trait<'_, '_> for T { }

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

496 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#member-constraints
https://rustc-dev-guide.rust-lang.org/print.html#member-constraints
https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference/member_constraints.html#detailed-example
https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference/member_constraints.html#detailed-example
https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference/member_constraints.html#choices-are-always-lifetime-parameters
https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference/member_constraints.html#choices-are-always-lifetime-parameters
https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference/member_constraints.html#applying-member-constraints
https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference/member_constraints.html#applying-member-constraints
https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference/member_constraints.html#lower-bounds
https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference/member_constraints.html#lower-bounds
https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference/member_constraints.html#upper-bounds
https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference/member_constraints.html#upper-bounds
https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference/member_constraints.html#minimal-choice
https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference/member_constraints.html#minimal-choice
https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference/member_constraints.html#collecting-upper-bounds-in-the-implementation
https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference/member_constraints.html#collecting-upper-bounds-in-the-implementation
https://rustc-dev-guide.rust-lang.org/print.html#detailed-example
https://rustc-dev-guide.rust-lang.org/print.html#detailed-example

What happens in this case is that the return type will be (&'0 u32, &'1 u32) , where '0

and '1 are fresh region variables. We will have the following region constraints:

Here the "liveness set" {L} corresponds to that subset of the body where '0 and '1

are live -- basically the point from where the return tuple is constructed to where it is

returned (in fact, '0 and '1 might have slightly different liveness sets, but that's not

very interesting to the point we are illustrating here).

The 'a: '0 and 'b: '1 constraints arise from subtyping. When we construct the (a,

b) value, it will be assigned type (&'0 u32, &'1 u32) -- the region variables reflect that

the lifetimes of these references could be made smaller. For this value to be created from

a and b , however, we do require that:

which means in turn that &'a u32 <: &'0 u32 and hence that 'a: '0 (and similarly that

&'b u32 <: &'1 u32 , 'b: '1).

Note that if we ignore member constraints, the value of '0 would be inferred to some

subset of the function body (from the liveness constraints, which we did not write

explicitly). It would never become 'a , because there is no need for it too -- we have a

constraint that 'a: '0 , but that just puts a "cap" on how large '0 can grow to become.

Since we compute the minimal value that we can, we are happy to leave '0 as being just

equal to the liveness set. This is where member constraints come in.

Choices are always lifetime parameters

At present, the "choice" regions from a member constraint are always lifetime

parameters from the current function. As of October 2021, this falls out from the

placement of impl Trait, though in the future it may not be the case. We take some

advantage of this fact, as it simplifies the current code. In particular, we don't have to

type MakeReturn<'x, 'y> = impl Trait<'x, 'y>;
fn make(a: &'a u32, b: &'b u32) -> MakeReturn<'a, 'b> {
 (a, b)
}

'0 live at {L}
'1 live at {L}
'a: '0
'b: '1
'0 member of ['a, 'b, 'static]
'1 member of ['a, 'b, 'static]

(&'a u32, &'b u32) <: (&'0 u32, &'1 u32)

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

497 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#choices-are-always-lifetime-parameters
https://rustc-dev-guide.rust-lang.org/print.html#choices-are-always-lifetime-parameters

consider a case like '0 member of ['1, 'static] , in which the value of both '0 and '1

are being inferred and hence changing. See rust-lang/rust#61773 for more information.

Applying member constraints

Member constraints are a bit more complex than other forms of constraints. This is

because they have a "or" quality to them -- that is, they describe multiple choices that we

must select from. E.g., in our example constraint '0 member of ['a, 'b, 'static] , it

might be that '0 is equal to 'a , 'b , or 'static . How can we pick the correct one? What

we currently do is to look for a minimal choice -- if we find one, then we will grow '0 to be

equal to that minimal choice. To find that minimal choice, we take two factors into

consideration: lower and upper bounds.

Lower bounds

The lower bounds are those lifetimes that '0 must outlive -- i.e., that '0 must be larger

than. In fact, when it comes time to apply member constraints, we've already computed

the lower bounds of '0 because we computed its minimal value (or at least, the lower

bounds considering everything but member constraints).

Let LB be the current value of '0 . We know then that '0: LB must hold, whatever the

final value of '0 is. Therefore, we can rule out any choice 'choice where 'choice: LB

does not hold.

Unfortunately, in our example, this is not very helpful. The lower bound for '0 will just

be the liveness set {L} , and we know that all the lifetime parameters outlive that set. So

we are left with the same set of choices here. (But in other examples, particularly those

with different variance, lower bound constraints may be relevant.)

Upper bounds

The upper bounds are those lifetimes that must outlive '0 -- i.e., that '0 must be smaller

than. In our example, this would be 'a , because we have the constraint that 'a: '0 . In

more complex examples, the chain may be more indirect.

We can use upper bounds to rule out members in a very similar way to lower bounds. If

UB is some upper bound, then we know that UB: '0 must hold, so we can rule out any

choice 'choice where UB: 'choice does not hold.

In our example, we would be able to reduce our choice set from ['a, 'b, 'static] to

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

498 of 660 8/30/23, 09:47

https://github.com/rust-lang/rust/issues/61773
https://github.com/rust-lang/rust/issues/61773
https://rustc-dev-guide.rust-lang.org/print.html#applying-member-constraints
https://rustc-dev-guide.rust-lang.org/print.html#applying-member-constraints
https://rustc-dev-guide.rust-lang.org/print.html#lower-bounds
https://rustc-dev-guide.rust-lang.org/print.html#lower-bounds
https://rustc-dev-guide.rust-lang.org/print.html#upper-bounds
https://rustc-dev-guide.rust-lang.org/print.html#upper-bounds

just ['a] . This is because '0 has an upper bound of 'a , and neither 'a: 'b nor 'a:

'static is known to hold.

(For notes on how we collect upper bounds in the implementation, see the section

below.)

Minimal choice

After applying lower and upper bounds, we can still sometimes have multiple

possibilities. For example, imagine a variant of our example using types with the opposite

variance. In that case, we would have the constraint '0: 'a instead of 'a: '0 . Hence

the current value of '0 would be {L, 'a} . Using this as a lower bound, we would be

able to narrow down the member choices to ['a, 'static] because 'b: 'a is not

known to hold (but 'a: 'a and 'static: 'a do hold). We would not have any upper

bounds, so that would be our final set of choices.

In that case, we apply the minimal choice rule -- basically, if one of our choices if smaller

than the others, we can use that. In this case, we would opt for 'a (and not 'static).

This choice is consistent with the general 'flow' of region propagation, which always aims

to compute a minimal value for the region being inferred. However, it is somewhat

arbitrary.

Collecting upper bounds in the implementation

In practice, computing upper bounds is a bit inconvenient, because our data structures

are setup for the opposite. What we do is to compute the reverse SCC graph (we do this

lazily and cache the result) -- that is, a graph where 'a: 'b induces an edge SCC('b) ->

SCC('a) . Like the normal SCC graph, this is a DAG. We can then do a depth-first search

starting from SCC('0) in this graph. This will take us to all the SCCs that must outlive '0 .

One wrinkle is that, as we walk the "upper bound" SCCs, their values will not yet have

been fully computed. However, we have already applied their liveness constraints, so we

have some information about their value. In particular, for any regions representing

lifetime parameters, their value will contain themselves (i.e., the initial value for 'a

includes 'a and the value for 'b contains 'b). So we can collect all of the lifetime

parameters that are reachable, which is precisely what we are interested in.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

499 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference/member_constraints.html#collecting
https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference/member_constraints.html#collecting
https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference/member_constraints.html#collecting
https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference/member_constraints.html#collecting
https://rustc-dev-guide.rust-lang.org/print.html#minimal-choice
https://rustc-dev-guide.rust-lang.org/print.html#minimal-choice
https://rustc-dev-guide.rust-lang.org/print.html#collecting-upper-bounds-in-the-implementation
https://rustc-dev-guide.rust-lang.org/print.html#collecting-upper-bounds-in-the-implementation

Placeholders and universes

• Subtyping and Placeholders

• What is a universe?

• Universes and placeholder region elements

• Placeholders and outlives constraints

• Extending the "universal regions" check

• Back to our example

• Another example

• Final example

From time to time we have to reason about regions that we can't concretely know. For

example, consider this program:

This program ought not to type-check: foo needs a static reference for its argument, and

bar wants to be given a function that accepts any reference (so it can call it with

something on its stack, for example). But how do we reject it and why?

Subtyping and Placeholders

When we type-check main , and in particular the call bar(foo) , we are going to wind up

with a subtyping relationship like this one:

We handle this sort of subtyping by taking the variables that are bound in the supertype

and replacing them with universally quantified representatives, denoted like !1 here. We

call these regions "placeholder regions" – they represent, basically, "some unknown

region".

// A function that needs a static reference
fn foo(x: &'static u32) { }

fn bar(f: for<'a> fn(&'a u32)) {
// ^^^^^^^^^^^^^^^^^^^ a function that can accept **any** reference

let x = 22;
 f(&x);
}

fn main() {
 bar(foo);
}

fn(&'static u32) <: for<'a> fn(&'a u32)
---------------- -------------------
the type of `foo` the type `bar` expects

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

500 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#placeholders-and-universes
https://rustc-dev-guide.rust-lang.org/print.html#placeholders-and-universes
https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference/placeholders_and_universes.html#subtyping-and-placeholders
https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference/placeholders_and_universes.html#subtyping-and-placeholders
https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference/placeholders_and_universes.html#what-is-a-universe
https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference/placeholders_and_universes.html#what-is-a-universe
https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference/placeholders_and_universes.html#universes-and-placeholder-region-elements
https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference/placeholders_and_universes.html#universes-and-placeholder-region-elements
https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference/placeholders_and_universes.html#placeholders-and-outlives-constraints
https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference/placeholders_and_universes.html#placeholders-and-outlives-constraints
https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference/placeholders_and_universes.html#extending-the-universal-regions-check
https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference/placeholders_and_universes.html#extending-the-universal-regions-check
https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference/placeholders_and_universes.html#back-to-our-example
https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference/placeholders_and_universes.html#back-to-our-example
https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference/placeholders_and_universes.html#another-example
https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference/placeholders_and_universes.html#another-example
https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference/placeholders_and_universes.html#final-example
https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference/placeholders_and_universes.html#final-example
https://rustc-dev-guide.rust-lang.org/print.html#subtyping-and-placeholders
https://rustc-dev-guide.rust-lang.org/print.html#subtyping-and-placeholders
https://rustc-dev-guide.rust-lang.org/appendix/background.html#quantified
https://rustc-dev-guide.rust-lang.org/appendix/background.html#quantified

Once we've done that replacement, we have the following relation:

The key idea here is that this unknown region '!1 is not related to any other regions. So

if we can prove that the subtyping relationship is true for '!1 , then it ought to be true for

any region, which is what we wanted.

So let's work through what happens next. To check if two functions are subtypes, we

check if their arguments have the desired relationship (fn arguments are contravariant,

so we swap the left and right here):

According to the basic subtyping rules for a reference, this will be true if '!1: 'static .

That is – if "some unknown region !1 " outlives 'static . Now, this might be true – after

all, '!1 could be 'static – but we don't know that it's true. So this should yield up an

error (eventually).

What is a universe?

In the previous section, we introduced the idea of a placeholder region, and we denoted it

!1 . We call this number 1 the universe index. The idea of a "universe" is that it is a set

of names that are in scope within some type or at some point. Universes are formed into

a tree, where each child extends its parents with some new names. So the root universe

conceptually contains global names, such as the lifetime 'static or the type i32 . In the

compiler, we also put generic type parameters into this root universe (in this sense, there

is not just one root universe, but one per item). So consider this function bar :

Here, the root universe would consist of the lifetimes 'static and 'a . In fact, although

we're focused on lifetimes here, we can apply the same concept to types, in which case

the types Foo and T would be in the root universe (along with other global types, like

i32). Basically, the root universe contains all the names that appear free in the body of

bar .

Now let's extend bar a bit by adding a variable x :

fn(&'static u32) <: fn(&'!1 u32)

&'!1 u32 <: &'static u32

struct Foo { }

fn bar<'a, T>(t: &'a T) {
 ...
}

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

501 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/appendix/background.html#variance
https://rustc-dev-guide.rust-lang.org/appendix/background.html#variance
https://rustc-dev-guide.rust-lang.org/print.html#what-is-a-universe
https://rustc-dev-guide.rust-lang.org/print.html#what-is-a-universe
https://rustc-dev-guide.rust-lang.org/appendix/background.html#free-vs-bound
https://rustc-dev-guide.rust-lang.org/appendix/background.html#free-vs-bound

Here, the name 'b is not part of the root universe. Instead, when we "enter" into this

for<'b> (e.g., by replacing it with a placeholder), we will create a child universe of the

root, let's call it U1:

The idea is that this child universe U1 extends the root universe U0 with a new name,

which we are identifying by its universe number: !1 .

Now let's extend bar a bit by adding one more variable, y :

When we enter this type, we will again create a new universe, which we'll call U2 . Its

parent will be the root universe, and U1 will be its sibling:

This implies that, while in U2, we can name things from U0 or U2, but not U1.

Giving existential variables a universe. Now that we have this notion of universes, we

can use it to extend our type-checker and things to prevent illegal names from leaking

out. The idea is that we give each inference (existential) variable – whether it be a type or

a lifetime – a universe. That variable's value can then only reference names visible from

that universe. So for example if a lifetime variable is created in U0, then it cannot be

assigned a value of !1 or !2 , because those names are not visible from the universe U0.

Representing universes with just a counter. You might be surprised to see that the

compiler doesn't keep track of a full tree of universes. Instead, it just keeps a counter –

and, to determine if one universe can see another one, it just checks if the index is

greater. For example, U2 can see U0 because 2 >= 0. But U0 cannot see U2, because 0 >=

2 is false.

How can we get away with this? Doesn't this mean that we would allow U2 to also see U1?

fn bar<'a, T>(t: &'a T) {
let x: for<'b> fn(&'b u32) = ...;

}

U0 (root universe)
│
└─ U1 (child universe)

fn bar<'a, T>(t: &'a T) {
let x: for<'b> fn(&'b u32) = ...;
let y: for<'c> fn(&'c u32) = ...;

}

U0 (root universe)
│
├─ U1 (child universe)
│
└─ U2 (child universe)

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

502 of 660 8/30/23, 09:47

The answer is that, yes, we would, if that question ever arose. But because of the

structure of our type checker etc, there is no way for that to happen. In order for

something happening in the universe U1 to "communicate" with something happening in

U2, they would have to have a shared inference variable X in common. And because

everything in U1 is scoped to just U1 and its children, that inference variable X would

have to be in U0. And since X is in U0, it cannot name anything from U1 (or U2). This is

perhaps easiest to see by using a kind of generic "logic" example:

Here, the only way for the two foralls to interact would be through X, but neither Y nor Z

are in scope when X is declared, so its value cannot reference either of them.

Universes and placeholder region elements

But where does that error come from? The way it happens is like this. When we are

constructing the region inference context, we can tell from the type inference context

how many placeholder variables exist (the InferCtxt has an internal counter). For each

of those, we create a corresponding universal region variable !n and a "region element"

placeholder(n) . This corresponds to "some unknown set of other elements". The value

of !n is {placeholder(n)} .

At the same time, we also give each existential variable a universe (also taken from the

InferCtxt). This universe determines which placeholder elements may appear in its

value: For example, a variable in universe U3 may name placeholder(1) ,

placeholder(2) , and placeholder(3) , but not placeholder(4) . Note that the universe

of an inference variable controls what region elements can appear in its value; it does not

say region elements will appear.

Placeholders and outlives constraints

In the region inference engine, outlives constraints have the form:

where V1 and V2 are region indices, and hence map to some region variable (which may

be universally or existentially quantified). The P here is a "point" in the control-flow

graph; it's not important for this section. This variable will have a universe, so let's call

exists<X> {
 forall<Y> { ... /* Y is in U1 ... */ }
 forall<Z> { ... /* Z is in U2 ... */ }
}

V1: V2 @ P

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

503 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#universes-and-placeholder-region-elements
https://rustc-dev-guide.rust-lang.org/print.html#universes-and-placeholder-region-elements
https://rustc-dev-guide.rust-lang.org/print.html#placeholders-and-outlives-constraints
https://rustc-dev-guide.rust-lang.org/print.html#placeholders-and-outlives-constraints

those universes U(V1) and U(V2) respectively. (Actually, the only one we are going to

care about is U(V1) .)

When we encounter this constraint, the ordinary procedure is to start a DFS from P . We

keep walking so long as the nodes we are walking are present in value(V2) and we add

those nodes to value(V1) . If we reach a return point, we add in any end(X) elements.

That part remains unchanged.

But then after that we want to iterate over the placeholder placeholder(x) elements in

V2 (each of those must be visible to U(V2) , but we should be able to just assume that is

true, we don't have to check it). We have to ensure that value(V1) outlives each of those

placeholder elements.

Now there are two ways that could happen. First, if U(V1) can see the universe x (i.e., x

<= U(V1)), then we can just add placeholder(x) to value(V1) and be done. But if not,

then we have to approximate: we may not know what set of elements placeholder(x)

represents, but we should be able to compute some sort of upper bound B for it – some

region B that outlives placeholder(x) . For now, we'll just use 'static for that (since it

outlives everything) – in the future, we can sometimes be smarter here (and in fact we

have code for doing this already in other contexts). Moreover, since 'static is in the

root universe U0, we know that all variables can see it – so basically if we find that

value(V2) contains placeholder(x) for some universe x that V1 can't see, then we

force V1 to 'static .

Extending the "universal regions" check

After all constraints have been propagated, the NLL region inference has one final check,

where it goes over the values that wound up being computed for each universal region

and checks that they did not get 'too large'. In our case, we will go through each

placeholder region and check that it contains only the placeholder(u) element it is

known to outlive. (Later, we might be able to know that there are relationships between

two placeholder regions and take those into account, as we do for universal regions from

the fn signature.)

Put another way, the "universal regions" check can be considered to be checking

constraints like:

where {placeholder(1)} is like a constant set, and V1 is the variable we made to

represent the !1 region.

{placeholder(1)}: V1

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

504 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#extending-the-universal-regions-check
https://rustc-dev-guide.rust-lang.org/print.html#extending-the-universal-regions-check

Back to our example

OK, so far so good. Now let's walk through what would happen with our first example:

The region inference engine will create a region element domain like this:

It will always create two universal variables, one representing 'static and one

representing '!1 . Let's call them Vs and V1. They will have initial values like so:

From the subtyping constraint above, we would have an outlives constraint like

To process this, we would grow the value of V1 to include all of Vs:

At that point, constraint propagation is complete, because all the outlives relationships

are satisfied. Then we would go to the "check universal regions" portion of the code,

which would test that no universal region grew too large.

In this case, V1 did grow too large – it is not known to outlive end('static) , nor any of

the CFG – so we would report an error.

Another example

What about this subtyping relationship?

fn(&'static u32) <: fn(&'!1 u32) @ P // this point P is not imp't here

{ CFG; end('static); placeholder(1) }
 --- ------------ ------- from the universe `!1`
 | 'static is always in scope
 all points in the CFG; not especially relevant here

Vs = { CFG; end('static) } // it is in U0, so can't name anything else
V1 = { placeholder(1) }

'!1: 'static @ P

Vs = { CFG; end('static) }
V1 = { CFG; end('static), placeholder(1) }

for<'a> fn(&'a u32, &'a u32)
 <:
for<'b, 'c> fn(&'b u32, &'c u32)

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

505 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#back-to-our-example
https://rustc-dev-guide.rust-lang.org/print.html#back-to-our-example
https://rustc-dev-guide.rust-lang.org/print.html#another-example
https://rustc-dev-guide.rust-lang.org/print.html#another-example

Here we would replace the bound region in the supertype with a placeholder, as before,

yielding:

then we instantiate the variable on the left-hand side with an existential in universe U2,

yielding the following (?n is a notation for an existential variable):

Then we break this down further:

and even further, yield up our region constraints:

Note that, in this case, both '!1 and '!2 have to outlive the variable '?3 , but the

variable '?3 is not forced to outlive anything else. Therefore, it simply starts and ends as

the empty set of elements, and hence the type-check succeeds here.

(This should surprise you a little. It surprised me when I first realized it. We are saying that

if we are a fn that needs both of its arguments to have the same region, we can

accept being called with arguments with two distinct regions. That seems intuitively

unsound. But in fact, it's fine, as I tried to explain in this issue on the Rust issue tracker

long ago. The reason is that even if we get called with arguments of two distinct lifetimes,

those two lifetimes have some intersection (the call itself), and that intersection can be

our value of 'a that we use as the common lifetime of our arguments. -nmatsakis)

Final example

Let's look at one last example. We'll extend the previous one to have a return type:

for<'a> fn(&'a u32, &'a u32)
 <:
fn(&'!1 u32, &'!2 u32)

fn(&'?3 u32, &'?3 u32)
 <:
fn(&'!1 u32, &'!2 u32)

&'!1 u32 <: &'?3 u32
&'!2 u32 <: &'?3 u32

'!1: '?3
'!2: '?3

for<'a> fn(&'a u32, &'a u32) -> &'a u32
 <:
for<'b, 'c> fn(&'b u32, &'c u32) -> &'b u32

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

506 of 660 8/30/23, 09:47

https://github.com/rust-lang/rust/issues/32330#issuecomment-202536977
https://github.com/rust-lang/rust/issues/32330#issuecomment-202536977
https://rustc-dev-guide.rust-lang.org/print.html#final-example
https://rustc-dev-guide.rust-lang.org/print.html#final-example

Despite seeming very similar to the previous example, this case is going to get an error.

That's good: the problem is that we've gone from a fn that promises to return one of its

two arguments, to a fn that is promising to return the first one. That is unsound. Let's see

how it plays out.

First, we replace the bound region in the supertype with a placeholder:

Then we instantiate the subtype with existentials (in U2):

And now we create the subtyping relationships:

And finally the outlives relationships. Here, let V1, V2, and V3 be the variables we assign to

!1 , !2 , and ?3 respectively:

Those variables will have these initial values:

Now because of the V3: V1 constraint, we have to add placeholder(1) into V3 (and

indeed it is visible from V3), so we get:

then we have this constraint V2: V3 , so we wind up having to enlarge V2 to include

placeholder(1) (which it can also see):

for<'a> fn(&'a u32, &'a u32) -> &'a u32
 <:
fn(&'!1 u32, &'!2 u32) -> &'!1 u32

fn(&'?3 u32, &'?3 u32) -> &'?3 u32
 <:
fn(&'!1 u32, &'!2 u32) -> &'!1 u32

&'!1 u32 <: &'?3 u32 // arg 1
&'!2 u32 <: &'?3 u32 // arg 2
&'?3 u32 <: &'!1 u32 // return type

V1: V3
V2: V3
V3: V1

V1 in U1 = {placeholder(1)}
V2 in U2 = {placeholder(2)}
V3 in U2 = {}

V3 in U2 = {placeholder(1)}

V2 in U2 = {placeholder(1), placeholder(2)}

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

507 of 660 8/30/23, 09:47

Now constraint propagation is done, but when we check the outlives relationships, we

find that V2 includes this new element placeholder(1) , so we report an error.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

508 of 660 8/30/23, 09:47

Propagating closure constraints

When we are checking the type tests and universal regions, we may come across a

constraint that we can't prove yet if we are in a closure body! However, the necessary

constraints may actually hold (we just don't know it yet). Thus, if we are inside a closure,

we just collect all the constraints we can't prove yet and return them. Later, when we are

borrow check the MIR node that created the closure, we can also check that these

constraints hold. At that time, if we can't prove they hold, we report an error.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

509 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#propagating-closure-constraints
https://rustc-dev-guide.rust-lang.org/print.html#propagating-closure-constraints

Reporting region errors

TODO: we should discuss how to generate errors from the results of these analyses.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

510 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#reporting-region-errors
https://rustc-dev-guide.rust-lang.org/print.html#reporting-region-errors

Two-phase borrows

Two-phase borrows are a more permissive version of mutable borrows that allow nested

method calls such as vec.push(vec.len()) . Such borrows first act as shared borrows in

a "reservation" phase and can later be "activated" into a full mutable borrow.

Only certain implicit mutable borrows can be two-phase, any &mut or ref mut in the

source code is never a two-phase borrow. The cases where we generate a two-phase

borrow are:

1. The autoref borrow when calling a method with a mutable reference receiver.

2. A mutable reborrow in function arguments.

3. The implicit mutable borrow in an overloaded compound assignment operator.

To give some examples:

Expanding these enough to show the two-phase borrows:

// In the source code

// Case 1:
let mut v = Vec::new();
v.push(v.len());
let r = &mut Vec::new();
r.push(r.len());

// Case 2:
std::mem::replace(r, vec![1, r.len()]);

// Case 3:
let mut x = std::num::Wrapping(2);
x += x;

#![allow(unused)]
fn main() {

}

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

511 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#two-phase-borrows
https://rustc-dev-guide.rust-lang.org/print.html#two-phase-borrows

Whether a borrow can be two-phase is tracked by a flag on the AutoBorrow after type

checking, which is then converted to a BorrowKind during MIR construction.

Each two-phase borrow is assigned to a temporary that is only used once. As such we can

define:

• The point where the temporary is assigned to is called the reservation point of the

two-phase borrow.

• The point where the temporary is used, which is effectively always a function call, is

called the activation point.

The activation points are found using the GatherBorrows visitor. The BorrowData then

holds both the reservation and activation points for the borrow.

Checking two-phase borrows

Two-phase borrows are treated as if they were mutable borrows with the following

exceptions:

1. At every location in the MIR we check if any two-phase borrows are activated at this

location. If a live two phase borrow is activated at a location, then we check that

there are no borrows that conflict with the two-phase borrow.

2. At the reservation point we error if there are conflicting live mutable borrows. And

lint if there are any conflicting shared borrows.

3. Between the reservation and the activation point, the two-phase borrow acts as a

shared borrow. We determine (in is_active) if we're at such a point by using the

// Case 1:
let mut v = Vec::new();
let temp1 = &two_phase v;
let temp2 = v.len();
Vec::push(temp1, temp2);
let r = &mut Vec::new();
let temp3 = &two_phase *r;
let temp4 = r.len();
Vec::push(temp3, temp4);

// Case 2:
let temp5 = &two_phase *r;
let temp6 = vec![1, r.len()];
std::mem::replace(temp5, temp6);

// Case 3:
let mut x = std::num::Wrapping(2);
let temp7 = &two_phase x;
let temp8 = x;
std::ops::AddAssign::add_assign(temp7, temp8);

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

512 of 660 8/30/23, 09:47

https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/adjustment/enum.AutoBorrow.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/adjustment/enum.AutoBorrow.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/adjustment/enum.AutoBorrow.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_build/thir/cx/expr/trait.ToBorrowKind.html#method.to_borrow_kind
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_build/thir/cx/expr/trait.ToBorrowKind.html#method.to_borrow_kind
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/enum.BorrowKind.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/enum.BorrowKind.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/enum.BorrowKind.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/visit/trait.Visitor.html#method.visit_local
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/visit/trait.Visitor.html#method.visit_local
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/visit/trait.Visitor.html#method.visit_local
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/borrow_set/struct.BorrowData.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/borrow_set/struct.BorrowData.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/borrow_set/struct.BorrowData.html
https://rustc-dev-guide.rust-lang.org/print.html#checking-two-phase-borrows
https://rustc-dev-guide.rust-lang.org/print.html#checking-two-phase-borrows
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/struct.MirBorrowckCtxt.html#method.check_activations
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/struct.MirBorrowckCtxt.html#method.check_activations
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/path_utils/fn.is_active.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/path_utils/fn.is_active.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/path_utils/fn.is_active.html

Dominators for the MIR graph.

4. After the activation point, the two-phase borrow acts as a mutable borrow.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

513 of 660 8/30/23, 09:47

https://doc.rust-lang.org/nightly/nightly-rustc/rustc_data_structures/graph/dominators/struct.Dominators.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_data_structures/graph/dominators/struct.Dominators.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_data_structures/graph/dominators/struct.Dominators.html

Parameter Environment

When working with associated and/or generic items (types, constants,

functions/methods) it is often relevant to have more information about the Self or

generic parameters. Trait bounds and similar information is encoded in the ParamEnv .

Often this is not enough information to obtain things like the type's Layout , but you can

do all kinds of other checks on it (e.g. whether a type implements Copy) or you can

evaluate an associated constant whose value does not depend on anything from the

parameter environment.

For example if you have a function

the parameter environment for that function is [T: Copy] . This means any evaluation

within this function will, when accessing the type T , know about its Copy bound via the

parameter environment.

You can get the parameter environment for a def_id using the param_env query.

However, this ParamEnv can be too generic for your use case. Using the ParamEnv from

the surrounding context can allow you to evaluate more things. For example, suppose we

had something the following:

We may know some things inside bar that we wouldn't know if we just fetched bar 's

param env because of the <T as Foo>::Assoc: Bar bound in foo . This is a contrived

example that makes no sense in our existing analyses, but we may run into similar cases

fn foo<T: Copy>(t: T) { ... }

trait Foo {
type Assoc;

}

trait Bar { }

trait Baz {
fn stuff() -> bool;

}

fn foo<T>(t: T)
where
 T: Foo,
 <T as Foo>::Assoc: Bar
{
 bar::<T::Assoc>()
}

fn bar<T: Baz>() {
if T::stuff() { mep() } else { mop() }

}

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

514 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#parameter-environment
https://rustc-dev-guide.rust-lang.org/print.html#parameter-environment
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.ParamEnv.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.ParamEnv.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.ParamEnv.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_ty_utils/ty/fn.param_env.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_ty_utils/ty/fn.param_env.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_ty_utils/ty/fn.param_env.html

when doing analyses with associated constants on generic traits or traits with assoc

types.

Bundling

Another great thing about ParamEnv is that you can use it to bundle the thing depending

on generic parameters (e.g. a Ty) by calling the and method. This will produce a

ParamEnvAnd<Ty> , making clear that you should probably not be using the inner value

without taking care to also use the ParamEnv .

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

515 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#bundling
https://rustc-dev-guide.rust-lang.org/print.html#bundling
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.ParamEnv.html#method.and
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.ParamEnv.html#method.and
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.ParamEnv.html#method.and
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.ParamEnvAnd.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.ParamEnvAnd.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.ParamEnvAnd.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.ParamEnv.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.ParamEnv.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.ParamEnv.html

Errors and Lints

• Diagnostic structure

◦ Error codes and explanations

◦ Lints versus fixed diagnostics

• Diagnostic output style guide

◦ Lint naming

◦ Diagnostic levels

• Helpful tips and options

◦ Finding the source of errors

• Span

• Error messages

• Suggestions

◦ Suggestion Style Guide

• Lints

◦ When do lints run?

◦ Lint definition terms

◦ Declaring a lint

◦ Edition-gated lints

◦ Feature-gated lints

◦ Future-incompatible lints

◦ Renaming or removing a lint

◦ Lint Groups

◦ Linting early in the compiler

▪ Linting even earlier in the compiler

• JSON diagnostic output

• #[rustc_on_unimplemented(...)]

A lot of effort has been put into making rustc have great error messages. This chapter is

about how to emit compile errors and lints from the compiler.

Diagnostic structure

The main parts of a diagnostic error are the following:

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

516 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#errors-and-lints
https://rustc-dev-guide.rust-lang.org/print.html#errors-and-lints
https://rustc-dev-guide.rust-lang.org/diagnostics.html#diagnostic-structure
https://rustc-dev-guide.rust-lang.org/diagnostics.html#diagnostic-structure
https://rustc-dev-guide.rust-lang.org/diagnostics.html#error-codes-and-explanations
https://rustc-dev-guide.rust-lang.org/diagnostics.html#error-codes-and-explanations
https://rustc-dev-guide.rust-lang.org/diagnostics.html#lints-versus-fixed-diagnostics
https://rustc-dev-guide.rust-lang.org/diagnostics.html#lints-versus-fixed-diagnostics
https://rustc-dev-guide.rust-lang.org/diagnostics.html#diagnostic-output-style-guide
https://rustc-dev-guide.rust-lang.org/diagnostics.html#diagnostic-output-style-guide
https://rustc-dev-guide.rust-lang.org/diagnostics.html#lint-naming
https://rustc-dev-guide.rust-lang.org/diagnostics.html#lint-naming
https://rustc-dev-guide.rust-lang.org/diagnostics.html#diagnostic-levels
https://rustc-dev-guide.rust-lang.org/diagnostics.html#diagnostic-levels
https://rustc-dev-guide.rust-lang.org/diagnostics.html#helpful-tips-and-options
https://rustc-dev-guide.rust-lang.org/diagnostics.html#helpful-tips-and-options
https://rustc-dev-guide.rust-lang.org/diagnostics.html#finding-the-source-of-errors
https://rustc-dev-guide.rust-lang.org/diagnostics.html#finding-the-source-of-errors
https://rustc-dev-guide.rust-lang.org/diagnostics.html#span
https://rustc-dev-guide.rust-lang.org/diagnostics.html#span
https://rustc-dev-guide.rust-lang.org/diagnostics.html#span
https://rustc-dev-guide.rust-lang.org/diagnostics.html#error-messages
https://rustc-dev-guide.rust-lang.org/diagnostics.html#error-messages
https://rustc-dev-guide.rust-lang.org/diagnostics.html#suggestions
https://rustc-dev-guide.rust-lang.org/diagnostics.html#suggestions
https://rustc-dev-guide.rust-lang.org/diagnostics.html#suggestion-style-guide
https://rustc-dev-guide.rust-lang.org/diagnostics.html#suggestion-style-guide
https://rustc-dev-guide.rust-lang.org/diagnostics.html#lints
https://rustc-dev-guide.rust-lang.org/diagnostics.html#lints
https://rustc-dev-guide.rust-lang.org/diagnostics.html#when-do-lints-run
https://rustc-dev-guide.rust-lang.org/diagnostics.html#when-do-lints-run
https://rustc-dev-guide.rust-lang.org/diagnostics.html#lint-definition-terms
https://rustc-dev-guide.rust-lang.org/diagnostics.html#lint-definition-terms
https://rustc-dev-guide.rust-lang.org/diagnostics.html#declaring-a-lint
https://rustc-dev-guide.rust-lang.org/diagnostics.html#declaring-a-lint
https://rustc-dev-guide.rust-lang.org/diagnostics.html#edition-gated-lints
https://rustc-dev-guide.rust-lang.org/diagnostics.html#edition-gated-lints
https://rustc-dev-guide.rust-lang.org/diagnostics.html#feature-gated-lints
https://rustc-dev-guide.rust-lang.org/diagnostics.html#feature-gated-lints
https://rustc-dev-guide.rust-lang.org/diagnostics.html#future-incompatible-lints
https://rustc-dev-guide.rust-lang.org/diagnostics.html#future-incompatible-lints
https://rustc-dev-guide.rust-lang.org/diagnostics.html#renaming-or-removing-a-lint
https://rustc-dev-guide.rust-lang.org/diagnostics.html#renaming-or-removing-a-lint
https://rustc-dev-guide.rust-lang.org/diagnostics.html#lint-groups
https://rustc-dev-guide.rust-lang.org/diagnostics.html#lint-groups
https://rustc-dev-guide.rust-lang.org/diagnostics.html#linting-early-in-the-compiler
https://rustc-dev-guide.rust-lang.org/diagnostics.html#linting-early-in-the-compiler
https://rustc-dev-guide.rust-lang.org/diagnostics.html#linting-even-earlier-in-the-compiler
https://rustc-dev-guide.rust-lang.org/diagnostics.html#linting-even-earlier-in-the-compiler
https://rustc-dev-guide.rust-lang.org/diagnostics.html#json-diagnostic-output
https://rustc-dev-guide.rust-lang.org/diagnostics.html#json-diagnostic-output
https://rustc-dev-guide.rust-lang.org/diagnostics.html#rustc_on_unimplemented
https://rustc-dev-guide.rust-lang.org/diagnostics.html#rustc_on_unimplemented
https://rustc-dev-guide.rust-lang.org/diagnostics.html#rustc_on_unimplemented
https://rustc-dev-guide.rust-lang.org/print.html#diagnostic-structure
https://rustc-dev-guide.rust-lang.org/print.html#diagnostic-structure

• Level (error , warning , etc.). It indicates the severity of the message. (See

diagnostic levels)

• Code (for example, for "mismatched types", it is E0308). It helps users get more

information about the current error through an extended description of the

problem in the error code index. Diagnostics created by lints don't have a code in

the emitted message.

• Message. It is the main description of the problem. It should be general and able to

stand on its own, so that it can make sense even in isolation.

• Diagnostic window. This contains several things:

◦ The path, line number and column of the beginning of the primary span.

◦ The users' affected code and its surroundings.

◦ Primary and secondary spans underlying the users' code. These spans can

optionally contain one or more labels.

▪ Primary spans should have enough text to describe the problem in such

a way that if it were the only thing being displayed (for example, in an

IDE) it would still make sense. Because it is "spatially aware" (it points at

the code), it can generally be more succinct than the error message.

▪ If cluttered output can be foreseen in cases when multiple span labels

overlap, it is a good idea to tweak the output appropriately. For example,

the if/else arms have incompatible types error uses different spans

depending on whether the arms are all in the same line, if one of the

arms is empty and if none of those cases applies.

• Sub-diagnostics. Any error can have multiple sub-diagnostics that look similar to the

main part of the error. These are used for cases where the order of the explanation

might not correspond with the order of the code. If the order of the explanation can

be "order free", leveraging secondary labels in the main diagnostic is preferred, as it

is typically less verbose.

The text should be matter of fact and avoid capitalization and periods, unless multiple

sentences are needed:

error[E0000]: main error message
 --> file.rs:LL:CC
 |
LL | <code>
 | -^^^^- secondary label
 | |
 | primary label
 |
 = note: note without a `Span`, created with `.note`
note: sub-diagnostic message for `.span_note`
 --> file.rs:LL:CC
 |
LL | more code
 | ^^^^

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

517 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/diagnostics.html#diagnostic-levels
https://rustc-dev-guide.rust-lang.org/diagnostics.html#diagnostic-levels

When code or an identifier must appear in a message or label, it should be surrounded

with backticks:

Error codes and explanations

Most errors have an associated error code. Error codes are linked to long-form

explanations which contains an example of how to trigger the error and in-depth details

about the error. They may be viewed with the --explain flag, or via the error index.

As a general rule, give an error a code (with an associated explanation) if the explanation

would give more information than the error itself. A lot of the time it's better to put all the

information in the emitted error itself. However, sometimes that would make the error

verbose or there are too many possible triggers to include useful information for all cases

in the error, in which case it's a good idea to add an explanation.1 As always, if you are

not sure, just ask your reviewer!

If you decide to add a new error with an associated error code, please read this section

for a guide and important details about the process.

1 This rule of thumb was suggested by @estebank here.

Lints versus fixed diagnostics

Some messages are emitted via lints, where the user can control the level. Most

diagnostics are hard-coded such that the user cannot control the level.

Usually it is obvious whether a diagnostic should be "fixed" or a lint, but there are some

grey areas.

Here are a few examples:

• Borrow checker errors: these are fixed errors. The user cannot adjust the level of

these diagnostics to silence the borrow checker.

• Dead code: this is a lint. While the user probably doesn't want dead code in their

crate, making this a hard error would make refactoring and development very

painful.

• future-incompatible lints: these are silencable lints. It was decided that making them

fixed errors would cause too much breakage, so warnings are instead emitted, and

will eventually be turned into fixed (hard) errors.

error: the fobrulator needs to be krontrificated

error: the identifier `foo.bar` is invalid

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

518 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#error-codes-and-explanations
https://rustc-dev-guide.rust-lang.org/print.html#error-codes-and-explanations
https://doc.rust-lang.org/error-index.html
https://doc.rust-lang.org/error-index.html
https://rustc-dev-guide.rust-lang.org/print.html#estebank
https://rustc-dev-guide.rust-lang.org/print.html#estebank
https://rustc-dev-guide.rust-lang.org/diagnostics/error-codes.html
https://rustc-dev-guide.rust-lang.org/diagnostics/error-codes.html
https://github.com/rust-lang/rustc-dev-guide/pull/967#issuecomment-733218283
https://github.com/rust-lang/rustc-dev-guide/pull/967#issuecomment-733218283
https://rustc-dev-guide.rust-lang.org/print.html#lints-versus-fixed-diagnostics
https://rustc-dev-guide.rust-lang.org/print.html#lints-versus-fixed-diagnostics
https://rustc-dev-guide.rust-lang.org/diagnostics.html#lints
https://rustc-dev-guide.rust-lang.org/diagnostics.html#lints
https://rustc-dev-guide.rust-lang.org/diagnostics.html#future-incompatible-lints
https://rustc-dev-guide.rust-lang.org/diagnostics.html#future-incompatible-lints

Hard-coded warnings (those using the span_warn methods) should be avoided for

normal code, preferring to use lints instead. Some cases, such as warnings with CLI flags,

will require the use of hard-coded warnings.

See the deny lint level below for guidelines when to use an error-level lint instead of a

fixed error.

Diagnostic output style guide

• Write in plain simple English. If your message, when shown on a – possibly small –

screen (which hasn't been cleaned for a while), cannot be understood by a normal

programmer, who just came out of bed after a night partying, it's too complex.

• Error , Warning , Note , and Help messages start with a lowercase letter and do

not end with punctuation.

• Error messages should be succinct. Users will see these error messages many times,

and more verbose descriptions can be viewed with the --explain flag. That said,

don't make it so terse that it's hard to understand.

• The word "illegal" is illegal. Prefer "invalid" or a more specific word instead.

• Errors should document the span of code where they occur (use

rustc_errors::diagnostic_builder::DiagnosticBuilder 's span_* methods or a

diagnostic struct's #[primary_span] to easily do this). Also note other spans that

have contributed to the error if the span isn't too large.

• When emitting a message with span, try to reduce the span to the smallest amount

possible that still signifies the issue

• Try not to emit multiple error messages for the same error. This may require

detecting duplicates.

• When the compiler has too little information for a specific error message, consult

with the compiler team to add new attributes for library code that allow adding

more information. For example see #[rustc_on_unimplemented] . Use these

annotations when available!

• Keep in mind that Rust's learning curve is rather steep, and that the compiler

messages are an important learning tool.

• When talking about the compiler, call it the compiler , not Rust or rustc .

Lint naming

From RFC 0344, lint names should be consistent, with the following guidelines:

The basic rule is: the lint name should make sense when read as "allow lint-name" or

"allow lint-name items". For example, "allow deprecated items" and "allow dead_code "

makes sense, while "allow unsafe_block " is ungrammatical (should be plural).

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

519 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/diagnostics.html#diagnostic-levels
https://rustc-dev-guide.rust-lang.org/diagnostics.html#diagnostic-levels
https://rustc-dev-guide.rust-lang.org/print.html#diagnostic-output-style-guide
https://rustc-dev-guide.rust-lang.org/print.html#diagnostic-output-style-guide
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_errors/diagnostic_builder/struct.DiagnosticBuilder.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_errors/diagnostic_builder/struct.DiagnosticBuilder.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_errors/diagnostic_builder/struct.DiagnosticBuilder.html
https://rustc-dev-guide.rust-lang.org/diagnostics.html#rustc_on_unimplemented
https://rustc-dev-guide.rust-lang.org/diagnostics.html#rustc_on_unimplemented
https://rustc-dev-guide.rust-lang.org/diagnostics.html#rustc_on_unimplemented
https://rustc-dev-guide.rust-lang.org/print.html#lint-naming
https://rustc-dev-guide.rust-lang.org/print.html#lint-naming
https://github.com/rust-lang/rfcs/blob/master/text/0344-conventions-galore.md#lints
https://github.com/rust-lang/rfcs/blob/master/text/0344-conventions-galore.md#lints

• Lint names should state the bad thing being checked for, e.g. deprecated , so that

#[allow(deprecated)] (items) reads correctly. Thus ctypes is not an appropriate

name; improper_ctypes is.

• Lints that apply to arbitrary items (like the stability lints) should just mention what

they check for: use deprecated rather than deprecated_items . This keeps lint

names short. (Again, think "allow lint-name items".)

• If a lint applies to a specific grammatical class, mention that class and use the plural

form: use unused_variables rather than unused_variable . This makes

#[allow(unused_variables)] read correctly.

• Lints that catch unnecessary, unused, or useless aspects of code should use the

term unused , e.g. unused_imports , unused_typecasts .

• Use snake case in the same way you would for function names.

Diagnostic levels

Guidelines for different diagnostic levels:

• error : emitted when the compiler detects a problem that makes it unable to

compile the program, either because the program is invalid or the programmer has

decided to make a specific warning into an error.

• warning : emitted when the compiler detects something odd about a program. Care

should be taken when adding warnings to avoid warning fatigue, and avoid false-

positives where there really isn't a problem with the code. Some examples of when

it is appropriate to issue a warning:

◦ A situation where the user should take action, such as swap out a deprecated

item, or use a Result , but otherwise doesn't prevent compilation.

◦ Unnecessary syntax that can be removed without affecting the semantics of

the code. For example, unused code, or unnecessary unsafe .

◦ Code that is very likely to be incorrect, dangerous, or confusing, but the

language technically allows, and is not ready or confident enough to make an

error. For example unused_comparisons (out of bounds comparisons) or

bindings_with_variant_name (the user likely did not intend to create a

binding in a pattern).

◦ Future-incompatible lints, where something was accidentally or erroneously

accepted in the past, but rejecting would cause excessive breakage in the

ecosystem.

◦ Stylistic choices. For example, camel or snake case, or the dyn trait warning in

the 2018 edition. These have a high bar to be added, and should only be used

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

520 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#diagnostic-levels
https://rustc-dev-guide.rust-lang.org/print.html#diagnostic-levels
https://rustc-dev-guide.rust-lang.org/diagnostics.html#future-incompatible
https://rustc-dev-guide.rust-lang.org/diagnostics.html#future-incompatible

in exceptional circumstances. Other stylistic choices should either be allow-by-

default lints, or part of other tools like Clippy or rustfmt.

• help : emitted following an error or warning to give additional information to the

user about how to solve their problem. These messages often include a suggestion

string and rustc_errors::Applicability confidence level to guide automated

source fixes by tools. See the Suggestions section for more details.

The error or warning portion should not suggest how to fix the problem, only the

"help" sub-diagnostic should.

• note : emitted to given more context and identify additional circumstances and

parts of the code that caused the warning or error. For example, the borrow checker

will note any previous conflicting borrows.

help vs note : help should be used to show changes the user can possibly make

to fix the problem. note should be used for everything else, such as other context,

information and facts, online resources to read, etc.

Not to be confused with lint levels, whose guidelines are:

• forbid : Lints should never default to forbid .

• deny : Equivalent to error diagnostic level. Some examples:

◦ A future-incompatible or edition-based lint that has graduated from the

warning level.

◦ Something that has an extremely high confidence that is incorrect, but still

want an escape hatch to allow it to pass.

• warn : Equivalent to the warning diagnostic level. See warning above for

guidelines.

• allow : Examples of the kinds of lints that should default to allow :

◦ The lint has a too high false positive rate.

◦ The lint is too opinionated.

◦ The lint is experimental.

◦ The lint is used for enforcing something that is not normally enforced. For

example, the unsafe_code lint can be used to prevent usage of unsafe code.

More information about lint levels can be found in the rustc book and the reference.

Helpful tips and options

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

521 of 660 8/30/23, 09:47

https://doc.rust-lang.org/nightly/nightly-rustc/rustc_errors/enum.Applicability.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_errors/enum.Applicability.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_errors/enum.Applicability.html
https://rustc-dev-guide.rust-lang.org/diagnostics.html#suggestions
https://rustc-dev-guide.rust-lang.org/diagnostics.html#suggestions
https://doc.rust-lang.org/nightly/rustc/lints/levels.html
https://doc.rust-lang.org/nightly/rustc/lints/levels.html
https://doc.rust-lang.org/nightly/reference/attributes/diagnostics.html#lint-check-attributes
https://doc.rust-lang.org/nightly/reference/attributes/diagnostics.html#lint-check-attributes
https://rustc-dev-guide.rust-lang.org/print.html#helpful-tips-and-options-1
https://rustc-dev-guide.rust-lang.org/print.html#helpful-tips-and-options-1

Finding the source of errors

There are three main ways to find where a given error is emitted:

• grep for either a sub-part of the error message/label or error code. This usually

works well and is straightforward, but there are some cases where the code

emitting the error is removed from the code where the error is constructed behind

a relatively deep call-stack. Even then, it is a good way to get your bearings.

• Invoking rustc with the nightly-only flag -Z treat-err-as-bug=1 will treat the first

error being emitted as an Internal Compiler Error, which allows you to get a stack

trace at the point the error has been emitted. Change the 1 to something else if

you wish to trigger on a later error.

There are limitations with this approach:

◦ Some calls get elided from the stack trace because they get inlined in the

compiled rustc .

◦ The construction of the error is far away from where it is emitted, a problem

similar to the one we faced with the grep approach. In some cases, we buffer

multiple errors in order to emit them in order.

• Invoking rustc with -Z track-diagnostics will print error creation locations

alongside the error.

The regular development practices apply: judicious use of debug!() statements and use

of a debugger to trigger break points in order to figure out in what order things are

happening.

Span

Span is the primary data structure in rustc used to represent a location in the code

being compiled. Span s are attached to most constructs in HIR and MIR, allowing for more

informative error reporting.

A Span can be looked up in a SourceMap to get a "snippet" useful for displaying errors

with span_to_snippet and other similar methods on the SourceMap .

Error messages

The rustc_errors crate defines most of the utilities used for reporting errors.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

522 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#finding-the-source-of-errors
https://rustc-dev-guide.rust-lang.org/print.html#finding-the-source-of-errors
https://rustc-dev-guide.rust-lang.org/print.html#span
https://rustc-dev-guide.rust-lang.org/print.html#span
https://rustc-dev-guide.rust-lang.org/print.html#span
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/struct.Span.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/struct.Span.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/struct.Span.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/source_map/struct.SourceMap.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/source_map/struct.SourceMap.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/source_map/struct.SourceMap.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/source_map/struct.SourceMap.html#method.span_to_snippet
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/source_map/struct.SourceMap.html#method.span_to_snippet
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/source_map/struct.SourceMap.html#method.span_to_snippet
https://rustc-dev-guide.rust-lang.org/print.html#error-messages
https://rustc-dev-guide.rust-lang.org/print.html#error-messages
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_errors/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_errors/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_errors/index.html

Diagnostics can be implemented as types which implement the IntoDiagnostic trait.

This is preferred for new diagnostics as it enforces a separation between diagnostic

emitting logic and the main code paths. For less-complex diagnostics, the

IntoDiagnostic trait can be derived -- see Diagnostic structs. Within the trait

implementation, the APIs described below can be used as normal.

Session and ParseSess have methods (or fields with methods) that allow reporting

errors. These methods usually have names like span_err or struct_span_err or

span_warn , etc... There are lots of them; they emit different types of "errors", such as

warnings, errors, fatal errors, suggestions, etc.

In general, there are two classes of such methods: ones that emit an error directly and

ones that allow finer control over what to emit. For example, span_err emits the given

error message at the given Span , but struct_span_err instead returns a

DiagnosticBuilder .

Most of these methods will accept strings, but it is recommended that typed identifiers

for translatable diagnostics be used for new diagnostics (see Translation).

DiagnosticBuilder allows you to add related notes and suggestions to an error before

emitting it by calling the emit method. (Failing to either emit or cancel a

DiagnosticBuilder will result in an ICE.) See the docs for more info on what you can do.

// Get a DiagnosticBuilder. This does _not_ emit an error yet.
let mut err = sess.struct_span_err(sp, fluent::example::example_error);

// In some cases, you might need to check if `sp` is generated by a macro to
// avoid printing weird errors about macro-generated code.

if let Ok(snippet) = sess.source_map().span_to_snippet(sp) {
// Use the snippet to generate a suggested fix

 err.span_suggestion(suggestion_sp, fluent::example::try_qux_suggestion,
format!("qux {}", snippet));
} else {

// If we weren't able to generate a snippet, then emit a "help" message
// instead of a concrete "suggestion". In practice this is unlikely to be
// reached.

 err.span_help(suggestion_sp, fluent::example::qux_suggestion);
}

// emit the error
err.emit();

example-example-error = oh no! this is an error!
 .try-qux-suggestion = try using a qux here
 .qux-suggestion = you could use a qux here instead

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

523 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/diagnostics/diagnostic-structs.html
https://rustc-dev-guide.rust-lang.org/diagnostics/diagnostic-structs.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_session/struct.Session.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_session/struct.Session.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_session/struct.Session.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_session/parse/struct.ParseSess.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_session/parse/struct.ParseSess.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_session/parse/struct.ParseSess.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_session/struct.Session.html#method.span_err
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_session/struct.Session.html#method.span_err
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_session/struct.Session.html#method.span_err
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_session/struct.Session.html#method.struct_span_err
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_session/struct.Session.html#method.struct_span_err
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_session/struct.Session.html#method.struct_span_err
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_errors/diagnostic_builder/struct.DiagnosticBuilder.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_errors/diagnostic_builder/struct.DiagnosticBuilder.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_errors/diagnostic_builder/struct.DiagnosticBuilder.html
https://rustc-dev-guide.rust-lang.org/diagnostics/translation.html
https://rustc-dev-guide.rust-lang.org/diagnostics/translation.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_errors/diagnostic_builder/struct.DiagnosticBuilder.html#method.emit
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_errors/diagnostic_builder/struct.DiagnosticBuilder.html#method.emit
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_errors/diagnostic_builder/struct.DiagnosticBuilder.html#method.emit
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_errors/struct.Diagnostic.html#method.cancel
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_errors/struct.Diagnostic.html#method.cancel
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_errors/diagnostic_builder/struct.DiagnosticBuilder.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_errors/diagnostic_builder/struct.DiagnosticBuilder.html

Suggestions

In addition to telling the user exactly why their code is wrong, it's oftentimes furthermore

possible to tell them how to fix it. To this end, DiagnosticBuilder offers a structured

suggestions API, which formats code suggestions pleasingly in the terminal, or (when the

--error-format json flag is passed) as JSON for consumption by tools like rustfix .

Not all suggestions should be applied mechanically, they have a degree of confidence in

the suggested code, from high (Applicability::MachineApplicable) to low

(Applicability::MaybeIncorrect). Be conservative when choosing the level. Use the

span_suggestion method of DiagnosticBuilder to make a suggestion. The last

argument provides a hint to tools whether the suggestion is mechanically applicable or

not.

Suggestions point to one or more spans with corresponding code that will replace their

current content.

The message that accompanies them should be understandable in the following contexts:

• shown as an independent sub-diagnostic (this is the default output)

• shown as a label pointing at the affected span (this is done automatically if some

heuristics for verbosity are met)

• shown as a help sub-diagnostic with no content (used for cases where the

suggestion is obvious from the text, but we still want to let tools to apply them))

• not shown (used for very obvious cases, but we still want to allow tools to apply

them)

For example, to make our qux suggestion machine-applicable, we would do:

This might emit an error like

let mut err = sess.struct_span_err(sp, fluent::example::message);

if let Ok(snippet) = sess.source_map().span_to_snippet(sp) {
 err.span_suggestion(
 suggestion_sp,
 fluent::example::try_qux_suggestion,

format!("qux {}", snippet),
 Applicability::MachineApplicable,
);
} else {
 err.span_help(suggestion_sp, fluent::example::qux_suggestion);
}

err.emit();

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

524 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#suggestions
https://rustc-dev-guide.rust-lang.org/print.html#suggestions
https://github.com/rust-lang/rustfix
https://github.com/rust-lang/rustfix
https://github.com/rust-lang/rustfix
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_errors/struct.DiagnosticBuilder.html#method.span_suggestion
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_errors/struct.DiagnosticBuilder.html#method.span_suggestion
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_errors/struct.DiagnosticBuilder.html#method.span_suggestion

In some cases, like when the suggestion spans multiple lines or when there are multiple

suggestions, the suggestions are displayed on their own:

The possible values of Applicability are:

• MachineApplicable : Can be applied mechanically.

• HasPlaceholders : Cannot be applied mechanically because it has placeholder text

in the suggestions. For example: try adding a type: `let x: <type>` .

• MaybeIncorrect : Cannot be applied mechanically because the suggestion may or

may not be a good one.

• Unspecified : Cannot be applied mechanically because we don't know which of the

above cases it falls into.

Suggestion Style Guide

• Suggestions should not be a question. In particular, language like "did you mean"

should be avoided. Sometimes, it's unclear why a particular suggestion is being

made. In these cases, it's better to be upfront about what the suggestion is.

Compare "did you mean: Foo " vs. "there is a struct with a similar name: Foo ".

• The message should not contain any phrases like "the following", "as shown", etc.

Use the span to convey what is being talked about.

$ rustc mycode.rs
error[E0999]: oh no! this is an error!
 --> mycode.rs:3:5
 |
3 | sad()
 | ^ help: try using a qux here: `qux sad()`

error: aborting due to previous error

For more information about this error, try `rustc --explain E0999`.

error[E0999]: oh no! this is an error!
 --> mycode.rs:3:5
 |
3 | sad()
 | ^
help: try using a qux here:
 |
3 | qux sad()
 | ^^^

error: aborting due to previous error

For more information about this error, try `rustc --explain E0999`.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

525 of 660 8/30/23, 09:47

https://doc.rust-lang.org/nightly/nightly-rustc/rustc_errors/enum.Applicability.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_errors/enum.Applicability.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_errors/enum.Applicability.html
https://rustc-dev-guide.rust-lang.org/print.html#suggestion-style-guide
https://rustc-dev-guide.rust-lang.org/print.html#suggestion-style-guide

• The message may contain further instruction such as "to do xyz, use" or "to do xyz,

use abc".

• The message may contain a name of a function, variable, or type, but avoid whole

expressions.

Lints

The compiler linting infrastructure is defined in the rustc_middle::lint module.

When do lints run?

Different lints will run at different times based on what information the lint needs to do

its job. Some lints get grouped into passes where the lints within a pass are processed

together via a single visitor. Some of the passes are:

• Pre-expansion pass: Works on AST nodes before macro expansion. This should

generally be avoided.

◦ Example: keyword_idents checks for identifiers that will become keywords in

future editions, but is sensitive to identifiers used in macros.

• Early lint pass: Works on AST nodes after macro expansion and name resolution,

just before HIR lowering. These lints are for purely syntactical lints.

◦ Example: The unsued_parens lint checks for parenthesized-expressions in

situations where they are not needed, like an if condition.

• Late lint pass: Works on HIR nodes, towards the end of analysis (after borrow

checking, etc.). These lints have full type information available. Most lints are late.

◦ Example: The invalid_value lint (which checks for obviously invalid

uninitialized values) is a late lint because it needs type information to figure

out whether a type allows being left uninitialized.

• MIR pass: Works on MIR nodes. This isn't quite the same as other passes; lints that

work on MIR nodes have their own methods for running.

◦ Example: The arithmetic_overflow lint is emitted when it detects a constant

value that may overflow.

Most lints work well via the pass systems, and they have a fairly straightforward interface

and easy way to integrate (mostly just implementing a specific check function). However,

some lints are easier to write when they live on a specific code path anywhere in the

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

526 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#lints
https://rustc-dev-guide.rust-lang.org/print.html#lints
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/lint/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/lint/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/lint/index.html
https://rustc-dev-guide.rust-lang.org/print.html#when-do-lints-run
https://rustc-dev-guide.rust-lang.org/print.html#when-do-lints-run
https://rustc-dev-guide.rust-lang.org/the-parser.html
https://rustc-dev-guide.rust-lang.org/the-parser.html
https://rustc-dev-guide.rust-lang.org/macro-expansion.html
https://rustc-dev-guide.rust-lang.org/macro-expansion.html
https://doc.rust-lang.org/rustc/lints/listing/allowed-by-default.html#keyword-idents
https://doc.rust-lang.org/rustc/lints/listing/allowed-by-default.html#keyword-idents
https://doc.rust-lang.org/rustc/lints/listing/allowed-by-default.html#keyword-idents
https://rustc-dev-guide.rust-lang.org/the-parser.html
https://rustc-dev-guide.rust-lang.org/the-parser.html
https://rustc-dev-guide.rust-lang.org/macro-expansion.html
https://rustc-dev-guide.rust-lang.org/macro-expansion.html
https://rustc-dev-guide.rust-lang.org/lowering.html
https://rustc-dev-guide.rust-lang.org/lowering.html
https://doc.rust-lang.org/rustc/lints/listing/warn-by-default.html#unused-parens
https://doc.rust-lang.org/rustc/lints/listing/warn-by-default.html#unused-parens
https://doc.rust-lang.org/rustc/lints/listing/warn-by-default.html#unused-parens
https://rustc-dev-guide.rust-lang.org/hir.html
https://rustc-dev-guide.rust-lang.org/hir.html
https://rustc-dev-guide.rust-lang.org/part-4-intro.html
https://rustc-dev-guide.rust-lang.org/part-4-intro.html
https://doc.rust-lang.org/rustc/lints/listing/warn-by-default.html#invalid-value
https://doc.rust-lang.org/rustc/lints/listing/warn-by-default.html#invalid-value
https://doc.rust-lang.org/rustc/lints/listing/warn-by-default.html#invalid-value
https://rustc-dev-guide.rust-lang.org/mir/index.html
https://rustc-dev-guide.rust-lang.org/mir/index.html
https://doc.rust-lang.org/rustc/lints/listing/deny-by-default.html#arithmetic-overflow
https://doc.rust-lang.org/rustc/lints/listing/deny-by-default.html#arithmetic-overflow
https://doc.rust-lang.org/rustc/lints/listing/deny-by-default.html#arithmetic-overflow

compiler. For example, the unused_mut lint is implemented in the borrow checker as it

requires some information and state in the borrow checker.

Some of these inline lints fire before the linting system is ready. Those lints will be

buffered where they are held until later phases of the compiler when the linting system is

ready. See Linting early in the compiler.

Lint definition terms

Lints are managed via the LintStore and get registered in various ways. The following

terms refer to the different classes of lints generally based on how they are registered.

• Built-in lints are defined inside the compiler source.

• Driver-registered lints are registered when the compiler driver is created by an

external driver. This is the mechanism used by Clippy, for example.

• Plugin lints are registered by the deprecated plugin system.

• Tool lints are lints with a path prefix like clippy:: or rustdoc:: .

• Internal lints are the rustc:: scoped tool lints that only run on the rustc source tree

itself and are defined in the compiler source like a regular built-in lint.

More information about lint registration can be found in the LintStore chapter.

Declaring a lint

The built-in compiler lints are defined in the rustc_lint crate. Lints that need to be

implemented in other crates are defined in rustc_lint_defs . You should prefer to place

lints in rustc_lint if possible. One benefit is that it is close to the dependency root, so it

can be much faster to work on.

Every lint is implemented via a struct that implements the LintPass trait (you can

also implement one of the more specific lint pass traits, either EarlyLintPass or

LateLintPass depending on when is best for your lint to run). The trait implementation

allows you to check certain syntactic constructs as the linter walks the AST. You can then

choose to emit lints in a very similar way to compile errors.

You also declare the metadata of a particular lint via the declare_lint! macro. This

includes the name, the default level, a short description, and some more details.

Note that the lint and the lint pass must be registered with the compiler.

For example, the following lint checks for uses of while true { ... } and suggests

using loop { ... } instead.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

527 of 660 8/30/23, 09:47

https://doc.rust-lang.org/rustc/lints/listing/warn-by-default.html#unused-mut
https://doc.rust-lang.org/rustc/lints/listing/warn-by-default.html#unused-mut
https://doc.rust-lang.org/rustc/lints/listing/warn-by-default.html#unused-mut
https://rustc-dev-guide.rust-lang.org/diagnostics.html#linting-early-in-the-compiler
https://rustc-dev-guide.rust-lang.org/diagnostics.html#linting-early-in-the-compiler
https://rustc-dev-guide.rust-lang.org/print.html#lint-definition-terms
https://rustc-dev-guide.rust-lang.org/print.html#lint-definition-terms
https://rustc-dev-guide.rust-lang.org/diagnostics/lintstore.html
https://rustc-dev-guide.rust-lang.org/diagnostics/lintstore.html
https://rustc-dev-guide.rust-lang.org/diagnostics/lintstore.html
https://doc.rust-lang.org/nightly/unstable-book/language-features/plugin.html
https://doc.rust-lang.org/nightly/unstable-book/language-features/plugin.html
https://rustc-dev-guide.rust-lang.org/diagnostics/lintstore.html
https://rustc-dev-guide.rust-lang.org/diagnostics/lintstore.html
https://rustc-dev-guide.rust-lang.org/print.html#declaring-a-lint
https://rustc-dev-guide.rust-lang.org/print.html#declaring-a-lint
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_lint/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_lint/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_lint/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_lint_defs/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_lint_defs/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_lint_defs/index.html

// Declare a lint called `WHILE_TRUE`
declare_lint! {
 WHILE_TRUE,

// warn-by-default
 Warn,

// This string is the lint description
"suggest using `loop { }` instead of `while true { }`"

}

// This declares a struct and a lint pass, providing a list of associated
lints. The
// compiler currently doesn't use the associated lints directly (e.g., to not
// run the pass or otherwise check that the pass emits the appropriate set of
// lints). However, it's good to be accurate here as it's possible that we're
// going to register the lints via the get_lints method on our lint pass
(that
// this macro generates).
declare_lint_pass!(WhileTrue => [WHILE_TRUE]);

// Helper function for `WhileTrue` lint.
// Traverse through any amount of parenthesis and return the first non-parens
expression.
fn pierce_parens(mut expr: &ast::Expr) -> &ast::Expr {

while let ast::ExprKind::Paren(sub) = &expr.kind {
 expr = sub;
 }
 expr
}

// `EarlyLintPass` has lots of methods. We only override the definition of
// `check_expr` for this lint because that's all we need, but you could
// override other methods for your own lint. See the rustc docs for a full
// list of methods.
impl EarlyLintPass for WhileTrue {

fn check_expr(&mut self, cx: &EarlyContext<'_>, e: &ast::Expr) {
if let ast::ExprKind::While(cond, ..) = &e.kind {

if let ast::ExprKind::Lit(ref lit) = pierce_parens(cond).kind {
if let ast::LitKind::Bool(true) = lit.kind {

if !lit.span.from_expansion() {
let condition_span =

cx.sess.source_map().guess_head_span(e.span);
 cx.struct_span_lint(WHILE_TRUE, condition_span,
|lint| {
 lint.build(fluent::example::use_loop)
 .span_suggestion_short(
 condition_span,
 fluent::example::suggestion,

"loop".to_owned(),
 Applicability::MachineApplicable,
)
 .emit();
 })
 }
 }

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

528 of 660 8/30/23, 09:47

Edition-gated lints

Sometimes we want to change the behavior of a lint in a new edition. To do this, we just

add the transition to our invocation of declare_lint! :

This makes the ANONYMOUS_PARAMETERS lint allow-by-default in the 2015 edition but warn-

by-default in the 2018 edition.

Feature-gated lints

Lints belonging to a feature should only be usable if the feature is enabled in the crate. To

support this, lint declarations can contain a feature gate like so:

Future-incompatible lints

The use of the term future-incompatible within the compiler has a slightly broader

meaning than what rustc exposes to users of the compiler.

Inside rustc, future-incompatible lints are for signalling to the user that code they have

written may not compile in the future. In general, future-incompatible code exists for two

reasons:

 }
 }
 }
}

example-use-loop = denote infinite loops with `loop {"{"} ... {"}"}`
 .suggestion = use `loop`

declare_lint! {
pub ANONYMOUS_PARAMETERS,

 Allow,
"detects anonymous parameters",

 Edition::Edition2018 => Warn,
}

declare_lint! {
pub SOME_LINT_NAME,

 Warn,
"a new and useful, but feature gated lint",

 @feature_gate = sym::feature_name;
}

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

529 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#edition-gated-lints
https://rustc-dev-guide.rust-lang.org/print.html#edition-gated-lints
https://rustc-dev-guide.rust-lang.org/print.html#feature-gated-lints
https://rustc-dev-guide.rust-lang.org/print.html#feature-gated-lints
https://rustc-dev-guide.rust-lang.org/print.html#future-incompatible-lints
https://rustc-dev-guide.rust-lang.org/print.html#future-incompatible-lints

• The user has written unsound code that the compiler mistakenly accepted. While it

is within Rust's backwards compatibility guarantees to fix the soundness hole

(breaking the user's code), the lint is there to warn the user that this will happen in

some upcoming version of rustc regardless of which edition the code uses. This is the

meaning that rustc exclusively exposes to users as "future incompatible".

• The user has written code that will either no longer compiler or will change meaning

in an upcoming edition. These are often called "edition lints" and can be typically

seen in the various "edition compatibility" lint groups (e.g.,

rust_2021_compatibility) that are used to lint against code that will break if the

user updates the crate's edition.

A future-incompatible lint should be declared with the @future_incompatible additional

"field":

Notice the reason field which describes why the future incompatible change is

happening. This will change the diagnostic message the user receives as well as

determine which lint groups the lint is added to. In the example above, the lint is an

"edition lint" (since its "reason" is EditionError), signifying to the user that the use of

anonymous parameters will no longer compile in Rust 2018 and beyond.

Inside LintStore::register_lints, lints with future_incompatible fields get placed into

either edition-based lint groups (if their reason is tied to an edition) or into the

future_incompatibility lint group.

If you need a combination of options that's not supported by the declare_lint! macro,

you can always change the declare_lint! macro to support this.

Renaming or removing a lint

If it is determined that a lint is either improperly named or no longer needed, the lint

must be registered for renaming or removal, which will trigger a warning if a user tries to

use the old lint name. To declare a rename/remove, add a line with

store.register_renamed or store.register_removed to the code of the

declare_lint! {
pub ANONYMOUS_PARAMETERS,

 Allow,
"detects anonymous parameters",

 @future_incompatible = FutureIncompatibleInfo {
 reference: "issue #41686 <https://github.com/rust-lang/rust/issues
/41686>",
 reason:
FutureIncompatibilityReason::EditionError(Edition::Edition2018),
 };
}

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

530 of 660 8/30/23, 09:47

https://github.com/rust-lang/rust/blob/51fd129ac12d5bfeca7d216c47b0e337bf13e0c2/compiler/rustc_lint/src/context.rs#L212-L237
https://github.com/rust-lang/rust/blob/51fd129ac12d5bfeca7d216c47b0e337bf13e0c2/compiler/rustc_lint/src/context.rs#L212-L237
https://rustc-dev-guide.rust-lang.org/print.html#renaming-or-removing-a-lint
https://rustc-dev-guide.rust-lang.org/print.html#renaming-or-removing-a-lint
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_lint/struct.LintStore.html#method.register_renamed
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_lint/struct.LintStore.html#method.register_renamed
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_lint/struct.LintStore.html#method.register_renamed
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_lint/struct.LintStore.html#method.register_removed
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_lint/struct.LintStore.html#method.register_removed
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_lint/struct.LintStore.html#method.register_removed

rustc_lint::register_builtins function.

Lint Groups

Lints can be turned on in groups. These groups are declared in the register_builtins

function in rustc_lint::lib . The add_lint_group! macro is used to declare a new

group.

For example,

This defines the nonstandard_style group which turns on the listed lints. A user can turn

on these lints with a !#[warn(nonstandard_style)] attribute in the source code, or by

passing -W nonstandard-style on the command line.

Some lint groups are created automatically in LintStore::register_lints . For instance,

any lint declared with FutureIncompatibleInfo where the reason is

FutureIncompatibilityReason::FutureReleaseError (the default when

@future_incompatible is used in declare_lint!), will be added to the

future_incompatible lint group. Editions also have their own lint groups (e.g.,

rust_2021_compatibility) automatically generated for any lints signaling future-

incompatible code that will break in the specified edition.

Linting early in the compiler

On occasion, you may need to define a lint that runs before the linting system has been

initialized (e.g. during parsing or macro expansion). This is problematic because we need

to have computed lint levels to know whether we should emit a warning or an error or

nothing at all.

To solve this problem, we buffer the lints until the linting system is processed. Session

and ParseSess both have buffer_lint methods that allow you to buffer a lint for later.

The linting system automatically takes care of handling buffered lints later.

Thus, to define a lint that runs early in the compilation, one defines a lint like normal but

invokes the lint with buffer_lint .

store.register_renamed("single_use_lifetime", "single_use_lifetimes");

add_lint_group!(sess,
"nonstandard_style",

 NON_CAMEL_CASE_TYPES,
 NON_SNAKE_CASE,
 NON_UPPER_CASE_GLOBALS);

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

531 of 660 8/30/23, 09:47

https://doc.rust-lang.org/nightly/nightly-rustc/rustc_lint/fn.register_builtins.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_lint/fn.register_builtins.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_lint/fn.register_builtins.html
https://rustc-dev-guide.rust-lang.org/print.html#lint-groups
https://rustc-dev-guide.rust-lang.org/print.html#lint-groups
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_lint/fn.register_builtins.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_lint/fn.register_builtins.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_lint/fn.register_builtins.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_lint/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_lint/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_lint/index.html
https://rustc-dev-guide.rust-lang.org/print.html#linting-early-in-the-compiler
https://rustc-dev-guide.rust-lang.org/print.html#linting-early-in-the-compiler
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_session/struct.Session.html#method.buffer_lint
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_session/struct.Session.html#method.buffer_lint
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_session/struct.Session.html#method.buffer_lint
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_session/parse/struct.ParseSess.html#method.buffer_lint
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_session/parse/struct.ParseSess.html#method.buffer_lint
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_session/parse/struct.ParseSess.html#method.buffer_lint

Linting even earlier in the compiler

The parser (rustc_ast) is interesting in that it cannot have dependencies on any of the

other rustc* crates. In particular, it cannot depend on rustc_middle::lint or

rustc_lint , where all of the compiler linting infrastructure is defined. That's

troublesome!

To solve this, rustc_ast defines its own buffered lint type, which

ParseSess::buffer_lint uses. After macro expansion, these buffered lints are then

dumped into the Session::buffered_lints used by the rest of the compiler.

JSON diagnostic output

The compiler accepts an --error-format json flag to output diagnostics as JSON objects

(for the benefit of tools such as cargo fix). It looks like this:

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

532 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#linting-even-earlier-in-the-compiler
https://rustc-dev-guide.rust-lang.org/print.html#linting-even-earlier-in-the-compiler
https://rustc-dev-guide.rust-lang.org/print.html#json-diagnostic-output
https://rustc-dev-guide.rust-lang.org/print.html#json-diagnostic-output

Note that the output is a series of lines, each of which is a JSON object, but the series of

lines taken together is, unfortunately, not valid JSON, thwarting tools and tricks (such as

piping to python3 -m json.tool) that require such. (One speculates that this was

$ rustc json_error_demo.rs --error-format json
{"message":"cannot add `&str` to `{integer}`","code":
{"code":"E0277","explanation":"\nYou tried to use a type which doesn't
implement some trait in a place which\nexpected that trait. Erroneous code
example:\n\n```compile_fail,E0277\n// here we declare the Foo trait with a
bar method\ntrait Foo {\n fn bar(&self);\n}\n\n// we now declare a
function which takes an object implementing the Foo trait\nfn some_func<T:
Foo>(foo: T) {\n foo.bar();\n}\n\nfn main() {\n // we now call the
method with the i32 type, which doesn't implement\n // the Foo trait\n
some_func(5i32); // error: the trait bound `i32 : Foo` is not satisfied\n}
\n```\n\nIn order to fix this error, verify that the type you're using does
implement\nthe trait. Example:\n\n```\ntrait Foo {\n fn bar(&self);\n}
\n\nfn some_func<T: Foo>(foo: T) {\n foo.bar(); // we can now use this
method since i32 implements the\n // Foo trait\n}\n\n// we
implement the trait on the i32 type\nimpl Foo for i32 {\n fn bar(&self)
{}\n}\n\nfn main() {\n some_func(5i32); // ok!\n}\n```\n\nOr in a generic
context, an erroneous code example would look like:\n
\n```compile_fail,E0277\nfn some_func<T>(foo: T) {\n println!(\"{:?}\",
foo); // error: the trait `core::fmt::Debug` is not\n
// implemented for the type `T`\n}\n\nfn main() {\n // We now call
the method with the i32 type,\n // which *does* implement the Debug
trait.\n some_func(5i32);\n}\n```\n\nNote that the error here is in the
definition of the generic function: Although\nwe only call it with a
parameter that does implement `Debug`, the compiler\nstill rejects the
function: It must work with all possible input types. In\norder to make this
example compile, we need to restrict the generic type we're\naccepting:
\n\n```\nuse std::fmt;\n\n// Restrict the input type to types that implement
Debug.\nfn some_func<T: fmt::Debug>(foo: T) {\n println!(\"{:?}\",
foo);\n}\n\nfn main() {\n // Calling the method is still fine, as i32
implements Debug.\n some_func(5i32);\n\n // This would fail to compile
now:\n // struct WithoutDebug;\n // some_func(WithoutDebug);\n}\n```\n
\nRust only looks at the signature of the called function, as such it
must\nalready specify all requirements that will be used for every type
parameter.\n"},"level":"error","spans":
[{"file_name":"json_error_demo.rs","byte_start":50,"byte_end":51,"line_start"
:4,"line_end":4,"column_start":7,"column_end":8,"is_primary":true,"text":
[{"text":" a + b","highlight_start":7,"highlight_end":8}],"label":"no
implementation for `{integer} +
&str`","suggested_replacement":null,"suggestion_applicability":null,"expansio
n":null}],"children":[{"message":"the trait `std::ops::Add<&str>` is not
implemented for `{integer}`","code":null,"level":"help","spans":
[],"children":[],"rendered":null}],"rendered":"error[E0277]: cannot add
`&str` to `{integer}`\n --> json_error_demo.rs:4:7\n |\n4 | a + b\n |
^ no implementation for `{integer} + &str`\n |\n = help: the trait
`std::ops::Add<&str>` is not implemented for `{integer}`\n\n"}
{"message":"aborting due to previous
error","code":null,"level":"error","spans":[],"children":
[],"rendered":"error: aborting due to previous error\n\n"}
{"message":"For more information about this error, try `rustc --explain
E0277`.","code":null,"level":"","spans":[],"children":[],"rendered":"For more
information about this error, try `rustc --explain E0277`.\n"}

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

533 of 660 8/30/23, 09:47

https://docs.python.org/3/library/json.html#module-json.tool
https://docs.python.org/3/library/json.html#module-json.tool
https://docs.python.org/3/library/json.html#module-json.tool
https://docs.python.org/3/library/json.html#module-json.tool

intentional for LSP performance purposes, so that each line/object can be sent as it is

flushed?)

Also note the "rendered" field, which contains the "human" output as a string; this was

introduced so that UI tests could both make use of the structured JSON and see the

"human" output (well, sans colors) without having to compile everything twice.

The "human" readable and the json format emitter can be found under rustc_errors ,

both were moved from the rustc_ast crate to the rustc_errors crate.

The JSON emitter defines its own Diagnostic struct (and sub-structs) for the JSON

serialization. Don't confuse this with errors::Diagnostic !

#[rustc_on_unimplemented(...)]

The #[rustc_on_unimplemented] attribute allows trait definitions to add specialized

notes to error messages when an implementation was expected but not found. You can

refer to the trait's generic arguments by name and to the resolved type using Self .

For example:

When the user compiles this, they will see the following;

#![feature(rustc_attrs)]

#[rustc_on_unimplemented="an iterator over elements of type `{A}` \
 cannot be built from a collection of type `{Self}`"]
trait MyIterator<A> {

fn next(&mut self) -> A;
}

fn iterate_chars<I: MyIterator<char>>(i: I) {
// ...

}

fn main() {
 iterate_chars(&[1, 2, 3][..]);
}

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

534 of 660 8/30/23, 09:47

https://doc.rust-lang.org/nightly/nightly-rustc/rustc_errors/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_errors/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_errors/json/struct.Diagnostic.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_errors/json/struct.Diagnostic.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_errors/json/struct.Diagnostic.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_errors/json/struct.Diagnostic.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_errors/json/struct.Diagnostic.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_errors/struct.Diagnostic.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_errors/struct.Diagnostic.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_errors/struct.Diagnostic.html
https://rustc-dev-guide.rust-lang.org/print.html#rustc_on_unimplemented
https://rustc-dev-guide.rust-lang.org/print.html#rustc_on_unimplemented
https://rustc-dev-guide.rust-lang.org/print.html#rustc_on_unimplemented

rustc_on_unimplemented also supports advanced filtering for better targeting of

messages, as well as modifying specific parts of the error message. You target the text of:

• the main error message (message)

• the label (label)

• an extra note (note)

For example, the following attribute

Would generate the following output:

To allow more targeted error messages, it is possible to filter the application of these

fields based on a variety of attributes when using on :

• crate_local : whether the code causing the trait bound to not be fulfilled is part of

the user's crate. This is used to avoid suggesting code changes that would require

modifying a dependency.

• Any of the generic arguments that can be substituted in the text can be referred by

name as well for filtering, like Rhs="i32" , except for Self .

error[E0277]: the trait bound `&[{integer}]: MyIterator<char>` is not
satisfied
 --> <anon>:14:5
 |
14 | iterate_chars(&[1, 2, 3][..]);
 | ^^^^^^^^^^^^^ an iterator over elements of type `char` cannot be
built from a collection of type `&[{integer}]`
 |
 = help: the trait `MyIterator<char>` is not implemented for `&[{integer}]`
 = note: required by `iterate_chars`

#[rustc_on_unimplemented(
 message="message",
 label="label",
 note="note"
)]
trait MyIterator<A> {

fn next(&mut self) -> A;
}

error[E0277]: message
 --> <anon>:14:5
 |
14 | iterate_chars(&[1, 2, 3][..]);
 | ^^^^^^^^^^^^^ label
 |
 = note: note
 = help: the trait `MyIterator<char>` is not implemented for `&[{integer}]`
 = note: required by `iterate_chars`

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

535 of 660 8/30/23, 09:47

• _Self : to filter only on a particular calculated trait resolution, like

Self="std::iter::Iterator<char>" . This is needed because Self is a keyword

which cannot appear in attributes.

• direct : user-specified rather than derived obligation.

• from_method : usable both as boolean (whether the flag is present, like

crate_local) or matching against a particular method. Currently used for try .

• from_desugaring : usable both as boolean (whether the flag is present) or matching

against a particular desugaring. The desugaring is identified with its variant name in

the DesugaringKind enum.

For example, the Iterator trait can be annotated in the following way:

Which would produce the following outputs:

If you need to filter on multiple attributes, you can use all , any or not in the following

way:

#[rustc_on_unimplemented(
 on(
 _Self="&str",
 note="call `.chars()` or `.as_bytes()` on `{Self}`"
),
 message="`{Self}` is not an iterator",
 label="`{Self}` is not an iterator",
 note="maybe try calling `.iter()` or a similar method"
)]
pub trait Iterator {}

error[E0277]: `Foo` is not an iterator
 --> src/main.rs:4:16
 |
4 | for foo in Foo {}
 | ^^^ `Foo` is not an iterator
 |
 = note: maybe try calling `.iter()` or a similar method
 = help: the trait `std::iter::Iterator` is not implemented for `Foo`
 = note: required by `std::iter::IntoIterator::into_iter`

error[E0277]: `&str` is not an iterator
 --> src/main.rs:5:16
 |
5 | for foo in "" {}
 | ^^ `&str` is not an iterator
 |
 = note: call `.chars()` or `.bytes() on `&str`
 = help: the trait `std::iter::Iterator` is not implemented for `&str`
 = note: required by `std::iter::IntoIterator::into_iter`

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

536 of 660 8/30/23, 09:47

#[rustc_on_unimplemented(
 on(
 all(_Self="&str", T="std::string::String"),
 note="you can coerce a `{T}` into a `{Self}` by writing `&*variable`"
)
)]
pub trait From<T>: Sized { /* ... */ }

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

537 of 660 8/30/23, 09:47

Diagnostic and subdiagnostic structs

rustc has two diagnostic derives that can be used to create simple diagnostics, which are

recommended to be used when they are applicable: #[derive(Diagnostic)] and

#[derive(Subdiagnostic)] .

Diagnostics created with the derive macros can be translated into different languages

and each has a slug that uniquely identifies the diagnostic.

#[derive(Diagnostic)]

Instead of using the DiagnosticBuilder API to create and emit diagnostics, the

Diagnostic derive can be used. #[derive(Diagnostic)] is only applicable for simple

diagnostics that don't require much logic in deciding whether or not to add additional

subdiagnostics.

Consider the definition of the "field already declared" diagnostic shown below:

Diagnostic can only be applied to structs and enums. Attributes that are placed on the

type for structs are placed on each variants for enums (or vice versa). Each Diagnostic

has to have one attribute, #[diag(...)] , applied to the struct or each enum variant.

If an error has an error code (e.g. "E0624"), then that can be specified using the code

sub-attribute. Specifying a code isn't mandatory, but if you are porting a diagnostic that

uses DiagnosticBuilder to use Diagnostic then you should keep the code if there was

one.

#[diag(..)] must provide a slug as the first positional argument (a path to an item in

rustc_errors::fluent::*). A slug uniquely identifies the diagnostic and is also how the

compiler knows what error message to emit (in the default locale of the compiler, or in

the locale requested by the user). See translation documentation to learn more about

how translatable error messages are written and how slug items are generated.

#[derive(Diagnostic)]
#[diag(hir_analysis_field_already_declared, code = "E0124")]
pub struct FieldAlreadyDeclared {

pub field_name: Ident,
#[primary_span]
#[label]
pub span: Span,
#[label(previous_decl_label)]
pub prev_span: Span,

}

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

538 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#diagnostic-and-subdiagnostic-structs
https://rustc-dev-guide.rust-lang.org/print.html#diagnostic-and-subdiagnostic-structs
https://rustc-dev-guide.rust-lang.org/print.html#derivediagnostic
https://rustc-dev-guide.rust-lang.org/print.html#derivediagnostic
https://rustc-dev-guide.rust-lang.org/print.html#derivediagnostic
https://github.com/rust-lang/rust/blob/6201eabde85db854c1ebb57624be5ec699246b50/compiler/rustc_hir_analysis/src/errors.rs#L68-L77
https://github.com/rust-lang/rust/blob/6201eabde85db854c1ebb57624be5ec699246b50/compiler/rustc_hir_analysis/src/errors.rs#L68-L77
https://rustc-dev-guide.rust-lang.org/diagnostics/translation.html
https://rustc-dev-guide.rust-lang.org/diagnostics/translation.html

In our example, the Fluent message for the "field already declared" diagnostic looks like

this:

hir_analysis_field_already_declared is the slug from our example and is followed by

the diagnostic message.

Every field of the Diagnostic which does not have an annotation is available in Fluent

messages as a variable, like field_name in the example above. Fields can be annotated

#[skip_arg] if this is undesired.

Using the #[primary_span] attribute on a field (that has type Span) indicates the

primary span of the diagnostic which will have the main message of the diagnostic.

Diagnostics are more than just their primary message, they often include labels, notes,

help messages and suggestions, all of which can also be specified on a Diagnostic .

#[label] , #[help] , #[warning] and #[note] can all be applied to fields which have

the type Span . Applying any of these attributes will create the corresponding

subdiagnostic with that Span . These attributes will look for their diagnostic message in a

Fluent attribute attached to the primary Fluent message. In our example, #[label] will

look for hir_analysis_field_already_declared.label (which has the message "field

already declared"). If there is more than one subdiagnostic of the same type, then these

attributes can also take a value that is the attribute name to look for (e.g.

previous_decl_label in our example).

Other types have special behavior when used in a Diagnostic derive:

• Any attribute applied to an Option<T> will only emit a subdiagnostic if the option is

Some(..) .

• Any attribute applied to a Vec<T> will be repeated for each element of the vector.

#[help] , #[warning] and #[note] can also be applied to the struct itself, in which case

they work exactly like when applied to fields except the subdiagnostic won't have a Span .

These attributes can also be applied to fields of type () for the same effect, which when

combined with the Option type can be used to represent optional #[note] / #[help]

/ #[warning] subdiagnostics.

Suggestions can be emitted using one of four field attributes:

• #[suggestion(slug, code = "...", applicability = "...")]

• #[suggestion_hidden(slug, code = "...", applicability = "...")]

hir_analysis_field_already_declared =
 field `{$field_name}` is already declared
 .label = field already declared
 .previous_decl_label = `{$field_name}` first declared here

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

539 of 660 8/30/23, 09:47

• #[suggestion_short(slug, code = "...", applicability = "...")]

• #[suggestion_verbose(slug, code = "...", applicability = "...")]

Suggestions must be applied on either a Span field or a (Span, MachineApplicability)

field. Similarly to other field attributes, the slug specifies the Fluent attribute with the

message and defaults to the equivalent of .suggestion . code specifies the code that

should be suggested as a replacement and is a format string (e.g. {field_name} would

be replaced by the value of the field_name field of the struct), not a Fluent identifier.

applicability can be used to specify the applicability in the attribute, it cannot be used

when the field's type contains an Applicability .

In the end, the Diagnostic derive will generate an implementation of IntoDiagnostic

that looks like the following:

Now that we've defined our diagnostic, how do we use it? It's quite straightforward, just

create an instance of the struct and pass it to emit_err (or emit_warning):

Reference

#[derive(Diagnostic)] and #[derive(LintDiagnostic)] support the following

attributes:

• #[diag(slug, code = "...")]

impl IntoDiagnostic<'_> for FieldAlreadyDeclared {
fn into_diagnostic(self, handler: &'_ rustc_errors::Handler) ->

DiagnosticBuilder<'_> {
let mut diag =

handler.struct_err(rustc_errors::fluent::hir_analysis_field_already_declared)
;
 diag.set_span(self.span);
 diag.span_label(

self.span,
 rustc_errors::fluent::hir_analysis_label
);
 diag.span_label(

self.prev_span,
 rustc_errors::fluent::hir_analysis_previous_decl_label
);
 diag
 }
}

tcx.sess.emit_err(FieldAlreadyDeclared {
 field_name: f.ident,
 span: f.span,
 prev_span,
});

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

540 of 660 8/30/23, 09:47

https://github.com/rust-lang/rust/blob/f1112099eba41abadb6f921df7edba70affe92c5/compiler/rustc_hir_analysis/src/collect.rs#L823-L827
https://github.com/rust-lang/rust/blob/f1112099eba41abadb6f921df7edba70affe92c5/compiler/rustc_hir_analysis/src/collect.rs#L823-L827
https://rustc-dev-guide.rust-lang.org/print.html#reference
https://rustc-dev-guide.rust-lang.org/print.html#reference

◦ Applied to struct or enum variant.

◦ Mandatory

◦ Defines the text and error code to be associated with the diagnostic.

◦ Slug (Mandatory)

▪ Uniquely identifies the diagnostic and corresponds to its Fluent message,

mandatory.

▪ A path to an item in rustc_errors::fluent , e.g.

rustc_errors::fluent::hir_analysis_field_already_declared

(rustc_errors::fluent is implicit in the attribute, so just

hir_analysis_field_already_declared).

▪ See translation documentation.

◦ code = "..." (Optional)

▪ Specifies the error code.

• #[note] or #[note(slug)] (Optional)

◦ Applied to struct or struct fields of type Span , Option<()> or () .

◦ Adds a note subdiagnostic.

◦ Value is a path to an item in rustc_errors::fluent for the note's message.

▪ Defaults to equivalent of .note .

◦ If applied to a Span field, creates a spanned note.

• #[help] or #[help(slug)] (Optional)

◦ Applied to struct or struct fields of type Span , Option<()> or () .

◦ Adds a help subdiagnostic.

◦ Value is a path to an item in rustc_errors::fluent for the note's message.

▪ Defaults to equivalent of .help .

◦ If applied to a Span field, creates a spanned help.

• #[label] or #[label(slug)] (Optional)

◦ Applied to Span fields.

◦ Adds a label subdiagnostic.

◦ Value is a path to an item in rustc_errors::fluent for the note's message.

▪ Defaults to equivalent of .label .

• #[warning] or #[warning(slug)] (Optional)

◦ Applied to struct or struct fields of type Span , Option<()> or () .

◦ Adds a warning subdiagnostic.

◦ Value is a path to an item in rustc_errors::fluent for the note's message.

▪ Defaults to equivalent of .warn .

• #[suggestion{,_hidden,_short,_verbose}(slug, code = "...", applicability

= "...")] (Optional)

◦ Applied to (Span, MachineApplicability) or Span fields.

◦ Adds a suggestion subdiagnostic.

◦ Slug (Mandatory)

▪ A path to an item in rustc_errors::fluent , e.g.

rustc_errors::fluent::hir_analysis_field_already_declared

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

541 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/diagnostics/translation.html
https://rustc-dev-guide.rust-lang.org/diagnostics/translation.html

(rustc_errors::fluent is implicit in the attribute, so just

hir_analysis_field_already_declared). Fluent attributes for all

messages exist as top-level items in that module (so

hir_analysis_message.attr is just attr).

▪ See translation documentation.

▪ Defaults to rustc_errors::fluent::_subdiag::suggestion (or

▪ .suggestion in Fluent).

◦ code = "..." / code("...", ...) (Mandatory)

▪ One or multiple format strings indicating the code to be suggested as a

replacement. Multiple values signify multiple possible replacements.

◦ applicability = "..." (Optional)

▪ String which must be one of machine-applicable , maybe-incorrect ,

has-placeholders or unspecified .

• #[subdiagnostic]

◦ Applied to a type that implements AddToDiagnostic (from

#[derive(Subdiagnostic)]).

◦ Adds the subdiagnostic represented by the subdiagnostic struct.

• #[primary_span] (Optional)

◦ Applied to Span fields on Subdiagnostic s. Not used for LintDiagnostic s.

◦ Indicates the primary span of the diagnostic.

• #[skip_arg] (Optional)

◦ Applied to any field.

◦ Prevents the field from being provided as a diagnostic argument.

#[derive(Subdiagnostic)]

It is common in the compiler to write a function that conditionally adds a specific

subdiagnostic to an error if it is applicable. Oftentimes these subdiagnostics could be

represented using a diagnostic struct even if the overall diagnostic could not. In this

circumstance, the Subdiagnostic derive can be used to represent a partial diagnostic

(e.g a note, label, help or suggestion) as a struct.

Consider the definition of the "expected return type" label shown below:

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

542 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/diagnostics/translation.html
https://rustc-dev-guide.rust-lang.org/diagnostics/translation.html
https://rustc-dev-guide.rust-lang.org/print.html#derivesubdiagnostic
https://rustc-dev-guide.rust-lang.org/print.html#derivesubdiagnostic
https://rustc-dev-guide.rust-lang.org/print.html#derivesubdiagnostic
https://github.com/rust-lang/rust/blob/f1112099eba41abadb6f921df7edba70affe92c5/compiler/rustc_hir_analysis/src/errors.rs#L221-L234
https://github.com/rust-lang/rust/blob/f1112099eba41abadb6f921df7edba70affe92c5/compiler/rustc_hir_analysis/src/errors.rs#L221-L234

Like Diagnostic , Subdiagnostic can be applied to structs or enums. Attributes that are

placed on the type for structs are placed on each variants for enums (or vice versa). Each

Subdiagnostic should have one attribute applied to the struct or each variant, one of:

• #[label(..)] for defining a label

• #[note(..)] for defining a note

• #[help(..)] for defining a help

• #[warning(..)] for defining a warning

• #[suggestion{,_hidden,_short,_verbose}(..)] for defining a suggestion

All of the above must provide a slug as the first positional argument (a path to an item in

rustc_errors::fluent::*). A slug uniquely identifies the diagnostic and is also how the

compiler knows what error message to emit (in the default locale of the compiler, or in

the locale requested by the user). See translation documentation to learn more about

how translatable error messages are written and how slug items are generated.

In our example, the Fluent message for the "expected return type" label looks like this:

Using the #[primary_span] attribute on a field (with type Span) will denote the primary

span of the subdiagnostic. A primary span is only necessary for a label or suggestion,

which can not be spanless.

Every field of the type/variant which does not have an annotation is available in Fluent

messages as a variable. Fields can be annotated #[skip_arg] if this is undesired.

Like Diagnostic , Subdiagnostic supports Option<T> and Vec<T> fields.

Suggestions can be emitted using one of four attributes on the type/variant:

#[derive(Subdiagnostic)]
pub enum ExpectedReturnTypeLabel<'tcx> {

#[label(hir_analysis_expected_default_return_type)]
 Unit {

#[primary_span]
 span: Span,
 },

#[label(hir_analysis_expected_return_type)]
 Other {

#[primary_span]
 span: Span,
 expected: Ty<'tcx>,
 },
}

hir_analysis_expected_default_return_type = expected `()` because of default
return type

hir_analysis_expected_return_type = expected `{$expected}` because of return
type

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

543 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/diagnostics/translation.html
https://rustc-dev-guide.rust-lang.org/diagnostics/translation.html

• #[suggestion(..., code = "...", applicability = "...")]

• #[suggestion_hidden(..., code = "...", applicability = "...")]

• #[suggestion_short(..., code = "...", applicability = "...")]

• #[suggestion_verbose(..., code = "...", applicability = "...")]

Suggestions require #[primary_span] be set on a field and can have the following sub-

attributes:

• The first positional argument specifies the path to a item in rustc_errors::fluent

corresponding to the Fluent attribute with the message and defaults to the

equivalent of .suggestion .

• code specifies the code that should be suggested as a replacement and is a format

string (e.g. {field_name} would be replaced by the value of the field_name field of

the struct), not a Fluent identifier.

• applicability can be used to specify the applicability in the attribute, it cannot be

used when the field's type contains an Applicability .

Applicabilities can also be specified as a field (of type Applicability) using the

#[applicability] attribute.

In the end, the Subdiagnostic derive will generate an implementation of

AddToDiagnostic that looks like the following:

Once defined, a subdiagnostic can be used by passing it to the subdiagnostic function

(example and example) on a diagnostic or by assigning it to a #[subdiagnostic] -

annotated field of a diagnostic struct.

Reference

impl<'tcx> AddToDiagnostic for ExpectedReturnTypeLabel<'tcx> {
fn add_to_diagnostic(self, diag: &mut rustc_errors::Diagnostic) {

use rustc_errors::{Applicability, IntoDiagnosticArg};
match self {

 ExpectedReturnTypeLabel::Unit { span } => {
 diag.span_label(span,
rustc_errors::fluent::hir_analysis_expected_default_return_type)
 }
 ExpectedReturnTypeLabel::Other { span, expected } => {
 diag.set_arg("expected", expected);
 diag.span_label(span,
rustc_errors::fluent::hir_analysis_expected_return_type)
 }

 }
 }
}

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

544 of 660 8/30/23, 09:47

https://github.com/rust-lang/rust/blob/f1112099eba41abadb6f921df7edba70affe92c5/compiler/rustc_hir_analysis/src/check/fn_ctxt/suggestions.rs#L670-L674
https://github.com/rust-lang/rust/blob/f1112099eba41abadb6f921df7edba70affe92c5/compiler/rustc_hir_analysis/src/check/fn_ctxt/suggestions.rs#L670-L674
https://github.com/rust-lang/rust/blob/f1112099eba41abadb6f921df7edba70affe92c5/compiler/rustc_hir_analysis/src/check/fn_ctxt/suggestions.rs#L704-L707
https://github.com/rust-lang/rust/blob/f1112099eba41abadb6f921df7edba70affe92c5/compiler/rustc_hir_analysis/src/check/fn_ctxt/suggestions.rs#L704-L707
https://rustc-dev-guide.rust-lang.org/print.html#reference-1
https://rustc-dev-guide.rust-lang.org/print.html#reference-1

#[derive(Subdiagnostic)] supports the following attributes:

• #[label(slug)] , #[help(slug)] , #[warning(slug)] or #[note(slug)]

◦ Applied to struct or enum variant. Mutually exclusive with struct/enum variant

attributes.

◦ Mandatory

◦ Defines the type to be representing a label, help or note.

◦ Slug (Mandatory)

▪ Uniquely identifies the diagnostic and corresponds to its Fluent message,

mandatory.

▪ A path to an item in rustc_errors::fluent , e.g.

rustc_errors::fluent::hir_analysis_field_already_declared

(rustc_errors::fluent is implicit in the attribute, so just

hir_analysis_field_already_declared).

▪ See translation documentation.

• #[suggestion{,_hidden,_short,_verbose}(slug, code = "...", applicability

= "...")]

◦ Applied to struct or enum variant. Mutually exclusive with struct/enum variant

attributes.

◦ Mandatory

◦ Defines the type to be representing a suggestion.

◦ Slug (Mandatory)

▪ A path to an item in rustc_errors::fluent , e.g.

rustc_errors::fluent::hir_analysis_field_already_declared

(rustc_errors::fluent is implicit in the attribute, so just

hir_analysis::field_already_declared). Fluent attributes for all

messages exist as top-level items in that module (so

hir_analysis_message.attr is just hir_analysis::attr).

▪ See translation documentation.

▪ Defaults to rustc_errors::fluent::_subdiag::suggestion (or

▪ .suggestion in Fluent).

◦ code = "..." / code("...", ...) (Mandatory)

▪ One or multiple format strings indicating the code to be suggested as a

replacement. Multiple values signify multiple possible replacements.

◦ applicability = "..." (Optional)

▪ Mutually exclusive with #[applicability] on a field.

▪ Value is the applicability of the suggestion.

▪ String which must be one of:

▪ machine-applicable

▪ maybe-incorrect

▪ has-placeholders

▪ unspecified

• #[multipart_suggestion{,_hidden,_short,_verbose}(slug, applicability =

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

545 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/diagnostics/translation.html
https://rustc-dev-guide.rust-lang.org/diagnostics/translation.html
https://rustc-dev-guide.rust-lang.org/diagnostics/translation.html
https://rustc-dev-guide.rust-lang.org/diagnostics/translation.html

"...")]

◦ Applied to struct or enum variant. Mutually exclusive with struct/enum variant

attributes.

◦ Mandatory

◦ Defines the type to be representing a multipart suggestion.

◦ Slug (Mandatory): see #[suggestion]

◦ applicability = "..." (Optional): see #[suggestion]

• #[primary_span] (Mandatory for labels and suggestions; optional otherwise; not

applicable to multipart suggestions)

◦ Applied to Span fields.

◦ Indicates the primary span of the subdiagnostic.

• #[suggestion_part(code = "...")] (Mandatory; only applicable to multipart

suggestions)

◦ Applied to Span fields.

◦ Indicates the span to be one part of the multipart suggestion.

◦ code = "..." (Mandatory)

▪ Value is a format string indicating the code to be suggested as a

replacement.

• #[applicability] (Optional; only applicable to (simple and multipart) suggestions)

◦ Applied to Applicability fields.

◦ Indicates the applicability of the suggestion.

• #[skip_arg] (Optional)

◦ Applied to any field.

◦ Prevents the field from being provided as a diagnostic argument.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

546 of 660 8/30/23, 09:47

Translation

rustc's diagnostic infrastructure supports translatable diagnostics using Fluent.

Writing translatable diagnostics

There are two ways of writing translatable diagnostics:

1. For simple diagnostics, using a diagnostic (or subdiagnostic) derive ("simple"

diagnostics being those that don't require a lot of logic in deciding to emit

subdiagnostics and can therefore be represented as diagnostic structs). See the

diagnostic and subdiagnostic structs documentation.

2. Using typed identifiers with DiagnosticBuilder APIs (in Diagnostic

implementations).

When adding or changing a translatable diagnostic, you don't need to worry about the

translations, only updating the original English message. Currently, each crate which

defines translatable diagnostics has its own Fluent resource, such as parser.ftl or

typeck.ftl .

Fluent

Fluent is built around the idea of "asymmetric localization", which aims to decouple the

expressiveness of translations from the grammar of the source language (English in

rustc's case). Prior to translation, rustc's diagnostics relied heavily on interpolation to

build the messages shown to the users. Interpolated strings are hard to translate because

writing a natural-sounding translation might require more, less, or just different

interpolation than the English string, all of which would require changes to the compiler's

source code to support.

Diagnostic messages are defined in Fluent resources. A combined set of Fluent resources

for a given locale (e.g. en-US) is known as Fluent bundle.

In the above example, typeck_address_of_temporary_taken is the identifier for a Fluent

message and corresponds to the diagnostic message in English. Other Fluent resources

can be written which would correspond to a message in another language. Each

diagnostic therefore has at least one Fluent message.

typeck_address_of_temporary_taken = cannot take address of a temporary

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

547 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#translation
https://rustc-dev-guide.rust-lang.org/print.html#translation
https://projectfluent.org/
https://projectfluent.org/
https://rustc-dev-guide.rust-lang.org/print.html#writing-translatable-diagnostics
https://rustc-dev-guide.rust-lang.org/print.html#writing-translatable-diagnostics
https://rustc-dev-guide.rust-lang.org/diagnostics/diagnostic-structs.html
https://rustc-dev-guide.rust-lang.org/diagnostics/diagnostic-structs.html
https://rustc-dev-guide.rust-lang.org/diagnostics/diagnostic-structs.html
https://rustc-dev-guide.rust-lang.org/diagnostics/diagnostic-structs.html
https://rustc-dev-guide.rust-lang.org/print.html#fluent
https://rustc-dev-guide.rust-lang.org/print.html#fluent

By convention, diagnostic messages for subdiagnostics are specified as "attributes" on

Fluent messages (additional related messages, denoted by the .<attribute-name>

syntax). In the above example, label is an attribute of

typeck_address_of_temporary_taken which corresponds to the message for the label

added to this diagnostic.

Diagnostic messages often interpolate additional context into the message shown to the

user, such as the name of a type or of a variable. Additional context to Fluent messages is

provided as an "argument" to the diagnostic.

In the above example, the Fluent message refers to an argument named what which is

expected to exist (how arguments are provided to diagnostics is discussed in detail later).

You can consult the Fluent documentation for other usage examples of Fluent and its

syntax.

Guideline for message naming

Usually, fluent uses - for separating words inside a message name. However, _ is

accepted by fluent as well. As _ fits Rust's use cases better, due to the identifiers on the

Rust side using _ as well, inside rustc, - is not allowed for separating words, and instead

_ is recommended. The only exception is for leading - s, for message names like

-passes_see_issue .

Guidelines for writing translatable messages

For a message to be translatable into different languages, all of the information required

by any language must be provided to the diagnostic as an argument (not just the

information required in the English message).

As the compiler team gain more experience writing diagnostics that have all of the

information necessary to be translated into different languages, this page will be updated

with more guidance. For now, the Fluent documentation has excellent examples of

translating messages into different locales and the information that needs to be provided

by the code to do so.

typeck_address_of_temporary_taken = cannot take address of a temporary
 .label = temporary value

typeck_struct_expr_non_exhaustive =
 cannot create non-exhaustive {$what} using struct expression

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

548 of 660 8/30/23, 09:47

https://projectfluent.org/
https://projectfluent.org/
https://rustc-dev-guide.rust-lang.org/print.html#guideline-for-message-naming
https://rustc-dev-guide.rust-lang.org/print.html#guideline-for-message-naming
https://rustc-dev-guide.rust-lang.org/print.html#guidelines-for-writing-translatable-messages
https://rustc-dev-guide.rust-lang.org/print.html#guidelines-for-writing-translatable-messages
https://projectfluent.org/
https://projectfluent.org/

Compile-time validation and typed identifiers

Currently, each crate which defines translatable diagnostics has its own Fluent resource

in a file named messages.ftl , such as compiler/rustc_borrowck/messages.ftl and

compiler/rustc_parse/messages.ftl .

rustc's fluent_messages macro performs compile-time validation of Fluent resources

and generates code to make it easier to refer to Fluent messages in diagnostics.

Compile-time validation of Fluent resources will emit any parsing errors from Fluent

resources while building the compiler, preventing invalid Fluent resources from causing

panics in the compiler. Compile-time validation also emits an error if multiple Fluent

messages have the same identifier.

In rustc_error_messages , fluent_messages also generates a constant for each Fluent

message which can be used to refer to messages when emitting diagnostics and

guarantee that the message exists.

For example, given the following Fluent...

...then the fluent_messages macro will generate:

rustc_error_messages::fluent_generated is re-exported and primarily used as

rustc_errors::fluent .

fluent_messages! {
 typeck => "../locales/en-US/typeck.ftl",
}

typeck_field_multiply_specified_in_initializer =
 field `{$ident}` specified more than once
 .label = used more than once
 .label_previous_use = first use of `{$ident}`

pub static DEFAULT_LOCALE_RESOURCES: &'static [&'static str] = &[
include_str!("../locales/en-US/typeck.ftl"),

];

mod fluent_generated {
pub const typeck_field_multiply_specified_in_initializer:

DiagnosticMessage =

DiagnosticMessage::new("typeck_field_multiply_specified_in_initializer");
pub const label: SubdiagnosticMessage =

 SubdiagnosticMessage::attr("label");
pub const label_previous_use: SubdiagnosticMessage =

 SubdiagnosticMessage::attr("previous_use_label");
}

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

549 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#compile-time-validation-and-typed-identifiers
https://rustc-dev-guide.rust-lang.org/print.html#compile-time-validation-and-typed-identifiers
https://github.com/rust-lang/rust/blob/HEAD/compiler/rustc_borrowck/messages.ftl
https://github.com/rust-lang/rust/blob/HEAD/compiler/rustc_borrowck/messages.ftl
https://github.com/rust-lang/rust/blob/HEAD/compiler/rustc_borrowck/messages.ftl
https://github.com/rust-lang/rust/blob/HEAD/compiler/rustc_parse/messages.ftl
https://github.com/rust-lang/rust/blob/HEAD/compiler/rustc_parse/messages.ftl
https://github.com/rust-lang/rust/blob/HEAD/compiler/rustc_parse/messages.ftl

When emitting a diagnostic, these constants can be used like shown above.

Internals

Various parts of rustc's diagnostic internals are modified in order to support translation.

Messages

All of rustc's traditional diagnostic APIs (e.g. struct_span_err or note) take any

message that can be converted into a DiagnosticMessage (or SubdiagnosticMessage).

rustc_error_messages::DiagnosticMessage can represent legacy non-translatable

diagnostic messages and translatable messages. Non-translatable messages are just

String s. Translatable messages are just a &'static str with the identifier of the Fluent

message (sometimes with an additional &'static str with an attribute).

DiagnosticMessage never needs to be interacted with directly: DiagnosticMessage

constants are created for each diagnostic message in a Fluent resource (described in

more detail below), or DiagnosticMessage s will either be created in the macro-generated

code of a diagnostic derive.

rustc_error_messages::SubdiagnosticMessage is similar, it can correspond to a legacy

non-translatable diagnostic message or the name of an attribute to a Fluent message.

Translatable SubdiagnosticMessage s must be combined with a DiagnosticMessage

(using DiagnosticMessage::with_subdiagnostic_message) to be emitted (an attribute

name on its own is meaningless without a corresponding message identifier, which is

what DiagnosticMessage provides).

Both DiagnosticMessage and SubdiagnosticMessage implement Into for any type that

can be converted into a string, and converts these into non-translatable diagnostics - this

keeps all existing diagnostic calls working.

Arguments

use rustc_errors::fluent;
let mut err = sess.struct_span_err(span,
fluent::typeck_field_multiply_specified_in_initializer);
err.span_label(span, fluent::label);
err.span_label(previous_use_span, fluent::previous_use_label);
err.emit();

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

550 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#internals-1
https://rustc-dev-guide.rust-lang.org/print.html#internals-1
https://rustc-dev-guide.rust-lang.org/print.html#messages
https://rustc-dev-guide.rust-lang.org/print.html#messages
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_error_messages/enum.DiagnosticMessage.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_error_messages/enum.DiagnosticMessage.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_error_messages/enum.DiagnosticMessage.html
https://rustc-dev-guide.rust-lang.org/print.html#arguments
https://rustc-dev-guide.rust-lang.org/print.html#arguments

Additional context for Fluent messages which are interpolated into message contents

needs to be provided to translatable diagnostics.

Diagnostics have a set_arg function that can be used to provide this additional context

to a diagnostic.

Arguments have both a name (e.g. "what" in the earlier example) and a value. Argument

values are represented using the DiagnosticArgValue type, which is just a string or a

number. rustc types can implement IntoDiagnosticArg with conversion into a string or

a number, common types like Ty<'tcx> already have such implementations.

set_arg calls are handled transparently by diagnostic derives but need to be added

manually when using diagnostic builder APIs.

Loading

rustc makes a distinction between the "fallback bundle" for en-US that is used by default

and when another locale is missing a message; and the primary fluent bundle which is

requested by the user.

Diagnostic emitters implement the Emitter trait which has two functions for accessing

the fallback and primary fluent bundles (fallback_fluent_bundle and fluent_bundle

respectively).

Emitter also has member functions with default implementations for performing

translation of a DiagnosticMessage using the results of fallback_fluent_bundle and

fluent_bundle .

All of the emitters in rustc load the fallback Fluent bundle lazily, only reading Fluent

resources and parsing them when an error message is first being translated (for

performance reasons - it doesn't make sense to do this if no error is being emitted).

rustc_error_messages::fallback_fluent_bundle returns a

std::lazy::Lazy<FluentBundle> which is provided to emitters and evaluated in the first

call to Emitter::fallback_fluent_bundle .

The primary Fluent bundle (for the user's desired locale) is expected to be returned by

Emitter::fluent_bundle . This bundle is used preferentially when translating messages,

the fallback bundle is only used if the primary bundle is missing a message or not

provided.

As of Jan 2023, there are no locale bundles distributed with the compiler, but mechanisms

are implemented for loading bundles.

• -Ztranslate-additional-ftl can be used to load a specific resource as the

primary bundle for testing purposes.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

551 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#loading
https://rustc-dev-guide.rust-lang.org/print.html#loading

• -Ztranslate-lang can be provided a language identifier (something like en-US)

and will load any Fluent resources found in $sysroot/share/locale/$locale/

directory (both the user provided sysroot and any sysroot candidates).

Primary bundles are not currently loaded lazily and if requested will be loaded at the start

of compilation regardless of whether an error occurs. Lazily loading primary bundles is

possible if it can be assumed that loading a bundle won't fail. Bundle loading can fail if a

requested locale is missing, Fluent files are malformed, or a message is duplicated in

multiple resources.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

552 of 660 8/30/23, 09:47

Lints

This page documents some of the machinery around lint registration and how we run

lints in the compiler.

The LintStore is the central piece of infrastructure, around which everything rotates. It's

not available during the early parts of compilation (i.e., before TyCtxt) in most code, as we

need to fill it in with all of the lints, which can only happen after plugin registration.

Lints vs. lint passes

There are two parts to the linting mechanism within the compiler: lints and lint passes.

Unfortunately, a lot of the documentation we have refers to both of these as just "lints."

First, we have the lint declarations themselves, and this is where the name and default

lint level and other metadata come from. These are normally defined by way of the

declare_lint! macro, which boils down to a static with type &rustc_lint_defs::Lint

(although this may change in the future, as the macro is somewhat unwieldy to add new

fields to, like all macros).

As of Aug 2022, we lint against direct declarations without the use of the macro.

Lint declarations don't carry any "state" - they are merely global identifiers and

descriptions of lints. We assert at runtime that they are not registered twice (by lint

name).

Lint passes are the meat of any lint. Notably, there is not a one-to-one relationship

between lints and lint passes; a lint might not have any lint pass that emits it, it could

have many, or just one -- the compiler doesn't track whether a pass is in any way

associated with a particular lint, and frequently lints are emitted as part of other work

(e.g., type checking, etc.).

Registration

High-level overview

In rustc_interface::register_plugins , the LintStore is created, and all lints are

registered.

There are four 'sources' of lints:

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

553 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#lints-1
https://rustc-dev-guide.rust-lang.org/print.html#lints-1
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_lint/struct.LintStore.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_lint/struct.LintStore.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_lint/struct.LintStore.html
https://rustc-dev-guide.rust-lang.org/print.html#lints-vs-lint-passes
https://rustc-dev-guide.rust-lang.org/print.html#lints-vs-lint-passes
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_session/macro.declare_lint.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_session/macro.declare_lint.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_session/macro.declare_lint.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_lint_defs/struct.Lint.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_lint_defs/struct.Lint.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_lint_defs/struct.Lint.html
https://rustc-dev-guide.rust-lang.org/print.html#registration
https://rustc-dev-guide.rust-lang.org/print.html#registration
https://rustc-dev-guide.rust-lang.org/print.html#high-level-overview
https://rustc-dev-guide.rust-lang.org/print.html#high-level-overview
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_interface/passes/fn.register_plugins.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_interface/passes/fn.register_plugins.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_interface/passes/fn.register_plugins.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_lint/struct.LintStore.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_lint/struct.LintStore.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_lint/struct.LintStore.html

• internal lints: lints only used by the rustc codebase

• builtin lints: lints built into the compiler and not provided by some outside source

• plugin lints: lints created by plugins through the plugin system.

• rustc_interface::Config register_lints : lints passed into the compiler during

construction

Lints are registered via the LintStore::register_lint function. This should happen just

once for any lint, or an ICE will occur.

Once the registration is complete, we "freeze" the lint store by placing it in an Lrc . Later

in the driver, it's passed into the GlobalCtxt constructor where it lives in an immutable

form from then on.

Lint passes are registered separately into one of the categories (pre-expansion, early, late,

late module). Passes are registered as a closure -- i.e., impl Fn() -> Box<dyn X> , where

dyn X is either an early or late lint pass trait object. When we run the lint passes, we run

the closure and then invoke the lint pass methods. The lint pass methods take &mut

self so they can keep track of state internally.

Internal lints

These are lints used just by the compiler or plugins like clippy . They can be found in

rustc_lint::internal .

An example of such a lint is the check that lint passes are implemented using the

declare_lint_pass! macro and not by hand. This is accomplished with the

LINT_PASS_IMPL_WITHOUT_MACRO lint.

Registration of these lints happens in the rustc_lint::register_internals function

which is called when constructing a new lint store inside rustc_lint::new_lint_store .

Builtin Lints

These are primarily described in two places, rustc_lint_defs::builtin and

rustc_lint::builtin . Often the first provides the definitions for the lints themselves,

and the latter provides the lint pass definitions (and implementations), but this is not

always true.

The builtin lint registration happens in the rustc_lint::register_builtins function.

Just like with internal lints, this happens inside of rustc_lint::new_lint_store .

Plugin lints

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

554 of 660 8/30/23, 09:47

https://doc.rust-lang.org/nightly/nightly-rustc/rustc_interface/interface/struct.Config.html#structfield.register_lints
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_interface/interface/struct.Config.html#structfield.register_lints
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_interface/interface/struct.Config.html#structfield.register_lints
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_lint/struct.LintStore.html#method.register_lints
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_lint/struct.LintStore.html#method.register_lints
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_lint/struct.LintStore.html#method.register_lints
https://rustc-dev-guide.rust-lang.org/print.html#internal-lints
https://rustc-dev-guide.rust-lang.org/print.html#internal-lints
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_lint/fn.register_internals.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_lint/fn.register_internals.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_lint/fn.register_internals.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_lint/fn.new_lint_store.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_lint/fn.new_lint_store.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_lint/fn.new_lint_store.html
https://rustc-dev-guide.rust-lang.org/print.html#builtin-lints
https://rustc-dev-guide.rust-lang.org/print.html#builtin-lints
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_lint/fn.register_builtins.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_lint/fn.register_builtins.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_lint/fn.register_builtins.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_lint/fn.new_lint_store.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_lint/fn.new_lint_store.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_lint/fn.new_lint_store.html
https://rustc-dev-guide.rust-lang.org/print.html#plugin-lints
https://rustc-dev-guide.rust-lang.org/print.html#plugin-lints

This is one of the primary use cases remaining for plugins/drivers. Plugins are given

access to the mutable LintStore during registration (which happens inside of

rustc_interface::register_plugins) and they can call any functions they need on the

LintStore , just like rustc code.

Plugins are intended to declare lints with the plugin field set to true (e.g., by way of the

declare_tool_lint! macro), but this is purely for diagnostics and help text; otherwise

plugin lints are mostly just as first class as rustc builtin lints.

Driver lints

These are the lints provided by drivers via the rustc_interface::Config

register_lints field, which is a callback. Drivers should, if finding it already set, call the

function currently set within the callback they add. The best way for drivers to get access

to this is by overriding the Callbacks::config function which gives them direct access to

the Config structure.

Compiler lint passes are combined into one pass

Within the compiler, for performance reasons, we usually do not register dozens of lint

passes. Instead, we have a single lint pass of each variety (e.g.,

BuiltinCombinedModuleLateLintPass) which will internally call all of the individual lint

passes; this is because then we get the benefits of static over dynamic dispatch for each

of the (often empty) trait methods.

Ideally, we'd not have to do this, since it adds to the complexity of understanding the

code. However, with the current type-erased lint store approach, it is beneficial to do so

for performance reasons.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

555 of 660 8/30/23, 09:47

https://doc.rust-lang.org/nightly/nightly-rustc/rustc_interface/passes/fn.register_plugins.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_interface/passes/fn.register_plugins.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_interface/passes/fn.register_plugins.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_session/macro.declare_tool_lint.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_session/macro.declare_tool_lint.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_session/macro.declare_tool_lint.html
https://rustc-dev-guide.rust-lang.org/print.html#driver-lints
https://rustc-dev-guide.rust-lang.org/print.html#driver-lints
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_interface/interface/struct.Config.html#structfield.register_lints
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_interface/interface/struct.Config.html#structfield.register_lints
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_interface/interface/struct.Config.html#structfield.register_lints
https://rustc-dev-guide.rust-lang.org/print.html#compiler-lint-passes-are-combined-into-one-pass
https://rustc-dev-guide.rust-lang.org/print.html#compiler-lint-passes-are-combined-into-one-pass

Error codes

We generally try to assign each error message a unique code like E0123 . These codes are

defined in the compiler in the diagnostics.rs files found in each crate, which basically

consist of macros. All error codes have an associated explanation: new error codes must

include them. Note that not all historical (no longer emitted) error codes have

explanations.

Error explanations

The explanations are written in Markdown (see the CommonMark Spec for specifics

around syntax), and all of them are linked in the rustc_error_codes crate. Please read

RFC 1567 for details on how to format and write long error codes. As of February 2023,

there is an effort1 to replace this largely outdated RFC with a new more flexible standard.

Error explanations should expand on the error message and provide details about why

the error occurs. It is not helpful for users to copy-paste a quick fix; explanations should

help users understand why their code cannot be accepted by the compiler. Rust prides

itself on helpful error messages and long-form explanations are no exception. However,

before error explanations are overhauled1 it is a bit open as to how exactly they should

be written, as always: ask your reviewer or ask around on the Rust Discord or Zulip.

1 See the draft RFC here.

Allocating a fresh code

Error codes are stored in compiler/rustc_error_codes .

To create a new error, you first need to find the next available code. You can find it with

tidy :

This will invoke the tidy script, which generally checks that your code obeys our coding

conventions. Some of these jobs check error codes and ensure that there aren't

duplicates, etc (the tidy check is defined in src/tools/tidy/src/error_codes.rs). Once

it is finished with that, tidy will print out the highest used error code:

./x test tidy

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

556 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#error-codes
https://rustc-dev-guide.rust-lang.org/print.html#error-codes
https://rustc-dev-guide.rust-lang.org/print.html#error-explanations
https://rustc-dev-guide.rust-lang.org/print.html#error-explanations
https://spec.commonmark.org/current/
https://spec.commonmark.org/current/
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_error_codes/error_codes/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_error_codes/error_codes/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_error_codes/error_codes/index.html
https://github.com/rust-lang/rfcs/blob/master/text/1567-long-error-codes-explanation-normalization.md
https://github.com/rust-lang/rfcs/blob/master/text/1567-long-error-codes-explanation-normalization.md
https://rustc-dev-guide.rust-lang.org/print.html#new-explanations
https://rustc-dev-guide.rust-lang.org/print.html#new-explanations
https://rustc-dev-guide.rust-lang.org/print.html#new-explanations
https://rustc-dev-guide.rust-lang.org/print.html#new-explanations
https://github.com/rust-lang/rfcs/pull/3370
https://github.com/rust-lang/rfcs/pull/3370
https://rustc-dev-guide.rust-lang.org/print.html#allocating-a-fresh-code
https://rustc-dev-guide.rust-lang.org/print.html#allocating-a-fresh-code

Here we see the highest error code in use is E0591 , so we probably want E0592 . To be

sure, run rg E0592 and check, you should see no references.

You will have to write an extended description for your error, which will go in

rustc_error_codes/src/error_codes/E0592.md . To register the error, open

rustc_error_codes/src/error_codes.rs and add the code (in its proper numerical

order) into register_diagnostics! macro, like this:

To actually issue the error, you can use the struct_span_err! macro:

If you want to add notes or other snippets, you can invoke methods before you call

.emit() :

For an example of a PR adding an error code, see #76143.

...
tidy check
Found 505 error codes
Highest error code: `E0591`
...

register_diagnostics! {
 ...
 E0592: include_str!("./error_codes/E0592.md"),
}

struct_span_err!(self.tcx.sess, // some path to the session here
 span, // whatever span in the source you want
 E0592, // your new error code
 fluent::example::an_error_message)
 .emit() // actually issue the error

struct_span_err!(...)
 .span_label(another_span, fluent::example::example_label)
 .span_note(another_span, fluent::example::separate_note)
 .emit()

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

557 of 660 8/30/23, 09:47

https://github.com/rust-lang/rust/pull/76143
https://github.com/rust-lang/rust/pull/76143

Diagnostic Items

While writing lints it's common to check for specific types, traits and functions. This raises

the question on how to check for these. Types can be checked by their complete type

path. However, this requires hard coding paths and can lead to misclassifications in some

edge cases. To counteract this, rustc has introduced diagnostic items that are used to

identify types via Symbol s.

Finding diagnostic items

Diagnostic items are added to items inside rustc / std / core / alloc with the

rustc_diagnostic_item attribute. The item for a specific type can be found by opening

the source code in the documentation and looking for this attribute. Note that it's often

added with the cfg_attr attribute to avoid compilation errors during tests. A definition

often looks like this:

Diagnostic items are usually only added to traits, types, and standalone functions. If the

goal is to check for an associated type or method, please use the diagnostic item of the

item and reference Using Diagnostic Items.

Adding diagnostic items

A new diagnostic item can be added with these two steps:

1. Find the target item inside the Rust repo. Now add the diagnostic item as a string via

the rustc_diagnostic_item attribute. This can sometimes cause compilation errors

while running tests. These errors can be avoided by using the cfg_attr attribute

with the not(test) condition (it's fine adding then for all rustc_diagnostic_item

attributes as a preventive manner). At the end, it should look like this:

For the naming conventions of diagnostic items, please refer to Naming Conventions.

// This is the diagnostic item for this type vvvvvvv
#[cfg_attr(not(test), rustc_diagnostic_item = "Penguin")]
struct Penguin;

// This will be the new diagnostic item vvv

#[cfg_attr(not(test), rustc_diagnostic_item = "Cat")]

struct Cat;

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

558 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#diagnostic-items
https://rustc-dev-guide.rust-lang.org/print.html#diagnostic-items
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/symbol/struct.Symbol.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/symbol/struct.Symbol.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/symbol/struct.Symbol.html
https://rustc-dev-guide.rust-lang.org/print.html#finding-diagnostic-items
https://rustc-dev-guide.rust-lang.org/print.html#finding-diagnostic-items
https://rustc-dev-guide.rust-lang.org/diagnostics/diagnostic-items.html#using-diagnostic-items
https://rustc-dev-guide.rust-lang.org/diagnostics/diagnostic-items.html#using-diagnostic-items
https://rustc-dev-guide.rust-lang.org/diagnostics/diagnostic-items.html#using-diagnostic-items
https://rustc-dev-guide.rust-lang.org/print.html#adding-diagnostic-items
https://rustc-dev-guide.rust-lang.org/print.html#adding-diagnostic-items
https://rustc-dev-guide.rust-lang.org/diagnostics/diagnostic-items.html#naming-conventions
https://rustc-dev-guide.rust-lang.org/diagnostics/diagnostic-items.html#naming-conventions
https://rustc-dev-guide.rust-lang.org/diagnostics/diagnostic-items.html#naming-conventions

2. Diagnostic items in code are accessed via symbols in rustc_span::symbol::sym . To

add your newly-created diagnostic item, simply open the module file, and add the

name (In this case Cat) at the correct point in the list.

Now you can create a pull request with your changes. :tada:

NOTE: When using diagnostic items in other projects like Clippy, it might take some

time until the repos get synchronized.

Naming conventions

Diagnostic items don't have a naming convention yet. Following are some guidelines that

should be used in future, but might differ from existing names:

• Types, traits, and enums are named using UpperCamelCase (Examples: Iterator

and HashMap)

• For type names that are used multiple times, like Writer , it's good to choose a

more precise name, maybe by adding the module to it (Example: IoWriter)

• Associated items should not get their own diagnostic items, but instead be accessed

indirectly by the diagnostic item of the type they're originating from.

• Freestanding functions like std::mem::swap() should be named using snake_case

with one important (export) module as a prefix (Examples: mem_swap and cmp_max)

• Modules should usually not have a diagnostic item attached to them. Diagnostic

items were added to avoid the usage of paths, and using them on modules would

therefore most likely be counterproductive.

Using diagnostic items

In rustc, diagnostic items are looked up via Symbol s from inside the

rustc_span::symbol::sym module. These can then be mapped to DefId s using

TyCtxt::get_diagnostic_item() or checked if they match a DefId using

TyCtxt::is_diagnostic_item() . When mapping from a diagnostic item to a DefId , the

method will return a Option<DefId> . This can be None if either the symbol isn't a

diagnostic item or the type is not registered, for instance when compiling with

#[no_std] . All the following examples are based on DefId s and their usage.

Example: Checking for a type

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

559 of 660 8/30/23, 09:47

https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/symbol/sym/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/symbol/sym/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/symbol/sym/index.html
https://rustc-dev-guide.rust-lang.org/print.html#naming-conventions-1
https://rustc-dev-guide.rust-lang.org/print.html#naming-conventions-1
https://rustc-dev-guide.rust-lang.org/print.html#using-diagnostic-items
https://rustc-dev-guide.rust-lang.org/print.html#using-diagnostic-items
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/symbol/struct.Symbol.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/symbol/struct.Symbol.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/symbol/struct.Symbol.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/symbol/sym/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/symbol/sym/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/symbol/sym/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/def_id/struct.DefId.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/def_id/struct.DefId.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/def_id/struct.DefId.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/context/struct.TyCtxt.html#method.get_diagnostic_item
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/context/struct.TyCtxt.html#method.get_diagnostic_item
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/context/struct.TyCtxt.html#method.get_diagnostic_item
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/def_id/struct.DefId.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/def_id/struct.DefId.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/def_id/struct.DefId.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/context/struct.TyCtxt.html#method.is_diagnostic_item
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/context/struct.TyCtxt.html#method.is_diagnostic_item
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/context/struct.TyCtxt.html#method.is_diagnostic_item
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/def_id/struct.DefId.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/def_id/struct.DefId.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/def_id/struct.DefId.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/def_id/struct.DefId.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/def_id/struct.DefId.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/def_id/struct.DefId.html
https://rustc-dev-guide.rust-lang.org/print.html#example-checking-for-a-type
https://rustc-dev-guide.rust-lang.org/print.html#example-checking-for-a-type

Example: Checking for a trait implementation

Associated Types

Associated types of diagnostic items can be accessed indirectly by first getting the DefId

of the trait and then calling TyCtxt::associated_items() . This returns an AssocItems

object which can be used for further checks. Checkout

clippy_utils::ty::get_iterator_item_ty() for an example usage of this.

Usage in Clippy

Clippy tries to use diagnostic items where possible and has developed some wrapper and

utility functions. Please also refer to its documentation when using diagnostic items in

Clippy. (See Common tools for writing lints.)

Related issues

These are probably only interesting to people who really want to take a deep dive into the

use rustc_span::symbol::sym;

/// This example checks if the given type (`ty`) has the type `HashMap` using
/// `TyCtxt::is_diagnostic_item()`
fn example_1(cx: &LateContext<'_>, ty: Ty<'_>) -> bool {

match ty.kind() {
 ty::Adt(adt, _) => cx.tcx.is_diagnostic_item(sym::HashMap, adt.did),
 _ => false,
 }
}

/// This example checks if a given [`DefId`] from a method is part of a trait
/// implementation defined by a diagnostic item.
fn is_diag_trait_item(
 cx: &LateContext<'_>,
 def_id: DefId,
 diag_item: Symbol
) -> bool {

if let Some(trait_did) = cx.tcx.trait_of_item(def_id) {
return cx.tcx.is_diagnostic_item(diag_item, trait_did);

 }
false

}

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

560 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#example-checking-for-a-trait-implementation
https://rustc-dev-guide.rust-lang.org/print.html#example-checking-for-a-trait-implementation
https://rustc-dev-guide.rust-lang.org/print.html#associated-types
https://rustc-dev-guide.rust-lang.org/print.html#associated-types
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/def_id/struct.DefId.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/def_id/struct.DefId.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/def_id/struct.DefId.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/context/struct.TyCtxt.html#method.associated_items
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/context/struct.TyCtxt.html#method.associated_items
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/context/struct.TyCtxt.html#method.associated_items
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/assoc/struct.AssocItems.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/assoc/struct.AssocItems.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/assoc/struct.AssocItems.html
https://github.com/rust-lang/rust-clippy/blob/305177342fbc622c0b3cb148467bab4b9524c934/clippy_utils/src/ty.rs#L55-L72
https://github.com/rust-lang/rust-clippy/blob/305177342fbc622c0b3cb148467bab4b9524c934/clippy_utils/src/ty.rs#L55-L72
https://github.com/rust-lang/rust-clippy/blob/305177342fbc622c0b3cb148467bab4b9524c934/clippy_utils/src/ty.rs#L55-L72
https://rustc-dev-guide.rust-lang.org/print.html#usage-in-clippy
https://rustc-dev-guide.rust-lang.org/print.html#usage-in-clippy
https://doc.rust-lang.org/nightly/clippy/development/common_tools_writing_lints.html
https://doc.rust-lang.org/nightly/clippy/development/common_tools_writing_lints.html
https://doc.rust-lang.org/nightly/clippy/development/common_tools_writing_lints.html
https://rustc-dev-guide.rust-lang.org/print.html#related-issues
https://rustc-dev-guide.rust-lang.org/print.html#related-issues

topic :)

• rust#60966: The Rust PR that introduced diagnostic items

• rust-clippy#5393: Clippy's tracking issue for moving away from hard coded paths to

diagnostic item

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

561 of 660 8/30/23, 09:47

https://github.com/rust-lang/rust/pull/60966
https://github.com/rust-lang/rust/pull/60966
https://github.com/rust-lang/rust-clippy/issues/5393
https://github.com/rust-lang/rust-clippy/issues/5393

ErrorGuaranteed

The previous sections have been about the error message that a user of the compiler

sees. But emitting an error can also have a second important side effect within the

compiler source code: it generates an ErrorGuaranteed .

ErrorGuaranteed is a zero-sized type that is unconstructable outside of the

rustc_errors crate. It is generated whenever an error is reported to the user, so that if

your compiler code ever encounters a value of type ErrorGuaranteed , the compilation is

statically guaranteed to fail. This is useful for avoiding unsoundness bugs because you can

statically check that an error code path leads to a failure.

There are some important considerations about the usage of ErrorGuaranteed :

• It does not convey information about the kind of error. For example, the error may

be due (indirectly) to a delay_span_bug or other compiler error. Thus, you should

not rely on ErrorGuaranteed when deciding whether to emit an error, or what kind

of error to emit.

• ErrorGuaranteed should not be used to indicate that a compilation will emit an

error in the future. It should be used to indicate that an error has already been

emitted -- that is, the emit() function has already been called. For example, if we

detect that a future part of the compiler will error, we cannot use ErrorGuaranteed

unless we first emit an error ourselves.

Thankfully, in most cases, it should be statically impossible to abuse ErrorGuaranteed .

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

562 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#errorguaranteed
https://rustc-dev-guide.rust-lang.org/print.html#errorguaranteed
https://rustc-dev-guide.rust-lang.org/print.html#errorguaranteed
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_errors/struct.ErrorGuaranteed.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_errors/struct.ErrorGuaranteed.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_errors/struct.ErrorGuaranteed.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_errors/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_errors/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_errors/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_errors/diagnostic_builder/struct.DiagnosticBuilder.html#method.emit
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_errors/diagnostic_builder/struct.DiagnosticBuilder.html#method.emit
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_errors/diagnostic_builder/struct.DiagnosticBuilder.html#method.emit

From MIR to Binaries

All of the preceding chapters of this guide have one thing in common: we never

generated any executable machine code at all! With this chapter, all of that changes.

So far, we've shown how the compiler can take raw source code in text format and

transform it into MIR. We have also shown how the compiler does various analyses on

the code to detect things like type or lifetime errors. Now, we will finally take the MIR and

produce some executable machine code.

NOTE: This part of a compiler is often called the backend. The term is a bit

overloaded because in the compiler source, it usually refers to the "codegen

backend" (i.e. LLVM, Cranelift, or GCC). Usually, when you see the word "backend" in

this part, we are referring to the "codegen backend".

So what do we need to do?

1. First, we need to collect the set of things to generate code for. In particular, we need

to find out which concrete types to substitute for generic ones, since we need to

generate code for the concrete types. Generating code for the concrete types (i.e.

emitting a copy of the code for each concrete type) is called monomorphization, so

the process of collecting all the concrete types is called monomorphization collection.

2. Next, we need to actually lower the MIR to a codegen IR (usually LLVM IR) for each

concrete type we collected.

3. Finally, we need to invoke the codegen backend, which runs a bunch of optimization

passes, generates executable code, and links together an executable binary.

The code for codegen is actually a bit complex due to a few factors:

• Support for multiple codegen backends (LLVM, Cranelift, and GCC). We try to share

as much backend code between them as possible, so a lot of it is generic over the

codegen implementation. This means that there are often a lot of layers of

abstraction.

• Codegen happens asynchronously in another thread for performance.

• The actual codegen is done by a third-party library (either of the 3 backends).

Generally, the rustc_codegen_ssa crate contains backend-agnostic code, while the

rustc_codegen_llvm crate contains code specific to LLVM codegen.

At a very high level, the entry point is rustc_codegen_ssa::base::codegen_crate . This

function starts the process discussed in the rest of this chapter.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

563 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#from-mir-to-binaries
https://rustc-dev-guide.rust-lang.org/print.html#from-mir-to-binaries
https://rustc-dev-guide.rust-lang.org/mir/index.html
https://rustc-dev-guide.rust-lang.org/mir/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_codegen_ssa/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_codegen_ssa/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_codegen_ssa/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_codegen_llvm/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_codegen_llvm/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_codegen_llvm/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_codegen_ssa/base/fn.codegen_crate.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_codegen_ssa/base/fn.codegen_crate.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_codegen_ssa/base/fn.codegen_crate.html

MIR optimizations

MIR optimizations are optimizations run on the MIR to produce better MIR before

codegen. This is important for two reasons: first, it makes the final generated executable

code better, and second, it means that LLVM has less work to do, so compilation is faster.

Note that since MIR is generic (not monomorphized yet), these optimizations are

particularly effective; we can optimize the generic version, so all of the

monomorphizations are cheaper!

MIR optimizations run after borrow checking. We run a series of optimization passes over

the MIR to improve it. Some passes are required to run on all code, some passes don't

actually do optimizations but only check stuff, and some passes are only turned on in

release mode.

The optimized_mir query is called to produce the optimized MIR for a given DefId . This

query makes sure that the borrow checker has run and that some validation has

occurred. Then, it steals the MIR, optimizes it, and returns the improved MIR.

Quickstart for adding a new optimization

1. Make a Rust source file in tests/mir-opt that shows the code you want to

optimize. This should be kept simple, so avoid println! or other formatting code if

it's not necessary for the optimization. The reason for this is that println! ,

format! , etc. generate a lot of MIR that can make it harder to understand what the

optimization does to the test.

2. Run ./x test --bless tests/mir-opt/<your-test>.rs to generate a MIR dump.

Read this README for instructions on how to dump things.

3. Commit the current working directory state. The reason you should commit the test

output before you implement the optimization is so that you (and your reviewers)

can see a before/after diff of what the optimization changed.

4. Implement a new optimization in compiler/rustc_mir_transform/src . The fastest

and easiest way to do this is to

1. pick a small optimization (such as remove_storage_markers) and copy it to a

new file,

2. add your optimization to one of the lists in the run_optimization_passes()

function,

3. and then start modifying the copied optimization.

5. Rerun ./x test --bless tests/mir-opt/<your-test>.rs to regenerate the MIR

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

564 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#mir-optimizations
https://rustc-dev-guide.rust-lang.org/print.html#mir-optimizations
https://rustc-dev-guide.rust-lang.org/mir/index.html
https://rustc-dev-guide.rust-lang.org/mir/index.html
https://rustc-dev-guide.rust-lang.org/appendix/glossary.html#mono
https://rustc-dev-guide.rust-lang.org/appendix/glossary.html#mono
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_transform/fn.optimized_mir.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_transform/fn.optimized_mir.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_transform/fn.optimized_mir.html
https://rustc-dev-guide.rust-lang.org/query.html
https://rustc-dev-guide.rust-lang.org/query.html
https://rustc-dev-guide.rust-lang.org/appendix/glossary.html#def-id
https://rustc-dev-guide.rust-lang.org/appendix/glossary.html#def-id
https://rustc-dev-guide.rust-lang.org/appendix/glossary.html#def-id
https://rustc-dev-guide.rust-lang.org/mir/passes.html#stealing
https://rustc-dev-guide.rust-lang.org/mir/passes.html#stealing
https://rustc-dev-guide.rust-lang.org/print.html#quickstart-for-adding-a-new-optimization
https://rustc-dev-guide.rust-lang.org/print.html#quickstart-for-adding-a-new-optimization
https://github.com/rust-lang/rust/blob/master/tests/mir-opt/README.md
https://github.com/rust-lang/rust/blob/master/tests/mir-opt/README.md
https://github.com/rust-lang/rust/tree/master/compiler/rustc_mir_transform/src
https://github.com/rust-lang/rust/tree/master/compiler/rustc_mir_transform/src
https://github.com/rust-lang/rust/tree/master/compiler/rustc_mir_transform/src
https://github.com/rust-lang/rust/blob/HEAD/compiler/rustc_mir_transform/src/remove_storage_markers.rs
https://github.com/rust-lang/rust/blob/HEAD/compiler/rustc_mir_transform/src/remove_storage_markers.rs
https://github.com/rust-lang/rust/blob/HEAD/compiler/rustc_mir_transform/src/remove_storage_markers.rs
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_transform/fn.run_optimization_passes.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_transform/fn.run_optimization_passes.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_transform/fn.run_optimization_passes.html

dumps. Look at the diffs to see if they are what you expect.

6. Run ./x test tests/ui to see if your optimization broke anything.

7. If there are issues with your optimization, experiment with it a bit and repeat steps 5

and 6.

8. Commit and open a PR. You can do this at any point, even if things aren't working

yet, so that you can ask for feedback on the PR. Open a "WIP" PR (just prefix your PR

title with [WIP] or otherwise note that it is a work in progress) in that case.

Make sure to commit the blessed test output as well! It's necessary for CI to pass

and it's very helpful to reviewers.

If you have any questions along the way, feel free to ask in #t-compiler/wg-mir-opt on

Zulip.

Defining optimization passes

The list of passes run and the order in which they are run is defined by the

run_optimization_passes function. It contains an array of passes to run. Each pass in

the array is a struct that implements the MirPass trait. The array is an array of &dyn

MirPass trait objects. Typically, a pass is implemented in its own module of the

rustc_mir_transform crate.

Some examples of passes are:

• CleanupNonCodegenStatements : remove some of the info that is only needed for

analyses, rather than codegen.

• ConstProp : Does constant propagation

You can see the "Implementors" section of the MirPass rustdocs for more examples.

MIR optimization levels

MIR optimizations can come in various levels of readiness. Experimental optimizations

may cause miscompilations, or slow down compile times. These passes are still included

in nightly builds to gather feedback and make it easier to modify the pass. To enable

working with slow or otherwise experimental optimization passes, you can specify the -Z

mir-opt-level debug flag. You can find the definitions of the levels in the compiler MCP.

If you are developing a MIR pass and want to query whether your optimization pass

should run, you can check the current level using

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

565 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#defining-optimization-passes
https://rustc-dev-guide.rust-lang.org/print.html#defining-optimization-passes
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_transform/fn.run_optimization_passes.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_transform/fn.run_optimization_passes.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_transform/fn.run_optimization_passes.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/trait.MirPass.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/trait.MirPass.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/trait.MirPass.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_transform/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_transform/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_transform/index.html
https://en.wikipedia.org/wiki/Constant_folding#Constant_propagation
https://en.wikipedia.org/wiki/Constant_folding#Constant_propagation
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/trait.MirPass.html#implementors
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/trait.MirPass.html#implementors
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/trait.MirPass.html#implementors
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/trait.MirPass.html#implementors
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/trait.MirPass.html#implementors
https://rustc-dev-guide.rust-lang.org/print.html#mir-optimization-levels
https://rustc-dev-guide.rust-lang.org/print.html#mir-optimization-levels
https://github.com/rust-lang/compiler-team/issues/319
https://github.com/rust-lang/compiler-team/issues/319

tcx.sess.opts.unstable_opts.mir_opt_level .

Optimization fuel

Optimization fuel is a compiler option (-Z fuel=<crate>=<value>) that allows for fine

grained control over which optimizations can be applied during compilation: each

optimization reduces fuel by 1, and when fuel reaches 0 no more optimizations are

applied. The primary use of fuel is debugging optimizations that may be incorrect or

misapplied. By changing the fuel value, you can bisect a compilation session down to the

exact incorrect optimization (this behaves like a kind of binary search through the

optimizations).

MIR optimizations respect fuel, and in general each pass should check fuel by calling

tcx.consider_optimizing and skipping the optimization if fuel is empty. There are a few

considerations:

1. If the pass is considered "guaranteed" (for example, it should always be run because

it is needed for correctness), then fuel should not be used. An example of this is

PromoteTemps .

2. In some cases, an initial pass is performed to gather candidates, which are then

iterated to perform optimizations. In these situations, we should allow for the initial

gathering pass and then check fuel as close to the mutation as possible. This allows

for the best debugging experience, because we can determine where in the list of

candidates an optimization may have been misapplied. Examples of this are

InstSimplify and ConstantPropagation .

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

566 of 660 8/30/23, 09:47

https://doc.rust-lang.org/nightly/nightly-rustc/rustc_session/config/struct.UnstableOptions.html#structfield.mir_opt_level
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_session/config/struct.UnstableOptions.html#structfield.mir_opt_level
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_session/config/struct.UnstableOptions.html#structfield.mir_opt_level
https://rustc-dev-guide.rust-lang.org/print.html#optimization-fuel
https://rustc-dev-guide.rust-lang.org/print.html#optimization-fuel
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/context/struct.TyCtxt.html#method.consider_optimizing
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/context/struct.TyCtxt.html#method.consider_optimizing
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/context/struct.TyCtxt.html#method.consider_optimizing

MIR Debugging

The -Z dump-mir flag can be used to dump a text representation of the MIR. The

following optional flags, used in combination with -Z dump-mir , enable additional output

formats, including:

• -Z dump-mir-graphviz - dumps a .dot file that represents MIR as a control-flow

graph

• -Z dump-mir-dataflow - dumps a .dot file showing the dataflow state at each

point in the control-flow graph

• -Z dump-mir-spanview - dumps an .html file that highlights the source spans

associated with MIR elements (including mouse-over actions to reveal elements

obscured by overlaps, and tooltips to view the MIR statements). This flag takes an

optional value: statement (the default), terminator , or block , to generate span

highlights with different levels of granularity.

-Z dump-mir=F is a handy compiler option that will let you view the MIR for each function

at each stage of compilation. -Z dump-mir takes a filter F which allows you to control

which functions and which passes you are interested in. For example:

This will dump the MIR for any function whose name contains foo ; it will dump the MIR

both before and after every pass. Those files will be created in the mir_dump directory.

There will likely be quite a lot of them!

The files have names like rustc.main.000-000.CleanEndRegions.after.mir . These

names have a number of parts:

> rustc -Z dump-mir=foo ...

> cat > foo.rs
fn main() {
 println!("Hello, world!");
}
^D
> rustc -Z dump-mir=main foo.rs
> ls mir_dump/* | wc -l
 161

rustc.main.000-000.CleanEndRegions.after.mir
 ---- --- --- --------------- ----- either before or after
 | | | name of the pass
 | | index of dump within the pass (usually 0, but some passes dump
intermediate states)
 | index of the pass
 def-path to the function etc being dumped

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

567 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#mir-debugging
https://rustc-dev-guide.rust-lang.org/print.html#mir-debugging
https://rustc-dev-guide.rust-lang.org/mir/dataflow.html#graphviz-diagrams
https://rustc-dev-guide.rust-lang.org/mir/dataflow.html#graphviz-diagrams

You can also make more selective filters. For example, main & CleanEndRegions will

select for things that reference both main and the pass CleanEndRegions :

Filters can also have | parts to combine multiple sets of & -filters. For example main &

CleanEndRegions | main & NoLandingPads will select either main and CleanEndRegions

or main and NoLandingPads :

(Here, the main-promoted[0] files refer to the MIR for "promoted constants" that

appeared within the main function.)

The -Z unpretty=mir-cfg flag can be used to create a graphviz MIR control-flow diagram

for the whole crate:

> rustc -Z dump-mir='main & CleanEndRegions' foo.rs
> ls mir_dump
rustc.main.000-000.CleanEndRegions.after.mir
rustc.main.000-000.CleanEndRegions.before.mir

> rustc -Z dump-mir='main & CleanEndRegions | main & NoLandingPads' foo.rs
> ls mir_dump
rustc.main-promoted[0].002-000.NoLandingPads.after.mir
rustc.main-promoted[0].002-000.NoLandingPads.before.mir
rustc.main-promoted[0].002-006.NoLandingPads.after.mir
rustc.main-promoted[0].002-006.NoLandingPads.before.mir
rustc.main-promoted[1].002-000.NoLandingPads.after.mir
rustc.main-promoted[1].002-000.NoLandingPads.before.mir
rustc.main-promoted[1].002-006.NoLandingPads.after.mir
rustc.main-promoted[1].002-006.NoLandingPads.before.mir
rustc.main.000-000.CleanEndRegions.after.mir
rustc.main.000-000.CleanEndRegions.before.mir
rustc.main.002-000.NoLandingPads.after.mir
rustc.main.002-000.NoLandingPads.before.mir
rustc.main.002-006.NoLandingPads.after.mir
rustc.main.002-006.NoLandingPads.before.mir

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

568 of 660 8/30/23, 09:47

fn main() -> ()

let _1: i32;

let mut _2: i32;

let mut _3: bool;

let mut _4: i32;

let mut _5: i32;

debug x => _1;

debug y => _2;

fn incr() -> i32

let mut _1: i32;

let mut _2: bool;

let mut _3: bool;

debug ret => _1;
0

StorageLive(_1)

_1 = const 5_i32

StorageLive(_2)

_2 = const 3_i32

StorageLive(_3)

StorageLive(_4)

_4 = _1

_3 = Gt(move _4, const 3_i32)

StorageDead(_4)

switchInt(move _3)

1

_2 = const 4_i32

_0 = const ()

goto

otherwise

2

StorageLive(_5)

_5 = incr()

false

4

StorageDead(_3)

StorageDead(_2)

StorageDead(_1)

return

3

_2 = Add(_2, move _5)

StorageDead(_5)

_0 = const ()

goto

return

0

StorageLive(_1)

StorageLive(_2)

_2 = const true

switchInt(move _2)

1

_1 = const 7_i32

goto

otherwise

2

StorageLive(_3)

_3 = const true

switchInt(move _3)

false

6

StorageDead(_2)

_1 = Add(_1, const 1_i32)

_0 = _1

StorageDead(_1)

return

3

_1 = const 8_i32

goto

otherwise

4

_1 = const 9_i32

goto

false

5

StorageDead(_3)

goto

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

569 of 660 8/30/23, 09:47

TODO: anything else?

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

570 of 660 8/30/23, 09:47

Constant Evaluation

Constant evaluation is the process of computing values at compile time. For a specific

item (constant/static/array length) this happens after the MIR for the item is borrow-

checked and optimized. In many cases trying to const evaluate an item will trigger the

computation of its MIR for the first time.

Prominent examples are:

• The initializer of a static

• Array length

◦ needs to be known to reserve stack or heap space

• Enum variant discriminants

◦ needs to be known to prevent two variants from having the same discriminant

• Patterns

◦ need to be known to check for overlapping patterns

Additionally constant evaluation can be used to reduce the workload or binary size at

runtime by precomputing complex operations at compiletime and only storing the result.

All uses of constant evaluation can either be categorized as "influencing the type system"

(array lengths, enum variant discriminants, const generic parameters), or as solely being

done to precompute expressions to be used at runtime.

Constant evaluation can be done by calling the const_eval_* functions of TyCtxt .

They're the wrappers of the const_eval query.

• const_eval_global_id_for_typeck evaluates a constant to a valtree, so the result

value can be further inspected by the compiler.

• const_eval_global_id evaluate a constant to an "opaque blob" containing its final

value; this is only useful for codegen backends and the CTFE evaluator engine itself.

• eval_static_initializer specifically computes the initial values of a static. Statics

are special; all other functions do not represent statics correctly and have thus

assertions preventing their use on statics.

The const_eval_* functions use a ParamEnv of environment in which the constant is

evaluated (e.g. the function within which the constant is used) and a GlobalId . The

GlobalId is made up of an Instance referring to a constant or static or of an Instance

of a function and an index into the function's Promoted table.

Constant evaluation returns an EvalToValTreeResult for type system constants or

EvalToConstValueResult with either the error, or a representation of the constant.

Constants for the type system are encoded in "valtree representation". The ValTree

datastructure allows us to represent

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

571 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#constant-evaluation
https://rustc-dev-guide.rust-lang.org/print.html#constant-evaluation
https://rustc-dev-guide.rust-lang.org/param_env.html
https://rustc-dev-guide.rust-lang.org/param_env.html
https://rustc-dev-guide.rust-lang.org/param_env.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/interpret/struct.GlobalId.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/interpret/struct.GlobalId.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/interpret/struct.GlobalId.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/interpret/error/type.EvalToValTreeResult.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/interpret/error/type.EvalToValTreeResult.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/interpret/error/type.EvalToValTreeResult.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/interpret/error/type.EvalToConstValueResult.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/interpret/error/type.EvalToConstValueResult.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/interpret/error/type.EvalToConstValueResult.html

• arrays,

• many structs,

• tuples,

• enums and,

• most primitives.

The basic rule for being permitted in the type system is that every value must be uniquely

represented. In other words: a specific value must only be representable in one specific

way. For example: there is only one way to represent an array of two integers as a

ValTree : ValTree::Branch(&[ValTree::Leaf(first_int),

ValTree::Leaf(second_int)]) . Even though theoretically a [u32; 2] could be encoded

in a u64 and thus just be a ValTree::Leaf(bits_of_two_u32) , that is not a legal

construction of ValTree (and is very complex to do, so it is unlikely anyone is tempted to

do so).

These rules also mean that some values are not representable. There can be no union s

in type level constants, as it is not clear how they should be represented, because their

active variant is unknown. Similarly there is no way to represent raw pointers, as

addresses are unknown at compile-time and thus we cannot make any assumptions

about them. References on the other hand can be represented, as equality for references

is defined as equality on their value, so we ignore their address and just look at the

backing value. We must make sure that the pointer values of the references are not

observable at compile time. We thus encode &42 exactly like 42 . Any conversion from

valtree back to codegen constants must reintroduce an actual indirection. At codegen

time the addresses may be deduplicated between multiple uses or not, entirely

depending on arbitrary optimization choices.

As a consequence, all decoding of ValTree must happen by matching on the type first

and making decisions depending on that. The value itself gives no useful information

without the type that belongs to it.

Other constants get represented as ConstValue::Scalar or ConstValue::Slice if

possible. These values are only useful outside the compile-time interpreter. If you need

the value of a constant during interpretation, you need to directly work with

const_to_op .

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

572 of 660 8/30/23, 09:47

https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/interpret/value/enum.ConstValue.html#variant.Scalar
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/interpret/value/enum.ConstValue.html#variant.Scalar
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/interpret/value/enum.ConstValue.html#variant.Scalar
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/interpret/value/enum.ConstValue.html#variant.Slice
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/interpret/value/enum.ConstValue.html#variant.Slice
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/interpret/value/enum.ConstValue.html#variant.Slice
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_const_eval/interpret/struct.InterpCx.html#method.const_to_op
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_const_eval/interpret/struct.InterpCx.html#method.const_to_op
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_const_eval/interpret/struct.InterpCx.html#method.const_to_op

Interpreter

• Datastructures

• Memory

◦ Global memory and exotic allocations

◦ Pointer values vs Pointer types

• Interpretation

The interpreter is a virtual machine for executing MIR without compiling to machine code.

It is usually invoked via tcx.const_eval_* functions. The interpreter is shared between

the compiler (for compile-time function evaluation, CTFE) and the tool Miri, which uses

the same virtual machine to detect Undefined Behavior in (unsafe) Rust code.

If you start out with a constant:

rustc doesn't actually invoke anything until the constant is either used or placed into

metadata.

Once you have a use-site like:

The compiler needs to figure out the length of the array before being able to create items

that use the type (locals, constants, function arguments, ...).

To obtain the (in this case empty) parameter environment, one can call let param_env =

tcx.param_env(length_def_id); . The GlobalId needed is

Invoking tcx.const_eval(param_env.and(gid)) will now trigger the creation of the MIR

of the array length expression. The MIR will look something like this:

const FOO: usize = 1 << 12;

type Foo = [u8; FOO - 42];

let gid = GlobalId {
 promoted: None,
 instance: Instance::mono(length_def_id),
};

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

573 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#interpreter
https://rustc-dev-guide.rust-lang.org/print.html#interpreter
https://rustc-dev-guide.rust-lang.org/const-eval/interpret.html#datastructures
https://rustc-dev-guide.rust-lang.org/const-eval/interpret.html#datastructures
https://rustc-dev-guide.rust-lang.org/const-eval/interpret.html#memory
https://rustc-dev-guide.rust-lang.org/const-eval/interpret.html#memory
https://rustc-dev-guide.rust-lang.org/const-eval/interpret.html#global-memory-and-exotic-allocations
https://rustc-dev-guide.rust-lang.org/const-eval/interpret.html#global-memory-and-exotic-allocations
https://rustc-dev-guide.rust-lang.org/const-eval/interpret.html#pointer-values-vs-pointer-types
https://rustc-dev-guide.rust-lang.org/const-eval/interpret.html#pointer-values-vs-pointer-types
https://rustc-dev-guide.rust-lang.org/const-eval/interpret.html#interpretation
https://rustc-dev-guide.rust-lang.org/const-eval/interpret.html#interpretation
https://github.com/rust-lang/miri/
https://github.com/rust-lang/miri/

Before the evaluation, a virtual memory location (in this case essentially a vec![u8; 4]

or vec![u8; 8]) is created for storing the evaluation result.

At the start of the evaluation, _0 and _1 are

Operand::Immediate(Immediate::Scalar(ScalarMaybeUndef::Undef)) . This is quite a

mouthful: Operand can represent either data stored somewhere in the interpreter

memory (Operand::Indirect), or (as an optimization) immediate data stored in-line. And

Immediate can either be a single (potentially uninitialized) scalar value (integer or thin

pointer), or a pair of two of them. In our case, the single scalar value is not (yet) initialized.

When the initialization of _1 is invoked, the value of the FOO constant is required, and

triggers another call to tcx.const_eval_* , which will not be shown here. If the

evaluation of FOO is successful, 42 will be subtracted from its value 4096 and the result

stored in _1 as Operand::Immediate(Immediate::ScalarPair(Scalar::Raw { data:

4054, .. }, Scalar::Raw { data: 0, .. }) . The first part of the pair is the computed

value, the second part is a bool that's true if an overflow happened. A Scalar::Raw also

stores the size (in bytes) of this scalar value; we are eliding that here.

The next statement asserts that said boolean is 0 . In case the assertion fails, its error

message is used for reporting a compile-time error.

Since it does not fail, Operand::Immediate(Immediate::Scalar(Scalar::Raw { data:

4054, .. })) is stored in the virtual memory it was allocated before the evaluation. _0

always refers to that location directly.

After the evaluation is done, the return value is converted from Operand to ConstValue

by op_to_const : the former representation is geared towards what is needed during

const evaluation, while ConstValue is shaped by the needs of the remaining parts of the

compiler that consume the results of const evaluation. As part of this conversion, for

types with scalar values, even if the resulting Operand is Indirect , it will return an

immediate ConstValue::Scalar(computed_value) (instead of the usual

Foo::{{constant}}#0: usize = {
 let mut _0: usize;
 let mut _1: (usize, bool);

 bb0: {
 _1 = CheckedSub(const FOO, const 42usize);
 assert(!move (_1.1: bool), "attempt to subtract with overflow") ->
bb1;
 }

 bb1: {
 _0 = move (_1.0: usize);
 return;
 }
}

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

574 of 660 8/30/23, 09:47

https://doc.rust-lang.org/nightly/nightly-rustc/rustc_const_eval/interpret/enum.Operand.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_const_eval/interpret/enum.Operand.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_const_eval/interpret/enum.Operand.html
https://rustc-dev-guide.rust-lang.org/const-eval/interpret.html#memory
https://rustc-dev-guide.rust-lang.org/const-eval/interpret.html#memory
https://rustc-dev-guide.rust-lang.org/const-eval/interpret.html#memory
https://rustc-dev-guide.rust-lang.org/const-eval/interpret.html#memory
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_const_eval/interpret/enum.Immediate.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_const_eval/interpret/enum.Immediate.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_const_eval/interpret/enum.Immediate.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/interpret/enum.Scalar.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/interpret/enum.Scalar.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_const_eval/interpret/enum.Operand.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_const_eval/interpret/enum.Operand.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_const_eval/interpret/enum.Operand.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/interpret/enum.ConstValue.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/interpret/enum.ConstValue.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/interpret/enum.ConstValue.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_const_eval/const_eval/eval_queries/fn.op_to_const.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_const_eval/const_eval/eval_queries/fn.op_to_const.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_const_eval/const_eval/eval_queries/fn.op_to_const.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/interpret/enum.ConstValue.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/interpret/enum.ConstValue.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/interpret/enum.ConstValue.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_const_eval/interpret/enum.Operand.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_const_eval/interpret/enum.Operand.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_const_eval/interpret/enum.Operand.html

ConstValue::ByRef). This makes using the result much more efficient and also more

convenient, as no further queries need to be executed in order to get at something as

simple as a usize .

Future evaluations of the same constants will not actually invoke the interpreter, but just

use the cached result.

Datastructures

The interpreter's outside-facing datastructures can be found in rustc_middle/src

/mir/interpret. This is mainly the error enum and the ConstValue and Scalar types. A

ConstValue can be either Scalar (a single Scalar , i.e., integer or thin pointer), Slice

(to represent byte slices and strings, as needed for pattern matching) or ByRef , which is

used for anything else and refers to a virtual allocation. These allocations can be accessed

via the methods on tcx.interpret_interner . A Scalar is either some Raw integer or a

pointer; see the next section for more on that.

If you are expecting a numeric result, you can use eval_usize (panics on anything that

can't be represented as a u64) or try_eval_usize which results in an Option<u64>

yielding the Scalar if possible.

Memory

To support any kind of pointers, the interpreter needs to have a "virtual memory" that the

pointers can point to. This is implemented in the Memory type. In the simplest model,

every global variable, stack variable and every dynamic allocation corresponds to an

Allocation in that memory. (Actually using an allocation for every MIR stack variable

would be very inefficient; that's why we have Operand::Immediate for stack variables

that are both small and never have their address taken. But that is purely an

optimization.)

Such an Allocation is basically just a sequence of u8 storing the value of each byte in

this allocation. (Plus some extra data, see below.) Every Allocation has a globally unique

AllocId assigned in Memory . With that, a Pointer consists of a pair of an AllocId

(indicating the allocation) and an offset into the allocation (indicating which byte of the

allocation the pointer points to). It may seem odd that a Pointer is not just an integer

address, but remember that during const evaluation, we cannot know at which actual

integer address the allocation will end up -- so we use AllocId as symbolic base

addresses, which means we need a separate offset. (As an aside, it turns out that pointers

at run-time are more than just integers, too.)

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

575 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#datastructures
https://rustc-dev-guide.rust-lang.org/print.html#datastructures
https://github.com/rust-lang/rust/blob/master/compiler/rustc_middle/src/mir/interpret
https://github.com/rust-lang/rust/blob/master/compiler/rustc_middle/src/mir/interpret
https://github.com/rust-lang/rust/blob/master/compiler/rustc_middle/src/mir/interpret
https://github.com/rust-lang/rust/blob/master/compiler/rustc_middle/src/mir/interpret
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/interpret/enum.ConstValue.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/interpret/enum.ConstValue.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/interpret/enum.ConstValue.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/interpret/enum.Scalar.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/interpret/enum.Scalar.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/interpret/enum.Scalar.html
https://rustc-dev-guide.rust-lang.org/const-eval/interpret.html#memory
https://rustc-dev-guide.rust-lang.org/const-eval/interpret.html#memory
https://rustc-dev-guide.rust-lang.org/print.html#memory
https://rustc-dev-guide.rust-lang.org/print.html#memory
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_const_eval/interpret/struct.Memory.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_const_eval/interpret/struct.Memory.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_const_eval/interpret/struct.Memory.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/interpret/struct.Allocation.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/interpret/struct.Allocation.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/interpret/struct.Allocation.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/interpret/struct.Pointer.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/interpret/struct.Pointer.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/interpret/struct.Pointer.html
https://rust-lang.github.io/unsafe-code-guidelines/glossary.html#pointer-provenance
https://rust-lang.github.io/unsafe-code-guidelines/glossary.html#pointer-provenance

These allocations exist so that references and raw pointers have something to point to.

There is no global linear heap in which things are allocated, but each allocation (be it for a

local variable, a static or a (future) heap allocation) gets its own little memory with exactly

the required size. So if you have a pointer to an allocation for a local variable a , there is

no possible (no matter how unsafe) operation that you can do that would ever change

said pointer to a pointer to a different local variable b . Pointer arithmetic on a will only

ever change its offset; the AllocId stays the same.

This, however, causes a problem when we want to store a Pointer into an Allocation :

we cannot turn it into a sequence of u8 of the right length! AllocId and offset together

are twice as big as a pointer "seems" to be. This is what the relocation field of

Allocation is for: the byte offset of the Pointer gets stored as a bunch of u8 , while its

AllocId gets stored out-of-band. The two are reassembled when the Pointer is read

from memory. The other bit of extra data an Allocation needs is undef_mask for

keeping track of which of its bytes are initialized.

Global memory and exotic allocations

Memory exists only during evaluation; it gets destroyed when the final value of the

constant is computed. In case that constant contains any pointers, those get "interned"

and moved to a global "const eval memory" that is part of TyCtxt . These allocations stay

around for the remaining computation and get serialized into the final output (so that

dependent crates can use them).

Moreover, to also support function pointers, the global memory in TyCtxt can also

contain "virtual allocations": instead of an Allocation , these contain an Instance . That

allows a Pointer to point to either normal data or a function, which is needed to be able

to evaluate casts from function pointers to raw pointers.

Finally, the GlobalAlloc type used in the global memory also contains a variant Static

that points to a particular const or static item. This is needed to support circular

statics, where we need to have a Pointer to a static for which we cannot yet have an

Allocation as we do not know the bytes of its value.

Pointer values vs Pointer types

One common cause of confusion in the interpreter is that being a pointer value and

having a pointer type are entirely independent properties. By "pointer value", we refer to

a Scalar::Ptr containing a Pointer and thus pointing somewhere into the interpreter's

virtual memory. This is in contrast to Scalar::Raw , which is just some concrete integer.

However, a variable of pointer or reference type, such as *const T or &T , does not have

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

576 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#global-memory-and-exotic-allocations
https://rustc-dev-guide.rust-lang.org/print.html#global-memory-and-exotic-allocations
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/interpret/enum.GlobalAlloc.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/interpret/enum.GlobalAlloc.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/interpret/enum.GlobalAlloc.html
https://rustc-dev-guide.rust-lang.org/print.html#pointer-values-vs-pointer-types
https://rustc-dev-guide.rust-lang.org/print.html#pointer-values-vs-pointer-types

to have a pointer value: it could be obtained by casting or transmuting an integer to a

pointer. And similarly, when casting or transmuting a reference to some actual allocation

to an integer, we end up with a pointer value (Scalar::Ptr) at integer type (usize). This

is a problem because we cannot meaningfully perform integer operations such as

division on pointer values.

Interpretation

Although the main entry point to constant evaluation is the tcx.const_eval_* functions,

there are additional functions in rustc_const_eval/src/const_eval that allow accessing the

fields of a ConstValue (ByRef or otherwise). You should never have to access an

Allocation directly except for translating it to the compilation target (at the moment

just LLVM).

The interpreter starts by creating a virtual stack frame for the current constant that is

being evaluated. There's essentially no difference between a constant and a function with

no arguments, except that constants do not allow local (named) variables at the time of

writing this guide.

A stack frame is defined by the Frame type in rustc_const_eval/src/interpret

/eval_context.rs and contains all the local variables memory (None at the start of

evaluation). Each frame refers to the evaluation of either the root constant or subsequent

calls to const fn . The evaluation of another constant simply calls tcx.const_eval_* ,

which produce an entirely new and independent stack frame.

The frames are just a Vec<Frame> , there's no way to actually refer to a Frame 's memory

even if horrible shenanigans are done via unsafe code. The only memory that can be

referred to are Allocation s.

The interpreter now calls the step method (in rustc_const_eval/src/interpret/step.rs)

until it either returns an error or has no further statements to execute. Each statement

will now initialize or modify the locals or the virtual memory referred to by a local. This

might require evaluating other constants or statics, which just recursively invokes

tcx.const_eval_* .

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

577 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#interpretation
https://rustc-dev-guide.rust-lang.org/print.html#interpretation
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_const_eval/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_const_eval/index.html
https://github.com/rust-lang/rust/blob/master/compiler/rustc_const_eval/src/interpret/eval_context.rs
https://github.com/rust-lang/rust/blob/master/compiler/rustc_const_eval/src/interpret/eval_context.rs
https://github.com/rust-lang/rust/blob/master/compiler/rustc_const_eval/src/interpret/eval_context.rs
https://github.com/rust-lang/rust/blob/master/compiler/rustc_const_eval/src/interpret/eval_context.rs
https://github.com/rust-lang/rust/blob/master/compiler/rustc_const_eval/src/interpret/step.rs
https://github.com/rust-lang/rust/blob/master/compiler/rustc_const_eval/src/interpret/step.rs

Monomorphization

• Collection

• Codegen Unit (CGU) partitioning

• Polymorphization

As you probably know, Rust has a very expressive type system that has extensive support

for generic types. But of course, assembly is not generic, so we need to figure out the

concrete types of all the generics before the code can execute.

Different languages handle this problem differently. For example, in some languages,

such as Java, we may not know the most precise type of value until runtime. In the case of

Java, this is ok because (almost) all variables are reference values anyway (i.e. pointers to

a heap allocated object). This flexibility comes at the cost of performance, since all

accesses to an object must dereference a pointer.

Rust takes a different approach: it monomorphizes all generic types. This means that

compiler stamps out a different copy of the code of a generic function for each concrete

type needed. For example, if I use a Vec<u64> and a Vec<String> in my code, then the

generated binary will have two copies of the generated code for Vec : one for Vec<u64>

and another for Vec<String> . The result is fast programs, but it comes at the cost of

compile time (creating all those copies can take a while) and binary size (all those copies

might take a lot of space).

Monomorphization is the first step in the backend of the Rust compiler.

Collection

First, we need to figure out what concrete types we need for all the generic things in our

program. This is called collection, and the code that does this is called the

monomorphization collector.

Take this example:

The monomorphization collector will give you a list of [main, banana, peach::<u64>] .

These are the functions that will have machine code generated for them. Collector will

fn banana() {
 peach::<u64>();
}

fn main() {
 banana();
}

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

578 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#monomorphization
https://rustc-dev-guide.rust-lang.org/print.html#monomorphization
https://rustc-dev-guide.rust-lang.org/backend/monomorph.html#collection
https://rustc-dev-guide.rust-lang.org/backend/monomorph.html#collection
https://rustc-dev-guide.rust-lang.org/backend/monomorph.html#codegen-unit-cgu-partitioning
https://rustc-dev-guide.rust-lang.org/backend/monomorph.html#codegen-unit-cgu-partitioning
https://rustc-dev-guide.rust-lang.org/backend/monomorph.html#polymorphization
https://rustc-dev-guide.rust-lang.org/backend/monomorph.html#polymorphization
https://rustc-dev-guide.rust-lang.org/print.html#collection
https://rustc-dev-guide.rust-lang.org/print.html#collection

also add things like statics to that list.

See the collector rustdocs for more info.

The monomorphization collector is run just before MIR lowering and codegen.

rustc_codegen_ssa::base::codegen_crate calls the

collect_and_partition_mono_items query, which does monomorphization collection

and then partitions them into codegen units.

Codegen Unit (CGU) partitioning

For better incremental build times, the CGU partitioner creates two CGU for each source

level modules. One is for "stable" i.e. non-generic code and the other is more volatile

code i.e. monomorphized/specialized instances.

For dependencies, consider Crate A and Crate B, such that Crate B depends on Crate A.

The following table lists different scenarios for a function in Crate A that might be used by

one or more modules in Crate B.

Crate A

function
Behavior

Non-

generic

function

Crate A function doesn't appear in any codegen units of Crate B

Non-

generic

#[inline

] function

Crate A function appears within a single CGU of Crate B, and exists even after post-inlining sta

Generic

function

Regardless of inlining, all monomorphized (specialized) functions

from Crate A appear within a single codegen unit for Crate B.

The codegen unit exists even after the post inlining stage.

Generic

#[inline

] function

- same -

For more details about the partitioner read the module level documentation.

Polymorphization

As mentioned above, monomorphization produces fast code, but it comes at the cost of

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

579 of 660 8/30/23, 09:47

https://doc.rust-lang.org/nightly/nightly-rustc/rustc_monomorphize/collector/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_monomorphize/collector/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_codegen_ssa/base/fn.codegen_crate.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_codegen_ssa/base/fn.codegen_crate.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_codegen_ssa/base/fn.codegen_crate.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_monomorphize/partitioning/fn.collect_and_partition_mono_items.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_monomorphize/partitioning/fn.collect_and_partition_mono_items.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_monomorphize/partitioning/fn.collect_and_partition_mono_items.html
https://rustc-dev-guide.rust-lang.org/appendix/glossary.html#codegen-unit
https://rustc-dev-guide.rust-lang.org/appendix/glossary.html#codegen-unit
https://rustc-dev-guide.rust-lang.org/print.html#codegen-unit-cgu-partitioning
https://rustc-dev-guide.rust-lang.org/print.html#codegen-unit-cgu-partitioning
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_monomorphize/partitioning/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_monomorphize/partitioning/index.html
https://rustc-dev-guide.rust-lang.org/print.html#polymorphization
https://rustc-dev-guide.rust-lang.org/print.html#polymorphization

compile time and binary size. MIR optimizations can help a bit with this.

In addition to MIR optimizations, rustc attempts to determine when fewer copies of

functions are necessary and avoid making those copies - known as "polymorphization".

When a function-like item is found during monomorphization collection, the

rustc_mir_monomorphize::polymorphize::unused_generic_params query is invoked,

which traverses the MIR of the item to determine on which generic parameters the item

might not need duplicated.

Currently, polymorphization only looks for unused generic parameters. These are

relatively rare in functions, but closures inherit the generic parameters of their parent

function and it is common for closures to not use those inherited parameters. Without

polymorphization, a copy of these closures would be created for each copy of the parent

function. By creating fewer copies, less LLVM IR is generated; therefore less needs to be

processed.

unused_generic_params returns a FiniteBitSet<u64> where a bit is set if the generic

parameter of the corresponding index is unused. Any parameters after the first sixty-four

are considered used.

The results of polymorphization analysis are used in the Instance::polymorphize

function to replace the Instance 's substitutions for the unused generic parameters with

their identity substitutions.

Consider the example below:

During monomorphization collection, foo will be collected with the substitutions [u16,

u32] and [u64, u32] (from its invocations in main). foo has the identity substitutions

[A, B] (or [ty::Param(0), ty::Param(1)]).

Polymorphization will identify A as being unused and it will be replaced in the

substitutions with the identity parameter before being added to the set of collected items

- thereby reducing the copies from two ([u16, u32] and [u64, u32]) to one ([A,

u32]).

unused_generic_params will also be invoked during code generation when the symbol

name for foo is being computed for use in the callsites of foo (which have the regular

substitutions present, otherwise there would be a symbol mismatch between the caller

fn foo<A, B>() {
let x: Option = None;

}

fn main() {
 foo::<u16, u32>();
 foo::<u64, u32>();
}

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

580 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/mir/optimizations.html
https://rustc-dev-guide.rust-lang.org/mir/optimizations.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_monomorphize/polymorphize/fn.unused_generic_params.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_monomorphize/polymorphize/fn.unused_generic_params.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_monomorphize/polymorphize/fn.unused_generic_params.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/instance/struct.Instance.html#method.polymorphize
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/instance/struct.Instance.html#method.polymorphize
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/instance/struct.Instance.html#method.polymorphize
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/instance/struct.Instance.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/instance/struct.Instance.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/instance/struct.Instance.html

and the function).

As a result of polymorphization, items collected during monomorphization cannot be

assumed to be monomorphic.

It is intended that polymorphization be extended to more advanced cases, such as where

only the size/alignment of a generic parameter are required.

More details on polymorphization are available in the master's thesis associated with

polymorphization's initial implementation.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

581 of 660 8/30/23, 09:47

https://davidtw.co/media/masters_dissertation.pdf
https://davidtw.co/media/masters_dissertation.pdf

Lowering MIR to a Codegen IR

Now that we have a list of symbols to generate from the collector, we need to generate

some sort of codegen IR. In this chapter, we will assume LLVM IR, since that's what rustc

usually uses. The actual monomorphization is performed as we go, while we do the

translation.

Recall that the backend is started by rustc_codegen_ssa::base::codegen_crate .

Eventually, this reaches rustc_codegen_ssa::mir::codegen_mir , which does the

lowering from MIR to LLVM IR.

The code is split into modules which handle particular MIR primitives:

• rustc_codegen_ssa::mir::block will deal with translating blocks and their

terminators. The most complicated and also the most interesting thing this module

does is generating code for function calls, including the necessary unwinding

handling IR.

• rustc_codegen_ssa::mir::statement translates MIR statements.

• rustc_codegen_ssa::mir::operand translates MIR operands.

• rustc_codegen_ssa::mir::place translates MIR place references.

• rustc_codegen_ssa::mir::rvalue translates MIR r-values.

Before a function is translated a number of simple and primitive analysis passes will run

to help us generate simpler and more efficient LLVM IR. An example of such an analysis

pass would be figuring out which variables are SSA-like, so that we can translate them to

SSA directly rather than relying on LLVM's mem2reg for those variables. The analysis can

be found in rustc_codegen_ssa::mir::analyze .

Usually a single MIR basic block will map to a LLVM basic block, with very few exceptions:

intrinsic or function calls and less basic MIR statements like assert can result in multiple

basic blocks. This is a perfect lede into the non-portable LLVM-specific part of the code

generation. Intrinsic generation is fairly easy to understand as it involves very few

abstraction levels in between and can be found in rustc_codegen_llvm::intrinsic .

Everything else will use the builder interface. This is the code that gets called in the

rustc_codegen_ssa::mir::* modules discussed above.

TODO: discuss how constants are generated

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

582 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#lowering-mir-to-a-codegen-ir
https://rustc-dev-guide.rust-lang.org/print.html#lowering-mir-to-a-codegen-ir
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_codegen_ssa/base/fn.codegen_crate.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_codegen_ssa/base/fn.codegen_crate.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_codegen_ssa/base/fn.codegen_crate.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_codegen_ssa/mir/fn.codegen_mir.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_codegen_ssa/mir/fn.codegen_mir.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_codegen_ssa/mir/fn.codegen_mir.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_codegen_ssa/mir/block/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_codegen_ssa/mir/block/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_codegen_ssa/mir/block/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_codegen_ssa/mir/statement/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_codegen_ssa/mir/statement/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_codegen_ssa/mir/statement/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_codegen_ssa/mir/operand/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_codegen_ssa/mir/operand/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_codegen_ssa/mir/operand/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_codegen_ssa/mir/place/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_codegen_ssa/mir/place/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_codegen_ssa/mir/place/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_codegen_ssa/mir/rvalue/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_codegen_ssa/mir/rvalue/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_codegen_ssa/mir/rvalue/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_codegen_ssa/mir/analyze/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_codegen_ssa/mir/analyze/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_codegen_ssa/mir/analyze/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_codegen_llvm/intrinsic/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_codegen_llvm/intrinsic/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_codegen_llvm/intrinsic/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_codegen_llvm/builder/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_codegen_llvm/builder/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_codegen_ssa/mir/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_codegen_ssa/mir/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_codegen_ssa/mir/index.html

Code generation

Code generation (or "codegen") is the part of the compiler that actually generates an

executable binary. Usually, rustc uses LLVM for code generation, but there is also support

for Cranelift and GCC. The key is that rustc doesn't implement codegen itself. It's worth

noting, though, that in the Rust source code, many parts of the backend have codegen in

their names (there are no hard boundaries).

NOTE: If you are looking for hints on how to debug code generation bugs, please see

this section of the debugging chapter.

What is LLVM?

LLVM is "a collection of modular and reusable compiler and toolchain technologies". In

particular, the LLVM project contains a pluggable compiler backend (also called "LLVM"),

which is used by many compiler projects, including the clang C compiler and our

beloved rustc .

LLVM takes input in the form of LLVM IR. It is basically assembly code with additional low-

level types and annotations added. These annotations are helpful for doing optimizations

on the LLVM IR and outputted machine code. The end result of all this is (at long last)

something executable (e.g. an ELF object, an EXE, or wasm).

There are a few benefits to using LLVM:

• We don't have to write a whole compiler backend. This reduces implementation and

maintenance burden.

• We benefit from the large suite of advanced optimizations that the LLVM project has

been collecting.

• We can automatically compile Rust to any of the platforms for which LLVM has

support. For example, as soon as LLVM added support for wasm, voila! rustc, clang,

and a bunch of other languages were able to compile to wasm! (Well, there was

some extra stuff to be done, but we were 90% there anyway).

• We and other compiler projects benefit from each other. For example, when the

Spectre and Meltdown security vulnerabilities were discovered, only LLVM needed

to be patched.

Running LLVM, linking, and metadata generation

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

583 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#code-generation-1
https://rustc-dev-guide.rust-lang.org/print.html#code-generation-1
https://github.com/bytecodealliance/wasmtime/tree/main/cranelift
https://github.com/bytecodealliance/wasmtime/tree/main/cranelift
https://github.com/rust-lang/rustc_codegen_gcc
https://github.com/rust-lang/rustc_codegen_gcc
https://rustc-dev-guide.rust-lang.org/backend/debugging.html
https://rustc-dev-guide.rust-lang.org/backend/debugging.html
https://rustc-dev-guide.rust-lang.org/print.html#what-is-llvm
https://rustc-dev-guide.rust-lang.org/print.html#what-is-llvm
https://llvm.org/
https://llvm.org/
https://meltdownattack.com/
https://meltdownattack.com/
https://rustc-dev-guide.rust-lang.org/print.html#running-llvm-linking-and-metadata-generation
https://rustc-dev-guide.rust-lang.org/print.html#running-llvm-linking-and-metadata-generation

Once LLVM IR for all of the functions and statics, etc is built, it is time to start running

LLVM and its optimization passes. LLVM IR is grouped into "modules". Multiple "modules"

can be codegened at the same time to aid in multi-core utilization. These "modules" are

what we refer to as codegen units. These units were established way back during

monomorphization collection phase.

Once LLVM produces objects from these modules, these objects are passed to the linker

along with, optionally, the metadata object and an archive or an executable is produced.

It is not necessarily the codegen phase described above that runs the optimizations. With

certain kinds of LTO, the optimization might happen at the linking time instead. It is also

possible for some optimizations to happen before objects are passed on to the linker and

some to happen during the linking.

This all happens towards the very end of compilation. The code for this can be found in

rustc_codegen_ssa::back and rustc_codegen_llvm::back . Sadly, this piece of code is

not really well-separated into LLVM-dependent code; the rustc_codegen_ssa contains a

fair amount of code specific to the LLVM backend.

Once these components are done with their work you end up with a number of files in

your filesystem corresponding to the outputs you have requested.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

584 of 660 8/30/23, 09:47

https://doc.rust-lang.org/nightly/nightly-rustc/rustc_codegen_ssa/back/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_codegen_ssa/back/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_codegen_ssa/back/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_codegen_llvm/back/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_codegen_llvm/back/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_codegen_llvm/back/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_codegen_ssa/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_codegen_ssa/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_codegen_ssa/index.html

Updating LLVM

• Why update LLVM?

• Bugfix Updates

• New LLVM Release Updates

◦ Caveats and gotchas

There is no formal policy about when to update LLVM or what it can be updated to, but a

few guidelines are applied:

• We try to always support the latest released version

• We try to support the last few versions (and the number changes over time)

• We allow moving to arbitrary commits during development

• We strongly prefer to upstream all patches to LLVM before including them in rustc

Why update LLVM?

There are two reasons we would want to update LLVM:

• A bug could have been fixed! Note that if we are the ones who fixed such a bug, we

prefer to upstream it, then pull it back for use by rustc.

• LLVM itself may have a new release.

Each of these reasons has a different strategy for updating LLVM, and we'll go over them

in detail here.

Bugfix Updates

For updates of LLVM that are to fix a small bug, we cherry-pick the bugfix to the branch

we're already using. The steps for this are:

1. Make sure the bugfix is in upstream LLVM.

2. Identify the branch that rustc is currently using. The src/llvm-project submodule

is always pinned to a branch of the rust-lang/llvm-project repository.

3. Fork the rust-lang/llvm-project repository

4. Check out the appropriate branch (typically named rustc/a.b-yyyy-mm-dd)

5. Cherry-pick the upstream commit onto the branch

6. Push this branch to your fork

7. Send a Pull Request to rust-lang/llvm-project to the same branch as before. Be sure

to reference the Rust and/or LLVM issue that you're fixing in the PR description.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

585 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#updating-llvm
https://rustc-dev-guide.rust-lang.org/print.html#updating-llvm
https://rustc-dev-guide.rust-lang.org/backend/updating-llvm.html#why-update-llvm
https://rustc-dev-guide.rust-lang.org/backend/updating-llvm.html#why-update-llvm
https://rustc-dev-guide.rust-lang.org/backend/updating-llvm.html#bugfix-updates
https://rustc-dev-guide.rust-lang.org/backend/updating-llvm.html#bugfix-updates
https://rustc-dev-guide.rust-lang.org/backend/updating-llvm.html#new-llvm-release-updates
https://rustc-dev-guide.rust-lang.org/backend/updating-llvm.html#new-llvm-release-updates
https://rustc-dev-guide.rust-lang.org/backend/updating-llvm.html#caveats-and-gotchas
https://rustc-dev-guide.rust-lang.org/backend/updating-llvm.html#caveats-and-gotchas
https://rustc-dev-guide.rust-lang.org/print.html#why-update-llvm
https://rustc-dev-guide.rust-lang.org/print.html#why-update-llvm
https://rustc-dev-guide.rust-lang.org/print.html#bugfix-updates
https://rustc-dev-guide.rust-lang.org/print.html#bugfix-updates
https://github.com/rust-lang/llvm-project
https://github.com/rust-lang/llvm-project

8. Wait for the PR to be merged

9. Send a PR to rust-lang/rust updating the src/llvm-project submodule with your

bugfix. This can be done locally with git submodule update --remote src/llvm-

project typically.

10. Wait for PR to be merged

An example PR: #59089

New LLVM Release Updates

Unlike bugfixes, updating to a new release of LLVM typically requires a lot more work.

This is where we can't reasonably cherry-pick commits backwards, so we need to do a full

update. There's a lot of stuff to do here, so let's go through each in detail.

1. LLVM announces that its latest release version has branched. This will show up as a

branch in the llvm/llvm-project repository, typically named release/$N.x , where

$N is the version of LLVM that's being released.

2. Create a new branch in the rust-lang/llvm-project repository from this

release/$N.x branch, and name it rustc/a.b-yyyy-mm-dd , where a.b is the

current version number of LLVM in-tree at the time of the branch, and the

remaining part is the current date.

3. Apply Rust-specific patches to the llvm-project repository. All features and bugfixes

are upstream, but there's often some weird build-related patches that don't make

sense to upstream. These patches are typically the latest patches in the rust-

lang/llvm-project branch that rustc is currently using.

4. Build the new LLVM in the rust repository. To do this, you'll want to update the

src/llvm-project repository to your branch, and the revision you've created. It's

also typically a good idea to update .gitmodules with the new branch name of the

LLVM submodule. Make sure you've committed changes to src/llvm-project to

ensure submodule updates aren't reverted. Some commands you should execute

are:

◦ ./x build src/llvm - test that LLVM still builds

◦ ./x build src/tools/lld - same for LLD

◦ ./x build - build the rest of rustc

You'll likely need to update llvm-wrapper/*.cpp to compile with updated LLVM

bindings. Note that you should use #ifdef and such to ensure that the bindings

still compile on older LLVM versions.

Note that profile = "compiler" and other defaults set by ./x setup download

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

586 of 660 8/30/23, 09:47

https://github.com/rust-lang/rust/pull/59089
https://github.com/rust-lang/rust/pull/59089
https://rustc-dev-guide.rust-lang.org/print.html#new-llvm-release-updates
https://rustc-dev-guide.rust-lang.org/print.html#new-llvm-release-updates
https://github.com/llvm/llvm-project
https://github.com/llvm/llvm-project
https://github.com/rust-lang/llvm-project
https://github.com/rust-lang/llvm-project
https://github.com/rust-lang/rust/tree/master/compiler/rustc_llvm/llvm-wrapper
https://github.com/rust-lang/rust/tree/master/compiler/rustc_llvm/llvm-wrapper
https://github.com/rust-lang/rust/tree/master/compiler/rustc_llvm/llvm-wrapper

LLVM from CI instead of building it from source. You should disable this temporarily

to make sure your changes are being used. This is done by having the following

setting in config.toml :

5. Test for regressions across other platforms. LLVM often has at least one bug for

non-tier-1 architectures, so it's good to do some more testing before sending this to

bors! If you're low on resources you can send the PR as-is now to bors, though, and

it'll get tested anyway.

Ideally, build LLVM and test it on a few platforms:

◦ Linux

◦ macOS

◦ Windows

Afterwards, run some docker containers that CI also does:

◦ ./src/ci/docker/run.sh wasm32

◦ ./src/ci/docker/run.sh arm-android

◦ ./src/ci/docker/run.sh dist-various-1

◦ ./src/ci/docker/run.sh dist-various-2

◦ ./src/ci/docker/run.sh armhf-gnu

6. Prepare a PR to rust-lang/rust . Work with maintainers of rust-lang/llvm-

project to get your commit in a branch of that repository, and then you can send a

PR to rust-lang/rust . You'll change at least src/llvm-project and will likely also

change llvm-wrapper as well.

For prior art, here are some previous LLVM updates:

◦ LLVM 11

◦ LLVM 12

◦ LLVM 13

◦ LLVM 14

◦ LLVM 15

◦ LLVM 16

Note that sometimes it's easiest to land llvm-wrapper compatibility as a PR before

actually updating src/llvm-project . This way, while you're working through LLVM

issues, others interested in trying out the new LLVM can benefit from work you've

done to update the C++ bindings.

[llvm]

download-ci-llvm = false

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

587 of 660 8/30/23, 09:47

https://github.com/rust-lang/rust/tree/master/compiler/rustc_llvm/llvm-wrapper
https://github.com/rust-lang/rust/tree/master/compiler/rustc_llvm/llvm-wrapper
https://github.com/rust-lang/rust/tree/master/compiler/rustc_llvm/llvm-wrapper
https://github.com/rust-lang/rust/pull/73526
https://github.com/rust-lang/rust/pull/73526
https://github.com/rust-lang/rust/pull/81451
https://github.com/rust-lang/rust/pull/81451
https://github.com/rust-lang/rust/pull/87570
https://github.com/rust-lang/rust/pull/87570
https://github.com/rust-lang/rust/pull/93577
https://github.com/rust-lang/rust/pull/93577
https://github.com/rust-lang/rust/pull/99464
https://github.com/rust-lang/rust/pull/99464
https://github.com/rust-lang/rust/pull/109474
https://github.com/rust-lang/rust/pull/109474
https://github.com/rust-lang/rust/tree/master/compiler/rustc_llvm/llvm-wrapper
https://github.com/rust-lang/rust/tree/master/compiler/rustc_llvm/llvm-wrapper
https://github.com/rust-lang/rust/tree/master/compiler/rustc_llvm/llvm-wrapper

7. Over the next few months, LLVM will continually push commits to its release/a.b

branch. We will often want to have those bug fixes as well. The merge process for

that is to use git merge itself to merge LLVM's release/a.b branch with the

branch created in step 2. This is typically done multiple times when necessary while

LLVM's release branch is baking.

8. LLVM then announces the release of version a.b .

9. After LLVM's official release, we follow the process of creating a new branch on the

rust-lang/llvm-project repository again, this time with a new date. It is only then that

the PR to update Rust to use that version is merged.

The commit history of rust-lang/llvm-project should look much cleaner as a git

rebase is done, where just a few Rust-specific commits are stacked on top of stock

LLVM's release branch.

Caveats and gotchas

Ideally the above instructions are pretty smooth, but here's some caveats to keep in mind

while going through them:

• LLVM bugs are hard to find, don't hesitate to ask for help! Bisection is definitely your

friend here (yes LLVM takes forever to build, yet bisection is still your friend). Note

that you can make use of Dev Desktops, which is an initiative to provide the

contributors with remote access to powerful hardware.

• If you've got general questions, wg-llvm can help you out.

• Creating branches is a privileged operation on GitHub, so you'll need someone with

write access to create the branches for you most likely.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

588 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#caveats-and-gotchas
https://rustc-dev-guide.rust-lang.org/print.html#caveats-and-gotchas
https://forge.rust-lang.org/infra/docs/dev-desktop.html
https://forge.rust-lang.org/infra/docs/dev-desktop.html
https://rust-lang.zulipchat.com/#narrow/stream/187780-t-compiler.2Fwg-llvm
https://rust-lang.zulipchat.com/#narrow/stream/187780-t-compiler.2Fwg-llvm

Debugging LLVM

NOTE: If you are looking for info about code generation, please see this chapter

instead.

This section is about debugging compiler bugs in code generation (e.g. why the compiler

generated some piece of code or crashed in LLVM). LLVM is a big project on its own that

probably needs to have its own debugging document (not that I could find one). But here

are some tips that are important in a rustc context:

Minimize the example

As a general rule, compilers generate lots of information from analyzing code. Thus, a

useful first step is usually to find a minimal example. One way to do this is to

1. create a new crate that reproduces the issue (e.g. adding whatever crate is at fault

as a dependency, and using it from there)

2. minimize the crate by removing external dependencies; that is, moving everything

relevant to the new crate

3. further minimize the issue by making the code shorter (there are tools that help

with this like creduce)

For more discussion on methodology for steps 2 and 3 above, there is an epic blog post

from pnkfelix specifically about Rust program minimization.

Enable LLVM internal checks

The official compilers (including nightlies) have LLVM assertions disabled, which means

that LLVM assertion failures can show up as compiler crashes (not ICEs but "real" crashes)

and other sorts of weird behavior. If you are encountering these, it is a good idea to try

using a compiler with LLVM assertions enabled - either an "alt" nightly or a compiler you

build yourself by setting [llvm] assertions=true in your config.toml - and see whether

anything turns up.

The rustc build process builds the LLVM tools into ./build/<host-triple>/llvm/bin .

They can be called directly. These tools include:

• llc , which compiles bitcode (.bc files) to executable code; this can be used to

replicate LLVM backend bugs.

• opt , a bitcode transformer that runs LLVM optimization passes.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

589 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#debugging-llvm
https://rustc-dev-guide.rust-lang.org/print.html#debugging-llvm
https://rustc-dev-guide.rust-lang.org/backend/codegen.html
https://rustc-dev-guide.rust-lang.org/backend/codegen.html
https://rustc-dev-guide.rust-lang.org/print.html#minimize-the-example
https://rustc-dev-guide.rust-lang.org/print.html#minimize-the-example
https://blog.pnkfx.org/blog/2019/11/18/rust-bug-minimization-patterns/
https://blog.pnkfx.org/blog/2019/11/18/rust-bug-minimization-patterns/
https://rustc-dev-guide.rust-lang.org/print.html#enable-llvm-internal-checks
https://rustc-dev-guide.rust-lang.org/print.html#enable-llvm-internal-checks
https://llvm.org/docs/CommandGuide/llc.html
https://llvm.org/docs/CommandGuide/llc.html
https://llvm.org/docs/CommandGuide/llc.html
https://llvm.org/docs/CommandGuide/opt.html
https://llvm.org/docs/CommandGuide/opt.html
https://llvm.org/docs/CommandGuide/opt.html

• bugpoint , which reduces large test cases to small, useful ones.

• and many others, some of which are referenced in the text below.

By default, the Rust build system does not check for changes to the LLVM source code or

its build configuration settings. So, if you need to rebuild the LLVM that is linked into

rustc , first delete the file llvm-finished-building , which should be located in

build/<host-triple>/llvm/ .

The default rustc compilation pipeline has multiple codegen units, which is hard to

replicate manually and means that LLVM is called multiple times in parallel. If you can get

away with it (i.e. if it doesn't make your bug disappear), passing -C codegen-units=1 to

rustc will make debugging easier.

Get your hands on raw LLVM input

For rustc to generate LLVM IR, you need to pass the --emit=llvm-ir flag. If you are

building via cargo, use the RUSTFLAGS environment variable (e.g. RUSTFLAGS='--

emit=llvm-ir'). This causes rustc to spit out LLVM IR into the target directory.

cargo llvm-ir [options] path spits out the LLVM IR for a particular function at path .

(cargo install cargo-asm installs cargo asm and cargo llvm-ir). --build-

type=debug emits code for debug builds. There are also other useful options. Also, debug

info in LLVM IR can clutter the output a lot: RUSTFLAGS="-C debuginfo=0" is really useful.

RUSTFLAGS="-C save-temps" outputs LLVM bitcode (not the same as IR) at different

stages during compilation, which is sometimes useful. The output LLVM bitcode will be in

.bc files in the compiler's output directory, set via the --out-dir DIR argument to

rustc .

• If you are hitting an assertion failure or segmentation fault from the LLVM backend

when invoking rustc itself, it is a good idea to try passing each of these .bc files to

the llc command, and see if you get the same failure. (LLVM developers often

prefer a bug reduced to a .bc file over one that uses a Rust crate for its minimized

reproduction.)

• To get human readable versions of the LLVM bitcode, one just needs to convert the

bitcode (.bc) files to .ll files using llvm-dis , which should be in the target local

compilation of rustc.

Note that rustc emits different IR depending on whether -O is enabled, even without

LLVM's optimizations, so if you want to play with the IR rustc emits, you should:

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

590 of 660 8/30/23, 09:47

https://llvm.org/docs/Bugpoint.html
https://llvm.org/docs/Bugpoint.html
https://llvm.org/docs/Bugpoint.html
https://rustc-dev-guide.rust-lang.org/print.html#get-your-hands-on-raw-llvm-input
https://rustc-dev-guide.rust-lang.org/print.html#get-your-hands-on-raw-llvm-input

If you just want to get the LLVM IR during the LLVM pipeline, to e.g. see which IR causes

an optimization-time assertion to fail, or to see when LLVM performs a particular

optimization, you can pass the rustc flag -C llvm-args=-print-after-all , and possibly

add -C llvm-args='-filter-print-funcs=EXACT_FUNCTION_NAME (e.g. -C llvm-args='-

filter-print-funcs=_ZN11collections3str21_LTimpl$u20$strGT\

7replace17hbe10ea2e7c809b0bE').

That produces a lot of output into standard error, so you'll want to pipe that to some file.

Also, if you are using neither -filter-print-funcs nor -C codegen-units=1 , then,

because the multiple codegen units run in parallel, the printouts will mix together and

you won't be able to read anything.

• One caveat to the aforementioned methodology: the -print family of options to

LLVM only prints the IR unit that the pass runs on (e.g., just a function), and does not

include any referenced declarations, globals, metadata, etc. This means you cannot

in general feed the output of -print into llc to reproduce a given problem.

• Within LLVM itself, calling F.getParent()->dump() at the beginning of

SafeStackLegacyPass::runOnFunction will dump the whole module, which may

provide better basis for reproduction. (However, you should be able to get that

same dump from the .bc files dumped by -C save-temps .)

If you want just the IR for a specific function (say, you want to see why it causes an

assertion or doesn't optimize correctly), you can use llvm-extract , e.g.

Investigate LLVM optimization passes

If you are seeing incorrect behavior due to an optimization pass, a very handy LLVM

option is -opt-bisect-limit , which takes an integer denoting the index value of the

highest pass to run. Index values for taken passes are stable from run to run; by coupling

this with software that automates bisecting the search space based on the resulting

program, an errant pass can be quickly determined. When an -opt-bisect-limit is

$ rustc +local my-file.rs --emit=llvm-ir -O -C no-prepopulate-passes \
 -C codegen-units=1
$ OPT=./build/$TRIPLE/llvm/bin/opt
$ $OPT -S -O2 < my-file.ll > my

$./build/$TRIPLE/llvm/bin/llvm-extract \

-func='_ZN11collections3str21_LTimpl$u20$strGT7replace17hbe10ea2e7c809b0b
E' \
 -S \
 < unextracted.ll \
 > extracted.ll

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

591 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#investigate-llvm-optimization-passes
https://rustc-dev-guide.rust-lang.org/print.html#investigate-llvm-optimization-passes

specified, all runs are displayed to standard error, along with their index and output

indicating if the pass was run or skipped. Setting the limit to an index of -1 (e.g.,

RUSTFLAGS="-C llvm-args=-opt-bisect-limit=-1") will show all passes and their

corresponding index values.

If you want to play with the optimization pipeline, you can use the opt tool from

./build/<host-triple>/llvm/bin/ with the LLVM IR emitted by rustc.

When investigating the implementation of LLVM itself, you should be aware of its internal

debug infrastructure. This is provided in LLVM Debug builds, which you enable for rustc

LLVM builds by changing this setting in the config.toml:

The quick summary is:

• Setting assertions=true enables coarse-grain debug messaging.

◦ beyond that, setting optimize=false enables fine-grain debug messaging.

• LLVM_DEBUG(dbgs() << msg) in LLVM is like debug!(msg) in rustc .

• The -debug option turns on all messaging; it is like setting the environment variable

RUSTC_LOG=debug in rustc .

• The -debug-only=<pass1>,<pass2> variant is more selective; it is like setting the

environment variable RUSTC_LOG=path1,path2 in rustc .

Getting help and asking questions

If you have some questions, head over to the rust-lang Zulip and specifically the #t-

compiler/wg-llvm stream.

Compiler options to know and love

The -C help and -Z help compiler switches will list out a variety of interesting options

you may find useful. Here are a few of the most common that pertain to LLVM

development (some of them are employed in the tutorial above):

• The --emit llvm-ir option emits a <filename>.ll file with LLVM IR in textual

format

◦ The --emit llvm-bc option emits in bytecode format (<filename>.bc)

[llvm]
Indicates whether the LLVM assertions are enabled or not
assertions = true

Indicates whether the LLVM build is a Release or Debug build
optimize = false

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

592 of 660 8/30/23, 09:47

https://llvm.org/docs/CommandGuide/opt.html
https://llvm.org/docs/CommandGuide/opt.html
https://llvm.org/docs/CommandGuide/opt.html
https://llvm.org/docs/ProgrammersManual.html#the-llvm-debug-macro-and-debug-option
https://llvm.org/docs/ProgrammersManual.html#the-llvm-debug-macro-and-debug-option
https://llvm.org/docs/ProgrammersManual.html#the-llvm-debug-macro-and-debug-option
https://llvm.org/docs/ProgrammersManual.html#the-llvm-debug-macro-and-debug-option
https://rustc-dev-guide.rust-lang.org/print.html#getting-help-and-asking-questions
https://rustc-dev-guide.rust-lang.org/print.html#getting-help-and-asking-questions
https://rust-lang.zulipchat.com/
https://rust-lang.zulipchat.com/
https://rustc-dev-guide.rust-lang.org/print.html#compiler-options-to-know-and-love
https://rustc-dev-guide.rust-lang.org/print.html#compiler-options-to-know-and-love

• Passing -C llvm-args=<foo> allows passing pretty much all the options that tools

like llc and opt would accept; e.g. -C llvm-args=-print-before-all to print IR

before every LLVM pass.

• The -C no-prepopulate-passes will avoid pre-populate the LLVM pass manager

with a list of passes. This will allow you to view the LLVM IR that rustc generates, not

the LLVM IR after optimizations.

• The -C passes=val option allows you to supply a space separated list of extra

LLVM passes to run

• The -C save-temps option saves all temporary output files during compilation

• The -Z print-llvm-passes option will print out LLVM optimization passes being

run

• The -Z time-llvm-passes option measures the time of each LLVM pass

• The -Z verify-llvm-ir option will verify the LLVM IR for correctness

• The -Z no-parallel-llvm will disable parallel compilation of distinct compilation

units

• The -Z llvm-time-trace option will output a Chrome profiler compatible JSON file

which contains details and timings for LLVM passes.

• The -C llvm-args=-opt-bisect-limit=<index> option allows for bisecting LLVM

optimizations.

Filing LLVM bug reports

When filing an LLVM bug report, you will probably want some sort of minimal working

example that demonstrates the problem. The Godbolt compiler explorer is really helpful

for this.

1. Once you have some LLVM IR for the problematic code (see above), you can create a

minimal working example with Godbolt. Go to llvm.godbolt.org.

2. Choose LLVM-IR as programming language.

3. Use llc to compile the IR to a particular target as is:

◦ There are some useful flags: -mattr enables target features, -march= selects

the target, -mcpu= selects the CPU, etc.

◦ Commands like llc -march=help output all architectures available, which is

useful because sometimes the Rust arch names and the LLVM names do not

match.

◦ If you have compiled rustc yourself somewhere, in the target directory you

have binaries for llc , opt , etc.

4. If you want to optimize the LLVM-IR, you can use opt to see how the LLVM

optimizations transform it.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

593 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#filing-llvm-bug-reports
https://rustc-dev-guide.rust-lang.org/print.html#filing-llvm-bug-reports
https://llvm.godbolt.org/
https://llvm.godbolt.org/

5. Once you have a godbolt link demonstrating the issue, it is pretty easy to fill in an

LLVM bug. Just visit their github issues page.

Porting bug fixes from LLVM

Once you've identified the bug as an LLVM bug, you will sometimes find that it has

already been reported and fixed in LLVM, but we haven't gotten the fix yet (or perhaps

you are familiar enough with LLVM to fix it yourself).

In that case, we can sometimes opt to port the fix for the bug directly to our own LLVM

fork, so that rustc can use it more easily. Our fork of LLVM is maintained in rust-lang/llvm-

project. Once you've landed the fix there, you'll also need to land a PR modifying our

submodule commits -- ask around on Zulip for help.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

594 of 660 8/30/23, 09:47

https://github.com/llvm/llvm-project/issues
https://github.com/llvm/llvm-project/issues
https://rustc-dev-guide.rust-lang.org/print.html#porting-bug-fixes-from-llvm
https://rustc-dev-guide.rust-lang.org/print.html#porting-bug-fixes-from-llvm
https://github.com/rust-lang/llvm-project/
https://github.com/rust-lang/llvm-project/
https://github.com/rust-lang/llvm-project/
https://github.com/rust-lang/llvm-project/

Backend Agnostic Codegen

• Refactoring of rustc_codegen_llvm

◦ State of the code before the refactoring

◦ Generic types and structures

◦ Traits and interface

◦ State of the code after the refactoring

rustc_codegen_ssa provides an abstract interface for all backends to implement, namely

LLVM, Cranelift, and GCC.

Below is some background information on the refactoring that created this abstract

interface.

Refactoring of rustc_codegen_llvm

by Denis Merigoux, October 23rd 2018

State of the code before the refactoring

All the code related to the compilation of MIR into LLVM IR was contained inside the

rustc_codegen_llvm crate. Here is the breakdown of the most important elements:

• the back folder (7,800 LOC) implements the mechanisms for creating the different

object files and archive through LLVM, but also the communication mechanisms for

parallel code generation;

• the debuginfo (3,200 LOC) folder contains all code that passes debug information

down to LLVM;

• the llvm (2,200 LOC) folder defines the FFI necessary to communicate with LLVM

using the C++ API;

• the mir (4,300 LOC) folder implements the actual lowering from MIR to LLVM IR;

• the base.rs (1,300 LOC) file contains some helper functions but also the high-level

code that launches the code generation and distributes the work.

• the builder.rs (1,200 LOC) file contains all the functions generating individual

LLVM IR instructions inside a basic block;

• the common.rs (450 LOC) contains various helper functions and all the functions

generating LLVM static values;

• the type_.rs (300 LOC) defines most of the type translations to LLVM IR.

The goal of this refactoring is to separate inside this crate code that is specific to the LLVM

from code that can be reused for other rustc backends. For instance, the mir folder is

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

595 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#backend-agnostic-codegen
https://rustc-dev-guide.rust-lang.org/print.html#backend-agnostic-codegen
https://rustc-dev-guide.rust-lang.org/backend/backend-agnostic.html#refactoring-of-rustc_codegen_llvm
https://rustc-dev-guide.rust-lang.org/backend/backend-agnostic.html#refactoring-of-rustc_codegen_llvm
https://rustc-dev-guide.rust-lang.org/backend/backend-agnostic.html#refactoring-of-rustc_codegen_llvm
https://rustc-dev-guide.rust-lang.org/backend/backend-agnostic.html#refactoring-of-rustc_codegen_llvm
https://rustc-dev-guide.rust-lang.org/backend/backend-agnostic.html#state-of-the-code-before-the-refactoring
https://rustc-dev-guide.rust-lang.org/backend/backend-agnostic.html#state-of-the-code-before-the-refactoring
https://rustc-dev-guide.rust-lang.org/backend/backend-agnostic.html#generic-types-and-structures
https://rustc-dev-guide.rust-lang.org/backend/backend-agnostic.html#generic-types-and-structures
https://rustc-dev-guide.rust-lang.org/backend/backend-agnostic.html#traits-and-interface
https://rustc-dev-guide.rust-lang.org/backend/backend-agnostic.html#traits-and-interface
https://rustc-dev-guide.rust-lang.org/backend/backend-agnostic.html#state-of-the-code-after-the-refactoring
https://rustc-dev-guide.rust-lang.org/backend/backend-agnostic.html#state-of-the-code-after-the-refactoring
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_codegen_ssa/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_codegen_ssa/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_codegen_ssa/index.html
https://github.com/bjorn3/rustc_codegen_cranelift
https://github.com/bjorn3/rustc_codegen_cranelift
https://github.com/rust-lang/rustc_codegen_gcc
https://github.com/rust-lang/rustc_codegen_gcc
https://rustc-dev-guide.rust-lang.org/print.html#refactoring-of-rustc_codegen_llvm
https://rustc-dev-guide.rust-lang.org/print.html#refactoring-of-rustc_codegen_llvm
https://rustc-dev-guide.rust-lang.org/print.html#refactoring-of-rustc_codegen_llvm
https://rustc-dev-guide.rust-lang.org/print.html#refactoring-of-rustc_codegen_llvm
https://rustc-dev-guide.rust-lang.org/print.html#state-of-the-code-before-the-refactoring
https://rustc-dev-guide.rust-lang.org/print.html#state-of-the-code-before-the-refactoring

almost entirely backend-specific but it relies heavily on other parts of the crate. The

separation of the code must not affect the logic of the code nor its performance.

For these reasons, the separation process involves two transformations that have to be

done at the same time for the resulting code to compile :

1. replace all the LLVM-specific types by generics inside function signatures and

structure definitions;

2. encapsulate all functions calling the LLVM FFI inside a set of traits that will define the

interface between backend-agnostic code and the backend.

While the LLVM-specific code will be left in rustc_codegen_llvm , all the new traits and

backend-agnostic code will be moved in rustc_codegen_ssa (name suggestion by

@eddyb).

Generic types and structures

@irinagpopa started to parametrize the types of rustc_codegen_llvm by a generic

Value type, implemented in LLVM by a reference &'ll Value . This work has been

extended to all structures inside the mir folder and elsewhere, as well as for LLVM's

BasicBlock and Type types.

The two most important structures for the LLVM codegen are CodegenCx and Builder .

They are parametrized by multiple lifetime parameters and the type for Value .

CodegenCx is used to compile one codegen-unit that can contain multiple functions,

whereas Builder is created to compile one basic block.

The code in rustc_codegen_llvm has to deal with multiple explicit lifetime parameters,

that correspond to the following:

• 'tcx is the longest lifetime, that corresponds to the original TyCtxt containing the

program's information;

• 'a is a short-lived reference of a CodegenCx or another object inside a struct;

• 'll is the lifetime of references to LLVM objects such as Value or Type .

Although there are already many lifetime parameters in the code, making it generic

struct CodegenCx<'ll, 'tcx> {
/* ... */

}

struct Builder<'a, 'll, 'tcx> {
 cx: &'a CodegenCx<'ll, 'tcx>,
/* ... */

}

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

596 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#generic-types-and-structures
https://rustc-dev-guide.rust-lang.org/print.html#generic-types-and-structures

uncovered situations where the borrow-checker was passing only due to the special

nature of the LLVM objects manipulated (they are extern pointers). For instance, an

additional lifetime parameter had to be added to LocalAnalyser in analyse.rs , leading

to the definition:

However, the two most important structures CodegenCx and Builder are not defined in

the backend-agnostic code. Indeed, their content is highly specific of the backend and it

makes more sense to leave their definition to the backend implementor than to allow just

a narrow spot via a generic field for the backend's context.

Traits and interface

Because they have to be defined by the backend, CodegenCx and Builder will be the

structures implementing all the traits defining the backend's interface. These traits are

defined in the folder rustc_codegen_ssa/traits and all the backend-agnostic code is

parametrized by them. For instance, let us explain how a function in base.rs is

parametrized:

In this signature, we have the two lifetime parameters explained earlier and the master

type Bx which satisfies the trait BuilderMethods corresponding to the interface satisfied

by the Builder struct. The BuilderMethods defines an associated type Bx::CodegenCx

that itself satisfies the CodegenMethods traits implemented by the struct CodegenCx .

On the trait side, here is an example with part of the definition of BuilderMethods in

traits/builder.rs :

struct LocalAnalyzer<'mir, 'a, 'tcx> {
/* ... */

}

pub fn codegen_instance<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
 cx: &'a Bx::CodegenCx,
 instance: Instance<'tcx>
) {

/* ... */
}

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

597 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#traits-and-interface
https://rustc-dev-guide.rust-lang.org/print.html#traits-and-interface

Finally, a master structure implementing the ExtraBackendMethods trait is used for high-

level codegen-driving functions like codegen_crate in base.rs . For LLVM, it is the empty

LlvmCodegenBackend . ExtraBackendMethods should be implemented by the same

structure that implements the CodegenBackend defined in

rustc_codegen_utils/codegen_backend.rs .

During the traitification process, certain functions have been converted from methods of

a local structure to methods of CodegenCx or Builder and a corresponding self

parameter has been added. Indeed, LLVM stores information internally that it can access

when called through its API. This information does not show up in a Rust data structure

carried around when these methods are called. However, when implementing a Rust

backend for rustc , these methods will need information from CodegenCx , hence the

additional parameter (unused in the LLVM implementation of the trait).

State of the code after the refactoring

The traits offer an API which is very similar to the API of LLVM. This is not the best

solution since LLVM has a very special way of doing things: when adding another

backend, the traits definition might be changed in order to offer more flexibility.

However, the current separation between backend-agnostic and LLVM-specific code has

allowed the reuse of a significant part of the old rustc_codegen_llvm . Here is the new

LOC breakdown between backend-agnostic (BA) and LLVM for the most important

elements:

pub trait BuilderMethods<'a, 'tcx>:
 HasCodegen<'tcx>
 + DebugInfoBuilderMethods<'tcx>
 + ArgTypeMethods<'tcx>
 + AbiBuilderMethods<'tcx>
 + IntrinsicCallMethods<'tcx>
 + AsmBuilderMethods<'tcx>
{

fn new_block<'b>(
 cx: &'a Self::CodegenCx,
 llfn: Self::Function,
 name: &'b str
) -> Self;

/* ... */
fn cond_br(

 &mut self,
 cond: Self::Value,
 then_llbb: Self::BasicBlock,
 else_llbb: Self::BasicBlock,
);

/* ... */
}

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

598 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#state-of-the-code-after-the-refactoring
https://rustc-dev-guide.rust-lang.org/print.html#state-of-the-code-after-the-refactoring

• back folder: 3,800 (BA) vs 4,100 (LLVM);

• mir folder: 4,400 (BA) vs 0 (LLVM);

• base.rs : 1,100 (BA) vs 250 (LLVM);

• builder.rs : 1,400 (BA) vs 0 (LLVM);

• common.rs : 350 (BA) vs 350 (LLVM);

The debuginfo folder has been left almost untouched by the splitting and is specific to

LLVM. Only its high-level features have been traitified.

The new traits folder has 1500 LOC only for trait definitions. Overall, the 27,000 LOC-

sized old rustc_codegen_llvm code has been split into the new 18,500 LOC-sized new

rustc_codegen_llvm and the 12,000 LOC-sized rustc_codegen_ssa . We can say that this

refactoring allowed the reuse of approximately 10,000 LOC that would otherwise have

had to be duplicated between the multiple backends of rustc .

The refactored version of rustc 's backend introduced no regression over the test suite

nor in performance benchmark, which is in coherence with the nature of the refactoring

that used only compile-time parametricity (no trait objects).

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

599 of 660 8/30/23, 09:47

Implicit Caller Location

• Motivating Example

• Reading Caller Location

• Caller Location in const

◦ Finding the right Location

◦ Allocating a static Location

• Generating code for #[track_caller] callees

◦ Codegen examples

◦ Dynamic Dispatch

• The Attribute

◦ Traits

• Background/History

Approved in RFC 2091, this feature enables the accurate reporting of caller location

during panics initiated from functions like Option::unwrap , Result::expect , and

Index::index . This feature adds the #[track_caller] attribute for functions, the

caller_location intrinsic, and the stabilization-friendly

core::panic::Location::caller wrapper.

Motivating Example

Take this example program:

Prior to Rust 1.42, panics like this unwrap() printed a location in core:

As of 1.42, we get a much more helpful message:

fn main() {
let foo: Option<()> = None;

 foo.unwrap(); // this should produce a useful panic message!
}

$ rustc +1.41.0 example.rs; example.exe
thread 'main' panicked at 'called `Option::unwrap()` on a `None`
value',...core\macros\mod.rs:15:40
note: run with `RUST_BACKTRACE=1` environment variable to display a
backtrace.

$ rustc +1.42.0 example.rs; example.exe
thread 'main' panicked at 'called `Option::unwrap()` on a `None` value',
example.rs:3:5
note: run with `RUST_BACKTRACE=1` environment variable to display a backtrace

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

600 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#implicit-caller-location
https://rustc-dev-guide.rust-lang.org/print.html#implicit-caller-location
https://rustc-dev-guide.rust-lang.org/backend/implicit-caller-location.html#motivating-example
https://rustc-dev-guide.rust-lang.org/backend/implicit-caller-location.html#motivating-example
https://rustc-dev-guide.rust-lang.org/backend/implicit-caller-location.html#reading-caller-location
https://rustc-dev-guide.rust-lang.org/backend/implicit-caller-location.html#reading-caller-location
https://rustc-dev-guide.rust-lang.org/backend/implicit-caller-location.html#caller-location-in-const
https://rustc-dev-guide.rust-lang.org/backend/implicit-caller-location.html#caller-location-in-const
https://rustc-dev-guide.rust-lang.org/backend/implicit-caller-location.html#caller-location-in-const
https://rustc-dev-guide.rust-lang.org/backend/implicit-caller-location.html#caller-location-in-const
https://rustc-dev-guide.rust-lang.org/backend/implicit-caller-location.html#finding-the-right-location
https://rustc-dev-guide.rust-lang.org/backend/implicit-caller-location.html#finding-the-right-location
https://rustc-dev-guide.rust-lang.org/backend/implicit-caller-location.html#finding-the-right-location
https://rustc-dev-guide.rust-lang.org/backend/implicit-caller-location.html#finding-the-right-location
https://rustc-dev-guide.rust-lang.org/backend/implicit-caller-location.html#allocating-a-static-location
https://rustc-dev-guide.rust-lang.org/backend/implicit-caller-location.html#allocating-a-static-location
https://rustc-dev-guide.rust-lang.org/backend/implicit-caller-location.html#allocating-a-static-location
https://rustc-dev-guide.rust-lang.org/backend/implicit-caller-location.html#allocating-a-static-location
https://rustc-dev-guide.rust-lang.org/backend/implicit-caller-location.html#generating-code-for-track_caller-callees
https://rustc-dev-guide.rust-lang.org/backend/implicit-caller-location.html#generating-code-for-track_caller-callees
https://rustc-dev-guide.rust-lang.org/backend/implicit-caller-location.html#generating-code-for-track_caller-callees
https://rustc-dev-guide.rust-lang.org/backend/implicit-caller-location.html#generating-code-for-track_caller-callees
https://rustc-dev-guide.rust-lang.org/backend/implicit-caller-location.html#generating-code-for-track_caller-callees
https://rustc-dev-guide.rust-lang.org/backend/implicit-caller-location.html#codegen-examples
https://rustc-dev-guide.rust-lang.org/backend/implicit-caller-location.html#codegen-examples
https://rustc-dev-guide.rust-lang.org/backend/implicit-caller-location.html#dynamic-dispatch
https://rustc-dev-guide.rust-lang.org/backend/implicit-caller-location.html#dynamic-dispatch
https://rustc-dev-guide.rust-lang.org/backend/implicit-caller-location.html#the-attribute
https://rustc-dev-guide.rust-lang.org/backend/implicit-caller-location.html#the-attribute
https://rustc-dev-guide.rust-lang.org/backend/implicit-caller-location.html#traits
https://rustc-dev-guide.rust-lang.org/backend/implicit-caller-location.html#traits
https://rustc-dev-guide.rust-lang.org/backend/implicit-caller-location.html#backgroundhistory
https://rustc-dev-guide.rust-lang.org/backend/implicit-caller-location.html#backgroundhistory
https://github.com/rust-lang/rfcs/blob/master/text/2091-inline-semantic.md
https://github.com/rust-lang/rfcs/blob/master/text/2091-inline-semantic.md
https://doc.rust-lang.org/reference/attributes/codegen.html#the-track_caller-attribute
https://doc.rust-lang.org/reference/attributes/codegen.html#the-track_caller-attribute
https://doc.rust-lang.org/reference/attributes/codegen.html#the-track_caller-attribute
https://doc.rust-lang.org/nightly/core/intrinsics/fn.caller_location.html
https://doc.rust-lang.org/nightly/core/intrinsics/fn.caller_location.html
https://doc.rust-lang.org/nightly/core/intrinsics/fn.caller_location.html
https://doc.rust-lang.org/nightly/core/panic/struct.Location.html#method.caller
https://doc.rust-lang.org/nightly/core/panic/struct.Location.html#method.caller
https://doc.rust-lang.org/nightly/core/panic/struct.Location.html#method.caller
https://rustc-dev-guide.rust-lang.org/print.html#motivating-example
https://rustc-dev-guide.rust-lang.org/print.html#motivating-example

These error messages are achieved through a combination of changes to panic!

internals to make use of core::panic::Location::caller and a number of

#[track_caller] annotations in the standard library which propagate caller information.

Reading Caller Location

Previously, panic! made use of the file!() , line!() , and column!() macros to

construct a Location pointing to where the panic occurred. These macros couldn't be

given an overridden location, so functions which intentionally invoked panic! couldn't

provide their own location, hiding the actual source of error.

Internally, panic!() now calls core::panic::Location::caller() to find out where it

was expanded. This function is itself annotated with #[track_caller] and wraps the

caller_location compiler intrinsic implemented by rustc. This intrinsic is easiest

explained in terms of how it works in a const context.

Caller Location in const

There are two main phases to returning the caller location in a const context: walking up

the stack to find the right location and allocating a const value to return.

Finding the right Location

In a const context we "walk up the stack" from where the intrinsic is invoked, stopping

when we reach the first function call in the stack which does not have the attribute. This

walk is in InterpCx::find_closest_untracked_caller_location() .

Starting at the bottom, we iterate up over stack Frame s in the InterpCx::stack , calling

InstanceDef::requires_caller_location on the Instance s from each Frame . We stop

once we find one that returns false and return the span of the previous frame which

was the "topmost" tracked function.

Allocating a static Location

Once we have a Span , we need to allocate static memory for the Location , which is

performed by the TyCtxt::const_caller_location() query. Internally this calls

InterpCx::alloc_caller_location() and results in a unique memory kind

(MemoryKind::CallerLocation). The SSA codegen backend is able to emit code for these

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

601 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#reading-caller-location
https://rustc-dev-guide.rust-lang.org/print.html#reading-caller-location
https://doc.rust-lang.org/core/panic/struct.Location.html
https://doc.rust-lang.org/core/panic/struct.Location.html
https://doc.rust-lang.org/core/panic/struct.Location.html
https://doc.rust-lang.org/nightly/core/panic/struct.Location.html#method.caller
https://doc.rust-lang.org/nightly/core/panic/struct.Location.html#method.caller
https://doc.rust-lang.org/nightly/core/panic/struct.Location.html#method.caller
https://doc.rust-lang.org/nightly/core/intrinsics/fn.caller_location.html
https://doc.rust-lang.org/nightly/core/intrinsics/fn.caller_location.html
https://doc.rust-lang.org/nightly/core/intrinsics/fn.caller_location.html
https://rustc-dev-guide.rust-lang.org/print.html#caller-location-in-const
https://rustc-dev-guide.rust-lang.org/print.html#caller-location-in-const
https://rustc-dev-guide.rust-lang.org/print.html#caller-location-in-const
https://rustc-dev-guide.rust-lang.org/print.html#caller-location-in-const
https://rustc-dev-guide.rust-lang.org/print.html#finding-the-right-location
https://rustc-dev-guide.rust-lang.org/print.html#finding-the-right-location
https://rustc-dev-guide.rust-lang.org/print.html#finding-the-right-location
https://rustc-dev-guide.rust-lang.org/print.html#finding-the-right-location
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_const_eval/interpret/struct.InterpCx.html#method.find_closest_untracked_caller_location
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_const_eval/interpret/struct.InterpCx.html#method.find_closest_untracked_caller_location
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_const_eval/interpret/struct.InterpCx.html#method.find_closest_untracked_caller_location
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_const_eval/interpret/struct.Frame.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_const_eval/interpret/struct.Frame.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_const_eval/interpret/struct.Frame.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_const_eval/interpret/struct.InterpCx.html#structfield.stack
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_const_eval/interpret/struct.InterpCx.html#structfield.stack
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_const_eval/interpret/struct.InterpCx.html#structfield.stack
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/enum.InstanceDef.html#method.requires_caller_location
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/enum.InstanceDef.html#method.requires_caller_location
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/enum.InstanceDef.html#method.requires_caller_location
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_const_eval/interpret/struct.Frame.html#structfield.instance
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_const_eval/interpret/struct.Frame.html#structfield.instance
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_const_eval/interpret/struct.Frame.html#structfield.instance
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_const_eval/interpret/struct.Frame.html#structfield.instance
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_const_eval/interpret/struct.Frame.html#structfield.instance
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_const_eval/interpret/struct.Frame.html#structfield.instance
https://rustc-dev-guide.rust-lang.org/print.html#allocating-a-static-location
https://rustc-dev-guide.rust-lang.org/print.html#allocating-a-static-location
https://rustc-dev-guide.rust-lang.org/print.html#allocating-a-static-location
https://rustc-dev-guide.rust-lang.org/print.html#allocating-a-static-location
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.TyCtxt.html#method.const_caller_location
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.TyCtxt.html#method.const_caller_location
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.TyCtxt.html#method.const_caller_location
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_const_eval/interpret/struct.InterpCx.html#method.alloc_caller_location
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_const_eval/interpret/struct.InterpCx.html#method.alloc_caller_location
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_const_eval/interpret/struct.InterpCx.html#method.alloc_caller_location
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_const_eval/interpret/enum.MemoryKind.html#variant.CallerLocation
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_const_eval/interpret/enum.MemoryKind.html#variant.CallerLocation

same values, and we use this code there as well.

Once our Location has been allocated in static memory, our intrinsic returns a reference

to it.

Generating code for #[track_caller] callees

To generate efficient code for a tracked function and its callers, we need to provide the

same behavior from the intrinsic's point of view without having a stack to walk up at

runtime. We invert the approach: as we grow the stack down we pass an additional

argument to calls of tracked functions rather than walking up the stack when the intrinsic

is called. That additional argument can be returned wherever the caller location is

queried.

The argument we append is of type &'static core::panic::Location<'static> . A

reference was chosen to avoid unnecessary copying because a pointer is a third the size

of std::mem::size_of::<core::panic::Location>() == 24 at time of writing.

When generating a call to a function which is tracked, we pass the location argument the

value of FunctionCx::get_caller_location .

If the calling function is tracked, get_caller_location returns the local in

FunctionCx::caller_location which was populated by the current caller's caller. In

these cases the intrinsic "returns" a reference which was actually provided in an

argument to its caller.

If the calling function is not tracked, get_caller_location allocates a Location static

from the current Span and returns a reference to that.

We more efficiently achieve the same behavior as a loop starting from the bottom by

passing a single &Location value through the caller_location fields of multiple

FunctionCx s as we grow the stack downward.

Codegen examples

What does this transformation look like in practice? Take this example which uses the

new feature:

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

602 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#generating-code-for-track_caller-callees
https://rustc-dev-guide.rust-lang.org/print.html#generating-code-for-track_caller-callees
https://rustc-dev-guide.rust-lang.org/print.html#generating-code-for-track_caller-callees
https://rustc-dev-guide.rust-lang.org/print.html#generating-code-for-track_caller-callees
https://rustc-dev-guide.rust-lang.org/print.html#generating-code-for-track_caller-callees
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_codegen_ssa/mir/struct.FunctionCx.html#method.get_caller_location
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_codegen_ssa/mir/struct.FunctionCx.html#method.get_caller_location
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_codegen_ssa/mir/struct.FunctionCx.html#method.get_caller_location
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_codegen_ssa/mir/struct.FunctionCx.html#structfield.caller_location
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_codegen_ssa/mir/struct.FunctionCx.html#structfield.caller_location
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_codegen_ssa/mir/struct.FunctionCx.html#structfield.caller_location
https://rustc-dev-guide.rust-lang.org/print.html#codegen-examples
https://rustc-dev-guide.rust-lang.org/print.html#codegen-examples

Here print_caller() appears to take no arguments, but we compile it to something like

this:

Dynamic Dispatch

In codegen contexts we have to modify the callee ABI to pass this information down the

stack, but the attribute expressly does not modify the type of the function. The ABI

change must be transparent to type checking and remain sound in all uses.

Direct calls to tracked functions will always know the full codegen flags for the callee and

can generate appropriate code. Indirect callers won't have this information and it's not

encoded in the type of the function pointer they call, so we generate a ReifyShim around

the function whenever taking a pointer to it. This shim isn't able to report the actual

location of the indirect call (the function's definition site is reported instead), but it

prevents miscompilation and is probably the best we can do without modifying fully-

stabilized type signatures.

#![feature(track_caller)]
use std::panic::Location;

#[track_caller]
fn print_caller() {

println!("called from {}", Location::caller());
}

fn main() {
 print_caller();
}

#![feature(panic_internals)]
use std::panic::Location;

fn print_caller(caller: &Location) {
println!("called from {}", caller);

}

fn main() {
 print_caller(&Location::internal_constructor(file!(), line!(), column!
()));
}

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

603 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#dynamic-dispatch
https://rustc-dev-guide.rust-lang.org/print.html#dynamic-dispatch
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/enum.InstanceDef.html#variant.ReifyShim
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/enum.InstanceDef.html#variant.ReifyShim
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/enum.InstanceDef.html#variant.ReifyShim

Note: We always emit a ReifyShim when taking a pointer to a tracked function.

While the constraint here is imposed by codegen contexts, we don't know during

MIR construction of the shim whether we'll be called in a const context (safe to

ignore shim) or in a codegen context (unsafe to ignore shim). Even if we did know,

the results from const and codegen contexts must agree.

The Attribute

The #[track_caller] attribute is checked alongside other codegen attributes to ensure

the function:

• has the "Rust" ABI (as opposed to e.g., "C")

• is not a closure

• is not #[naked]

If the use is valid, we set CodegenFnAttrsFlags::TRACK_CALLER . This flag influences the

return value of InstanceDef::requires_caller_location which is in turn used in both

const and codegen contexts to ensure correct propagation.

Traits

When applied to trait method implementations, the attribute works as it does for regular

functions.

When applied to a trait method prototype, the attribute applies to all implementations of

the method. When applied to a default trait method implementation, the attribute takes

effect on that implementation and any overrides.

Examples:

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

604 of 660 8/30/23, 09:47

https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/enum.InstanceDef.html#variant.ReifyShim
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/enum.InstanceDef.html#variant.ReifyShim
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/enum.InstanceDef.html#variant.ReifyShim
https://rustc-dev-guide.rust-lang.org/print.html#the-attribute
https://rustc-dev-guide.rust-lang.org/print.html#the-attribute
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/middle/codegen_fn_attrs/struct.CodegenFnAttrFlags.html#associatedconstant.TRACK_CALLER
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/middle/codegen_fn_attrs/struct.CodegenFnAttrFlags.html#associatedconstant.TRACK_CALLER
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/middle/codegen_fn_attrs/struct.CodegenFnAttrFlags.html#associatedconstant.TRACK_CALLER
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/enum.InstanceDef.html#method.requires_caller_location
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/enum.InstanceDef.html#method.requires_caller_location
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/enum.InstanceDef.html#method.requires_caller_location
https://rustc-dev-guide.rust-lang.org/print.html#traits
https://rustc-dev-guide.rust-lang.org/print.html#traits

#![feature(track_caller)]

macro_rules! assert_tracked {
 () => {{

let location = std::panic::Location::caller();
assert_eq!(location.file(), file!());
assert_ne!(location.line(), line!(), "line should be outside this

fn");
println!("called at {}", location);

 }};
}

trait TrackedFourWays {
/// All implementations inherit `#[track_caller]`.
#[track_caller]
fn blanket_tracked();

/// Implementors can annotate themselves.
fn local_tracked();

/// This implementation is tracked (overrides are too).
#[track_caller]
fn default_tracked() {

 assert_tracked!();
 }

/// Overrides of this implementation are tracked (it is too).
#[track_caller]
fn default_tracked_to_override() {

 assert_tracked!();
 }
}

/// This impl uses the default impl for `default_tracked` and provides its
own for
/// `default_tracked_to_override`.
impl TrackedFourWays for () {

fn blanket_tracked() {
 assert_tracked!();
 }

#[track_caller]
fn local_tracked() {

 assert_tracked!();
 }

fn default_tracked_to_override() {
 assert_tracked!();
 }
}

fn main() {
 <() as TrackedFourWays>::blanket_tracked();
 <() as TrackedFourWays>::default_tracked();
 <() as TrackedFourWays>::default_tracked_to_override();
 <() as TrackedFourWays>::local_tracked();

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

605 of 660 8/30/23, 09:47

Background/History

Broadly speaking, this feature's goal is to improve common Rust error messages without

breaking stability guarantees, requiring modifications to end-user source, relying on

platform-specific debug-info, or preventing user-defined types from having the same

error-reporting benefits.

Improving the output of these panics has been a goal of proposals since at least mid-2016

(see non-viable alternatives in the approved RFC for details). It took two more years until

RFC 2091 was approved, much of its rationale for this feature's design having been

discovered through the discussion around several earlier proposals.

The design in the original RFC limited itself to implementations that could be done inside

the compiler at the time without significant refactoring. However in the year and a half

between the approval of the RFC and the actual implementation work, a revised design

was proposed and written up on the tracking issue. During the course of implementing

that, it was also discovered that an implementation was possible without modifying the

number of arguments in a function's MIR, which would simplify later stages and unlock

use in traits.

Because the RFC's implementation strategy could not readily support traits, the semantics

were not originally specified. They have since been implemented following the path which

seemed most correct to the author and reviewers.

}

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

606 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#backgroundhistory
https://rustc-dev-guide.rust-lang.org/print.html#backgroundhistory
https://github.com/rust-lang/rfcs/blob/master/text/2091-inline-semantic.md#non-viable-alternatives
https://github.com/rust-lang/rfcs/blob/master/text/2091-inline-semantic.md#non-viable-alternatives
https://github.com/rust-lang/rfcs/blob/master/text/2091-inline-semantic.md#rationale
https://github.com/rust-lang/rfcs/blob/master/text/2091-inline-semantic.md#rationale
https://github.com/rust-lang/rust/issues/47809#issuecomment-443538059
https://github.com/rust-lang/rust/issues/47809#issuecomment-443538059

Libraries and Metadata

When the compiler sees a reference to an external crate, it needs to load some

information about that crate. This chapter gives an overview of that process, and the

supported file formats for crate libraries.

Libraries

A crate dependency can be loaded from an rlib , dylib , or rmeta file. A key point of

these file formats is that they contain rustc -specific metadata. This metadata allows the

compiler to discover enough information about the external crate to understand the

items it contains, which macros it exports, and much more.

rlib

An rlib is an archive file, which is similar to a tar file. This file format is specific to

rustc , and may change over time. This file contains:

• Object code, which is the result of code generation. This is used during regular

linking. There is a separate .o file for each codegen unit. The codegen step can be

skipped with the -C linker-plugin-lto CLI option, which means each .o file will

only contain LLVM bitcode.

• LLVM bitcode, which is a binary representation of LLVM's intermediate

representation, which is embedded as a section in the .o files. This can be used for

Link Time Optimization (LTO). This can be removed with the -C embed-bitcode=no

CLI option to improve compile times and reduce disk space if LTO is not needed.

• rustc metadata, in a file named lib.rmeta .

• A symbol table, which is generally a list of symbols with offsets to the object file that

contain that symbol. This is pretty standard for archive files.

dylib

A dylib is a platform-specific shared library. It includes the rustc metadata in a special

link section called .rustc in a compressed format.

rmeta

An rmeta file is custom binary format that contains the metadata for the crate. This file

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

607 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#libraries-and-metadata
https://rustc-dev-guide.rust-lang.org/print.html#libraries-and-metadata
https://rustc-dev-guide.rust-lang.org/print.html#libraries
https://rustc-dev-guide.rust-lang.org/print.html#libraries
https://rustc-dev-guide.rust-lang.org/backend/libs-and-metadata.html#metadata
https://rustc-dev-guide.rust-lang.org/backend/libs-and-metadata.html#metadata
https://rustc-dev-guide.rust-lang.org/backend/libs-and-metadata.html#metadata
https://rustc-dev-guide.rust-lang.org/print.html#rlib
https://rustc-dev-guide.rust-lang.org/print.html#rlib
https://en.wikipedia.org/wiki/Ar_(Unix)
https://en.wikipedia.org/wiki/Ar_(Unix)
https://rustc-dev-guide.rust-lang.org/backend/codegen.html
https://rustc-dev-guide.rust-lang.org/backend/codegen.html
https://doc.rust-lang.org/rustc/codegen-options/index.html#linker-plugin-lto
https://doc.rust-lang.org/rustc/codegen-options/index.html#linker-plugin-lto
https://doc.rust-lang.org/rustc/codegen-options/index.html#linker-plugin-lto
https://llvm.org/docs/BitCodeFormat.html
https://llvm.org/docs/BitCodeFormat.html
https://llvm.org/docs/LinkTimeOptimization.html
https://llvm.org/docs/LinkTimeOptimization.html
https://doc.rust-lang.org/rustc/codegen-options/index.html#embed-bitcode
https://doc.rust-lang.org/rustc/codegen-options/index.html#embed-bitcode
https://doc.rust-lang.org/rustc/codegen-options/index.html#embed-bitcode
https://rustc-dev-guide.rust-lang.org/backend/libs-and-metadata.html#metadata
https://rustc-dev-guide.rust-lang.org/backend/libs-and-metadata.html#metadata
https://rustc-dev-guide.rust-lang.org/print.html#dylib
https://rustc-dev-guide.rust-lang.org/print.html#dylib
https://rustc-dev-guide.rust-lang.org/backend/libs-and-metadata.html#metadata
https://rustc-dev-guide.rust-lang.org/backend/libs-and-metadata.html#metadata
https://rustc-dev-guide.rust-lang.org/print.html#rmeta
https://rustc-dev-guide.rust-lang.org/print.html#rmeta
https://rustc-dev-guide.rust-lang.org/backend/libs-and-metadata.html#metadata
https://rustc-dev-guide.rust-lang.org/backend/libs-and-metadata.html#metadata

can be used for fast "checks" of a project by skipping all code generation (as is done with

cargo check), collecting enough information for documentation (as is done with cargo

doc), or for pipelining. This file is created if the --emit=metadata CLI option is used.

rmeta files do not support linking, since they do not contain compiled object files.

Metadata

The metadata contains a wide swath of different elements. This guide will not go into

detail of every field it contains. You are encouraged to browse the CrateRoot definition

to get a sense of the different elements it contains. Everything about metadata encoding

and decoding is in the rustc_metadata package.

Here are a few highlights of things it contains:

• The version of the rustc compiler. The compiler will refuse to load files from any

other version.

• The Strict Version Hash (SVH). This helps ensure the correct dependency is loaded.

• The Stable Crate Id. This is a hash used to identify crates.

• Information about all the source files in the library. This can be used for a variety of

things, such as diagnostics pointing to sources in a dependency.

• Information about exported macros, traits, types, and items. Generally, anything

that's needed to be known when a path references something inside a crate

dependency.

• Encoded MIR. This is optional, and only encoded if needed for code generation.

cargo check skips this for performance reasons.

Strict Version Hash

The Strict Version Hash (SVH, also known as the "crate hash") is a 64-bit hash that is used

to ensure that the correct crate dependencies are loaded. It is possible for a directory to

contain multiple copies of the same dependency built with different settings, or built from

different sources. The crate loader will skip any crates that have the wrong SVH.

The SVH is also used for the incremental compilation session filename, though that usage

is mostly historic.

The hash includes a variety of elements:

• Hashes of the HIR nodes.

• All of the upstream crate hashes.

• All of the source filenames.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

608 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/backend/libs-and-metadata.html#pipelining
https://rustc-dev-guide.rust-lang.org/backend/libs-and-metadata.html#pipelining
https://doc.rust-lang.org/rustc/command-line-arguments.html#option-emit
https://doc.rust-lang.org/rustc/command-line-arguments.html#option-emit
https://doc.rust-lang.org/rustc/command-line-arguments.html#option-emit
https://rustc-dev-guide.rust-lang.org/print.html#metadata
https://rustc-dev-guide.rust-lang.org/print.html#metadata
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_metadata/rmeta/struct.CrateRoot.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_metadata/rmeta/struct.CrateRoot.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_metadata/rmeta/struct.CrateRoot.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_metadata/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_metadata/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_metadata/index.html
https://rustc-dev-guide.rust-lang.org/backend/libs-and-metadata.html#strict-version-hash
https://rustc-dev-guide.rust-lang.org/backend/libs-and-metadata.html#strict-version-hash
https://rustc-dev-guide.rust-lang.org/backend/libs-and-metadata.html#stable-crate-id
https://rustc-dev-guide.rust-lang.org/backend/libs-and-metadata.html#stable-crate-id
https://rustc-dev-guide.rust-lang.org/mir/index.html
https://rustc-dev-guide.rust-lang.org/mir/index.html
https://rustc-dev-guide.rust-lang.org/print.html#strict-version-hash
https://rustc-dev-guide.rust-lang.org/print.html#strict-version-hash
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_data_structures/svh/struct.Svh.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_data_structures/svh/struct.Svh.html
https://rustc-dev-guide.rust-lang.org/queries/incremental-compilation.html
https://rustc-dev-guide.rust-lang.org/queries/incremental-compilation.html

• Hashes of certain command-line flags (like -C metadata via the Stable Crate Id, and

all CLI options marked with [TRACKED]).

See compute_hir_hash for where the hash is actually computed.

Stable Crate Id

The StableCrateId is a 64-bit hash used to identify different crates with potentially the

same name. It is a hash of the crate name and all the -C metadata CLI options computed

in StableCrateId::new . It is used in a variety of places, such as symbol name mangling,

crate loading, and much more.

By default, all Rust symbols are mangled and incorporate the stable crate id. This allows

multiple versions of the same crate to be included together. Cargo automatically

generates -C metadata hashes based on a variety of factors, like the package version,

source, and the target kind (a lib and test can have the same crate name, so they need to

be disambiguated).

Crate loading

Crate loading can have quite a few subtle complexities. During name resolution, when an

external crate is referenced (via an extern crate or path), the resolver uses the

CrateLoader which is responsible for finding the crate libraries and loading the metadata

for them. After the dependency is loaded, the CrateLoader will provide the information

the resolver needs to perform its job (such as expanding macros, resolving paths, etc.).

To load each external crate, the CrateLoader uses a CrateLocator to actually find the

correct files for one specific crate. There is some great documentation in the locator

module that goes into detail on how loading works, and I strongly suggest reading it to

get the full picture.

The location of a dependency can come from several different places. Direct

dependencies are usually passed with --extern flags, and the loader can look at those

directly. Direct dependencies often have references to their own dependencies, which

need to be loaded, too. These are usually found by scanning the directories passed with

the -L flag for any file whose metadata contains a matching crate name and SVH. The

loader will also look at the sysroot to find dependencies.

As crates are loaded, they are kept in the CStore with the crate metadata wrapped in the

CrateMetadata struct. After resolution and expansion, the CStore will make its way into

the GlobalCtxt for the rest of compilation.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

609 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/backend/libs-and-metadata.html#stable-crate-id
https://rustc-dev-guide.rust-lang.org/backend/libs-and-metadata.html#stable-crate-id
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_ast_lowering/struct.LoweringContext.html#method.compute_hir_hash
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_ast_lowering/struct.LoweringContext.html#method.compute_hir_hash
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_ast_lowering/struct.LoweringContext.html#method.compute_hir_hash
https://rustc-dev-guide.rust-lang.org/print.html#stable-crate-id
https://rustc-dev-guide.rust-lang.org/print.html#stable-crate-id
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/def_id/struct.StableCrateId.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/def_id/struct.StableCrateId.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/def_id/struct.StableCrateId.html
https://doc.rust-lang.org/rustc/codegen-options/index.html#metadata
https://doc.rust-lang.org/rustc/codegen-options/index.html#metadata
https://doc.rust-lang.org/rustc/codegen-options/index.html#metadata
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/def_id/struct.StableCrateId.html#method.new
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/def_id/struct.StableCrateId.html#method.new
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/def_id/struct.StableCrateId.html#method.new
https://rustc-dev-guide.rust-lang.org/print.html#crate-loading
https://rustc-dev-guide.rust-lang.org/print.html#crate-loading
https://rustc-dev-guide.rust-lang.org/name-resolution.html
https://rustc-dev-guide.rust-lang.org/name-resolution.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_metadata/creader/struct.CrateLoader.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_metadata/creader/struct.CrateLoader.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_metadata/creader/struct.CrateLoader.html
https://rustc-dev-guide.rust-lang.org/backend/libs-and-metadata.html#metadata
https://rustc-dev-guide.rust-lang.org/backend/libs-and-metadata.html#metadata
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_metadata/locator/struct.CrateLocator.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_metadata/locator/struct.CrateLocator.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_metadata/locator/struct.CrateLocator.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_metadata/locator/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_metadata/locator/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_metadata/locator/index.html
https://rustc-dev-guide.rust-lang.org/backend/libs-and-metadata.html#strict-version-hash
https://rustc-dev-guide.rust-lang.org/backend/libs-and-metadata.html#strict-version-hash
https://rustc-dev-guide.rust-lang.org/building/bootstrapping.html#what-is-a-sysroot
https://rustc-dev-guide.rust-lang.org/building/bootstrapping.html#what-is-a-sysroot
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_metadata/creader/struct.CStore.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_metadata/creader/struct.CStore.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_metadata/creader/struct.CStore.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_metadata/rmeta/decoder/struct.CrateMetadata.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_metadata/rmeta/decoder/struct.CrateMetadata.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_metadata/rmeta/decoder/struct.CrateMetadata.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.GlobalCtxt.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.GlobalCtxt.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.GlobalCtxt.html

Pipelining

One trick to improve compile times is to start building a crate as soon as the metadata for

its dependencies is available. For a library, there is no need to wait for the code

generation of dependencies to finish. Cargo implements this technique by telling rustc

to emit an rmeta file for each dependency as well as an rlib . As early as it can, rustc

will save the rmeta file to disk before it continues to the code generation phase. The

compiler sends a JSON message to let the build tool know that it can start building the

next crate if possible.

The crate loading system is smart enough to know when it sees an rmeta file to use that

if the rlib is not there (or has only been partially written).

This pipelining isn't possible for binaries, because the linking phase will require the code

generation of all its dependencies. In the future, it may be possible to further improve

this scenario by splitting linking into a separate command (see #64191).

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

610 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#pipelining
https://rustc-dev-guide.rust-lang.org/print.html#pipelining
https://rustc-dev-guide.rust-lang.org/backend/libs-and-metadata.html#rmeta
https://rustc-dev-guide.rust-lang.org/backend/libs-and-metadata.html#rmeta
https://rustc-dev-guide.rust-lang.org/backend/libs-and-metadata.html#rmeta
https://rustc-dev-guide.rust-lang.org/backend/libs-and-metadata.html#rlib
https://rustc-dev-guide.rust-lang.org/backend/libs-and-metadata.html#rlib
https://rustc-dev-guide.rust-lang.org/backend/libs-and-metadata.html#rlib
https://rustc-dev-guide.rust-lang.org/backend/libs-and-metadata.html#crate-loading
https://rustc-dev-guide.rust-lang.org/backend/libs-and-metadata.html#crate-loading
https://github.com/rust-lang/rust/issues/64191
https://github.com/rust-lang/rust/issues/64191

Profile Guided Optimization

• What Is Profiled-Guided Optimization?

• How is PGO implemented in rustc ?

◦ Overall Workflow

◦ Compile-Time Aspects

▪ Create Binaries with Instrumentation

▪ Compile Binaries Where Optimizations Make Use Of Profiling Data

◦ Runtime Aspects

• Testing PGO

• Additional Information

rustc supports doing profile-guided optimization (PGO). This chapter describes what

PGO is and how the support for it is implemented in rustc .

What Is Profiled-Guided Optimization?

The basic concept of PGO is to collect data about the typical execution of a program (e.g.

which branches it is likely to take) and then use this data to inform optimizations such as

inlining, machine-code layout, register allocation, etc.

There are different ways of collecting data about a program's execution. One is to run the

program inside a profiler (such as perf) and another is to create an instrumented binary,

that is, a binary that has data collection built into it, and run that. The latter usually

provides more accurate data.

How is PGO implemented in rustc?

rustc current PGO implementation relies entirely on LLVM. LLVM actually supports

multiple forms of PGO:

• Sampling-based PGO where an external profiling tool like perf is used to collect

data about a program's execution.

• GCOV-based profiling, where code coverage infrastructure is used to collect profiling

information.

• Front-end based instrumentation, where the compiler front-end (e.g. Clang) inserts

instrumentation intrinsics into the LLVM IR it generates (but see the 1"Note").

• IR-level instrumentation, where LLVM inserts the instrumentation intrinsics itself

during optimization passes.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

611 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#profile-guided-optimization
https://rustc-dev-guide.rust-lang.org/print.html#profile-guided-optimization
https://rustc-dev-guide.rust-lang.org/profile-guided-optimization.html#what-is-profiled-guided-optimization
https://rustc-dev-guide.rust-lang.org/profile-guided-optimization.html#what-is-profiled-guided-optimization
https://rustc-dev-guide.rust-lang.org/profile-guided-optimization.html#how-is-pgo-implemented-in-rustc
https://rustc-dev-guide.rust-lang.org/profile-guided-optimization.html#how-is-pgo-implemented-in-rustc
https://rustc-dev-guide.rust-lang.org/profile-guided-optimization.html#how-is-pgo-implemented-in-rustc
https://rustc-dev-guide.rust-lang.org/profile-guided-optimization.html#how-is-pgo-implemented-in-rustc
https://rustc-dev-guide.rust-lang.org/profile-guided-optimization.html#how-is-pgo-implemented-in-rustc
https://rustc-dev-guide.rust-lang.org/profile-guided-optimization.html#overall-workflow
https://rustc-dev-guide.rust-lang.org/profile-guided-optimization.html#overall-workflow
https://rustc-dev-guide.rust-lang.org/profile-guided-optimization.html#compile-time-aspects
https://rustc-dev-guide.rust-lang.org/profile-guided-optimization.html#compile-time-aspects
https://rustc-dev-guide.rust-lang.org/profile-guided-optimization.html#create-binaries-with-instrumentation
https://rustc-dev-guide.rust-lang.org/profile-guided-optimization.html#create-binaries-with-instrumentation
https://rustc-dev-guide.rust-lang.org/profile-guided-optimization.html#compile-binaries-where-optimizations-make-use-of-profiling-data
https://rustc-dev-guide.rust-lang.org/profile-guided-optimization.html#compile-binaries-where-optimizations-make-use-of-profiling-data
https://rustc-dev-guide.rust-lang.org/profile-guided-optimization.html#runtime-aspects
https://rustc-dev-guide.rust-lang.org/profile-guided-optimization.html#runtime-aspects
https://rustc-dev-guide.rust-lang.org/profile-guided-optimization.html#testing-pgo
https://rustc-dev-guide.rust-lang.org/profile-guided-optimization.html#testing-pgo
https://rustc-dev-guide.rust-lang.org/profile-guided-optimization.html#additional-information
https://rustc-dev-guide.rust-lang.org/profile-guided-optimization.html#additional-information
https://rustc-dev-guide.rust-lang.org/print.html#what-is-profiled-guided-optimization
https://rustc-dev-guide.rust-lang.org/print.html#what-is-profiled-guided-optimization
https://rustc-dev-guide.rust-lang.org/print.html#how-is-pgo-implemented-in-rustc
https://rustc-dev-guide.rust-lang.org/print.html#how-is-pgo-implemented-in-rustc
https://rustc-dev-guide.rust-lang.org/print.html#how-is-pgo-implemented-in-rustc
https://rustc-dev-guide.rust-lang.org/print.html#how-is-pgo-implemented-in-rustc
https://rustc-dev-guide.rust-lang.org/print.html#how-is-pgo-implemented-in-rustc
https://clang.llvm.org/docs/UsersManual.html#profile-guided-optimization
https://clang.llvm.org/docs/UsersManual.html#profile-guided-optimization
https://clang.llvm.org/docs/UsersManual.html#profile-guided-optimization
https://clang.llvm.org/docs/UsersManual.html#profile-guided-optimization
https://rustc-dev-guide.rust-lang.org/print.html#note-instrument-coverage
https://rustc-dev-guide.rust-lang.org/print.html#note-instrument-coverage

rustc supports only the last approach, IR-level instrumentation, mainly because it is

almost exclusively implemented in LLVM and needs little maintenance on the Rust side.

Fortunately, it is also the most modern approach, yielding the best results.

So, we are dealing with an instrumentation-based approach, i.e. profiling data is

generated by a specially instrumented version of the program that's being optimized.

Instrumentation-based PGO has two components: a compile-time component and run-

time component, and one needs to understand the overall workflow to see how they

interact.

1 Note: rustc now supports front-end-based coverage instrumentation, via the experimental

option -C instrument-coverage , but using these coverage results for PGO has not been attempted

at this time.

Overall Workflow

Generating a PGO-optimized program involves the following four steps:

1. Compile the program with instrumentation enabled (e.g. rustc -C profile-

generate main.rs)

2. Run the instrumented program (e.g. ./main) which generates a default-

<id>.profraw file

3. Convert the .profraw file into a .profdata file using LLVM's llvm-profdata tool.

4. Compile the program again, this time making use of the profiling data (e.g. rustc

-C profile-use=merged.profdata main.rs)

Compile-Time Aspects

Depending on which step in the above workflow we are in, two different things can

happen at compile time:

Create Binaries with Instrumentation

As mentioned above, the profiling instrumentation is added by LLVM. rustc instructs

LLVM to do so by setting the appropriate flags when creating LLVM PassManager s:

// `PMBR` is an `LLVMPassManagerBuilderRef`
 unwrap(PMBR)->EnablePGOInstrGen = true;

// Instrumented binaries have a default output path for the `.profraw`
file

// hard-coded into them:
 unwrap(PMBR)->PGOInstrGen = PGOGenPath;

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

612 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/llvm-coverage-instrumentation.html
https://rustc-dev-guide.rust-lang.org/llvm-coverage-instrumentation.html
https://rustc-dev-guide.rust-lang.org/llvm-coverage-instrumentation.html
https://rustc-dev-guide.rust-lang.org/print.html#overall-workflow
https://rustc-dev-guide.rust-lang.org/print.html#overall-workflow
https://rustc-dev-guide.rust-lang.org/print.html#compile-time-aspects
https://rustc-dev-guide.rust-lang.org/print.html#compile-time-aspects
https://rustc-dev-guide.rust-lang.org/print.html#create-binaries-with-instrumentation
https://rustc-dev-guide.rust-lang.org/print.html#create-binaries-with-instrumentation
https://github.com/rust-lang/rust/blob/1.34.1/src/rustllvm/PassWrapper.cpp#L412-L416
https://github.com/rust-lang/rust/blob/1.34.1/src/rustllvm/PassWrapper.cpp#L412-L416

rustc also has to make sure that some of the symbols from LLVM's profiling runtime are

not removed by marking the with the right export level.

Compile Binaries Where Optimizations Make Use Of Profiling Data

In the final step of the workflow described above, the program is compiled again, with the

compiler using the gathered profiling data in order to drive optimization decisions. rustc

again leaves most of the work to LLVM here, basically just telling the LLVM

PassManagerBuilder where the profiling data can be found:

LLVM does the rest (e.g. setting branch weights, marking functions with cold or

inlinehint , etc).

Runtime Aspects

Instrumentation-based approaches always also have a runtime component, i.e. once we

have an instrumented program, that program needs to be run in order to generate

profiling data, and collecting and persisting this profiling data needs some infrastructure

in place.

In the case of LLVM, these runtime components are implemented in compiler-rt and

statically linked into any instrumented binaries. The rustc version of this can be found in

library/profiler_builtins which basically packs the C code from compiler-rt into a

Rust crate.

In order for profiler_builtins to be built, profiler = true must be set in rustc 's

config.toml .

Testing PGO

Since the PGO workflow spans multiple compiler invocations most testing happens in

run-make tests (the relevant tests have pgo in their name). There is also a codegen test

that checks that some expected instrumentation artifacts show up in LLVM IR.

Additional Information

Clang's documentation contains a good overview on PGO in LLVM here:

 unwrap(PMBR)->PGOInstrUse = PGOUsePath;

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

613 of 660 8/30/23, 09:47

https://github.com/rust-lang/rust/blob/1.34.1/src/librustc_codegen_ssa/back/symbol_export.rs#L212-L225
https://github.com/rust-lang/rust/blob/1.34.1/src/librustc_codegen_ssa/back/symbol_export.rs#L212-L225
https://rustc-dev-guide.rust-lang.org/print.html#compile-binaries-where-optimizations-make-use-of-profiling-data
https://rustc-dev-guide.rust-lang.org/print.html#compile-binaries-where-optimizations-make-use-of-profiling-data
https://github.com/rust-lang/rust/blob/1.34.1/src/rustllvm/PassWrapper.cpp#L417-L420
https://github.com/rust-lang/rust/blob/1.34.1/src/rustllvm/PassWrapper.cpp#L417-L420
https://rustc-dev-guide.rust-lang.org/print.html#runtime-aspects
https://rustc-dev-guide.rust-lang.org/print.html#runtime-aspects
https://github.com/llvm/llvm-project/tree/main/compiler-rt/lib/profile
https://github.com/llvm/llvm-project/tree/main/compiler-rt/lib/profile
https://rustc-dev-guide.rust-lang.org/print.html#testing-pgo
https://rustc-dev-guide.rust-lang.org/print.html#testing-pgo
https://github.com/rust-lang/rust/tree/master/tests/run-make-fulldeps
https://github.com/rust-lang/rust/tree/master/tests/run-make-fulldeps
https://github.com/rust-lang/rust/blob/master/tests/codegen/pgo-instrumentation.rs
https://github.com/rust-lang/rust/blob/master/tests/codegen/pgo-instrumentation.rs
https://rustc-dev-guide.rust-lang.org/print.html#additional-information
https://rustc-dev-guide.rust-lang.org/print.html#additional-information

https://clang.llvm.org/docs/UsersManual.html#profile-guided-optimization

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

614 of 660 8/30/23, 09:47

LLVM Source-Based Code Coverage

• Rust symbol mangling

• Components of LLVM Coverage Instrumentation in rustc

◦ LLVM Runtime Dependency

◦ MIR Pass: InstrumentCoverage

◦ Counter Injection and Coverage Map Pre-staging

◦ Coverage Map Generation

• Testing LLVM Coverage

• Implementation Details of the InstrumentCoverage MIR Pass

◦ The CoverageGraph

◦ CoverageSpans

◦ make_bcb_counters()

◦ Injecting counters into a MIR BasicBlock

◦ Additional Debugging Support

rustc supports detailed source-based code and test coverage analysis with a command

line option (-C instrument-coverage) that instruments Rust libraries and binaries with

additional instructions and data, at compile time.

The coverage instrumentation injects calls to the LLVM intrinsic instruction

llvm.instrprof.increment at code branches (based on a MIR-based control flow

analysis), and LLVM converts these to instructions that increment static counters, when

executed. The LLVM coverage instrumentation also requires a Coverage Map that

encodes source metadata, mapping counter IDs--directly and indirectly--to the file

locations (with start and end line and column).

Rust libraries, with or without coverage instrumentation, can be linked into instrumented

binaries. When the program is executed and cleanly terminates, LLVM libraries write the

final counter values to a file (default.profraw or a custom file set through environment

variable LLVM_PROFILE_FILE).

Developers use existing LLVM coverage analysis tools to decode .profraw files, with

corresponding Coverage Maps (from matching binaries that produced them), and

generate various reports for analysis, for example:

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

615 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#llvm-source-based-code-coverage
https://rustc-dev-guide.rust-lang.org/print.html#llvm-source-based-code-coverage
https://rustc-dev-guide.rust-lang.org/llvm-coverage-instrumentation.html#rust-symbol-mangling
https://rustc-dev-guide.rust-lang.org/llvm-coverage-instrumentation.html#rust-symbol-mangling
https://rustc-dev-guide.rust-lang.org/llvm-coverage-instrumentation.html#components-of-llvm-coverage-instrumentation-in-rustc
https://rustc-dev-guide.rust-lang.org/llvm-coverage-instrumentation.html#components-of-llvm-coverage-instrumentation-in-rustc
https://rustc-dev-guide.rust-lang.org/llvm-coverage-instrumentation.html#components-of-llvm-coverage-instrumentation-in-rustc
https://rustc-dev-guide.rust-lang.org/llvm-coverage-instrumentation.html#components-of-llvm-coverage-instrumentation-in-rustc
https://rustc-dev-guide.rust-lang.org/llvm-coverage-instrumentation.html#llvm-runtime-dependency
https://rustc-dev-guide.rust-lang.org/llvm-coverage-instrumentation.html#llvm-runtime-dependency
https://rustc-dev-guide.rust-lang.org/llvm-coverage-instrumentation.html#mir-pass-instrumentcoverage
https://rustc-dev-guide.rust-lang.org/llvm-coverage-instrumentation.html#mir-pass-instrumentcoverage
https://rustc-dev-guide.rust-lang.org/llvm-coverage-instrumentation.html#mir-pass-instrumentcoverage
https://rustc-dev-guide.rust-lang.org/llvm-coverage-instrumentation.html#mir-pass-instrumentcoverage
https://rustc-dev-guide.rust-lang.org/llvm-coverage-instrumentation.html#counter-injection-and-coverage-map-pre-staging
https://rustc-dev-guide.rust-lang.org/llvm-coverage-instrumentation.html#counter-injection-and-coverage-map-pre-staging
https://rustc-dev-guide.rust-lang.org/llvm-coverage-instrumentation.html#coverage-map-generation
https://rustc-dev-guide.rust-lang.org/llvm-coverage-instrumentation.html#coverage-map-generation
https://rustc-dev-guide.rust-lang.org/llvm-coverage-instrumentation.html#testing-llvm-coverage
https://rustc-dev-guide.rust-lang.org/llvm-coverage-instrumentation.html#testing-llvm-coverage
https://rustc-dev-guide.rust-lang.org/llvm-coverage-instrumentation.html#implementation-details-of-the-instrumentcoverage-mir-pass
https://rustc-dev-guide.rust-lang.org/llvm-coverage-instrumentation.html#implementation-details-of-the-instrumentcoverage-mir-pass
https://rustc-dev-guide.rust-lang.org/llvm-coverage-instrumentation.html#implementation-details-of-the-instrumentcoverage-mir-pass
https://rustc-dev-guide.rust-lang.org/llvm-coverage-instrumentation.html#implementation-details-of-the-instrumentcoverage-mir-pass
https://rustc-dev-guide.rust-lang.org/llvm-coverage-instrumentation.html#implementation-details-of-the-instrumentcoverage-mir-pass
https://rustc-dev-guide.rust-lang.org/llvm-coverage-instrumentation.html#the-coveragegraph
https://rustc-dev-guide.rust-lang.org/llvm-coverage-instrumentation.html#the-coveragegraph
https://rustc-dev-guide.rust-lang.org/llvm-coverage-instrumentation.html#the-coveragegraph
https://rustc-dev-guide.rust-lang.org/llvm-coverage-instrumentation.html#the-coveragegraph
https://rustc-dev-guide.rust-lang.org/llvm-coverage-instrumentation.html#coveragespans
https://rustc-dev-guide.rust-lang.org/llvm-coverage-instrumentation.html#coveragespans
https://rustc-dev-guide.rust-lang.org/llvm-coverage-instrumentation.html#coveragespans
https://rustc-dev-guide.rust-lang.org/llvm-coverage-instrumentation.html#make_bcb_counters
https://rustc-dev-guide.rust-lang.org/llvm-coverage-instrumentation.html#make_bcb_counters
https://rustc-dev-guide.rust-lang.org/llvm-coverage-instrumentation.html#make_bcb_counters
https://rustc-dev-guide.rust-lang.org/llvm-coverage-instrumentation.html#injecting-counters-into-a-mir-basicblock
https://rustc-dev-guide.rust-lang.org/llvm-coverage-instrumentation.html#injecting-counters-into-a-mir-basicblock
https://rustc-dev-guide.rust-lang.org/llvm-coverage-instrumentation.html#injecting-counters-into-a-mir-basicblock
https://rustc-dev-guide.rust-lang.org/llvm-coverage-instrumentation.html#injecting-counters-into-a-mir-basicblock
https://rustc-dev-guide.rust-lang.org/llvm-coverage-instrumentation.html#additional-debugging-support
https://rustc-dev-guide.rust-lang.org/llvm-coverage-instrumentation.html#additional-debugging-support
https://llvm.org/docs/LangRef.html#llvm-instrprof-increment-intrinsic
https://llvm.org/docs/LangRef.html#llvm-instrprof-increment-intrinsic
https://llvm.org/docs/LangRef.html#llvm-instrprof-increment-intrinsic
https://llvm.org/docs/CoverageMappingFormat.html
https://llvm.org/docs/CoverageMappingFormat.html

Detailed instructions and examples are documented in the rustc book.

Rust symbol mangling

-C instrument-coverage automatically enables Rust symbol mangling v0 (as if the user

specified -C symbol-mangling-version=v0 option when invoking rustc) to ensure

consistent and reversible name mangling. This has two important benefits:

1. LLVM coverage tools can analyze coverage over multiple runs, including some

changes to source code; so mangled names must be consistent across compilations.

2. LLVM coverage reports can report coverage by function, and even separates out the

coverage counts of each unique instantiation of a generic function, if invoked with

multiple type substitution variations.

Components of LLVM Coverage Instrumentation in

rustc

LLVM Runtime Dependency

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

616 of 660 8/30/23, 09:47

https://doc.rust-lang.org/nightly/rustc/instrument-coverage.html
https://doc.rust-lang.org/nightly/rustc/instrument-coverage.html
https://rustc-dev-guide.rust-lang.org/print.html#rust-symbol-mangling
https://rustc-dev-guide.rust-lang.org/print.html#rust-symbol-mangling
https://rustc-dev-guide.rust-lang.org/print.html#components-of-llvm-coverage-instrumentation-in-rustc
https://rustc-dev-guide.rust-lang.org/print.html#components-of-llvm-coverage-instrumentation-in-rustc
https://rustc-dev-guide.rust-lang.org/print.html#components-of-llvm-coverage-instrumentation-in-rustc
https://rustc-dev-guide.rust-lang.org/print.html#components-of-llvm-coverage-instrumentation-in-rustc
https://rustc-dev-guide.rust-lang.org/print.html#components-of-llvm-coverage-instrumentation-in-rustc
https://rustc-dev-guide.rust-lang.org/print.html#llvm-runtime-dependency
https://rustc-dev-guide.rust-lang.org/print.html#llvm-runtime-dependency

Coverage data is only generated by running the executable Rust program. rustc

statically links coverage-instrumented binaries with LLVM runtime code (compiler-rt) that

implements program hooks (such as an exit hook) to write the counter values to the

.profraw file.

In the rustc source tree, library/profiler_builtins bundles the LLVM compiler-rt

code into a Rust library crate. Note that when building rustc , profiler_builtins is only

included when build.profiler = true is set in config.toml .

When compiling with -C instrument-coverage , CrateLoader::postprocess()

dynamically loads profiler_builtins by calling inject_profiler_runtime() .

MIR Pass: InstrumentCoverage

Coverage instrumentation is performed on the MIR with a MIR pass called

InstrumentCoverage . This MIR pass analyzes the control flow graph (CFG)--represented

by MIR BasicBlock s--to identify code branches, and injects additional Coverage

statements into the BasicBlock s.

A MIR Coverage statement is a virtual instruction that indicates a counter should be

incremented when its adjacent statements are executed, to count a span of code

(CodeRegion). It counts the number of times a branch is executed, and also specifies the

exact location of that code span in the Rust source code.

Note that many of these Coverage statements will not be converted into physical

counters (or any other executable instructions) in the final binary. Some of them will be

(see CoverageKind::Counter), but other counters can be computed on the fly, when

generating a coverage report, by mapping a CodeRegion to a

CoverageKind :: Expression .

As an example:

fn some_func(flag: bool) {
// increment Counter(1)

 ...
if flag {

// increment Counter(2)
 ...
 } else {

// count = Expression(1) = Counter(1) - Counter(2)
 ...
 }

// count = Expression(2) = Counter(1) + Zero
// or, alternatively, Expression(2) = Counter(2) + Expression(1)

 ...
}

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

617 of 660 8/30/23, 09:47

https://github.com/llvm/llvm-project/tree/main/compiler-rt/lib/profile
https://github.com/llvm/llvm-project/tree/main/compiler-rt/lib/profile
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_metadata/creader/struct.CrateLoader.html#method.postprocess
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_metadata/creader/struct.CrateLoader.html#method.postprocess
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_metadata/creader/struct.CrateLoader.html#method.postprocess
https://rustc-dev-guide.rust-lang.org/print.html#mir-pass-instrumentcoverage
https://rustc-dev-guide.rust-lang.org/print.html#mir-pass-instrumentcoverage
https://rustc-dev-guide.rust-lang.org/print.html#mir-pass-instrumentcoverage
https://rustc-dev-guide.rust-lang.org/print.html#mir-pass-instrumentcoverage
https://rustc-dev-guide.rust-lang.org/mir/passes.html
https://rustc-dev-guide.rust-lang.org/mir/passes.html
https://github.com/rust-lang/rust/tree/master/compiler/rustc_mir_transform/src/coverage
https://github.com/rust-lang/rust/tree/master/compiler/rustc_mir_transform/src/coverage
https://github.com/rust-lang/rust/tree/master/compiler/rustc_mir_transform/src/coverage
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/enum.StatementKind.html#variant.Coverage
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/enum.StatementKind.html#variant.Coverage
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/enum.StatementKind.html#variant.Coverage
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/coverage/struct.CodeRegion.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/coverage/struct.CodeRegion.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/coverage/struct.CodeRegion.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/coverage/enum.CoverageKind.html#variant.Counter
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/coverage/enum.CoverageKind.html#variant.Counter
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/coverage/enum.CoverageKind.html#variant.Counter
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/coverage/enum.CoverageKind.html#variant.Expression
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/coverage/enum.CoverageKind.html#variant.Expression
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/coverage/enum.CoverageKind.html#variant.Expression

In this example, four contiguous code regions are counted while only incrementing two

counters.

CFG analysis is used to not only determine where the branches are, for conditional

expressions like if , else , match , and loop , but also to determine where expressions

can be used in place of physical counters.

The advantages of optimizing coverage through expressions are more pronounced with

loops. Loops generally include at least one conditional branch that determines when to

break out of a loop (a while condition, or an if or match with a break). In MIR, this is

typically lowered to a SwitchInt , with one branch to stay in the loop, and another

branch to break out of the loop. The branch that breaks out will almost always execute

less often, so InstrumentCoverage chooses to add a Counter to that branch, and an

Expression(continue) = Counter(loop) - Counter(break) to the branch that

continues.

The InstrumentCoverage MIR pass is documented in more detail below.

Counter Injection and Coverage Map Pre-staging

When the compiler enters the Codegen phase, with a coverage-enabled MIR,

codegen_statement() converts each MIR Statement into some backend-specific action

or instruction. codegen_statement() forwards Coverage statements to

codegen_coverage() :

codegen_coverage() handles each CoverageKind as follows:

• For all CoverageKind s, Coverage data (counter ID, expression equation and ID, and

code regions) are passed to the backend's Builder , to populate data structures

that will be used to generate the crate's "Coverage Map". (See the

FunctionCoverage struct .)

• For CoverageKind::Counter s, an instruction is injected in the backend IR to

increment the physical counter, by calling the BuilderMethod

instrprof_increment() .

pub fn codegen_statement(&mut self, mut bx: Bx, statement:
&mir::Statement<'tcx>) -> Bx {
 ...

match statement.kind {
 ...
 mir::StatementKind::Coverage(box ref coverage) => {

self.codegen_coverage(&mut bx, coverage.clone(),
statement.source_info.scope);
 bx
 }

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

618 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/llvm-coverage-instrumentation.html#implementation-details-of-the-instrumentcoverage-mir-pass
https://rustc-dev-guide.rust-lang.org/llvm-coverage-instrumentation.html#implementation-details-of-the-instrumentcoverage-mir-pass
https://rustc-dev-guide.rust-lang.org/print.html#counter-injection-and-coverage-map-pre-staging
https://rustc-dev-guide.rust-lang.org/print.html#counter-injection-and-coverage-map-pre-staging
https://rustc-dev-guide.rust-lang.org/backend/lowering-mir.html
https://rustc-dev-guide.rust-lang.org/backend/lowering-mir.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_codegen_ssa/mir/struct.FunctionCx.html#method.codegen_statement
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_codegen_ssa/mir/struct.FunctionCx.html#method.codegen_statement
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_codegen_ssa/mir/struct.FunctionCx.html#method.codegen_statement
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_codegen_ssa/mir/struct.FunctionCx.html#method.codegen_coverage
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_codegen_ssa/mir/struct.FunctionCx.html#method.codegen_coverage
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_codegen_ssa/mir/struct.FunctionCx.html#method.codegen_coverage
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_codegen_llvm/coverageinfo/map_data/struct.FunctionCoverage.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_codegen_llvm/coverageinfo/map_data/struct.FunctionCoverage.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_codegen_llvm/coverageinfo/map_data/struct.FunctionCoverage.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_codegen_ssa/traits/trait.BuilderMethods.html#tymethod.instrprof_increment
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_codegen_ssa/traits/trait.BuilderMethods.html#tymethod.instrprof_increment
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_codegen_ssa/traits/trait.BuilderMethods.html#tymethod.instrprof_increment

The function name instrprof_increment() is taken from the LLVM intrinsic call of

the same name (llvm.instrprof.increment), and uses the same arguments and

types; but note that, up to and through this stage (even though modeled after

LLVM's implementation for code coverage instrumentation), the data and

instructions are not strictly LLVM-specific.

But since LLVM is the only Rust-supported backend with the tooling to process this

form of coverage instrumentation, the backend for Coverage statements is only

implemented for LLVM, at this time.

Coverage Map Generation

With the instructions to increment counters now implemented in LLVM IR, the last

remaining step is to inject the LLVM IR variables that hold the static data for the coverage

map.

rustc_codegen_llvm 's compile_codegen_unit() calls coverageinfo_finalize() , which

delegates its implementation to the rustc_codegen_llvm::coverageinfo::mapgen

module.

For each function Instance (code-generated from MIR, including multiple instances of

the same MIR for generic functions that have different type substitution combinations),

mapgen 's finalize() method queries the Instance -associated FunctionCoverage for

its Counter s, Expression s, and CodeRegion s; and calls LLVM codegen APIs to generate

pub fn codegen_coverage(&self, bx: &mut Bx, coverage: Coverage, scope:
SourceScope) {
 ...

let instance = ... // the scoped instance (current or inlined
function)

let Coverage { kind, code_region } = coverage;
match kind {

 CoverageKind::Counter { function_source_hash, id } => {
 ...
 bx.add_coverage_counter(instance, id, code_region);
 ...
 bx.instrprof_increment(fn_name, hash, num_counters, index);
 }
 CoverageKind::Expression { id, lhs, op, rhs } => {
 bx.add_coverage_counter_expression(instance, id, lhs, op,
rhs, code_region);
 }
 CoverageKind::Unreachable => {
 bx.add_coverage_unreachable(
 instance,
 code_region.expect(...

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

619 of 660 8/30/23, 09:47

https://llvm.org/docs/LangRef.html#llvm-instrprof-increment-intrinsic
https://llvm.org/docs/LangRef.html#llvm-instrprof-increment-intrinsic
https://llvm.org/docs/LangRef.html#llvm-instrprof-increment-intrinsic
https://rustc-dev-guide.rust-lang.org/print.html#coverage-map-generation
https://rustc-dev-guide.rust-lang.org/print.html#coverage-map-generation
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_codegen_llvm/base/fn.compile_codegen_unit.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_codegen_llvm/base/fn.compile_codegen_unit.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_codegen_llvm/base/fn.compile_codegen_unit.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_codegen_llvm/context/struct.CodegenCx.html#method.coverageinfo_finalize
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_codegen_llvm/context/struct.CodegenCx.html#method.coverageinfo_finalize
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_codegen_llvm/context/struct.CodegenCx.html#method.coverageinfo_finalize
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_codegen_llvm/coverageinfo/mapgen/fn.finalize.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_codegen_llvm/coverageinfo/mapgen/fn.finalize.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_codegen_llvm/coverageinfo/mapgen/fn.finalize.html

properly-configured variables in LLVM IR, according to very specific details of the LLVM

Coverage Mapping Format (Version 6).1

1 The Rust compiler (as of Jul 2023) supports LLVM Coverage Mapping Format 6. The Rust compiler

will automatically use the most up-to-date coverage mapping format version that is compatible with

the compiler's built-in version of LLVM.

code snippet trimmed for brevity

One notable first step performed by mapgen::finalize() is the call to

add_unused_functions() :

When finalizing the coverage map, FunctionCoverage only has the CodeRegion s and

counters for the functions that went through codegen; such as public functions and

"used" functions (functions referenced by other "used" or public items). Any other

functions (considered unused) were still parsed and processed through the MIR stage.

The set of unused functions is computed via the set difference of all MIR DefId s (tcx

query mir_keys) minus the codegenned DefId s (tcx query

codegened_and_inlined_items). add_unused_functions() computes the set of unused

functions, queries the tcx for the previously-computed CodeRegions , for each unused

MIR, synthesizes an LLVM function (with no internal statements, since it will not be called),

and adds a new FunctionCoverage , with Unreachable code regions.

Testing LLVM Coverage

pub fn finalize<'ll, 'tcx>(cx: &CodegenCx<'ll, 'tcx>) {
 ...

if !tcx.sess.instrument_coverage_except_unused_functions() {
 add_unused_functions(cx);
 }

let mut function_coverage_map = match cx.coverage_context() {
Some(ctx) => ctx.take_function_coverage_map(),
None => return,

 };
 ...

let mut mapgen = CoverageMapGenerator::new();

for (instance, function_coverage) in function_coverage_map {
 ...

let coverage_mapping_buffer =
llvm::build_byte_buffer(|coverage_mapping_buffer| {
 mapgen.write_coverage_mapping(expressions, counter_regions,
coverage_mapping_buffer);
 });

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

620 of 660 8/30/23, 09:47

https://llvm.org/docs/CoverageMappingFormat.html
https://llvm.org/docs/CoverageMappingFormat.html
https://llvm.org/docs/CoverageMappingFormat.html
https://llvm.org/docs/CoverageMappingFormat.html
https://llvm.org/docs/CoverageMappingFormat.html
https://llvm.org/docs/CoverageMappingFormat.html
https://rustc-dev-guide.rust-lang.org/print.html#llvm-and-covmap-versions
https://rustc-dev-guide.rust-lang.org/print.html#llvm-and-covmap-versions
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_codegen_llvm/coverageinfo/mapgen/fn.add_unused_functions.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_codegen_llvm/coverageinfo/mapgen/fn.add_unused_functions.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_codegen_llvm/coverageinfo/mapgen/fn.add_unused_functions.html
https://rustc-dev-guide.rust-lang.org/print.html#testing-llvm-coverage
https://rustc-dev-guide.rust-lang.org/print.html#testing-llvm-coverage

Coverage instrumentation in the MIR is validated by a mir-opt test: instrument-

coverage .

More complete testing of end-to-end coverage instrumentation and reports are done in

the run-make-fulldeps tests, with sample Rust programs (to be instrumented) in the

tests/run-coverage directory, together with the actual tests and expected results.

Finally, the coverage-llvmir test compiles a simple Rust program with -C instrument-

coverage and compares the compiled program's LLVM IR to expected LLVM IR

instructions and structured data for a coverage-enabled program, including various

checks for Coverage Map-related metadata and the LLVM intrinsic calls to increment the

runtime counters.

Expected results for both the mir-opt tests and the coverage* tests can be refreshed by

running:

Implementation Details of the InstrumentCoverage

MIR Pass

The bulk of the implementation of the InstrumentCoverage MIR pass is performed by

the Instrumentor . For each MIR (each non-const, non-inlined function, generic, or

closure), the Instrumentor 's constructor prepares a CoverageGraph and then executes

inject_counters() .

The CoverageGraph is a coverage-specific simplification of the MIR control flow graph

(CFG). Its nodes are BasicCoverageBlock s, which encompass one or more sequentially-

executed MIR BasicBlock s (with no internal branching), plus a CoverageKind counter (to

be added, via coverage analysis), and an optional set of additional counters to count

incoming edges (if there are more than one).

The Instrumentor 's inject_counters() uses the CoverageGraph to compute the best

places to inject coverage counters, as MIR Statement s, with the following steps:

1. Depending on the debugging configurations in rustc 's, config.toml , and rustc

command line flags, various debugging features may be enabled to enhance

debug!() messages in logs, and to generate various "dump" files, to help

./x test tests/mir-opt --bless

./x test tests/run-coverage --bless

./x test tests/run-coverage-rustdoc --bless

Instrumentor::new(&self.name(), tcx, mir_body).inject_counters();

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

621 of 660 8/30/23, 09:47

https://github.com/rust-lang/rust/blob/master/tests/mir-opt/instrument_coverage.rs
https://github.com/rust-lang/rust/blob/master/tests/mir-opt/instrument_coverage.rs
https://github.com/rust-lang/rust/blob/master/tests/mir-opt/instrument_coverage.rs
https://github.com/rust-lang/rust/blob/master/tests/mir-opt/instrument_coverage.rs
https://github.com/rust-lang/rust/blob/master/tests/mir-opt/instrument_coverage.rs
https://github.com/rust-lang/rust/blob/master/tests/mir-opt/instrument_coverage.rs
https://github.com/rust-lang/rust/tree/master/tests/run-coverage
https://github.com/rust-lang/rust/tree/master/tests/run-coverage
https://github.com/rust-lang/rust/tree/master/tests/run-coverage
https://github.com/rust-lang/rust/tree/master/tests/run-make/coverage-llvmir
https://github.com/rust-lang/rust/tree/master/tests/run-make/coverage-llvmir
https://github.com/rust-lang/rust/tree/master/tests/run-make/coverage-llvmir
https://rustc-dev-guide.rust-lang.org/print.html#implementation-details-of-the-instrumentcoverage-mir-pass
https://rustc-dev-guide.rust-lang.org/print.html#implementation-details-of-the-instrumentcoverage-mir-pass
https://rustc-dev-guide.rust-lang.org/print.html#implementation-details-of-the-instrumentcoverage-mir-pass
https://rustc-dev-guide.rust-lang.org/print.html#implementation-details-of-the-instrumentcoverage-mir-pass
https://rustc-dev-guide.rust-lang.org/print.html#implementation-details-of-the-instrumentcoverage-mir-pass
https://rustc-dev-guide.rust-lang.org/print.html#implementation-details-of-the-instrumentcoverage-mir-pass
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_transform/coverage/struct.Instrumentor.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_transform/coverage/struct.Instrumentor.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_transform/coverage/struct.Instrumentor.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_transform/coverage/graph/struct.CoverageGraph.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_transform/coverage/graph/struct.CoverageGraph.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_transform/coverage/graph/struct.CoverageGraph.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_transform/coverage/struct.Instrumentor.html#method.inject_counters
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_transform/coverage/struct.Instrumentor.html#method.inject_counters
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_transform/coverage/struct.Instrumentor.html#method.inject_counters
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_transform/coverage/graph/struct.BasicCoverageBlock.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_transform/coverage/graph/struct.BasicCoverageBlock.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_transform/coverage/graph/struct.BasicCoverageBlock.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_transform/coverage/graph/struct.BasicCoverageBlock.html

developers understand the MIR transformation process for coverage. Most of the

debugging features are implemented in the debug sub-module.

2. generate_coverage_spans() computes the minimum set of distinct, non-branching

code regions, from the MIR. These CoverageSpan s represent a span of code that

must be counted.

3. make_bcb_counters() generates CoverageKind::Counter s and

CoverageKind::Expression s for each CoverageSpan , plus additional

intermediate_expressions 2, not associated with any CodeRegion , but are required

to compute a final Expression value for a CodeRegion .

4. Inject the new counters into the MIR, as new StatementKind::Coverage statements.

This is done by three distinct functions:

◦ inject_coverage_span_counters()

◦ inject_indirect_counters()

◦ inject_intermediate_expression() , called for each intermediate expression

returned from make_bcb_counters()

2 Intermediate expressions are sometimes required because Expression s are limited to binary

additions or subtractions. For example, A + (B - C) might represent an Expression count

computed from three other counters, A , B , and C , but computing that value requires an

intermediate expression for B - C .

The CoverageGraph

The CoverageGraph is derived from the MIR (mir::Body).

Like mir::Body , the CoverageGraph is also a DirectedGraph . Both graphs represent the

function's fundamental control flow, with many of the same graph trait s, supporting

start_node() , num_nodes() , successors() , predecessors() , and is_dominated_by() .

For anyone that knows how to work with the MIR, as a CFG, the CoverageGraph will be

familiar, and can be used in much the same way. The nodes of the CoverageGraph are

BasicCoverageBlock s (BCBs), which index into an IndexVec of

BasicCoverageBlockData . This is analogous to the MIR CFG of BasicBlock s that index

BasicBlockData .

Each BasicCoverageBlockData captures one or more MIR BasicBlock s, exclusively, and

represents the maximal-length sequence of BasicBlocks without conditional branches.

compute_basic_coverage_blocks() builds the CoverageGraph as a coverage-specific

simplification of the MIR CFG. In contrast with the SimplifyCfg MIR pass, this step does

not alter the MIR itself, because the CoverageGraph aggressively simplifies the CFG, and

let basic_coverage_blocks = CoverageGraph::from_mir(mir_body);

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

622 of 660 8/30/23, 09:47

https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_transform/coverage/debug
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_transform/coverage/debug
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_transform/coverage/debug
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_transform/coverage/spans/struct.CoverageSpans.html#method.generate_coverage_spans
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_transform/coverage/spans/struct.CoverageSpans.html#method.generate_coverage_spans
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_transform/coverage/spans/struct.CoverageSpans.html#method.generate_coverage_spans
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_transform/coverage/counters/struct.BcbCounters.html#method.make_bcb_counters
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_transform/coverage/counters/struct.BcbCounters.html#method.make_bcb_counters
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_transform/coverage/counters/struct.BcbCounters.html#method.make_bcb_counters
https://rustc-dev-guide.rust-lang.org/print.html#intermediate-expressions
https://rustc-dev-guide.rust-lang.org/print.html#intermediate-expressions
https://rustc-dev-guide.rust-lang.org/print.html#the-coveragegraph
https://rustc-dev-guide.rust-lang.org/print.html#the-coveragegraph
https://rustc-dev-guide.rust-lang.org/print.html#the-coveragegraph
https://rustc-dev-guide.rust-lang.org/print.html#the-coveragegraph
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_transform/coverage/graph/struct.CoverageGraph.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_transform/coverage/graph/struct.CoverageGraph.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_transform/coverage/graph/struct.CoverageGraph.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_data_structures/graph/trait.DirectedGraph.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_data_structures/graph/trait.DirectedGraph.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_data_structures/graph/trait.DirectedGraph.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_data_structures/graph/index.html#traits
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_data_structures/graph/index.html#traits
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_data_structures/graph/index.html#traits
https://rustc-dev-guide.rust-lang.org/mir/index.html
https://rustc-dev-guide.rust-lang.org/mir/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_transform/coverage/graph/struct.CoverageGraph.html#method.compute_basic_coverage_blocks
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_transform/coverage/graph/struct.CoverageGraph.html#method.compute_basic_coverage_blocks
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_transform/coverage/graph/struct.CoverageGraph.html#method.compute_basic_coverage_blocks
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_transform/simplify/enum.SimplifyCfg.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_transform/simplify/enum.SimplifyCfg.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_transform/simplify/enum.SimplifyCfg.html

ignores nodes that are not relevant to coverage. For example:

• The BCB CFG ignores (excludes) branches considered not relevant to the current

coverage solution. It excludes unwind-related code3 that is injected by the Rust

compiler but has no physical source code to count, which allows a Call -terminated

BasicBlock to be merged with its successor, within a single BCB.

• A Goto -terminated BasicBlock can be merged with its successor as long as it has

the only incoming edge to the successor BasicBlock .

• Some BasicBlock terminators support Rust-specific concerns--like borrow-checking--

that are not relevant to coverage analysis. FalseUnwind , for example, can be

treated the same as a Goto (potentially merged with its successor into the same

BCB).

3 (Note, however, that Issue #78544 considers providing future support for coverage of programs

that intentionally panic , as an option, with some non-trivial cost.)

The BCB CFG is critical to simplifying the coverage analysis by ensuring graph path-based

queries (is_dominated_by() , predecessors , successors , etc.) have branch (control

flow) significance.

To visualize the CoverageGraph , you can generate a graphviz *.dot file with the following

rustc flags:4

4 This image also applies -Z graphviz-dark-mode , to produce a Graphviz document with "dark

mode" styling. If you use a dark mode or theme in your development environment, you will

probably want to use this option so you can review the graphviz output without straining your

vision.

The -Z dump-mir flag requests MIR debugging output (generating *.mir files, by

default). -Z dump-mir-graphviz additionally generates *.dot files. -Z dump-

mir=InstrumentCoverage restricts these files to the InstrumentCoverage pass. All files

are written to the ./mir_dump/ directory, by default.

Files with names ending in .-------.InstrumentCoverage.0.dot contain the graphviz

representations of a CoverageGraph (one for each MIR, that is, for each function and

closure):

$ rustc -C instrument-coverage -Z dump-mir=InstrumentCoverage \
 -Z dump-mir-graphviz some_rust_source.rs

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

623 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#78544
https://rustc-dev-guide.rust-lang.org/print.html#78544
https://github.com/rust-lang/rust/issues/78544
https://github.com/rust-lang/rust/issues/78544
https://rustc-dev-guide.rust-lang.org/print.html#graphviz-dark-mode
https://rustc-dev-guide.rust-lang.org/print.html#graphviz-dark-mode
https://rustc-dev-guide.rust-lang.org/mir/debugging.html
https://rustc-dev-guide.rust-lang.org/mir/debugging.html

This image shows each BasicCoverageBlock as a rectangular node, with directional

edges (the arrows) leading from each node to its successors() . The nodes contain

information in sections:

1. The gray header has a label showing the BCB ID (or index for looking up its

BasicCoverageBlockData).

2. The first content section shows the assigned Counter or Expression for each

contiguous section of code. (There may be more than one Expression incremented

by the same Counter for noncontiguous sections of code representing the same

sequential actions.) Note the code is represented by the line and column ranges (for

example: 52:28-52:33 , representing the original source line 52, for columns 28-33).

These are followed by the MIR Statement or Terminator represented by that

source range. (How these coverage regions are determined is discussed in the

following section.)

3. The final section(s) show the MIR BasicBlock s (by ID/index and its

TerminatorKind) contained in this BCB. The last BCB is separated out because its

successors() determine the edges leading out of the BCB, and into the

leading_bb() (first BasicBlock) of each successor BCB.

Note, to find the BasicCoverageBlock from a final BCB Terminator 's successor

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

624 of 660 8/30/23, 09:47

BasicBlock , there is an index and helper function-- bcb_from_bb() --to look up a

BasicCoverageBlock from any contained BasicBlock .

CoverageSpans

The struct CoverageSpans builds and refines a final set of CoverageSpan s, each

representing the largest contiguous Span of source within a single BCB. By definition--

since each Span falls within a BCB, the Span is also non-branching; so if any code in that

Span has executed, all code in the Span will have executed, the same number of times.

CoverageSpans::generate_coverage_spans() constructs an initial set of CoverageSpan s

from the Span s associated with each MIR Statement and Terminator .

The final stage of generate_coverage_spans() is handled by to_refined_spans() , which

iterates through the CoverageSpan s, merges and de-duplicates them, and returns an

optimal, minimal set of CoverageSpan s that can be used to assign coverage Counter s or

Expression s, one-for-one.

An visual, interactive representation of the final CoverageSpan s can be generated with

the following rustc flags:

These flags request Spanview output for the InstrumentCoverage pass, and the resulting

files (one for each MIR, that is, for each function or closure) can be found in the mir_dump

directory (by default), with the extension: .-------.InstrumentCoverage.0.html .

The image above shows one such example. The orange and blue backgrounds highlight

alternating CoverageSpan s from the refined set. Hovering over a line expands the output

on that line to show the MIR BasicBlock IDs covered by each CoverageSpan . While

hovering, the CoverageSpan under the pointer also has a tooltip block of text, showing

$ rustc -C instrument-coverage -Z dump-mir=InstrumentCoverage \
 -Z dump-mir-spanview some_rust_source.rs

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

625 of 660 8/30/23, 09:47

https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_transform/coverage/graph/struct.CoverageGraph.html#method.bcb_from_bb
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_transform/coverage/graph/struct.CoverageGraph.html#method.bcb_from_bb
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_transform/coverage/graph/struct.CoverageGraph.html#method.bcb_from_bb
https://rustc-dev-guide.rust-lang.org/print.html#coveragespans
https://rustc-dev-guide.rust-lang.org/print.html#coveragespans
https://rustc-dev-guide.rust-lang.org/print.html#coveragespans
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_transform/coverage/spans/struct.CoverageSpans.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_transform/coverage/spans/struct.CoverageSpans.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_transform/coverage/spans/struct.CoverageSpans.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_transform/coverage/spans/struct.CoverageSpan.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_transform/coverage/spans/struct.CoverageSpan.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_transform/coverage/spans/struct.CoverageSpan.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_transform/coverage/spans/struct.CoverageSpans.html#method.generate_coverage_spans
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_transform/coverage/spans/struct.CoverageSpans.html#method.generate_coverage_spans
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_transform/coverage/spans/struct.CoverageSpans.html#method.generate_coverage_spans
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_transform/coverage/spans/struct.CoverageSpans.html#method.to_refined_spans
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_transform/coverage/spans/struct.CoverageSpans.html#method.to_refined_spans
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_transform/coverage/spans/struct.CoverageSpans.html#method.to_refined_spans

even more detail, including the MIR Statement s and Terminator s contributing to the

CoverageSpan , and their individual Span s (which should be encapsulated within the code

region of the refined CoverageSpan)

make_bcb_counters()

make_bcb_counters() traverses the CoverageGraph and adds a Counter or Expression

to every BCB. It uses Control Flow Analysis to determine where an Expression can be

used in place of a Counter . Expressions have no runtime overhead, so if a viable

expression (adding or subtracting two other counters or expressions) can compute the

same result as an embedded counter, an Expression is preferred.

TraverseCoverageGraphWithLoops provides a traversal order that ensures all

BasicCoverageBlock nodes in a loop are visited before visiting any node outside that

loop. The traversal state includes a context_stack , with the current loop's context

information (if in a loop), as well as context for nested loops.

Within loops, nodes with multiple outgoing edges (generally speaking, these are BCBs

terminated in a SwitchInt) can be optimized when at least one branch exits the loop

and at least one branch stays within the loop. (For an if or while , there are only two

branches, but a match may have more.)

A branch that does not exit the loop should be counted by Expression , if possible. Note

that some situations require assigning counters to BCBs before they are visited by

traversal, so the counter_kind (CoverageKind for a Counter or Expression) may have

already been assigned, in which case one of the other branches should get the

Expression .

For a node with more than two branches (such as for more than two match patterns),

only one branch can be optimized by Expression . All others require a Counter (unless

its BCB counter_kind was previously assigned).

A branch expression is derived from the equation:

It's important to be aware that the branches in this equation are the outgoing edges from

the branching_node , but a branch 's target node may have other incoming edges. Given

the following graph, for example, the count for B is the sum of its two incoming edges:

Counter(branching_node) = SUM(Counter(branches))

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

626 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#make_bcb_counters
https://rustc-dev-guide.rust-lang.org/print.html#make_bcb_counters
https://rustc-dev-guide.rust-lang.org/print.html#make_bcb_counters
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_transform/coverage/counters/struct.BcbCounters.html#method.make_bcb_counters
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_transform/coverage/counters/struct.BcbCounters.html#method.make_bcb_counters
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_transform/coverage/counters/struct.BcbCounters.html#method.make_bcb_counters
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_transform/coverage/graph/struct.TraverseCoverageGraphWithLoops.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_transform/coverage/graph/struct.TraverseCoverageGraphWithLoops.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_transform/coverage/graph/struct.TraverseCoverageGraphWithLoops.html

In this situation, BCB node B may require an edge counter for its "edge from A", and that

edge might be computed from an Expression , Counter(A) - Counter(C) . But an

expression for the BCB node B would be the sum of all incoming edges:

Note that this is only one possible configuration. The actual choice of Counter vs.

Expression also depends on the order of counter assignments, and whether a BCB or

incoming edge counter already has its Counter or Expression .

Injecting counters into a MIR BasicBlock

With the refined CoverageSpan s, and after all Counter s and Expression s are created,

the final step is to inject the StatementKind::Coverage statements into the MIR. There

are three distinct sources, handled by the following functions:

• inject_coverage_span_counters() injects the counter from each CoverageSpan 's

BCB.

• inject_indirect_counters() injects counters for any BCB not assigned to a

CoverageSpan , and for all edge counters. These counters don't have

CoverageSpan s.

• inject_intermediate_expression() injects the intermediate expressions returned

from make_bcb_counters() . These counters aren't associated with any BCB, edge,

or CoverageSpan .

These three functions inject the Coverage statements into the MIR. Counter s and

Expression s with CoverageSpan s add Coverage statements to a corresponding

BasicBlock , with a CodeRegion computed from the refined Span and current

SourceMap .

All other Coverage statements have a CodeRegion of None , but they still must be

injected because they contribute to other Expression s.

Finally, edge's with a CoverageKind::Counter require a new BasicBlock , so the counter

is only incremented when traversing the branch edge.

Expression((Counter(A) - Counter(C)) + SUM(Counter(remaining_edges)))

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

627 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#injecting-counters-into-a-mir-basicblock
https://rustc-dev-guide.rust-lang.org/print.html#injecting-counters-into-a-mir-basicblock
https://rustc-dev-guide.rust-lang.org/print.html#injecting-counters-into-a-mir-basicblock
https://rustc-dev-guide.rust-lang.org/print.html#injecting-counters-into-a-mir-basicblock
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_transform/coverage/struct.Instrumentor.html#method.inject_coverage_span_counters
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_transform/coverage/struct.Instrumentor.html#method.inject_coverage_span_counters
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_transform/coverage/struct.Instrumentor.html#method.inject_coverage_span_counters
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_transform/coverage/struct.Instrumentor.html#method.inject_indirect_counters
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_transform/coverage/struct.Instrumentor.html#method.inject_indirect_counters
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_transform/coverage/struct.Instrumentor.html#method.inject_indirect_counters
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_transform/coverage/fn.inject_intermediate_expression.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_transform/coverage/fn.inject_intermediate_expression.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_transform/coverage/fn.inject_intermediate_expression.html

Additional Debugging Support

See the crate documentation for rustc_mir::transform::coverage::debug for a detailed

description of the debug output, logging, and configuration options available to

developers working on the InstrumentCoverage pass.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

628 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#additional-debugging-support
https://rustc-dev-guide.rust-lang.org/print.html#additional-debugging-support
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_transform/coverage/debug/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_transform/coverage/debug/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_transform/coverage/debug/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_transform/coverage/debug/index.html

Sanitizers Support

The rustc compiler contains support for following sanitizers:

• AddressSanitizer a faster memory error detector. Can detect out-of-bounds access

to heap, stack, and globals, use after free, use after return, double free, invalid free,

memory leaks.

• ControlFlowIntegrity LLVM Control Flow Integrity (CFI) provides forward-edge control

flow protection.

• Hardware-assisted AddressSanitizer a tool similar to AddressSanitizer but based on

partial hardware assistance.

• KernelControlFlowIntegrity LLVM Kernel Control Flow Integrity (KCFI) provides

forward-edge control flow protection for operating systems kernels.

• LeakSanitizer a run-time memory leak detector.

• MemorySanitizer a detector of uninitialized reads.

• ThreadSanitizer a fast data race detector.

How to use the sanitizers?

To enable a sanitizer compile with -Z sanitizer=... option, where value is one of

address , cfi , hwaddress , kcfi , leak , memory or thread . For more details on how to

use sanitizers please refer to the sanitizer flag in the unstable book.

How are sanitizers implemented in rustc?

The implementation of sanitizers (except CFI) relies almost entirely on LLVM. The rustc is

an integration point for LLVM compile time instrumentation passes and runtime libraries.

Highlight of the most important aspects of the implementation:

• The sanitizer runtime libraries are part of the compiler-rt project, and will be built on

supported targets when enabled in config.toml :

The runtimes are placed into target libdir.

• During LLVM code generation, the functions intended for instrumentation are

marked with appropriate LLVM attribute: SanitizeAddress , SanitizeHWAddress ,

SanitizeMemory , or SanitizeThread . By default all functions are instrumented, but

[build]

sanitizers = true

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

629 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#sanitizers-support
https://rustc-dev-guide.rust-lang.org/print.html#sanitizers-support
https://clang.llvm.org/docs/AddressSanitizer.html
https://clang.llvm.org/docs/AddressSanitizer.html
https://clang.llvm.org/docs/ControlFlowIntegrity.html
https://clang.llvm.org/docs/ControlFlowIntegrity.html
https://clang.llvm.org/docs/HardwareAssistedAddressSanitizerDesign.html
https://clang.llvm.org/docs/HardwareAssistedAddressSanitizerDesign.html
https://clang.llvm.org/docs/ControlFlowIntegrity.html#fsanitize-kcfi
https://clang.llvm.org/docs/ControlFlowIntegrity.html#fsanitize-kcfi
https://clang.llvm.org/docs/LeakSanitizer.html
https://clang.llvm.org/docs/LeakSanitizer.html
https://clang.llvm.org/docs/MemorySanitizer.html
https://clang.llvm.org/docs/MemorySanitizer.html
https://clang.llvm.org/docs/ThreadSanitizer.html
https://clang.llvm.org/docs/ThreadSanitizer.html
https://rustc-dev-guide.rust-lang.org/print.html#how-to-use-the-sanitizers
https://rustc-dev-guide.rust-lang.org/print.html#how-to-use-the-sanitizers
https://doc.rust-lang.org/unstable-book/
https://doc.rust-lang.org/unstable-book/
https://rustc-dev-guide.rust-lang.org/print.html#how-are-sanitizers-implemented-in-rustc
https://rustc-dev-guide.rust-lang.org/print.html#how-are-sanitizers-implemented-in-rustc
https://github.com/llvm/llvm-project/tree/main/compiler-rt
https://github.com/llvm/llvm-project/tree/main/compiler-rt
https://github.com/rust-lang/rust/blob/1.55.0/src/bootstrap/native.rs#L700-L765
https://github.com/rust-lang/rust/blob/1.55.0/src/bootstrap/native.rs#L700-L765
https://github.com/rust-lang/rust/blob/1.55.0/src/bootstrap/native.rs#L806-L820
https://github.com/rust-lang/rust/blob/1.55.0/src/bootstrap/native.rs#L806-L820
https://github.com/rust-lang/rust/blob/1.55.0/src/bootstrap/compile.rs#L376-L407
https://github.com/rust-lang/rust/blob/1.55.0/src/bootstrap/compile.rs#L376-L407
https://github.com/rust-lang/rust/blob/1.55.0/compiler/rustc_codegen_llvm/src/attributes.rs#L42-L58
https://github.com/rust-lang/rust/blob/1.55.0/compiler/rustc_codegen_llvm/src/attributes.rs#L42-L58

this behaviour can be changed with #[no_sanitize(...)] .

• The decision whether to perform instrumentation or not is possible only at a

function granularity. In the cases were those decision differ between functions it

might be necessary to inhibit inlining, both at MIR level and LLVM level.

• The LLVM IR generated by rustc is instrumented by dedicated LLVM passes, different

for each sanitizer. Instrumentation passes are invoked after optimization passes.

• When producing an executable, the sanitizer specific runtime library is linked in. The

libraries are searched for in the target libdir. First relative to the overridden system

root and subsequently relative to the default system root. Fall-back to the default

system root ensures that sanitizer runtimes remain available when using sysroot

overrides constructed by cargo -Z build-std or xargo.

Testing sanitizers

Sanitizers are validated by code generation tests in tests/codegen/sanitize*.rs and

end-to-end functional tests in tests/ui/sanitize/ directory.

Testing sanitizer functionality requires the sanitizer runtimes (built when sanitizer =

true in config.toml) and target providing support for particular sanitizer. When

sanitizer is unsupported on given target, sanitizers tests will be ignored. This behaviour is

controlled by compiletest needs-sanitizer-* directives.

Enabling sanitizer on a new target

To enable a sanitizer on a new target which is already supported by LLVM:

1. Include the sanitizer in the list of supported_sanitizers in the target definition.

rustc --target .. -Zsanitizer=.. should now recognize sanitizer as supported.

2. Build the runtime for the target and include it in the libdir.

3. Teach compiletest that your target now supports the sanitizer. Tests marked with

needs-sanitizer-* should now run on the target.

4. Run tests ./x test --force-rerun tests/ui/sanitize/ to verify.

5. --enable-sanitizers in the CI configuration to build and distribute the sanitizer

runtime as part of the release process.

Additional Information

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

630 of 660 8/30/23, 09:47

https://github.com/rust-lang/rust/blob/1.55.0/compiler/rustc_mir/src/transform/inline.rs#L314-L316
https://github.com/rust-lang/rust/blob/1.55.0/compiler/rustc_mir/src/transform/inline.rs#L314-L316
https://github.com/rust-lang/llvm-project/blob/9330ec5a4c1df5fc1fa62f993ed6a04da68cb040/llvm/include/llvm/IR/Attributes.td#L225-L241
https://github.com/rust-lang/llvm-project/blob/9330ec5a4c1df5fc1fa62f993ed6a04da68cb040/llvm/include/llvm/IR/Attributes.td#L225-L241
https://github.com/rust-lang/rust/blob/1.55.0/compiler/rustc_codegen_llvm/src/back/write.rs#L660-L678
https://github.com/rust-lang/rust/blob/1.55.0/compiler/rustc_codegen_llvm/src/back/write.rs#L660-L678
https://github.com/rust-lang/rust/blob/1.55.0/compiler/rustc_codegen_ssa/src/back/link.rs#L1053-L1089
https://github.com/rust-lang/rust/blob/1.55.0/compiler/rustc_codegen_ssa/src/back/link.rs#L1053-L1089
https://rustc-dev-guide.rust-lang.org/print.html#testing-sanitizers
https://rustc-dev-guide.rust-lang.org/print.html#testing-sanitizers
https://github.com/rust-lang/rust/tree/master/tests/codegen
https://github.com/rust-lang/rust/tree/master/tests/codegen
https://github.com/rust-lang/rust/tree/master/tests/codegen
https://github.com/rust-lang/rust/tree/master/tests/ui/sanitize
https://github.com/rust-lang/rust/tree/master/tests/ui/sanitize
https://github.com/rust-lang/rust/tree/master/tests/ui/sanitize
https://rustc-dev-guide.rust-lang.org/print.html#enabling-sanitizer-on-a-new-target
https://rustc-dev-guide.rust-lang.org/print.html#enabling-sanitizer-on-a-new-target
https://github.com/rust-lang/rust/blob/1.55.0/compiler/rustc_target/src/spec/x86_64_unknown_linux_gnu.rs#L10-L11
https://github.com/rust-lang/rust/blob/1.55.0/compiler/rustc_target/src/spec/x86_64_unknown_linux_gnu.rs#L10-L11
https://github.com/rust-lang/rust/blob/1.55.0/src/bootstrap/native.rs#L806-L820
https://github.com/rust-lang/rust/blob/1.55.0/src/bootstrap/native.rs#L806-L820
https://github.com/rust-lang/rust/blob/1.55.0/src/tools/compiletest/src/util.rs#L87-L116
https://github.com/rust-lang/rust/blob/1.55.0/src/tools/compiletest/src/util.rs#L87-L116
https://github.com/rust-lang/rust/blob/1.55.0/src/ci/docker/host-x86_64/dist-x86_64-linux/Dockerfile#L94
https://github.com/rust-lang/rust/blob/1.55.0/src/ci/docker/host-x86_64/dist-x86_64-linux/Dockerfile#L94
https://rustc-dev-guide.rust-lang.org/print.html#additional-information-1
https://rustc-dev-guide.rust-lang.org/print.html#additional-information-1

• Sanitizers project page

• AddressSanitizer in Clang

• ControlFlowIntegrity in Clang

• Hardware-assisted AddressSanitizer

• KernelControlFlowIntegrity in Clang

• LeakSanitizer in Clang

• MemorySanitizer in Clang

• ThreadSanitizer in Clang

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

631 of 660 8/30/23, 09:47

https://github.com/google/sanitizers/wiki/
https://github.com/google/sanitizers/wiki/
https://clang.llvm.org/docs/AddressSanitizer.html
https://clang.llvm.org/docs/AddressSanitizer.html
https://clang.llvm.org/docs/ControlFlowIntegrity.html
https://clang.llvm.org/docs/ControlFlowIntegrity.html
https://clang.llvm.org/docs/HardwareAssistedAddressSanitizerDesign.html
https://clang.llvm.org/docs/HardwareAssistedAddressSanitizerDesign.html
https://clang.llvm.org/docs/ControlFlowIntegrity.html#fsanitize-kcfi
https://clang.llvm.org/docs/ControlFlowIntegrity.html#fsanitize-kcfi
https://clang.llvm.org/docs/LeakSanitizer.html
https://clang.llvm.org/docs/LeakSanitizer.html
https://clang.llvm.org/docs/MemorySanitizer.html
https://clang.llvm.org/docs/MemorySanitizer.html
https://clang.llvm.org/docs/ThreadSanitizer.html
https://clang.llvm.org/docs/ThreadSanitizer.html

Debugging support in the Rust compiler

• Preliminaries

◦ Debuggers

◦ DWARF

◦ CodeView/PDB

• Supported debuggers

◦ GDB

▪ Rust expression parser

▪ Parser extensions

◦ LLDB

▪ Rust expression parser

▪ Developer notes

◦ WinDbg/CDB

▪ Natvis

• DWARF and rustc

◦ Current limitations of DWARF

• Developer notes

• What is missing

◦ Code signing for LLDB debug server on macOS

◦ DWARF and Traits

• Typical process for a Debug Info change (LLVM)

◦ Procedural macro stepping

• Source file checksums in debug info

◦ DWARF 5

◦ LLVM

◦ Microsoft Visual C++ Compiler /ZH option

◦ Clang

• Future work

◦ Name mangling changes

◦ Reuse Rust compiler for expressions

This document explains the state of debugging tools support in the Rust compiler (rustc).

It gives an overview of GDB, LLDB, WinDbg/CDB, as well as infrastructure around Rust

compiler to debug Rust code. If you want to learn how to debug the Rust compiler itself,

see Debugging the Compiler.

The material is gathered from the video, Tom Tromey discusses debugging support in

rustc.

Preliminaries

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

632 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#debugging-support-in-the-rust-compiler
https://rustc-dev-guide.rust-lang.org/print.html#debugging-support-in-the-rust-compiler
https://rustc-dev-guide.rust-lang.org/debugging-support-in-rustc.html#preliminaries
https://rustc-dev-guide.rust-lang.org/debugging-support-in-rustc.html#preliminaries
https://rustc-dev-guide.rust-lang.org/debugging-support-in-rustc.html#debuggers
https://rustc-dev-guide.rust-lang.org/debugging-support-in-rustc.html#debuggers
https://rustc-dev-guide.rust-lang.org/debugging-support-in-rustc.html#dwarf
https://rustc-dev-guide.rust-lang.org/debugging-support-in-rustc.html#dwarf
https://rustc-dev-guide.rust-lang.org/debugging-support-in-rustc.html#codeviewpdb
https://rustc-dev-guide.rust-lang.org/debugging-support-in-rustc.html#codeviewpdb
https://rustc-dev-guide.rust-lang.org/debugging-support-in-rustc.html#supported-debuggers
https://rustc-dev-guide.rust-lang.org/debugging-support-in-rustc.html#supported-debuggers
https://rustc-dev-guide.rust-lang.org/debugging-support-in-rustc.html#gdb
https://rustc-dev-guide.rust-lang.org/debugging-support-in-rustc.html#gdb
https://rustc-dev-guide.rust-lang.org/debugging-support-in-rustc.html#rust-expression-parser
https://rustc-dev-guide.rust-lang.org/debugging-support-in-rustc.html#rust-expression-parser
https://rustc-dev-guide.rust-lang.org/debugging-support-in-rustc.html#parser-extensions
https://rustc-dev-guide.rust-lang.org/debugging-support-in-rustc.html#parser-extensions
https://rustc-dev-guide.rust-lang.org/debugging-support-in-rustc.html#lldb
https://rustc-dev-guide.rust-lang.org/debugging-support-in-rustc.html#lldb
https://rustc-dev-guide.rust-lang.org/debugging-support-in-rustc.html#rust-expression-parser-1
https://rustc-dev-guide.rust-lang.org/debugging-support-in-rustc.html#rust-expression-parser-1
https://rustc-dev-guide.rust-lang.org/debugging-support-in-rustc.html#developer-notes
https://rustc-dev-guide.rust-lang.org/debugging-support-in-rustc.html#developer-notes
https://rustc-dev-guide.rust-lang.org/debugging-support-in-rustc.html#windbgcdb
https://rustc-dev-guide.rust-lang.org/debugging-support-in-rustc.html#windbgcdb
https://rustc-dev-guide.rust-lang.org/debugging-support-in-rustc.html#natvis
https://rustc-dev-guide.rust-lang.org/debugging-support-in-rustc.html#natvis
https://rustc-dev-guide.rust-lang.org/debugging-support-in-rustc.html#dwarf-and-rustc
https://rustc-dev-guide.rust-lang.org/debugging-support-in-rustc.html#dwarf-and-rustc
https://rustc-dev-guide.rust-lang.org/debugging-support-in-rustc.html#dwarf-and-rustc
https://rustc-dev-guide.rust-lang.org/debugging-support-in-rustc.html#dwarf-and-rustc
https://rustc-dev-guide.rust-lang.org/debugging-support-in-rustc.html#current-limitations-of-dwarf
https://rustc-dev-guide.rust-lang.org/debugging-support-in-rustc.html#current-limitations-of-dwarf
https://rustc-dev-guide.rust-lang.org/debugging-support-in-rustc.html#developer-notes-1
https://rustc-dev-guide.rust-lang.org/debugging-support-in-rustc.html#developer-notes-1
https://rustc-dev-guide.rust-lang.org/debugging-support-in-rustc.html#what-is-missing
https://rustc-dev-guide.rust-lang.org/debugging-support-in-rustc.html#what-is-missing
https://rustc-dev-guide.rust-lang.org/debugging-support-in-rustc.html#code-signing-for-lldb-debug-server-on-macos
https://rustc-dev-guide.rust-lang.org/debugging-support-in-rustc.html#code-signing-for-lldb-debug-server-on-macos
https://rustc-dev-guide.rust-lang.org/debugging-support-in-rustc.html#dwarf-and-traits
https://rustc-dev-guide.rust-lang.org/debugging-support-in-rustc.html#dwarf-and-traits
https://rustc-dev-guide.rust-lang.org/debugging-support-in-rustc.html#typical-process-for-a-debug-info-change-llvm
https://rustc-dev-guide.rust-lang.org/debugging-support-in-rustc.html#typical-process-for-a-debug-info-change-llvm
https://rustc-dev-guide.rust-lang.org/debugging-support-in-rustc.html#procedural-macro-stepping
https://rustc-dev-guide.rust-lang.org/debugging-support-in-rustc.html#procedural-macro-stepping
https://rustc-dev-guide.rust-lang.org/debugging-support-in-rustc.html#source-file-checksums-in-debug-info
https://rustc-dev-guide.rust-lang.org/debugging-support-in-rustc.html#source-file-checksums-in-debug-info
https://rustc-dev-guide.rust-lang.org/debugging-support-in-rustc.html#dwarf-5
https://rustc-dev-guide.rust-lang.org/debugging-support-in-rustc.html#dwarf-5
https://rustc-dev-guide.rust-lang.org/debugging-support-in-rustc.html#llvm
https://rustc-dev-guide.rust-lang.org/debugging-support-in-rustc.html#llvm
https://rustc-dev-guide.rust-lang.org/debugging-support-in-rustc.html#microsoft-visual-c-compiler-zh-option
https://rustc-dev-guide.rust-lang.org/debugging-support-in-rustc.html#microsoft-visual-c-compiler-zh-option
https://rustc-dev-guide.rust-lang.org/debugging-support-in-rustc.html#clang
https://rustc-dev-guide.rust-lang.org/debugging-support-in-rustc.html#clang
https://rustc-dev-guide.rust-lang.org/debugging-support-in-rustc.html#future-work
https://rustc-dev-guide.rust-lang.org/debugging-support-in-rustc.html#future-work
https://rustc-dev-guide.rust-lang.org/debugging-support-in-rustc.html#name-mangling-changes
https://rustc-dev-guide.rust-lang.org/debugging-support-in-rustc.html#name-mangling-changes
https://rustc-dev-guide.rust-lang.org/debugging-support-in-rustc.html#reuse-rust-compiler-for-expressions
https://rustc-dev-guide.rust-lang.org/debugging-support-in-rustc.html#reuse-rust-compiler-for-expressions
https://rustc-dev-guide.rust-lang.org/compiler-debugging.html
https://rustc-dev-guide.rust-lang.org/compiler-debugging.html
https://www.youtube.com/watch?v=elBxMRSNYr4
https://www.youtube.com/watch?v=elBxMRSNYr4
https://www.youtube.com/watch?v=elBxMRSNYr4
https://www.youtube.com/watch?v=elBxMRSNYr4
https://rustc-dev-guide.rust-lang.org/print.html#preliminaries
https://rustc-dev-guide.rust-lang.org/print.html#preliminaries

Debuggers

According to Wikipedia

A debugger or debugging tool is a computer program that is used to test and debug

other programs (the "target" program).

Writing a debugger from scratch for a language requires a lot of work, especially if

debuggers have to be supported on various platforms. GDB and LLDB, however, can be

extended to support debugging a language. This is the path that Rust has chosen. This

document's main goal is to document the said debuggers support in Rust compiler.

DWARF

According to the DWARF standard website

DWARF is a debugging file format used by many compilers and debuggers to

support source level debugging. It addresses the requirements of a number of

procedural languages, such as C, C++, and Fortran, and is designed to be extensible

to other languages. DWARF is architecture independent and applicable to any

processor or operating system. It is widely used on Unix, Linux and other operating

systems, as well as in stand-alone environments.

DWARF reader is a program that consumes the DWARF format and creates debugger

compatible output. This program may live in the compiler itself. DWARF uses a data

structure called Debugging Information Entry (DIE) which stores the information as "tags"

to denote functions, variables etc., e.g., DW_TAG_variable , DW_TAG_pointer_type ,

DW_TAG_subprogram etc. You can also invent your own tags and attributes.

CodeView/PDB

PDB (Program Database) is a file format created by Microsoft that contains debug

information. PDBs can be consumed by debuggers such as WinDbg/CDB and other tools

to display debug information. A PDB contains multiple streams that describe debug

information about a specific binary such as types, symbols, and source files used to

compile the given binary. CodeView is another format which defines the structure of

symbol records and type records that appear within PDB streams.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

633 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#debuggers
https://rustc-dev-guide.rust-lang.org/print.html#debuggers
https://en.wikipedia.org/wiki/Debugger
https://en.wikipedia.org/wiki/Debugger
https://rustc-dev-guide.rust-lang.org/print.html#dwarf
https://rustc-dev-guide.rust-lang.org/print.html#dwarf
http://dwarfstd.org/
http://dwarfstd.org/
https://rustc-dev-guide.rust-lang.org/print.html#codeviewpdb
https://rustc-dev-guide.rust-lang.org/print.html#codeviewpdb
https://llvm.org/docs/PDB/index.html
https://llvm.org/docs/PDB/index.html
https://llvm.org/docs/PDB/CodeViewSymbols.html
https://llvm.org/docs/PDB/CodeViewSymbols.html
https://llvm.org/docs/PDB/CodeViewTypes.html
https://llvm.org/docs/PDB/CodeViewTypes.html

Supported debuggers

GDB

Rust expression parser

To be able to show debug output, we need an expression parser. This (GDB) expression

parser is written in Bison, and can parse only a subset of Rust expressions. GDB parser

was written from scratch and has no relation to any other parser, including that of rustc.

GDB has Rust-like value and type output. It can print values and types in a way that look

like Rust syntax in the output. Or when you print a type as ptype in GDB, it also looks like

Rust source code. Checkout the documentation in the manual for GDB/Rust.

Parser extensions

Expression parser has a couple of extensions in it to facilitate features that you cannot do

with Rust. Some limitations are listed in the manual for GDB/Rust. There is some special

code in the DWARF reader in GDB to support the extensions.

A couple of examples of DWARF reader support needed are as follows:

1. Enum: Needed for support for enum types. The Rust compiler writes the

information about enum into DWARF, and GDB reads the DWARF to understand

where is the tag field, or if there is a tag field, or if the tag slot is shared with non-

zero optimization etc.

2. Dissect trait objects: DWARF extension where the trait object's description in the

DWARF also points to a stub description of the corresponding vtable which in turn

points to the concrete type for which this trait object exists. This means that you can

do a print *object for that trait object, and GDB will understand how to find the

correct type of the payload in the trait object.

TODO: Figure out if the following should be mentioned in the GDB-Rust document rather

than this guide page so there is no duplication. This is regarding the following comments:

This comment by Tom

gdb's Rust extensions and limitations are documented in the gdb manual:

https://sourceware.org/gdb/onlinedocs/gdb/Rust.html -- however, this neglects to

mention that gdb convenience variables and registers follow the gdb $ convention,

and that the Rust parser implements the gdb @ extension.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

634 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#supported-debuggers
https://rustc-dev-guide.rust-lang.org/print.html#supported-debuggers
https://rustc-dev-guide.rust-lang.org/print.html#gdb
https://rustc-dev-guide.rust-lang.org/print.html#gdb
https://rustc-dev-guide.rust-lang.org/print.html#rust-expression-parser
https://rustc-dev-guide.rust-lang.org/print.html#rust-expression-parser
https://www.gnu.org/software/bison/
https://www.gnu.org/software/bison/
https://ftp.gnu.org/old-gnu/Manuals/gdb/html_node/gdb_109.html
https://ftp.gnu.org/old-gnu/Manuals/gdb/html_node/gdb_109.html
https://sourceware.org/gdb/onlinedocs/gdb/Rust.html
https://sourceware.org/gdb/onlinedocs/gdb/Rust.html
https://rustc-dev-guide.rust-lang.org/print.html#parser-extensions
https://rustc-dev-guide.rust-lang.org/print.html#parser-extensions
https://sourceware.org/gdb/onlinedocs/gdb/Rust.html
https://sourceware.org/gdb/onlinedocs/gdb/Rust.html
https://github.com/rust-lang/rustc-dev-guide/pull/316#discussion_r284027340
https://github.com/rust-lang/rustc-dev-guide/pull/316#discussion_r284027340

This question by Aman

@tromey do you think we should mention this part in the GDB-Rust document

rather than this document so there is no duplication etc.?

LLDB

Rust expression parser

This expression parser is written in C++. It is a type of Recursive Descent parser. It

implements slightly less of the Rust language than GDB. LLDB has Rust-like value and

type output.

Developer notes

• LLDB has a plugin architecture but that does not work for language support.

• GDB generally works better on Linux.

WinDbg/CDB

Microsoft provides Windows Debugging Tools such as the Windows Debugger (WinDbg)

and the Console Debugger (CDB) which both support debugging programs written in

Rust. These debuggers parse the debug info for a binary from the PDB , if available, to

construct a visualization to serve up in the debugger.

Natvis

Both WinDbg and CDB support defining and viewing custom visualizations for any given

type within the debugger using the Natvis framework. The Rust compiler defines a set of

Natvis files that define custom visualizations for a subset of types in the standard libraries

such as, std , core , and alloc . These Natvis files are embedded into PDBs generated

by the *-pc-windows-msvc target triples to automatically enable these custom

visualizations when debugging. This default can be overridden by setting the strip rustc

flag to either debuginfo or symbols .

Rust has support for embedding Natvis files for crates outside of the standard libraries by

using the #[debugger_visualizer] attribute. For more details on how to embed

debugger visualizers, please refer to the section on the debugger_visualizer attribute.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

635 of 660 8/30/23, 09:47

https://github.com/rust-lang/rustc-dev-guide/pull/316#discussion_r285401353
https://github.com/rust-lang/rustc-dev-guide/pull/316#discussion_r285401353
https://rustc-dev-guide.rust-lang.org/print.html#lldb
https://rustc-dev-guide.rust-lang.org/print.html#lldb
https://rustc-dev-guide.rust-lang.org/print.html#rust-expression-parser-1
https://rustc-dev-guide.rust-lang.org/print.html#rust-expression-parser-1
https://en.wikipedia.org/wiki/Recursive_descent_parser
https://en.wikipedia.org/wiki/Recursive_descent_parser
https://rustc-dev-guide.rust-lang.org/print.html#developer-notes
https://rustc-dev-guide.rust-lang.org/print.html#developer-notes
https://rustc-dev-guide.rust-lang.org/print.html#windbgcdb
https://rustc-dev-guide.rust-lang.org/print.html#windbgcdb
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/
https://rustc-dev-guide.rust-lang.org/print.html#natvis
https://rustc-dev-guide.rust-lang.org/print.html#natvis
https://doc.rust-lang.org/nightly/reference/attributes/debugger.html#the-debugger_visualizer-attribute
https://doc.rust-lang.org/nightly/reference/attributes/debugger.html#the-debugger_visualizer-attribute
https://doc.rust-lang.org/nightly/reference/attributes/debugger.html#the-debugger_visualizer-attribute
https://doc.rust-lang.org/nightly/reference/attributes/debugger.html#the-debugger_visualizer-attribute

DWARF and rustc

DWARF is the standard way compilers generate debugging information that debuggers

read. It is the debugging format on macOS and Linux. It is a multi-language and extensible

format, and is mostly good enough for Rust's purposes. Hence, the current

implementation reuses DWARF's concepts. This is true even if some of the concepts in

DWARF do not align with Rust semantically because, generally, there can be some kind of

mapping between the two.

We have some DWARF extensions that the Rust compiler emits and the debuggers

understand that are not in the DWARF standard.

• Rust compiler will emit DWARF for a virtual table, and this vtable object will have a

DW_AT_containing_type that points to the real type. This lets debuggers dissect a

trait object pointer to correctly find the payload. E.g., here's such a DIE, from a test

case in the gdb repository:

• The other extension is that the Rust compiler can emit a tagless discriminated

union. See DWARF feature request for this item.

Current limitations of DWARF

• Traits - require a bigger change than normal to DWARF, on how to represent Traits

in DWARF.

• DWARF provides no way to differentiate between Structs and Tuples. Rust compiler

emits fields with __0 and debuggers look for a sequence of such names to

overcome this limitation. For example, in this case the debugger would look at a

field via x.__0 instead of x.0 . This is resolved via the Rust parser in the debugger

so now you can do x.0 .

DWARF relies on debuggers to know some information about platform ABI. Rust does not

do that all the time.

Developer notes

<1><1a9>: Abbrev Number: 3 (DW_TAG_structure_type)

 <1aa> DW_AT_containing_type: <0x1b4>

 <1ae> DW_AT_name : (indirect string, offset: 0x23d): vtable

 <1b2> DW_AT_byte_size : 0

 <1b3> DW_AT_alignment : 8

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

636 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#dwarf-and-rustc
https://rustc-dev-guide.rust-lang.org/print.html#dwarf-and-rustc
https://rustc-dev-guide.rust-lang.org/print.html#dwarf-and-rustc
https://rustc-dev-guide.rust-lang.org/print.html#dwarf-and-rustc
http://dwarfstd.org/
http://dwarfstd.org/
http://dwarfstd.org/ShowIssue.php?issue=180517.2
http://dwarfstd.org/ShowIssue.php?issue=180517.2
https://rustc-dev-guide.rust-lang.org/print.html#current-limitations-of-dwarf
https://rustc-dev-guide.rust-lang.org/print.html#current-limitations-of-dwarf
https://rustc-dev-guide.rust-lang.org/print.html#developer-notes-1
https://rustc-dev-guide.rust-lang.org/print.html#developer-notes-1

This section is from the talk about certain aspects of development.

What is missing

Code signing for LLDB debug server on macOS

According to Wikipedia, System Integrity Protection is

System Integrity Protection (SIP, sometimes referred to as rootless) is a security

feature of Apple's macOS operating system introduced in OS X El Capitan. It

comprises a number of mechanisms that are enforced by the kernel. A centerpiece

is the protection of system-owned files and directories against modifications by

processes without a specific "entitlement", even when executed by the root user or

a user with root privileges (sudo).

It prevents processes using ptrace syscall. If a process wants to use ptrace it has to be

code signed. The certificate that signs it has to be trusted on your machine.

See Apple developer documentation for System Integrity Protection.

We may need to sign up with Apple and get the keys to do this signing. Tom has looked

into if Mozilla cannot do this because it is at the maximum number of keys it is allowed to

sign. Tom does not know if Mozilla could get more keys.

Alternatively, Tom suggests that maybe a Rust legal entity is needed to get the keys via

Apple. This problem is not technical in nature. If we had such a key we could sign GDB as

well and ship that.

DWARF and Traits

Rust traits are not emitted into DWARF at all. The impact of this is calling a method

x.method() does not work as is. The reason being that method is implemented by a trait,

as opposed to a type. That information is not present so finding trait methods is missing.

DWARF has a notion of interface types (possibly added for Java). Tom's idea was to use

this interface type as traits.

DWARF only deals with concrete names, not the reference types. So, a given

implementation of a trait for a type would be one of these interfaces (DW_tag_interface

type). Also, the type for which it is implemented would describe all the interfaces this type

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

637 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#what-is-missing
https://rustc-dev-guide.rust-lang.org/print.html#what-is-missing
https://rustc-dev-guide.rust-lang.org/print.html#code-signing-for-lldb-debug-server-on-macos
https://rustc-dev-guide.rust-lang.org/print.html#code-signing-for-lldb-debug-server-on-macos
https://en.wikipedia.org/wiki/System_Integrity_Protection
https://en.wikipedia.org/wiki/System_Integrity_Protection
https://developer.apple.com/library/archive/releasenotes/MacOSX/WhatsNewInOSX/Articles/MacOSX10_11.html#//apple_ref/doc/uid/TP40016227-SW11
https://developer.apple.com/library/archive/releasenotes/MacOSX/WhatsNewInOSX/Articles/MacOSX10_11.html#//apple_ref/doc/uid/TP40016227-SW11
https://rustc-dev-guide.rust-lang.org/print.html#dwarf-and-traits
https://rustc-dev-guide.rust-lang.org/print.html#dwarf-and-traits

implements. This requires a DWARF extension.

Issue on Github: https://github.com/rust-lang/rust/issues/33014

Typical process for a Debug Info change (LLVM)

LLVM has Debug Info (DI) builders. This is the primary thing that Rust calls into. This is

why we need to change LLVM first because that is emitted first and not DWARF directly.

This is a kind of metadata that you construct and hand-off to LLVM. For the Rustc/LLVM

hand-off some LLVM DI builder methods are called to construct representation of a type.

The steps of this process are as follows:

1. LLVM needs changing.

LLVM does not emit Interface types at all, so this needs to be implemented in the

LLVM first.

Get sign off on LLVM maintainers that this is a good idea.

2. Change the DWARF extension.

3. Update the debuggers.

Update DWARF readers, expression evaluators.

4. Update Rust compiler.

Change it to emit this new information.

Procedural macro stepping

A deeply profound question is that how do you actually debug a procedural macro? What

is the location you emit for a macro expansion? Consider some of the following cases -

• You can emit location of the invocation of the macro.

• You can emit the location of the definition of the macro.

• You can emit locations of the content of the macro.

RFC: https://github.com/rust-lang/rfcs/pull/2117

Focus is to let macros decide what to do. This can be achieved by having some kind of

attribute that lets the macro tell the compiler where the line marker should be. This

affects where you set the breakpoints and what happens when you step it.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

638 of 660 8/30/23, 09:47

https://github.com/rust-lang/rust/issues/33014
https://github.com/rust-lang/rust/issues/33014
https://rustc-dev-guide.rust-lang.org/print.html#typical-process-for-a-debug-info-change-llvm
https://rustc-dev-guide.rust-lang.org/print.html#typical-process-for-a-debug-info-change-llvm
https://rustc-dev-guide.rust-lang.org/print.html#procedural-macro-stepping
https://rustc-dev-guide.rust-lang.org/print.html#procedural-macro-stepping
https://github.com/rust-lang/rfcs/pull/2117
https://github.com/rust-lang/rfcs/pull/2117

Source file checksums in debug info

Both DWARF and CodeView (PDB) support embedding a cryptographic hash of each

source file that contributed to the associated binary.

The cryptographic hash can be used by a debugger to verify that the source file matches

the executable. If the source file does not match, the debugger can provide a warning to

the user.

The hash can also be used to prove that a given source file has not been modified since it

was used to compile an executable. Because MD5 and SHA1 both have demonstrated

vulnerabilities, using SHA256 is recommended for this application.

The Rust compiler stores the hash for each source file in the corresponding SourceFile

in the SourceMap . The hashes of input files to external crates are stored in rlib

metadata.

A default hashing algorithm is set in the target specification. This allows the target to

specify the best hash available, since not all targets support all hash algorithms.

The hashing algorithm for a target can also be overridden with the -Z source-file-

checksum= command-line option.

DWARF 5

DWARF version 5 supports embedding an MD5 hash to validate the source file version in

use. DWARF 5 - Section 6.2.4.1 opcode DW_LNCT_MD5

LLVM

LLVM IR supports MD5 and SHA1 (and SHA256 in LLVM 11+) source file checksums in the

DIFile node.

LLVM DIFile documentation

Microsoft Visual C++ Compiler /ZH option

The MSVC compiler supports embedding MD5, SHA1, or SHA256 hashes in the PDB using

the /ZH compiler option.

MSVC /ZH documentation

Clang

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

639 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#source-file-checksums-in-debug-info
https://rustc-dev-guide.rust-lang.org/print.html#source-file-checksums-in-debug-info
https://rustc-dev-guide.rust-lang.org/print.html#dwarf-5
https://rustc-dev-guide.rust-lang.org/print.html#dwarf-5
https://rustc-dev-guide.rust-lang.org/print.html#llvm
https://rustc-dev-guide.rust-lang.org/print.html#llvm
https://llvm.org/docs/LangRef.html#difile
https://llvm.org/docs/LangRef.html#difile
https://rustc-dev-guide.rust-lang.org/print.html#microsoft-visual-c-compiler-zh-option
https://rustc-dev-guide.rust-lang.org/print.html#microsoft-visual-c-compiler-zh-option
https://docs.microsoft.com/en-us/cpp/build/reference/zh
https://docs.microsoft.com/en-us/cpp/build/reference/zh
https://rustc-dev-guide.rust-lang.org/print.html#clang
https://rustc-dev-guide.rust-lang.org/print.html#clang

Clang always embeds an MD5 checksum, though this does not appear in documentation.

Future work

Name mangling changes

• New demangler in libiberty (gcc source tree).

• New demangler in LLVM or LLDB.

TODO: Check the location of the demangler source. #1157

Reuse Rust compiler for expressions

This is an important idea because debuggers by and large do not try to implement type

inference. You need to be much more explicit when you type into the debugger than your

actual source code. So, you cannot just copy and paste an expression from your source

code to debugger and expect the same answer but this would be nice. This can be helped

by using compiler.

It is certainly doable but it is a large project. You certainly need a bridge to the debugger

because the debugger alone has access to the memory. Both GDB (gcc) and LLDB (clang)

have this feature. LLDB uses Clang to compile code to JIT and GDB can do the same with

GCC.

Both debuggers expression evaluation implement both a superset and a subset of Rust.

They implement just the expression language, but they also add some extensions like

GDB has convenience variables. Therefore, if you are taking this route, then you not only

need to do this bridge, but may have to add some mode to let the compiler understand

some extensions.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

640 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#future-work-1
https://rustc-dev-guide.rust-lang.org/print.html#future-work-1
https://rustc-dev-guide.rust-lang.org/print.html#name-mangling-changes
https://rustc-dev-guide.rust-lang.org/print.html#name-mangling-changes
https://github.com/rust-lang/rustc-dev-guide/issues/1157
https://github.com/rust-lang/rustc-dev-guide/issues/1157
https://rustc-dev-guide.rust-lang.org/print.html#reuse-rust-compiler-for-expressions
https://rustc-dev-guide.rust-lang.org/print.html#reuse-rust-compiler-for-expressions

Background topics

This section covers a numbers of common compiler terms that arise in this guide. We try

to give the general definition while providing some Rust-specific context.

What is a control-flow graph?

A control-flow graph (CFG) is a common term from compilers. If you've ever used a flow-

chart, then the concept of a control-flow graph will be pretty familiar to you. It's a

representation of your program that clearly exposes the underlying control flow.

A control-flow graph is structured as a set of basic blocks connected by edges. The key

idea of a basic block is that it is a set of statements that execute "together" – that is,

whenever you branch to a basic block, you start at the first statement and then execute

all the remainder. Only at the end of the block is there the possibility of branching to

more than one place (in MIR, we call that final statement the terminator):

Many expressions that you are used to in Rust compile down to multiple basic blocks. For

example, consider an if statement:

This would compile into four basic blocks in MIR. In textual form, it looks like this:

bb0: {
 statement0;
 statement1;
 statement2;
 ...
 terminator;
}

a = 1;
if some_variable {
 b = 1;
} else {
 c = 1;
}
d = 1;

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

641 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#background-topics
https://rustc-dev-guide.rust-lang.org/print.html#background-topics
https://rustc-dev-guide.rust-lang.org/print.html#what-is-a-control-flow-graph
https://rustc-dev-guide.rust-lang.org/print.html#what-is-a-control-flow-graph

In graphical form, it looks like this:

When using a control-flow graph, a loop simply appears as a cycle in the graph, and the

break keyword translates into a path out of that cycle.

What is a dataflow analysis?

BB0: {
 a = 1;
 if some_variable {
 goto BB1;
 } else {
 goto BB2;
 }
}

BB1: {
 b = 1;
 goto BB3;
}

BB2: {
 c = 1;
 goto BB3;
}

BB3: {
 d = 1;
 ...
}

 BB0
 +--------------------+
 | a = 1; |
 +--------------------+
 / \
 if some_variable else
 / \
 BB1 / \ BB2
 +-----------+ +-----------+
 | b = 1; | | c = 1; |
 +-----------+ +-----------+
 \ /
 \ /
 \ BB3 /
 +----------+
 | d = 1; |
 | ... |
 +----------+

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

642 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#what-is-a-dataflow-analysis
https://rustc-dev-guide.rust-lang.org/print.html#what-is-a-dataflow-analysis

Static Program Analysis by Anders Møller and Michael I. Schwartzbach is an incredible

resource!

Dataflow analysis is a type of static analysis that is common in many compilers. It

describes a general technique, rather than a particular analysis.

The basic idea is that we can walk over a control-flow graph (CFG) and keep track of what

some value could be. At the end of the walk, we might have shown that some claim is

true or not necessarily true (e.g. "this variable must be initialized"). rustc tends to do

dataflow analyses over the MIR, since MIR is already a CFG.

For example, suppose we want to check that x is initialized before it is used in this

snippet:

A CFG for this code might look like this:

We can do the dataflow analysis as follows: we will start off with a flag init which

indicates if we know x is initialized. As we walk the CFG, we will update the flag. At the

end, we can check its value.

So first, in block (A), the variable x is declared but not initialized, so init = false . In

block (B), we initialize the value, so we know that x is initialized. So at the end of (B),

init = true .

Block (C) is where things get interesting. Notice that there are two incoming edges, one

from (A) and one from (B), corresponding to whether some_cond is true or not. But we

fn foo() {
let mut x;

if some_cond {
 x = 1;
 }

 dbg!(x);
}

 +------+
 | Init | (A)
 +------+
 | \
 | if some_cond
 else \ +-------+
 | \| x = 1 | (B)
 | +-------+
 | /
 +---------+
 | dbg!(x) | (C)
 +---------+

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

643 of 660 8/30/23, 09:47

https://cs.au.dk/~amoeller/spa/
https://cs.au.dk/~amoeller/spa/
https://cs.au.dk/~amoeller/spa/
https://rustc-dev-guide.rust-lang.org/appendix/background.html#cfg
https://rustc-dev-guide.rust-lang.org/appendix/background.html#cfg

cannot know that! It could be the case the some_cond is always true, so that x is actually

always initialized. It could also be the case that some_cond depends on something

random (e.g. the time), so x may not be initialized. In general, we cannot know statically

(due to Rice's Theorem). So what should the value of init be in block (C)?

Generally, in dataflow analyses, if a block has multiple parents (like (C) in our example), its

dataflow value will be some function of all its parents (and of course, what happens in

(C)). Which function we use depends on the analysis we are doing.

In this case, we want to be able to prove definitively that x must be initialized before use.

This forces us to be conservative and assume that some_cond might be false sometimes.

So our "merging function" is "and". That is, init = true in (C) if init = true in (A) and

in (B) (or if x is initialized in (C)). But this is not the case; in particular, init = false in

(A), and x is not initialized in (C). Thus, init = false in (C); we can report an error that

" x may not be initialized before use".

There is definitely a lot more that can be said about dataflow analyses. There is an

extensive body of research literature on the topic, including a lot of theory. We only

discussed a forwards analysis, but backwards dataflow analysis is also useful. For

example, rather than starting from block (A) and moving forwards, we might have started

with the usage of x and moved backwards to try to find its initialization.

What is "universally quantified"? What about

"existentially quantified"?

In math, a predicate may be universally quantified or existentially quantified:

• Universal quantification:

◦ the predicate holds if it is true for all possible inputs.

◦ Traditional notation: ∀x: P(x). Read as "for all x, P(x) holds".

• Existential quantification:

◦ the predicate holds if there is any input where it is true, i.e., there only has to

be a single input.

◦ Traditional notation: ∃x: P(x). Read as "there exists x such that P(x) holds".

In Rust, they come up in type checking and trait solving. For example,

This function claims that the function is well-typed for all types T : ∀ T:
well_typed(foo) .

Another example:

fn foo<T>()

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

644 of 660 8/30/23, 09:47

https://en.wikipedia.org/wiki/Rice%27s_theorem
https://en.wikipedia.org/wiki/Rice%27s_theorem
https://rustc-dev-guide.rust-lang.org/print.html#what-is-universally-quantified-what-about-existentially-quantified
https://rustc-dev-guide.rust-lang.org/print.html#what-is-universally-quantified-what-about-existentially-quantified
https://rustc-dev-guide.rust-lang.org/print.html#what-is-universally-quantified-what-about-existentially-quantified
https://rustc-dev-guide.rust-lang.org/print.html#what-is-universally-quantified-what-about-existentially-quantified

This function claims that for any lifetime 'a (determined by the caller), it is well-typed: ∀
'a: well_typed(foo) .

Another example:

This function claims that it is well-typed for all types F such that for all lifetimes 'a , F:

Fn(&'a u8) : ∀ F: ∀ 'a: (F: Fn(&'a u8)) => well_typed(foo) .

One more example:

This function claims that there exists some type T that implements Debug such that the

function is well-typed: ∃ T: (T: Debug) and well_typed(foo) .

What is a de Bruijn Index?

De Bruijn indices are a way of representing, using only integers, which variables are

bound in which binders. They were originally invented for use in lambda calculus

evaluation (see this Wikipedia article for more). In rustc , we use de Bruijn indices to

represent generic types.

Here is a basic example of how de Bruijn indices might be used for closures (we don't

actually do this in rustc though!):

What are co- and contra-variance?

Check out the subtyping chapter from the Rust Nomicon.

fn foo<'a>(_: &'a usize)

fn foo<F>()
where for<'a> F: Fn(&'a u8)

fn foo(_: dyn Debug)

|x| {
 f(x) // de Bruijn index of `x` is 1 because `x` is bound 1 level up

 |y| {
 g(x, y) // index of `x` is 2 because it is bound 2 levels up

// index of `y` is 1 because it is bound 1 level up
 }
}

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

645 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#what-is-a-de-bruijn-index
https://rustc-dev-guide.rust-lang.org/print.html#what-is-a-de-bruijn-index
https://en.wikipedia.org/wiki/De_Bruijn_index
https://en.wikipedia.org/wiki/De_Bruijn_index
https://en.wikipedia.org/wiki/De_Bruijn_index
https://en.wikipedia.org/wiki/De_Bruijn_index
https://rustc-dev-guide.rust-lang.org/generics.html
https://rustc-dev-guide.rust-lang.org/generics.html
https://rustc-dev-guide.rust-lang.org/print.html#what-are-co--and-contra-variance
https://rustc-dev-guide.rust-lang.org/print.html#what-are-co--and-contra-variance
https://doc.rust-lang.org/nomicon/subtyping.html
https://doc.rust-lang.org/nomicon/subtyping.html

See the variance chapter of this guide for more info on how the type checker handles

variance.

What is a "free region" or a "free variable"? What about

"bound region"?

Let's describe the concepts of free vs bound in terms of program variables, since that's

the thing we're most familiar with.

• Consider this expression, which creates a closure: |a, b| a + b . Here, the a and

b in a + b refer to the arguments that the closure will be given when it is called.

We say that the a and b there are bound to the closure, and that the closure

signature |a, b| is a binder for the names a and b (because any references to a

or b within refer to the variables that it introduces).

• Consider this expression: a + b . In this expression, a and b refer to local

variables that are defined outside of the expression. We say that those variables

appear free in the expression (i.e., they are free, not bound (tied up)).

So there you have it: a variable "appears free" in some expression/statement/whatever if

it refers to something defined outside of that expressions/statement/whatever.

Equivalently, we can then refer to the "free variables" of an expression – which is just the

set of variables that "appear free".

So what does this have to do with regions? Well, we can apply the analogous concept to

type and regions. For example, in the type &'a u32 , 'a appears free. But in the type

for<'a> fn(&'a u32) , it does not.

Further Reading About Compilers

Thanks to mem , scottmcm , and Levi on the official Discord for the

recommendations, and to tinaun for posting a link to a twitter thread from

Graydon Hoare which had some more recommendations!

Other sources: https://gcc.gnu.org/wiki/ListOfCompilerBooks

If you have other suggestions, please feel free to open an issue or PR.

Books

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

646 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/variance.html
https://rustc-dev-guide.rust-lang.org/variance.html
https://rustc-dev-guide.rust-lang.org/print.html#what-is-a-free-region-or-a-free-variable-what-about-bound-region
https://rustc-dev-guide.rust-lang.org/print.html#what-is-a-free-region-or-a-free-variable-what-about-bound-region
https://rustc-dev-guide.rust-lang.org/print.html#what-is-a-free-region-or-a-free-variable-what-about-bound-region
https://rustc-dev-guide.rust-lang.org/print.html#what-is-a-free-region-or-a-free-variable-what-about-bound-region
https://rustc-dev-guide.rust-lang.org/print.html#further-reading-about-compilers
https://rustc-dev-guide.rust-lang.org/print.html#further-reading-about-compilers
https://web.archive.org/web/20181230012554/https://twitter.com/graydon_pub/status/1039615569132118016
https://web.archive.org/web/20181230012554/https://twitter.com/graydon_pub/status/1039615569132118016
https://web.archive.org/web/20181230012554/https://twitter.com/graydon_pub/status/1039615569132118016
https://web.archive.org/web/20181230012554/https://twitter.com/graydon_pub/status/1039615569132118016
https://rustc-dev-guide.rust-lang.org/print.html#books
https://rustc-dev-guide.rust-lang.org/print.html#books

• Types and Programming Languages

• Programming Language Pragmatics

• Practical Foundations for Programming Languages

• Compilers: Principles, Techniques, and Tools, 2nd Edition

• Garbage Collection: Algorithms for Automatic Dynamic Memory Management

• Linkers and Loaders (There are also free versions of this, but the version we had

linked seems to be offline at the moment.)

• Advanced Compiler Design and Implementation

• Building an Optimizing Compiler

• Crafting Interpreters

Courses

• University of Oregon Programming Languages Summer School archive

Wikis

• Wikipedia

• Esoteric Programming Languages

• Stanford Encyclopedia of Philosophy

• nLab

Misc Papers and Blog Posts

• Programming in Martin-Löf's Type Theory

• Polymorphism, Subtyping, and Type Inference in MLsub

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

647 of 660 8/30/23, 09:47

https://www.cis.upenn.edu/~bcpierce/tapl/
https://www.cis.upenn.edu/~bcpierce/tapl/
https://www.cs.rochester.edu/~scott/pragmatics/
https://www.cs.rochester.edu/~scott/pragmatics/
https://www.cs.cmu.edu/~rwh/pfpl/2nded.pdf
https://www.cs.cmu.edu/~rwh/pfpl/2nded.pdf
https://www.pearson.com/us/higher-education/program/Aho-Compilers-Principles-Techniques-and-Tools-2nd-Edition/PGM167067.html
https://www.pearson.com/us/higher-education/program/Aho-Compilers-Principles-Techniques-and-Tools-2nd-Edition/PGM167067.html
https://www.cs.kent.ac.uk/people/staff/rej/gcbook/
https://www.cs.kent.ac.uk/people/staff/rej/gcbook/
https://www.amazon.com/Linkers-Kaufmann-Software-Engineering-Programming/dp/1558604960
https://www.amazon.com/Linkers-Kaufmann-Software-Engineering-Programming/dp/1558604960
https://www.goodreads.com/book/show/887908.Advanced_Compiler_Design_and_Implementation
https://www.goodreads.com/book/show/887908.Advanced_Compiler_Design_and_Implementation
https://www.goodreads.com/book/show/2063103.Building_an_Optimizing_Compiler
https://www.goodreads.com/book/show/2063103.Building_an_Optimizing_Compiler
http://www.craftinginterpreters.com/
http://www.craftinginterpreters.com/
https://rustc-dev-guide.rust-lang.org/print.html#courses
https://rustc-dev-guide.rust-lang.org/print.html#courses
https://www.cs.uoregon.edu/research/summerschool/archives.html
https://www.cs.uoregon.edu/research/summerschool/archives.html
https://rustc-dev-guide.rust-lang.org/print.html#wikis
https://rustc-dev-guide.rust-lang.org/print.html#wikis
https://en.wikipedia.org/wiki/List_of_programming_languages_by_type
https://en.wikipedia.org/wiki/List_of_programming_languages_by_type
https://esolangs.org/wiki/Main_Page
https://esolangs.org/wiki/Main_Page
https://plato.stanford.edu/index.html
https://plato.stanford.edu/index.html
https://ncatlab.org/nlab/show/HomePage
https://ncatlab.org/nlab/show/HomePage
https://rustc-dev-guide.rust-lang.org/print.html#misc-papers-and-blog-posts
https://rustc-dev-guide.rust-lang.org/print.html#misc-papers-and-blog-posts
https://www.researchgate.net/publication/213877272_Programming_in_Martin-Lof's_Type_Theory
https://www.researchgate.net/publication/213877272_Programming_in_Martin-Lof's_Type_Theory
https://dl.acm.org/doi/10.1145/3093333.3009882
https://dl.acm.org/doi/10.1145/3093333.3009882

Glossary

Term

arena/arena

allocation
An arena is a large memory buffer from which other memory allocations are made. T

AST The abstract syntax tree produced by the rustc_ast crate; reflects user syntax very

binder A "binder" is a place where a variable or type is declared; for example, the

BodyId An identifier that refers to a specific body (definition of a function or constant) in the

bound variable A "bound variable" is one that is declared within an expression/term. For example, th

codegen The code to translate MIR into LLVM IR.

codegen unit When we produce LLVM IR, we group the Rust code into a number of codegen units

completeness A technical term in type theory, it means that every type-safe program also type-che

control-flow graph

A representation of the control-flow of a program; see the background chapter for m

CTFE Short for Compile-Time Function Evaluation, this is the ability of the compiler to eval

cx We tend to use "cx" as an abbreviation for context. See also tcx

ctxt We also use "ctxt" as an abbreviation for context, e.g. TyCtxt . See also

DAG A directed acyclic graph is used during compilation to keep track of dependencies be

data-flow analysis A static analysis that figures out what properties are true at each point in the control

DeBruijn Index A technique for describing which binder a variable is bound by using only integers. It

DefId An index identifying a definition (see rustc_middle/src/hir/def_id.rs

discriminant The underlying value associated with an enum variant or generator state to indicate

double pointer A pointer with additional metadata. See "fat pointer" for more.

drop glue (internal) compiler-generated instructions that handle calling the destructors (

DST Short for Dynamically-Sized Type, this is a type for which the compiler cannot statica

early-bound

lifetime
A lifetime region that is substituted at its definition site. Bound in an item's

empty type see "uninhabited type".

fat pointer A two word value carrying the address of some value, along with some further inform

free variable A "free variable" is one that is not bound within an expression or term; see

generics The set of generic type parameters defined on a type or item.

HIR The High-level IR, created by lowering and desugaring the AST. (

HirId Identifies a particular node in the HIR by combining a def-id with an "intra-definition

HIR map The HIR map, accessible via tcx.hir() , allows you to quickly navigate the HIR and c

ICE Short for internal compiler error, this is when the compiler crashes.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

648 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#glossary
https://rustc-dev-guide.rust-lang.org/print.html#glossary
https://rustc-dev-guide.rust-lang.org/appendix/background.html#cfg
https://rustc-dev-guide.rust-lang.org/appendix/background.html#cfg
https://rustc-dev-guide.rust-lang.org/appendix/glossary.html#TyCtxt
https://rustc-dev-guide.rust-lang.org/appendix/glossary.html#TyCtxt
https://rustc-dev-guide.rust-lang.org/appendix/glossary.html#TyCtxt

Term

ICH Short for incremental compilation hash, these are used as fingerprints for things suc

infcx The type inference context (InferCtxt). (see rustc_middle::infer

inference variable When doing type or region inference, an "inference variable" is a kind of special type

intern Interning refers to storing certain frequently-used constant data, such as strings, and

interpreter The heart of const evaluation, running MIR code at compile time. (

intrinsic Intrinsics are special functions that are implemented in the compiler itself but expos

IR Short for Intermediate Representation, a general term in compilers. During compilat

IRLO IRLO or irlo is sometimes used as an abbreviation for internals.rust-lang.org

item A kind of "definition" in the language, such as a static, const, use statement, module,

lang item Items that represent concepts intrinsic to the language itself, such as special built-in

late-bound lifetime

A lifetime region that is substituted at its call site. Bound in a HRTB and substituted b

local crate The crate currently being compiled. This is in contrast to "upstream crates" which ref

LTO Short for Link-Time Optimizations, this is a set of optimizations offered by LLVM that

LLVM (actually not an acronym :P) an open-source compiler backend. It accepts LLVM IR an

memoization The process of storing the results of (pure) computations (such as pure function calls

MIR The Mid-level IR that is created after type-checking for use by borrowck and codegen

Miri A tool to detect Undefined Behavior in (unsafe) Rust code. (see more

monomorphization

The process of taking generic implementations of types and functions and instantiat

normalize A general term for converting to a more canonical form, but in the case of rustc typic

newtype A wrapper around some other type (e.g., struct Foo(T) is a "newtype" for

niche Invalid bit patterns for a type that can be used for layout optimizations. Some types c

NLL Short for non-lexical lifetimes, this is an extension to Rust's borrowing system to ma

node-id or NodeId

An index identifying a particular node in the AST or HIR; gradually being phased out

obligation Something that must be proven by the trait system. (see more)

placeholder NOTE: skolemization is deprecated by placeholder a way of handling subtyping a

point Used in the NLL analysis to refer to some particular location in the MIR; typically use

polymorphize An optimization that avoids unnecessary monomorphisation. (

projection A general term for a "relative path", e.g. x.f is a "field projection", and

promoted

constants
Constants extracted from a function and lifted to static scope; see

provider The function that executes a query. (see more)

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

649 of 660 8/30/23, 09:47

https://internals.rust-lang.org/
https://internals.rust-lang.org/
https://llvm.org/
https://llvm.org/
https://github.com/rust-lang/miri
https://github.com/rust-lang/miri
https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference.html
https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference.html
https://rustc-dev-guide.rust-lang.org/traits/resolution.html
https://rustc-dev-guide.rust-lang.org/traits/resolution.html
https://rustc-dev-guide.rust-lang.org/query.html
https://rustc-dev-guide.rust-lang.org/query.html

Term

quantified In math or logic, existential and universal quantification are used to ask questions lik

query A sub-computation during compilation. Query results can be cached in the current s

recovery Recovery refers to handling invalid syntax during parsing (e.g. a missing comma) and

region Another term for "lifetime" often used in the literature and in the borrow checker.

rib A data structure in the name resolver that keeps track of a single scope for names. (

scrutinee A scrutinee is the expression that is matched on in match expressions and similar p

sess The compiler session, which stores global data used throughout compilation

side tables Because the AST and HIR are immutable once created, we often carry extra informat

sigil Like a keyword but composed entirely of non-alphanumeric tokens. For example,

soundness A technical term in type theory. Roughly, if a type system is sound, then a program th

span A location in the user's source code, used for error reporting primarily. These are like

substs The substitutions for a given generic type or item (e.g. the i32

sysroot The directory for build artifacts that are loaded by the compiler at runtime. (

tag The "tag" of an enum/generator encodes the discriminant of the active variant/state

tcx Standard variable name for the "typing context" (TyCtxt), main data structure of the

'tcx The lifetime of the allocation arenas used by TyCtxt . Most data interned during a co

token The smallest unit of parsing. Tokens are produced after lexing (

TLS Thread-Local Storage. Variables may be defined so that each thread has its own copy

trait reference The name of a trait along with a suitable set of input type/lifetimes. (

trans Short for "translation", the code to translate MIR into LLVM IR. Renamed to codegen.

Ty The internal representation of a type. (see more)

TyCtxt The data structure often referred to as tcx in code which provides access to session

UFCS Short for Universal Function Call Syntax, this is an unambiguous syntax for calling a m

uninhabited type A type which has no values. This is not the same as a ZST, which has exactly 1 value.

upvar A variable captured by a closure from outside the closure.

variance Determines how changes to a generic type/lifetime parameter affect subtyping; for e

variant index In an enum, identifies a variant by assigning them indices starting at 0. This is purely

wide pointer A pointer with additional metadata. See "fat pointer" for more.

ZST Zero-Sized Type. A type whose values have size 0 bytes. Since

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

650 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/appendix/glossary.html#discriminant
https://rustc-dev-guide.rust-lang.org/appendix/glossary.html#discriminant
https://llvm.org/docs/LangRef.html#thread-local-storage-models
https://llvm.org/docs/LangRef.html#thread-local-storage-models
https://rustc-dev-guide.rust-lang.org/ty.html
https://rustc-dev-guide.rust-lang.org/ty.html
https://rustc-dev-guide.rust-lang.org/appendix/glossary.html#tcx
https://rustc-dev-guide.rust-lang.org/appendix/glossary.html#tcx
https://rustc-dev-guide.rust-lang.org/appendix/glossary.html#tcx

Code Index

rustc has a lot of important data structures. This is an attempt to give some guidance on

where to learn more about some of the key data structures of the compiler.

Item Kind
Short

description
Chapter

BodyId struct

One of four

types of HIR

node identifiers

Identifiers in

the HIR

Compiler struct

Represents a

compiler session

and can be used

to drive a

compilation.

The Rustc

Driver and

Interface

ast::Crate struct

A syntax-level

representation

of a parsed crate

The parser

rustc_hir::Crate struct

A more abstract,

compiler-

friendly form of

a crate's AST

The Hir

DefId struct

One of four

types of HIR

node identifiers

Identifiers in

the HIR

DiagnosticBuilder struct

A struct for

building up

compiler

diagnostics, such

as errors or lints

Emitting

Diagnostics

DocContext struct

A state container

used by rustdoc

when crawling

through a crate

to gather its

documentation

Rustdoc

HirId struct

One of four

types of HIR

node identifiers

Identifiers in

the HIR

NodeId struct
One of four

types of HIR
Identifiers in

the HIR

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

651 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#code-index
https://rustc-dev-guide.rust-lang.org/print.html#code-index
https://rustc-dev-guide.rust-lang.org/hir.html#hir-id
https://rustc-dev-guide.rust-lang.org/hir.html#hir-id
https://rustc-dev-guide.rust-lang.org/hir.html#hir-id
https://rustc-dev-guide.rust-lang.org/hir.html#hir-id
https://rustc-dev-guide.rust-lang.org/rustc-driver.html
https://rustc-dev-guide.rust-lang.org/rustc-driver.html
https://rustc-dev-guide.rust-lang.org/rustc-driver.html
https://rustc-dev-guide.rust-lang.org/rustc-driver.html
https://rustc-dev-guide.rust-lang.org/rustc-driver.html
https://rustc-dev-guide.rust-lang.org/rustc-driver.html
https://rustc-dev-guide.rust-lang.org/the-parser.html
https://rustc-dev-guide.rust-lang.org/the-parser.html
https://rustc-dev-guide.rust-lang.org/hir.html
https://rustc-dev-guide.rust-lang.org/hir.html
https://rustc-dev-guide.rust-lang.org/hir.html#hir-id
https://rustc-dev-guide.rust-lang.org/hir.html#hir-id
https://rustc-dev-guide.rust-lang.org/hir.html#hir-id
https://rustc-dev-guide.rust-lang.org/hir.html#hir-id
https://rustc-dev-guide.rust-lang.org/diagnostics.html
https://rustc-dev-guide.rust-lang.org/diagnostics.html
https://rustc-dev-guide.rust-lang.org/diagnostics.html
https://rustc-dev-guide.rust-lang.org/diagnostics.html
https://rustc-dev-guide.rust-lang.org/rustdoc.html
https://rustc-dev-guide.rust-lang.org/rustdoc.html
https://rustc-dev-guide.rust-lang.org/hir.html#hir-id
https://rustc-dev-guide.rust-lang.org/hir.html#hir-id
https://rustc-dev-guide.rust-lang.org/hir.html#hir-id
https://rustc-dev-guide.rust-lang.org/hir.html#hir-id
https://rustc-dev-guide.rust-lang.org/hir.html#hir-id
https://rustc-dev-guide.rust-lang.org/hir.html#hir-id
https://rustc-dev-guide.rust-lang.org/hir.html#hir-id
https://rustc-dev-guide.rust-lang.org/hir.html#hir-id

Item Kind
Short

description
Chapter

node identifiers.

Being phased

out

P struct

An owned

immutable

smart pointer.

By contrast, &T

is not owned,

and Box<T> is

not immutable.

None

ParamEnv struct

Information

about generic

parameters or

Self , useful for

working with

associated or

generic items

Parameter

Environment

ParseSess struct

This struct

contains

information

about a parsing

session

The parser

Query struct

Represents the

result of query

to the Compiler

interface and

allows stealing,

borrowing, and

returning the

results of

compiler passes.

The Rustc

Driver and

Interface

Rib struct

Represents a

single scope of

names

Name

resolution

Session struct

The data

associated with

a compilation

session

The parser

The Rustc

Driver and

Interface

SourceFile struct

Part of the

SourceMap . The parser

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

652 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/param_env.html
https://rustc-dev-guide.rust-lang.org/param_env.html
https://rustc-dev-guide.rust-lang.org/param_env.html
https://rustc-dev-guide.rust-lang.org/param_env.html
https://rustc-dev-guide.rust-lang.org/the-parser.html
https://rustc-dev-guide.rust-lang.org/the-parser.html
https://rustc-dev-guide.rust-lang.org/rustc-driver.html
https://rustc-dev-guide.rust-lang.org/rustc-driver.html
https://rustc-dev-guide.rust-lang.org/rustc-driver.html
https://rustc-dev-guide.rust-lang.org/rustc-driver.html
https://rustc-dev-guide.rust-lang.org/rustc-driver.html
https://rustc-dev-guide.rust-lang.org/rustc-driver.html
https://rustc-dev-guide.rust-lang.org/name-resolution.html
https://rustc-dev-guide.rust-lang.org/name-resolution.html
https://rustc-dev-guide.rust-lang.org/name-resolution.html
https://rustc-dev-guide.rust-lang.org/name-resolution.html
https://rustc-dev-guide.rust-lang.org/the-parser.html
https://rustc-dev-guide.rust-lang.org/the-parser.html
https://rustc-dev-guide.rust-lang.org/rustc-driver.html
https://rustc-dev-guide.rust-lang.org/rustc-driver.html
https://rustc-dev-guide.rust-lang.org/rustc-driver.html
https://rustc-dev-guide.rust-lang.org/rustc-driver.html
https://rustc-dev-guide.rust-lang.org/rustc-driver.html
https://rustc-dev-guide.rust-lang.org/rustc-driver.html
https://rustc-dev-guide.rust-lang.org/the-parser.html
https://rustc-dev-guide.rust-lang.org/the-parser.html

Item Kind
Short

description
Chapter

Maps AST nodes

to their source

code for a single

source file. Was

previously called

FileMap

SourceMap struct

Maps AST nodes

to their source

code. It is

composed of

SourceFile s.

Was previously

called CodeMap

The parser

Span struct

A location in the

user's source

code, used for

error reporting

primarily

Emitting

Diagnostics

StringReader struct

This is the lexer

used during

parsing. It

consumes

characters from

the raw source

code being

compiled and

produces a

series of tokens

for use by the

rest of the

parser

The parser

rustc_ast::token_stream::TokenStream struct

An abstract

sequence of

tokens,

organized into

TokenTree s

The parser

Macro

expansion

TraitDef struct

This struct

contains a trait's

definition with

type information

The ty

modules

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

653 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/the-parser.html
https://rustc-dev-guide.rust-lang.org/the-parser.html
https://rustc-dev-guide.rust-lang.org/diagnostics.html
https://rustc-dev-guide.rust-lang.org/diagnostics.html
https://rustc-dev-guide.rust-lang.org/diagnostics.html
https://rustc-dev-guide.rust-lang.org/diagnostics.html
https://rustc-dev-guide.rust-lang.org/the-parser.html
https://rustc-dev-guide.rust-lang.org/the-parser.html
https://rustc-dev-guide.rust-lang.org/the-parser.html
https://rustc-dev-guide.rust-lang.org/the-parser.html
https://rustc-dev-guide.rust-lang.org/macro-expansion.html
https://rustc-dev-guide.rust-lang.org/macro-expansion.html
https://rustc-dev-guide.rust-lang.org/macro-expansion.html
https://rustc-dev-guide.rust-lang.org/macro-expansion.html
https://rustc-dev-guide.rust-lang.org/ty.html
https://rustc-dev-guide.rust-lang.org/ty.html
https://rustc-dev-guide.rust-lang.org/ty.html
https://rustc-dev-guide.rust-lang.org/ty.html
https://rustc-dev-guide.rust-lang.org/ty.html
https://rustc-dev-guide.rust-lang.org/ty.html

Item Kind
Short

description
Chapter

TraitRef struct

The combination

of a trait and its

input types (e.g.

P0:

Trait<P1...Pn>)

Trait Solving:

Goals and

Clauses

Ty<'tcx> struct

This is the

internal

representation

of a type used

for type

checking

Type

checking

TyCtxt<'tcx> struct

The "typing

context". This is

the central data

structure in the

compiler. It is

the context that

you use to

perform all

manner of

queries

The ty

modules

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

654 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/traits/goals-and-clauses.html#domain-goals
https://rustc-dev-guide.rust-lang.org/traits/goals-and-clauses.html#domain-goals
https://rustc-dev-guide.rust-lang.org/traits/goals-and-clauses.html#domain-goals
https://rustc-dev-guide.rust-lang.org/traits/goals-and-clauses.html#domain-goals
https://rustc-dev-guide.rust-lang.org/traits/goals-and-clauses.html#domain-goals
https://rustc-dev-guide.rust-lang.org/traits/goals-and-clauses.html#domain-goals
https://rustc-dev-guide.rust-lang.org/type-checking.html
https://rustc-dev-guide.rust-lang.org/type-checking.html
https://rustc-dev-guide.rust-lang.org/type-checking.html
https://rustc-dev-guide.rust-lang.org/type-checking.html
https://rustc-dev-guide.rust-lang.org/ty.html
https://rustc-dev-guide.rust-lang.org/ty.html
https://rustc-dev-guide.rust-lang.org/ty.html
https://rustc-dev-guide.rust-lang.org/ty.html
https://rustc-dev-guide.rust-lang.org/ty.html
https://rustc-dev-guide.rust-lang.org/ty.html

Compiler Lecture Series

These are videos where various experts explain different parts of the compiler:

General

• January 2019: Tom Tromey discusses debugging support in rustc

• June 2019: Responsive compilers - Nicholas Matsakis - PLISS 2019

• June 2019: Things I Learned (TIL) - Nicholas Matsakis - PLISS 2019

Rust Analyzer

• January 2019: How Salsa Works

• January 2019: Salsa In More Depth

• January 2019: Rust analyzer guide

• February 2019: Rust analyzer syntax trees

• March 2019: rust-analyzer type-checker overview by flodiebold

• March 2019: RLS 2.0, Salsa, and Name Resolution

Type System

• July 2015: Felix Klock - Rust: A type system you didn't know you wanted - Curry On

• November 2016: Felix Klock - Subtyping in Rust and Clarke's Third Law

• February 2019: Universes and Lifetimes

• April 2019: Representing types in rustc

• March 2019: RFC #2229 Disjoint Field Capture plan

Closures

• October 2018: closures and upvar capture

• October 2018: blitzerr closure upvar tys

• January 2019: Convert Closure Upvar Representation to Tuples with blitzerr

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

655 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#compiler-lecture-series
https://rustc-dev-guide.rust-lang.org/print.html#compiler-lecture-series
https://rustc-dev-guide.rust-lang.org/print.html#general
https://rustc-dev-guide.rust-lang.org/print.html#general
https://www.youtube.com/watch?v=elBxMRSNYr4
https://www.youtube.com/watch?v=elBxMRSNYr4
https://www.youtube.com/watch?v=N6b44kMS6OM
https://www.youtube.com/watch?v=N6b44kMS6OM
https://www.youtube.com/watch?v=LIYkT3p5gTs
https://www.youtube.com/watch?v=LIYkT3p5gTs
https://rustc-dev-guide.rust-lang.org/print.html#rust-analyzer
https://rustc-dev-guide.rust-lang.org/print.html#rust-analyzer
https://www.youtube.com/watch?v=_muY4HjSqVw
https://www.youtube.com/watch?v=_muY4HjSqVw
https://www.youtube.com/watch?v=i_IhACacPRY
https://www.youtube.com/watch?v=i_IhACacPRY
https://www.youtube.com/watch?v=ANKBNiSWyfc
https://www.youtube.com/watch?v=ANKBNiSWyfc
https://www.youtube.com/watch?v=DGAuLWdCCAI
https://www.youtube.com/watch?v=DGAuLWdCCAI
https://www.youtube.com/watch?v=Lmp3P9WNL8o
https://www.youtube.com/watch?v=Lmp3P9WNL8o
https://www.youtube.com/watch?v=Xr-rBqLr-G4
https://www.youtube.com/watch?v=Xr-rBqLr-G4
https://rustc-dev-guide.rust-lang.org/print.html#type-system
https://rustc-dev-guide.rust-lang.org/print.html#type-system
https://www.youtube.com/watch?v=Q7lQCgnNWU0
https://www.youtube.com/watch?v=Q7lQCgnNWU0
https://www.youtube.com/watch?v=fI4RG_uq-WU
https://www.youtube.com/watch?v=fI4RG_uq-WU
https://www.youtube.com/watch?v=iV1Z0xYXkck
https://www.youtube.com/watch?v=iV1Z0xYXkck
https://www.youtube.com/watch?v=c01TsOsr3-c
https://www.youtube.com/watch?v=c01TsOsr3-c
https://www.youtube.com/watch?v=UTXOptVMuIc
https://www.youtube.com/watch?v=UTXOptVMuIc
https://rustc-dev-guide.rust-lang.org/print.html#closures
https://rustc-dev-guide.rust-lang.org/print.html#closures
https://www.youtube.com/watch?v=fMopdkn5-Xw
https://www.youtube.com/watch?v=fMopdkn5-Xw
https://www.youtube.com/watch?v=pLmVhSB-z4s
https://www.youtube.com/watch?v=pLmVhSB-z4s
https://www.youtube.com/watch?v=2QCuNtISoYc
https://www.youtube.com/watch?v=2QCuNtISoYc

Chalk

• July 2018: Coherence in Chalk by Sunjay Varma - Bay Area Rust Meetup

• March 2019: rustc-chalk integration overview

• April 2019: How the chalk-engine crate works

• May 2019: How the chalk-engine crate works 2

Polonius

• March 2019: Polonius-rustc walkthrough

• May 2019: Polonius WG: Initialization and move tracking

Miri

• March 2019: oli-obk on miri and constant evaluation

Async

• February 2019: async-await implementation plans

• April 2019: async-await region inferencer

Code Generation

• January 2019: Cranelift

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

656 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#chalk
https://rustc-dev-guide.rust-lang.org/print.html#chalk
https://www.youtube.com/watch?v=rZqS4bLPL24
https://www.youtube.com/watch?v=rZqS4bLPL24
https://www.youtube.com/watch?v=MBWtbDifPeU
https://www.youtube.com/watch?v=MBWtbDifPeU
https://www.youtube.com/watch?v=Ny2928cGDoM
https://www.youtube.com/watch?v=Ny2928cGDoM
https://www.youtube.com/watch?v=hmV66tB79LM
https://www.youtube.com/watch?v=hmV66tB79LM
https://rustc-dev-guide.rust-lang.org/print.html#polonius
https://rustc-dev-guide.rust-lang.org/print.html#polonius
https://www.youtube.com/watch?v=i5KdU0ieb_A
https://www.youtube.com/watch?v=i5KdU0ieb_A
https://www.youtube.com/watch?v=ilv9V-328HI
https://www.youtube.com/watch?v=ilv9V-328HI
https://rustc-dev-guide.rust-lang.org/print.html#miri
https://rustc-dev-guide.rust-lang.org/print.html#miri
https://www.youtube.com/watch?v=5Pm2C1YXrvM
https://www.youtube.com/watch?v=5Pm2C1YXrvM
https://rustc-dev-guide.rust-lang.org/print.html#async
https://rustc-dev-guide.rust-lang.org/print.html#async
https://www.youtube.com/watch?v=xe2_whJWBC0
https://www.youtube.com/watch?v=xe2_whJWBC0
https://www.youtube.com/watch?v=hlOxfkUDLPQ
https://www.youtube.com/watch?v=hlOxfkUDLPQ
https://rustc-dev-guide.rust-lang.org/print.html#code-generation-2
https://rustc-dev-guide.rust-lang.org/print.html#code-generation-2
https://www.youtube.com/watch?v=9OIA7DTFQWU
https://www.youtube.com/watch?v=9OIA7DTFQWU

Rust Bibliography

This is a reading list of material relevant to Rust. It includes prior research that has - at

one time or another - influenced the design of Rust, as well as publications about Rust.

Type system

• Region based memory management in Cyclone

• Safe manual memory management in Cyclone

• Making ad-hoc polymorphism less ad hoc

• Macros that work together

• Traits: composable units of behavior

• Alias burying - We tried something similar and abandoned it.

• External uniqueness is unique enough

• Uniqueness and Reference Immutability for Safe Parallelism

• Region Based Memory Management

Concurrency

• Singularity: rethinking the software stack

• Language support for fast and reliable message passing in singularity OS

• Scheduling multithreaded computations by work stealing

• Thread scheduling for multiprogramming multiprocessors

• The data locality of work stealing

• Dynamic circular work stealing deque - The Chase/Lev deque

• Work-first and help-first scheduling policies for async-finish task parallelism - More

general than fully-strict work stealing

• A Java fork/join calamity - critique of Java's fork/join library, particularly its

application of work stealing to non-strict computation

• Scheduling techniques for concurrent systems

• Contention aware scheduling

• Balanced work stealing for time-sharing multicores

• Three layer cake for shared-memory programming

• Non-blocking steal-half work queues

• Reagents: expressing and composing fine-grained concurrency

• Algorithms for scalable synchronization of shared-memory multiprocessors

• Epoch-based reclamation.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

657 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#rust-bibliography
https://rustc-dev-guide.rust-lang.org/print.html#rust-bibliography
https://rustc-dev-guide.rust-lang.org/print.html#type-system-1
https://rustc-dev-guide.rust-lang.org/print.html#type-system-1
https://www.cs.umd.edu/projects/cyclone/papers/cyclone-regions.pdf
https://www.cs.umd.edu/projects/cyclone/papers/cyclone-regions.pdf
https://www.cs.umd.edu/projects/PL/cyclone/scp.pdf
https://www.cs.umd.edu/projects/PL/cyclone/scp.pdf
https://dl.acm.org/doi/10.1145/75277.75283
https://dl.acm.org/doi/10.1145/75277.75283
https://www.cs.utah.edu/plt/publications/jfp12-draft-fcdf.pdf
https://www.cs.utah.edu/plt/publications/jfp12-draft-fcdf.pdf
http://scg.unibe.ch/archive/papers/Scha03aTraits.pdf
http://scg.unibe.ch/archive/papers/Scha03aTraits.pdf
https://dl.acm.org/doi/10.1002/spe.370
https://dl.acm.org/doi/10.1002/spe.370
http://www.cs.uu.nl/research/techreps/UU-CS-2002-048.html
http://www.cs.uu.nl/research/techreps/UU-CS-2002-048.html
https://research.microsoft.com/pubs/170528/msr-tr-2012-79.pdf
https://research.microsoft.com/pubs/170528/msr-tr-2012-79.pdf
https://www.cs.ucla.edu/~palsberg/tba/papers/tofte-talpin-iandc97.pdf
https://www.cs.ucla.edu/~palsberg/tba/papers/tofte-talpin-iandc97.pdf
https://rustc-dev-guide.rust-lang.org/print.html#concurrency
https://rustc-dev-guide.rust-lang.org/print.html#concurrency
https://research.microsoft.com/pubs/69431/osr2007_rethinkingsoftwarestack.pdf
https://research.microsoft.com/pubs/69431/osr2007_rethinkingsoftwarestack.pdf
https://research.microsoft.com/pubs/67482/singsharp.pdf
https://research.microsoft.com/pubs/67482/singsharp.pdf
http://supertech.csail.mit.edu/papers/steal.pdf
http://supertech.csail.mit.edu/papers/steal.pdf
https://www.eecis.udel.edu/%7Ecavazos/cisc879-spring2008/papers/arora98thread.pdf
https://www.eecis.udel.edu/%7Ecavazos/cisc879-spring2008/papers/arora98thread.pdf
http://www.aladdin.cs.cmu.edu/papers/pdfs/y2000/locality_spaa00.pdf
http://www.aladdin.cs.cmu.edu/papers/pdfs/y2000/locality_spaa00.pdf
https://patents.google.com/patent/US7346753B2/en
https://patents.google.com/patent/US7346753B2/en
https://dl.acm.org/doi/10.1109/IPDPS.2009.5161079
https://dl.acm.org/doi/10.1109/IPDPS.2009.5161079
https://web.archive.org/web/20190904045322/http://www.coopsoft.com/ar/CalamityArticle.html
https://web.archive.org/web/20190904045322/http://www.coopsoft.com/ar/CalamityArticle.html
https://www.stanford.edu/~ouster/cgi-bin/papers/coscheduling.pdf
https://www.stanford.edu/~ouster/cgi-bin/papers/coscheduling.pdf
https://www.blagodurov.net/files/a8-blagodurov.pdf
https://www.blagodurov.net/files/a8-blagodurov.pdf
https://web.njit.edu/~dingxn/papers/BWS.pdf
https://web.njit.edu/~dingxn/papers/BWS.pdf
https://dl.acm.org/doi/10.1145/1953611.1953616
https://dl.acm.org/doi/10.1145/1953611.1953616
https://www.cs.bgu.ac.il/%7Ehendlerd/papers/p280-hendler.pdf
https://www.cs.bgu.ac.il/%7Ehendlerd/papers/p280-hendler.pdf
https://aturon.github.io/academic/reagents.pdf
https://aturon.github.io/academic/reagents.pdf
https://www.cs.rochester.edu/u/scott/papers/1991_TOCS_synch.pdf
https://www.cs.rochester.edu/u/scott/papers/1991_TOCS_synch.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-579.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-579.pdf

Others

• Crash-only software

• Composing High-Performance Memory Allocators

• Reconsidering Custom Memory Allocation

Papers about Rust

• GPU Programming in Rust: Implementing High Level Abstractions in a Systems Level

Language. Early GPU work by Eric Holk.

• Parallel closures: a new twist on an old idea

◦ not exactly about Rust, but by nmatsakis

• Patina: A Formalization of the Rust Programming Language. Early formalization of a

subset of the type system, by Eric Reed.

• Experience Report: Developing the Servo Web Browser Engine using Rust. By Lars

Bergstrom.

• Implementing a Generic Radix Trie in Rust. Undergrad paper by Michael Sproul.

• Reenix: Implementing a Unix-Like Operating System in Rust. Undergrad paper by

Alex Light.

• Evaluation of performance and productivity metrics of potential programming

languages in the HPC environment. Bachelor's thesis by Florian Wilkens. Compares

C, Go and Rust.

• Nom, a byte oriented, streaming, zero copy, parser combinators library in Rust. By

Geoffroy Couprie, research for VLC.

• Graph-Based Higher-Order Intermediate Representation. An experimental IR

implemented in Impala, a Rust-like language.

• Code Refinement of Stencil Codes. Another paper using Impala.

• Parallelization in Rust with fork-join and friends. Linus Farnstrand's master's thesis.

• Session Types for Rust. Philip Munksgaard's master's thesis. Research for Servo.

• Ownership is Theft: Experiences Building an Embedded OS in Rust - Amit Levy, et. al.

• You can't spell trust without Rust. Alexis Beingessner's master's thesis.

• Rust-Bio: a fast and safe bioinformatics library. Johannes Köster

• Safe, Correct, and Fast Low-Level Networking. Robert Clipsham's master's thesis.

• Formalizing Rust traits. Jonatan Milewski's master's thesis.

• Rust as a Language for High Performance GC Implementation

• Simple Verification of Rust Programs via Functional Purification. Sebastian Ullrich's

master's thesis.

• Writing parsers like it is 2017 Pierre Chifflier and Geoffroy Couprie for the Langsec

Workshop

• The Case for Writing a Kernel in Rust

• RustBelt: Securing the Foundations of the Rust Programming Language

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

658 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#others
https://rustc-dev-guide.rust-lang.org/print.html#others
https://www.usenix.org/legacy/events/hotos03/tech/full_papers/candea/candea.pdf
https://www.usenix.org/legacy/events/hotos03/tech/full_papers/candea/candea.pdf
https://people.cs.umass.edu/~emery/pubs/berger-pldi2001.pdf
https://people.cs.umass.edu/~emery/pubs/berger-pldi2001.pdf
https://people.cs.umass.edu/~emery/pubs/berger-oopsla2002.pdf
https://people.cs.umass.edu/~emery/pubs/berger-oopsla2002.pdf
https://rustc-dev-guide.rust-lang.org/print.html#papers-about-rust
https://rustc-dev-guide.rust-lang.org/print.html#papers-about-rust
https://rustc-dev-guide.rust-lang.org/print.html#papers-about-rust
https://rustc-dev-guide.rust-lang.org/print.html#papers-about-rust
https://rustc-dev-guide.rust-lang.org/print.html#papers-about-rust
https://ieeexplore.ieee.org/document/6650903
https://ieeexplore.ieee.org/document/6650903
https://ieeexplore.ieee.org/document/6650903
https://ieeexplore.ieee.org/document/6650903
https://www.usenix.org/conference/hotpar12/parallel-closures-new-twist-old-idea
https://www.usenix.org/conference/hotpar12/parallel-closures-new-twist-old-idea
https://dada.cs.washington.edu/research/tr/2015/03/UW-CSE-15-03-02.pdf
https://dada.cs.washington.edu/research/tr/2015/03/UW-CSE-15-03-02.pdf
https://arxiv.org/abs/1505.07383
https://arxiv.org/abs/1505.07383
https://michaelsproul.github.io/rust_radix_paper/rust-radix-sproul.pdf
https://michaelsproul.github.io/rust_radix_paper/rust-radix-sproul.pdf
https://scialex.github.io/reenix.pdf
https://scialex.github.io/reenix.pdf
https://github.com/1wilkens/thesis-ba
https://github.com/1wilkens/thesis-ba
https://github.com/1wilkens/thesis-ba
https://github.com/1wilkens/thesis-ba
http://spw15.langsec.org/papers/couprie-nom.pdf
http://spw15.langsec.org/papers/couprie-nom.pdf
https://compilers.cs.uni-saarland.de/papers/lkh15_cgo.pdf
https://compilers.cs.uni-saarland.de/papers/lkh15_cgo.pdf
https://compilers.cs.uni-saarland.de/papers/ppl14_web.pdf
https://compilers.cs.uni-saarland.de/papers/ppl14_web.pdf
http://publications.lib.chalmers.se/records/fulltext/219016/219016.pdf
http://publications.lib.chalmers.se/records/fulltext/219016/219016.pdf
https://munksgaard.me/papers/laumann-munksgaard-larsen.pdf
https://munksgaard.me/papers/laumann-munksgaard-larsen.pdf
https://amitlevy.com/papers/tock-plos2015.pdf
https://amitlevy.com/papers/tock-plos2015.pdf
https://raw.githubusercontent.com/Gankro/thesis/master/thesis.pdf
https://raw.githubusercontent.com/Gankro/thesis/master/thesis.pdf
https://academic.oup.com/bioinformatics/article/32/3/444/1743419
https://academic.oup.com/bioinformatics/article/32/3/444/1743419
https://octarineparrot.com/assets/msci_paper.pdf
https://octarineparrot.com/assets/msci_paper.pdf
https://open.library.ubc.ca/cIRcle/collections/ubctheses/24/items/1.0220521
https://open.library.ubc.ca/cIRcle/collections/ubctheses/24/items/1.0220521
https://users.cecs.anu.edu.au/~steveb/downloads/pdf/rust-ismm-2016.pdf
https://users.cecs.anu.edu.au/~steveb/downloads/pdf/rust-ismm-2016.pdf
https://github.com/Kha/electrolysis
https://github.com/Kha/electrolysis
http://spw17.langsec.org/papers/chifflier-parsing-in-2017.pdf
http://spw17.langsec.org/papers/chifflier-parsing-in-2017.pdf
https://www.tockos.org/assets/papers/rust-kernel-apsys2017.pdf
https://www.tockos.org/assets/papers/rust-kernel-apsys2017.pdf
https://plv.mpi-sws.org/rustbelt/popl18/
https://plv.mpi-sws.org/rustbelt/popl18/

• Oxide: The Essence of Rust. By Aaron Weiss, Olek Gierczak, Daniel Patterson,

Nicholas D. Matsakis, and Amal Ahmed.

• Polymorphisation: Improving Rust compilation times through intelligent

monomorphisation. David Wood's master's thesis.

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

659 of 660 8/30/23, 09:47

https://arxiv.org/abs/1903.00982
https://arxiv.org/abs/1903.00982
https://davidtw.co/media/masters_dissertation.pdf
https://davidtw.co/media/masters_dissertation.pdf
https://davidtw.co/media/masters_dissertation.pdf
https://davidtw.co/media/masters_dissertation.pdf

Humor in Rust

What's a project without a sense of humor? And frankly some of these are enlightening?

• Weird exprs test

• Ferris Rap

• The Genesis of Generic Germination

• The Bastion of the Turbofish test

• Rust Koans

• break rust;

• The Nomicon Intro

• rustc-ty renaming punfest

• try using their name "ferris" instead

• Forbid pineapple on pizza

Rust Compiler Development Guide https://rustc-dev-guide.rust-lang.org/print.html

660 of 660 8/30/23, 09:47

https://rustc-dev-guide.rust-lang.org/print.html#humor-in-rust
https://rustc-dev-guide.rust-lang.org/print.html#humor-in-rust
https://github.com/rust-lang/rust/blob/master/tests/ui/weird-exprs.rs
https://github.com/rust-lang/rust/blob/master/tests/ui/weird-exprs.rs
http://fitzgeraldnick.com/2018/12/13/rust-raps.html
http://fitzgeraldnick.com/2018/12/13/rust-raps.html
https://github.com/rust-lang/rust/pull/53645#issue-210543221
https://github.com/rust-lang/rust/pull/53645#issue-210543221
https://github.com/rust-lang/rust/blob/79d8a0fcefa5134db2a94739b1d18daa01fc6e9f/src/test/ui/bastion-of-the-turbofish.rs
https://github.com/rust-lang/rust/blob/79d8a0fcefa5134db2a94739b1d18daa01fc6e9f/src/test/ui/bastion-of-the-turbofish.rs
https://users.rust-lang.org/t/rust-koans/2408
https://users.rust-lang.org/t/rust-koans/2408
https://play.rust-lang.org/?version=stable&mode=debug&edition=2018&gist=0ab2bd6a9d722e0f05a95e2a5dcf89cc
https://play.rust-lang.org/?version=stable&mode=debug&edition=2018&gist=0ab2bd6a9d722e0f05a95e2a5dcf89cc
https://play.rust-lang.org/?version=stable&mode=debug&edition=2018&gist=0ab2bd6a9d722e0f05a95e2a5dcf89cc
https://doc.rust-lang.org/stable/nomicon/
https://doc.rust-lang.org/stable/nomicon/
https://rust-lang.zulipchat.com/#narrow/stream/131828-t-compiler/topic/rustc-ty.20naming.20bikeshed.20.2F.20punfest.20%28was.3A.20design.20meeting.202.2E.2E.2E/near/189906455
https://rust-lang.zulipchat.com/#narrow/stream/131828-t-compiler/topic/rustc-ty.20naming.20bikeshed.20.2F.20punfest.20%28was.3A.20design.20meeting.202.2E.2E.2E/near/189906455
https://rust-lang.zulipchat.com/#narrow/stream/131828-t-compiler/topic/rustc-ty.20naming.20bikeshed.20.2F.20punfest.20%28was.3A.20design.20meeting.202.2E.2E.2E/near/189906455
https://rust-lang.zulipchat.com/#narrow/stream/131828-t-compiler/topic/rustc-ty.20naming.20bikeshed.20.2F.20punfest.20%28was.3A.20design.20meeting.202.2E.2E.2E/near/189906455
https://github.com/rust-lang/rust/pull/91476
https://github.com/rust-lang/rust/pull/91476
https://github.com/rust-lang/rust/pull/70645
https://github.com/rust-lang/rust/pull/70645

