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2
F O U N D A T I O N S

As you dive into the more advanced cor-
ners of Rust, it’s important that you ensure 

you have a solid understanding of the funda-
mentals. In Rust, as in any programming lan-

guage, the precise meaning of various keywords and 
concepts becomes important as you begin to use the 
language in more sophisticated ways. In this chapter, 
we’ll walk through many of Rust’s primitives and try  
to define more clearly what they mean, how they work, and why they are 
exactly the way that they are. Specifically, we’ll look at how variables and 
values differ, how they are represented in memory, and the different mem-
ory regions a program has. We’ll then discuss some of the subtleties of 
ownership, borrowing, and lifetimes that you’ll need to have a handle on 
before you continue with the book.

You can read this chapter from top to bottom if you wish, or you can 
use it as a reference to brush up on the concepts that you feel less sure 
about. I recommend that you move on only when you feel completely 
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2   Chapter 2

comfortable with the content of this chapter, as misconceptions about how 
these primitives work will quickly get in the way of understanding the more 
advanced topics, or lead to you using them incorrectly.

Talking About Memory
Not all memory is created equal. In most programming environments, 
your programs have access to a stack, a heap, registers, text segments, 
memory-mapped registers, memory-mapped files, and perhaps nonvolatile 
RAM. Which one you choose to use in a particular situation has implica-
tions for what you can store there, how long it remains accessible, and what 
mechanisms you use to access it. The exact details of these memory regions 
vary between platforms and are beyond the scope of this book, but some 
are so important to how you reason about Rust code that they are worth 
covering here.

Memory Terminology
Before we dive into regions of memory, you first need to know about the dif-
ference between values, variables, and pointers. A value in Rust is the combi-
nation of a type and an element of that type’s domain of values. A value can 
be turned into a sequence of bytes using its type’s representation, but on its 
own you can think of a value more like what you, the programmer, meant.” 
For example, the number 6 in the type u8 is an instance of the mathematical 
integer 6, and its in-memory representation is the byte 0x06. Similarly, the 
str "Hello world" is a value in the domain of all strings whose representation 
is its UTF-8 encoding. A value’s meaning is independent of the location 
where those bytes are stored.

A value is stored in a place, which is the Rust terminology for “a location 
that can hold a value.” This place can be on the stack, on the heap, or in 
a number of other locations. The most common place to store a value is a 
variable, which is a named value slot on the stack.

A pointer is a value that holds the address of a region of memory, so the 
pointer points to a place. A pointer can be dereferenced to access the value 
stored in the memory location it points to. We can store the same pointer 
in more than one variable and therefore have multiple variables that indi-
rectly refer to the same location in memory and thus the same underlying 
value.

Consider the code in Listing 2-1 that illustrates these three elements.

let x = 42;
let y = 43;
let var1 = &x;
let mut var2 = &x;
1 var2 = &y;

Listing 2-1: Values, variables, and pointers
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Here, there are four distinct values: 42 (an i32), 43 (an i32), the address 
of x (a pointer), and the address of y (a pointer). There are also four vari-
ables: x, y, var1, and var2. The latter two variables both hold values of the 
pointer type, because references are pointers. While var1 and var2 store 
the same value initially, they store separate, independent copies of that 
value; when we change the value stored in var2 1, the value in var1 does not 
change. In particular, the = operator stores the value of the right-hand side 
expression in the place named by the left-hand side.

An interesting example of where the distinction between variables, val-
ues, and pointers becomes important is in a statement such as:

let string = "Hello world";

Even though we assign a string value to the variable string, the actual 
value of the variable is a pointer to the first character in the string value 
"Hello world", and not the string value itself. At this point you might say, 
“But hang on, where is the string value stored, then? Where does the 
pointer point?” If so, you have a keen eye—we’ll get to that in a second.

Variables in Depth
The definition of a variable I gave earlier is broad and unlikely to be all 
that useful in and of itself. As you encounter more complex code, you’ll 
need a more accurate mental model to help you reason through what 
the programs are really doing. There are many such models that we can 
make use of. Describing them all in detail would take up several chap-
ters and is beyond the scope of this book, but broadly speaking, they can 
be divided into two categories: high-level models and low-level models. 
High-level models are useful when thinking about code at the level of 
lifetimes and borrows, while low-level models are good for when you are 
reasoning about unsafe code and raw pointers. The models for variables 
described in the following two sections will suffice for most of the mate-
rial in this book.

High-Level Model

In the high-level model, we don’t think of variables as places that hold bytes. 
Instead, we think of them just as names given to values as they are instanti-
ated, moved, and used throughout a program. When you assign a value to a 
variable, that value is from then on named by that variable. When a variable 
is later accessed, you can imagine drawing a line from the previous access 
of that variable to the new access, which establishes a dependency relation-
ship between the two accesses. If the value in a variable is moved, no lines 
can be drawn from it anymore.

In this model, a variable exists only so long as it holds a legal value; you 
cannot draw lines from a variable whose value is uninitialized or has been 
moved, so effectively it isn’t there. Using this model, your entire program 
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4   Chapter 2

consists of many of these dependency lines, often called flows, each one 
tracing the lifetime of a particular instance of a value. Flows can fork and 
merge when there are branches, with each split tracing a distinct lifetime 
for that value. The compiler can check that at any given point in your pro-
gram, all flows that can exist in parallel with each other are compatible. For 
example, there cannot be two parallel flows with mutable access to a value. 
Nor can there be a flow that borrows a value while there is no flow that 
owns the value. Listing 2-2 shows examples of both of these cases.

let mut x;
// this access would be illegal, nowhere to draw the flow from:
// assert_eq!(x, 42);
1 x = 42;
// this is okay, can draw a flow from the value assigned above:
2 let y = &x;
// this establishes a second, mutable flow from x:
3 x = 43;
// this continues the flow from y, which in turn draws from x:
4 assert_eq!(*y, 42);

Listing 2-2: Illegal flows that the borrow checker will catch

First, we cannot use x before it is initialized, because we have nowhere 
to draw the flow from. Only when we assign a value to x can we draw flows 
from it. This code has two flows: one exclusive (&mut) flow from 1 to 3, and 
one shared (&) flow from 1 through 2 to 4. The borrow checker inspects 
every vertex of every flow and checks that no other incompatible flows exist 
concurrently. In this case, when the borrow checker inspects the exclusive 
flow at 3, it sees the shared flow that terminates at 4. Since you cannot 
have an exclusive and a shared use of a value at the same time, the borrow 
checker (correctly) rejects the code. Notice that if 4 was not there, this 
code would compile fine! The shared flow would terminate at 2, and when 
the exclusive flow is checked at 3, no conflicting flows would exist.

If a new variable is declared with the same name as a previous one, they 
are still considered distinct variables. This is called shadowing—the later 
variable “shadows” the former by the same name. The two variables coexist, 
though subsequent code no longer has a way to name the earlier one. This 
model matches roughly how the compiler, and the borrow checker in par-
ticular, reasons about your program, and is actually used internally in the 
compiler to produce efficient code. 

Low-Level Model

Variables name memory locations that may or may not hold legal values. 
You can think of a variable as a “value slot.” When you assign to it, the slot 
is filled, and its old value (if it had one) is dropped and replaced. When you 
access it, the compiler checks that the slot isn’t empty, as that would mean 
the variable is uninitialized or its value has been moved. A pointer to a vari-
able refers to the variable’s backing memory and can be dereferenced to 
get at its value. For example, in the statement let x: usize, the variable x is a 
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name for a region of memory on the stack that has room for a value the size 
of a usize, though it does not have a well-defined value (its slot is empty). If 
you assign a value to that variable, such as with x = 6, that region of memory 
will then hold the bits representing the value 6. &x does not change when 
you assign to x. If you declare multiple variables with the same name, they 
still end up with different memory backing them. This model matches the 
memory model used by C and C++, and many other low-level languages, 
and is useful for when you need to reason explicitly about memory.

N O T E  In this example, we ignore CPU registers and treat them as an optimization. In real-
ity, the compiler may use a register to back a variable instead of a region of memory if 
no memory address is needed for that variable.

You may find that one of these matches your previous model bet-
ter than the other, but I urge you to try to wrap your head around both 
of them. They are both equally valid, and both are simplifications, like 
any useful mental model has to be. If you are able to consider a piece of 
code from both of these perspectives, you will find it much easier to work 
through complicated code segments and understand why they do or do not 
compile and work as you expect.

Memory Regions
Now that you have a grip on how we refer to memory, we need to talk about 
what memory actually is. There are many different regions of memory, and 
perhaps surprisingly, not all of them are stored in the DRAM of your com-
puter. Which part of memory you use has a significant impact on how you 
write your code. The three most important regions for the purposes of writ-
ing Rust code are the stack, the heap, and static memory.

The Stack

The stack is a segment of memory that your program uses as scratch space 
for function calls. Each time a function is called, a contiguous chunk of 
memory called a frame is allocated at the top of the stack.  Near the bottom 
of the stack is the frame for the main function, and as functions call other 
functions, additional frames are pushed onto the stack. A function’s frame 
contains all the variables within that function, along with any arguments 
the function takes. When the function returns, its stack frame is reclaimed.

The bytes that make up the values of the function’s local variables are 
not immediately wiped, but it’s not safe to access them as they may have 
been overwritten by a subsequent function call whose frame overlaps with 
the reclaimed one. And even if they haven’t been overwritten, they may con-
tain values that are illegal to use, such as ones that were moved when the 
function returned.

Stack frames, and crucially the fact that they eventually disappear, are 
very closely tied to the notion of lifetimes in Rust. Any variable stored in a 
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6   Chapter 2

frame on the stack cannot be accessed after that frame goes away, so any 
reference to it must have a lifetime that is at most as long as the lifetime of 
the frame.

The Heap

The heap is a pool of memory that isn’t tied to the current call stack of the 
program. Values in heap memory live until they are explicitly deallocated. 
This is useful when you want a value to live beyond the lifetime of the cur-
rent function’s frame. If that value is the function’s return value, the calling 
function can leave some space on its stack for the called function to write 
that value into before it returns. But if you want to, say, send that value to a 
different thread with which the current thread may share no stack frames at 
all, you can store it on the heap.

The heap allow you to explicitly allocate contiguous segments of 
 memory. When you do so, you get a pointer to the start of that segment 
of memory. That memory segment is reserved for you until you later deal-
locate it; this process is often referred to as freeing, after the name of the 
corresponding function in the C standard library. Since allocations from 
the heap do not go away when a function returns, you can allocate memory 
for a value in one place, pass the pointer to it to another thread, and have 
that thread safely continue to operate on that value. Or, phrased differ-
ently, when you heap-allocate memory, the resulting pointer has an uncon-
strained lifetime—its lifetime is however long your program keeps it alive.

The primary mechanism for interacting with the heap in Rust is the Box 
type. When you write Box::new(value), the value is placed on the heap, and 
what you are given back (the Box<T>) is a pointer to that value on the heap. 
When the Box is eventually dropped, that memory is freed.

If you forget to deallocate heap memory, it will stick around forever, and 
your application will eventually eat up all the memory on your machine. This 
is called leaking memory and is usually something you want to avoid. However, 
there are some cases where you explicitly want to leak memory. For example, 
say you have a read-only configuration that the entire program should be 
able to access. You can allocate that on the heap and explicitly leak it with 
Box::leak to get a 'static reference to it.

Static Memory

Static memory is really a catch-all term for several closely related regions 
located in the file your program is compiled into. These regions are 
automatically loaded into your program’s memory when that program is 
executed. Values in static memory live for the entire execution of your pro-
gram. Your program’s static memory contains the program’s binary code, 
which is usually mapped as read-only. As your program executes, it walks 
through the binary code in the text segment instruction by instruction and 
jumps around whenever a function is called. Static memory also holds the 
memory for variables you declare with the static keyword, as well as certain 
constant values in your code, like strings.
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The special lifetime 'static, which gets its name from the static memory 
region, marks a reference as being valid for “as long as static memory is 
around,” which is until the program shuts down. Since a static variable’s 
memory is allocated when the program starts, a reference to a variable in 
static memory is, by definition, 'static, as it is not deallocated until the pro-
gram shuts down. The inverse is not true—there can be 'static references 
that do not point to static memory—but the name is still appropriate: once 
you create a reference with a static lifetime, whatever it points to might as 
well be in static memory as far as the rest of the program is concerned, as it 
can be used for however long your program wishes.

You will encounter the 'static lifetime much more often than you will 
encounter truly static memory (through the static keyword, for example) 
when working with Rust. This is because 'static often shows up in trait 
bounds on type parameters. A bound like T: 'static indicates that the type 
parameter T is able to live for however long we keep it around for, up to and 
including the remaining execution of the program. Essentially, this bound 
requires that T is owned and self-sufficient, either in that it does not bor-
row other (non-static) values or that anything it does borrow is also 'static 
and thus will stick around until the end of the program. A good example 
of 'static as a bound is the std::thread::spawn function that creates a new 
thread, which requires that the closure you pass it is 'static. Since the new 
thread may outlive the current thread, the new thread cannot refer to any-
thing stored on the old thread’s stack. The new thread can refer only to 
values that will live for its entire lifetime, which may be for the remaining 
duration of the program.

N O T E  You may wonder how const differs from static. The const keyword declares the fol-
lowing item as constant. Constant items can be completely computed at compile time, 
and any code that refers to them is replaced with the constant’s computed value dur-
ing compilation. A constant has no memory or other storage associated with it (it is 
not a place). You can think of constant as a convenient name for a particular value.

Ownership
Rust’s memory model centers on the idea that all values have a single 
owner—that is, exactly one location (usually a scope) is responsible for 
ultimately deallocating each value. This is enforced through the borrow 
checker. If the value is moved, such as by assigning it to a new variable, 
pushing it to a vector, or placing it on the heap, the ownership of the value 
moves from the old location to the new one. At that point, you can no lon-
ger access the value through variables that flow from the original owner, 
even though the bits that make up the value are technically still there. 
Instead, you must access the moved value through variables that refer 
to its new location.

Some types are rebels and do not follow this rule. If a value’s type imple-
ments the special Copy trait, the value is not considered to have moved even 
if it is reassigned to a new memory location. Instead, the value is copied, and 
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both the old and new locations remain accessible. Essentially, another identi-
cal instance of that same value is constructed at the destination of the move. 
Most primitive types in Rust, such as the integer and floating-point types, 
are Copy. To be Copy, it must be possible to duplicate the type’s values simply 
by copying their bits. This eliminates all types that contain non-Copy types 
as well as any type that owns a resource it must deallocate when the value is 
dropped.

To see why, consider what would happen if a type like Box were Copy. 
If we executed box2 = box1, then box1 and box2 would both believe that 
they owned the heap memory allocated for the box, and they would both 
attempt to free it when they went out of scope. Freeing the memory twice 
could have catastrophic consequences.

When a value’s owner no longer has use for it, it is the owner’s responsi-
bility to do any necessary cleanup for that value by dropping it. In Rust, drop-
ping happens automatically when the variable that holds the value is no 
longer in scope. Types usually recursively drop values they contain, so drop-
ping a variable of a complex type may result in many values being dropped. 
Because of Rust’s discrete ownership requirement, we cannot accidentally 
drop the same value multiple times. A variable that holds a reference to 
another value does not own that other value, so the value isn’t dropped 
when the variable drops.

The code in Listing 2-3 gives a quick summary of the rules around own-
ership, move and copy semantics, and dropping.

let x1 = 42;
let y1 = Box::new(84);
{ // starts a new scope
1   let z = (x1, y1);
  // z goes out of scope, and is dropped;
  // it in turn drops the values from x1 and y1
2 }
// x1's value is Copy, so it was not moved into z
3 let x2 = x1;
// y1's value is not Copy, so it was moved into z
4 // let y2 = y1;

Listing 2-3: Moving and copying semantics

We start out with two values, the number 42 and a Box (a heap- allocated 
value) containing the number 84. The former is Copy, whereas the latter is 
not. When we place x1 and y1 into the tuple z 1, x1 is copied into z, whereas 
y1 is moved into z. At this point, x1 continues to be accessible and can be 
used again 3. On the other hand, y1 is rendered inaccessible once its value 
has been moved 4, and any attempt to access it would incur a compiler 
error. When z goes out of scope 2, the tuple value it contains is dropped, 
and this in turn drops the value copied from x1 and the one moved from y1. 
When the Box from y1 is dropped, it also deallocates the heap memory used 
to store y1’s value.
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DROP OR DER

Rust automatically drops values when they go out of scope, such as x1 and 
x2 in the inner scope in Listing 2-3. The rules for the order in which to drop are 
fairly simple: variables (including function arguments) are dropped in reverse 
order, and nested values are dropped in source-code order.

This might sound weird at first—why the discrepancy? If we look at it 
closely, though, it makes a lot of sense. Say you write a function that declares 
a string and then inserts a reference to that string into a new hash table. When 
the function returns, the hash table must be dropped first; if the string were 
dropped first, the hash table would then hold an invalid reference! In general, 
later variables may contain references to earlier values, whereas the inverse 
cannot happen due to Rust’s lifetime rules. And for that reason, Rust drops vari-
ables in reverse order.

Now, we could have the same behavior for nested values, like the values 
in a tuple, array, or struct, but that would likely surprise users. If you constructed 
an array that contained two values, it’d seem odd if the last element of the array 
were dropped first. The same applies to tuples and structs, where the most intui-
tive behavior is for the first tuple element or field to be dropped first, then the 
second, and so on. Unlike for variables, there is no need to reverse the drop 
order in this case, since Rust doesn’t (currently) allow self-references in a single 
value. So, Rust goes with the intuitive option.

Borrowing and Lifetimes
Rust allows the owner of a value to lend out that value to others, without 
giving up ownership, through references. References are pointers that come 
with an additional contract for how they can be used, such as whether the 
reference provides exclusive access to the referenced value, or whether the 
referenced value may also have other references point to it.

Shared References
A shared reference, &T, is, as the name implies, a pointer that may be 
shared. Any number of other references may exist to the same value, and 
each shared reference is Copy, so you can trivially make more of them. 
Values behind shared references are not mutable; you cannot modify or 
reassign the value a shared reference points to, nor can you cast a shared 
reference to a mutable one.

The Rust compiler is allowed to assume that the value a shared refer-
ence points to will not change while that reference lives. For example, if the 
Rust compiler sees that the value behind a shared reference is read multiple 
times in a function, it is within its rights to read it only once and reuse that 
value. More concretely, the assertion in Listing 2-4 should never fail.
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fn cache(input: &i32, sum: &mut i32) {
  *sum = *input + *input;
  assert_eq!(*sum, 2 * *input);
}

Listing 2-4: Rust assumes that shared references are immutable.

Whether or not the compiler chooses to apply a given optimization is 
more or less irrelevant. The compiler heuristics change over time, so you 
generally want to code against what the compiler is allowed to do rather 
than what it actually does in a particular case at a particular moment 
in time.

Mutable References
The alternative to a shared reference is a mutable reference: &mut T. With 
mutable references, the Rust compiler is again allowed to make full use of 
the contract that the reference comes with: the compiler assumes that there 
are no other threads accessing the target value, whether through a shared 
reference or a mutable one. In other words, it assumes that the mutable 
reference is exclusive. This enables some interesting optimizations that are 
not readily available in other languages. Take, for example, the code in 
Listing 2-5.

fn noalias(input: &i32, output: &mut i32) {
  if *input == 1 {
1 *output = 2;

}
2   if *input != 1 { 
   *output = 3;
  }
}

Listing 2-5: Rust assumes that mutable references are exclusive.

In Rust, the compiler can assume that input and output do not point to 
the same memory. Therefore, the reassignment of output at 1 cannot affect 
the check at 2, and the entire function can be compiled as a single if-else 
block. If the compiler could not rely on the exclusive mutability contract, 
that optimization would be invalid, since an input of 1 could then result in 
an output of 3 in a case like noalias(&x, &mut x).

A mutable reference lets you mutate only the memory location that 
the reference points to. Whether you can mutate values that lie beyond the 
immediate reference depends on the methods provided by the type that lies 
between. This may be easier to understand with an example, so consider 
Listing 2-6.

let x = 42;
let mut y = &x; // y is of type &i32
let z = &mut y; // z is of type &mut &i32

Listing 2-6: Mutability applies only to the immediately referenced memory.
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In this example, you are able to change the value of the pointer y to a 
different value (that is, a different pointer) by making it reference a differ-
ent variable, but you cannot change the value that is pointed to (that is, the 
value of x). Similarly, you can change the pointer value of y through z, but 
you cannot change z itself to hold a different reference.

The primary difference between owning a value and having a mutable 
reference to it is that the owner is responsible for dropping the value when 
it is no longer necessary. Apart from that, you can do anything through a 
mutable reference that you can if you own the value, with one caveat: if you 
move the value behind the mutable reference, then you must leave another 
value in its place. If you did not, the owner would still think it needed to 
drop the value, but there would be no value for it to drop!

Listing 2-7 gives an example of the ways in which you can move the 
value behind a mutable reference.

fn replace_with_84(s: &mut Box<i32>) {
  // this is not okay, as *s would be empty:
1   // let was = *s;
  // but this is:
2   let was = std::mem::take(s);
  // so is this:
3   *s = was;
  // we can exchange values behind &mut:
  let mut r = Box::new(84);
4   std::mem::swap(s, &mut r);
  assert_ne!(*r, 84);
}
let mut s = Box::new(42);
replace_with_84(&mut s);
5

Listing 2-7: Access through a mutable reference must leave a value behind.

I’ve added commented-out lines that represent illegal operations. You 
cannot simply move the value out 1 since the caller would still think they 
owned that value and would free it again at 5, leading to a double free. If 
you just want to leave some valid value behind, std::mem::take 2 is a good can-
didate. It is equivalent to std::mem::replace(&mut value, Default::default()); it 
moves value out from behind the mutable reference but leaves a new, default 
value for the type in its place. The default is a separate, owned value, so it is 
safe for the caller to drop it when the scope ends at 5.

Alternatively, if you don’t need the old value behind the reference, you 
can overwrite it with a value that you already own 3, leaving it to the caller 
to drop the value later. When you do this, the value that used to be behind 
the mutable reference is dropped immediately.

Finally, if you have two mutable references, you can swap their values 
without owning either of them 4, since both references will end up with a 
legal owned value for their owners to eventually free.
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Interior Mutability
Some types provide interior mutability, meaning they allow you to mutate a 
value through a shared reference. These types usually rely on additional 
mechanisms (like atomic CPU instructions) or invariants to provide safe 
mutability without relying on the semantics of exclusive references. These 
normally fall into two categories: those that let you get a mutable reference 
through a shared reference, and those that just let you mutate through a 
shared reference.

The first category consists of types like Mutex and RefCell, which con-
tain safety mechanisms to ensure that, for any value they give a mutable 
reference to, only one mutable reference (and no shared references) can 
exist at a time. Under the hood, these types (and those like them) all rely 
on a type called UnsafeCell, whose name should immediately make you 
hesitate to use it. We will cover UnsafeCell in more detail in Chapter 10, 
but for now you should know that it is the only correct way to mutate 
through a shared reference.

Other categories of types that provide interior mutability are those that 
do not give out a mutable reference to the inner value but instead just give 
you methods for manipulating that value in place. The atomic integer types 
in std::sync::atomic and the std::cell::Cell type fall into this category. You 
cannot get a reference directly to the usize or i32 behind such a type, but 
you can read and replace its value at a given point in time.

N O T E  The Cell type in the standard library is an interesting example of safe interior muta-
bility through invariants. It is not shareable across threads and never gives out a 
reference to the value contained in the Cell. Instead, the methods all either replace the 
value entirely or return a copy of the contained value. Since no references can exist 
to the inner value, it is always okay to move it. And since Cell isn’t shareable across 
threads, the inner value will never be concurrently mutated even though mutation 
happens through a shared reference.

Lifetimes
If you’re reading this book, you’re probably already familiar with the con-
cept of lifetimes, likely through repeated notices from the compiler about 
lifetime rules violations. That level of understanding will serve you well 
for the majority of Rust code you will write, but as we dive deeper into the 
more complex parts of Rust, you will need a more rigorous mental model to 
work with.

Newer Rust developers are often taught to think of lifetimes as cor-
responding to scopes: a lifetime begins when you take a reference to some 
variable and ends when that variable is moved or goes out of scope. That’s 
often correct, and usually useful, but the reality is a little more complex. 
A lifetime is really a name for a region of code that some reference must be 
valid for. While a lifetime will frequently coincide with a scope, it does not 
have to, as we will see later in this section.
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Lifetimes and the Borrow Checker

At the heart of Rust lifetimes is the borrow checker. Whenever a reference 
with some lifetime 'a is used, the borrow checker checks that 'a is still alive. 
It does this by tracing the path back to where 'a starts—where the reference 
was taken—from the point of use and checking that there are no conflict-
ing uses along that path. This ensures that the reference still points to a 
value that it is safe to access. This is similar to the high-level “data flow” 
mental model we discussed earlier in the chapter; the compiler checks that 
the flow of the reference we are accessing does not conflict with any other 
parallel flows.

Listing 2-8 shows a simple code example with lifetime annotations for 
the reference to x.

let mut x = Box::new(42);
1 let r = &x;           // 'a
if rand() > 0.5 {
2   *x = 84;
} else {
3   println!("{}", r);  // 'a
}
4

Listing 2-8: Lifetimes do not need to be contiguous.

The lifetime starts at 1 when we take a reference to x. In the first 
branch 2, we then immediately try to modify x by changing its value to 84, 
which requires a &mut x. The borrow checker takes out a mutable reference 
to x and immediately checks its use. It finds no conflicting uses between 
when the reference was taken and when it was used, so it accepts the code. 
This may come as a surprise if you are used to thinking about lifetimes 
as scopes, since r is still in scope at 2 (it goes out of scope at 4). But the 
borrow checker is smart enough to realize that r is never used later if this 
branch is taken, and therefore it is fine for x to be mutably accessed here. 
Or, phrased differently, the lifetime created at 1 does not extend into this 
branch: there is no flow from r beyond 2, and therefore there are no con-
flicting flows. The borrow checker then finds the use of r in the print state-
ment at 3. It walks the path back to 1 and finds no conflicting uses (2 is 
not on that path), so it accepts this use as well.

If we were to add another use of r at 4 in Listing 2-8, the code would 
no longer compile. The lifetime 'a would then last from 1 all the way 
until 4 (the last use of r), and when the borrow checker checked our new 
use of r, it would discover a conflicting use at 2.

Lifetimes can get quite convoluted. In Listing 2-9 you can see an example 
of a lifetime that has holes, where it’s intermittently invalid between where it 
starts and where it ultimately ends.

 let mut x = Box::new(42);
1  let mut z = &x;          // 'a
 for i in 0..100 {
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2    println!("{}", z);     // 'a
3   x = Box::new(i);
4   z = &x; // 'a
 }
 println!("{}", z); // 'a

Listing 2-9: Lifetimes can have holes.

The lifetime starts at 1 when we take a reference to x. We then move 
out of x at 3, which ends the lifetime 'a because it is no longer valid. The 
borrow checker accepts this move by considering 'a ended at 2, which 
leaves no conflicting flows from x at 3. Then, we restart the lifetime by 
updating the reference in z 4. Regardless of whether the code now loops 
back around to 2 or continues to the final print statement, both of those 
uses now have a valid value to flow from, and there are no conflicting flows, 
so the borrow checker accepts the code!

Again, this aligns perfectly with the data-flow model of memory we dis-
cussed earlier. When x is moved, z stops existing. When we reassign z later, 
we are creating an entirely new variable that exists only from that point for-
ward. With that model in mind, this example is not weird.

Generic Lifetimes

Occasionally you need to store references within your own types. Those ref-
erences need to have a lifetime so that the borrow checker can check their 
validity when they are used in the various methods on that type. This is 
especially true if you want a method on your type to return a reference that 
outlives the reference to self.

Rust allows you to make a type definition generic over one or more 
lifetimes, just like it allows you to make it generic over types. The Rust 
Programming Language by Steve Klabnik and Carol Nichols (No Starch Press, 
2018) covers this topic in some detail, so I won’t reiterate the basics here. 
But as you write more complex types of this nature, there are two subtleties 
around the interaction between such types and lifetimes that you should be 
aware of.

First, if your type also implements Drop, then dropping your type counts 
as a use of any lifetime or type your type is generic over. Essentially, when 
an instance of your type is dropped, the borrow checker will check that it’s 
still legal to use any of your type’s generic lifetimes before dropping it. This 
is necessary in case your drop code does use any of those references. If your 
type does not implement Drop, dropping the type does not count as a use, 
and users are free to invalidate any references stored in your type as long as 
they do not use it any more, like we saw in Listing 2-7. We’ll talk more about 
these rules around dropping in Chapter 10.

Second, while a type can be generic over multiple lifetimes, making 
it so often only serves to unnecessarily complicate your type signature. 
Usually, a type being generic over a single lifetime is fine, and the com-
piler will use the shorter of the lifetimes for any references inserted into 
your type as that one lifetime. You should only really use multiple generic 
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lifetime parameters if you have a type that contains multiple references, 
and its methods return references that should be tied to the lifetime of only 
one of those references. 

Consider the type in Listing 2-10, which gives you an iterator over parts 
of a string separated by a particular other string.

struct StrSplit<'s, 'p> {
  delimiter: &'p str,
  document: &'s str,
}
impl<'s, 'p> Iterator for StrSplit<'s, 'p> {
  type Output = &'s str;
  fn next(&self) -> Option<Self::Output> {
    todo!()
  }
}
fn str_before(s: &str, c: char) -> Option<&str> {
  StrSplit { document: s, delimiter: &c.to_string() }.next()
}

Listing 2-10: A type that needs to be generic over multiple lifetimes

When you construct this type, you have to give the delimiter and docu-
ment to search, both of which are references to string values. When you ask 
for the next string, you get a reference into the document. Consider what 
would happen if you used a single lifetime in this type. The values yielded 
by the iterator would be tied to the lifetime of the document and the delimiter. 
This would make str_before impossible to write: the return type would have 
a lifetime associated with a variable local to the function—the String pro-
duced by to_string—and the borrow checker would reject the code.

Lifetime Variance

Variance is a concept that programmers are often exposed to but rarely 
know the name of because it’s mostly invisible. At a glance, variance 
describes what types are subtypes of other types and when a subtype can be 
used in place of a supertype (and vice versa). Broadly speaking, a type A is 
a subtype of another type B if A is at least as useful as B. Variance is the rea-
son why, in Java, you can pass a Turtle to a function that accepts an Animal if 
Turtle is a subtype of Animal, or why, in Rust, you can pass a &'static str to a 
function that accepts a &'a str. 

While variance usually hides out of sight, it comes up often enough 
that we need to have a working knowledge of it. Turtle is a subtype of Animal 
because a Turtle is more “useful” than some unspecified Animal—a Turtle 
can do anything an Animal can do, and likely more. Similarly, 'static is a 
subtype of 'a because a 'static lives at least as long as any 'a and so is more 
useful. Or, more generally, if 'b: 'a ('b outlives 'a), then 'b is a subtype of 
'a. This is obviously not the formal definition, but it gets close enough to be 
of practical use.

All types have a variance, which defines what other similar types can 
be used in that type’s place. There are three kinds of variance: covariant, 
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invariant, and contravariant. A type is covariant if you can just use a subtype 
in place of the type. For example, if a variable is of type &'a T, you can pro-
vide a value of type &'static T to it, because &'a T is covariant in 'a. &'a T is 
also covariant in T, so you can pass a &Vec<&'static str> to a function that 
takes &Vec<&'a str>.

Some types are invariant, which means that you must provide exactly 
the given type. &mut T is an example of this—if a function takes a &mut 
Vec<&'a str>, you cannot pass it a &mut Vec<&'static str>. That is, &mut T is 
invariant in T. If you could, the function could put a short-lived string inside 
the Vec, which the caller would then continue using, thinking that it were a 
Vec<&'static str> and thus that the contained string were 'static! Any type 
that provides mutability is generally invariant for the same reason—for 
example, Cell<T> is invariant in T.

The last category, contravariance, comes up for function arguments. 
Function types are more useful if they’re okay with their arguments being 
less useful. This is clearer if you contrast the variance of the argument types 
on their own with their variance when used as function arguments:

let x: &'static str; // more useful, lives longer
let x: &'a      str; // less useful, lives shorter

fn take_func1(&'static str) // stricter, so less useful
fn take_func2(&'a str)      // less strict, more useful

This flipped relationship indicates that Fn(T) is contravariant in T.
So why do you need to learn about variance when it comes to lifetimes? 

Variance becomes relevant when you consider how generic lifetime param-
eters interact with the borrow checker. Consider a type like the one shown 
in Listing 2-11, which uses multiple lifetimes in a single field.

struct MutStr<'a, 'b> {
  s: &'a mut &'b str
}
let mut s = "hello";
1 *MutStr { s: &mut s }.s = "world";
println!("{}", s);

Listing 2-11: A type that needs to be generic over multiple lifetimes

At first glance, using two lifetimes here seems unnecessary—we have no 
methods that need to differentiate between a borrow of different parts of 
the structure, as we did with StrSplit in Listing 2-10. But if you replace the 
two lifetimes here with a single 'a, the code no longer compiles! And it’s all 
because of variance.

At 1, the compiler must determine what lifetime the lifetime para-
meter(s) should be set to. If there are two lifetimes, 'a is set to the to-be-
determined lifetime of the borrow of s, and 'b is set to 'static since that’s 
the lifetime of the provided string "hello". If there is just one lifetime 'a, the 
compiler infers that that lifetime must be 'static. 
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When we later attempt to access the string reference s through a shared 
reference to print it, the compiler tries to shorten the mutable borrow of s 
used by MutStr to allow the shared borrow of s.

In the two-lifetime case, 'a simply ends just before the println, and 'b 
stays the same. In the single-lifetime case, on the other hand, we run into 
issues. The compiler wants to shorten the borrow of s, but to do so, it would 
also have to shorten the borrow of the str. While &'static str can in general 
be shortened to any &'a str (&'a T is covariant in 'a), here it’s behind a &mut 
T, which is invariant in T. Invariance requires that the relevant type is never 
replaced with a sub- or supertype, so the compiler’s attempt to shorten the 
borrow fails, and it reports that the list is still mutably borrowed. Ouch!

Because of the reduced flexibility imposed by invariance, you want to 
ensure that your types remain covariant (or contravariant where appropri-
ate) over as many of their generic parameters as possible. If that requires 
introducing additional lifetime arguments, you need to carefully weigh the 
cognitive cost of adding another parameter against the ergonomic cost of 
invariance.

Summary
The aim of this chapter has been to establish a solid, shared foundation 
that we can build on in the chapters to come. By now, I hope you feel that 
you have a firm grasp on Rust’s memory and ownership model, and that 
those errors you may have gotten from the borrow checker seem less mys-
terious. You might have known bits and pieces of what we covered here 
already, but hopefully the chapter has given you a more holistic image of 
how it all fits together. In the next chapter, we will do something similar for 
types. We’ll go over how types are represented in memory, see how gener-
ics and traits produce running code, and take a look at some of the special 
type and trait constructs Rust offers for more advanced use cases.

Rust for Rustaceans (Early Access) © 2022 by Jon Gjengset 



Rust for Rustaceans (Early Access) © 2022 by Jon Gjengset 



3
T Y P E S

Now that the fundamentals are out of the 
way, we’ll look at Rust’s type system. We’ll 

skip past the basics covered in The Rust 
Programming Language and instead dive head-

first into how different types are laid out in memory, 
the ins and outs of traits and trait bounds, existen-
tial types, and the rules for using types across crate 
boundaries.

Types in Memory
Every Rust value has a type. Types serve many purposes in Rust, as we’ll see 
in this chapter, but one of their most fundamental roles is to tell you how to 
interpret bits of memory. For example, the sequence of bits 0b10111101 (writ-
ten in hexadecimal notation as 0xBD) does not mean anything in and of itself 
until you assign it a type. When interpreted under the type u8, that sequence 
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of bits is the number 189. When interpreted under the type i8, it is –67. When 
you define your own types, it’s the compiler’s job to determine where each 
part of the defined type goes in the in-memory representation for that type. 
Where does each field of your struct appear in the sequence of bits? Where is 
the discriminant for your enum stored? It’s important to understand how this 
process works as you begin to write more advanced Rust code, because these 
details affect both the correctness and the performance of your code.

Alignment
Before we talk about how a type’s in-memory representation is determined, 
we first need to discuss the notion of alignment, which dictates where the 
bytes for a type can be stored. Once a type’s representation has been deter-
mined, you might think you can take any arbitrary memory location and 
interpret the bytes stored there as that type. While that is true in a theoreti-
cal sense, in practice the hardware also constrains where a given type can 
be placed. The most obvious example of this is that pointers point to bytes, 
not bits. If you placed a value of type T starting at bit 4 of your computer’s 
memory, you would have no way to refer to its location; you can create a 
pointer pointing only to byte 0 or byte 1 (bit 8). For this reason, all values, 
no matter their type, must start at a byte boundary. We say that all values 
must be at least byte-aligned—they must be placed at an address that is a 
multiple of 8 bits.

Some values have more stringent alignment rules than just being byte-
aligned. In the CPU and the memory system, memory is often accessed in 
blocks larger than a single byte. For example, on a 64-bit CPU, most values 
are accessed in chunks of 8 bytes (64 bits), with each operation starting at 
an 8-byte-aligned address. This is referred to as the CPU’s word size. The 
CPU then uses some cleverness to handle reading and writing smaller val-
ues, or values that span the boundaries of these chunks.

Where possible, you want to ensure that the hardware can operate in its 
“native” alignment. To see why, consider what happens if you try to read an 
i64 that starts in the middle of an 8-byte block (that is, the pointer to it is not 
8-byte-aligned). The hardware will have to do two reads—one from the sec-
ond half of the first block to get to the start of the i64, and one from the first
half of the second block to read the rest of the i64—and then splice the results
together. This is not very efficient. Since the operation is spread across multiple
accesses to the underlying memory, you may also end up with strange results
if the memory you’re reading from is concurrently written to by a different
thread. You might read the first 4 bytes before the other thread’s write has
happened and the second 4 bytes after, resulting in a corrupted value.

Operations on data that is not aligned are referred to as misaligned 
accesses and can lead to poor performance and bad concurrency prob-
lems. For this reason, many CPU operations require, or strongly prefer, 
that their arguments are naturally aligned. A naturally aligned value is one 
whose alignment matches its size. So, for example, for an 8-byte load, the 
provided address would need to be 8-byte-aligned.

Since aligned accesses are generally faster and provide stronger con-
sistency semantics, the compiler tries to take advantage of them where 
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possible. It does this by giving every type an alignment that’s computed 
based on the types that it contains. Built-in values are usually aligned to 
their size, so a u8 is byte-aligned, a u16 is 2-byte-aligned, a u32 is 4-byte-
aligned, and a u64 is 8-byte-aligned. Complex types—types that contain 
other types—are typically assigned the largest alignment of any type they 
contain. For example, a type that contains a u8, a u16, and a u32 will be 
4-byte-aligned because of the u32.

Layout
Now that you know about alignment, we can explore how the compiler 
decides on the in-memory representation, known as the layout, of a type. 
By default, as you’ll see shortly, the Rust compiler gives very few guarantees 
about how it lays out types, which makes for a poor starting point for under-
standing the underlying principles. Luckily, Rust provides a repr attribute 
you can add to your type definitions to request a particular in-memory rep-
resentation for that type. The most common one you will see, if you see one 
at all, is repr(C). As the name suggests, it lays out the type in a way that is 
compatible with how a C or C++ compiler would lay out the same type. This 
is helpful when writing Rust code that interfaces with other languages using 
the foreign-function interface, which we’ll talk about in Chapter 12, as Rust 
will generate a layout that matches the expectations of the other language’s 
compiler. Since the C layout is predictable and not subject to change, repr(C) 
is also useful in unsafe contexts if you’re working with raw pointers into the 
type, or if you need to cast between two different types that you know have 
the same fields. And, of course, it is perfect for taking our first steps into 
layout algorithms.

N O T E  Another useful representation is repr(transparent), which can be used only on types 
with a single field and which guarantees that the layout of the outer type is exactly the 
same as that of the inner type. This comes in handy in combination with the “newtype” 
 pattern, where you may want to operate on the in-memory representations of some 
struct A and struct NewA(A) as if they were the same. Without repr(transparent), the 
Rust compiler does not guarantee that they will have the same layout.

So, let’s look how the compiler would lay out a particular type with 
repr(C): the Foo type in Listing 3-1. How do you think the compiler would lay 
this out in memory?

#[repr(C)]
struct Foo {
  tiny: bool,
  normal: u32,
  small: u8,
  long: u64,
  short: u16,
}

Listing 3-1: Alignment affects layout.
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First the compiler sees the field tiny, whose logical size is 1 bit (true or 
false). But since the CPU and memory operate in terms of bytes, tiny is 
given 1 byte in the in-memory representation. Next, normal is a 4-byte type, 
so we want it to be 4-byte-aligned. But even if Foo is aligned, the 1 byte we 
allocated to tiny is going to make normal miss its alignment. To rectify this, 
the compiler inserts 3 bytes of padding—bytes with an indeterminate value 
that are ignored in user code—into the in-memory representation between 
tiny and normal. No values go into the padding, but it does take up space.

For the next field, small, alignment is simple: it’s a 1-byte value, and 
the current byte offset into the struct is 1 + 3 + 4 = 8. This is already byte-
aligned, so small can go immediately after normal. With long we have a 
problem again, though. We are now 1 + 3 + 4 + 1 = 9 bytes into Foo. If Foo is 
aligned, then long is not 8-byte-aligned the way we want it to be, so we must 
insert another 7 bytes of padding to make long aligned again. This also 
conveniently ensures the 2-byte alignment we need for the last field, short, 
bringing the total to 26 bytes. Now that we’ve gone through all the fields, 
we also need to determine the alignment of Foo itself. The rule here is to 
use the largest alignment of any of Foo’s fields, which will be 8 bytes because 
of long. So, to ensure that Foo remains aligned if placed in, say, an array, the 
compiler then adds a final 6 bytes of padding to make Foo’s size a multiple 
of its alignment at 32 bytes.

Now we are ready to shed the C legacy and consider what would hap-
pen to the layout if we did not use repr(C) in Listing 3-1. One of the primary 
limitations of the C representation is that it requires that we place all fields 
in the same order that they appear in the original struct definition. The 
default Rust representation repr(Rust) removes that limitation, along with a 
couple of other lesser restrictions, such as deterministic field ordering for 
types that happen to have the same fields. That is, even two different types 
that share all the same fields, of the same type, in the same order, are not 
guaranteed to be laid out the same when using the default Rust layout!

Since we’re now allowed to reorder the fields, we can place them 
in decreasing order of size. This means we no longer need the padding 
between Foo’s fields; the fields themselves are used to achieve the necessary 
alignment! Foo is now just the size of its fields: only 16 bytes. This is one of 
the reasons why Rust by default does not give many guarantees about how a 
type is laid out in memory: by giving the compiler more leeway to rearrange 
things, we can produce more efficient code.

It turns out there’s also a third way to lay out a type, and that is to tell 
the compiler that we do not want any padding between our fields. In doing 
so, we’re saying that we are willing to take the performance hit of using 
misaligned accesses. The most common use case for this is when the impact 
of every additional byte of memory can be felt, such as if you have a lot of 
instances of the type, if you have very limited memory, or if you’re sending 
the in-memory representation over a lower-bandwidth medium like a network 
connection. To opt in to this behavior, you can annotate your type with 
#[repr(packed)]. Keep in mind that this may lead to much slower code, and 
in extreme cases, this can cause your program to crash if you try to perform 
operations that the CPU supports only on aligned arguments.
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Sometimes, you want to give a particular field or type a larger align-
ment than it technically requires. You can do that using the attribute 
#[repr(align(n))]. A common use case for this is to ensure that different 
values stored contiguously in memory (like in an array) end up in differ-
ent cache lines on the CPU. That way, you avoid false sharing, which can 
cause huge performance degradations in concurrent programs. False shar-
ing occurs when two different CPUs access different values that happen 
to share a cache line; while they can theoretically operate in parallel, they 
both end up contending to update the same single entry in the cache. We’ll 
talk about concurrency in much greater detail in Chapter 11.

Complex Types
You might be curious about how the compiler represents other Rust types in 
memory. Here’s a quick reference:

Tuple  Represented like a struct with fields of the same type as the 
tuple values in the same order.

Array  Represented as a contiguous sequence of the contained type 
with no padding between the elements.

Union  Layout is chosen independently for each variant. Alignment is 
the maximum across all the variants.

Enumeration  Same as union, but with one additional hidden shared 
field that stores the enum variant discriminant. The discriminant is the 
value the code uses to determine which of the enum variants a given 
value holds. The size of the discriminant field depends on the number 
of variants.

Dynamically Sized Types and Fat Pointers
You may have come across the marker trait Sized in various odd corners 
of the Rust documentation and in error messages. Usually, it comes up 
because the compiler wants you to provide a type that is Sized, but you 
(apparently) did not. Most types in Rust implement Sized automatically—
that is, they have a size that’s known at compile time—but two common 
types do not: trait objects and slices. If you have, for example, a dyn Iterator 
or a [u8], those do not have a well-defined size. Their size depends on some 
information that is known only when the program runs and not at com-
pile time, which is why they are called dynamically sized types (DSTs). Nobody 
knows ahead of time whether the dyn Iterator your function received is this 
200-byte struct or that 8-byte struct. This presents a problem: often the 
compiler must know the size of something in order to produce valid code, 
such as how much space to allocate to a tuple of type (i32, dyn Iterator, 
[u8], i32) or what offset to use if your code tries to access the fourth field. 
But if the type isn’t Sized, that information isn’t available.

The compiler requires types to be Sized nearly everywhere. Struct fields, 
function arguments, return values, variable types, and array types must all 
be Sized. This restriction is so common that every single type bound you 
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write includes T: Sized unless you explicitly opt out of it with T: ?Sized (the 
? means “may not be”). But this is pretty unhelpful if you have a DST and 
want to do something with it, like if you really want your function to accept 
a trait object or a slice as an argument.

The solution to this is to place them behind a fat pointer. A fat pointer 
is just like a normal pointer, but it includes an extra word-sized field that 
gives the additional information about that pointer that the compiler needs 
to generate reasonable code for working with the pointer. When you take a 
reference to a DST, the compiler automatically constructs a fat pointer for 
you. For a slice, the extra information is simply the length of the slice. For 
a trait object—well, we’ll get to that later. And crucially, that fat pointer is 
Sized. Specifically, it is twice the size of a usize (the size of a word on the tar-
get platform): one usize for holding the pointer, and one usize for holding 
the extra information needed to “complete” the type. 

N O T E Box and Arc also support storing fat pointers, which is why they both support 
T: ?Sized.

Traits and Trait Bounds
Traits are a key piece of Rust’s type system—they are the glue that allows 
types to interoperate even though they don’t know about each other at the 
time they are defined. The Rust Programming Language does a great job of 
covering how to define and use traits, so I won’t go over that here. Instead, 
we’re going to take a look at some of the more technical aspects of traits: 
how they’re implemented, restrictions you have to adhere to, and some 
more esoteric uses of traits.

Compilation and Dispatch
By now, you’ve probably written a decent amount of generic code in Rust. 
You’ve used generic type parameters on types and methods, and maybe 
even a few trait bounds here and there. But have you ever wondered what 
actually happens to generic code when you compile it, or what happens 
when you call a trait method on a dyn Trait?

When you write a type or function that is generic over T, you’re really 
telling the compiler to make a copy of that type or function for each type 
T. When you construct a Vec<i32> or a HashMap<String, bool>, the compiler
essentially copy-pastes the generic type and all its implementation blocks
and replaces all instances of each generic parameter with the concrete type
you provided. It makes a full copy of the Vec type with every T replaced with
i32, and a full copy of the HashMap type with every K replaced with String and
every V with bool.

N O T E In reality, the compiler does not actually do a full copy-paste. It copies only parts of 
the code that you use, so if you never call find on a Vec<i32>, the code for find won’t 
be copied and compiled.

Rust for Rustaceans (Early Access) © 2022 by Jon Gjengset 



Types   25

The same thing applies to generic functions. Consider the code in 
Listing 3-2, which shows a generic method.

impl String {
  pub fn contains(&self, p: impl Pattern) -> bool {
    p.is_contained_in(self)
  }
}

Listing 3-2: A generic method using static dispatch

A copy of this method is made for every distinct pattern type (recall 
that impl Trait is shorthand for <T: Trait>). We need a different copy of 
the function body for each impl Pattern type because we need to know the 
address of the is_contained_in function to call it. The CPU needs to be told 
where to jump to and continue execution. For any given pattern, the com-
piler knows that that address is the address of the place where that pattern 
type implements that trait method. But there is no one address we could 
use for any type, so we need to have one copy for each type, each with its 
own address to jump to. This is referred to as static dispatch, since for any 
given copy of the method, the address we are “dispatching to” is known 
statically.

N O T E  You may have noticed that the word “static” is a little overloaded in this context. 
Static is generally used to refer to anything that is known at compile time, or can be 
treated as though it were, since it can then be written into static memory, as we dis-
cussed in Chapter 2.

This process of going from a generic type to many non-generic types 
is called monomorphization, and it’s part of the reason generic Rust code 
usually performs just as well as non-generic code. By the time the com-
piler starts optimizing your code, it’s as if no generics were there at all! 
Each instance is optimized separately and with all of the types known. As 
a result, the code is just as efficient as if the is_contained_in method of the 
pattern that is passed in were called directly without any traits present. The 
compiler has full knowledge of the types involved and can even inline the 
implementation of is_contained_in if it wishes.

Monomorphization also comes at a cost: all those instantiations of your 
type need to be compiled separately, which can increase compile time if the 
compiler cannot optimize them away. Each monomorphized function also 
results in its own chunk of machine code, which can make your program 
larger. And because instructions aren’t shared between different instantia-
tions of a generic type’s methods, the CPU’s instruction cache is also less 
effective as it now needs to hold multiple copies of effectively the same 
instructions.
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NON- GENER IC INNER F UNC T IONS

Often, much of the code in a generic method is not type-dependent. 
Consider, for example, the implementation of HashMap::insert. The code to 
compute the hash of the supplied key depends on the key type of the map, but 
the code to walk the buckets of the map to find the insertion point may not. In 
cases like this, it would be more efficient to share the generated machine code 
for the non-generic parts of the method across monomorphizations, and only 
generate distinct copies where this is actually needed.

One pattern you can use for cases like this is to declare a non-generic 
helper function inside the generic method that performs the shared operations. 
This leaves only the type-dependent code for the compiler to copy-paste for you 
while allowing the helper function to be shared.

Making the function an inner function comes with the added benefit that 
you do not pollute your module with a single-purpose function. You can instead 
declare such a helper function outside the method instead; just be careful that 
you don’t make it a method under a generic impl block, as then it will still be 
monomorphized.

The alternative to static dispatch is dynamic dispatch, which enables 
code to call a trait method on a generic type without knowing what that 
type is. I said earlier that the reason we needed multiple instances of the 
method in Listing 3-2 was that otherwise your program wouldn’t know what 
address to jump to in order to call the trait method is_contained_in on the 
given pattern. Well, with dynamic dispatch, the caller simply tells you. If you 
replace impl Pattern with &dyn Pattern, you tell the caller that they must give 
two pieces of information for this argument: the address of the pattern and 
the address of the is_contained_in method. In practice, the caller gives us a 
pointer to a chunk of memory called a virtual method table, or vtable, that 
holds the address of the implementation of all the trait’s methods for the 
type in question, one of which is is_contained_in. When the code inside the 
method wants to call a trait method on the provided pattern, it looks up  
the address of that pattern’s implementation of is_contained_in in the vtable 
and then calls the function at that address. This allows us to use the same 
function body regardless of what type the caller wants to use.

N O T E  Every vtable also contains information about the concrete type’s layout and alignment 
since that information is always needed to work with a type. If you want an example 
of what an explicit vtable looks like, take a look at the std::task::RawWakerVTable 
type.

You’ll notice that when we opted in to dynamic dispatch using the dyn 
keyword, we had to place an & in front of it. The reason is that we no longer 
know at compile time the size of the pattern type that the caller passes in, so 
we don’t know how much space to set aside for it. In other words, dyn Trait is 

Rust for Rustaceans (Early Access) © 2022 by Jon Gjengset 



Types   27

!Sized, where the ! means not. To make it Sized so we can take it as an argu-
ment, we place it behind a pointer (which we know the size of). Since we also 
need to pass along the table of method addresses, this pointer becomes a fat 
pointer, where the extra word holds the pointer to the vtable. You can use any 
type that is able to hold a fat pointer for dynamic dispatch, such as &mut, Box, 
and Arc. Listing 3-3 shows the dynamic dispatch equivalent of Listing 3-2.

impl String {
  pub fn contains(&self, p: &dyn Pattern) -> bool {
    p.is_contained_in(&*self)
  }
}

Listing 3-3: A generic method using dynamic dispatch

The combination of a type that implements a trait and its vtable is 
known as a trait object. Most traits can be turned into trait objects, but not 
all. For example, the Clone trait, whose clone method returns Self, cannot 
be turned into a trait object. If we accept a dyn Clone trait object and then 
call clone on it, the compiler won’t know what type to return. Or, consider 
the Extend trait from the standard library, which has a method extend that 
is generic over the type of the provided iterator (so there may be many 
instances of it). If you were to call a method that took a dyn Extend, there 
would be no single address for extend to place in the trait object’s vtable; 
there would have to be one entry for every type extend might ever be called 
with. These are examples of traits that are not object-safe and therefore may 
not be turned into trait objects. To be object-safe, none of a trait’s methods 
can be generic or use the Self type. Furthermore, the trait cannot have any 
static methods (that is, methods whose first argument does not dereference 
to Self), since it would be impossible to know which instance of the method 
to call. It is not clear, for example, what code FromIterator::from_iter(&[0]) 
should execute.

When reading about trait objects, you may see mentions of the trait 
bound Self: Sized. Such a bound implies that Self is not being used through 
a trait object (since it would then be !Sized). You can place that bound on a 
trait to require that the trait never use dynamic dispatch, or you can place 
it on a specific method to make that method unavailable when the trait is 
accessed through a trait object. Methods with a where Self: Sized bound are 
exempted when checking if a trait is object-safe.

Dynamic dispatch cuts compile times, since it’s no longer necessary 
to compile multiple copies of types and methods, and it can improve the 
efficiency of your CPU instruction cache. However, it also prevents the com-
piler from optimizing for the specific types that are used. With dynamic 
dispatch, all the compiler can do for find in Listing 3-2 is insert a call to 
the function through the vtable—it can no longer perform any additional 
optimizations as it does not know what code will sit on the other side of that 
function call. Furthermore, every method call on a trait object requires a 
lookup in the vtable, which adds a small amount of overhead over calling 
the method directly.
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When you’re given the choice between static and dynamic dispatch, 
there is rarely a clear-cut right answer. Broadly speaking, though, you’ll 
want to use static dispatch in your libraries and dynamic dispatch in your 
binaries. In a library, you want to allow your users to decide what kind of 
dispatch is best for them, since you don’t know what their needs are. If you 
use dynamic dispatch, they’re forced to do the same, whereas if you use 
static dispatch, they can choose whether to use dynamic dispatch or not. In 
a binary, on the other hand, you’re writing the final code, so there are no 
needs to consider except those of the code you are writing. Dynamic dis-
patch often allows you to write cleaner code that leaves out generic param-
eters and will compile more quickly, all at a (usually) marginal performance 
cost, so it’s usually the better choice for binaries.

Generic Traits
Rust traits can be generic in one of two ways: with generic type parameters like 
trait Foo<T> or with associated types like trait Foo { type Bar; }. The difference 
between these is not immediately apparent, but luckily the rule of thumb is 
quite simple: use an associated type if you expect only one implementation of 
the trait for a given type, and use a generic type parameter otherwise.

The rationale for this is that associated types are often significantly 
easier to work with, but will not allow multiple implementations. So, more 
simply put, the advice is really just to use associated types whenever you can.

With a generic trait, users must always specify all the generic parame-
ters and repeat any bounds on those parameters. This can quickly get messy 
and hard to maintain. If you add a generic parameter to a trait, all users of 
that trait must also be updated to reflect the change. And since multiple 
implementations of a trait may exist for a given type, the compiler may have 
a hard time deciding which instance of the trait you meant to use, leading 
to awful disambiguating function calls like FromIterator::<u32>::from_iter.  
But the upside is that you can implement the trait multiple times for 
the same type—for example, you can implement PartialEq against mul-
tiple right-hand side types for your type, or you can implement both 
FromIterator<T> and FromIterator<&T> where T: Clone, precisely because of 
the flexibility that generic traits provide.

With associated types, on the other hand, the compiler needs to know 
only the type that implements the trait, and all the associated types follow 
(since there is only one implementation). This means the bounds can all live 
in the trait itself and do not need to be repeated on use. In turn, this allows 
the trait to add further associated types without affecting its users. And 
because the type dictates all the associated types of the trait, you never have 
to disambiguate with the unified function calling syntax shown in the previ-
ous paragraph. However, you cannot implement Deref against multiple Target 
types, nor can you implement Iterator with multiple different Item types.

Coherence and the Orphan Rule
Rust has some fairly strict rules about where you can implement traits and 
what types you can implement them on. These rules exist to preserve the 
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coherence property: for any given type and method, there is only ever one 
correct choice for which implementation of the method to use for that 
type. To see why this is important, consider what would happen if I could 
write my own implementation of the Display trait for the bool type from 
the standard library. Now, for any code that tries to print a bool value and 
includes my crate, the compiler won’t know whether to pick the implemen-
tation I wrote or the one from the standard library. Neither choice is cor-
rect or better than the other, and the compiler obviously cannot choose 
randomly. The same issue occurs if the standard library is not involved at 
all, but we instead have two crates that depend on each other, and they 
both implement a trait for some shared type. The coherence property 
ensures that the compiler never ends up in these situations and never has 
to make these choices: there will always be exactly one obvious choice.

A facile way to uphold coherence would be to ensure only the crate 
that defines a trait can write implementations for that trait; if no one else 
can implement the trait, then there can be no conflicting implementa-
tions elsewhere. However, this is too restrictive in practice and would 
essentially make traits useless, as there would be no way to implement 
traits like std::fmt::Debug and serde::Serialize for your own types, unless 
you got your own type included into the defining crate. The opposite 
extreme, saying that you can implement traits for only your own types, 
solves that problem but introduces another: a crate that defines a trait 
now cannot provide implementations of that trait for types in the stan-
dard library or in other popular crates! Ideally, we would like to find some 
set of rules that balances the desire for downstream crates to implement 
upstream traits for their own types against the desire for upstream crates 
to be able to add implementations of their own traits without breaking 
downstream code.

N O T E  Upstream refers to something your code depends on, and downstream refers to some-
thing that depends on your code. Often, these terms are used in the direct sense 
of crate dependencies, but they can also be used to refer to authoritative forks of a 
codebase—if you do a fork of the Rust compiler, the official Rust compiler is your 
“upstream.”

In Rust, the rule that establishes that balance is the orphan rule. Simply 
stated, the orphan rule says that you can implement a trait for a type only 
if the trait or the type is local to your crate. So, you can implement Debug for 
your own type, and you can implement MyNeatTrait for bool, but you cannot 
implement Debug for bool. If you try, your code will not compile, and the 
compiler will tell you that there are conflicting implementations.

This gets you pretty far; it allows you to implement your own traits for 
third-party types and to implement third-party traits for your own types. 
However, the orphan rule is not the end of the story. There are a number 
of additional implications, caveats, and exceptions to it that you should be 
aware of.
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Blanket Implementations

The orphan rule allows you to implement traits over a range of types with code 
like impl<T> MyTrait for T where T:  and so on. This is a blanket implementation—
it is not limited to just one particular type but instead applies to a wide range 
of types. Only the crate that defines a trait is allowed to write a blanket imple-
mentation, and adding a blanket implementation to an existing trait is consid-
ered a breaking change. If it were not, a downstream crate that contained impl 
MyTrait for Foo could suddenly stop compiling just because you update the 
crate that defines MyTrait with an error about a conflicting implementation.

Fundamental Types
Some types are so essential that it’s necessary to allow anyone to implement 
traits on them, even if this seemingly violates the orphan rule. These types 
are marked with the #[fundamental] attribute and currently include &, &mut, 
and Box. For the purposes of the orphan rule, fundamental types may as 
well not exist—they are effectively erased before the orphan rule is checked 
in order to allow you to, for example, implement IntoIterator for &MyType. 
With just the orphan rule, this implementation would not be permitted 
since it implements a foreign trait for a foreign type—IntoIterator and & 
both come from the standard library. Adding a blanket implementation 
over a fundamental type is also considered a breaking change.

Covered Implementations
There are some limited cases where we want to allow implementing a for-
eign trait for a foreign type, which the orphan rule does not normally allow. 
The simplest example of this is when you want to write something like impl 
From<MyType> for Vec<i32>. Here, the From trait is foreign, as is the Vec type, 
yet there is no danger of violating coherence. This is because a conflicting 
implementation could be added only through a blanket implementation in 
the standard library (the standard library cannot otherwise name MyType), 
which is a breaking change anyway.

To allow these kinds of implementations, the orphan rule includes 
a narrow exemption that permits implementing foreign traits for for-
eign types under a very specific set of circumstances. Specifically, a given 
impl<P1..=Pn> ForeignTrait<T1..=Tn> for T0 is allowed only if at least one Ti 
is a local type and no T before the first such Ti is one of the generic types 
P1..=Pn. Generic type parameters (Ps) are allowed to appear in T0..Ti as long 
as they are covered by some intermediate type. A T is covered if it appears as 
a type parameter to some other type (like Vec<T>), but not if it stands on its 
own (just T) or just appears behind a fundamental type like &T. So, all the 
implementations in Listing 3-4 are valid.

impl<T> From<T> for MyType
impl<T> From<T> for MyType<T>
impl<T> From<MyType> for Vec<T>
impl<T> ForeignTrait<MyType, T> for Vec<T>

Listing 3-4: Valid implementations of foreign traits for foreign types
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However, the implementations in Listing 3-5 are invalid.

impl<T> ForeignTrait for T
impl<T> From<T> for T
impl<T> From<Vec<T>> for T
impl<T> From<MyType<T>> for T
impl<T> From<T> for Vec<T>
impl<T> ForeignTrait<T, MyType> for Vec<T>

Listing 3-5: Invalid implementations of foreign traits for foreign types

This relaxation of the orphan rule complicates the rules for what con-
stitutes a breaking change when you add a new implementation for an exist-
ing trait. In particular, adding a new implementation to an existing trait 
is non-breaking only if it contains at least one new local type, and that new 
local type satisfies the rules for the exemption described earlier. Adding 
any other new implementation is a breaking change.

N O T E  Note that impl<T> ForeignTrait<LocalType, T> for ForeignType is valid, but  
impl<T> ForeignTrait<T, LocalType> for ForeignType is not! This may seem arbi-
trary, but without this rule, you could write impl<T> ForeignTrait<T, LocalType>  
for ForeignType, and another crate could write impl<T> ForeignTrait<TheirType,  
T> for ForeignType, and a conflict would arise only when the two crates were brought 
together. Instead of disallowing this pattern altogether, the orphan rule requires that 
your local type come before the type parameter, which breaks the tie and ensures that if 
both crates uphold coherence in isolation, they also uphold it when combined.

Trait Bounds
The standard library is flush with trait bounds, whether it’s that the keys in a 
HashMap must implement Hash + Eq or that the function given to thread::spawn 
must be FnOnce + Send + 'static. When you write generic code yourself, it 
will almost certainly include trait bounds, as otherwise your code cannot do 
much with the type it is generic over. As you write more elaborate generic 
implementations, you’ll find that you also need more fidelity from your trait 
bounds, so let’s look at some of the ways to achieve that.

First and foremost, trait bounds do not have to be of the form T: Trait 
where T is some type your implementation or type is generic over. The 
bounds can be arbitrary type restrictions and do not even need to include 
generic parameters, types of arguments, or local types. You can write a trait 
bound like where String: Clone, even though String: Clone is always true and 
contains no local types. You can also write where io::Error: From<MyError<T>>; 
your generic type parameters do not need to appear only on the left-hand 
side. This not only allows you to express more intricate bounds but also can 
save you from needlessly repeating bounds. For example, if your method 
wants to construct a HashMap<K, V, S> whose keys are some generic type T and 
whose value is a usize, instead of writing the bounds out like where T: Hash 
+ Eq, S: BuildHasher + Default, you could write where HashMap<T, usize, S>: 
FromIterator. This saves you from looking up the exact bounds requirements 
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for the methods you end up using and more clearly communicates the 
“true” requirement of your code. As you can see, it can also significantly 
reduce the complexity of your bounds if the bounds on the underlying trait 
methods you want to call are complex.

DER I V E T R A IT

While #[derive(Trait)] is extremely convenient, in the context of trait 
bounds, you should be aware of one subtlety around how it is often imple-
mented. Many #[derive(Trait)] expansions desugar into impl Trait for 
Foo<T> where T: Trait. This is often what you want, but not always. For exam-
ple, consider what happens if we try to derive Clone this way for Foo<T> and 
Foo contains an Arc<T>. Arc implements Clone regardless of whether T imple-
ments Clone, but due to the derived bounds, Foo will implement Clone only if 
T does! This isn’t usually too big of an issue, but it does add a bound where 
one isn’t needed. If we rename the type to Shared, the problem may become a 
little clearer. Imagine how confused a user that has a Shared<NotClone> will be 
when the compiler tells them that they cannot clone it! At the time of writing, this 
is how #[derive(Clone)] as provided by the standard library works, though 
this may change in the future.

Sometimes, you want bounds on associated types of types you’re 
generic over. As an example, consider the iterator method flatten, which 
takes an iterator that produces items that in turn implement Iterator and 
produces an iterator of the items of those inner iterators. The type it pro-
duces, Flatten, is generic over I, which is the type of the outer iterator. 
Flatten implements Iterator if I implements Iterator and the items yielded 
by I themselves implement IntoIterator. To enable you to write bounds 
like this, Rust lets you refer to associated types of a type using the syntax 
Type::AssocType. For example, we can refer to I’s Item type using I::Item. If 
a type has multiple associated types by the same name, such as if the trait 
that provides the associated type is itself generic (and therefore there are 
many implementations), you can disambiguate with the syntax <Type as 
Trait>::AssocType. Using this, you can write bounds not only for the outer 
iterator type but also for the item type of that outer iterator.

In code that uses generics extensively, you may find that you need to 
write a bound that talks about references to a type. This is normally fine, as 
you’ll tend to also have a generic lifetime parameter that you can use as the 
lifetime for these references. In some cases, however, you want the bound 
to say “this reference implements this trait for any lifetime.” This is exceed-
ingly rare—at the time of writing, the standard library uses it in just three 
places—but it does happen. This type of bound is known as a higher-ranked 
trait bound, and it’s particularly useful in association with the Fn traits. For 
example, imagine you want to be generic over a function that takes a refer-
ence to a T and returns a reference to inside that T. If you write F: Fn(&T) -> 
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&U, you need to provide a lifetime for those references, but you really want 
to say “any lifetime as long as the output is the same as the input.” Using a 
higher-ranked lifetime, you can write F: for<'a> Fn(&'a T) -> &'a U to say 
that for any lifetime 'a, the bound must hold. The Rust compiler is smart 
enough to automatically add the for when you write Fn bounds with refer-
ences like this, which is part of why you so rarely need the explicit form, but 
it is worth knowing about.

To bring all of this together, consider the code in Listing 3-6, which can 
be used to implement Debug for any type that can be iterated over and whose 
elements are Debug.

impl Debug for AnyIterable
  where for<'a> &'a Self: IntoIterator,
        for<'a> <&'a Self as IntoIterator>::Item: Debug {
    fn fmt(&self, f: &mut Formatter) -> Result<(), Error> {
        f.debug_list().entries(self).finish()
}}

Listing 3-6: An excessively generic implementation of Debug for any iterable collection

You could copy-paste this implementation for pretty much any collec-
tion type and it would “ just work.” Of course, you may want a smarter debug 
implementation, but this illustrates the power of trait bounds quite well.

Marker Traits
Usually, we use traits to denote functionality that multiple types can sup-
port; a Hash type can be hashed by calling hash, a Clone type can be cloned 
by calling clone, and a Debug type can be formatted for debugging by calling 
fmt. But not all traits are functional in this way. Some traits, called marker 
traits, instead indicate a property of the implementing type. Marker traits 
have no methods or associated types and serve just to tell you that a par-
ticular type can or cannot be used in a certain way. For example, if a type 
implements the Send marker trait, it is safe to send across thread boundar-
ies. If it does not implement this marker trait, it isn’t safe to send. There are 
no methods associated with this behavior; it’s just a fact about the type. The 
standard library has a number of these in the std::marker module, including 
Send, Sync, Copy, Sized, and Unpin. Most of these (all except Copy) are also auto-
traits; the compiler automatically implements them for types unless the type 
contains something that does not implement the marker trait.

Marker traits serve an important purpose in Rust: they allow you to 
write bounds that capture semantic requirements not directly expressed 
in the code. There is no call to send in code that requires that a type is 
Send. Instead, the code assumes that the given type is fine to use in a sepa-
rate thread, and without marker traits the compiler would have no way of 
checking that assumption. It would be up to the programmer to remember 
the assumption and read the code very carefully, which we all know is not 
something we’d like to rely on. That path is riddled with data races, seg-
faults, and other runtime issues.
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Similar to marker traits are marker types. These are unit types (like 
struct MyMarker;) that hold no data and have no methods. Marker types 
are useful for, well, marking a type as being in a particular state. They 
come in handy when you want to make it impossible for a user to misuse 
an API. For example, consider a type like SshConnection, which may or may 
not have been authenticated yet. You could add a generic type argument 
to SshConnection and then create two marker types: Unauthenticated and 
Authenticated. When the user first connects, they get SshConnection<Unauthent
icated>. In its impl block, you provide only a single method: connect. connect 
returns a SshConnection<Authenticated>, and it’s only in that impl block that 
you provide the remaining methods for running commands and such. We 
will look at this pattern further in Chapter 4.

Existential Types
In Rust you very rarely have to specify the types of variables you declare in 
the body of a function or the types of generic arguments to methods that 
you call. This is because of type inference, where the compiler decides what 
type to use based on what type the code the type appears in evaluates to. 
The compiler will usually infer types only for variables and for the argu-
ments (and return types) of closures; top-level definitions like functions, 
types, traits, and trait implementation blocks all require that you explicitly 
name all types. There are a couple of reasons for this, but the primary one 
is that type inference is much easier when you have at least some known 
points to start the inference from. However, it’s not always easy, or even pos-
sible, to fully name a type! For example, if you return a closure from a func-
tion, or an async block from a trait method, its type does not have a name 
that you can type into your code.

To handle situations like this, Rust supports existential types. Chances 
are, you have already seen existential types in action. All functions marked 
as async fn or with a return type of impl Trait have an existential return 
type: the signature does not give the true type of the return value, just a 
hint that the function returns some type that implements some set of traits 
that the caller can rely on. And crucially, the caller can only rely on the 
return type implementing those traits, and nothing else. 

N O T E Technically, it isn’t strictly true that the caller relies on the return type and nothing 
else. The compiler will also propagate auto-traits like Send and Sync through impl 
Trait in return position. We’ll look at this more in the next chapter.

This behavior is what gives existential types their name: we are assert-
ing that there exists some concrete type that matches the signature, and we 
leave it up to the compiler to find what that type is. The compiler will usu-
ally then go figure that out by applying type inference on the body of the 
function.
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Not all instances of impl Trait use existential types. If you use impl 
Trait in argument position for a function, it’s really just shorthand for an 
unnamed generic parameter to that function. For example, fn foo(s: impl 
ToString) is mostly just syntax sugar for fn foo<S: ToString>(s: S).

Existential types come in handy particularly when you implement traits 
that have associated types. For example, imagine you’re implementing the 
IntoIterator trait. It has an associated type IntoIter that holds the type of 
the iterator that the type in question can be turned into. With existential 
types, you do not need to define a separate iterator type to use for IntoIter. 
Instead, you can give the associated type as impl Iterator<Item = Self::Item> 
and just write an expression inside the fn into_iter(self) that evaluates to an 
Iterator, such as by using maps and filters over some existing iterator type.

Existential types also provide a feature beyond mere convenience: they 
allow you to perform zero-cost type erasure. Instead of exporting helper 
types just because they appear in a public signature somewhere—iterators 
and futures are common examples of this—you can use existential types to 
hide the underlying concrete type. Users of your interface are shown only 
the traits that the relevant type implements, while the concrete type is left 
as an implementation detail. Not only does this simplify the interface, but it 
also enables you to change that implementation as you wish without break-
ing downstream code in the future.

Summary
This chapter has provided a thorough review of the Rust type system. We’ve 
looked both at how the compiler manifests types in memory and how it 
reasons about the types themselves. This is important background material 
for writing unsafe code, complex application interfaces, and asynchronous 
code in later chapters. You’ll also find that much of the type reasoning from 
this chapter plays into how you design Rust code interfaces, which we’ll 
cover in the next chapter.
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4
D E S I G N I N G  I N T E R F A C E S

Every project, no matter how large or small, 
has an API. In fact, it usually has several. 

Some of these are user-facing, like an HTTP 
endpoint or a command line interface, and 

some are developer-facing, like a library’s public inter-
face. On top of these, Rust crates also have a number 
of internal interfaces: every type, trait, and module  
boundary has its own miniature API that the rest of your code interfaces 
with. As your codebase grows in size and complexity, you’ll find it worth-
while to invest some thought and care into how you design even the inter-
nal APIs to make the experience of using and maintaining the code over 
time as pleasant as possible. 

In this chapter we’ll look at some of the most important considerations 
for writing idiomatic interfaces in Rust, whether the users of those inter-
faces are your own code or other developers using your library. These essen-
tially boil down to four principles: your interfaces should be unsurprising, 
flexible, obvious, and constrained. I’ll discuss each of these principles in turn, 
to provide some guidance for writing reliable and usable interfaces.
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I highly recommend taking a look at the Rust API Guidelines (https://
rust-lang.github.io/api-guidelines/) after you’ve read this chapter. There’s 
an excellent checklist you can follow, with a detailed run-through of each 
recommendation. Many of the recommendations in this chapter are also 
checked by the cargo clippy tool, which you should start running on your 
code if you aren’t already. I also encourage you to read through Rust RFC 
1105 (https://rust-lang.github.io/rfcs/1105-api-evolution.html) and the chapter 
of The Cargo Book on SemVer compatibility (https://doc.rust-lang.org/cargo/ 
reference/semver.html), which cover what is and is not a breaking change 
in Rust.

Unsurprising
The Principle of Least Surprise, otherwise known as the Law of Least 
Astonishment, comes up a lot in software engineering, and it holds true for 
Rust interfaces as well. Where possible, your interfaces should be intuitive 
enough that if the user has to guess, they usually guess correctly. Of course, 
not everything about your application is going to be immediately intuitive 
in this way, but anything that can be unsurprising should be. The core idea 
here is to stick close to things the user is likely to already know so that they 
don’t have to relearn concepts in a different way than they’re used to. That 
way you can save their brain power for figuring out the things that are actu-
ally specific to your interface.

There are a variety of ways you can make your interfaces predictable. 
Here, we’ll look at how you can use naming, common traits, and ergonomic 
trait tricks to help the user out.

Naming Practices
A user of your interface will encounter it first through its names; they will 
immediately start to infer things from the names of types, methods, vari-
ables, fields, and libraries they come across. If your interface reuses names 
for things—say, methods and types—from other (perhaps common) inter-
faces, the user will know they can make certain assumptions about your 
methods and types. A method called iter probably takes &self, and prob-
ably gives you an iterator. A method called into_inner probably takes self 
and likely returns some kind of wrapped type. A type called SomethingError 
probably implements std::error::Error and appears in various Results. By 
reusing common names for the same purpose, you make it easier for the 
user to guess what things do and allow them to more easily understand 
the things that are different about your interface.

A corollary to this is that things that share a name should in fact work 
the same way. Otherwise—for example, if your iter method takes self, or if 
your SomethingError type does not implement Error—the user will likely write 
incorrect code based on how they expect the interface to work. They will be 
surprised and frustrated and will have to spend time digging into how your 
interface differs from their expectations. When we can save the user this 
kind of friction, we should.
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Common Traits for Types
Users in Rust will also make the major assumption that everything in the 
interface “ just works.” They expect to be able to print any type with {:?} 
and send anything and everything to another thread, and they expect that 
every type is Clone. Where possible, we should again avoid surprising the 
user and eagerly implement most of the standard traits even if we do not 
need them immediately.

Because of the coherence rules discussed in Chapter 3, the compiler will 
not allow users to implement these traits when they need them. Users aren’t 
allowed to implement a foreign trait (like Clone) for a foreign type like one 
from your interface. They would instead need to wrap your interface type in 
their own type, and even then it may be quite difficult to write a reasonable 
implementation without access to the type’s internals.

First among these standard traits is the Debug trait. Nearly every type can, 
and should, implement Debug, even if it only prints the type’s name. Using 
#[derive(Debug)] is often the best way to implement the Debug trait in your 
interface, but keep in mind that all derived traits automatically add the same 
bound for any generic parameters. You could also simply write your own 
implementation by leveraging the various debug_ helpers on fmt::Formatter.

Tied in close second are the Rust auto-traits Send and Sync (and, to a 
lesser extent, Unpin). If a type does not implement one of these traits, it 
should be for a very good reason. A type that is not Send can’t be placed in 
a Mutex and can’t be used even transitively in an application that contains a 
thread pool. A type that is not Sync can’t be shared through an Arc or placed 
in a static variable. Users have come to expect that types just work in these 
contexts, especially in the asynchronous world where nearly everything 
runs on a thread pool, and will become frustrated if you don’t ensure that 
your types implement these traits. If your types cannot implement them, 
make sure that fact, and the reason why, is well documented!

The next set of nearly universal traits you should implement is Clone and 
Default. These traits can be derived or implemented easily and make sense 
to implement for most types. If your type cannot implement these traits, 
make sure to call it out in your documentation, as users will usually expect 
to be able to easily create more (and new) instances of types as they see fit. 
If they cannot, they will be surprised.

One step further down in the hierarchy of expected traits is the com-
parison traits: PartialEq, PartialOrd, Hash, Eq, and Ord. The PartialEq trait is 
particularly desirable, because users will at some point inevitably have two 
instances of your type that they wish to compare with == or assert_eq!. Even 
if your type would compare equal for only the same instance of the type, it’s 
worth implementing PartialEq to enable your users to use assert_eq!.

PartialOrd and Hash are more specialized, and may not apply quite as 
broadly, but where possible you will want to implement them too. This is 
especially true for types a user might use as the key in a map, or a type they 
may deduplicate using any of the std::collection set types, since they tend 
to require these bounds. Eq and Ord come with additional semantic require-
ments on the implementing type’s comparison operations beyond those of 
PartialEq and PartialOrd. These are well documented in the documentation 
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for those traits, and you should implement them only if you’re sure those 
semantics actually apply to your type.

Finally, for most types, it makes sense to implement the serde crate’s 
Serialize and Deserialize traits. These can be easily derived, and the serde 
_derive crate even comes with mechanisms for overwriting the serialization 
for just one field or enum variant. Since serde is a third-party crate, you 
may not wish to add a required dependency on it. Most libraries therefore 
choose to provide a serde feature that adds support for serde only when the 
user opts into it.

You might be wondering why I haven’t included the derivable trait Copy 
in this section. There are two things that set Copy apart from the other traits 
mentioned. The first is that users do not generally expect types to be Copy; 
quite to the contrary, they tend to expect that if they want two copies of some-
thing, they have to call clone. Copy changes the semantics of moving a value 
of the given type, which might surprise the user. This ties in to the second 
observation: it is very easy for a type to stop being Copy, because Copy types are 
highly restricted. A type that starts out simple can easily end up having to hold 
a String, or some other non-Copy type. Should that happen, and you have to 
remove the Copy implementation, that’s a backward incompatible change. It is 
much rarer that you will have to remove a Clone implementation, so that’s a less 
onerous promise to make.

Ergonomic Trait Implementations
Rust does not automatically implement traits for references to types that 
implement traits. To phrase this a different way, you cannot generally call 
fn foo<T: Trait>(t: T) with a &Bar, even if Bar: Trait. This is because Trait 
may contain methods that take &mut self or self, which obviously cannot be 
called on &Bar. Nonetheless, this behavior might be very surprising to a user 
who sees that Trait has only &self methods!

For this reason, when you define a new trait, you’ll usually want to pro-
vide blanket implementations as appropriate for that trait for &T where T: 
Trait, &mut T where T: Trait, and Box<T> where T: Trait. You may be able to 
implement only some of these depending on what receivers the methods of 
Trait have. Many of the traits in the standard library have similar implemen-
tations, precisely because that leads to fewer surprises for the user.

Iterators are another case where you’ll often want to specifically add 
trait implementations on references to a type. For any type that can be 
iterated over, consider implementing IntoIterator for both &MyType and &mut 
MyType where applicable. This makes for loops work with borrowed instances 
of your type as well out of the box, just like users would expect.

Wrapper Types
Rust does not have object inheritance in the classical sense. However, the Deref 
trait and its cousin AsRef both provide something a little like inheritance. 
These traits allow you to have a value of type T and call methods on some 
type U by calling them directly on the T-typed value if T: Deref<Target = U>. 
This feels like magic to the user, and is generally great.
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If you provide a relatively transparent wrapper type (like Arc), there’s a 
good chance you’ll want to implement Deref so that users can call methods 
on the inner type by just using the . operator. If accessing the inner type 
does not require any complex or potentially slow logic, you should also 
consider implementing AsRef, which allows users to easily use a &WrapperType 
as an &InnerType. For most wrapper types, you will also want to implement 
From<InnerType> and Into<InnerType> where possible so that your users can 
easily add or remove your wrapping.

You may also have come across the Borrow trait, which feels very similar 
to Deref and AsRef but is really a bit of a different beast. Specifically, Borrow 
is tailored for a much narrower use case: allowing the caller to supply any 
one of multiple essentially identical variants of the same type. It could, per-
haps, have been called Equivalent instead. For example, for a HashSet<String>, 
Borrow allows the caller to supply either a &str or a &String. While the same 
could have been achieved with AsRef, that would not be safe without Borrow’s 
additional requirement that the target type implements Hash, Eq, and Ord 
exactly the same as the implementing type. Borrow also has a blanket imple-
mentation of Borrow<T> for T, &T, and &mut T, which makes it convenient to use 
in trait bounds to accept either owned or referenced values of a given type. 
In general, Borrow is intended only for when your type is essentially equiva-
lent to another type, whereas Deref and AsRef are intended to be imple-
mented more widely for anything your type can “act as.”

DER EF A ND INHER EN T ME T HODS

The magic around the dot operator and Deref can get confusing and surprising 
when there are methods on T that take self. For example, given a value t: T, it 
is not clear whether t.frobnicate() frobnicates the T or the underlying U! 

For this reason, types that allow you to transparently call methods on some 
inner type that isn’t known in advance should avoid inherent methods. It’s fine 
for Vec to have a push method even though it dereferences to a slice, since you 
know that slices won’t get a push method any time soon. But if your type deref-
erences to a user-controlled type, any inherent method you add may also exist 
on that user-controlled type, and thus cause issues. In these cases, favor static 
methods of the form fn frobnicate(t: T). That way, t.frobnicate() always 
calls U::frobnicate, and T::frobnicate(t) can be used to frobnicate the T itself. 
There are many examples of this pattern in the standard library, with the smart 
pointer types like Arc and Box being prime examples: to clone an Arc, you use 
Arc::clone(&myarc), not myarc.clone() (which would clone the inner type).

Flexible
Every piece of code you write includes, implicitly or explicitly, a contract. 
The contract consists of a set of requirements and a set of promises. The 
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requirements are restrictions on how the code can be used, while the prom-
ises are guarantees about how the code can be used. When designing a 
new interface, you want to think carefully about this contract. A good rule 
of thumb is to avoid imposing unnecessary restrictions and to only make 
promises you can keep. Adding restrictions or removing promises usually 
requires a major semantic version change and is likely to break code else-
where. Relaxing restrictions or giving additional promises, on the other 
hand, is usually backward compatible.

In Rust, restrictions usually come in the form of trait bounds and 
argument types, and promises come in the form of trait implementations 
and return types. For example, compare the three function signatures in 
Listing 4-1.

fn frobnicate1(s: String) -> String
fn frobnicate2(s: &str) -> Cow<'_, str>
fn frobnicate3(s: impl AsRef<str>) -> impl AsRef<str>

Listing 4-1: Similar function signatures with different contracts

These three function signatures all take a string and return a string, 
but they do so under very different contracts.

The first function requires the caller to own the string in the form of 
the String type, and it promises that it will return an owned String. Since 
the contract requires the caller to allocate and requires us to return an 
owned String, we cannot later make this function allocation-free in a back-
ward compatible way.

The second function relaxes the contract: the caller can provide any 
reference to a string, so the user no longer needs to allocate or give up own-
ership of a String. It also promises to give back a std::borrow::Cow, meaning 
it can return either a string reference or an owned String, depending on 
whether it needs to own the string. The promise here is that the function 
will always return a Cow, which means that we cannot, say, change it to use 
some other optimized string representation later. The caller must also spe-
cifically provide a &str, so if they have, say, a pre-existing String of their own, 
they must dereference it to a &str to call our function.

The third function lifts these restrictions. It requires only that the user 
pass in a type that can produce a reference to a string, and it promises only 
that the return value can produce a reference to a string.

None of these function signatures is better than the others. If you need 
ownership of a string in the function, you can use the first argument type 
to avoid an extra string copy. If you want to allow the caller to take advan-
tage of the case where an owned string was allocated and returned, the sec-
ond function with a return type of Cow may be a good choice. Instead, what 
I want you to take away from this is that you should think carefully about 
what contract your interface binds you to, because changing it after the fact 
can be disruptive.

In the remainder of this section I give examples of interface design 
decisions that often come up, and their implications for your interface 
contract.
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Generic Arguments
One obvious requirement your interface must place on users is what types 
they must provide to your code. If your function explicitly takes a Foo, the 
user must own and give you a Foo. There is no way around it. In most cases 
it pays off to use generics rather than concrete types, to allow the caller to 
pass any type that conforms to what your function actually needs, rather 
than only a particular type. Changing &str in Listing 4-1 to impl AsRef<str> 
is an example of this kind of relaxing. One way to go about relaxing 
requirements this way is to start with the argument fully generic with no 
bounds, and then just follow the compiler errors to discover what bounds 
you need to add.

However, if taken to the extreme, this approach would make every argu-
ment to every function its own generic type, which would be both hard to 
read and hard to understand. There are no hard-and-fast rules for exactly 
when you should or should not make a given parameter generic, so use your 
best judgment. A good rule of thumb is to make an argument generic if you 
can think of other types a user might reasonably and frequently want to use 
instead of the concrete type you started with.

You may remember from Chapter 3 that generic code is duplicated for 
every combination of types ever used with the generic code through mono-
morphization. With that in mind, the idea of making lots of arguments 
generic might make you worried about overly enlarging your binaries. In 
Chapter 3 we also discussed how you can use dynamic dispatch to mitigate 
this at a (usually) negligible performance cost, and that applies here too. 
For arguments that you take by reference anyway (recall that dyn Trait is not 
Sized, and that you need a fat pointer to use them), you can easily replace 
your generic argument with one that uses dynamic dispatch. For instance, 
instead of impl AsRef<str>, you could take &dyn AsRef<str>.

Before you go running to do that, though, there are a few things you 
should consider. First, you are making this choice on behalf of your users, 
who cannot opt out of dynamic dispatch. If you know that the code you’re 
applying dynamic dispatch to will never be performance-sensitive, that 
may be fine. But if a user comes along who wants to use your library in 
their high-performance application, dynamic dispatch in a function that is 
called in a hot loop may be a deal breaker. Second, at the time of writing, 
using dynamic dispatch will work only when you have a simple trait bound 
like T: AsRef<str> or impl AsRef<str>. For more complex bounds, Rust does 
not know how to construct a dynamic dispatch vtable, so you cannot take, 
say, &dyn Hash + Eq. And finally, remember that with generics, the caller can 
always choose dynamic dispatch themselves by passing in a trait object. 
The reverse is not true: if you take a trait object, that is what the caller must 
provide.

It may be tempting to start your interfaces off with concrete types and 
then turn them generic over time. This can work, but keep in mind that 
such changes are not necessarily backward compatible. To see why, imagine 
that you change a function from fn foo(v: &Vec<usize>) to fn foo(v: impl 
AsRef<[usize]>). While every &Vec<usize> implements AsRef<[usize]>, type 
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inference can still cause issues for users. Consider what happens if the 
caller invokes foo with foo(&iter.collect()). In the original version, the com-
piler could determine that it should collect into a Vec, but now it just knows 
that it needs to collect into some type that implements AsRef<[usize]>. And 
there could be multiple such types, so with this change, the caller’s code 
will no longer compile!

Object Safety
When you define a new trait, whether or not that trait is object-safe (see 
the end of “Compilation and Dispatch” on page XX in Chapter 3) is an 
unwritten part of the trait’s contract. If the trait is object-safe, users can 
treat different types that implement your trait as a single common type 
using dyn Trait. If it isn’t, the compiler will disallow dyn Trait for that trait. 
You should prefer your traits to be object-safe even if that comes at a slight 
cost to the ergonomics of using them (such as taking impl AsRef<str> over 
&str), since object safety enables new ways to use your traits. If your trait 
must have a generic method, consider whether its generic parameters can 
be on the trait itself or if its generic arguments can also use dynamic dis-
patch to preserve the object safety of the trait. Alternatively, you can add a 
where Self: Sized trait bound to that method, which makes it possible to call 
the method only with a concrete instance of the trait (and not through dyn 
Trait). You can see examples of this pattern in the Iterator and Read traits, 
which are object-safe but provide some additional convenience methods on 
concrete instances.

There is no single answer to the question of how many sacrifices you 
should be willing to make to preserve object safety. My recommendation is 
that you consider how your trait will be used, and whether it makes sense 
for users to want to use it as a trait object. If you think it’s likely that users 
will want to use many different instances of your trait together, you should 
work harder to provide object safety than if you don’t think that use case 
makes much sense. For example, dynamic dispatch would not be useful 
for the FromIterator trait because its one method does not take self, so 
you wouldn’t be able to construct a trait object in the first place. Similarly, 
std::io::Seek is fairly useless as a trait object on its own, because the only 
thing you would be able to do with such a trait object is seek, without being 
able to read or write.

DROP T R A IT OBJEC T S

You might think that the Drop trait is also useless as a trait object, since 
all you can do with Drop as a trait object is to drop it. But it turns out there are 
some libraries that specifically just want to be able to drop arbitrary types. For 
example, a library that offers deferred dropping of values, such as for concur-
rent garbage collection or just deferred cleanup, cares only that the values can 
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be dropped, and nothing else. Interestingly enough, the story of Drop 
doesn’t end there; since Rust needs to be able to drop trait objects 
too, every vtable contains the drop method. Effectively, every dyn 
Trait is also a dyn Drop.

Remember that object safety is a part of your public interface! 
If you modify a trait in an otherwise backward compatible way, such 
as by adding a method with a default implementation, but it makes 
the trait not object-safe, you need to bump your major semantic ver-
sion number.

Borrowed vs. Owned
For nearly every function, trait, and type you define in Rust, you 
must decide whether it should own, or just hold a reference to, its 
data. Whatever decision you make will have far-reaching impli-
cations for the ergonomics and performance of your interface. 
Luckily, these decisions very often make themselves.

If the code you write needs ownership of the data, such as to 
call methods that take self or to move the data to another thread, 
it must store the owned data. When your code must own data, it 
should generally also make the caller provide owned data, rather 
than taking values by reference and cloning them. This leaves the 
caller in control of allocation, and it is upfront about the cost of 
using the interface in question.

On the other hand, if your code doesn’t need to own the data, 
it should operate on references instead. One common exception 
to this rule is with small types like i32, bool, or f64, which are just 
as cheap to store and copy directly as to store through references. 
Be wary of assuming this holds true for all Copy types, though; [u8; 
8192] is Copy, but it would be expensive to store and copy it all over 
the place.

Of course, in the real world, things are often less clear-cut. 
Sometimes, you don’t know in advance whether your code will need 
to own the data or not. For example, String::from_utf8_lossy needs 
to take ownership of the byte sequence that is passed to it only if it 
contains invalid UTF-8 sequences. In this case, the Cow type is your 
friend: it lets you operate on references if the data allows, and it lets 
you produce an owned value if necessary.

Other times, reference lifetimes complicate the interface so 
much that it becomes a pain to use. If your users are struggling to 
get code to compile on top of your interface, that’s a sign that you 
may want to (even unnecessarily) take ownership of certain pieces 
of data. If you do this, start with data that is cheap to clone or is not 
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part of anything performance-sensitive before you decide to heap-allocate 
what might be a huge chunk of bytes.

Fallible and Blocking Destructors
Types centered on I/O often need to perform cleanup when they’re dropped.  
This may include flushing writes to disk, closing files, or gracefully terminat-
ing connections to remote hosts. The natural place to perform this cleanup 
is in the type’s Drop implementation. Unfortunately, once a value is dropped, 
we no longer have a way to communicate errors to the user except by panick-
ing. A similar problem arises in asynchronous code, where we wish to finish 
up when there is work pending. By the time drop is called, the executor may 
be shutting down, and we have no way to do more work. We could try to 
start another executor, but that comes with its own host of problems, such as 
blocking in asynchronous code, as we will see in Chapter 9.

There is no perfect solution to these problems, and no matter what we 
do, some applications will inevitably fall back to our Drop implementation. 
For that reason, we need to provide best-effort cleanup through Drop. If 
cleanup errors, at least we tried—we swallow the error and move on. If an 
executor is still available, we might spawn a future to do cleanup, but if it 
never gets to run, we did what we could.

However, we ought to provide a better alternative for users who wish 
to leave no loose threads. We can do this by providing an explicit destruc-
tor. This usually takes the form of a method that takes ownership of self 
and exposes any errors (using -> Result<_, _>) or asynchrony (using async 
fn) that are inherent to the destruction. A careful user can then use that 
method to gracefully tear down any associated resources.

N O T E Make sure you highlight the explicit destructor in your documentation!

As always, there’s a trade-off. The moment you add an explicit destruc-
tor, you will run into two issues. First, since your type implements Drop, you 
can no longer move out of any of that type’s fields in the destructor. This 
is because Drop::drop will still be called after your explicit descriptor runs, 
and it takes &mut self, which requires that no part of self has been moved. 
Second, drop takes &mut self, not self, so your Drop implementation cannot 
simply call your explicit destructor and ignore its result (because it doesn’t 
own self). There are a couple of ways around these problems, none of 
which are perfect.

The first is to make your top-level type a newtype wrapper around 
an Option, which in turn holds some inner type that holds all of the type’s 
fields. You can then use Option::take in both destructors, and call the inner 
type’s explicit destructor only if the inner type has not already been taken. 
Since the inner type does not implement Drop, you can take ownership of all 
the fields there. The downside of this approach is that all the methods you 
wish to provide on the top-level type must now include code to get through 
the Option (which you know is always Some since drop has not yet been called) 
to the fields on the inner type.

Rust for Rustaceans (Early Access) © 2022 by Jon Gjengset 



Designing Interfaces   47

The second workaround is to make each of your fields takeable. You can 
“take” an Option by replacing it with None (which is what Option::take does), 
but you can do this with many other types as well. For example, you can 
take a Vec or HashMap by simply replacing them with their cheap-to-construct 
default values—std::mem::take is your friend here. This approach works 
great if your types have sane “empty” values but gets tedious if you must 
wrap nearly every field in an Option and then modify every access of those 
fields with a matching unwrap.

The third option is to hold the data inside the ManuallyDrop type, which 
dereferences to the inner type, so there’s no need for unwraps. You can also 
use ManuallyDrop::take in drop to take ownership at destruction time. The pri-
mary downside of this approach is that ManuallyDrop::take is unsafe. There 
are no safety mechanisms in place to ensure that you don’t try to use the 
value inside the ManuallyDrop after you’ve called take or that you don’t call 
take multiple times. If you do, your program will silently exhibit undefined 
behavior, and bad things will happen.

Ultimately, you should choose whichever of these approaches fits your 
application best. I would err on the side of going with the second option, 
and switching to the others only if you find yourself in a sea of Options. The 
ManuallyDrop solution is excellent if the code is simple enough that you can eas-
ily check the safety of your code, and you are confident in your ability to do so.

Obvious
While some users may be familiar with aspects of the implementation that 
underpins your interface, they are unlikely to understand all of its rules 
and limitations. They won’t know that it’s never okay to call foo after calling 
bar, or that it’s only safe to call the unsafe method baz when the moon is at a 
47-degree angle and no one has sneezed in the past 18 seconds. Only if the 
interface makes it clear that something strange is going on will they reach 
for the documentation or carefully read type signatures. It’s therefore criti-
cal for you to make it as easy as possible for users to understand your inter-
face and as hard as possible for them to use it incorrectly. The two primary 
techniques at your disposal for this are your documentation and the type 
system, so let’s look at each of those in turn.

N O T E  You can also take advantage of naming to suggest to the user when there’s more to 
an interface than meets the eye. If a user sees a method named dangerous, chances are 
they will read its documentation.

Documentation
The first step to making your interfaces transparent is to write good docu-
mentation. I could write an entire book dedicated to how to write documen-
tation, but let’s focus on Rust-specific advice here.

First, clearly document any cases where your code may do something 
unexpected, or where it relies on the user doing something beyond what’s 
dictated by the type signature. Panics are a good example of both of 
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these circumstances: if your code can panic, document that fact, along 
with the circumstances it might panic under. Similarly, if your code might 
return an error, document the cases in which it does. For unsafe functions, 
document what the caller must guarantee in order for the call to be safe.

Second, include end-to-end usage examples for your code on a crate 
and module level. These are more important than examples for specific 
types or methods, since they give the user a feel for how everything fits 
together. With a decent high-level understanding of the interface’s struc-
ture, the developer may soon realize what particular methods and types 
do and where they should be used. End-to-end examples also give the user 
a starting point for customizing their usage, and they can, and often will, 
copy-paste the example and then modify it to suit their needs. This kind 
of “learning by doing” tends to work better than having them try to piece 
something together from the components.

N O T E Very method-specific examples that show that, yes, the len method indeed returns the 
length are unlikely to tell the user anything new about your code.

Third, organize your documentation. Having all your types, traits, and 
functions in a single top-level module makes it difficult for the user to get 
a sense of where to start. Take advantage of modules to group together 
semantically related items. Then, use intra-documentation links to interlink 
items. If the documentation on type A talks about trait B, then it should 
link to that trait right there. If you make it easy for the user to explore your 
interface, they are less likely to miss important connections or dependen-
cies. Also consider marking parts of your interface that are not intended to 
be public but are needed for legacy reasons with #[doc(hidden)], so that they 
do not clutter up your documentation.

And finally, enrich your documentation wherever possible. Link to 
external resources that explain concepts, data structures, algorithms, or 
other aspects of your interface that may have good explanations elsewhere. 
RFCs, blog posts, and whitepapers are great for this, if any are relevant. Use 
#[doc(cfg(..))] to highlight items that are available only under certain con-
figurations so the user quickly realizes why some method that’s listed in the 
documentation isn’t available. Use #[doc(alias = "...")] to make types and 
methods discoverable under other names that users may search for them by. 
In the top-level documentation, point the user to commonly used modules, 
features, types, traits, and methods.

Type System Guidance
The type system is an excellent tool to ensure that your interfaces are obvi-
ous, self-documenting, and misuse-resistant. You have several techniques at 
your disposal that can make your interfaces very hard to misuse, and thus, 
make it more likely that they will be used correctly.

The first of these is semantic typing, in which you add types to repre-
sent the meaning of a value, not just its primitive type. The classic example 
here is for Booleans: if your function takes three bool arguments, chances 
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are some user will mess up the order of the values and realize it only after 
something has gone terribly wrong. If, on the other hand, it takes three 
arguments of distinct two-variant enum types, the user cannot get the 
order wrong without the compiler yelling at them: if they attempt to pass 
DryRun::Yes to the overwrite argument, that will simply not work, nor will 
passing Overwrite::No as the dry_run argument.  You can apply semantic typ-
ing beyond Booleans as well. For example, a newtype around a numeric 
type may provide a unit for the contained value, or it could constrain 
raw pointer arguments to only those that have been returned by another 
method.

A closely related technique is to use zero-sized types to indicate that a 
particular fact is true about an instance of a type. Consider, for instance, a 
type called Rocket that represents the state of a real rocket. Some operations 
(methods) on Rocket should be available no matter what state the rocket 
is in, but some make sense only in particular situations. It is, for example, 
impossible to launch a rocket if it has already been launched. Similarly, it 
should probably not be possible to separate the fuel tank if the rocket has 
not yet launched. We could model these as enum variants, but then all the 
methods would be available at every stage, and we’d need to introduce pos-
sible panics.

Instead, as shown in Listing 4-2, we can introduce a generic parameter 
on Rocket, Stage, and use it to restrict what methods are available when.

1 struct Grounded;
struct Launched;
// and so on
struct Rocket<Stage = Grounded> {
2   stage: std::marker::PhantomData<Stage>,
}

3 impl Default for Rocket<Grounded> {}
impl Rocket<Grounded> {
  pub fn launch(self) -> Rocket<Launched> { }
}
4 impl Rocket<Launched> {
  pub fn accelerate(&mut self) { }
  pub fn decelerate(&mut self) { }
}

5 impl<Stage> Rocket<Stage> {
  pub fn color(&self) -> Color { }
  pub fn weight(&self) -> Kilograms { }
}

Listing 4-2: Using marker types to restrict implementations

We introduce unit types to represent each stage the rocket can be in 
1. We don’t actually need to store the stage—only the meta-information it 
provides—so we store it behind a PhantomData 2 to guarantee that it is elimi-
nated at compile time. Then, we write implementation blocks for Rocket only 
when it holds a particular type parameter. You can construct a rocket only 
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on the ground (for now), and you can launch it only from the ground 3.  
Only when the rocket has been launched can you control its velocity 4. 
There are some things you can always do with the rocket, no matter what 
state it is in, and those we place in a generic implementation block 5. You’ll 
notice that with the interface designed this way, it’s simply not possible for 
the user to call a method at the wrong time—we have encoded the usage 
rules in the types themselves, and made illegal states unrepresentable.

This notion extends to many other domains as well; if your function 
ignores a pointer argument unless a given Boolean argument is true, it’s 
better to combine the two arguments instead. With an enum type with 
one variant for false (and no pointer) and one variant for true that holds a 
pointer, neither the caller nor the implementer can misunderstand the rela-
tionship between the two. This is a powerful idea that I highly encourage 
you to make use of.

Another small but useful tool in making interfaces obvious is the #[must 
_use] annotation. Add it to any type, trait, or function, and the compiler will 
issue a warning if the user’s code receives an element of that type or trait, or 
calls that function, and does not explicitly handle it. You may already have 
seen this in the context of Result: if a function returns a Result and you do 
not assign its return value somewhere, you get a compiler warning. Be care-
ful not to overuse this annotation, though—add it only if the user is very 
likely to make a mistake if they are not using the return value.

Constrained
Over time, some user will depend on every property of your interface, 
whether bug or feature. This is especially true for publicly available librar-
ies where you have no control over your users. As a result, you should think 
carefully before you make user-visible changes. Whether you’re adding a 
new type, field, method, or trait implementation or changing an existing 
one, you want to make sure that the change will not break existing users’ 
code, and that you are planning to keep that change around for a while. 
Frequent backward incompatible changes (major version increases in 
semantic versioning) are sure to draw the ire of your users.

Many backward incompatible changes are obvious, like renaming a 
public type or removing a public method, but some are subtler and tie 
in deeply with the way Rust works. Here, we’ll cover some of the thornier 
subtle changes and how to plan for them. You’ll see that you need to bal-
ance some of these against how flexible you want your interface to be— 
sometimes, something’s got to give.

Type Modifications
Removing or renaming a public type will almost certainly break some user’s 
code. To counter this, you’ll want to take advantage of Rust’s visibility modi-
fiers, like pub(crate) and pub(in path), whenever possible. The fewer public 
types you have, the more freedom you have to change things later without 
breaking existing code.
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User code can depend on your types in more ways than just by name, 
though. Consider the public type in Listing 4-3 and the given use of 
that code.

// in your interface
pub struct Unit;
// in user code
let u = lib::Unit;

Listing 4-3: An innocent-looking public type

Now consider what happens if you add a private field to Unit. Even 
though the field you add is private, the change will still break the user’s 
code, because the constructor they relied on has disappeared. Similarly, 
consider the code and use in Listing 4-4.

// in your interface
pub struct Unit { pub field: bool };
// in user code
fn is_true(u: lib::Unit) -> bool {
    matches!(u, Unit { field: true })
}

Listing 4-4: User code accessing a single public field

Here, too, adding a private field to Unit will break user code, this time 
because Rust’s exhaustive pattern match checking logic is able to see parts 
of the interface that the user cannot see. It recognizes that there are more 
fields, even though the user code cannot access them, and rejects the 
user’s pattern as incomplete. A similar issue arises if we turn a tuple struct 
into a regular struct with named fields: even if the fields themselves are 
exactly the same, any old patterns will no longer be valid for the new type 
definition.

Rust provides the #[non_exhaustive] attribute to help mitigate these 
issues. You can add it to any type definition, and the compiler will disallow 
the use of implicit constructors (like lib::Unit { field1: true }) and non-
exhaustive pattern matches (that is, patterns without a trailing , ..) on 
that type. This is a great attribute to add if you suspect that you’re likely to 
modify a particular type in the future. It does constrain user code though, 
such as by taking away users’ ability to rely on exhaustive pattern matches, 
so avoid adding it if you think a given type is likely to remain stable.

Trait Implementations
As you’ll recall from Chapter 3, Rust’s coherence rules disallow multiple 
implementations of a given trait for a given type. Since we do not know 
what implementations downstream code may have added, adding a blanket 
implementation of an existing trait is generally a breaking change. The 
same holds true for implementing a foreign trait for an existing type, or 
an existing trait for a foreign type—in both cases, the owner of the foreign 
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trait or type may simultaneously add a conflicting implementation, so this 
must be a breaking change.

Removing a trait implementation is a breaking change, but implement-
ing traits for a new type is never a problem, since no crate can have imple-
mentations that conflict with that type.

Perhaps counterintuitively, you also want to be careful about imple-
menting any trait for an existing type. To see why, consider the code in 
Listing 4-5.

// crate1 1.0
pub struct Unit;
put trait Foo1 { fn foo(&self) }
// note that Foo1 is not implemented for Unit

// crate2; depends on crate1 1.0
use crate1::{Unit, Foo1};
trait Foo2 { fn foo(&self) }
impl Foo2 for Unit { .. }
fn main() {
  Unit.foo();
}

Listing 4-5: Implementing a trait for an existing type may cause problems.

If you add impl Foo1 for Unit to crate1 without marking it a breaking 
change, the downstream code will suddenly stop compiling since the call to 
foo is now ambiguous. This can even apply to implementations of new public 
traits, if the downstream crate uses wildcard imports (use crate1::*). You 
will particularly want to keep this in mind if you provide a prelude module 
that you instruct users to use wildcard imports for.

Most changes to existing traits are also breaking changes, such as 
changing a method signature or adding a new method. Changing a method 
signature breaks all implementations, and probably many uses, of the trait, 
whereas adding a new method “ just” breaks all implementations. Adding 
a new method with a default implementation is fine though, since existing 
implementations will continue to apply.

I say “generally” and “most” here, because as interface authors, we have a 
tool available to us that lets us skirt some of these rules: sealed traits. A sealed 
trait is one that can be used only, and not implemented, by other crates. 
This immediately makes a number of breaking changes non- breaking. For 
example, you can add a new method to a sealed trait, since you know there 
are no implementations outside of the current crate to consider. Similarly, 
you can implement a sealed trait for new foreign types, since you know 
the foreign crate that defined that type cannot have added a conflicting 
implementation.

Sealed traits are most commonly used for derived traits—traits that 
provide blanket implementations for types that implement particular other 
traits. You should seal a trait only if it does not make sense for a foreign 
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crate to implement your trait; it severely restricts the usefulness of the 
trait, since downstream crates will no longer be able to implement it for 
their own types.

Listing 4-6 shows how to seal a trait and how to then still add imple-
mentations for it in the defining crate.

pub trait CanUseCannotImplement: sealed::Sealed 1 { .. }
mod sealed {
  pub trait Sealed {}
2   impl<T> Sealed for T where T: TraitBounds {}
}
impl<T> CanUseCannotImplement for T where T: TraitBounds {}

Listing 4-6: How to seal a trait and add implementations for it

The trick is to add a private, empty trait as a supertrait of the trait you 
wish to seal 1. Since the supertrait is in a private module, other crates can-
not reach it and thus cannot implement it. The sealed trait requires the 
underlying type to implement Sealed, so only the types that we explicitly 
allow 2 are able to ultimately implement the trait.

N O T E  If you do seal a trait this way, make sure you document that fact so that users do not 
get frustrated trying to implement the trait themselves!

Hidden Contracts
Sometimes, changes you make to one part of your code affect the contract 
elsewhere in your interface in subtle ways. The two primary ways this hap-
pens are through re-exports and auto-traits.

Re-Exports

If any part of your interface exposes foreign types, then any change to 
one of those foreign types is also a change to your interface. For example, 
consider what happens if you move to a new major version of a dependency 
and expose a type from that dependency as, say, an iterator type in your 
interface. A user that depends on your interface may also depend directly 
on that dependency and expect that the type your interface provides is the 
same as the one by the same name in that dependency. But if you change 
the major version of your dependency, that is no longer true even though 
the name of the type is the same. Listing 4-7 shows an example of this.

// your crate: bestiter
pub fn iter<T>() -> itercrate::Empty<T> { .. }
// their crate
struct EmptyIterator { it: itercrate::Empty<()> }
EmptyIterator { it: bestiter::iter() }

Listing 4-7: Re-exports make foreign crates part of your interface contract.
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If your crate moves from itercrate 1.0 to itercrate 2.0 but otherwise does 
not change, the code in this listing will no longer compile. Even though no 
types have changed, the compiler believes (correctly) that itercrate1.0::Empty 
and itercrate2.0::Empty are different types. Therefore, you cannot assign the 
latter to the former, making this a breaking change in your interface.

To mitigate issues like this, it’s often best to wrap foreign types using 
the newtype pattern, and then expose only the parts of the foreign type 
that you think are useful. In many cases, you can avoid the newtype wrap-
per altogether by using impl Trait to provide only the very minimal contract 
to the caller. By promising less, you make fewer changes breaking.

T HE SEM V ER T R ICK

The itercrate example may have rubbed you the wrong way. If the Empty 
type did not change, then why does the compiler not allow anything that uses 
it to keep working, regardless of whether the code is using version 1.0 or 2.0 
of it? The answer is . . . complicated. It boils down to the fact that the Rust com-
piler does not assume that just because two types have the same fields, they are 
the same. To take a simple example of this, imagine that itercrate 2.0 added 
a #[derive(Copy)] for Empty. Now, the type suddenly has different move 
semantics depending on whether you are using 1.0 or 2.0! And code written 
with one in mind won’t work with the other.

This problem tends to crop up in large, widely used libraries, where over 
time, breaking changes are likely to have to happen somewhere in the crate. 
Unfortunately, semantic versioning happens at the crate level, not the type level, 
so a breaking change anywhere is a breaking change everywhere.

But all is not lost. A few years ago, David Tolnay (the author of serde, 
among a vast number of other Rust contributions) came up with a neat trick to 
handle exactly this kind of situation. He called it “the semver trick.” The idea 
is simple: if some type T stays the same across a breaking change (from 1.0 
to 2.0, say), then after releasing 2.0, you can release a new 1.0 minor version 
that depends on 2.0 and replaces T with a re-export of T from 2.0.

By doing this, you’re ensuring that there is in fact only a single type T 
across both major versions. This, in turn, means that any crate that depends on 
1.0 will be able to use a T from 2.0, and vice versa. And because this happens 
only for types you explicitly opt into with this trick, changes that were in fact 
breaking will continue to be.

Auto-Traits

Rust has a handful of traits that are automatically implemented for every 
type depending on what that type contains. The most relevant of these for 
this discussion are Send and Sync, though the Unpin, Sized, and UnwindSafe 
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traits have similar issues. By their very nature, these add a hidden promise 
made by nearly every type in your interface. These traits even propagate 
through otherwise type-erased types like impl Trait.

Implementations for these traits are (generally) automatically added by 
the compiler, but that also means that they are not automatically added if 
they no longer apply. So, if you have a public type A that contains a private 
type B, and you change B so that it is no longer Send, then A is now also not 
Send. That is a breaking change!

These changes can be hard to keep track of and are often not discov-
ered until a user of your interface complains that their code no longer 
works. To catch these cases before they happen, it’s good practice to include 
some simple tests in your test suite that check that all your types implement 
these traits the way you expect. Listing 4-8 gives an example of what such a 
test might look like.

fn is_normal<T: Sized + Send + Sync + Unpin>() {}
#[test]
fn normal_types() {
  is_normal::<MyType>();
}

Listing 4-8: Testing that a type implements a set of traits

Notice that this test does not run any code, but simply tests that the 
code compiles. If MyType no longer implements Sync, the test code will not 
compile, and you will know that the change you just made broke the auto-
trait implementation.

HIDING IT EMS F ROM DOCUMEN TAT ION

The #[doc(hidden)] attribute lets you hide a public item from your 
documentation without making it inaccessible to code that happens to know 
it is there. This is often used to expose methods and types that are needed 
by macros, but not by user code. How such hidden items interact with your 
interface contract is a matter of some debate. In general, items marked as 
#[doc(hidden)] are only considered part of your contract insofar as their pub-
lic effects; for example, if user code may end up containing a hidden type, then 
whether that type is Send or not is part of the contract, whereas its name is not. 
Hidden inherent methods and hidden trait methods on sealed traits are not gen-
erally part of your interface contract, though you should make sure to state this 
clearly in the documentation for those methods. And yes, hidden items should 
still be documented!
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Summary
In this chapter we’ve explored the many facets of designing a Rust inter-
face, whether it’s intended for external use or just as an abstraction bound-
ary between the different modules within your crate. We covered a lot of 
specific pitfalls and tricks, but ultimately, the high-level principles are what 
should guide your thinking: your interfaces should be unsurprising, flex-
ible, obvious, and constrained. In the next chapter, we will dig into how to 
represent and handle errors in Rust code.
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E R R O R  H A N D L I N G

For all but the simplest programs, you will 
have methods that can fail. In this chap-

ter, we’ll look at different ways to represent, 
handle, and propagate those failures and 

the advantages and drawbacks of each. We’ll start by 
exploring different ways to represent errors, including 
enumeration and erasure, and then examine some 
special error cases that requir,e a different representa-
tion technique. Next, we’ll look at various ways of han-
dling errors and the future of error handling. 

It’s worth noting that best practices for error handling in Rust are still 
an active topic of conversation, and at the time of writing, the ecosystem 
has not yet settled on a single, unified approach. This chapter will therefore 
focus on the underlying principles and techniques rather than recommend-
ing specific crates or patterns.
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Representing Errors
When you write code that can fail, the most important question to ask your-
self is how your users will interact with any errors returned. Will users need 
to know exactly which error happened and the minutiae about what went 
wrong, or will they simply log that an error occurred and move on as best 
they can? To understand this, we have to look at whether the nature of the 
error is likely to affect what the caller does in response to its occurrence. 
This in turn will dictate how we represent different errors. 

You have two main options for representing errors: enumeration and era-
sure. That is, you can either have your error type enumerate the possible error 
conditions so that the caller can distinguish them, or you can just provide the 
caller with a single, opaque error. Let’s discuss these two options in turn.

Enumeration
For our example, we’ll use a library function that copies bytes from some 
input stream into some output stream, much like std::io::copy. The user 
provides you with two streams, one to read from and one to write to, and 
you copy the bytes from one to the other. During this process, it’s entirely 
possible for either stream to fail, at which point the copy has to stop and 
return an error to the user. Here, the user will likely want to know whether 
it was the input stream or the output stream that failed. For example, in a 
web server, if an error occurs on the input stream while streaming a file to a 
client, it might be because a disk was ejected, whereas if the output stream 
errors, maybe the client just disconnected. The latter may be an error the 
server should ignore, since copies to new connections can still complete, 
whereas the former may require that the whole server be shut down!

This is a case where we want to enumerate the errors. The user needs 
to be able to distinguish between the different error cases so that they can 
respond appropriately, so we use an enum named CopyError, with each variant 
representing a separate underlying cause for the error, like in Listing 5-1.

pub enum CopyError {
  In(std::io::Error),
  Out(std::io::Error),
}

Listing 5-1: An enumerated error type

Each variant also includes the error that was encountered to provide 
the caller with as much information about went wrong as possible.

When making your own error type, you need to take a number of steps to 
make the error type play nicely with the rest of the Rust ecosystem. First, your 
error type should implement the std::error::Error trait, which provides call-
ers with common methods for introspecting error types. The main method of 
interest is Error::source, which provides a mechanism to find the underlying 
cause of an error. This is most commonly used to print a backtrace that dis-
plays a trace all the way back to the error’s root cause. For our CopyError type, 
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the implementation of source is straightforward: we match on self and extract 
and return the inner std::io::Error.

Second, your type should implement both Display and Debug so that call-
ers can meaningfully print your error. This is required if you implement 
the Error trait. In general, your implementation of Display should give a 
one-line description of what went wrong that can easily be folded into other 
error messages. The display format should be lowercase and without trail-
ing punctuation so that it fits nicely into other, larger error reports. Debug 
should provide a more descriptive error including auxiliary information 
that may be useful in tracking down the cause of the error, such as port 
numbers, request identifiers, source code location, and the like.

N O T E  In older Rust code, you may see references to the Error::description method, but this 
has been deprecated in favor of Display.

Third, your type should, if possible, implement both Send and Sync so 
that users are able to share the error across thread boundaries. If your error 
type is not thread-safe, you will find that it’s almost impossible to use your 
crate in a multithreaded context. Error types that implement Send and Sync 
are also much easier to use with the very common std::io::Error type, which 
is able to wrap errors that implement Error, Send, and Sync. Of course, not all 
error types can reasonably be Send and Sync, such as if they’re tied to particu-
lar thread-local resources, and that’s okay. You’re probably not sending those 
errors across thread boundaries either. However, it’s something to be aware 
of before you go placing Rc<String> and RefCell<bool> types in your errors.

Finally, where possible, your error type should be 'static. The most 
immediate benefit of this is that it allows the caller to more easily propagate 
your error up the call stack without running into lifetime issues. It also 
enables your error type to be used more easily with type-erased error types, 
as we’ll see shortly.

Opaque Errors
Now let’s consider a different example: an image decoding library. You 
give the library a bunch of bytes to decode, and it gives you access to vari-
ous image manipulation methods. If the decoding fails, the user needs to 
be able to figure out how to resolve the issue, and so must understand the 
cause. But is it important whether the cause is the size field in the image 
header being invalid, or the compression algorithm failing to decompress 
a block? Probably not—the application can’t meaningfully recover from 
either situation, even if it knows the exact cause. In cases like this, you as 
the library author may instead want to provide a single, opaque error type. 
This also makes your library a little nicer to use, because there is only one 
error type in use everywhere. This error type should implement Send, Debug, 
and Display, and should probably also implement Error, but beyond that, the 
caller doesn’t need to know anything more. You might internally represent 
more fine-grained error states, but there is no need to expose those to the 
users of the library. Doing so would only serve to unnecessarily increase the 
size and complexity of your API.
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Exactly what your opaque error type should be is mostly up to you. It 
could just be a type with all private fields that exposes only limited methods 
for displaying and introspecting the error, or it could be a severely type-
erased error type like Box<dyn Error + Send + Sync + 'static>, which reveals 
nothing more than the fact that it is an error and does not generally let 
your users introspect at all. Deciding how far to go down the route of type 
erasure is mostly a matter of whether there is anything interesting about 
the error beyond its description. With Box<dyn Error>, you leave your users 
with little option but to bubble up your error. That might be fine if it truly 
has no information of value to present to the user—for example, if it’s just 
a dynamic error message or is one of a large number of unrelated errors 
from deeper inside your program. But if the error has some interesting fac-
ets to it, such as a line number or a status code, you may want to expose that 
through a concrete but opaque type instead.

N O T E In general, the community consensus is that errors should be rare and therefore should 
not add much cost to the “happy path.” For that reason, errors are often placed behind 
a pointer type, such as a Box or Arc. This way, they’re unlikely to add much to the size 
of the overall Result type they’re contained within.

One benefit of using type-erased errors is that it allows you to easily 
combine errors from different sources without having to introduce addi-
tional error types. That is, type-erased errors often compose nicely. If you 
write a function whose return type is Box<dyn Error + ...>, then you can 
use ? almost indiscriminately inside that function, on all sorts of different 
errors, and they will all be turned into that one common error type.

The 'static bound on Box<dyn Error + Send + Sync + 'static> is worth 
spending a bit more time on in the context of erasure. I mentioned in the 
previous section that it’s useful for letting the caller propagate the error 
without worrying about the lifetime bounds of the method that failed, 
but it serves an even bigger purpose: access to downcasting. Downcasting 
is the process of taking an item of one type and casting it to a more 
specific type. This is one of the few cases where Rust gives you access to 
type information at runtime; it’s a limited case of the more general type 
reflection that dynamic languages often provide. In the context of errors, 
downcasting allows a user to turn a dyn Error into a concrete underlying 
error type when that dyn Error was originally of that type. For example, 
the user may want to take a particular action if the error they received was 
a std::io::Error of kind std::io::ErrorKind::WouldBlock, but they would not 
take that same action in any other case. If the user gets a dyn Error, they can 
use Error::downcast_ref to try to downcast the error into a std::io::Error. 
The downcast_ref method returns an Option, which tells the user whether or 
not the downcast succeeded. And here is the key observation: downcast_ref 
works only if the argument is 'static. If we return an opaque Error that’s not 
'static, we take away the user’s ability to do this kind of error introspection 
should they wish.

There’s some disagreement in the ecosystem about whether a library’s 
type-erased errors (or more generally, its type-erased types) are part of 
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its public and stable API. That is, if the method foo in your library returns 
lib::MyError as a Box<dyn Error>, would changing foo to return a different 
error type be a breaking change? The type signature hasn’t changed, but 
users may have written code that assumes that they can use downcast to 
turn that error back into lib::MyError. My opinion on this matter is that 
you chose to return Box<dyn Error> (and not lib::MyError) for a reason, and 
unless explicitly documented, that does not guarantee anything in particu-
lar about downcasting.

You may wonder how Error::downcast_ref can be safe. That is, how does 
it know whether a provided dyn Error argument is indeed of the given type 
T? The standard library even has a trait called Any that is implemented for 
any type, and which implements downcast_ref for dyn Any—how can that 
be okay? The answer lies in the compiler-supported type std::any::TypeId, 
which allows you to get a unique identifier for any type. The Error trait has 
a hidden provided method called type_id, whose default implementation is 
to return TypeId::of::<Self>(). Similarly, Any has a blanket implementation 
of impl Any for T, and in that implementation, its type_id returns the same. 
In the context of these impl blocks, the concrete type of Self is known, so 
this type_id is the type identifier of the real type. That provides all the infor-
mation downcast_ref needs. downcast_ref calls self.type_id, which forwards 
through the vtable for dynamically sized types (see Chapter 3) to the imple-
mentation for the underlying type and compares that to the type identifier 
of the provided downcast type. If they match, then the type behind the dyn 
Error or dyn Any really is T, and it is safe to cast from a reference to one to a 
reference to the other.

Special Error Cases
Some functions are fallible but cannot return any meaningful error if they 
fail. Conceptually, these functions have a return type of Result<T, ()>. In 
some codebases, you may see this represented as Option<T> instead. While 
both are legitimate choices for the return type for such a function, they 
convey different semantic meanings, and you should usually avoid “simpli-
fying” a Result<T, ()> to Option<T>. An Err(()) indicates that an operation 
failed and should be retried, reported, or otherwise handled exception-
ally. None, on the other hand, conveys only that the function has nothing to 
return; it is usually not considered an exceptional case or something that 
should be handled. You can see this in the #[must_use] annotation on the 
Result type—when you get a Result, the language expects that it is impor-
tant to handle both cases, whereas with an Option, neither case actually 
needs to be handled.

N O T E  You should also keep in mind that () does not implement the Error trait. This means 
that it cannot be type-erased into Box<dyn Error> and can be a bit of a pain to use 
with ?. For this reason, it is often better to define your own unit struct type, imple-
ment Error for it, and use that as the error instead of () in these cases.
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Some functions, like those that start a continuously running server 
loop, only ever return errors; unless an error occurs, they run forever. Other 
functions never error but need to return a Result nonetheless, for example, 
to match a trait signature. For functions like these, Rust provides the never 
type, written with the ! syntax. The never type represents a value that can 
never be generated. You cannot construct an instance of this type  yourself—
the only way to make one is by entering an infinite loop or panicking, or 
through a handful of other special operations that the compiler knows never 
return. With Result, when you have an Ok or Err that you know will never 
be used, you can set it to the ! type. If you write a function that returns 
Result<T, !>, you will be unable to ever return Err, since the only way to do 
so is to enter code that will never return. Because the compiler knows that 
any variant with a ! will never be produced, it can also optimize your code 
with that in mind, such as by not generating the panic code for an unwrap on 
Result<T, !>. And when you pattern match, the compiler knows that any vari-
ant that contains a ! does not even need to be listed. Pretty neat!

One last curious error case is the error type std::thread::Result. Here’s 
its definition:

type Result<T> = Result<T, Box<dyn Any + Send + 'static>>;

The error type is type-erased, but it’s not erased into a dyn Error as 
we’ve seen so far. Instead, it is a dyn Any, which guarantees only that the 
error is some type, and nothing more . . . which is not much of a guarantee 
at all. The reason for this curious-looking error type is that the error vari-
ant of std::thread::Result is produced only in response to a panic; specifi-
cally, if you try to join a thread that has panicked. In that case, it’s not clear 
that there’s much the joining thread can do other than either ignore the 
error or panic itself using unwrap. In essence, the error type is “a panic” and 
the value is “whatever argument was passed to panic!,” which can truly be 
any type (even though it’s usually a formatted string).

Handling Errors
Rust’s ? operator acts as a shorthand for unwrap or return early, for working 
easily with errors. But it also has a few other tricks up its sleeve that are worth 
knowing about. First, ? performs type conversion through the From trait. In  
a function that returns Result<T, E>, you can use ? on any Result<T, X> where 
E: From<X>. This is the feature that makes error erasure through Box<dyn Error> 
so appealing; you can just use ? everywhere and not worry about the particu-
lar error type, and it will usually “ just work.”

F ROM A ND IN TO

The standard library has many conversion traits, but two of the core ones are 
From and Into. It might strike you as odd to have two: if we have From, why 
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do we need Into, and vice versa? There are a couple of reasons, but let’s start 
with the historical one: it wouldn’t have been possible to have just one in the 
early days of Rust due to the coherence rules discussed in Chapter 3. Or, more 
specifically, what the coherence rules used to be.

Suppose you want to implement two-way conversion between some 
local type you have defined in your crate and some type in the standard 
library. You can write impl<T> From<Vec<T>> for MyType<T> and impl<T> 
Into<Vec<T>> for MyType<T> easily enough, but if you only had From or Into, 
you would have to write impl<T> From<MyType<T>> for Vec<T> or impl<T> 
Into<MyType<T>> for Vec<T>. However, the compiler used to reject those 
implementations! Only since Rust 1.41.0, when the exception for covered types 
was added to the coherence rules, are they legal. Before that change, it was 
necessary to have both traits. And since much Rust code was written before 
Rust 1.41.0, neither trait can be removed now.

Beyond that historical fact, however, there are also good ergonomic rea-
sons to have both of these traits, even if we could start from scratch today. It is 
often significantly easier to use one or the other in different situations. For exam-
ple, if you’re writing a method that takes a type that can be turned into a Foo, 
would you rather write fn(impl Into<Foo>) or fn<T>(T) where Foo: From<T>? 
And conversely, to turn a string into a syntax identifier, would you rather write 
Ident::from("foo") or <_ as Into<Ident>>::into("foo")? Both of these traits 
have their uses, and we’re better off having them both.

Given that we do have both, you may wonder which you should use in 
your code today. The answer, it turns out, is pretty simple: implement From, and 
use Into in bounds. The reason is that Into has a blanket implementation for 
any T that implements From, so regardless of whether a type explicitly imple-
ments From or Into, it implements Into!

Of course, as simple things frequently go, the story doesn’t quite end there. 
Since the compiler often has to “go through” the blanket implementation when 
Into is used as a bound, the reasoning for whether a type implements Into 
is more complicated than whether it implements From. And in some cases, the 
compiler is not quite smart enough to figure that puzzle out. For this reason, 
the ? operator at the time of writing uses From, not Into. Most of the time that 
doesn’t make a difference, because most types implement From, but it does 
mean that error types from old libraries that implement Into instead may not 
work with ?. As the compiler gets smarter, ? will likely be “upgraded” to use 
Into, at which point that problem will go away, but it's what we have for now.

The second aspect of ? to be aware of is that this operator is really just 
syntax sugar for a trait tentatively called Try. At the time of writing, the Try 
trait has not yet been stabilized, but by the time you read this, it’s likely that 
it, or something very similar, will have been settled on. Since the details 
haven’t all been figured out yet, I’ll give you only an outline of how Try 
works, rather than the full method signatures. At its heart, Try defines a 
wrapper type whose state is either one where further computation is useful 
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(the happy path), or one where it is not. Some of you will correctly think 
of monads, though we won’t explore that connection here. For example, in 
the case of Result<T, E>, if you have an Ok(t), you can continue on the happy 
path by unwrapping the t. If you have an Err(e), on the other hand, you 
want to stop executing and produce the error value immediately, since fur-
ther computation is not possible as you don’t have the t. 

What’s interesting about Try is that it applies to more types than just 
Result. An Option<T>, for example, follows the same pattern—if you have a 
Some(t), you can continue on the happy path, whereas if you have a None, you 
want to yield None instead of continuing. This pattern extends to more com-
plex types, like Poll<Result<T, E>>, whose happy path type is Poll<T>, which 
makes ? apply in far more cases than you might expect. When Try stabilizes, 
we may see ? start to work with all sorts of types to make our happy path 
code nicer.

The ? operator is already usable in fallible functions, in doctests, and in 
fn main. To reach its full potential, though, we also need a way to scope this 
error handling. For example, consider the function in Listing 5-2.

fn do_the_thing() -> Result<(), Error> {
  let thing = Thing::setup()?;
  // .. code that uses thing and ? ..
  thing.cleanup();
  Ok(())
}

Listing 5-2: A multi-step fallible function using the ? operator

This won’t quite work as expected. Any ? between setup and cleanup 
will cause an early return from the entire function, which would skip the 
cleanup code! This is the problem try blocks are intended to solve. A try block 
acts pretty much like a single-iteration loop, where ? uses break instead of 
return, and the final expression of the block has an implicit break. We can 
now fix the code in Listing 5-2 to always do cleanup, as shown in Listing 5-3.

fn do_the_thing() -> Result<(), Error> {
  let thing = Thing::setup()?;
  let r = try {
    // .. code that uses thing and ? ..
  };
  thing.cleanup();
  r
}

Listing 5-3: A multi-step fallible function that always cleans up after itself

Try blocks are also not stable at the time of writing, but there is enough 
of a consensus on their usefulness that they’re likely to land in a form simi-
lar to that described here.
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Summary
This chapter covered the two primary ways to construct error types in Rust: 
enumeration and erasure. We looked at when you may want to use each one 
and the advantages and drawbacks of each. We also took a look at some of 
the behind-the-scenes aspects of the ? operator and considered how ? may 
become even more useful going forward. In the next chapter, we’ll take a 
step back from the code and look at how you structure a Rust project. We’ll 
look at feature flags, dependency management, and versioning as well as 
how to manage more complex crates using workspaces and subcrates. See 
you on the next page!
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P R O J E C T  S T R U C T U R E

This chapter provides some ideas for struc-
turing your Rust projects. For simple proj-

ects, the structure set up by cargo new is likely 
to be something you think little about. You 

may add some modules to split up the code, and some 
dependencies for additional functionality, but that’s about it. However, as a 
project grows in size and complexity, you’ll find that you need to go beyond 
that. Maybe the compilation time for your crate is getting out of hand, or 
you need conditional dependencies, or you need a better strategy for con-
tinuous integration. In this chapter, we will look at some of the tools that the 
Rust language, and Cargo in particular, provide that make it easier to man-
age such things.

Features
Features are Rust’s primary tool for customizing projects. At its core, a fea-
ture is just a build flag that crates can pass to their dependencies in order 
to add optional functionality. Features carry no semantic meaning in and of 
themselves—instead, you choose what a feature means for your crate.
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Generally, we use features in three ways: to enable optional dependencies, 
to conditionally include additional components of a crate, and to augment the 
behavior of the code. Note that all of these uses are additive; features can add 
to the functionality of the crate, but they shouldn’t generally do things like 
remove modules or replace types or function signatures. This stems from the 
principle that if a developer makes a simple change to their Cargo.toml, such 
as adding a new dependency or enabling a feature, that shouldn’t make their 
crate stop compiling. If a crate has mutually exclusive features, that principle 
quickly falls by the wayside—if crate A depends on one feature of crate C, 
and crate B on another mutually exclusive feature of C, adding a dependency 
on crate B would then break crate A! For that reason, we generally follow the 
principle that if crate A compiles against crate C with some set of features, it 
should also compile if all features are enabled on crate C. 

Cargo leans into this principle quite hard. For example, if two crates 
(A and B) both depend on crate C, but they each enable different features 
on C, Cargo will compile crate C only once, with all the features that either 
A or B requires. That is, it’ll take the union of the requested features for C 
across A and B. Because of this, it’s generally hard to add mutually exclusive 
features to Rust crates; chances are that some two dependents will depend 
on the crate with different features, and if those features are mutually 
exclusive, the downstream crate will fail to build.

N O T E I highly recommend that you configure your continuous integration infrastructure to 
check that your crate compiles for any combination of its features. One tool that helps you 
do this is cargo-hack, which you can find at https://github.com/taiki-e/cargo-hack.

Defining and Including Features
Features are defined in Cargo.toml. Listing 6-1 shows an example of a crate 
named foo with a simple feature that enables the optional dependency syn.

[package]
name = "foo"
...
[features]
derive = ["syn"]

[dependencies]
syn = { version = "1", optional = true }

Listing 6-1: A feature that enables an optional dependency

When Cargo compiles this crate, it will not compile the syn crate by default,  
which reduces compile time (often significantly). The syn crate will be com-
piled only if a downstream crate needs to use the APIs enabled by the derive 
feature and explicitly opts in to it. Listing 6-2 shows how such a downstream  
crate bar would enable the derive feature, and thus include the syn dependency.

[package]
name = "bar"
...
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[dependencies]
foo = { version = "1", features = ["derive"] }

Listing 6-2: Enabling a feature of a dependency

Some features are used so frequently that it makes more sense to have a 
crate opt out of them rather than in to them. To support this, Cargo allows 
you to define a set of default features for a crate. And similarly, it allows you 
to opt out of the default features of a dependency. Listing 6-3 shows how 
foo can make its derive feature enabled by default, while also opting out of 
some of syn’s default features and instead enabling only the ones it needs 
for the derive feature.

[package]
name = "foo"
...
[features]
derive = ["syn"]
default = ["derive"]

[dependencies.syn]
version = "1"
default-features = false
features = ["derive", "parsing", "printing"]
optional = true

Listing 6-3: Adding and opting out of default features, and thus optional dependencies

Here, if a crate depends on foo and does not explicitly opt out of the 
default features, it will also compile foo’s syn dependency. In turn, syn will 
be built with only the three listed features, and no others. Opting out of 
default features this way, and opting in to only what you need, is a great way 
to cut down on your compile times!

OP T ION A L DEPENDENCIES A S F E AT UR ES

When you define a feature, the list that follows the equal sign is itself a list of 
features. This might, at first, sound a little odd—in Listing 6-3, syn is a depen-
dency, not a feature. It turns out that Cargo makes every optional dependency 
a feature with the same name as the dependency. You’ll see this if you try to 
add a feature with the same name as an optional dependency; Cargo won’t 
allow it. Support for a different namespace for features and dependencies is 
in the works in Cargo, but has not been stabilized at the time of writing. In the 
meantime, if you want to have a feature named after a dependency, you can 
rename the dependency using package = "" to avoid the name collision. The list 
of features that a feature enables can also include features of dependencies. 
For example, you can write derive = ["syn/derive"] to have your derive fea-
ture enable the derive feature of the syn dependency.
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Using Features in Your Crate
When using features, you need to make sure your code uses a dependency 
only if it is available. And if your feature enables a particular component, 
you need to make sure that if the feature isn’t enabled, the component is 
not included.

You achieve this using conditional compilation, which lets you use annota-
tions to give conditions under which a particular piece of code should or 
should not be compiled. Conditional compilation is primarily expressed 
using the #[cfg] attribute. There is also the closely related cfg! macro, which 
lets you change runtime behavior based on similar conditions. You can do 
all sorts of neat things with conditional compilation, as we’ll see later in this 
chapter, but the most basic form is #[cfg(feature = "some-feature")], which 
makes it so that the next “thing” in the source code is compiled only if the 
some-feature feature is enabled. Similarly, if cfg!(feature = "some-feature") 
is equivalent to if true only if the derive feature is enabled (and if false 
otherwise).

The #[cfg] attribute is used more often than the cfg! macro, because 
the macro modifies runtime behavior based on the feature, which can 
make it difficult to ensure that features are additive. You can place #[cfg] 
in front of certain Rust items—such as functions and type definitions, impl 
blocks, modules, and use statements—as well as on certain other constructs 
like struct fields, function arguments, and statements. #[cfg] cannot go just 
anywhere, though; where it can appear is carefully restricted by the Rust 
language team so that conditional compilation can’t cause situations that 
are too strange and hard to debug.

Remember that modifying certain public parts of your API may inadver-
tently make a feature nonadditive, which in turn may make it impossible for 
some users to compile your crate. You can often use the rules for backward 
compatible changes as a rule of thumb here—for example, if you make an 
enum variant or a public struct field conditional upon a feature, then that 
type must also be annotated with #[non_exhaustive]. Otherwise, a dependent 
crate that does not have the feature enabled may no longer compile if the 
feature is added due to some second crate in the dependency tree.

N O T E If you’re writing a large crate where you expect that your users will need only a subset 
of the functionality, you should consider making it so that larger components (usually 
modules) are guarded by features. That way, users can opt in to, and pay the compi-
lation cost of, only the parts they really need.

Workspaces
Crates play many roles in Rust—they are the vertices in the dependency 
graph, the boundaries for trait coherence, and the scopes for compilation 
features. Because of this, each crate is managed as a single compilation 
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unit; the Rust compiler treats a crate more or less as one big source file 
compiled as one chunk that is ultimately turned into a single binary output 
(either a binary or a library).

While this simplifies many aspects of the compiler, it also means that 
large crates can be painful to work with. If you change a unit test, a comment, 
or a type in one part of your application, the compiler must re- evaluate the 
entire crate to determine what, if anything, changed. Internally, the compiler 
implements a number of mechanisms to speed up this process, like incremen-
tal recompilation and parallel code generation, but ultimately the size of your 
crate is a big factor in how long your project takes to compile.

For this reason, as your project grows, you may want to split it into 
multiple crates that internally depend on one another. Cargo has just the 
feature you need to make this convenient: workspaces. A workspace is a col-
lection of crates (often called subcrates) that are tied together by a top-level 
Cargo.toml file like the one shown in Listing 6-4.

[workspace]
members = [
  "foo",
  "bar/one",
  "bar/two",
]

Listing 6-4: A workspace Cargo.toml

The members array is a list of directories that each contain a crate in 
the workspace. Those crates all have their own Cargo.toml files in their own 
subdirectories, but they share a single Cargo.lock file and a single output 
directory.  The crate names don’t need to match the entry in members. It is 
common, but not required, that crates in a workspace share a name prefix, 
usually chosen as the name of the “main” crate. For example, in the tokio 
crate, the members are called tokio, tokio-test, tokio-macros, and so on.

Perhaps the most important feature of workspaces is that you can inter-
act with all of the workspace’s members by invoking cargo in the root of the 
workspace. Want to check that they all compile? cargo check will check them 
all. Want to run all your tests? cargo test will test them all. It’s not quite as 
convenient as having everything in one crate, so don’t go splitting every-
thing into minuscule crates, but it’s a pretty good approximation.

N O T E  Cargo commands will generally do the “right thing” in a workspace. If you ever need 
to disambiguate, such as if two workspace crates both have a binary by the same 
name, use the -p flag (for package). If you are in the subdirectory for a particular 
workspace crate, you can pass --workspace to perform the command for the entire 
workspace instead.

Once you have a workspace-level Cargo.toml with the array of workspace 
members, you can set your crates to depend on one another using path 
dependencies, as shown in Listing 6-5.
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# bar/two/Cargo.toml
[dependencies]
one = { path = "../one" }
# bar/one/Cargo.toml
[dependencies]
foo = { path = "../../foo" }

Listing 6-5: Intercrate dependencies among workspace crates

Now if you make a change to the crate in bar/two, then only that crate 
is re-compiled, since foo and bar/one did not change. It may even be faster 
to compile your project from scratch, since the compiler does not need to 
evaluate your entire project source for optimization opportunities.

SPECIF Y ING IN T R A-WOR KSPACE DEPENDENCIES

The most obvious way to specify that one crate in a workspace depends on 
another is to use the path specifier, as shown in Listing 6-5. However, if your 
individual subcrates are intended for public consumption, you may want to use 
version specifiers instead.

Say you have a crate that depends on a Git version of the one crate from 
the bar workspace in Listing 6-5 with one = { git = ". . ." }, and a released 
version of foo (also from bar) with foo = "1.0.0". Cargo will dutifully fetch 
the one Git repository, which holds the entire bar workspace, and see that one 
in turn depends on foo, located at ../../foo inside the workspace. But Cargo 
doesn’t know that the released version foo = "1.0.0" and the foo in the Git 
repository are the same crate! It considers them two separate dependencies 
that just happen to have the same name.

You may already see where this is going. If you try to use any type from 
foo (1.0.0) with an API from one that accepts a type from foo, the compiler will 
reject the code. Even though the types have the same name, the compiler can’t 
know that they are the same underlying type. And the user will be thoroughly 
confused, since the compiler will say something like “expected foo::Type, got 
foo::Type.”

The best way to mitigate this problem is to use path dependencies between 
subcrates only if they depend on unpublished changes. As long as one works 
with foo 1.0.0, it should list foo = "1.0.0" in its dependencies. Only if you 
make a change to foo that one needs should you change one to use a path 
dependency. And once you release a new version of foo that one can depend 
on, you should remove the path dependency again.

This approach also has its shortcomings. Now if you change foo and then 
run the tests for one, you’ll see that one will be tested using the old foo, which 
may not be what you expected. You’ll probably want to configure your continu-
ous integration infrastructure to test each subcrate both with the latest released 
versions of the other subcrates and with all of them configured to use path 
dependencies.
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Project Configuration
Running cargo new sets you up with a minimal Cargo.toml that has the crate’s 
name, its version number, some author information, and an empty list of 
dependencies. That will take you pretty far, but as your project matures, there 
are a number of useful things you may want to add to your Cargo.toml.

Crate Metadata
The first and most obvious thing to add to your Cargo.toml is all the meta-
data directives that Cargo supports. In addition to obvious fields like 
description and homepage, it can be useful to include information such as 
the path to a README for the crate (readme), the default binary to run 
with cargo run (default-run), and additional keywords and categories to help 
crates.io categorize your crate.

For crates with a more convoluted project layout, it’s also useful to set 
the include and exclude metadata fields. These dictate which files should be 
included and published in your package. By default, Cargo includes all files 
in a crate’s directory except any listed in your .gitignore file, but this may not 
be what you want if you also have large test fixtures, unrelated scripts, or 
other auxiliary data in the same directory that you do want under version 
control. As their names suggest, include and exclude allow you to include 
only a specific set of files or exclude files matching a given set of patterns, 
respectively.

N O T E  If you have a crate that should never be published, or should be published only to cer-
tain alternative registries (that is, not to crates.io), you can set the publish directive 
to false or to a list of allowed registries.

The list of metadata directives you can use continues to grow, so make 
sure to periodically check in on the Manifest Format page of the Cargo ref-
erence (https://doc.rust-lang.org/cargo/reference/manifest.html).

Build Configuration
Cargo.toml can also give you control over how Cargo builds your crate. 
The most obvious tool for this is the build parameter, which allows you to 
write a completely custom build program for your crate (we’ll revisit this 
in Chapter 12). However, Cargo also provides two smaller, but very useful, 
mechanisms that we’ll explore here: patches and profiles.

[patch]

The [patch] section of Cargo.toml allows you to specify a different source for 
a dependency that you can use temporarily, no matter where in your depen-
dencies the patched dependency appears. This is invaluable when you need 
to compile your crate against a modified version of some transitive depen-
dency to test a bug fix, a performance improvement, or a new minor release 
you’re about to publish. Listing 6-6 shows an example of how you might 
temporarily use a variant of a set of dependencies.
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[patch.crates-io]
# use a local (presumably modified) source
regex = { path = "/home/jon/regex" }
# use a modification on a git branch
serde = { git = "https://github.com/serde-rs/serde.git", branch = "faster" }
# patch a git dependency
[patch.'https://github.com/jonhoo/project.git']
project = { path = "/home/jon/project" }

Listing 6-6: Overriding dependency sources in Cargo.toml using [patch]

Even if you patch a dependency, Cargo takes care to check the crate 
versions so that you don’t accidentally end up patching the wrong major ver-
sion of a crate. If you for some reason transitively depend on multiple major 
versions of the same crate, you can patch each one by giving them distinct 
identifiers, as shown in Listing 6-7.

[patch.crates-io]
nom4 = { path = "/home/jon/nom4", package = "nom" }
nom5 = { path = "/home/jon/nom5", package = "nom" }

Listing 6-7: Overriding multiple versions of the same crate in Cargo.toml using [patch]

Cargo will look at the Cargo.toml inside each path, realize that /nom4 
contains major version 4 and that /nom5 contains major version 5, and patch 
the two versions appropriately. The package keyword tells Cargo to look for a 
crate by the name nom in both cases instead of using the dependency identi-
fiers (the part on the left) as it does by default. You can use package this way 
in your regular dependencies as well to rename a dependency!

Keep in mind that patches are not taken into account in the package 
that’s uploaded when you publish a crate. A crate that depends on your 
crate will use only its own [patch] section (which may be empty), not that of 
your crate!

CR AT ES V S. PACK AGES

You may wonder what the difference between a package and a crate is. These 
two terms are often used interchangeably in informal contexts, but they also 
have specific definitions that vary depending on whether you’re talking about 
the Rust compiler, Cargo, crates.io, or something else. I personally think of a 
crate as a Rust module hierarchy starting at a root .rs file (one where you can 
use crate-level attributes like #![feature])—usually something like lib.rs or main.
rs. In contrast, a package is a collection of crates and metadata, so essentially 
all that’s described by a Cargo.toml file. That may include a library crate, mul-
tiple binary crates, some integration test crates, and maybe even multiple work-
space members that themselves have Cargo.toml files.
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[profile]

The [profile] section lets you pass additional options to the Rust compiler 
in order to change the way it compiles your crate. These options fall pri-
marily into three categories: performance options, debugging options, and 
options that change code behavior in user-defined ways. They all have dif-
ferent defaults depending on whether you are compiling in debug mode or 
in release mode (other modes also exist).

The three primary performance options are opt-level, codegen-units, 
and lto. The opt-level option tweaks runtime performance by telling the 
compiler how aggressively to optimize your program (0 is “not at all,” 3 is “as 
much as you can”). The higher the setting, the more optimized your code 
will be, which may make it run faster. Extra optimization comes at the cost 
of higher compile times, though, which is why optimizations are generally 
enabled only for release builds.

N O T E  You can also set opt-level to "s" to optimize for binary size, which may be important 
on embedded platforms.

You can also set opt-level to "s" to optimize for binary size, which may 
be important on embedded platforms.

The codegen-units option is about compile-time performance. It tells the 
compiler how many independent compilation tasks (code generation units) it 
is allowed to split the compilation of a single crate into. The more pieces a 
large crate’s compilation is split into, the faster it will compile, since more 
threads can help compile the crate in parallel. Unfortunately, to achieve this 
speedup, the threads need to work more or less independently, which means 
code optimization suffers. Imagine, for example, that the segment of a crate 
compiling in one thread could benefit from inlining some code in a differ-
ent segment—since the two segments are independent, that inlining can’t 
happen! This setting, then, is a trade-off between compile-time performance 
and runtime performance. By default, Rust uses an effectively unbounded 
number of codegen units in debug mode (basically, “compile as fast as you 
can”) and a smaller number (16 at the time of writing) in release mode.

The lto setting toggles link-time optimization (LTO), which enables the com-
piler (or the linker, if you want to get technical about it) to jointly optimize 
bits of your program, known as compilation units, that were originally com-
piled separately. The exact details of LTO are beyond the scope of this book, 
but the basic idea is that the output from each compilation unit includes 
information about the code that went into that unit. After all the units have 
been compiled, the linker makes another pass over all of the units and uses 
that additional information to optimize the combined compiled code. This 
extra pass adds to the compile time but recovers most of the runtime perfor-
mance that may have been lost due to splitting the compilation into smaller 
parts. In particular, LTO can offer significant performance boosts to perfor-
mance-sensitive programs that might benefit from cross-crate optimization. 
Beware, though, that cross-crate LTO can add a lot to your compile time.

Rust performs LTO across all the codegen units within each crate by 
default in an attempt to make up for the lost optimizations caused by using 
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many codegen units. Since the LTO is performed only within each crate, 
rather than across crates, this extra pass isn’t too onerous, and the added 
compile time should be lower than the amount of time saved by using a lot 
of codegen units. Rust also offers a technique known as thin LTO, which 
allows the LTO pass to be mostly parallelized, at the cost of missing some 
optimizations a “full” LTO pass would have found.

N O T E LTO can be used to optimize across foreign function interface boundaries in many 
cases, too. See the linker-plugin-lto rustc flag for more details.

The [profile] section also supports flags that aid in debugging, such as 
debug, debug-assertions, and overflow-checks. The debug flag tells the compiler 
to include debug symbols in the compiled binary. This increases the binary 
size, but but it means that you get function names and such, rather than 
just instruction addresses, in backtraces and profiles. The debug-assertions 
flag enables the debug_assert! macro and other related debug code that isn’t 
compiled otherwise (through cfg(debug_assertions)). Such code may make 
your program run slower, but it makes it easier to catch questionable behav-
ior at runtime. The overflow-checks flag, as the name implies, enables over-
flow checks on integer operations. This slows them down (notice a trend 
here?) but can help you catch tricky bugs early on. By default, these are all 
enabled in debug mode and disabled in release mode.

[profile.*.panic]

The [profile] section has another flag that deserves its own subsection: panic. 
This option dictates what happens when code in your program calls panic!, 
either directly or indirectly through something like unwrap. You can set panic to 
either unwind (the default on most platforms) or abort. We’ll talk more about 
panics and unwinding in Chapter 10, but I’ll give a quick summary here.

Normally in Rust, when your program panics, the thread that panicked 
starts unwinding its stack. You can think of unwinding as forcibly return-
ing recursively from the current function all the way to the bottom of that 
thread’s stack. That is, if main called foo, foo called bar, and bar called baz, a 
panic in baz would forcibly return from baz, then bar, then foo, and finally 
from main, resulting in the program exiting. A thread that unwinds will 
drop all values on the stack normally, which gives the values a chance to 
clean up resources, report errors, and so on. This gives the running system 
a chance to exit gracefully even in the case of a panic.

When a thread panics and unwinds, other threads continue running 
unaffected. Only when (and if) the thread that ran main exits does the 
program terminate. That is, the panic is generally isolated to the thread in 
which the panic occurred.

This means unwinding is a double-edged sword; the program is limp-
ing along with some failed components, which may cause all sorts of strange 
behaviors. For example, imagine a thread that panics halfway through updat-
ing the state in a Mutex. Any thread that subsequently acquires that Mutex 
must now be prepared to handle the fact that the state may be in a partially 
updated, inconsistent state. For this reason, some synchronization primitives 
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(like Mutex) will remember if a panic occurred when they were last accessed 
and communicate that to any thread that tries to access the primitive subse-
quently. If a thread encounters such a state, it will normally also panic, which 
leads to a cascade that eventually terminates the entire program. But that is 
arguably better than continuing to run with corrupted state!

The bookkeeping needed to support unwinding is not free, and it 
often requires special support by the compiler and the target platform. For 
example, many embedded platforms cannot unwind the stack efficiently at 
all. Rust therefore supports a different panic mode: abort ensures the whole 
program simply exits immediately when a panic occurs. In this mode, no 
threads get to do any cleanup. This may seem severe, and it is, but it ensures 
that the program is never running in a half-working state and that errors are 
made visible immediately. 

W A R N I N G  The panic setting is global—if you set it to abort, all your dependencies are also com-
piled with abort.

You may have noticed that when a thread panics, it tends to print a back-
trace: the trail of function calls that led to where the panic occurred. This is 
also a form of unwinding, though it is separate from the unwinding panic 
behavior discussed here. You can have backtraces even with panic=abort by 
passing -Cforce-unwind-tables to rustc, which makes rustc include the infor-
mation necessary to walk back up the stack while still terminating the pro-
gram on a panic.

PROF IL E OV ER R IDES

You can set profile options for just a particular dependency, or a particular profile, 
using profile overrides. For example, Listing 6-8 shows how to enable aggressive 
optimizations for the serde crate and moderate optimizations for all other crates in 
debug mode, using the [profile. <profile-name> .package. <crate-name> ] syntax.

[profile.dev.package.serde]
opt-level = 3
[profile.dev.package."*"]
opt-level = 2

Listing 6-8: Overriding profile options for a specific dependency or for a 
specific mode

This kind of optimization override can be handy if some dependency would 
be prohibitively slow in debug mode (such as decompression or video encod-
ing), and you need it optimized so that your test suite won’t take several days to 
complete. You can also specify global profile defaults using a [profile.dev] (or 
similar) section in the Cargo configuration file in ~/.cargo/config.

When you set optimization parameters for a specific dependency, keep in 
mind that the parameters apply only to the code compiled as part of that crate; 

(continued)
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if serde in this example has a generic method or type that you use in your crate, 
the code of that method or type will be monomorphized and optimized in your 
crate, and your crate’s profile settings will apply, not those in the profile over-
ride for serde.

Conditional Compilation
Most Rust code you write is universal—it’ll work the same regardless of 
what CPU or operating system it runs on. But sometimes you’ll have to do 
something special to get the code to work on Windows, on ARM chips, or 
when compiled against a particular platform application binary interface 
(ABI). Or maybe you want to write an optimized version of a particular 
function when a given CPU instruction is available, or disable some slow but 
uninteresting setup code when running in a continuous integration (CI) 
environment. To cater to cases like these, Rust provides mechanisms for con-
ditional compilation, in which a particular segment of code is compiled only 
if certain conditions are true of the compilation environment.

We denote conditional compilation with the cfg keyword that you saw in 
“Using Features in Your Crate” on page XX. It usually appears in the form of 
the #[cfg(condition)] attribute, which says to compile the next item only if con-
dition is true. Rust also has #[cfg_attr(condition, attribute)], which is compiled 
as #[attribute] if condition holds and is a no-op otherwise. You can also evalu-
ate a cfg condition as a Boolean expression using the cfg!(condition) macro.

Every cfg construct takes a single condition made up of options, like 
feature = "some-feature", and the combinators all, any, and not, which do 
what you would probably expect. Options are either simple names, like unix, 
or key/value pairs like those used by feature conditions.

There are a number of interesting options you can make compilation 
dependent on. Let’s go through them, from most common to least common:

Feature options
You’ve already seen examples of these. Feature options take the form 
feature = "name-of-feature" and are considered true if the named fea-
ture is enabled. You can check for multiple features in a single condi-
tion using the combinators. For example, any(feature = "f1", feature = 
"f2") is true if either feature f1 or feature f2 is enabled.

Operating system options
These use key/value syntax with the key target_os and values like win-
dows, macos, and linux. You can also specify a family of operating systems 
using target_family, which takes the value windows or unix. These are 
common enough that they have received their own named short forms, 
so you can use cfg(windows) and cfg(unix) directly. For example, if you 
wanted a particular code segment to be compiled only on macOS and 
Windows, you would write: #[cfg(any(windows, target_os = "macos"))].
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Context options
These let you tailor code to a particular compilation context. The most 
common of these is the test option, which is true only when the crate 
is being compiled under the test profile. Keep in mind that test is set 
only for the crate that is being tested, not for any of its dependencies. 
This also means that test is not set in your crate when running inte-
gration tests; it’s the integration tests that are compiled under the test 
profile, whereas your actual crate is compiled normally (that is, without 
test set). The same applies to the doc and doctest options, which are set 
only when building documentation or compiling doctests, respectively. 
There’s also the debug_assertions option, which is set in debug mode by 
default.

Tool options
Some tools, like clippy and Miri, set custom options (more on that 
later) that let you customize compilation when run under these tools. 
Usually, these options are named after the tool in question. For exam-
ple, if you want a particular compute-intensive test not to run under 
Miri, you can give it the attribute #[cfg_attr(miri, ignore)].

Architecture options
These let you compile based on the CPU instruction set the compiler 
is targeting. You can specify a particular architecture with target_arch, 
which takes values like x86, mips, and aarch64, or you can specify a par-
ticular platform feature with target_feature, which takes values like avx 
or sse2. For very low-level code, you may also find the target_endian and 
target_pointer_width options useful.

Compiler options
These let you adapt your code to the platform ABI it is compiled against 
and are available through target_env with values like gnu, msvc, and musl. 
For historical reasons, this value is often empty, especially on GNU 
platforms. You normally need this option only if you need to interface 
directly with the environment ABI, such as when linking against an 
ABI-specific symbol name using #[link].

While cfg conditions are usually used to customize code, some can also 
be used to customize dependencies. For example, the dependency winrt 
usually makes sense only on Windows, and the nix crate is probably only 
useful on Unix-based platforms. Listing 6-9 gives an example of how you 
can use cfg conditions for this:

[target.'cfg(windows)'.dependencies]
winrt = "0.7"
[target.'cfg(unix)'.dependencies]
nix = "0.17"

Listing 6-9: Conditional dependencies
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Here, we specify that winrt version 0.7 should be considered a depen-
dency only under cfg(windows) (so, on Windows), and nix version 0.17 only 
under cfg(unix) (so, on Linux, macOS, and other Unix-based platforms). 
One thing to keep in mind is that the [dependencies] section is evaluated 
very early in the build process, when only certain cfg options are available. 
In particular, feature and context options are not yet available at this point, 
so you cannot use this syntax to pull in dependencies based on features 
and contexts. You can, however, use any cfg that depends only on the target 
specification or architecture, as well as any options explicitly set by tools 
that call into rustc (like cfg(miri)).

N O T E  While we’re on the topic of dependency specifications, I highly recommend that you set 
up your CI infrastructure to perform basic auditing of your dependencies using tools 
like cargo-deny and cargo-audit. These tools will detect cases where you transitively 
depend on multiple major versions of a given dependency, where you depend on 
crates that are unmaintained or have known security vulnerabilities, or where you 
use licenses that you may want to avoid. Using such a tool is a great way to raise the 
quality of your codebase in an automated way!

It’s also quite simple to add your own custom conditional compilation 
options. You just have to make sure that --cfg=myoption is passed to rustc 
when rustc compiles your crate. The easiest way to do this is to add your 
--cfg to the RUSTFLAGS environment variable. This can come in handy in CI, 
where you may want to customize your test suite depending on whether it’s 
being run on CI or on a dev machine: add --cfg=ci to RUSTFLAGS in your CI 
setup, and then use cfg(ci) and cfg(not(ci)) in your code. Options set this 
way are also available in Cargo.toml dependencies.

Versioning
All Rust crates are versioned and are expected to follow Cargo’s implemen-
tation of semantic versioning. Semantic versioning dictates the rules for what 
kinds of changes require what kinds of version increases and for which ver-
sions are considered compatible, and in what ways. The RFC 1105 standard 
itself is well worth reading (it’s not horribly technical), but to summarize, 
it differentiates between three kinds of changes: breaking changes, which 
require a major version change; additions, which require a minor version 
change; and bug fixes, which require only a patch version change. RFC 1105 
does a decent job of outlining what constitutes a breaking change in Rust, 
and we’ve touched on some aspects of it elsewhere in this book.

I won’t go into detail here about the exact semantics of the different 
types of changes. Instead, I want to highlight some less straightforward ways 
version numbers come up in the Rust ecosystem, which you need to keep in 
mind when deciding how to version your own crates.
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Minimum Supported Rust Version
The first Rust-ism is the minimum supported Rust version (MSRV). There is 
much debate in the Rust community about what policy projects should 
adhere to when it comes to their MSRV and versioning, and there’s no truly 
good answer. The core of the problem is that some Rust users are limited to 
using older versions of Rust, often in an enterprise setting where they have 
little choice. If we constantly take advantage of newly stabilized APIs, those 
users will not be able to compile the latest versions of our crates and will be 
left behind.

There are two techniques crate authors can use to make life a little easier 
for users in this position. The first is to establish an MSRV policy promising 
that new versions of a crate will always compile with any stable release from 
the last X months. The exact number varies, but 6 or 12 months is common. 
With Rust’s six-week release cycle, that corresponds to the latest four or eight 
stable releases, respectively. Any new code introduced to the project must 
compile with the MSRV compiler (usually checked by CI) or be held until the 
MSRV policy allows it to be merged as is. This can sometimes be a pain, as it 
means these crates cannot take advantage of the latest and greatest the lan-
guage has to offer, but it will make life easier for your users.

The second technique is to make sure to increase the minor version 
number of your crate any time that the MSRV changes. So, if you release 
version 2.7.0 of your crate and that increases your MSRV from Rust 1.44 
to Rust 1.45, then a project that is stuck on 1.44 and that depends on your 
crate can use the dependency version specifier version = "2, <2.7" to keep 
the project working until it can move on to Rust 1.45. It’s important that you 
increment the minor version, not just the patch version, so that you can still 
issue critical security fixes for the previous MSRV release by doing another 
patch release if necessary.

Some projects take their MSRV support so seriously that they consider 
an MSRV change a breaking change and increment the major version num-
ber. This means that downstream projects will explicitly have to opt in to an 
MSRV change, rather than opting out—but it also means that users who do 
not have such strict MSRV requirements will not see future bug fixes with-
out updating their dependencies, which may require them to issue a break-
ing change as well. As I said, none of these solutions are without drawbacks.

Enforcing an MSRV in the Rust ecosystem today is challenging. Only 
a small subset of crates provide any MSRV guarantees, and even if your 
dependencies do, you will need to constantly monitor them to know when 
they increase their MSRV. When they do, you’ll need to do a new release 
of your crate with the restricted version bounds mentioned previously to 
make sure your MSRV doesn’t also change. This may in turn force you to 
forego security and performance updates made to your dependencies, as 
you’ll have to continue using older versions until your MSRV policy permits 
updating. And that decision also carries over to your dependents. There 
have been proposals to build MSRV checking into Cargo itself, but nothing 
workable has been stabilized as of this writing.
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Minimal Dependency Versions
When you first add a dependency, it’s not always clear what version specifier 
you should give that dependency. Programmers commonly choose the latest 
version, or just the current major version, but chances are that both of those 
choices are wrong. By “wrong,” I don’t mean that your crate won’t compile, 
but rather that making that choice may cause strife for users of your crate 
down the line. Let’s look at why each of these cases is problematic.

First, consider the case where you add a dependency on hugs = "1.7.3", 
the latest published version. Now imagine that a developer somewhere 
depends on your crate, but they also depend on some other crate, foo, that 
itself depends on hugs. Further imagine that the author of foo is really careful 
about their MSRV policy, so they depend on hugs = "1, <1.6". Here, you’ll run 
into trouble. When Cargo sees hugs = "1.7.3", it considers only versions >=1.7. 
But then it sees that foo’s dependency on hugs requires <1.6, so it gives up and 
reports that there is no version of hugs compatible with all the requirements.

N O T E In practice, there are a number of reasons why a crate may explicitly not want a 
newer version of a dependency. The most common ones are to enforce MSRV, to meet 
enterprise auditing requirements (the newer version will contain code that hasn’t been 
audited), and to ensure reproducible builds where only the exact listed version is used.

This is unfortunate, as it could well be that your crate compiles fine 
with, say, hugs 1.5.6. Maybe it even compiles fine with any 1.X version! But 
by using the latest version number, you are telling Cargo to consider only 
versions at or beyond that minor version. Is the solution to use hugs = "1" 
instead, then? No, that’s not quite right either. It could be that your code 
truly does depend on something that was added only in hugs 1.6, so while 
1.6.2 would be fine, 1.5.6 would not be. You wouldn’t notice this if you were 
only ever compiling your crate in situations where a newer version ends up 
getting used, but if some crate in the dependency graph specifies hugs = "1, 
<1.5", your crate would not compile!

The right strategy is to list the earliest version that has all the things 
your crate depends on and to make sure that this remains the case even 
as you add new code to your crate. But how do you establish that beyond 
trawling the changelogs, or through trial and error? Your best bet is to use 
Cargo’s unstable -Z minimal-versions flag, which makes your crate use the 
minimum acceptable version for all dependencies, rather than the maxi-
mum. Then, set all your dependencies to just the latest major version num-
ber, try to compile, and add a minor version to any dependencies that don’t. 
Rinse and repeat until everything compiles fine, and you now have your 
minimum version requirements!

It’s worth noting that, like with MSRV, minimal version checking faces 
an ecosystem adoption problem. While you may have set all your version 
specifiers correctly, the projects you depend on may not have. This makes 
the Cargo minimal versions flag hard to use in practice (and is why it’s still 
unstable). If you depend on foo, and foo depends on bar with a specifier 
of bar = "1" when it actually requires bar = "1.4", Cargo will report that it 
failed to compile foo no matter how you list foo because the -Z flag tells it 
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to always prefer minimal versions. You can work around this by listing bar 
directly in your dependencies with the appropriate version requirement, 
but these workarounds can be painful to set up and maintain. You may end 
up listing a large number of dependencies that are only really pulled in 
through your transitive dependencies, and you’ll have to keep that list up to 
date as time goes on. 

N O T E  One current proposal is to present a flag that favors minimal versions for the current 
crate but maximal ones for dependencies, which seems quite promising.

Changelogs
For all but the most trivial crates, I highly recommend keeping a changelog. 
There is little more frustrating than seeing that a dependency has received 
a major version bump and then having to dig through the Git logs to figure 
out what changed and how to update your code. I recommend that you do 
not just dump your Git logs into a file named changelog, but instead keep a 
manual changelog. It is much more likely to be useful.

A simple but good format for changelogs is the Keep a Changelog for-
mat documented at https://keepachangelog.com/.

Unreleased Versions
Rust considers version numbers even when the source of a dependency is a 
directory or a Git repository. This means that semantic versioning is impor-
tant even when you have not yet published a release to crates.io; it matters 
what version is listed in your Cargo.toml between releases. The semantic ver-
sioning standard does not dictate how to handle this case, but I’ll provide a 
workflow that works decently well without being too onerous.

After you’ve published a release, immediately update the version num-
ber in your Cargo.toml to the next patch version with a suffix like -alpha.1. 
If you just released 2.0.3, make the new version 2.0.4-alpha.1. If you just 
released an alpha, increment the alpha number instead.

As you make changes to the code between releases, keep an eye out for 
additive or breaking changes. If one happens, and the corresponding ver-
sion number has not changed since the last release, increment it. For exam-
ple, if the last released version is 2.0.3, the current version is 2.0.4-alpha.2, 
and you make an additive change, make the version with the change 2.1.0-
alpha.1. If you made a breaking change, it becomes 3.0.0-alpha.1 instead. If 
the corresponding version increase has already been made, just increment 
the alpha number.

When you make a release, remove the suffix (unless you want to do a 
prerelease), then publish, and start from the top.

This process is effective because it makes two common workflows work 
much better. First, imagine that a developer depends on major version 2 
of your crate, but they need a feature that’s currently available only in Git. 
Then you commit a breaking change. If you don’t increase the major ver-
sion at the same time, their code will suddenly fail in unexpected ways, 
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either by failing to compile or as a result of weird runtime issues. If you fol-
low the procedure laid out here, they’ll instead be notified by Cargo that a 
breaking change has occurred, and they’ll have to either resolve that or pin 
a specific commit.

Next, imagine that a developer needs a feature they just contributed 
to your crate, but which isn’t part of any released version of your crate yet. 
They’ve used your crate behind a Git dependency for a while, so other 
developers on their project already have older checkouts of your crate’s 
repository. If you do not increment the major version number in Git, this 
developer has no way to communicate that their project now relies on the 
feature that was just merged. If they push their change, their fellow develop-
ers will find that the project no longer compiles, since Cargo will reuse the 
old checkout. If, on the other hand, the developer can increment the minor 
version number for the Git dependency, then Cargo will realize that the old 
checkout is outdated.

This workflow is by no means perfect. It doesn’t provide a good way to 
communicate multiple minor or major changes between releases, and you 
still need to do a bit of work to keep track of the versions. However, it does 
address two of the most common issues Rust developers run into when they 
work against Git dependencies, and even if you make multiple such changes 
between releases, this workflow will still catch many of the issues.

If you’re not too worried about small or consecutive version numbers 
in releases, you can improve this suggested workflow by simply always incre-
menting the appropriate part of the version number. Be aware, though, that 
depending on how frequently you make such changes, this may make your 
version numbers quite large!

Summary
In this chapter, we’ve looked at a number of mechanisms for configuring, 
organizing, and publishing crates, for both your own benefit and that of 
others. We’ve also gone over some common gotchas when working with 
dependencies and features in Cargo that now hopefully won’t catch you out 
in the future. In the next chapter we’ll turn to testing and dig into how you 
go beyond Rust’s simple #[test] functions that we know and love.
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T E S T I N G

In this chapter, we’ll look at the various 
ways in which you can extend Rust’s testing 

capabilities and what other kinds of testing 
you may want to add into your testing mix. Rust 

comes with a number of built-in testing facilities that 
are well covered in The Rust Programming Language, 
represented primarily by the #[test] attribute and the 
tests/ directory. These will serve you well across a wide  
range of applications and scales and are often all you need when you are 
getting started with a project. However, as the codebase develops and your 
testing needs grow more elaborate, you may need to go beyond just tag-
ging #[test] onto individual functions. 

This chapter is divided into two main sections. The first part covers 
Rust testing mechanisms, like the standard testing harness and conditional 
testing code. The second looks at other ways to evaluate the correctness of 
your Rust code, such as benchmarking, linting, and fuzzing.
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Rust Testing Mechanisms
To understand the various testing mechanisms Rust provides, you must first 
understand how Rust builds and runs tests. When you run cargo test --lib, 
the only special thing Cargo does is pass the --test flag to rustc. This flag 
tells rustc to produce a test binary that runs all the unit tests, rather than 
just compiling the crate’s library or binary. Behind the scenes, --test has 
two primary effects. First, it enables cfg(test) so that you can conditionally 
include testing code (more on that in a bit). Second, it makes the compiler 
generate a test harness: a carefully generated main function that invokes each 
#[test] function in your program when it’s run.

The Test Harness
The compiler generates the test harness main function through a mix of 
procedural macros, which we’ll discuss in greater depth in Chapter 8, and 
a light sprinkling of magic. Essentially, the harness transforms every func-
tion annotated by #[test] into a test descriptor—this is the procedural macro 
part. It then exposes the path of each of the descriptors to the generated 
main function—this is the magic part. The descriptor includes information 
like the test’s name, any additional options it has set (like #[should_panic]), 
and so on. At its core, the test harness iterates over the tests in the crate, 
runs them, captures their results, and prints the results. So, it also includes 
logic to parse command line arguments (for things like --test-threads=1), 
capture test output, run the listed tests in parallel, and collect test results.

As of this writing, Rust developers are working on making the magic 
part of test harness generation a publicly available API so that developers 
can build their own test harnesses. This work is still at the experimental 
stage, but the proposal aligns fairly closely with the model as it exists today. 
Part of the magic that needs to be figured out is how to ensure that #[test] 
functions are available to the generated main function even if they are inside 
private submodules.

Integration tests (the tests in tests/) follow the same process as unit 
tests, with the one exception that they are each compiled as their own sepa-
rate crate, meaning they can access only the main crate’s public interface 
and are run against the main crate compiled without #[cfg(test)]. A test 
harness is generated for each file in tests/. Test harnesses are not generated 
for files in subdirectories under tests/ to allow you to have shared submod-
ules for your tests.

N O T E If you explicitly want a test harness for a file in a subdirectory, you can opt in to that 
by calling the file main.rs.

Rust does not require that you use the default test harness. You can 
instead opt out of it and implement your own main method that represents 
the test runner by setting harness = false for a given integration test in 
Cargo.toml, as shown in Listing 7-1. The main method that you define will 
then be invoked to run the test.
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[[test]]
name = "custom"
path = "tests/custom.rs"
harness = false

Listing 7-1: Opting out of the standard test harness

Without the test harness, none of the magic around #[test] happens. 
Instead, you’re expected to write your own main function to run the testing 
code you want to execute. Essentially, you’re writing a normal Rust binary 
that just happens to be run by cargo test. That binary is responsible for 
handling all the things that the default harness normally does (if you want 
to support them), such as command line flags. The harness property is set 
separately for each integration test, so you can have one test file that uses 
the standard harness and one that does not.

A RGUMEN T S TO T HE DEFAULT T ES T H A R NESS

The default test harness supports a number of command line arguments to 
configure how the tests are run. These aren’t passed to cargo test directly 
but rather to the test binary that Cargo compiles and runs for you when you 
run cargo test. To access that set of flags, pass -- to cargo test, followed by 
the arguments to the test binary. For example, to see the help text for the test 
binary, you’d run cargo test -- --help.

A number of handy configuration options are available through these com-
mand line arguments. The --nocapture flag disables the output capturing that 
normally happens when you run Rust tests. This is useful if you want to observe 
a test’s output in real time rather than all at once after the test has failed. You 
can use the --test-threads option to limit how many tests run concurrently, 
which is helpful if you have a test that hangs or segfaults and you want to figure 
out which one it is by running the tests sequentially. There’s also a --skip option 
for skipping tests that match a certain pattern, --ignored to run tests that would 
normally be ignored (such as those that require an external program to be run-
ning), and --list to just list all the available tests.

Keep in mind that these arguments are all implemented by the default test 
harness, so if you disable it (with harness = false), you’ll have to implement the 
ones you need yourself in your main function!

Integration tests without a harness are primarily useful for bench-
marks, as we’ll see later, but they also come in handy when you want to run 
tests that don’t fit the standard “one function, one test” model. For exam-
ple, you’ll frequently see harnessless tests used with fuzzers, model check-
ers, and tests that require a custom global setup (like under WebAssembly 
or when working with custom targets).
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#[cfg(test)]
When Rust builds code for testing, it sets the compiler configuration flag 
test, which you can then use with conditional compilation to have code 
that is compiled out unless it is specifically being tested. On the surface, 
this may seem odd: don’t you want to test exactly the same code that’s going 
into production? You do, but having code exclusively available when testing 
allows you to write better, more thorough tests, in a few ways.

MOCKING

When writing tests, you often want tight control over the code you’re testing as 
well as any other types that your code may interact with. For example, if you 
are testing a network client, you probably do not want to run your unit tests 
over a real network but instead want to directly control what bytes are emitted 
by the “network” and when. Or, if you’re testing a data structure, you want your 
test to use types that allow you to control what each method returns on each 
invocation. You may also want to gather metrics such as how often a given 
method was called or whether a given byte sequence was emitted.

These “fake” types and implementations are known as mocks, and they 
are a key feature of any extensive unit test suite. While you can often do the 
work needed to get this kind of control manually, it’s nicer to have a library take 
care of most of the nitty-gritty details for you. This is where automated mock-
ing comes into play. A mocking library will have facilities for generating types 
(including functions) with particular properties or signatures, as well as mecha-
nisms to control and introspect those generated items during a test execution.

Mocking in Rust generally happens through generics—as long as your 
program, data structure, framework, or tool is generic over anything you might 
want to mock (or takes a trait object), you can use a mocking library to gener-
ate conforming types that will instantiate those generic parameters. You then 
write your unit tests by instantiating your generic constructs with the generated 
mock types, and you’re off to the races!

In situations where generics are inconvenient or inappropriate, such as 
if you want to avoid making a particular aspect of your type generic to users, 
you can instead encapsulate the state and behavior you want to mock in a 
dedicated struct. You would then generate a mocked version of that struct and 
its methods and use conditional compilation to use either the real or mocked 
implementation depending on cfg(test) or a test-only feature like cfg(feature 
= "test_mock_foo").

At the moment, there isn’t a single mocking library, or even a single mock-
ing approach, that has emerged as the One True Answer in the Rust community. 
The most extensive and thorough mocking library I know of is the mockall crate, 
but that is still under active development, and there are many other contenders.
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Test-Only APIs

First, having test-only code allows you to expose additional methods, fields, 
and types to your (unit) tests so the tests can check not only that the public 
API behaves correctly, but also that the internal state is correct. For example, 
consider the HashMap type from hashbrown, the crate that implements the 
standard library HashMap. The HashMap type is really just a wrapper around 
a RawTable type, which is what implements most of the hash table logic. 
Suppose that after doing a HashMap::insert on an empty map, you want to 
check that a single bucket in the map is nonempty, as shown in Listing 7-2.

#[test]
fn insert_just_one() {
  let mut m = HashMap::new();
  m.insert(42, ());
  let full = m.table.buckets.iter().filterBucket::is_full.count();
  assert_eq!(full, 1);
}

Listing 7-2: A test that accesses inaccessible internal state and thus does not compile

This code will not compile as written, because while the test code can 
access the private table field of HashMap, it cannot access the also private 
buckets field of RawTable, as RawTable lives in a different module. We could fix 
this by making the buckets field visibility pub(crate), but we really don’t want 
HashMap to be able to touch buckets in general, as it could accidentally corrupt 
the internal state of the RawTable. Even making buckets available as read-only 
could be problematic, as new code in HashMap may then start depending on 
the internal state of RawTable, making future modifications more difficult. 

The solution is to use #[cfg(test)]. We can add a method to RawTable 
that allows access to buckets only while testing, as shown in Listing 7-3, and 
thereby avoid adding footguns for the rest of the code. The code from 
Listing 7-2 can then be updated to call buckets() instead of accessing the 
private buckets field.

impl RawTable {
  #[cfg(test)]
  pub(crate) fn buckets(&self) -> &[Bucket] {
    &self.buckets
  }
}

Listing 7-3: Using #[cfg(test)] to make internal state accessible in the testing context

Bookkeeping for Test Assertions

The second benefit of having code that exists only during testing is that 
you can augment the program to perform additional runtime bookkeep-
ing that can then be inspected by tests. For example, imagine you’re writ-
ing your own version of the BufWriter type from the standard library. When 
testing it, you want to make sure that BufWriter does not issue system calls 
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unnecessarily. The most obvious way to do so is to have the BufWriter keep 
track of how many times it has invoked write on the underlying Write. 
However, in production this information isn’t important, and keeping 
track of it introduces (marginal) performance and memory overhead. With 
#[cfg(test)], you can have the bookkeeping happen only when testing, as 
shown in Listing 7-4.

struct BufWriter<T> {
  #[cfg(test)]
  write_through: usize,
  // other fields...
}

impl<T: Write> Write for BufWriter<T> {
  fn write(&mut self, buf: &[u8]) -> Result<usize> {
    // ...
    if self.full() {
      #[cfg(test)]
      self.write_through += 1;
      let n = self.inner.write(&self.buffer[..])?;
    // ...
  }
}

Listing 7-4: Using #[cfg(test)] to limit bookkeeping to the testing context

Keep in mind that test is set only for the crate that is being compiled as 
a test. For unit tests, this is the crate being tested, as you would expect. For 
integration tests, however, it is the integration test binary being compiled as 
a test—the crate you are testing is just compiled as a library and so will not 
have test set.

Doctests
Rust code snippets in documentation comments are automatically run as 
test cases. These are commonly referred to as doctests. Because doctests 
appear in the public documentation of your crate, and users are likely to 
mimic what they contain, they are run as integration tests. This means that 
the doctests don’t have access to private fields and methods, and test is not 
set on the main crate’s code. Each doctest is compiled as its own dedicated 
crate and is run in isolation, just as if the user had copy-pasted the doctest 
into their own program.

Behind the scenes, the compiler performs some preprocessing on doct-
ests to make them more concise. Most importantly, it automatically adds an 
fn main around your code. This allows doctests to focus only on the impor-
tant bits that the user is likely to care about, like the parts that actually 
use types and methods from your library, without including unnecessary 
boilerplate.

You can opt out of this auto-wrapping by defining your own fn main in 
the doctest. You may want to do this, for example, if you want to write an 
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asynchronous main function using something like #[tokio::main] async fn 
main, or if you want to add additional modules to the doctest. 

To use the ? operator in your doctest, you don’t normally have to use a 
custom main function as rustdoc includes some heuristics to set the return 
type to Result<(), impl Debug> if your code looks like it makes use of ? (for 
example, if it ends with Ok(())). If type inference gives you a hard time 
about the error type for the function, you can disambiguate it by changing 
the last line of the doctest to be explicitly typed, like this: Ok::<(), T>(()).

Doctests have a number of additional features that come in handy as 
you write documentation for more complex interfaces. The first is the abil-
ity to hide individual lines. If you prefix a line of a doctest with a #, that line 
is included when the doctest is compiled and run, but it is not included in 
the code snippet generated in the documentation. This lets you easily hide 
details that are not important to the current example, such as implement-
ing traits for dummy types or generating values. It is also useful if you wish 
to present a sequence of examples without showing the same leading code 
each time. Listing 7-5 gives an example of what a doctest with hidden lines 
might look like.

/// Completely frobnifies a number through I/O.
///
/// In this first example we hide the value generation.
/// ```
/// # let unfrobnified_number = 0;
/// # let already_frobnified = 1;
/// assert!(frobnify(unfrobnified_number).is_ok());
/// assert!(frobnify(already_frobnified).is_err());
/// ```
///
/// Here's an example that uses ? on multiple types
/// and thus needs to declare the concrete error type,
/// but we don't want to distract the user with that.
/// We also hide the use that brings the function into scope.
/// ```
/// # use mylib::frobnify;
/// frobnify("0".parse()?)?;
/// # Ok::<(), anyhow::Error>(())
/// ```
///
/// You could even replace an entire block of code completely,
/// though use this _very_ sparingly:
/// ```
/// # /*
/// let i = ...;
/// # */
/// # let i = 42;
/// frobnify(i)?;
/// ```
fn frobnify(i: usize) -> std::io::Result<()> {

Listing 7-5: Hiding lines in a doctest with #
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N O T E  Use this feature with care; it can be frustrating to users if they copy-paste an example 
and then it doesn’t work because of required steps that you’ve hidden.

Much like #[test] functions, doctests also support attributes that 
modify how the doctest is run. These attributes go immediately after the 
triple-backtick used to denote a code block, and multiple attributes can be 
separated by commas. 

Like with test functions, you can specify the should_panic attribute to 
indicate that the code in a particular doctest should panic when run, or 
ignore to check the code segment only if cargo test is run with the --ignored 
flag. You can also use the no_run attribute to indicate that a given doctest 
should compile but should not be run.

The attribute compile_fail tells rustdoc that the code in the documenta-
tion example should not compile. This indicates to the user that a particu-
lar use is not possible and serves as a useful test to remind you to update 
the documentation should the relevant aspect of your library change. You 
can also use this attribute to check that certain static properties hold for 
your types. Listing 7-6 shows an example of how you can use compile_fail to 
check that a given type does not implement Send, which may be necessary to 
uphold safety guarantees in unsafe code.

```compile_fail
# struct MyNonSendType(std::rc::Rc<()>);
fn is_send<T: Send>() {}
is_send::<MyNonSendType>();
```

Listing 7-6: Testing that code fails to compile with compile_fail

compile_fail is a fairly crude tool in that it gives no indication of why the 
code does not compile. For example, if code doesn’t compile because of a 
missing semicolon, a compile_fail test will appear to have been successful. 
For that reason, you’ll usually want to add the attribute only after you have 
made sure that the test indeed fails to compile with the expected error. 
If you need more fine-grained tests for compilation errors, such as when 
developing macros, take a look at the trybuild crate.

Additional Testing Tools
There’s a lot more to testing than just running test functions and seeing that 
they produce the expected result. A thorough survey of testing techniques, 
methodologies, and tools is outside the scope of this book, but there are 
some key Rust-specific pieces that you should know about as you expand 
your testing repertoire.

Linting
You may not consider a linter’s checks to be tests, but in Rust they often 
can be. The Rust linter clippy categorizes a number of its lints as correctness 
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lints. These lints catch code patterns that compile but are almost cer-
tainly bugs. Some examples are a = b; b = a, which fails to swap a and b; 
std::mem::forget(t), where t is a reference; and for x in y.next(), which will 
iterate only over the first element in y. If you are not running clippy as part 
of your CI pipeline already, you probably should be.

Clippy comes with a number of other lints that, while usually helpful, 
may be more opinionated than you’d prefer. For example, the type_complexity 
lint, which is on by default, issues a warning if you use a particularly involved 
type in your program, like Rc<Vec<Vec<Box<(u32, u32, u32, u32)>>>>. While that 
warning encourages you to write code that is easier to read, you may find it too 
pedantic to be broadly useful. If some part of your code erroneously triggers 
a particular lint, or you just want to allow a specific instance of it, you can opt 
out of the lint just for that piece of code with #[allow(clippy::name_of_lint)].

The Rust compiler also comes with its own set of lints in the form of 
warnings, though these are usually more directed toward writing idiomatic 
code than checking for correctness. Instead, correctness lints in the com-
piler are simply treated as errors (take a look at rustc -W help for a list).

N O T E  Not all compiler warnings are enabled by default. Those disabled by default are usu-
ally still being refined, or are more about style than content. A good example of this is 
the “idiomatic Rust 2018 edition” lint, which you can enable with #![warn(rust_2018 
_idioms)]. When this lint is enabled, the compiler will tell you if you’re failing to take 
advantage of changes brought by the Rust 2018 edition. Some other lints that you may 
want to get into the habit of enabling when you start a new project are missing_docs 
and missing_debug_implementations, which warn you if you’ve forgotten to document 
any public items in your crate or add Debug implementations for any public types, 
respectively.

Test Generation
Writing a good test suite is a lot of work. And even when you do that work, 
the tests you write test only the particular set of behaviors you were con-
sidering at the time you wrote them. Luckily, you can take advantage of 
a number of test generation techniques to develop better and more thor-
ough tests. These generate input for you to use to check your application’s 
correctness. Many such tools exist, each with their own strengths and 
weaknesses, so here I’ll cover only the main strategies used by these tools: 
fuzzing and property testing.

Fuzzing

Entire books have been written about fuzzing, but at a high level the idea is 
simple: generate random inputs to your program and see if it crashes. If the 
program crashes, that’s a bug. For example, if you’re writing a URL parsing 
library, you can fuzz-test your program by systematically generating random 
strings and throwing them at the parsing function until it panics. Done 
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naively, this would take a while to yield results: if the fuzzer starts with a, 
then b, then c, and so on, it will take it a long time to generate a tricky URL 
like http://[:]. In practice, modern fuzzers use code coverage metrics to 
explore different paths in your code, which lets them reach higher degrees 
of coverage faster than if the inputs were truly chosen at random.

Fuzzers are great at finding strange corner cases that your code doesn’t 
handle correctly. They require little setup on your part: you just point the 
fuzzer at a function that takes a “fuzzable” input, and off it goes. For exam-
ple, Listing 7-7 shows an example of how you might fuzz-test a URL parser.

libfuzzer_sys::fuzz_target!(|data: &[u8]| {
  if let Ok(s) = std::str::from_utf8(data) {
      let _ = url::Url::parse(s);
  }
});

Listing 7-7: Fuzzing a URL parser with libfuzzer

The fuzzer will generate semi-random inputs to the closure, and any 
that form valid UTF-8 strings will be passed to the parser. Notice that the 
code here doesn’t check whether the parsing succeeds or fails—instead, it’s 
looking for cases where the parser panics or otherwise crashes due to inter-
nal invariants that are violated.

The fuzzer keeps running until you terminate it, so most fuzzing tools 
come with a built-in mechanism to stop after a certain number of test cases 
have been explored. If your input isn’t a trivially fuzzable type—something 
like a hash table—you can usually use a crate like arbitrary to turn the byte 
string that the fuzzer generates into a more complex Rust type. It feels like 
magic, but under the hood it’s actually implemented in a very straightfor-
ward fashion. The crate defines an Arbitrary trait with a single method, 
arbitrary, that constructs the implementing type from a source of random 
bytes. Primitive types like u32 or bool read the necessary number of bytes 
from that input to construct a valid instance of themselves, whereas more 
complex types like HashMap or BTreeSet produce one number from the input 
to dictate their length and then call Arbitrary that number of times on their 
inner types. There’s even an attribute, #[derive(Arbitrary)], that implements 
Arbitrary by just calling arbitrary on each contained type! To explore fuzz-
ing further, I recommend starting with cargo-fuzz.

Property-Based Testing

Sometimes you want to check not only that your program doesn’t crash but 
also that it does what it’s expected to do. It’s great that your add function 
didn’t panic, but if it tells you that the result of add(1, 4) is 68, it’s probably 
still wrong. This is where property-based testing comes into play; you describe 
a number of properties your code should uphold, and then the property 
testing framework generates inputs and checks that those properties 
indeed hold. 
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A common way to use property-based testing is to first write a simple 
but naive version of the code you want to test that you are confident is cor-
rect. Then, for a given input, you give that input to both the code you want 
to test and the simplified but naive version. If the result or output of the 
two implementations is the same, your code is good—that is the correct-
ness property you’re looking for—but if it’s not, you’ve likely found a bug. 
You can also use property-based testing to check for properties not directly 
related to correctness, such as whether operations take strictly less time for 
one implementation than another. The common principle is that you want 
any difference in outcome between the real and test versions to be informa-
tive and actionable so that every failure allows you to make improvements. 
The naive implementation might be one from the standard library that 
you’re trying to replace or augment (like std::collections::VecDeque), or it 
might be a simpler version of an algorithm that you’re trying optimize (like 
naive versus optimized matrix multiplication).

If this approach of generating inputs until some condition is met 
sounds a lot like fuzzing, that’s because it is—smarter people than I have 
argued that fuzzing is “ just” property-based testing where the property 
you’re testing for is “it doesn’t crash.”

One downside of property-based testing is that it relies more heavily on 
the provided descriptions of the inputs. Whereas fuzzing will keep trying 
all possible inputs, property testing tends to be guided by developer anno-
tations like “a number between 0 and 64” or “a string that contains three 
commas.” This allows property testing to more quickly reach cases that fuzz-
ers may take a long time to encounter randomly, but it does require manual 
work and may miss important but niche buggy inputs. As fuzzers and prop-
erty testers grow closer, however, fuzzers are starting to gain this kind of 
constraint-based searching capability as well.

If you’re curious about property-based test generation, I recommend 
starting with the proptest crate.

T ES T ING SEQUENCES OF OPER AT IONS

Since fuzzers and property testers allow you to generate arbitrary Rust types, 
you aren’t limited to testing a single function call in your crate. For example, say 
you want to test that some type Foo behaves correctly if you perform a particu-
lar sequence of operations on it. You could define an enum Operation that lists 
operations, and make your test function take a Vec<Operation>. Then you could 
instantiate a Foo and perform each operation on that Foo, one after the other. 
Most testers have support for minimizing inputs, so they will even search for 
the smallest sequence of operations that still violates a property if a property-
violating input is found!
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Test Augmentation
Let’s say you have a magnificent test suite all set up, and your code passes 
all the tests. It’s glorious. But then, one day, one of the normally reliable 
tests inexplicably fails or crashes with a segmentation fault. There are two 
common reasons for these kinds of nondeterministic test failures: race con-
ditions, where your test might fail only if two operations occur on different 
threads in a particular order, and undefined behavior in unsafe code, such 
as if some unsafe code reads a particular value out of uninitialized memory.

Catching these kinds of bugs with normal tests can be difficult—often 
you don’t have sufficient low-level control over thread scheduling, memory 
layout and content, or other random-ish system factors to write a reliable 
test. You could run each test many times in a loop, but even that may not 
catch the error if the bad case is sufficiently rare or unlikely. Luckily, there 
are tools that can help augment your tests to make catching these kinds of 
bugs much easier. 

The first of these is the amazing tool Miri, an interpreter for Rust’s 
mid-level intermediate representation (MIR). MIR is an internal, simplified 
representation of Rust that helps the compiler find optimizations and 
check properties without having to consider all of the syntax sugar of Rust 
itself. Running your tests through Miri is as simple as running cargo miri 
test. Miri interprets your code rather than compiling and running it like a 
normal binary, which makes the tests run a decent amount slower. But in 
return, Miri can keep track of the entire program state as each line of your 
code executes. This allows Miri to detect and report if your program ever 
exhibits certain types of undefined behavior, such as uninitialized memory 
reads, uses of values after they’ve been dropped, or out-of-bounds pointer 
accesses. Rather than having these operations yield strange program behav-
iors that may only sometimes result in observable test failures (like crashes), 
Miri detects them when they happen and tells you immediately. 

For example, consider the very unsound code in Listing 7-8, which cre-
ates two exclusive references to a value.

let mut x = 42;
let x: *mut i32 = &mut x;
let (x1, x2) = unsafe { (&mut *x, &mut *x) };
println!("{} {}", x1, x2);

Listing 7-8: Wildly unsafe code that Miri detects is incorrect

At the time of writing, if you run this code through Miri, you get an 
error that points out exactly what’s wrong:

error: Undefined Behavior: trying to reborrow for Unique at alloc1383, but 
parent tag <2772> does not have an appropriate item in the borrow stack
 --> src/main.rs:4:6
  |
4 | let (x1, x2) = unsafe { (&mut *x, &mut *x) };
  |      ^^ trying to reborrow for Unique at alloc1383, but parent tag <2772> 
does not have an appropriate item in the borrow stack

Rust for Rustaceans (Early Access) © 2022 by Jon Gjengset 



Testing   97

N O T E  Miri is still under development, and its error messages aren’t always the easiest to 
understand. This is a problem that’s being actively worked on, so by the time you read 
this, the error output may have already gotten much better!

Another tool worth looking at is Loom, a clever library that tries to 
ensure your tests are run with every relevant interleaving of concurrent 
operations. At a high level, Loom keeps track of all cross-thread synchro-
nization points and runs your tests over and over, adjusting the order in 
which threads proceed from those synchronization points each time. So, if 
thread A and thread B both take the same Mutex, Loom will ensure that the 
test runs once with A taking it first and once with B taking it first. Loom 
also keeps track of atomic accesses, memory orderings, and accesses to 
UnsafeCell (which we’ll discuss in Chapter 10) and checks that threads do 
not access them inappropriately. If a test fails, Loom can give you an exact 
rundown of which threads executed in what order so you can determine 
how the crash happened.

Performance Testing
Writing performance tests is difficult because it is often hard to accurately 
model a workload that reflects real-world usage of your crate. But having 
such tests is important; if your code suddenly runs 100 times slower, that 
really should be considered a bug, yet without a performance test you may 
not spot the regression. If your code runs 100 times faster, that might also 
indicate that something is off. Both of these are good reasons to have auto-
mated performance tests as part of your CI—if performance changes drasti-
cally in either direction, you should know about it.

Unlike with functional testing, performance tests do not have a com-
mon, well-defined output. A functional test will either succeed or fail, 
whereas a performance test may give you a throughput number, a latency 
profile, a number of processed samples, or any other metric that might 
be relevant to the application in question. Also, a performance test may 
require running a function in a loop a few hundred thousand times, or it 
might take hours running across a distributed network of multicore boxes. 
For that reason, it is difficult to speak about how to write performance tests 
in a general sense. Instead, in this section, we’ll look at some of the issues 
you may encounter when writing performance tests in Rust and how to miti-
gate them. Three particularly common pitfalls that are often overlooked 
are performance variance, compiler optimizations, and I/O overhead. Let’s 
explore each of these in turn.

Performance Variance

Performance can vary for a huge variety of reasons, and many factors affect 
how fast a particular sequence of machine instructions run. Some are obvious, 
like the CPU and memory clock speed, or how loaded the machine otherwise 
is, but many are much more subtle. For example, your kernel version may 
change paging performance, the length of your username might change the 
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layout of memory, and the temperature in the room might cause the CPU to 
clock down. Ultimately, it is highly unlikely that if you run a benchmark twice, 
you’ll get the same result. In fact, you may observe significant variance, even if 
you are using the same hardware. Or, viewed from another perspective, your 
code may have gotten slower or faster, but the effect may be invisible due to 
differences in the benchmarking environment.

There are no perfect ways to eliminate all variance in your perfor-
mance results, unless you happen to be able to run benchmarks repeat-
edly on a highly diverse fleet of machines. Even so, it’s important to try to 
handle this measurement variance as best we can to extract a signal from 
the noisy measurements benchmarks give us. In practice, our best friend in 
combating variance is to run each benchmark many times and then look 
at the distribution of measurements rather than just a single one. Rust has 
tools that can help with this. For example, rather than ask “How long did 
this function take to run on average?” crates like hdrhistogram enable us to 
look at statistics like “What range of runtime covers 95% of the samples 
we observed?” To be even more rigorous, we can use techniques like null 
hypothesis testing from statistics to build some confidence that a measured 
difference indeed corresponds to a true change and is not just noise.

A lecture on statistical hypothesis testing is beyond the scope of this 
book, but luckily much of this work has already been done by others. The 
criterion crate, for instance, does all of this and more for you. All you 
have to do is give it a function that it can call to run one iteration of your 
benchmark, and it will run it the appropriate number of times to be fairly 
sure that the result is reliable. It then produces a benchmark report, which 
includes a summary of the results, analysis of outliers, and even graphical 
representations of trends over time. Of course, it can’t eliminate the effects 
of just testing on a particular configuration of hardware, but it at least cat-
egorizes the noise that is measurable across executions.

Compiler Optimizations

Compilers these days are really clever. They eliminate dead code, compute 
complex expressions at compile time, unroll loops, and perform other dark 
magic to squeeze every drop of performance out of our code. Normally this 
is great, but when we’re trying to measure how fast a particular piece of 
code is, the compiler’s smartness can give us invalid results. For example, 
take the code to benchmark Vec::push in Listing 7-9.

let mut vs = Vec::with_capacity(4);
let start = std::time::Instant::now();
for i in 0..4 {
  vs.push(i);
}
println!("took {:?}", start.elapsed());

Listing 7-9: A suspiciously fast performance benchmark
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If you were to look at the assembly output of this code compiled in 
release mode using something like the excellent godbolt.org or cargo-asm, 
you’d immediately notice that something was wrong: the calls to Vec::with 
_capacity and Vec::push, and indeed the whole for loop, are nowhere to be 
seen. They have been optimized out completely. The compiler realized 
that nothing in the code actually required the vector operations to be per-
formed and eliminated them as dead code. Of course, the compiler is com-
pletely within its rights to do so, but for benchmarking purposes, this is not 
particularly helpful.

To avoid these kinds of optimizations for benchmarking, the standard 
library provides std::hint::black_box. This function has been the topic of 
much debate and confusionand is still pending stabilization at the time of 
writing, but is so useful it’s worth discussing here nonetheless. At its core, 
it’s simply an identity function (one that takes x and returns x) that tells the 
compiler to assume that the argument to the function is used in arbitrary 
(legal) ways. It does not prevent the compiler from applying optimizations 
to the input argument, nor does it prevent the compiler from optimizing 
how the return value is used. Instead, it encourages the compiler to actually 
compute the argument to the function (under the assumption that it will 
be used) and to store that result somewhere accessible to the CPU such that 
black_box could be called with the computed value. The compiler is free to, 
say, compute the input argument at compile time, but it should still inject 
the result into the program.

This function is all we need for many, though admittedly not all, of our 
benchmarking needs. For example, we can annotate Listing 7-9 so that the 
vector accesses are no longer optimized out, as shown in Listing 7-10.

let mut vs = Vec::with_capacity(4);
let start = std::time::Instant::now();
for i in 0..4 {
  black_box(vs.as_ptr());
  vs.push(i); 
  black_box(vs.as_ptr());
}
println!("took {:?}", start.elapsed());

Listing 7-10: A corrected version of Listing 7-9

We’ve told the compiler to assume that vs is used in arbitrary ways 
on each iteration of the loop, both before and after the calls to push. This 
forces the compiler to perform each push in order, without merging or oth-
erwise optimizing consecutive calls, since it has to assume that “arbitrary 
stuff that cannot be optimized out” (that’s the black_box part) may happen 
to vs between each call.

Note that we used vs.as_ptr() and not, say, &vs. That’s because of the 
caveat that the compiler should assume black_box can perform any legal opera-
tion on its argument. It is not legal to mutate the Vec through a shared refer-
ence, so if we used black_box(&vs), the compiler might notice that vs will not 
change between iterations of the loop and implement optimizations based on 
that observation!
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I/O Overhead Measurement

When writing benchmarks, it’s easy to accidentally measure the wrong 
thing. For example, we often want to get information in real time about 
how far along the benchmark is. To do that, we might write code like that in 
Listing 7-11, intended to measure how fast my_function runs:

let start = std::time::Instant::now();
for i in 0..1_000_000 {
  println!("iteration {}", i);
  my_function();
}
println!("took {:?}", start.elapsed());

Listing 7-11: What are we really benchmarking here?

This may look like it achieves the goal, but in reality, it does not actu-
ally measure how fast my_function is. Instead, this loop is most likely to tell 
us how long it takes to print a million numbers. The println! in the body of 
the loop does a lot of work behind the scenes: it turns a binary integer into 
decimal digits for printing, locks standard output, writes out a sequence 
of UTF-8 code points using at least one system call, and then releases the 
standard output lock. Not only that, but the system call might block if your 
terminal is slow to print out the input it receives. That’s a lot of cycles! And 
the time it takes to call my_function might pale in comparison.

A similar thing happens when your benchmark uses random numbers. 
If you run my_function(rand::random()) in a loop, you may well be mostly mea-
suring the time it takes to generate a million random numbers. The story is 
the same for getting the current time, reading a configuration file, or start-
ing a new thread—these things all take a long time, relatively speaking, and 
may end up overshadowing the time you actually wanted to measure.

Luckily, this particular issue is often easy to work around once you are 
aware of it. Make sure that the body of your benchmarking loop contains 
almost nothing but the particular code you want to measure. All other code 
should run either before the benchmark begins or outside of the measured 
part of the benchmark. If you’re using criterion, take a look at the different 
timing loops it provides—they’re all there to cater to benchmarking cases 
that require different measurement strategies!

Summary
In this chapter, we explored the built-in testing capabilities that Rust 
offers in great detail. We also looked at a number of testing facilities and 
techniques that are useful when testing Rust code. This is the last chapter 
that focuses on higher-level aspects of intermediate Rust use in this book. 
Starting with the next chapter on declarative and procedural macros, we 
will be focusing much more on Rust code. See you on the next page!

Rust for Rustaceans (Early Access) © 2022 by Jon Gjengset 



8
M A C R O S

Macros are, in essence, a tool for making 
the compiler write code for you. You give 

the compiler a formula for generating code 
given some input parameters, and the compiler 

replaces every invocation of the macro with the result 
of running through the formula. You can think of 
macros as automatic code substitution where you get 
to define the rules for the substitution.

Rust’s macros come in many different shapes and sizes to make it easy to 
implement many different forms of code generation. The two primary types 
are declarative macros and procedural macros, and we will explore both of 
them in this chapter. We’ll also look at some of the ways macros can come in 
handy in your everyday coding, and some of the pitfalls that arise with more 
advanced use. Some familiarity with macros is assumed, so before reading 
this chapter I recommend that you read the chapter on macros in the Rust 
language reference (https://doc.rust-lang.org/reference/macros.html). 
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Programmers coming from C-based languages may be used to the 
unholy land of C and C++ where you can use #define to change each true to 
false, or to remove all occurrences of the else keyword. If that’s the case for 
you, you’ll need to disassociate macros from a feeling of doing something 
“bad.” Macros in Rust are far from the Wild West of C macros. They follow 
(mostly) well-defined rules, and are fairly misuse-resistant.

Declarative Macros
Declarative macros are those defined using the macro_rules! syntax, which 
lets you conveniently define function-like macros without having to resort to 
writing a dedicated crate for the purpose (as you do with procedural macros). 
Once you’ve defined a declarative macro, you can invoke it using the name 
of the macro followed by an exclamation mark. I like to think of this kind 
of macro as a sort of compiler-assisted search and replace: it does the job 
for many regular, well-structured transformation tasks, and for eliminating 
repetitive boilerplate. In your experience with Rust up until this point, most 
of the macros you have recognized as macros are likely to have been declara-
tive macros. Note, however, that not all function-like macros are declarative 
macros; macro_rules! itself is one example of this, and format_args! is another. 
The ! suffix merely indicates to the compiler that the macro invocation will 
be replaced with different source code at compile time.

N O T E Since Rust’s parser specifically recognizes and parses macro invocations annotated 
with !, you can only use them in places where the parser allows them. They work in 
most places you’d expect, like in expression position or in an impl block, but not every-
where. For example, you cannot (at the time of writing) invoke a function-like macro 
where an identifier or match arm is expected.

It may not be immediately obvious why declarative macros are called 
declarative. After all, don’t you “declare” everything in your program? In 
this context, declarative refers to the fact that you don’t say how the macro’s 
inputs should be translated into the output, just that you want the output to 
look like A when the input is B. You declare that it shall be so, and the com-
piler figures out all the parsing rewiring that has to happen to make your 
declaration reality. This makes declarative macros concise and expressive, 
though it also has a tendency to make them rather cryptic since you have a 
limited language to express your declarations in.

When to Use Them
Declarative macros are primarily useful when you find yourself writing the 
same code over and over, and you’d like to, well, not do that. They’re best 
suited for fairly mechanical replacements—if you’re aiming to do fancy 
code transformations or lots of code generation, procedural macros are 
likely a better fit.

I most frequently make use of declarative macros in cases where I find 
myself writing repetitive and structurally similar code, such as in tests and 
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trait implementations. For tests, I often want to run the same test multiple 
times but with slightly different configurations. I might have something like 
what is shown in Listing 8-1.

fn test_inner<T>(init: T, frobnify: bool) { ... }
#[test]
fn test_1u8_frobnified() {
  test_inner(1u8, true);
}
// ...
#[test]
fn test_1i128_not_frobnified() {
  test_inner(1i128, false);
}

Listing 8-1: Repetitive testing code

While this works, it’s too verbose, too repetitive, and too prone to man-
ual error. With macros we can do much better, as shown in Listing 8-2.

macro_rules! test_battery {
  ($($t:ty as $name:ident),*)) => {
    $(
      mod $name {
        #[test]
        fn frobnified() { test_inner::<$t>(1, true) }
        #[test]
        fn unfrobnified() { test_inner::<$t>(1, false) }
      }
    )*
  }
}
test_battery! {
  u8 as u8_tests,
  // ...
  i128 as i128_tests
);

Listing 8-2: Making a macro repeat for you

This macro expands each comma-separated directive into its own mod-
ule that then contains two tests, one that calls test_inner with true, and one 
with false. While the macro definition isn’t trivial, it makes adding more 
tests much easier. Each type is one line in the test_battery! invocation, and 
the macro will take care of generating tests for both true and false argu-
ments. We could also have it generate tests for different values for init. 
We’ve now significantly reduced the likelihood that we’ll forget to test a 
 particular configuration!

The story for trait implementations is similar. If you define your own 
trait, you’ll often want to implement that trait for a number of types in the 
standard library, even if those implementations are trivial. Let’s imagine 
you invented the Clone trait and want to implement it for all the Copy types 
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in the standard library. Instead of manually writing out an implementation 
for each one, you can use a macro like the one in Listing 8-3.

macro_rules! clone_from_copy {
  ($($t:ty),*) => {
    $(impl Clone for $t {
      fn clone(&self) -> Self { *self }
    })*
  }
}
clone_from_copy![bool, f32, f64, u8, i8, /* ... */];

Listing 8-3: Using a macro to implement a trait for many similar types in one fell swoop

Here, we generate an implementation of Clone for each provided type 
whose body just uses * to Copy out of &self. You may wonder why we don’t 
add a blanket implementation of Clone for T where T: Copy. We could do 
that, but a big reason not to is that it would force types in other crates to 
also use that same implementation of Clone for their own types that happen 
to be Copy. There is an experimental compiler feature called specialization 
that could offer a workaround, but at the time of writing the stabilization 
of that feature that is still some way off. So, for the time being, we’re better 
off enumerating the types specifically. This pattern also extends beyond 
simple forwarding implementations: you could easily adapt the example in 
Listing 8-3 to implement an AddOne trait to all integer types, for example!

N O T E  If you ever find yourself wondering if you should use generics or a declarative macro, 
you should use generics. Generics are generally more ergonomic than macros, and 
integrate much better with other constructs in the language. If you want a rule of 
thumb: if your code changes based on type, use generics; otherwise, use macros.

How They Work
Every programming language has a grammar that dictates how the indi-
vidual characters that make up the source code can be turned into tokens. 
Tokens are the lowest-level building blocks of a language, such as numbers, 
punctuation characters, string and character literals, and identifiers; at 
this level, there’s no distinction between language keywords and variable 
names. For example, the text (value + 4) would be represented by the five-
token sequence (, value, +, 4, ) in Rust-like grammar. The process of turning 
text into tokens also provides a layer of abstraction between the rest of the 
compiler and the gnarly low-level details of parsing text. For example, in 
the token representation there is no notion of whitespace, and /*"foo"*/ and 
"/*foo*/" have distinct representations (the former is no token, the latter is a 
string literal token with the content /*foo*/).

Once the source code has been turned into a sequence of tokens, the 
compiler walks that sequence and assigns syntactic meaning to the tokens. For 
example, ()-delimited tokens make up a group, ! tokens denote macro invo-
cations, and so on. This is the process of parsing, which ultimately produces 
an abstract syntax tree (AST) that describes the structure represented by the 
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source code. As an example, consider the expression let x = || 4, which con-
sists of the sequence of tokens let (keyword), x (identifier), = (punctuation), 2 
instances of | (punctuation), and 4 (literal). When the compiler turns that into 
a syntax tree, it represents it as a statement whose pattern is the identifier x, and 
whose right-hand side expression is a closure that has an empty argument list and 
a literal expression of the integer literal 4 as its body. Notice how the syntax tree 
representation is much richer than the token sequence, since it assigns syntac-
tic meaning to the token combinations following the language’s grammar.

Rust macros dictate the syntax tree that a given sequence of tokens gets 
turned into—when the compiler encounters a macro invocation during 
parsing, it has to evaluate the macro to determine the replacement tokens, 
which will ultimately become the syntax tree for the macro invocation. At 
this point, however, the compiler is still parsing the tokens and might not 
be in a position to evaluate a macro yet, since all it has done is parse the 
tokens of the macro definition. Instead, then, the compiler defers the pars-
ing of anything contained within the delimiters of a macro invocation, and 
remembers the input token sequence. When the compiler is ready to evalu-
ate the indicated macro, it evaluates the macro over the token sequence, 
parses the tokens it yields, and substitutes the resulting syntax tree into the 
tree where the macro invocation was.

Technically, the compiler does do a little bit of parsing for the input 
to a macro. Specifically, it parses out basic things like string literals and 
delimited groups, and so produces a sequence of token trees rather than 
just tokens. For example, the code x - (a.b + 4) parses as a sequence of 
three token trees. The first token tree is a single token that is the identifier 
x,the second is a single token that is the punctuation character -, and the 
third is a group (using parentheses as the delimiter) which itself consists of 
a sequence of five token trees: a (an identifier), . (punctuation), b (another 
identifier), + (another punctuation token), and 4 (a literal). This means 
that the input to a macro does not necessarily have to be valid Rust, but it 
must consist of code that the Rust compiler can parse. For example, you 
couldn’t write for <- x in Rust outside of a macro invocation, but inside of 
a macro invocation you can, as long as the macro produces valid syntax. 
On the other hand, you cannot pass for { to a macro due to the lack of a 
closing brace.

Declarative macros always generate valid Rust as output. You cannot 
have a macro generate, say, the first half of a function invocation or an if 
without the block that follows it. Concretely, a declarative macro must gen-
erate an expression (basically anything that you can assign to a variable), 
a statement such as let x = 1;, an item like a trait definition or impl block, 
and a type or a match pattern. This makes Rust macros fairly resistant to mis-
use: you simply cannot write a declarative macro that generates invalid Rust 
code, because the macro definition itself would not compile!

That’s really all there is to declarative macros at a high level—when 
the compiler encounters a macro invocation, it passes the tokens contained 
within the invocation delimiters to the macro, parses the resulting token 
stream, and replaces the macro invocation with the resulting AST.
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Writing Declarative Macros
An exhaustive explanation of all the syntax that declarative macros sup-
ports is outside the scope of this book. However, we’ll cover the basics as 
there are some oddities that are worth pointing out.

Declarative macros consist of two main parts: matchers and transcribers. A 
given macro can have many matchers, and each matcher has an associated 
transcriber. When the compiler finds a macro invocation, it walks the mac-
ro’s matchers from first to last, and when it finds a matcher that matches the 
tokens in the invocation, it substitutes the invocation by walking the tokens 
of the corresponding transcriber. Listing 8-4 shows how the different parts 
of a declarative macro rule fit together.

macro_rules! /* macro name */ {
  (/* 1st matcher */) => { /* 1st transcriber */ };
  (/* 2nd matcher */) => { /* 2nd transcriber */ };
}

Listing 8-4: Declarative macro definition components

Matchers

You can think of a macro matcher as a token tree that the compiler tries to 
twist and bend in predefined ways to match the input token tree it was given 
at the invocation site. As an example, consider a macro with the matcher 
$a:ident + $b:expr. That matcher will match any identifier (:ident) followed 
by a plus sign followed by any Rust expression (:expr). If the macro is invoked 
with x + 3 * 5, the compiler notices that the matcher matches if it sets $a = 
x and $b = 3 * 5. Even though * never appears in the matcher, the compiler 
realizes that 3 * 5 is a valid expression, and that it can therefore be matched 
with $b:expr, which accepts anything that is an expression (the :expr part).

Matchers can get pretty hairy, but they have huge expressive power, 
much like regular expressions. For a not-too-hairy example, this matcher 
accepts a sequence ($()) of one or more (+) comma-separated (),) key/
value pairs given in key => value format:

$($key:expr => $value:expr),+

And, crucially, code that invokes a macro with this matcher can give an 
arbitrarily complex expression for the key or value—the magic of match-
ers will make sure that the key and value expressions are partitioned 
appropriately.

Macro rules support a wide variety of  fragment types; you’ve already seen 
:ident for identifiers and :expr for expressions, but there is also :ty for types, 
and even :tt for any single token tree! You can find a full list of the frag-
ment types in Chapter 3 of the Rust language reference (https://doc.rust-lang 
.org/reference/macros-by-example.html). These, plus the mechanism for match-
ing a pattern repeatedly ($()), enable you to match most straightforward 
code patterns. If, however, you find that it is difficult to express the pattern 
you want with a matcher, you may want to try a procedural macro instead, 
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where you don’t need to follow the strict syntax macro_rules! requires. We’ll 
look at these in more detail later in the chapter.

Transcribers
Once the compiler has matched a declarative macro matcher, it generates 
code using the matcher’s associated transcriber. The variables defined by 
a macro matcher are called metavariables, and the compiler substitutes any 
occurrence of each metavariable in the transcriber (like $key in the example 
in the previous section) with the input that matches that part of the matcher. 
If you have repetition in the matcher (like $(),+ in that same example), you 
can use the same syntax in the transcriber and it will be repeated once for 
each match in the input, with each expansion holding the appropriate sub-
stitution for each metavariable for that iteration. For example, for the $key 
and $value matcher, we could write the following transcriber to generate an 
insert call into some map for each $key/$value pair that was matched:

$(map.insert($key, $value;)+

Notice that here we want a semicolon for each repetition, not just to 
delimit the repetition, so we place the semicolon inside the repetition 
parentheses. You must use a metavariable in each repetition in the tran-
scriber so that the compiler knows which repetition in the matcher to use 
(in case there is more than one).

Hygiene
You may have heard it said that Rust macros are hygienic, and perhaps that 
being hygienic makes them safer or nicer to work with, without necessarily 
understanding what that means. When we say Rust macros are hygienic, 
we mean that a declarative macro (generally) cannot affect variables that 
aren’t explicitly passed to it. A trivial example is that if you declare a vari-
able with the name foo, and then call a macro that also defines a variable 
named foo, the macro’s foo is by default not visible at the call site (the place 
where the macro is called from). Similarly, macros cannot access variables 
defined at the call site (even self) unless they are explicitly passed in.

You can, most of the time, think of macro identifiers as existing in their 
own namespace that is separate from that of the code they expand into. For 
an example, take a look at the code in Listing 8-5, which has a macro that 
tries (and fails) to shadow a variable at the call site.

macro_rules! let_foo {
  ($x:expr) => {
    let foo = $x;
  }
}
let foo = 1;
let_foo!(2);
// expands to let foo = 2;
assert_eq!(foo, 1);

Listing 8-5: Macros exist in their own little universes. Mostly.
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After the compiler expands let_foo!(2), it looks like the assert should 
fail. However, the foo from the original code and the one generated by 
the macro exist in different universes, and have no relationship to one 
another beyond that they happen to share a human-readable name. In 
fact, the compiler will complain that the let foo in the macro is an unused 
variable. This hygiene is very helpful in making macros easier to debug—
you don’t have to worry about accidentally shadowing or overwriting vari-
ables in the macro caller just because you happened to choose the same 
variable names!

This hygienic separation does not apply beyond variable identifiers, 
however. Declarative macros do share a namespace for types, modules, and 
functions with the call site. This means your macro can define new func-
tions that can be called in the invoking scope, add new implementations to 
a type defined elsewhere (and not passed in), introduce a new module that 
can then be accessed where the macro was invoked, and so on. This is by 
design—if macros could not affect the broader code like this, it would be 
much more cumbersome to use them to generate types, trait implementa-
tions, and functions, which is where they come in most handy.

The lack of hygiene for types in macros is particularly important when 
writing a macro you want to export from your crate. For the macro to truly 
be reusable, you cannot assume anything about what types will be in scope 
at the caller. Maybe the code that calls your macro has a mod std {} defined, 
or has imported its own Result type. To be on the safe side, make sure you 
use fully specified types like ::core::option::Option or ::alloc::boxed::Box. 
Avoid using ::std paths if you can so that the macro will continue to work in 
no_std crates. If you specifically need to refer to something in the crate that 
defines the macro, use the special metavariable $crate.

You can explicitly choose to share identifiers between a macro and its 
caller if you specifically want the macro to affect a variable in the caller’s 
scope. The key is to remember where the identifier originated, because 
that’s the namespace the identifier will be tied to. If you put let foo = 1; in 
a macro, the identifier foo originates in the macro and will never be avail-
able to the identifier namespace at the caller. If, on the other hand, the 
macro takes $foo:ident as an argument and then writes let $foo = 1;, when 
the caller invokes the macro with !(foo) the identifier will have originated 
in the caller and will therefore refer to foo in the caller’s scope. 

The identifier does not have to be quite so explicitly passed, either; any 
identifier that appears in code that originates outside the macro will refer 
to the identifier in the caller’s scope. In the example in Listing 8-6 the vari-
able identifier appears in an :expr, but nonetheless affects the variable in 
the caller’s scope.

macro_rules! please_set {
  ($i:ident, $x:expr) => {
    $i = $x;
  }
}
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let mut x = 1;
please_set!(x, x + 1);
assert_eq!(x, 2);

Listing 8-6: Giving macros access to identifiers at the call site

We could have used = $i + 1 in the macro instead, but we could not 
have used = x + 1, as the name x is not available in the macro’s definition 
scope.

One last note on declarative macros and scoping: unlike pretty much 
everything else in Rust, declarative macros only exist in the source code after 
they are declared. If you try to use a macro that you define further down in 
the file, this will not work! This applies globally to your project; if you declare 
a macro in one module and want to use it in another, the module you declare 
the macro in must appear earlier in the crate, not later. Concretely, if foo and 
bar are modules at the root of a crate, and foo declares a macro that bar wants 
to use, then mod foo must appear before mod bar in lib.rs!

N O T E  There is one exception to this odd scoping of macros (formally called textual scop-
ing), and that is if you mark the macro with #[macro_export]. That annotation effec-
tively hoists the macro to the root of the crate and marks it as pub, so that it can then 
be used anywhere in your crate or by your crate’s dependents.

Procedural Macros
You can think of a procedural macro as a combination of a parser and code 
generation, where you write the glue code in between. At a high level, with 
procedural macros, the compiler gathers up the sequence of input tokens 
to the macro and runs your program to figure out what tokens to replace 
them with.

Procedural macros are so called because you define how to generate code 
given some input tokens, rather than just writing out what code gets gener-
ated. There are very few smarts involved on the compiler’s side—as far as it is 
aware the procedural macro is more or less a source code preprocessor that 
may perform arbitrary code replacement. The requirement that your input 
can be parsed as a stream of Rust tokens still holds, but that’s about it!

Types of Procedural Macros
Procedural macros come in three different flavors, each specialized to a 
particular common use case: 

•	 Function-like macros, like the ones that macro_rules! generates 

•	 Derive macros, like #[derive(Serialize)]

•	 Attribute macros, like #[test] 

All three types use the same underlying mechanism: the compiler pro-
vides your macro with a sequence of tokens, and it expects you to produce 
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a sequence of tokens in return that are (probably) related to the input tree. 
However, they differ in how the macro is invoked and how its output is han-
dled. We’ll cover each one briefly next.

Function-Like Macros

The function-like macro is the simplest form of procedural macro. Like a 
declarative macro, it simply replaces the macro code at the call site with the 
code that the procedural macro returns. However, unlike with declarative 
macros, all the guard rails are off: these macros (like all procedural mac-
ros) are not required to be hygienic and will not protect you from interact-
ing with identifiers in the surrounding code at the call site. Instead, your 
macros are expected to explicitly call out which identifiers should overlap 
with the surrounding code (using Span::call_site) and which should be 
treated as private to the macro (using Span::mixed_site, which we’ll discuss 
later). 

Attribute Macros

The attribute macro also replaces the item that the attribute is assigned to 
wholesale, but this one takes two inputs: the token tree that appears in the 
attribute (minus the attribute’s name) and the token tree of the entire item 
it is attached to, including any other attributes that item may have. Attribute 
macros allow you to easily write a procedural macro that transforms an 
item, such as by adding a prelude or epilogue to a function definition (like 
#[test] does) or modifying the fields of a struct.

Derive Macros

The derive macro is slightly different from the other two in that it adds to, 
rather than replaces, the target of the macro. Even though this limitation 
may seem severe, derive macros were one of the original motivating fac-
tors behind the creation of procedural macros. Specifically, the well-known 
serde crate needed derive macros to be able to implement its now-well-
known #[derive(Serialize, Deserialize)] magic. 

Derive macros are arguably the simplest of the procedural macros, 
since they have such a rigid form: you can only append items after the 
annotated item; you can’t replace the annotated item, and you cannot have 
the derivation take arguments. Derive macros do allow you to define helper 
attributes—attributes that can be placed inside the annotated type to give 
clues to the derive macro (like #[serde(skip)])—but these function mostly 
like markers, and are not independent macros.

The Cost of Procedural Macros
Before we talk about when each of the different procedural macro types is 
appropriate, it’s worth discussing why you may want to think twice before 
you reach for a procedural macro—namely, increased compile time.

Procedural macros can significantly increase compile times for two 
main reasons. The first is that they tend to bring with them some pretty 
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heavy dependencies. For example, the syn crate, which provides a parser 
for Rust token streams that makes the experience of writing procedural 
macros much easier, can take tens of seconds to compile with all features 
enabled. This can (and should) be mitigated by disabling features you do 
not need, and compiling your procedural macros in debug mode rather 
than release mode. Code often compiles several times faster in debug 
mode, and for most procedural macros you won’t even notice the differ-
ence in execution time.

The second reason is that procedural macros make it easy to generate 
a lot of code without realizing it. While the macro saves you from having to 
actually type the generated code, it does not save the compiler from having 
to parse, compile, and optimize it. As you use more procedural macros, that 
generated boilerplate adds up, and it can bloat your compile times.

It’s worth pointing out that the actual execution time of procedural 
macros is rarely a factor in overall compile time. While the compiler has 
to wait for the procedural macro to do its thing before it can continue, in 
practice most procedural macros do not do any heavy computation. That 
said, if your procedural macro is particularly involved, you may end up with 
your compiles spending a significant chunk of execution time on your pro-
cedural macro code, which is worth keeping an eye out for!

So You Think You Want a Macro
Let’s now look at some good use cases for each type of procedural macro. 
We’ll start with the easy one: derive macros.

When to Use Derive Macros

 Derive macros are for used one thing, and one thing only: to automate the 
implementation of a trait where automation is possible. Not all traits have 
obvious automated implementations, but many do. In practice, you should 
consider adding a derive macro for a trait only if the trait is implement 
often and if its implementation for any given type is fairly obvious. The first 
of these points may seem like common sense; if your trait is only going to be 
implemented once or twice, it’s probably not worth writing and maintaining 
a convoluted derive macro for it. 

The second may seem stranger, however: what does it mean for the 
implementation to be “obvious”? Consider a trait like Debug. If you were told 
what Debug does and shown a type, you would probably expect an implemen-
tation of Debug to output the name of each field alongside the debug repre-
sentation of its value. And that’s what derive(Debug) does. What about Clone? 
You’d probably expect it to just clone every field—and again, that’s what 
derive(Clone) does. With derive(serde::Serialize), we expect it to serialize 
every field and its value, and it does just that. In general, you want the deri-
vation of a trait to match the developer’s intuition for what it probably does. 
If there is no obvious derivation for a trait, or worse yet, if your derivation 
does not match the obvious implementation, then you’re probably better off 
not giving it a derive macro.
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When to Use Function-Like Macros

Function-like procedural macros are harder to give a general rule of thumb 
for. You might say you should use function-like macros when you want a 
function-like macro but can’t express it with macro_rules!, but that’s a fairly 
subjective guideline. You can do a lot with declarative macros if you really 
put your mind to it, after all! 

There are two particularly good reasons to reach for a function-like 
procedural macro:

•	 If you already have a declarative macro, and its definition is becoming 
so hairy that the macro is hard to maintain. 

•	 If you have a pure function that you need to be able to execute at com-
pile time, but cannot express with const fn. An example of this is the 
phf crate, which generates a hash map or set using a perfect hash func-
tion when given a set of keys provided at compile time. Another is hex-
literal, which takes a string of hexadecimal characters and replaces it 
with the corresponding bytes. In general, anything that does not merely 
transform the input at compile time but actually computes over it is 
likely to be a good candidate.

I will also add that I do not recommend reaching for a function-like 
procedural macro just so that you can break hygiene within your macro. 
Hygiene for function-like macros is a feature that avoids many debugging 
headaches, and you should think very carefully before you intentionally 
break it.

When to Use Attribute Macros

That leaves us with attribute macros. Though these are arguably the most 
general of procedural macros, it’s also hardest to pin down when they are 
appropriate. Over the years, I have seen four use cases come up time and 
time again as examples of attribute procedural macros adding tremendous 
value:

Test generation

It is very common to want to run the same test under multiple different 
configurations, or many similar tests with the same bootstrapping code. 
While a declarative macro may let you express this, your code is often 
easier to read and maintain if you have an attribute like #[foo_test] that 
introduces a setup prelude and postscript in each annotated test, or a 
repeatable attribute like #[test_case(1)] #[test_case(2)] to mark that a 
given test should be repeated multiple times, once with each input.

Framework annotations

Libraries like rocket use attribute macros to augment functions and 
types with additional information that the framework then makes 
use of without the user having to do a lot of manual configuration. 
It’s so much more convenient to be able to write #[get("/<name>")] fn 
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hello(name: String) than to have to set up a configuration struct with 
function pointers and the like. Essentially, the attributes make up a 
miniature domain-specific language (DSL) that hides a lot of boiler-
plate that’d otherwise be necessary. Similarly, the asynchronous I/O 
framework tokio lets you use #[tokio::main] async fn main() to automati-
cally set up a runtime and run your asynchronous code, and thereby 
saves you from writing the same runtime setup in every asynchronous 
application’s main function.

Transparent middleware

Some libraries want to inject themselves into your application in unobtru-
sive ways to provide added value that does not change the application’s 
functionality. For example, tracing and logging libraries like tracing and 
metric collection libraries like metered allow you to transparently instru-
ment a function by adding an attribute to it, and then every call to that 
function will run some additional code dictated by the library.

Type transformers

Sometimes you want to go beyond merely deriving traits for a type, and 
actually change the type’s definition in some fundamental way. In these 
cases, attribute macros are the way to go. The pin_project crate is a great 
example of this: its primary purpose is not to implement a particular 
trait, but rather to ensure that all pinned access to fields of a given type 
happens according to the strict rules that are set forth by Rust’s Pin type 
and the Unpin trait (we’ll talk more about those types in Chapter 9). 
It does this by generating additional helper types, adding methods to 
the annotated type, and introducing static safety checks to ensure that 
users don’t accidentally shoot themselves in the foot. While pin_project 
could have been implemented with a procedural derive macro, that 
would likely violate the expectation that a derived trait implementation 
is obvious.

How Do They Work?
At the heart of all procedural macros is the TokenStream type, which can be 
iterated over to get the individual TokenTree items that make up that token 
stream. A TokenTree is either a single token—like an identifier, punctuation, 
or a literal—or another TokenStream enclosed in a delimiter like () or {}. By 
walking a TokenStream, you can parse out whatever syntax you wish as long as 
the individual tokens are valid Rust tokens. If you specifically want to parse 
your input as Rust code you likely want to use the syn crate, which imple-
ments a complete Rust parser and can turn a TokenStream into an easy-to-
traverse Rust AST.

With most procedural macros you not only want to parse a TokenStream, 
but also to produce Rust code to be injected into the program that invokes 
the procedural macro. There are two main ways to do so. The first is to man-
ually construct a TokenStream and extend it one TokenTree at a time. The second 
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is to use TokenStream’s implementation of FromStr, which lets you parse a string 
that contains Rust code into a TokenStream with "".parse::<TokenStream>(). You 
can also mix and match these; if you want to prepend some code to your 
macro’s input, just construct a TokenStream for the prologue, and then use the 
Extend trait to append the original input.

N O T E TokenStream also implements Display, which pretty-prints the tokens in the stream. 
This comes in super handy for debugging!

Tokens are very slightly more magical than I’ve described so far, in 
that every token, and indeed every TokenTree, also has a span. Spans are how 
the compiler ties generated code back to the source code that generated 
that code. Every token’s span marks the original source location that token 
comes from. For example, consider a macro like the one in Listing 8-7, 
which generates a trivial Debug implementation for the provided type.

macro_rules! name_as_debug {
  ($t:ty) => {
    impl ::core::fmt::Debug for $t {
      fn fmt(&self, f: &mut ::core::fmt::Formatter<'_>) -> ::core::fmt::Result 
{

::core::write!(f, ::core::stringify!($t))
} } } }

Listing 8-7: A very simple macro for implementing Debug

Now let’s imagine that someone invokes this macro with name_as_debug! 
(u31). Technically, the compiler error occurs inside the macro, and specifi-
cally where we write for $t (the other use of $t can handle an invalid type). 
But we’d like the compiler to point the user at the u31 in their code—and 
indeed, that’s what spans let us do.

The span of the $t in the generated code is the code mapped to $t in 
the macro invocation. That information is then carried through the com-
piler and associated with the eventual compiler error. When that compiler 
error is eventually printed, the compiler will print the error from inside 
the macro saying that the type u31 does not exist, but will highlight the u31 
argument in the macro invocation, since that’s the error’s associated span!

Spans are quite flexible, and they enable you to write procedural mac-
ros that can produce sophisticated error messages through the use of the 
compile_error macro. As its name implies, compile_error! causes the compiler 
to emit an error wherever it is placed with the provided string as the mes-
sage. This may not seem very useful, until you pair it with a span. By setting 
the span of the TokenTree you generate for the compile_error! invocation to 
be equal to the span of some subset of the input, you are effectively telling 
the compiler “emit this compiler error, and point the user at this part of 
their source.” Together, these two mechanisms let a macro produce errors 
that seem to stem from the relevant part of the code, even though the 
actual compiler error is somewhere in the generated code that the user 
never even sees!
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N O T E If you’ve ever been curious how syn’s error handling works, its Error type imple-
ments an Error::to_compile_error method which turns it into a TokenStream that 
holds only a compile_error! directive. What’s particularly neat with syn’s Error type 
is that it internally holds a collection of errors, each of which produces a distinct 
 compile_error! directive with its own span so that you can easily produce multiple 
independent errors from your procedural macro.

The power of spans doesn’t end there; spans are also how Rust’s macro 
hygiene is implemented. When you construct an Ident token, you also give 
the span for that identifier, and that span dictates the scope of that identi-
fier. If you set the identifier’s span to be Span::call_site(), the identifier is 
resolved where the macro was called from, and will thus not be isolated 
from the surrounding scope. If, on the other hand, you set it to Span::mixed 
_site(), then (variable) identifiers are resolved at the macro definition site, 
and so will be completely hygienic with respect to similarly named variables 
at the call site. Span::mixed_site is so called because it matches the rules 
around identifier hygiene for macro_rules!, which as we discussed earlier is 
“mixed” between resolving identifiers at the call site and the macro defini-
tion site.

Summary
In this chapter we covered both declarative and procedural macros and 
looked at when you might find each of them useful in your own code. We 
also took a deeper dive into the mechanisms that underpin each type of 
macro, and some of the features and gotchas to be aware of when you write 
your own macros. In the next chapter, we’ll start our journey into asyn-
chronous programming and the Future trait. I promise—it’s just on  
the next page.
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9
A S Y N C H R O N O U S  P R O G R A M M I N G

Asynchronous programming is, as the 
name implies, programming that is not syn-

chronous. At a high level, an asynchronous 
operation executes in the background—the 

program won’t wait for the asynchronous operation 
to complete, but will instead continue on to the next 
line of code immediately. If you’re not already famil-
iar with asynchronous programming, that definition 
may feel insufficient as it doesn’t actually explain what asynchronous pro-
gramming is. To really understand the asynchronous programming model 
and how it works in Rust, we have to first dig into what the alternative is. 
That is, we need to understand the synchronous programming model before 
we can understand the asynchronous one. This is important in both clarify-
ing the concepts and demonstrating the trade-offs of using asynchronous 
programming: an asynchronous solution is not always the right one! We’ll  
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start this chapter by taking a quick journey through what motivates asyn-
chronous programming as a concept in the first place; then we’ll dig into 
how asynchrony in Rust actually works under the hood.

What’s the Deal with Asynchrony?
Before we get to the details of the synchronous and asynchronous program-
ming models, we first need to take a quick look at what your computer is 
actually doing when it runs your programs.

Computers are fast. Really fast. So fast, in fact, that they spend most of 
their time waiting for things to happen. Unless you’re decompressing files, 
encoding audio, or crunching numbers, chances are that your CPU spends 
most of its time sitting idle, waiting for operations to complete. It’s waiting for 
a network packet to arrive, for the mouse to move, for the disk to finish writ-
ing some bytes, or maybe even just for a read from main memory to complete. 
From the CPU’s perspective, eons go by between most such events. When one 
does occur, the CPU runs a few more instructions, then goes back to waiting 
again. Take a look at your CPU utilization—it’s probably somewhere in the 
low single digits, and that’s likely where it hovers the majority of the time.

Synchronous Interfaces
Synchronous interfaces only allow your program (or rather, a single thread 
in your program) to execute a single operation at a time; each operation has 
to wait for the previous synchronous operation to finish before it gets to run. 
Most interfaces you see in the wild are synchronous: you call them, they go 
do some stuff, and eventually they return when the operation has completed 
and your program can continue from there. The reason for this, as we’ll see 
later in this chapter, is that making an operation asynchronous takes a fair 
bit of extra machinery. Unless you need the benefits of asynchrony, sticking 
to the synchronous model requires much less pomp and circumstance.

Synchronous interfaces hide all this waiting; the application calls a 
function that says “write these bytes to this file,” and some time later, that 
function completes and the next line of code executes. Behind the scenes, 
what really happens is that the operating system queues up a write opera-
tion to the disk, and then puts the application to sleep until the disk reports 
that it has finished the write. The application experiences this as the func-
tion taking a long time to execute, but in reality it isn’t really executing at 
all, just waiting.

An interface that performs operations sequentially in this way is also 
often referred to as blocking, since the operation in the interface that has 
to wait for some external event to happen in order for it to make progress 
blocks further execution until that event happens. Whether you refer to an 
interface as synchronous or blocking, the basic idea is the same: the appli-
cation does not move on until the current operation finishes. While the 
operation is waiting, so is the application.

Synchronous interfaces are usually considered to be easy to work with 
and simple to reason about, since your code just executes one line at a time. 
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But they also only allow the application to do one thing at a time. That 
means if you want your program to wait for either user input or a network 
packet, you’re out of luck unless your operating system provides an opera-
tion specifically for that. Similarly, even if your application could do some 
other useful work while the disk is writing out a file, it doesn’t have that 
option as the file write operation blocks the execution!

Enabling Concurrency with Multithreading
By far the most common solution to allowing concurrent execution is to use 
multithreading. In a multithreaded program, each thread is responsible for 
executing a particular independent sequence of blocking operations, and 
the operating system multiplexes among the threads so that if any thread 
can make progress, progress is made. If one thread blocks, some other 
thread may still be runnable, and so the application can continue to do 
 useful work.

Usually, these threads communicate with each other using a synchroni-
zation primitive like a lock or a channel so that the application can still coor-
dinate their efforts. For example, you might have one thread that waits for 
user input, one thread that waits for network packets, and another thread 
that waits for either of those threads to send a message on a channel shared 
between all three threads.

Multithreading gives you concurrency—the ability to have multiple inde-
pendent operations that can be executed at any one time. It’s up to the sys-
tem running the application (in this case, the operating system) to choose 
among the threads that aren’t blocked and decide which to execute next. 
If one thread is blocked, it can choose to run another one that can make 
progress instead.

Multithreading combined with blocking interfaces gets you quite far, 
and large swaths of production-ready software are built in this way. But this 
approach is not without its shortcomings. First, keeping track of all these 
threads quickly gets cumbersome; if you have to spin up a thread for every 
concurrent task, including simple ones like waiting for keyboard input, the 
threads add up fast, and so does the additional complexity needed to keep 
track of how all those threads interact, communicate, and coordinate.

Second, switching between threads gets costly the more of them there 
are. Every time one thread stops running and another one starts back up 
in its place, you need to do a round-trip to the operating system scheduler, 
and that’s not free. On some platforms, spawning new threads is also a 
fairly heavyweight process. Applications with high performance needs often 
mitigate this cost by reusing threads and using operating system calls that 
allow you to block on many related operations, but ultimately you are left 
with the same problem: blocking interfaces require that you have as many 
threads as the number of blocking calls you want to make.

Finally, threads introduce parallelism into your program. The distinction 
between concurrency and parallelism is subtle, but important: concurrency 
means that the execution of your tasks is interleaved, whereas parallelism 
means that multiple tasks are executing at the same time. If you have two 
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tasks, expressed in ASCII it might look like _-_-_ (concurrency) versus ===== 
(parallelism). Multithreading does not necessarily imply parallelism—even 
though you have many threads, you might only have a single core, so only 
one thread is executing at a given time—but the two usually go hand-in-
hand. You can make two threads mutually exclusive in their execution by 
using a Mutex or other synchronization primitive, but that introduces addi-
tional complexity—threads want to run in parallel. And while parallelism 
is often a good thing—who doesn’t want their program to run faster on 
more cores—it also means that your program must handle truly simultane-
ous access to shared data structures. This means moving from Rc, Cell, and 
RefCell to the more powerful, but also slower Arc and Mutex. While you may 
want to use the latter types in your concurrent program to enable parallel-
ism, threading forces you to use them.

Asynchronous Interfaces
Now that we’ve explored synchronous interfaces, we can look at the alterna-
tive: asynchronous or nonblocking interfaces. An asynchronous interface is 
one that may not yield a result straight away, and may instead indicate that 
the result will be available at some later time. This gives the caller the oppor-
tunity to do something else in the meantime, rather than having to go to 
sleep until that particular operation completes. In Rust parlance, an asyn-
chronous interface is a method that returns a Poll, as defined in Listing 9-1.

enum Poll<T> {
    Ready(T),
    Pending
}

Listing 9-1: The core of asynchrony: the “here you are or come back later” type

Poll usually shows up in the return type of functions whose names start 
with poll—these are methods that signal that they can attempt an opera-
tion without blocking. We’ll get into how exactly they do that later in this 
chapter, but in general they attempt to perform as much as they can of the 
operation before they would normally block, and then return. Crucially, 
they remember where they left off so that they can resume execution later 
when additional progress can again be made.

These nonblocking functions allow us to easily perform multiple tasks 
concurrently. For example, if you want to read from either the network or 
the user’s keyboard, whichever has an event available first, all you have to 
do is poll both in a loop until one of them returns Poll::Ready. No need for 
any additional threads or synchronization!

The word “loop” here should make you a little nervous. You don’t want 
your program to burn through a loop three billion times a second when it 
may be minutes until the next input occurs. In the world of blocking inter-
faces this wasn’t a problem since the operating system simply put the thread 
to sleep and then took care of waking it up when a relevant event occurred, 
but how do we avoid burning cycles while waiting in this brave new nonblock-
ing world? That’s what much of the remainder of this chapter will be about.
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Standardized Polling
To get to a world where every library can be used in a nonblocking fashion, 
we could have every library author cook up their own poll methods, all with 
slightly different names, signatures, and return types—but that would quickly 
get unwieldy. Instead, in Rust, this is standardized through the Future trait. A 
simplified version of Future is shown in Listing 9-2 (we’ll get back to the real 
one later in this chapter).

trait Future {
    type Output;
    fn poll(&mut self) -> Poll<Self::Output>;
}

Listing 9-2: A simplified view of the Future trait

Types that implement the Future trait are known as futures and repre-
sent values that may not be available yet. A future could represent the next 
time a network packet comes in, the next time the mouse cursor moves, 
or just after some amount of time has elapsed. You can read Future<Output 
= Foo> as “a type that will produce a Foo in the future.” Types like this are 
often referred to in other languages as promises—they promise that they 
will eventually yield the indicated type. When a future eventually returns 
Poll::Ready(T), we say that the future resolves into a T.

With this trait in place, we can generalize the pattern of providing poll 
methods. Instead of having methods like poll_recv and poll_keypress, we can 
have methods like recv and keypress that both return impl Future with an 
appropriate Output type. This doesn’t change the fact that you have to poll 
them—we’ll deal with that later—but it does mean that at least there is a 
standardized interface to these kinds of pending values, and we don’t need 
to use the poll_ prefix everywhere.

N O T E  In general, you should not poll a Future again after it has returned Poll::Ready. If 
you do, the Future is well within its rights to panic. A Future that is safe to poll after 
it has returned Ready is sometimes referred to as a fused Future.

Ergonomic Futures
Writing a type that implements Future in the way I’ve described so far is 
quite a pain. To see why, first take a look at the fairly straightforward asyn-
chronous code block in Listing 9-3 that simply tries to forward messages 
from the input channel rx to the output channel tx.

async fn forward<T>(rx: Receiver<T>, tx: Sender<T>) {
    while let Some(t) = rx.next().await {
        tx.send(t).await;
    }
}

Listing 9-3: Implementing a channel-forwarding future using async and await
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This code looks very similar to its equivalent synchronous code, and is 
easy to read. We simply send each message we receive in a loop until there 
are no more messages, and each await point corresponds to a place where 
a synchronous variant might block. Now think about if you instead had to 
express this code by manually implementing the Future trait. Since each call 
to poll starts at the top of the function, you’d need to package up the nec-
essary state to continue from the last place the code yielded. The result is 
fairly grotesque, as Listing 9-4 demonstrates.

enum Forward<T> { 1 
    WaitingForReceive(ReceiveFuture<T>, Option<Sender<T>>),
    WaitingForSend(SendFuture<T>, Option<Receiver<T>>),
}

impl<T> Future for Forward<T> {
    type Output = (); 2 
    fn poll(&mut self) -> Poll<Self::Output> {
        match self { 3 
            Forward::WaitingForReceive(recv, tx) => {
                if let Poll::Ready((rx, v)) = recv.poll() {
                    if let Some(v) = v {
                        let tx = tx.take().unwrap(); 4 
                        *self = Forward::WaitingForSend(tx.send(v), Some(rx)); 5 
                        // Try to make progress on sending.
                        return self.poll(); 6 
                    } else {
                        // No more items.
                        Poll::Ready(())
                    }
                } else {
                    Poll::Pending
                }
            }
            Forward::WaitingForSend(send, rx) => {
                if let Poll::Ready(tx) = send.poll() {
                    let rx = rx.take().unwrap();
                    *self = Forward::WaitingForReceive(rx.receive(), Some(tx));
                    // Try to make progress on receiving.
                    return self.poll();
                } else {
                    Poll::Pending
                }
            }
        }
    }
}

Listing 9-4: Manually implementing a channel-forwarding future

You’ll rarely have to write code like this in Rust any more, but it gives 
important insight into how things work under the hood, so let’s walk 
through it. First, we define our future type as an enum 1, which we’ll use to 
keep track of what we’re currently waiting on. This is a consequence of the 
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fact that when we return Poll::Pending, the next call to poll will start at the 
top of the function again. We need some way to know what we were in the 
middle of so that we know what operation to continue on. Furthermore, we 
need to keep track of different information depending on what we’re doing: 
if we’re waiting for a receive to finish we need to keep that ReceiveFuture (the 
definition of which is not shown in this example) around so that we can 
poll it the next time we are polled ourselves, and similar for SendFuture. The 
Options here might strike you as weird too; we’ll get back to those shortly.

When we implement Future for Forward, we declare its output type as 
() 2 because this future doesn’t actually return anything. Instead, the 
future resolves (with no result) when it has finished forwarding everything 
from the input channel to the output channel. In a more complete exam-
ple, the Output of our forwarding type might be a Result so that it could com-
municate errors from receive() and send() back up the stack to the function 
that’s polling for the completion of the forwarding. But this code is compli-
cated enough already, so we’ll leave that for another day.

When Forward is polled, it needs to resume wherever it last left off, 
which we find out by matching on the enum variant currently held in 
self 3. Whichever branch we go into, the first step is to poll the future 
that blocks progress for the current operation; if we’re trying to receive we 
poll the ReceiveFuture, and if we’re trying to send we poll the SendFuture. If 
that call to poll returns Poll::Pending, then we can make no progress, and 
we return Poll::Pending ourselves. But if the current future resolves, we 
have work to do!

When one of the inner futures resolves, we need to update what the 
current operation is by switching which enum variant is stored in self. 
In order to do so, we have to move out of self to call Receiver::receive or 
Sender::send—but we can’t do that because all we have is &mut self. So, we 
store the state we have to move in an Option, which we move out of with 
Option::take 4. This is silly since we’re about to overwrite self anyway 5, 
and hence the Options will always be Some, but sometimes tricks are needed 
to make the borrow checker happy.

Finally, if we do make progress, we then poll self again 6 so that if 
we can immediately make progress on the pending send or receive, we do 
so. This is actually necessary for correctness when implementing the real 
Future trait, which we’ll get back to later, but for now think of this as an 
optimization.

We just hand-wrote a state machine: a type that has a number of possible 
states, and moves between them in response to particular events. This was a 
fairly simple state machine, at that. Imagine having to write code like this for 
more complicated use cases where you have additional intermediate steps!

Beyond writing the unwieldy state machine, we have to know the types 
of the futures that Sender::send and Receiver::receive return so that we can 
store them in our type. If those methods instead returned impl Future, we’d 
have no way to write out the types for our variants. The send and receive 
methods also have to take ownership of the sender and the receiver; if they 
did not, the lifetimes of the futures they returned would be tied to the 
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borrow of self, which would end when we return from poll. But that would 
not work, since we’re trying to store those futures in self.

N O T E You may have noticed that Receiver looks a lot like an asynchronous version of 
Iterator. Others have noticed the same thing, and the standard library is on its way 
to adding a trait specifically for types that can meaningfully implement poll_next. 
Down the line, these asynchronous iterators (often referred to as streams) may end up 
with first-class language support, such as the ability to loop over them directly!

Ultimately, this code is hard to write, hard to read, and hard to change. If 
we wanted to add error handling, for example, the code complexity would 
increase significantly. Luckily, there’s a better way!

async/await
Rust 1.39 gave us the async keyword and the closely related await postfix 
operator, which we used in the original example in Listing 9-3. Together, 
they provide a much more convenient mechanism for writing asynchronous 
state machines like the one in Listing 9-5. Specifically, they let you write the 
code in such a way that it doesn’t even look like a state machine!

async fn forward<T>(rx: Receiver<T>, tx: Sender<T>) {
    while let Some(t) = rx.next().await {

tx.send(t).await;
    }
}

Listing 9-5: Implementing a channel-forwarding future using async and await, repeated 
from Listing 9-3

If you don’t have much experience with async and await, the difference 
between Listing 9-3 and Listing 9-5 might give you an idea of why the Rust 
community was so excited to see them land. But since this is an intermedi-
ate book, let’s dive a little deeper to understand just how this short segment 
of code can replace the much longer manual implementation. To do that, 
we first need to talk about generators—the mechanism by which async and 
await are implemented.

Generators

A generator is, briefly described, a chunk of code with some extra compiler-
generated bits that enables it to stop, or yield, its execution midway through, 
and then resume from where it last yielded later on. Take the forward func-
tion in Listing 9-3, for example. Imagine that it gets to the call to send, but 
the channel is currently full. The function can’t make any more progress, 
but it also cannot block (this is nonblocking code, after all), so it needs to 
return. Now suppose the channel eventually clears up, and we want to pro-
ceed with the send. If we call forward again from the top, it’ll call next again 
and the item we previously tried to send will be lost, so that’s no good. 
Instead, we turn forward into a generator.
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Whenever the forward generator cannot make progress anymore, it 
needs to store its current state somewhere so that when its execution even-
tually resumes, it resumes in the right place with the right state. It saves the 
state through an associated data structure that’s generated by the compiler, 
which contains all the state of the generator at a given point in time. A 
method on that data structure (also generated) then allows the generator 
to resume from its current state, stored in &mut self, and updates the state 
again when the generator again cannot make progress.

This “return but allow me to resume later” operation is called yielding, 
which effectively means it returns while keeping some extra state on the 
side. When we later want to resume a call to forward, we invoke the known 
entry point into the generator (the resume method, which is poll for async 
generators), and the generator inspects the previously stored state in self 
to decide what to do next. This is exactly the same thing we did manually in 
Listing 9-4! In other words, the code in Listing 9-3 loosely desugars to the 
hypothetical code shown in Listing 9-6.

generator fn forward<T>(rx: Receiver<T>, tx: Sender<T>) {
    loop {
        let mut f = rx.next();
        let r = if let Poll::Ready(r) = f.poll() { r } else { yield };
        if let Some(t) = r {
            let mut f = tx.send(t);
            let _ = if let Poll::Ready(r) = f.poll() { r } else { yield };
        } else { break Poll::Ready(()); }
    }
}

Listing 9-6: Desugaring async/await into a generator

At the time of writing, generators are not actually usable in Rust—they 
are only used internally by the compiler to implement async/await—but that 
may change in the future. Generators come in handy in a number of cases, 
such as to implement iterators without having to carry around a struct, or 
an impl Iterator that figures out how to yield items one at a time.

If you look closely at Listings 9-3 and 9-5, they may seem a little magical 
once you know that every await or yield is really a return from the function. 
After all, there are several local variables in the function, and it’s not clear 
how they’re restored when we resume later on. This is where the compiler-
generated part of generators comes into play. The compiler transparently 
injects code to persist those variables into and read them from the genera-
tor’s associated data structure, rather than the stack, at the time of execu-
tion. So if you declare, write to, or read from some local variable a, you are 
really operating on something akin to self.a. Problem solved! It’s all really 
quite marvelous.

One subtle but important difference between the manual forward imple-
mentation and the async/await version is that the latter can hold references 
across yield points. This enables functions like Receiver::next and Sender::send 
in Listing 9-5 to take &mut self rather than the self they took in Listing 9-3. 
If we tried to use a &mut self receiver for these methods in the manual state 
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machine implementation, the borrow checker would have no way to enforce 
that the Receiver stored inside Forward cannot be referenced between when 
Receiver::next is called and when the future it returns resolves, and so it would 
reject the code. Only by moving the Receiver into the future can we convince 
the compiler that the Receiver is not otherwise accessible. Meanwhile, with 
async/await, the borrow checker can inspect the code before the compiler 
turns it into a state machine and verify that rx is indeed not accessed again 
until after the future is dropped, when the await on it returns.

T HE SIZE OF GENER ATORS

The data structure used to back a generator’s state must be able to hold the com-
bined state at any one yield point. If your async fn contains, say, a [u8; 8192], 
those 8 KiB must be stored in the generator itself. Even if your async fn only con-
tains smaller local variables, it must also contain any future that it awaits, since it 
needs to be able to poll such a future later, when poll is invoked.

This nesting means that generators, and thus futures based on async 
functions and blocks, can get quite large without any visible indicator of that 
increased size in your code. This can in turn impact your program’s runtime 
performance, since those giant generators may have to be copied across func-
tion calls and in and out of data structures, which amounts to a fair amount of 
memory copying. In fact, you can usually identify when the size of your gener-
ator-based futures is affecting performance by looking for excessive amounts of 
time spent in the memcpy function in your application’s performance profiles!

Finding these large futures isn’t always easy, however, and often requires 
manually identifying long or complex chains of async functions. Clippy may 
be able to help with this in the future, but at the time of writing, you’re on your 
own. When you do find a particularly large future, you have two options: you 
can try to reduce the amount of local state the async functions need, or you 
can move the future to the heap (with Box::pin), so that moving the future just 
requires moving the pointer to it. The latter is by far the easiest way to go, but 
also introduces an extra allocation and a pointer indirection. Your best bet is 
usually to put the problematic future on the heap, measure your performance, 
and then use your performance benchmarks to guide you from there.

Pin and Unpin
We’re not quite done. While generators are neat, a challenge arises from 
the technique as I’ve described it so far. In particular, it’s not clear what 
happens if the code in the generator (or, equivalently, the async block) 
takes a reference to a local variable. In the code from Listing 9-5, the future 
that rx.next() returns must necessarily hold a reference to rx if a next mes-
sage is not immediately available so that it knows where to try again when 
the generator next resumes. When the generator yields, the future and the 
reference the future contains get stashed away inside the generator. But 
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what now happens if the generator is moved? Specifically, look at the code 
in Listing 9-7 which calls forward.

async fn try_forward<T>(rx: Receiver<T>, tx: Sender<T>) -> Option<impl Future> 
{
    let mut f = forward(rx, tx);
    if f.poll().is_pending() { Some(f) } else { None }
}

Listing 9-8: Moving a future after polling it

The try_forward function only polls forward once, to forward as 
many messages as possible without blocking. If the receiver may still 
produce more messages (that is, if it returned Poll::Pending instead of 
Poll::Ready(None)), those messages are deferred to be forwarded at some 
later time by returning the forwarding future to the caller, which may 
choose to poll again at a time when it sees fit.

Let’s work through what happens here with what we know about async 
and await so far. When we poll the forward generator, it goes through the 
while loop some unknown number of times and eventually returns either 
Poll::Ready(()) if the receiver ended, or Poll::Pending otherwise. If it returns 
Poll::Pending, the generator contains a future returned from either rx.next() 
or tx.send(t). Those futures both contain a reference to one of the argu-
ments initially provided to forward (rx and tx, respectively), which must also 
be stored in the generator. But when try_forward returns the entire genera-
tor, the fields of the generator also move. Thus, rx and tx no longer reside 
at the same locations in memory, and the references stored in the stashed-
away future are no longer pointing to the right data!

What we’ve run into here is a case of a self-referential data structure: one 
that holds both data and references into that data. With generators, these self-
referential structures are very easy to construct, and being unable to support 
them would be a significant blow to ergonomics because it would mean you 
wouldn’t be able to hold references across any yield point. The (ingenious) 
solution for supporting self-referential data structures in Rust comes in the 
form of the Pin type and the Unpin trait. Very briefly, Pin is a wrapper type that 
prevents the wrapped type from being (safely) moved, and Unpin is a marker 
trait that says that the implementing type can be removed safely from a Pin.

Pin

There’s a lot of nuance to cover here, so let’s start with a concrete example 
of the wrapper Pin. In Listing 9-2 I gave you a simplified version of the 
Future trait, but we’re now ready to peel back one part of the simplification. 
Listing 9-8 shows the Future trait somewhat closer to its final form.

trait Future {
    type Output;
    fn poll(self: Pin<&mut Self>) -> Poll<Self::Output>;
}

Listing 9-8: A less simplified view of the Future trait with Pin
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In particular, this definition requires that you call poll on Pin<&mut 
Self>. Once you have a value behind a Pin, that constitutes a contract that 
that value will never move again. This means that you can construct self-ref-
erences internally to your heart’s delight, exactly as you want for generators.

N O T E  While Future makes use of Pin, Pin is not tied to the Future trait—you can use Pin for 
any self-referential data structure.

But how do you get a Pin to call poll? And how can Pin ensure that 
the contained value won’t move? To see how this magic works, let’s look 
at the definition of std::pin::Pin and some of its key methods, shown in 
Listing 9-9.

struct Pin<P> { pointer: P }
impl<P> Pin<P> where P: Deref {
    pub unsafe fn new_unchecked(pointer: P) -> Self;
}
impl<'a, T> Pin<&'a mut T> {
    pub unsafe fn get_unchecked_mut(self) -> &'a mut T;
}
impl<P> Deref for Pin<P> where P: Deref {
    type Target = P::Target;
    fn deref(&self) -> &Self::Target;
}

Listing 9-9: std::pin::Pin and its key methods

There’s a lot to unpack here, and we’re going to have to go over the 
definition in Listing 9-9 a few times before all the bits make sense, so please 
bear with me.

First, you’ll notice that Pin holds a pointer type. That is, rather than hold 
some T directly, it holds a type P that dereferences through Deref into T. This 
means that rather than have a Pin<MyType>, you’ll have a Pin<Box<MyType>> or 
Pin<Rc<MyType>> or Pin<&mut T>. The reason for this design is simple—Pin’s 
primary goal is to make sure that once you place a T behind a Pin, that T 
won’t move, as doing so might invalidate self-references stored in the T. If 
the Pin just held a T directly, then simply moving the Pin would be enough to 
invalidate that invariant! In the remainder of this section, I’ll refer to P as 
the pointer type and T as the target type.

Next, notice that Pin’s constructor, new_unchecked, is unsafe. This is 
because the compiler has no way to actually check that the pointer type 
indeed promises that the pointed-to (target) type won’t move again. Con-
sider, for example, a variable foo on the stack. If Pin’s constructor were safe, 
we could do Pin::new(&mut foo), call a method that requires Pin<&mut Self> 
(and thus assumes that Self won’t move again), and then drop the Pin. At 
this point, we could modify foo as much as we liked, since it is no longer 
borrowed—including moving it! We could then pin it again and call the 
same method, which would be none the wiser that any self-referential point-
ers it may have constructed the first time around would now be invalid.
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PIN CONS T RUC TOR SA F E T Y

The other reason the constructor for Pin is unsafe is that its safety depends on 
the implementation of traits that are themselves safe. For example, the way 
that Pin<P> implements get_unchecked_mut is to use the implementation of 
DerefMut::deref_mut for P. While the call to get_unchecked_mut is unsafe, the 
impl DerefMut for P is not. Yet it receives a &mut self, and can thus freely (and 
without unsafe code) move the T. The same thing applies to Drop. The safety 
requirement for Pin::new_unchecked is therefore not only that the pointer type 
will not let the target type be moved again (like in the Pin<&mut T> example), 
but also that its Deref, DerefMut, and Drop implementations do not move the 
pointed-to value behind the &mut self they receive.

We then get to the get_unchecked_mut method, which gives you a mutable 
reference to the T behind the Pin’s pointer type. This method is also unsafe, 
because once we give out a &mut T, the caller has to promise it won’t use 
that &mut T to move the T or otherwise invalidate its memory, lest any self-
references be invalidated. If this method weren’t unsafe, a caller could 
call a method that takes Pin<&mut Self> and then call the safe variant of 
get_unchecked_mut on two Pin<&mut _>s, then use mem::swap to swap the values 
behind the Pin. If we were to then call a method that takes Pin<&mut Self> 
again on either Pin, its assumption that the Self hasn’t moved would be vio-
lated, and any internal references it stored would be invalid!

Perhaps surprisingly, Pin<P> always implements Deref<Target = T>, and 
that is entirely safe. The reason for this is that a &T does not let you move T 
without writing other unsafe code (UnsafeCell, for example, as we’ll discuss 
in Chapter 10). This is a good example of why the scope of an unsafe block 
extends beyond just the code it contains. If you wrote some code in one part 
of the application that (unsafely) replaced a T behind an & using UnsafeCell, 
then it could be that that &T initially came from a Pin<&mut T>, and that you 
have now violated the invariant that the T behind the Pin may never move, 
even though the place where you unsafely replaced the &T did not even men-
tion Pin!

N O T E  If you’ve browsed through the Pin documentation while reading this chapter, you may 
have noticed Pin::set, which takes a &mut self and a <P as Deref>::Target and 
safely changes the value behind the Pin. This is possible because set does not return 
the value that was previously pinned—it simply drops it in place and stores the new 
value there instead. Therefore, it does not violate the pinning invariants: the old 
value was never accessed outside of a Pin after it was placed there.

Unpin: The Key to Safe Pinning

At this point you might ask: given that getting a mutable reference is unsafe 
anyway, why not have Pin hold a T directly? That is, rather than require an 
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indirection through a pointer type, you could instead make the contract for 
get_unchecked_mut that it is only safe to call if you haven’t moved the Pin. The 
answer to that question lies in a neat safe use of Pin that the pointer design 
enables. Recall that the whole reason we want Pin in the first place is so we 
can have target types that may contain references into themselves (like a 
generator), and give their methods a guarantee that the target type hasn’t 
moved and thus that internal self-references remain valid. Pin lets us use the 
type system to enforce that guarantee, which is great. But unfortunately, 
with the design so far, Pin is very unwieldy to work with. This is because it 
always requires unsafe code, even if you are working with a target type that 
doesn’t contain any self-references, and so doesn’t care whether it’s been 
moved or not.

This is where the marker trait Unpin comes into play. An implementation 
of Unpin for a type simply asserts that the type is safe to move out of a Pin 
when used as a target type. That is, the type promises that it will never use 
any of Pin’s guarantees about the referent not moving again when used as a 
target type, and thus that those guarantees may be broken. Unpin is an auto-
trait, like Send and Sync, and so is auto-implemented by the compiler for any 
type that contains only Unpin members. Only types that explicitly opt out of 
Unpin (like generators) and types that contain those types are !Unpin.

For target types that are Unpin, we can provide a much simpler safe 
interface to Pin, as shown in Listing 9-10.

impl<P> Pin<P> where P: Deref, P::Target: Unpin {
    pub fn new(pointer: P) -> Self;
}
impl<P> DerefMut for Pin<P> where P: DerefMut, P::Target: Unpin {
    fn deref_mut(&mut self) -> &mut Self::Target;
}

Listing 9-10: The safe API to Pin for Unpin target types

To make sense of the safe API in Listing 9-10, think about the safety 
requirements of the unsafe methods from Listing 9-9: the function 
Pin::new_unchecked is unsafe because the caller must promise that the ref-
erent cannot be moved outside of the Pin, and that the implementations 
of Deref, DerefMut, and Drop for the pointer type do not move the refer-
ent through the reference they receive. Those requirements are there to 
ensure that once we give out a Pin to a T, we never move that T again. But 
if the T is Unpin, it has declared that it does not care if it is moved even if it 
was previously pinned, so it’s fine if the caller does not satisfy any of those 
requirements! 

Similarly, get_unchecked_mut is unsafe because the caller must guarantee 
that it doesn’t move the T out of the &mut T—but with T: Unpin, T has declared 
that it’s fine being moved even after being pinned, so that safety require-
ment is no longer important. This means that for Pin<P> where P::Target: 
Unpin, we can simply provide safe variants of both those methods (DerefMut 
being the safe version of get_unchecked_mut). In fact, we can even provide a 
Pin::into_inner that simply gives back the owned P if the target type is Unpin, 
since the Pin is essentially irrelevant!
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Obtaining a Pin

With our new understanding of Pin and Unpin, we can now make prog-
ress toward using the new Future definition from Listing 9-8 that requires 
Pin<&mut Self>. The first step is to construct the required type. If the future 
type is Unpin, that step is easy—we just use Pin::new(&mut future). If it is not 
Unpin, we can pin the future in one of two main ways: by pinning to the 
heap or pinning to the stack.

Let’s start with pinning to the heap. The primary contract of Pin is that 
once something has been pinned, it cannot move. The pinning API takes 
care of ensuring that for all methods and traits on Pin, so the main role of 
any function that constructs a Pin is to ensure that if the Pin itself moves, the 
referent value does not move too. The easiest way to ensure that is to place 
the referent on the heap, and then place just a pointer to the referent in 
the Pin. You can then move the Pin to your heart’s delight, but the target 
will remain where it was. This is the rationale behind the (safe) method 
Box::pin, which takes a T and returns a Pin<Box<T>>. There’s no magic to it; it 
simply asserts that Box follows the Pin constructor, Deref, and Drop contracts.

UNPIN BOX

While we’re on the topic of Box, take a look at the implementation of Unpin for 
Box. The Box type unconditionally implements Unpin for any T, even if that T is 
not Unpin. This might strike you as odd, given the earlier assertion that Unpin 
is an auto-trait that is only generally implemented for a type if all of the type’s 
members are also Unpin. Box is an exception to this for the same reason that it 
can provide a safe Pin constructor: if you move a Box<T>, you do not move the 
T. In other words, the unconditional implementation asserts that you can move a 
Box<T> out of a Pin even if T cannot be moved out of a Pin. Note, however, that 
this does not enable you to move a T that is !Unpin out of a Pin<Box<T>>.

The other option, pinning to the stack, is a little more involved, and at 
the time of writing requires a smidgen of unsafe code. We have to ensure 
that the pinned value cannot be accessed after the Pin with a &mut to it has 
been dropped. We accomplish that by shadowing the value as shown in the 
macro in Listing 9-11, or using one of the crates that provide exactly this 
macro. One day it may even make it into the standard library!

macro_rules! pin_mut {
    ($var:ident) => {
        let mut $var = $var;
        let mut $var = unsafe { Pin::new_unchecked(&mut $var) };
    }
}

Listing 9-11: Macro for pinning to the stack
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By taking the name of the variable to pin to the stack, the macro 
ensures that the caller has the value it wants to pin somewhere on the stack 
already. The shadowing of $var ensures that the caller cannot drop the Pin 
and continue to use the unpinned value (which would breach the Pin con-
tract for any target type that’s !Unpin). By moving the value stored in $var, 
the macro also ensures that the caller cannot drop the $var binding the 
macro declares without also dropping the original variable. Specifically, 
without that line, the caller could write (note the extra scope):

let foo = /* */; { pin_mut!(foo); foo.poll() }; foo.mut_self_method();

Here, we give a pinned instance of foo to poll, but then we later use a 
&mut to foo without a Pin, which violates the Pin contract. With the extra reas-
signment, on the other hand, that code would also move foo into the new 
scope, rendering it unusable after the scope ends.

Pinning on the stack therefore requires unsafe code, unlike Box::pin, 
but  avoids the extra allocation that Box introduces, and also works in no_std 
environments.

Back to the Future

We now have our pinned future, and we know what that means. But you 
may have noticed that none of this important pinning stuff shows up in 
most asynchronous code you write with async and await. And that’s because 
the compiler hides it from you.

Remember back when we discussed Listing 9-5, when I told you that 
<expr>.await desugars into something like:

loop { if let Poll::Ready(r) = expr.poll() { break r } else { yield } }

That was an ever-so-slight simplification, because as we’ve seen you can 
only call Future::poll if you have a Pin<&mut Self> for the future. The desug-
aring is actually a bit more sophisticated, as shown in Listing 9-12.

1 match expr {
      mut pinned => loop {
2         match unsafe { Pin::new_unchecked(&mut pinned) }.poll() {

Poll::Ready(r) => break r,
Poll::Pending => yield,

}
    }
}

Listing 9-12: A more accurate de-sugaring of <expr>.await

The match 1 is a neat shorthand to ensure that the expansion remains 
a valid expression, while also moving the expression result into a variable 
that we can then pin on the stack. Beyond that, the main new addition is 
the call to Pin::new_unchecked 2. That call is safe because for the containing 
async block to be polled, it must already be pinned due to the signature 
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of Future::poll. And the async block was polled for us to reach the call to 
Pin::new_unchecked, so the generator state is pinned. Since pinned is stored 
in the generator that corresponds to the async block (it must be so that 
yield will resume correctly), we know that pinned will not move again. 
Furthermore, pinned is not accessible except through a Pin once we’re in the 
loop, so no code is able to move out of the value in pinned. Thus, we meet all 
the safety requirements of Pin::new_unchecked, and the code is safe.

Going to Sleep
We went pretty deep into the weeds with Pin, but now that we’re out the 
other side, there is another issue around futures that may have been mak-
ing your brain itch. If a call to Future::poll returns Poll::Pending, you need 
something to call poll again at a later time to check whether you can make 
progress yet. That something is usually called the executor. Your executor 
could be a simple loop that polls all the futures you are waiting on until 
they’ve all returned Poll::Ready, but that would burn a lot of CPU cycles you 
could probably have used for other, more useful things, like running your 
web browser. Instead, we want the executor to do whatever useful work it 
can do, and then go to sleep. It should stay asleep until one of the futures 
can make progress, and only then wake up to do another pass, before going 
to sleep again.

Waking Up
The condition that determines when to check back with a given future var-
ies widely. It might be “when a network packet arrives on this port,” “when 
the mouse cursor moves,” “when someone sends on this channel,” “when 
the CPU receives a particular interrupt,” or even “after this much time has 
passed.” On top of that, developers can write their own futures that wrap 
multiple other futures, and thus may have several wake-up conditions. Some 
futures may even introduce their own entirely custom wake events.

To accommodate these many use cases, Rust introduces the notion of a 
Waker: a way to wake the executor to signal that progress can be made. The 
Waker is what makes the whole machinery around futures work. The execu-
tor constructs a Waker that integrates with the mechanism the executor uses 
to go to sleep, and passes the Waker in to any Future it polls. How? With the 
additional parameter to Future::poll that I’ve hidden from you so far. Sorry 
about that. Listing 9-13 gives the final and true definition for Future—no 
more lies!

trait Future {
    type Output;
    fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output>;
}

Listing 9-13: The actual Future trait with Context
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The &mut Context contains the Waker. The argument is a Context, not a 
Waker directly, so that we can augment the asynchronous ecosystem with 
additional context for futures should that be deemed necessary.

The primary method on Waker is wake (and the by-reference variant wake_
by_ref). The wake method takes no arguments, and its effects are entirely 
defined by the executor that constructed the Waker. You see, Waker is secretly 
generic over the executor. Or, more precisely, whatever constructed the 
Waker gets to dictate what happens when Waker::wake is called, when a Waker is 
cloned, and when a Waker is dropped. This all happens through a manually 
implemented vtable, which functions similarly to the dynamic dispatch we 
discussed way back in Chapter 3. 

It’s a somewhat involved process to construct a Waker, and the mechan-
ics of it aren’t all that important for using one, but you can see the building 
blocks in the RawWakerVTable type in the standard library. It has a construc-
tor that takes the function pointers for wake and wake_by_ref, as well as Clone 
and Drop. The RawWakerVTable, which is usually shared among all of an execu-
tor’s wakers, is bundled up with a raw pointer that is intended to hold data 
specific to each Waker instance (like which future it’s for), and turned into 
a RawWaker. That is in turn passed to Waker::from_raw to produce a safe Waker 
that can be passed to Future::poll.

The Poll Contract
So far we’ve skirted around what a future actually does with a Waker. The 
idea is fairly simple: if Future::poll returns Poll::Pending, it is the future’s 
responsibility to ensure that something calls wake on the provided Waker 
when the future is next able to make progress. Most futures uphold this 
property by only returning Poll::Pending if some other future also returned 
Poll::Pending; in this way it trivially fulfills the contract of poll since the 
inner future must follow that same contract. But there can’t be turtles all 
the way down. At some point, you reach a future that does not poll other 
futures, but instead does something like write to a network socket or 
attempt to receive on a channel. These are commonly referred to as leaf 
futures since they have no children. A leaf future has no inner future, but 
instead directly represents some resource that may not be ready to return a 
result yet.

Leaf futures typically come in one of two shapes: those that wait for 
events that originate within the same process (like a channel receiver), and 
those wait for events external to the process (like a TCP packet receive). 
Those that wait for internal events all tend to follow the same pattern: store 
the Waker somewhere where the code that will wake you up can find it, and 
have that code call wake on the Waker when it generates the relevant event. 
For example, consider a leaf future that has to wait for a message on an in-
memory channel. It stores the Waker inside the part of the channel that is 
shared between the sender and the receiver, and then returns Poll::Pending. 
When a sender later comes along and injects a message into the channel, it 
notices the Waker left there by the waiting receiver and calls wake on the Waker 
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before returning from send. Now the receiver is awoken, and the poll con-
tract is upheld.

Leaf futures that deal with external events are more involved, as the 
code that generates the event they’re waiting for knows nothing of futures 
or wakers. Most often the generating code is the operating system kernel, 
which knows when a disk is ready or a timer expires, but it could also be 
a C library that invokes a callback into Rust when an operation completes 
or some other such external entity. A leaf future wrapping an external 
resource like this could spin up a thread that executes a blocking system 
call (or waits for the C callback) and then use the internal waking mecha-
nism, but that would be wasteful; you would spin up a thread every time an 
operation had to wait and would be left with lots of single-use threads sit-
ting around waiting for things.

Instead, executors tend to provide implementations of leaf futures 
that communicate behind the scenes with the executor to arrange for 
the appropriate interaction with the operating system. How exactly this 
is orchestrated depends on the executor and the operating system, but 
roughly speaking the executor keeps track of all the event sources that it 
should listen for the next time it goes to sleep. When a leaf future realizes 
it must wait for an external event, it updates that executor’s state (which it 
knows about since it’s provided by the executor crate) to include that exter-
nal event source alongside its Waker. When the executor can no longer make 
progress, it gathers all of the event sources the various pending leaf futures 
are waiting for and does a big blocking call to the operating system telling 
it to return when any of the resources the leaf futures are waiting on have 
a new event. On Linux, this is usually achieved with the epoll system call; 
Windows, the BSDs, macOS, and pretty much every other operating system 
provide similar mechanisms. When that call returns, the executor calls wake 
on all the wakers associated with event sources that the operating system 
reported an event for, and thus the poll contract is fulfilled.

N O T E  A reactor is the part of an executor that leaf futures register event sources with and 
that the executor waits on when it has no more useful work to do. It is possible to 
separate the executor and the reactor, though bundling them together often improves 
performance as the two can be co-optimized more readily.

A knock-on effect of the tight integration between leaf futures and 
the executor is that leaf futures from one executor crate often cannot be 
used with a different executor. Or at least, they cannot be used unless the 
leaf future’s executor is also running. When the leaf future goes to store its 
Waker and register the event source it’s waiting for, the executor it was built 
against needs to have that state set up and needs to be running so that the 
event source will actually be monitored and wake eventually called. There 
are ways around this, such as having leaf futures spawn an executor if one 
is not already running, but this is not always advisable as it means that an 
application can transparently end up with multiple executors running at 
the same time, which can reduce performance and mean you must inspect 
the state of multiple executors when debugging.
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Library crates that wish to support multiple executors have to be 
generic over their leaf resources. For example, instead of using a particu-
lar executor’s TcpStream or File future type, a library can store a generic T: 
AsyncRead + AsyncWrite. However, the ecosystem has yet to settle on exactly 
what these traits should look like and which traits are needed, so at the 
moment it’s fairly difficult to make code truly generic over the executor. For 
example, while AsyncRead and AsyncWrite are somewhat common across the 
ecosystem (or can be easily adapted if necessary), no traits currently exist 
for running a future in the background (spawning, which we’ll discuss later) 
or for representing a timer.

Waking Is a Misnomer
You may already have realized that Waker::wake doesn’t necessarily seem to 
wake anything. For example, for external events (as described in the previ-
ous section) the executor is already awake, and it might seem silly for it to 
then call wake on a Waker that belongs to that executor anyway! The reality is 
that Waker::wake is a bit of a misnomer—in reality, it signals that a particular 
future is runnable. That is, it tells the executor that it should make sure to 
poll this particular future when it gets around to it rather than go to sleep 
again, since this future can make progress. This might wake the executor if 
it is currently sleeping so it will go poll that future, but that’s more of a side 
effect than its primary purpose.

It is important for the executor to know which futures are runnable 
for two reasons. First, it needs to know when it can stop polling a future 
and go to sleep; it’s not sufficient to just poll each future until it returns 
Poll::Pending, since polling a later future might make it possible to progress 
an earlier future. Consider the case where two futures bounce messages 
back and forth on channels to one another. When you poll one, the other 
becomes ready, and vice versa. In this case, the executor should never go to 
sleep, as there is always more work to do.

Second, knowing which futures are runnable lets the executor avoid 
polling futures unnecessarily. If an executor manages thousands of pend-
ing futures, it shouldn’t poll all of them just because an event made one of 
them runnable. If it did, executing asynchronous code would get very slow 
indeed.

Tasks
The futures in an asynchronous program form a tree: a future may contain 
any number of other futures, which in turn may contain other futures, all 
the way down to the leaf futures that interact with wakers. The root of each 
tree is the future you give to whatever the executor’s main “run” function 
is. These root futures are called tasks, and they are the only point of contact 
between the executor and the futures tree. The executor calls poll on the 
task, and from that point forward the code of each contained future must 
figure out which inner future(s) to poll in response, all the way down to the 
relevant leaf.

Rust for Rustaceans (Early Access) © 2022 by Jon Gjengset 



Asynchronous Programming   137

Executors generally construct a separate Waker for each task they poll so 
that when wake is later called, they know which task was just made runnable 
and can mark it as such. That is what the raw pointer in RawWaker is for—to 
differentiate between tasks while sharing the code for the various Waker 
methods.

When the executor eventually polls a task, that task starts running from 
the top of its implementation of Future::poll, and must decide from there 
how to get to the future deeper down that can now make progress. Since 
each future only knows about its own fields, and nothing about the whole 
tree, this all happens through calls to poll that each traverse one edge in 
the tree.

The choice of which inner future to poll is often obvious, but not 
always. In the case of async/await, the future to poll is the one we’re blocked 
waiting for. But in a future that waits for the first of several futures to make 
progress (often called a select), or for all of a set of futures (often called a 
join), there are many options. A future that has to make such a choice is 
basically a subexecutor. It could poll all of its inner futures, but doing so 
could be quite wasteful. Instead, these subexecutors often wrap the Waker 
they receive in poll’s Context with their own Waker type before they invoke 
poll on any inner future. In the wrapping code, they mark the future they 
just polled as runnable in their own state before they call wake on the origi-
nal Waker. That way, when the executor eventually polls the subexecutor 
future again, the subexecutor can consult its own internal state to figure 
out which of its inner futures caused the current call to poll, and then only 
poll those.

Tying It All Together with spawn
When working with asynchronous executors, you may come across an 
operation that spawns a future. We’re now in a position to explore what 
that means! Let’s do so by way of example. First, consider the simple server 
implementation in Listing 9-14.

async fn handle_client(socket: TcpStream) -> Result<()> {
    // Interact with the client over the given socket.
}

async fn server(socket: TcpListener) -> Result<()> {
    while let Some(stream) = socket.accept().await? {
        handle_client(stream).await?;
    }
}

Listing 9-14: Handling connections sequentially

The top-level server function is essentially one big future that listens 
for new connections and does something when a new connection arrives. 
You hand that future to the executor and say “run this,” and since you 
don’t want your program to then exit immediately, you’ll probably have the 
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executor block on that future. That is, the call to the executor to run the 
server future will not return until the server future resolves, which may be 
never (another client could always arrive later).

Now, every time a new client connection comes in, the code in 
Listing 9-14 makes a new future (by calling handle_client) to handle that 
connection. Since the handling is itself a future, we await it and then move 
on to the next client connection.

The downside of this approach is that we only ever handle one connec-
tion at a time—there is no concurrency. Once the server accepts a connec-
tion, the handle_client function is called, and since we await it we don’t go 
around the loop again until handle_client’s return future resolves (presum-
ably when that client has left).

We could improve on this by keeping a set of all the client futures and 
having the loop in which the server accepts new connections also check all 
the client futures to see if any can make progress. Listing 9-15 shows what 
that might look like.

async fn server(socket: TcpListener) -> Result<()> {
    let mut clients = Vec::new();
    loop {

poll_client_futures(&mut clients)?;
if let Some(stream) = socket.try_accept()? {

clients.push(handle_client(stream));
}

    }
}

Listing 9-15: Handling connections with a manual executor

 This at least handles many connections concurrently, but it’s quite 
messy. It’s also not very efficient because the code now busy-loops, switching 
between handling the connections we already have and accepting new ones. 
And it has to check each connection each time, since it won’t know which 
ones can make progress (if any). It also can’t await at any point, since that 
would prevent the other futures from making progress. You could imple-
ment your own wakers to ensure that the code only polls the futures that 
can make progress, but ultimately this is going down the path of developing 
your own mini-executor.

Another downside of sticking with just the one task for the server that 
internally contains the futures for all of the client connections is that the 
server ends up being single-threaded. There is just the one task, and to poll 
it the code must hold an exclusive reference to the task’s future (poll takes 
Pin<&mut Self>), which only one thread can hold at a time.

The solution is to make each client future its own task, and leave it to 
the executor to multiplex among all the tasks. Which, you guessed it, you 
do by spawning the future. The executor will continue to block on the 
server future, but if it cannot make progress on that future it will use its 
execution machinery to make progress on the other tasks in the meantime 
behind the scenes. And best of all, if the executor is multithreaded and 
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your client futures are Send, it can run them in parallel since it can hold 
&muts to the separate tasks. Listing 9-16 gives an example of what this might 
look like.

async fn server(socket: TcpListener) -> Result<()> {
    while let Some(stream) = socket.accept().await? {
        // Spawn a new task with the Future that represents this client.
        // The current task will continue to just poll for more connections,
        // and will run concurrently (and possibly in parallel) with handle_client.
        spawn(handle_client(stream));
    }
}

Listing 9-16: Spawning futures to create more tasks that can be polled concurrently

When you spawn a future, and thus make it a task, it’s sort of like 
spawning a thread. The future continues running in the background 
and is multiplexed concurrently with any other tasks given to the executor. 
However, unlike a spawned thread, spawned tasks still depend on being 
polled by the executor. If the executor stops running, either because you 
drop it or because your code no longer runs the executor’s code, those 
spawned tasks will stop making progress. In the server example, imagine 
what will happen if the main server future resolves for some reason. Since 
the executor has returned control back to your code, it cannot continue 
doing, well, anything. Multi-threaded executors often spawn background 
threads that continue to poll tasks even if the executor yields control back 
to the user’s code, but not all executors do this, so check your executor 
before you rely on that behavior!

BLOCKING IN A S Y NC CODE

You must be careful about calling synchronous code from asynchronous code, 
since any time an executor thread spends executing the current task is time it’s 
not spending running other tasks. If a task occupies the current thread for a pro-
longed period of time without yielding back to the executor, which might hap-
pen when executing a blocking system call (like std::sync::sleep) or running 
in a tight loop with no awaits, then other tasks the current executor thread is 
responsible for won’t get to run during that time. Usually, this manifests as long 
delays between when certain tasks can make progress (such as when a client 
connects) and when they actually get to execute.

Some multithreaded executors implement work-stealing techniques, where 
idle executor threads steal tasks from busy executor threads, but this is more of 
a mitigation than a solution. Ultimately, you could end up in a situation where 
all the executor threads are blocked, and thus no tasks get run until one of the 
blocking operations completes.

In general, you should be very careful with executing compute-intensive 
operations or calling functions that could block in an asynchronous context. 

continued
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Such operations should either be converted to asynchronous operations where 
possible or executed on dedicated threads that then communicate using a 
primitive that does support asynchrony, like a channel. Some executors also 
provide mechanisms for indicating that a particular segment of asynchronous 
code might block, or for yielding voluntarily in the context of loops that might 
otherwise not yield, which can comprise part of the solution. A good rule of 
thumb is that no future should be able to run for more than 1 ms without return-
ing Poll::Pending.

Summary
In this chapter, we’ve taken a look behind the scenes of the asynchronous 
constructs available in Rust. We’ve seen how the compiler implements gen-
erators and self-referential types, and why that work was necessary to sup-
port what we now know as async/await. We’ve also explored how futures are 
executed, and how wakers allow executors to multiplex among tasks when 
only some of them can make progress at any given moment. In the next 
chapter, we’ll tackle what is perhaps the deepest and most discussed area 
of Rust: unsafe code. Take a deep breath, and then turn the page.
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