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Preface

After more than a decade of intense and fast-paced research on zk-SNARKs by mathematicians
and cryptographers around the globe, the field is now racing towards full maturity, and I believe
that we can see first saturation effects to appear at the horizon. I hope this book will equip the
reader with most of the basic knowledge needed to implement secure applications, and to tackle
the vast literature in this remarkable field of research.

The book arose from a set of lectures and notes I gave at the Zero Knowledge Summit –
ZK0x02 & ZK0x03 in Berlin. On the one hand side it originated from the desire to collect the
scattered information around the topic of zk-SNARKS and present them to an audience that
does not have a strong background in cryptography. On the other hand side it serves as a lab-
book to collect and present insights into common misunderstandings, that the Least Authority
audit team gathered throughout their audits of various zk-SNARK implementations. It should
be considered a constant work-in-progress as we try to update it whenever we think new zk-
SNARK technology becomes relevant in real world applications.

The book is intended to let illustrative examples drive the discussion and present the key
ideas of all basic concepts relevant to the understanding of zk-SNARKS with as little mathe-
matics as possible. For those who are new to this topic, it is my hope that the book might be
particularly useful as a first read and prelude to more complete or advanced expositions.

– Mirco Richter –
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Chapter 1

Introduction

In the field of cryptography, zero-knowledge proofs or zero-knowledge protocols are a class of
protocols that enable a party, known as the prover, to demonstrate the truth of a statement to
other parties, referred to as verifiers, without revealing any information beyond the statement’s
veracity. This book is intended to provide a comprehensive introduction to the mathematical
foundations and implementations of these proof systems, aimed at individuals with limited prior
exposure to this area of research.

Of particular significance in this context are zero-knowledge succinct, non-interactive argu-
ments of knowledge (zk-SNARKs), which possess the advantage of being much smaller in size
than the original data required to establish the truth of a statement, and verifiers can be conveyed
through a single message from the prover.

From a practical standpoint, zk-SNARKs are intriguing because they allow for the honest
computation of data to be proven publicly without disclosing the inputs to the computation,
through the transmission of a concise transaction to a verifier embodied as a smart contract
on a public blockchain. This facilitates the public verification of computation, improves the
scalability of blockchain technology, and enhances the privacy of transactions.

Based on this interconnection between blockchains and zk-SNARKs, growing interest in
blockchain technology has elevated the need for a more nuanced and complete understanding
of zero-knowledge protocols, their real-world applications and implementations, and the devel-
opment of standards in this field. This is crucial for ensuring that developers can produce secure
and high-quality code

However, the intricacies of zero-knowledge proofs are complicated and require an in-depth
comprehension of several mathematical and computer-theoretical disciplines, as well as famil-
iarity with alternative computational models and programming paradigms. Unfortunately re-
sources are often scattered across blog posts, github libraries and mathematical papers and as a
result zk-SNARKs remain somewhat elusive or ”magical” and are therefore sometimes coined
as ”moon math”. This poses a barrier to entry and deters developers from exploring or incorpo-
rating them in their projects, hindering the widespread adoption of this technology and societies
evolution towards web3.

The ’MoonMath Manual to zk-SNARKs’ aims to change this, designed specifically for in-
dividuals with limited prior exposure to cryptography. The manual aims to bridge knowledge
gaps by providing a hands-on, practical approach to explaining abstract concepts using simple
pen-and-paper calculations. As readers work through the manual, they will gain an understand-
ing of the mathematics underlying zk-SNARKs, which will provide them with the necessary
foundation for further exploration.
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CHAPTER 1. INTRODUCTION 1.1. TARGET AUDIENCE

1.1 Target audience
The primary focus of this book are software and smart contract developers who aim to acquire
a thorough understanding of the workings of zk-SNARKs, in order to be able to develop high
quality, high security code, or who want to close some knowledge gaps. The book is suitable
for both novice and experienced readers, as concepts are gradually introduced in a structured
and logical manner, ensuring that the information is easily comprehensible.

While the book is accessible to a wide range of readers, it is expected that the reader has
a basic knowledge of programming and an interest in logical thinking and strategic problem
solving. An enthusiasm for the subject matter is also necessary, as the details of zero-knowledge
proofs can be complex.

1.2 About the book
How much mathematics do you need to understand and implement zero-knowledge proofs?
Of course, the answer is contingent upon the desired level of comprehension and the security
demands of the application. It is possible to implement zero-knowledge proofs without any
understanding of the underlying mathematics; however, to read a seminal paper, to grasp the
intricacies of a proof system, or to develop secure and high-quality zk-SNARKs, some mathe-
matical knowledge is indispensable.

Without a solid grounding in mathematics, someone who is interested in learning the con-
cepts of zero-knowledge proofs, but who has never seen or dealt with, say, a prime field, or an
elliptic curve, may quickly become overwhelmed. This is not so much due to the complexity
of the mathematics needed, but rather because of the vast amount of technical jargon, unknown
terms, and obscure symbols that quickly makes a text unreadable, even though the concepts
themselves are not actually that complicated. As a result, the reader might either lose interest,
or pick up some incoherent bits and pieces of knowledge that, in the worst case scenario, result
in immature and non-secure implementations.

Absence of a robust mathematical background can pose significant challenges to individuals
interested in learning the principles of zero-knowledge proofs, particularly if they have not
encountered mathematical concepts such as prime fields or elliptic curves. This is not due to the
inherent complexity of the mathematics involved, but rather the presence of a large amount of
technical jargon, unfamiliar terms, and abstract symbols, which can make the text impenetrable
even when the concepts themselves are not particularly challenging. As a result, the reader
may become disinterested or assimilate a fragmented and inconsistent understanding, leading
to insecure and immature implementations.

Significant portions of this book are dedicated to providing a comprehensive explanation of
the mathematical foundations necessary for comprehending the fundamental concepts underly-
ing zk-SNARK development. For readers who lack familiarity with basic number theory and
elliptic curves, we strongly encourage dedicated study of the relevant chapters until they are
able to solve a minimum of several exercises in each chapter. A deliberate focus on working
through examples in detail is encouraged.

The book starts at a very basic level, and only assume preexisting knowledge of fundamental
concepts like high school integer arithmetic. It then progresses to demonstrate that there are
numbers and mathematical structures that, although initially appearing very different from what
was learned in high school, are actually analogous at a deeper level. This is exemplified through
a variety of examples throughout the book.
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CHAPTER 1. INTRODUCTION 1.3. READING THIS BOOK

It is important to emphasize that the mathematics presented in this book is informal, in-
complete, and optimized to facilitate efficient comprehension of zero-knowledge concepts. The
design choice is to include only the minimum required theory, prioritizing a profusion of nu-
merical examples. We believe that this informal, example-driven approach facilitates easier
digestion of the material for beginners.

As a novice, it is suggested that one first computes a simple toy zk-SNARK using pen and
paper, before venturing into the development of high-security real-world zk-SNARKs. How-
ever, to derive these toy examples, some mathematical preparation is necessary. This book
therefore aims to guide the inexperienced reader towards the essential mathematical concepts,
providing exercises that are intended to be worked through independently. Each section in-
cludes a list of progressively challenging exercises to aid in memorization and application of
the concepts.

1.3 Reading this Book
The MoonMath Manual is intended to provide a comprehensive introduction to topics relevant
to beginners in mathematics and cryptography. As such, there are multiple ways to read the
book. The most straightforward approach is to follow the chapters in a linear order. This
method is recommended for readers who have limited prior knowledge of mathematics and
cryptography. The book begins with fundamental concepts such as natural numbers, prime
numbers, and operations on these sets in various arithmetics. Subsequently, the book progresses
to cover algebraic structures, including groups, rings, prime fields, and elliptic curves.

Throughout the book, examples are introduced and gradually expanded upon with the incor-
poration of new knowledge from subsequent chapters. This incremental approach allows for the
development of simple, yet full-fledged cryptographic systems that can be computed by hand,
in order to provide a detailed illustration of each step.

For readers interested in understanding elliptic curves as they pertain to zero-knowledge
proving systems, a starting point could be the introduction to the BLS66 curve in section 5.6.4.
The BLS66 curve was specifically designed for the purpose of hand calculations, as the size of
cryptographic elliptic curves often prohibits this type of computation. It is a pairing-friendly
curve with all necessary properties to perform pairing-based computations without the aid of
a computer, which can help to clarify the intricacies of the system. Additionally, the book
includes a derivation of the Tiny-jubjub curve 5.36, which can be used for EdDSA calculations
in circuits over BLS66.

Readers interested in building a simple, pen-and-paper zk-SNARK from scratch may want
to start with the examples related to the 3-factorization problem. In example 115, we introduce
the 3-factorization problem as a statement in a formal language. If this is too abstract, the reader
might start in example 124, where we describe the 3-factorization problem as an algebraic
circuit. In example 126 we execute the circuit. In example 118, we introduce the concept of
instance and witness into the problem in order to achieve various levels of zero knowledge later
on. In example 120 we transform the circuit into an associated Rank-1 Constraint System and
in example 122 we compute a constructive proof for the problem. In example 131 we transform
that constraint system into a Quadratic Arithmetic Program in and show how constructive proofs
are transformed into polynomial divisibility problems. In example 147, we use the result of
those examples to derive a Groth16 zk-SNARK for the 3-factorization problem. In 8.3, we
compute the prover and the verifier key. In example 151, we compute a zk-SNARK and in
example 153, we verify that zk-SNARK. In example, 155 we show how to simulate proofs.

3



CHAPTER 1. INTRODUCTION 1.4. CONTRIBUTIONS

Readers desiring to implement a zk-SNARK in a practical programming language should
begin with our Circom implementation of the 3-factorization problem, as described in 137. The
derivation of the corresponding Groth_16 parameter set is outlined in 148, and the calculation
of the associated Common Reference String is addressed in 150. In 152, we demonstrate the
generation of a proof for randomly selected input values, which is then verified in 154. This
illustration may serve as a starting point for a more in-depth understanding of the underlying
mechanisms.

Individuals seeking to enhance their comprehension of the process by which high-level pro-
grams are compiled into representations that are amenable to analysis by zero-knowledge proof
systems may benefit from a review of Chapter 7, in which we develop a toy language equipped
with a "brain-compiler" that converts high-level code into graphical circuit representations. The
crucial representations, such as the R1CS, are detailed in Section 6.2.1, and the fundamental
principles of constructive proofs, witnesses, and instances are elucidated in 6.1.

1.4 Contributions
Due to the significance and rapid advancement of the field of zero knowledge proofing systems,
providing comprehensive coverage of relevant topics within the moonmath manual represents a
substantial challenge. Hence, the community’s contributions are greatly appreciated.

If you would like to contribute to the development of the moonmath manual, we encourage
you to submit your adapted material or original content to Least Authority. For those interested
in making substantial contributions to the moonmath manual, we suggest reaching out directly
to Least Authority at mmm@leastauthority.com. For further information, please refer to our
license.
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Chapter 2

Software Used in This Book

2.1 Sagemath
SageMath, also known as Sage, is a free and open-source software system that provides a com-
prehensive collection of mathematical tools and features. It offers a unified interface to various
mathematical libraries and tools, including finite field arithmetic, elliptic curves, and crypto-
graphic primitives, among others. With SageMath, users have access to a powerful and efficient
platform for performing computations, analyzing data, and visualizing results in a wide range
of mathematical domains. It order to provide an interactive learning experience, and to allow
getting hands-on with the concepts described in this book, we give examples for how to pro-
gram them in Sage. Sage is based on the learning-friendly programming language Python, ex-
tended and optimized for computations involving algebraic objects. Therefore, we recommend
installing Sage before diving into the following chapters.

The installation steps for various system configurations are described on the Sage website.
Note that we use Sage version 9, so if you are using Linux and your package manager only
contains version 8, you may need to choose a different installation path, such as using prebuilt
binaries. If you are not familiar with SageMath, we recommend you consult the Sage Tutorial.

2.2 Circom
Circom is a programming language and compiler for designing arithmetic circuits. It provides
a platform for programmers to create their own circuits, which can then be compiled to Rank-
1 Constraint Systems (R1CS) and outputted as WebAssembly and C++ programs for efficient
evaluation. The open-source library, CIRCOMLIB, offers a collection of pre-existing circuit
templates that can be utilized by Circom users.

In order to compile our pen-and-paper calculations into real-world zk-SNARKs, we provide
examples for how to implement them using Circom. Therefore, it is recommended to install
Circom before exploring the following chapters. To generate and veriy zk-SNARKS for our
Circom circuits, we utilize the SNARK.js library, which is a JavaScript and Pure Web Assembly
implementation of ZK-SNARK schemes. It employs the Groth16 Protocol and PLONK. The
installation steps can be found at the Circom installation page Circom installation.
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Chapter 3

Arithmetics

3.1 Introduction
The goal of this chapter is to bring a reader with only basic school-level algebra up to speed
in arithmetic. We start with a brief recapitulation of basic integer arithmetics, discussing long
division, the greatest common divisor and Euclidean Division. After that, we introduce modular
arithmetic as the most important skill to compute our pen-and-paper examples. We then in-
troduce polynomials, compute their analogs to integer arithmetics and introduce the important
concept of Lagrange Interpolation.

3.2 Integer arithmetic
In a sense, integer arithmetic is at the heart of large parts of modern cryptography. Fortunately,
most readers will probably remember integer arithmetic from school. It is, however, important
that you can confidently apply those concepts to understand and execute computations in the
many pen-and-paper examples that form an integral part of the MoonMath Manual. We will
therefore recapitulate basic arithmetic concepts to refresh your memory and fill any knowledge
gaps.

Even though the terms and concepts in this chapter might not appear in the literature on
zero-knowledge proofs directly, understanding them is necessary to follow subsequent chapters
and beyond: terms like groups or fields also crop up very frequently in academic papers on
zero-knowledge cryptography.

Many of the ideas presented in this chapter are taught in basic mathematical education in
most schools around the globe. Much of the ideas presented in this section can be found in Wu
[2011]. An approach more oriented towards computer science can be found in Mignotte [1992].

3.2.1 Integers, natural numbers and rational numbers
Integers are also known as whole numbers, that is, numbers that can be written without frac-
tional parts. Examples of numbers that are not integers are 2

3 , 1.2 and −1280.006.1

Throughout this book, we use the symbol Z as a shorthand for the set of all integers:

Z := {. . . ,−3,−2,−1,0,1,2,3, . . .} (3.1)

1Whole numbers, along with their basic laws of operations, are introduced for example in chapters 1 – 6 of Wu
[2011].
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If a ∈ Z is an integer, then we write |a| for the absolute value of a, that is, the the non-
negative value of a without regard to its sign:

|4|= 4 (3.2)

|−4|= 4 (3.3)

We use the symbol N for the set of all positive integers, usually called the set of natural
numbers. Furthermore, we use N0 for the set of all non-negative integers. This means that N
does not contain the number 0, while N0 does:

N := {1,2,3, . . .} N0 := {0,1,2,3, . . .}

In addition, we use the symbol Q for the set of all rational numbers, which can be repre-
sented as the set of all fractions n

m , where n ∈ Z is an integer and m ∈ N is a natural number,
such that there is no other fraction n′

m′ and natural number k ∈ N with k ̸= 1 and the following
equation:2

n
m

=
k ·n′

k ·m′
(3.4)

The sets N, Z and Q have a notion of addition and multiplication defined on them. Most of
us are probably able to do many integer computations in our head, but this gets more and more
difficult as these increase in complexity. We will frequently use the SageMath system (2.1) for
more complicated computations (we define rings and fields later in this book):

1sage: ZZ # Sage notation for the set of integers
2Integer Ring
3sage: NN # Sage notation for the set of natural numbers
4Non negative integer semiring
5sage: QQ # Sage notation for the set of rational numbers
6Rational Field
7sage: ZZ(5) # Get an element from the set of integers
85
9sage: ZZ(5) + ZZ(3)
108
11sage: ZZ(5) * NN(3)
1215
13sage: ZZ.random_element(10**6)
14881788

A set of numbers of particular interest to us is the set of prime numbers. A prime number is
a natural number p ∈ N with p≥ 2 that is only divisible by itself and by 1. All prime numbers
apart from the number 2 are called odd prime numbers. We use P for the set of all prime
numbers and P≥3 for the set of all odd prime numbers.3

2A more in-depth introduction to rational numbers, their representation as well as their arithmetic operations
can be found in part 2. of Wu [2011] and in chapter 1, section 2 of Mignotte [1992].

3As prime numbers are of central importance to our topic, the interested reader might benefit from consulting
the wide range of books available on the topic of number theory. An introduction is given for example in chap-
ter 1 and 2 of Hardy et al. [2008]. An elementary school level introduction can be found in chapter 33 of Wu
[2011]. Chapter 34 of Wu [2011] gives an introduction to the fundamental theorem of arithmetic (3.6). Fine and
Rosenberger [2016] could be of particular interest to more advanced readers.
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The set of prime numbers P is an infinite set, and it can be ordered according to size. This
means that, for any prime number p∈ P, one can always find another prime number p′ ∈ P with
p < p′. As a result, there is no largest prime number. Since prime numbers can be ordered by
size, we can write them as follows:

2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67, . . . (3.5)

As the fundamental theorem of arithmetic tells us, prime numbers are, in a certain sense,
the basic building blocks from which all other natural numbers are composed: every natural
number can be derived by multiplying prime numbers with each other. To see that, let n ∈N be
any natural number with n > 1. Then there are always prime numbers p1, p2, . . . , pk ∈ P, such
that the following equation holds:

n = p1 · p2 · . . . · pk (3.6)

This representation is unique for each natural number (except for the order of the factors
p1, p2, . . . , pk) and is called the prime factorization of n.

Example 1 (Prime Factorization). To see what we mean by the prime factorization of a number,
let’s look at the number 504 ∈ N. To get its prime factors, we can successively divide it by all
prime numbers in ascending order starting with 2:

504 = 2 ·2 ·2 ·3 ·3 ·7

We can double check our findings invoking Sage, which provides an algorithm for factoring
natural numbers:

15sage: n = NN(504)
16sage: factor(n)
172^3 * 3^2 * 7

The computation from the previous example reveals an important observation: computing
the factorization of an integer is computationally expensive, because we have to divide repeat-
edly by all prime numbers smaller than the number itself until all factors are prime numbers
themselves. From this, an important question arises: how fast can we compute the prime factor-
ization of a natural number? This question is the famous integer factorization problem and,
as far as we know, there is currently no known method that can factor integers much faster than
the naive approach of just dividing the given number by all prime numbers in ascending order.

On the other hand, computing the product of a given set of prime numbers is fast: you just
multiply all factors. This simple observation implies that the two processes, “prime number
multiplication” on the one side and its inverse process “natural number factorization” have very
different computational costs. The factorization problem is therefore an example of a so-called
one-way function: an invertible function that is easy to compute in one direction, but hard to
compute in the other direction . 4

4It should be noted that what is “easy” and “hard” to compute depends on the computational power available
to us. Currently available computers cannot easily compute the prime factorization of natural numbers (in formal
terms, the cannot compute it in polynomial time). However, the American mathematician Peter W. Shor developed
an algorithm in 1994 which can calculate the prime factorization of a natural number in polynomial time on a
quantum computer. The consequence of this is that cryptosystems, which are based on the prime factor problem
being computationally hard on currently available computers, become unsafe as soon as practically usable quantum
computers become available.
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Exercise 1. What is the absolute value of the integers −123, 27 and 0?

Exercise 2. Compute the factorization of 30030 and double check your results using Sage.

Exercise 3. Consider the following equation:

4 · x+21 = 5

Compute the set of all solutions for x under the following alternative assumptions:

1. The equation is defined over the set of natural numbers.

2. The equation is defined over the set of integers.

Exercise 4. Consider the following equation:

2x3− x2−2x =−1.

Compute the set of all solutions x under the following assumptions:

1. The equation is defined over the set ofnatural numbers.

2. The equation is defined over the set of integers.

3. The equation is defined over the set of rational numbers.

3.2.2 Euclidean Division
As we know from high school mathematics, integers can be added, subtracted and multiplied,
and the result of these operations is guaranteed to always be an integer as well. On the contrary,
division (in the commonly understood sense) is not defined for integers, as, for example, 7
divided by 3 will not result in an integer. However, it is always possible to divide any two
integers if we consider division with a remainder. For example, 7 divided by 3 is equal to 2
with a remainder of 1, since 7 = 2 ·3+1.

This section introduces division with a remainder for integers, usually called Euclidean
Division. It is an essential technique underlying many concepts in this book.5 The precise
definition is as follows:

Let a ∈ Z and b ∈ Z be two integers with b ̸= 0. Then there is always another integer m ∈ Z
and a natural number r ∈ N, with 0≤ r < |b| such that the following holds:

a = m ·b+ r (3.7)

This decomposition of a given b is called Euclidean Division, where a is called the dividend,
b is called the divisor, m is called the quotient and r is called the remainder. It can be shown
that both the quotient and the remainder always exist and are unique, as long as the divisor is
different from 0.

Notation and Symbols 1. Suppose that the numbers a, b, m and r satisfy equation (3.7). We can
then use the following notation for the quotient and the remainder of the Euclidean Division as
follows:

a div b := m, a mod b := r (3.8)

We also say that an integer a is divisible by another integer b if a mod b = 0 holds. In this
case, we write b|a, and call the integer a div b the cofactor of b in a.

5Euclidean Division is introduced in chapter 1, section 5 of Mignotte [1992] and in chapter 1, section 1.3 of
Cohen [2010].
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So, in a nutshell, Euclidean Division is the process of dividing one integer by another in a
way that produces a quotient and a non-negative remainder, the latter of which is smaller than
the absolute value of the divisor.

Example 2. Because−17=−5 ·4+3 is the Euclidean Division of−17 by 4, applying Euclidean
Division and the notation defined in 3.8 to the dividend −17 and the divisor 4, we get the
following:

−17 div 4 =−5, −17 mod 4 = 3 (3.9)

The remainder, by definition, is a non-negative number. In this case, 4 does not divide −17, as
the remainder is not zero. The truth value of the expression 4|−17 therefore is FALSE. On the
other hand, the truth value of 4|12 is TRUE, since 4 divides 12, as 12 mod 4 = 0. If we use Sage
to do the computation for us, we get the following:

18sage: ZZ(-17) // ZZ(4) # Integer quotient
19-5
20sage: ZZ(-17) % ZZ(4) # remainder
213
22sage: ZZ(4).divides(ZZ(-17)) # self divides other
23False
24sage: ZZ(4).divides(ZZ(12))
25True

Remark 1. In 3.8, we defined the notation of a div b and a mod b in terms of Euclidean Di-
vision. It should be noted, however, that many programing languages (like Python and Sage)
implement both the operator (/) amd the operator (%) differently. Programers should be aware
of this, as the discrepancy between the mathematical notation and the implementation in pro-
graming languages might become the source of subtle bugs in implementations of cryptographic
primitives.

To give an example, consider the the dividend−17 and the divisor−4. Note that, in contrast
to the previous example 2, we now have a negative divisor. According to our definition we have
the following:

−17 div −4 = 5, −17 mod −4 = 3 (3.10)

−17 = 5 · (−4)+3 is the Euclidean Division of −17 by −4 (the remainder is, by definition, a
non-negative number). However, using the operators (/) and (%) in Sage, we get a different
result:

26sage: ZZ(-17) // ZZ(-4) # Integer quotient
274
28sage: ZZ(-17) % ZZ(-4) # remainder
29-1
30sage: ZZ(-17).quo_rem(ZZ(-4)) # not Euclidean Division
31(4, -1)

Methods to compute Euclidean Division for integers are called integer division algorithms.
Probably the best known algorithm is the so-called long division, which most of us might have
learned in school. An extensive elementary school introduction to long division can be found
in chapter 7 of Wu [2011].

In a nutshell, the long division algorithm loops through the digits of the dividend from the
left to right, subtracting the largest possible multiple of the divisor (at the digit level) at each
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stage. The multiples then become the digits of the quotient, and the remainder is the first digit
of the dividend.

As long division is the standard method used for pen-and-paper division of multi-digit num-
bers expressed in decimal notation, we use it throughout this book when we do simple pen-and-
paper computations, so readers should become familiar with it. However, instead of defining the
algorithm formally, we provide some examples instead, as this will hopefully make the process
more clear.

Example 3 (Integer Long Division). To give an example of integer long division algorithm, let’s
divide the integer a = 143785 by the number b = 17. Our goal is therefore to find solutions
to equation 3.7, that is, we need to find the quotient m ∈ Z and the remainder r ∈ N such that
143785 = m · 17+ r. Using a notation that is mostly used in English-speaking countries, we
compute as follows:

17 143785
8457

136
77
68
98
85
135
119
16

(3.11)

We calculated m = 8457 and r = 16, and, indeed, the equation 143785 = 8457 ·17+16 holds.
We can double check this invoking Sage:

32sage: ZZ(143785).quo_rem(ZZ(17))
33(8457, 16)
34sage: ZZ(143785) == ZZ(8457)*ZZ(17) + ZZ(16) # check
35True

Exercise 5 (Integer Long Division). Find an m ∈ Z and an r ∈ N with 0 ≤ r < |b| such that
a = m ·b+ r holds for the following pairs:

• (a,b) = (27,5)

• (a,b) = (27,−5)

• (a,b) = (127,0)

• (a,b) = (−1687,11)

• (a,b) = (0,7)

In which cases are your solutions unique?

Exercise 6 (Long Division Algorithm). Using the programming language of your choice, write
an algorithm that computes integer long division and handles all edge cases properly.

Exercise 7 (Binary Representation). Write an algorithm that computes the binary representation
3.13 of any non-negative integer.
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3.2.3 The Extended Euclidean Algorithm
One of the most critical parts of this book is the modular arithmetic, defined in section 3.3,
and its application in the computations of prime fields, defined in section 4.3.1. To be able to
do computations in modular arithmetic, we have to get familiar with the so-called Extended
Euclidean Algorithm, used to calculate the greatest common divisor (GCD) of integers.6

The greatest common divisor of two non-zero integers a and b is defined as the largest non-
zero natural number d such that d divides both a and b, that is, d|a as well as d|b are true. We
use the notation gcd(a,b) := d for this number. Since the natural number 1 divides any other
integer, 1 is always a common divisor of any two non-zero integers, but it is not necessarily the
greatest.

A common method for computing the greatest common divisor is the so-called Euclidean
Algorithm. However, since we don’t need that algorithm in this book, we will introduce the
Extended Euclidean Algorithm, which is a method for calculating the greatest common divisor
of two natural numbers a and b ∈ N, as well as two additional integers s, t ∈ Z, such that the
following equation holds:

gcd(a,b) = s ·a+ t ·b (3.12)

The pseudocode in algorithm 1 shows in detail how to calculate the greatest common divisor
and the numbers s and t with the Extended Euclidean Algorithm:

Algorithm 1 Extended Euclidean Algorithm
Require: a,b ∈ N with a≥ b

procedure EXT-EUCLID(a,b)
r0← a and r1← b
s0← 1 and s1← 0
t0← 0 and t1← 1
k← 2
while rk−1 ̸= 0 do

qk← rk−2 div rk−1
rk← rk−2 mod rk−1
sk← sk−2−qk · sk−1
tk← tk−2−qk · tk−1
k← k+1

end while
return gcd(a,b)← rk−2, s← sk−2 and t← tk−2

end procedure
Ensure: gcd(a,b) = s ·a+ t ·b

The algorithm is simple enough to be used effectively in pen-and-paper examples. It is
commonly written as a table where the rows represent the while-loop and the columns represent
the values of the the array r, s and t with index k. The following example provides a simple
execution.

Example 4. To illustrate algorithm 1, we apply it to the numbers a = 12 and b = 5. Since
12,5 ∈ N and 12≥ 5, all requirements are met, and we compute as follows:

6A more in-depth introduction to the content of this section can be found in chapter 1, section 1.3 of Cohen
[2010] and in chapter 1, section 8 of Mignotte [1992].
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k rk sk tk
0 12 1 0
1 5 0 1
2 2 1 -2
3 1 -2 5
4 0
5 ·

From this we can see that the greatest common divisor of 12 and 5 is gcd(12,5) = 1 and that
the equation 1 = (−2) ·12+5 ·5 holds. We can also use Sage to double check our findings:

36sage: ZZ(12).xgcd(ZZ(5)) # (gcd(a,b),s,t)
37(1, -2, 5)

Exercise 8 (Extended Euclidean Algorithm). Find integers s, t ∈ Z such that gcd(a,b) = s ·a+
t ·b holds for the following pairs:

• (a,b) = (45,10)

• (a,b) = (13,11)

• (a,b) = (13,12)

Exercise 9 (Towards Prime fields). Let n ∈ N be a natural number and p a prime number, such
that n < p. What is the greatest common divisor gcd(p,n)?

Exercise 10. Find all numbers k ∈ N with 0≤ k ≤ 100 such that gcd(100,k) = 5.

Exercise 11. Show that gcd(n,m) = gcd(n+m,m) for all n,m ∈ N.

3.2.4 Coprime Integers
Coprime integers are integers that do not share a prime number as a factor. As we will see in
section 3.3, coprime integers are important for our purposes, because, in modular arithmetic,
computations that involve coprime numbers are substantially different from computations on
non-coprime numbers (definition 3.3.2).7

The naive way to decide if two integers are coprime would be to divide both numbers suc-
cessively by all prime numbers smaller than those numbers, to see if they share a common
prime factor. However, two integers are coprime if and only if their greatest common divisor is
1. Computing the gcd is therefore the preferred method, as it is computationally more efficient.

Example 5. Consider example 4 again. As we have seen, the greatest common divisor of 12
and 5 is 1. This implies that the integers 12 and 5 are coprime, since they share no divisor other
than 1, which is not a prime number.

Exercise 12. Consider exercise 8 again. Which pairs (a,b) from that exercise are coprime?

3.2.5 Integer Representations
So far we have represented integers in the so called decimal positional system, which repre-
sents any integer as a sequence of elements from the set of decimal digits {0,1,2,3,4,5,6,7,8,9}.
However there are other representations of integers used in computer science and cryptography
which we want to highlight:

7An introduction to coprime numbers can be found in chapter 5, section 1 of Hardy et al. [2008].
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The so called binary positional system (or binary representation), represents every integer
as a sequence of elements from the set of binary digits (or bits) {0,1}. To be more precise, let
n ∈ N0 be a non-negative integer in decimal representation and b = bk−1bk−2 . . .b0 a sequence
of bits b j ∈ {0,1} ⊂ N0 for some positive integer k ∈ N. Then b is the binary representation
of n if the following equation holds:

n =
k−1

∑
j=0

b j ·2 j (3.13)

In this case, we write Bits(n) := bk−1bk−2 . . .b0 for the binary representation of n, say that
n is a k-bit number and call k := |n|2 the bit length of n.

It can be shown, that the binary representation of any non negative integer is unique. We call
b0 the least significant bit and bk−1 the most significant bit and define the Hamming weight
of an integer as the number of 1s in its binary representation.8

Another commonly used representation is the so called hexadecimal positional system,
which represents every integer as a sequence of elements from a set of 16 digits usually written
as {0,1,2,3,4,5,6,7,8,9,a,b,c,d,e, f}.

If not stated otherwise, we use the decimal positional system throughout this book in order
to represent numbers, like integers or rational numbers. It should be noted though, that since
real world cryptographic systems often have to deal with large integers, the hexadecimal system
is a common choice in those circumstances, since hexadecimal representations need less digits
to represent an integer then decimal representation.

38sage: NN(27713).str(2) # Binary representation
39110110001000001
40sage: ZZ(27713).str(16) # Hexadecimal representation
416c41

If a positional system with a k digest set {d0,d1, . . . ,dk−1} is given, then an integer represen-
tation d jh · · ·d j1d j0 in that system can be transformed into an integer representation n in the
decimal system by the following equation:

n =
h

∑
i=0

ji · ki (3.14)

Similar equations exist to transform an integer representation from any positional system into
any other positional system. The decimal system is therefore not special, just the most common.
To deal with this ambiguity many computer systems accept prefixes to a number which specify
which positional system this number is expressed in. Common prefix notations are:

0x hexadecimal
0b binary

Example 6. To understand the difference between an integer representation and the integer
itself, consider the expression 11 as an integer representation. Note that without a reference to a
positional system this expression is ambiguous. One might consider this expression to represent
the integer 11 in decimal representation. However if 11 is considered as an expression in the
binary system, then it refers to the integer 3 in decimal representation. Moreover when 11 is
considered as an expression in the hexadecimal system, then it refers to the integer 17 in the

8For more on binary and general base integer representation see, for example, chapter 1 in Mignotte [1992].
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decimal representation. It is therefore common practice to use a prefix in order to uniquely
specify an integer in a positional system. We get

0x11 = 17
0b11 = 3

Example 7. In order to see how equation 3.14 can transform any representation into a deci-
mal representation, consider the set of hexadecimal digits {0,1,2,3,4,5,6,7,8,9,a,b,c,d,e, f}
which we can write as

{00,11,22,33,44,55,66,77,88,99,a10,b11,c12,d13,e14, f15}

If we want to transform the integer y= 0x3 f 7a we can write it as 0x33 f1577a10 and use equation
3.14 to compute its decimal representation. Since the hexadecimal system has 16 digest and y
is a 4-digits number in hexadecimal, we get

n =
4

∑
i=0

ji ·16i

=10 ·160 +7 ·161 +15 ·162 +3 ·163

=16250

Exercise 13. Consider the octal positional system, which represents integers with 8 digits, usu-
ally written as {0,1,2,3,4,5,6,7}. Numbers in this system are characterized by the prefix 0o.
Write the numbers 0o1354 and 0o777 into their decimal representation.

3.3 Modular arithmetic
Modular arithmetic is a system of integer arithmetic where numbers “wrap around” when
reaching a certain value, much like calculations on a clock wrap around whenever the value
exceeds the number 12. For example, if the clock shows that it is 11 o’clock, then 20 hours
later it will be 7 o’clock, not 31 o’clock. The number 31 has no meaning on a normal clock that
shows hours.

The number at which the wrap occurs is called the modulus. Modular arithmetic generalizes
the clock example to arbitrary moduli, and studies equations and phenomena that arise in this
new kind of arithmetic. It is of central importance for understanding most modern cryptographic
systems, in large parts because modular arithmetic provides the computational infrastructure for
algebraic types that have cryptographically useful examples of one-way functions.

Although modular arithmetic appears very different from ordinary integer arithmetic that
we are all familiar with, we encourage you to work through the examples and discover that,
once they get used to the idea that this is a new kind of calculation, it will seem much less
daunting. A detailed introduction to modular arithmetic and its applications in number theory
can be found in chapter 5 - 8 of Hardy et al. [2008]. An elementary school introduction to parts
of the topic in section can be found in part 4 of Wu [2011].

3.3.1 Congruence
In what follows, let n ∈N with n≥ 2 be a fixed natural number that we will call the modulus of
our modular arithmetic system. With such an n given, we can then group integers into classes:
two integers are in the same class whenever their Euclidean Division (3.2.2) by n will give the
same remainder. Two numbers that are in the same class are called congruent.
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Example 8. If we choose n = 12 as in our clock example, then the integers −7, 5, 17 and 29 are
all congruent with respect to 12, since all of them have the remainder 5 if we perform Euclidean
Division on them by 12. Imagining the picture of an analog 12-hour clock, starting at 5 o’clock
and adding 12 hours, we are at 5 o’clock again, representing the number 17. Indeed, in many
countries, 5:00 in the afternoon is written as 17:00. On the other hand, when we subtract 12
hours, we are at 5 o’clock again, representing the number −7.

We can formalize this intuition of what congruence should be into a proper definition uti-
lizing Euclidean Division (as explained previously in 3.2). Let a, b ∈ Z be two integers, and
n ∈ N be a natural number such that n≥ 2. The integers a and b are said to be congruent with
respect to the modulus n if and only if the following equation holds:

a mod n = b mod n (3.15)

If, on the other hand, two numbers are not congruent with respect to a given modulus n, we
call them incongruent w.r.t. n.

In other words, congruence is an equation “up to congruence”, which means that the equa-
tion only needs to hold if we take the modulus of both sides. This is expressed with the following
notation: 9

a≡ b ( mod n ) (3.16)

Exercise 14. Which of the following pairs of numbers are congruent with respect to the modulus
13:

• (5,19)

• (13,0)

• (−4,9)

• (0,0)

Exercise 15. Find all integers x, such that the congruence x≡ 4 ( mod 6 ) is satisfied.

3.3.2 Computational Rules
Having defined the notion of a congruence as an equation “up to a modulus”, a follow-up
question is if we can manipulate a congruence similarly to an equation. Indeed, we can almost
apply the same substitution rules to a congruency as to an equation, with the main difference
being that, for some non-zero integer k ∈ Z, the congruence a≡ b ( mod n ) is equivalent to the
congruence k ·a≡ k ·b ( mod n ) only if k and the modulus n are coprime (see 3.2.4).

Suppose that integers a1,a2,b1,b2,k ∈ Z are given (cf. chapter 5 of Hardy et al. [2008]).
Then the following arithmetic rules hold for congruences:

• a1 ≡ b1 ( mod n )⇔ a1 + k ≡ b1 + k ( mod n ) (compatibility with translation)

• a1 ≡ b1 ( mod n )⇒ k ·a1 ≡ k ·b1 ( mod n ) (compatibility with scaling)

• gcd(k,n) = 1 and k ·a1 ≡ k ·b1 ( mod n )⇒ a1 ≡ b1 ( mod n )

• k ·a1 ≡ k ·b1 ( mod k ·n )⇒ a1 ≡ b1 ( mod n )
9A more in-depth introduction to the notion of congruency and their basic properties and application in number

theory can be found in chapter 5 of Hardy et al. [2008].
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• a1 ≡ b1 ( mod n ) and a2 ≡ b2 ( mod n )⇒ a1 + a2 ≡ b1 + b2 ( mod n ) (compatibility
with addition)

• a1 ≡ b1 ( mod n ) and a2 ≡ b2 ( mod n )⇒ a1 ·a2 ≡ b1 ·b2 ( mod n ) (compatibility with
multiplication)

Other rules, such as compatibility with subtraction, follow from the rules above. For example,
compatibility with subtraction follows from compatibility with scaling by k =−1 and compat-
ibility with addition.

Another property of congruences not found in the traditional arithmetic of integers is Fer-
mat’s Little Theorem. Simply put, it states that, in modular arithmetic, every number raised to
the power of a prime number modulus is congruent to the number itself. Or, to be more precise,
if p ∈ P is a prime number and k ∈ Z is an integer, then the following holds:

kp ≡ k ( mod p ) (3.17)

If k is coprime to p, then we can divide both sides of this congruence by k and rewrite the
expression into the following equivalent form:10

kp−1 ≡ 1 ( mod p ) (3.18)

The Sage code below computes examples of Fermat’s Little Theorem and highlights the effects
of the exponent k being coprime to p (as in the case of 137 and 64) and not coprime to p (as in
the case of 1918 and 137):

42sage: ZZ(137).gcd(ZZ(64))
431
44sage: ZZ(64)^ ZZ(137) % ZZ(137) == ZZ(64) % ZZ(137)
45True
46sage: ZZ(64)^ ZZ(137-1) % ZZ(137) == ZZ(1) % ZZ(137)
47True
48sage: ZZ(1918).gcd(ZZ(137))
49137
50sage: ZZ(1918)^ ZZ(137) % ZZ(137) == ZZ(1918) % ZZ(137)
51True
52sage: ZZ(1918)^ ZZ(137-1) % ZZ(137) == ZZ(1) % ZZ(137)
53False

The following example contains most of the concepts described in this section.

Example 9. To better understand congruences, let us solve the following congruence for x ∈ Z
in modular 6 arithmetic:

7 · (2x+21)+11≡ x−102 ( mod 6 )

As many rules for congruences are more or less same as for equations, we can proceed in a
similar way as we would if we had an equation to solve. Since both sides of a congruence
contain ordinary integers, we can rewrite the left side as follows:

7 · (2x+21)+11 = 14x+147+11 = 14x+158

10Fermat’s little theorem is of high importance in number theory. For a detailed proof and an extensive intro-
duction to it’s consequences see for example chapter 6 in Hardy et al. [2008].
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Using this expression, we can rewrite the congruence into the following equivalent form:

14x+158≡ x−102 ( mod 6 )

In the next step, we want to shift all instances of x to the left and every other term to the
right. So we apply the“compatibility with translation” rule twice. In the first step, we choose
k = −x, and in a second step, we choose k = −158. Since “compatibility with translation”
transforms a congruence into an equivalent form, the solution set will not change, and we get
the following:

14x+158≡ x−102 ( mod 6 )⇔
14x− x+158−158≡ x− x−102−158 ( mod 6 )⇔

13x≡−260 ( mod 6 )

If our congruence was just a regular integer equation, we would divide both sides by 13 to
get x = −20 as our solution. However, in case of a congruence, we need to make sure that
the modulus and the number we want to divide by are coprime to ensure that the result of the
division is an expression equivalent to the original one (see rule 3.18). This means that we need
to find the greatest common divisor gcd(13,6). Since 13 is prime and 6 is not a multiple of 13,
we know that gcd(13,6) = 1, so these numbers are indeed coprime. We therefore compute as
follows:

13x≡−260 ( mod 6 )⇔ x≡−20 ( mod 6 )

Our task now is to find all integers x such that x is congruent to−20 with respect to the modulus
6. In other words, we have to find all x such that the following equation holds:

x mod 6 =−20 mod 6

Since −4 · 6+ 4 = −20, we know that −20 mod 6 = 4, and hence we know that x = 4 is a
solution to this congruence. However, 22 is another solution, since 22 mod 6 = 4 as well.
Another solution is −20. In fact, there are infinitely many solutions given by the following set:

{. . . ,−8,−2,4,10,16, . . .}= {4+ k ·6 | k ∈ Z}

Putting all this together, we have shown that every x from the set {x = 4+ k · 6 | k ∈ Z} is a
solution to the congruence 7 · (2x+ 21)+ 11 ≡ x− 102 ( mod 6 ). We double check for two
arbitrary numbers from this set, x = 4 and x = 4+12 ·6 = 76 using Sage:

54sage: (ZZ(7)* (ZZ(2)*ZZ(4) + ZZ(21)) + ZZ(11)) % ZZ(6) == (ZZ
(4) - ZZ(102)) % ZZ(6)

55True
56sage: (ZZ(7)* (ZZ(2)*ZZ(76) + ZZ(21)) + ZZ(11)) % ZZ(6) == (

ZZ(76) - ZZ(102)) % ZZ(6)
57True

If you had not been familiar with modular arithmetic until now and who might be discour-
aged by how complicated modular arithmetic seems at this point, you should keep two things
in mind. First, computing congruences in modular arithmetic is not really more complicated
than computations in more familiar number systems (e.g. rational numbers), it is just a matter
of getting used to it. Second, once we introduce the idea of remainder class representations in
3.3.4, computations become conceptually cleaner and easier to handle.
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Exercise 16. Consider the modulus 13 and find all solutions x ∈ Z to the following congruence:

5x+4≡ 28+2x ( mod 13 )

Exercise 17. Consider the modulus 23 and find all solutions x ∈ Z to the following congruence:

69x≡ 5 ( mod 23 )

Exercise 18. Consider the modulus 23 and find all solutions x ∈ Z to the following congruence:

69x≡ 46 ( mod 23 )

Exercise 19. Let a,b,k be integers, such that a≡ b ( mod n ) holds. Show ak ≡ bk ( mod n ).

Exercise 20. Let a,n be integers, such that a and n are not coprime. For which b ∈ Z does the
congruence a ·x≡ b ( mod n ) have a solution x and how does the solution set look in that case?

3.3.3 The Chinese Remainder Theorem
We have seen how to solve congruences in modular arithmetic. In this section, we look at how to
solve systems of congruences with different moduli using the Chinese Remainder Theorem.
This states that, for any k ∈ N and coprime natural numbers n1, . . .nk ∈ N, as well as integers
a1, . . .ak ∈ Z, the so-called simultaneous congruences (in 3.19 below) have a solution, and all
possible solutions of this congruence system are congruent modulo the product N = n1 · . . . ·nk.11

x≡ a1 ( mod n1 )
x≡ a2 ( mod n2 )

· · ·
x≡ ak ( mod nk )

(3.19)

The solution set is computed by algorithm 2 below.

Algorithm 2 Chinese Remainder Theorem
Require: , k ∈ Z, j ∈ N0 and n0, . . . ,nk−1 ∈ N coprime

procedure CONGRUENCE-SYSTEMS-SOLVER(a0, . . . ,ak−1)
N← n0 · . . . ·nk−1
while j < k do

N j← N/n j
(_,s j, t j)← EXT −EUCLID(N j,n j) ▷ 1 = s j ·N j + t j ·n j

end while
x′← ∑

k−1
j=0 a j · s j ·N j

x← x′ mod N
return {x+m ·N | m ∈ Z}

end procedure
Ensure: {x+m ·N | m ∈ Z} is the complete solution set to 3.19.

11This is the classical Chinese Remainder Theorem as it was already known in ancient China. Under certain
circumstances, the theorem can be extended to non-coprime moduli n1, . . . ,nk but this is beyond the scope of this
book. Interested readers should consult chapter 1, section 1.3.3 of Cohen [2010] for an introduction to the theorem
and its application in computational number theory. A proof of the theorem is given for example in chapter 1,
section 10 of Mignotte [1992].
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Example 10. To illustrate how to solve simultaneous congruences using the Chinese Remainder
Theorem, let’s look at the following system of congruences:

x≡ 4 ( mod 7 )
x≡ 1 ( mod 3 )
x≡ 3 ( mod 5 )

x≡ 0 ( mod 11 )

Clearly, all moduli are coprime (since they are all prime numbers). Now we calculate as follows:

N = 7 ·3 ·5 ·11 = 1155
N1 = 1155/7 = 165
N2 = 1155/3 = 385
N3 = 1155/5 = 231
N4 = 1155/11 = 105

From this, we calculate with the Extended Euclidean Algorithm:

1 = 2 ·165 + −47 ·7
1 = 1 ·385 + −128 ·3
1 = 1 ·231 + −46 ·5
1 = 2 ·105 + −19 ·11

As a result, we get x = 4 ·2 ·165+1 ·1 ·385+3 ·1 ·231+0 ·2 ·105 = 2398 as one solution. Be-
cause 2398 mod 1155 = 88, the set of all solutions is {. . . ,−2222,−1067,88,1243,2398, . . .}.
We can use Sage’s computation of the Chinese Remainder Theorem (CRT) to double check our
findings:

58sage: CRT_list([4,1,3,0], [7,3,5,11])
5988

3.3.4 Remainder Class Representation
As we have seen in various examples before, computing congruences can be cumbersome, and
solution sets are large in general. It is therefore advantageous to find some kind of simplification
for modular arithmetic.

Fortunately, this is possible and relatively straightforward once we identify each set of num-
bers that have equal remainders with that remainder itself, and call this set the remainder class
or residue class representation in modulo n arithmetic.

It then follows from the properties of Euclidean Division that there are exactly n different
remainder classes for every modulus n, and that integer addition and multiplication can be
projected to a new kind of addition and multiplication on those classes.

Informally speaking, the new rules for addition and multiplication are then computed by
taking any element of the first remainder class and some element of the second remainder class,
then add or multiply them in the usual way and see which remainder class the result is contained
in. The following example makes this abstract description more concrete.

Example 11 (Arithmetic modulo 6). Choosing the modulus n= 6, we have six remainder classes
of integers which are congruent modulo 6, that is, they have the same remainder when divided
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by 6. When we identify each of those remainder classes with the remainder, we get the following
identification:

0 := {. . . ,−6,0,6,12, . . .}
1 := {. . . ,−5,1,7,13, . . .}
2 := {. . . ,−4,2,8,14, . . .}
3 := {. . . ,−3,3,9,15, . . .}
4 := {. . . ,−2,4,10,16, . . .}
5 := {. . . ,−1,5,11,17, . . .}

To compute the new addition law of those remainder class representatives, say 2+5, we choose
an arbitrary element from each class, say 14 and −1, adds those numbers in the usual way, and
then looks at the remainder class of the result.

Adding 14 and (−1), we get 13, and 13 is in the remainder class (of) 1. Hence, we find
that 2+ 5 = 1 in modular 6 arithmetic, which is a more readable way to write the congruence
2+5≡ 1 ( mod 6 ).

Applying the same reasoning to all remainder classes, addition and multiplication can be
transferred to the representatives of the remainder classes. The results for modulus 6 arithmetic
are summarized in the following addition and multiplication tables:

+ 0 1 2 3 4 5
0 0 1 2 3 4 5
1 1 2 3 4 5 0
2 2 3 4 5 0 1
3 3 4 5 0 1 2
4 4 5 0 1 2 3
5 5 0 1 2 3 4

· 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 1 2 3 4 5
2 0 2 4 0 2 4
3 0 3 0 3 0 3
4 0 4 2 0 4 2
5 0 5 4 3 2 1

(3.20)

This way, we have defined a new arithmetic system that contains just 6 numbers and comes with
its own definition of addition and multiplication. We call it modular 6 arithmetic and write
the associated type as Z6.

To see why identifying a remainder class with its remainder is useful and actually simplifies
congruence computations significantly, let’s go back to the congruence from example 9:

7 · (2x+21)+11≡ x−102 ( mod 6 ) (3.21)

As shown in example 9, the arithmetic of congruences can deviate from ordinary arithmetic:
for example, division needs to check whether the modulus and the dividend are coprimes, and
solutions are not unique in general.

We can rewrite the congruence in (3.21) as an equation over our new arithmetic type Z6 by
projecting onto the remainder classes: since 7 mod 6 = 1, 21 mod 6 = 3, 11 mod 6 = 5 and
102 mod 6 = 0, we get the following:

7 · (2x+21)+11≡ x−102 ( mod 6 ) over Z
⇔ 1 · (2x+3)+5 = x over Z6

We can use the multiplication and addition table in (3.20) above to solve the equation on the
right like we would solve normal integer equations:
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1 · (2x+3)+5 = x
2x+3+5 = x # addition table: 3+5 = 2

2x+2 = x # add 4 and −x on both sides
2x+2+4− x = x+4− x # addition table: 2+4 = 0

x = 4

As we can see, despite the somewhat unfamiliar rules of addition and multiplication, solving
congruences this way is very similar to solving normal equations. And, indeed, the solution set
is identical to the solution set of the original congruence, since 4 is identified with the set
{4+6 · k | k ∈ Z}.

We can use Sage to do computations in our modular 6 arithmetic type. This is particularly
useful to double-check our computations:

60sage: Z6 = Integers(6)
61sage: Z6(2) + Z6(5)
621
63sage: Z6(7)*(Z6(2)*Z6(4)+Z6(21))+Z6(11) == Z6(4) - Z6(102)
64True

Remark 2 (k-bit modulus). In cryptographic papers, we sometimes read phrases like “[. . .] using
a 4096-bit modulus”. This means that the underlying modulus n of the modular arithmetic used
in the system has a binary representation with a length of 4096 bits. In contrast, the number 6 has
the binary representation 110 and hence our example 11 describes a 3-bit modulus arithmetic
system.

Exercise 21. Define Z13 as the the arithmetic modulo 13 analogously to example 11. Then
consider the congruence from exercise 16 and rewrite it into an equation in Z13.

3.3.5 Modular Inverses
As we know, integers can be added, subtracted and multiplied so that the result is also an
integer, but this is not true for the division of integers in general: for example, 3/2 is not an
integer. To see why this is so from a more theoretical perspective, let us consider the definition
of a multiplicative inverse first. When we have a set that has some kind of multiplication defined
on it, and we have a distinguished element of that set that behaves neutrally with respect to that
multiplication (doesn’t change anything when multiplied with any other element), then we can
define multiplicative inverses in the following way:

Definition 3.3.5.1. Let S be our set that has some notion a · b of multiplication and a neutral
element 1 ∈ S, such that 1 ·a = a for all elements a ∈ S. Then a multiplicative inverse a−1 of
an element a ∈ S is defined as follows:

a ·a−1 = 1 (3.22)

Informally speaking, the definition of a multiplicative inverse is means that it “cancels” the
original element, so that multiplying the two results in 1.

Numbers that have multiplicative inverses are of particular interest, because they immedi-
ately lead to the definition of division by those numbers. In fact, if a is number such that the
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multiplicative inverse a−1 exists, then we define division by a simply as multiplication by the
inverse:

b
a

:= b ·a−1 (3.23)

Example 12. Consider the set of rational numbers, also known as fractions, Q. For this set, the
neutral element of multiplication is 1, since 1 · a = a for all rational numbers. For example,
1 ·4 = 4, 1 · 1

4 = 1
4 , or 1 ·0 = 0 and so on.

Every rational number a ̸= 0 has a multiplicative inverse, given by 1
a . For example, the

multiplicative inverse of 3 is 1
3 , since 3 · 13 = 1, the multiplicative inverse of 5

7 is 7
5 , since 5

7 ·
7
5 = 1,

and so on.

Example 13. Looking at the set Z of integers, we see that the neutral element of multiplication
is the number 1 We can also see that no integer other than 1 or −1 has a multiplicative inverse,
since the equation a · x = 1 has no integer solutions for a ̸= 1 or a ̸=−1.

The definition of multiplicative inverse has an analog definition for addition called the ad-
ditive inverse. In the case of integers, the neutral element with respect to addition is 0, since
a+0 = 0 for all integers a ∈ Z. The additive inverse always exists, and is given by the negative
number −a, since a+(−a) = 0.

Example 14. Looking at the set Z6 of residue classes modulo 6 from example 11, we can use
the multiplication table in (3.20) to find multiplicative inverses. To do so, we look at the row of
the element and find the entry equal to 1. If such an entry exists, the element of that column is
the multiplicative inverse. If, on the other hand, the row has no entry equal to 1, we know that
the element has no multiplicative inverse.

For example in, Z6, the multiplicative inverse of 5 is 5 itself, since 5 · 5 = 1. We can also
see that 5 and 1 are the only elements that have multiplicative inverses in Z6.

Now, since 5 has a multiplicative inverse in modulo 6 arithmetic, we can divide by 5 in Z6,
since we have a notation of multiplicative inverse and division is nothing but multiplication by
the multiplicative inverse:

4
5
= 4 ·5−1 = 4 ·5 = 2

From the last example, we can make the interesting observation that, while 5 has no multi-
plicative inverse as an integer, it has a multiplicative inverse in modular 6 arithmetic.

This raises the question of which numbers have multiplicative inverses in modular arith-
metic. The answer is that, in modular n arithmetic, a number r has a multiplicative inverse if
and only if n and r are coprime. Since gcd(n,r) = 1 in that case, we know from the Extended
Euclidean Algorithm that there are numbers s and t, such that the following equation holds:

1 = s ·n+ t · r (3.24)

If we take the modulus n on both sides, the term s ·n vanishes, which tells us that t mod n is the
multiplicative inverse of r in modular n arithmetic.

Example 15 (Multiplicative inverses in Z6). In the previous example, we looked up multiplica-
tive inverses in Z6 from the lookup table in (3.20). In real-world examples, it is usually impos-
sible to write down those lookup tables, as the modulus is too large, and the sets occasionally
contain more elements than there are atoms in the observable universe.

Now, trying to determine that 2 ∈ Z6 has no multiplicative inverse in Z6 without using the
lookup table, we immediately observe that 2 and 6 are not coprime, since their greatest common
divisor is 2. It follows that equation 3.24 has no solutions s and t, which means that 2 has no
multiplicative inverse in Z6.
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The same reasoning works for 3 and 4, as neither of these are coprime with 6. The case
of 5 is different, since gcd(6,5) = 1. To compute the multiplicative inverse of 5, we use the
Extended Euclidean Algorithm and compute the following:

k rk sk tk = (rk− sk ·a) div b
0 6 1 0
1 5 0 1
2 1 1 -1
3 0 . .

We get s= 1 as well as t =−1 and have 1= 1 ·6−1 ·5. From this, it follows that−1 mod 6=
5 is the multiplicative inverse of 5 in modular 6 arithmetic. We can double check using Sage:

65sage: ZZ(6).xgcd(ZZ(5))
66(1, 1, -1)

At this point, the attentive reader might notice that the situation where the modulus is a
prime number is of particular interest, because we know from exercise 9 that, in these cases, all
remainder classes must have modular inverses, since gcd(r,n) = 1 for prime n and any r < n. In
fact, Fermat’s Little Theorem (3.17) provides a way to compute multiplicative inverses in this
situation, since, in case of a prime modulus p and r < p, we get the following:

rp ≡ r ( mod p )⇔
rp−1 ≡ 1 ( mod p )⇔

r · rp−2 ≡ 1 ( mod p )

This tells us that the multiplicative inverse of a residue class r in modular p arithmetic is pre-
cisely rp−2.

Example 16 (Modular 5 arithmetic). To see the unique properties of modular arithmetic when
the modulus is a prime number, we will replicate our findings from example 11, but this time
for the prime modulus 5. For p = 5 we have five equivalence classes of integers which are
congruent modulo 5. We write this as follows:

0 := {. . . ,−5,0,5,10, . . .}
1 := {. . . ,−4,1,6,11, . . .}
2 := {. . . ,−3,2,7,12, . . .}
3 := {. . . ,−2,3,8,13, . . .}
4 := {. . . ,−1,4,9,14, . . .}

Addition and multiplication can be transferred to the equivalence classes, in a way exactly
parallel to example 11. This results in the following addition and multiplication tables:

+ 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

· 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

(3.25)

Calling the set of remainder classes in modular 5 arithmetic with this addition and multiplication
Z5, we see some subtle but important differences to the situation in Z6. In particular, we see
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that in the multiplication table, every remainder r ̸= 0 has the entry 1 in its row and therefore
has a multiplicative inverse. In addition, there are no non-zero elements such that their product
is zero.

To use Fermat’s Little Theorem in Z5 for computing multiplicative inverses (instead of using
the multiplication table), let’s consider 3 ∈ Z5. We know that the multiplicative inverse is given
by the remainder class that contains 35−2 = 33 = 3 ·3 ·3 = 4 ·3 = 2. And indeed 3−1 = 2, since
3 ·2 = 1 in Z5.

We can use Sage to do computations in our modular 5 arithmetic type to double-check our
computations:

67sage: Z5 = Integers(5)
68sage: Z5(3)**(5-2)
692
70sage: Z5(3)**(-1)
712
72sage: Z5(3)**(5-2) == Z5(3)**(-1)
73True

Example 17. To understand one of the principal differences between prime number modular
arithmetic and non-prime number modular arithmetic, consider the linear equation a · x+b = 0
defined over both types Z5 and Z6. Since every non-zero element has a multiplicative inverse
in Z5, we can always solve these equations in Z5, which is not true in Z6. To see that, consider
the equation 3x+3 = 0. In Z5 we have the following:

3x+3 = 0 # add 2 and on both sides
3x+3+2 = 2 # addition-table: 2+3 = 0

3x = 2 # divide by 3 (which equals multiplication by 2)
2 · (3x) = 2 ·2 # multiplication-table: 2 ·2 = 4

x = 4

So in the case of our prime number modular arithmetic, we get the unique solution x = 4. Now
consider Z6:

3x+3 = 0 # add 3 and on both sides
3x+3+3 = 3 # addition-table: 3+3 = 0

3x = 3 # division not possible (no multiplicative inverse of 3 exists)

So, in this case, we cannot solve the equation for x by dividing by 3. And, indeed, when we look
at the multiplication table of Z6 (example 11), we find that there are three solutions x∈ {1,3,5},
such that 3x+3 = 0 holds true for all of them.

Exercise 22. Consider the modulus n = 24. Which of the integers 7, 1, 0, 805, −4255 have
multiplicative inverses in modular 24 arithmetic? Compute the inverses, in case they exist.

Exercise 23. Find the set of all solutions to the congruence 17(2x+5)−4≡ 2x+4 ( mod 5 ).
Then project the congruence into Z5 and solve the resulting equation in Z5. Compare the results.

Exercise 24. Find the set of all solutions to the congruence 17(2x+5)−4≡ 2x+4 ( mod 6 ).
Then project the congruence into Z6 and try to solve the resulting equation in Z6.
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3.4 Polynomial arithmetic
A polynomial is an expression consisting of variables (also-called indeterminates) and coeffi-
cients that involves only the operations of addition, subtraction and multiplication. All coeffi-
cients of a polynomial must have the same type, e.g. they must all be integers or they must all
be rational numbers, etc.12

To be more precise, an univariate polynomial13 is an expression as shown below:

P(x) :=
m

∑
j=0

a jx j = amxm +am−1xm−1 + · · ·+a1x+a0 , (3.26)

In (3.26) x is called the variable, and each a is called a coefficient. If R is the type of the
coefficients, then the set of all univariate polynomials with coefficients in R is written as R[x].
Univariate polynomials are often simply called polynomials, and written as P(x) ∈ R[x]. The
constant term a0 as is also written as P(0).

A polynomial is called the zero polynomial if all its coefficients are zero. A polynomial is
called the one polynomial if the constant term is 1 and all other coefficients are zero.

Given a univariate polynomial P(x) = ∑
m
j=0 a jx j that is not the zero polynomial, we call the

non-negative integer deg(P) := m the degree of P, and define the degree of the zero polynomial
to be −∞, where −∞ (negative infinity) is a symbol with the properties that −∞+m =−∞ and
−∞ < m for all non-negative integers m ∈ N0.

In addition, we denote the coefficient of the term with the highest degree, called leading
coefficient, of the polynomial P as follows:

Lc(P) := am (3.27)

We can restrict the set R[x] of all polynomials with coefficients in R to the set of all such
polynomials that have a degree that does not exceed a certain value. If m is the maximum degree
allowed, we write R≤m[x] for the set of all polynomials with a degree less than or equal to m.

Example 18 (Integer Polynomials). The coefficients of a polynomial must all have the same
type. The set of polynomials with integer coefficients is written as Z[x]. Some examples of
such polynomials are listed below:

P1(x) = 2x2−4x+17 # with deg(P1) = 2 and Lc(P1) = 2

P2(x) = x23 # with deg(P2) = 23 and Lc(P2) = 1
P3(x) = x # with deg(P3) = 1 and Lc(P3) = 1
P4(x) = 174 # with deg(P4) = 0 and Lc(P4) = 174
P5(x) = 1 # with deg(P5) = 0 and Lc(P5) = 1
P6(x) = 0 # with deg(P6) =−∞ and Lc(P6) = 0
P7(x) = (x−2)(x+3)(x−5)

Every integer can be seen as an integer polynomial of degree zero. P7 is a polynomial,
because we can expand its definition into P7(x) = x3−4x2−11x+30, which is a polynomial of
degree 3 and leading coefficient 1.

12An introduction to the theory of polynomials can be found, for example, in chapter 3 of Mignotte [1992] and
a detailed description of many algorithms used in computations on polynomials are given in chapter 3 of Cohen
[2010].

13In our context, the term univariate means that the polynomial contains a single variable only.
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The following expressions are not integer polynomials:

Q1(x) = 2x2 +4+3x−2

Q2(x) = 0.5x4−2x
Q3(x) = 2x

Q1 is not an integer polynomial because the expression x−2 has a negative exponent. Q2
is not an integer polynomial because the coefficient 0.5 is not an integer. Q3 is not an integer
polynomial because the variable appears in the exponent of a coefficient.

We can use Sage to do computations with polynomials. To do so, we have to specify the
symbol for the variable and the type for the coefficients.

74sage: Zx = ZZ[’x’] # integer polynomials with indeterminate x
75sage: Zt.<t> = ZZ[] # integer polynomials with indeterminate t
76sage: Zx
77Univariate Polynomial Ring in x over Integer Ring
78sage: Zt
79Univariate Polynomial Ring in t over Integer Ring
80sage: p1 = Zx([17,-4,2])
81sage: p1
822*x^2 - 4*x + 17
83sage: p1.degree()
842
85sage: p1.leading_coefficient()
862
87sage: p2 = Zt(t^23)
88sage: p2
89t^23
90sage: p6 = Zx([0])
91sage: p6.degree()
92-1

Example 19 (Polynomials over Z6). Recall the definition of modular 6 arithmetics Z6 from
example 11. The set of all polynomials with indeterminate x and coefficients in Z6 is symbolized
as Z6[x]. Some examples of polynomials from Z6[x] are given below:

P1(x) = 2x2−4x+5 # with deg(P1) = 2 and Lc(P1) = 2

P2(x) = x23 # with deg(P2) = 23 and Lc(P2) = 1
P3(x) = x # with deg(P3) = 1 and Lc(P3) = 1
P4(x) = 3 # with deg(P4) = 0 and Lc(P4) = 3
P5(x) = 1 # with deg(P5) = 0 and Lc(P5) = 1
P6(x) = 0 # with deg(P5) =−∞ and Lc(P6) = 0
P7(x) = (x−2)(x+3)(x−5)

Just like in the previous example, P7 is a polynomial. However, since we are working with
coefficients from Z6 now, the expansion of P7 is computed differently, as we have to use addition
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and multiplication in Z6 as defined in (3.20). We get the following:

(x−2)(x+3)(x−5) = (x+4)(x+3)(x+1) # additive inverses in Z6

= (x2 +4x+3x+3 ·4)(x+1) # bracket expansion

= (x2 +1x+0)(x+1) # computation in Z6

= x3 + x2 + x2 + x # bracket expansion

= x3 +2x2 + x

Again, we can use Sage to do computations with polynomials that have their coefficients in Z6.
To do so, we have to specify the symbol for the indeterminate and the type for the coefficients:

93sage: Z6 = Integers(6)
94sage: Z6x = Z6[’x’]
95sage: Z6x
96Univariate Polynomial Ring in x over Ring of integers modulo 6
97sage: p1 = Z6x([5,-4,2])
98sage: p1
992*x^2 + 2*x + 5
100sage: p1 = Z6x([17,-4,2])
101sage: p1
1022*x^2 + 2*x + 5
103sage: Z6x(x-2)*Z6x(x+3)*Z6x(x-5) == Z6x(x^3 + 2*x^2 + x)
104True

Given some element from the same type as the coefficients of a polynomial, the polyno-
mial can be evaluated at that element, which means that we insert the given element for every
occurrence of the indeterminate x in the polynomial expression.

To be more precise, let P ∈ R[x], with P(x) = ∑
m
j=0 a jx j be a polynomial with a coefficient

of type R and let b ∈ R be an element of that type. Then the evaluation of P at b is given as
follows:

P(b) =
m

∑
j=0

a jb j (3.28)

Example 20. Consider the integer polynomials from example 18 again. To evaluate them at
given points, we have to insert the point for all occurences of x in the polynomial expression.
Inserting arbitrary values from Z, we get the following:

P1(2) = 2 ·22−4 ·2+17 = 17

P2(3) = 323 = 94143178827
P3(−4) =
P4(15) = 174
P5(0) = 1
P6(1274) = 0
P7(−6) = (−6−2)(−6+3)(−6−5) =−264
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Note, however, that it is not possible to evaluate any of those polynomial on values of different
type. For example, it is not strictly correct to write P1(0.5), since 0.5 is not an integer. We can
verify our computations using Sage:

105sage: Zx = ZZ[’x’]
106sage: p1 = Zx([17,-4,2])
107sage: p7 = Zx(x-2)*Zx(x+3)*Zx(x-5)
108sage: p1(ZZ(2))
10917
110sage: p7(ZZ(-6)) == ZZ(-264)
111True

Example 21. Consider the polynomials with coefficients in Z6 from example 19 again. To
evaluate them at given values from Z6, we have to insert the point for all occurrences of x in the
polynomial expression. We get the following:

P1(2) = 2 ·22−4 ·2+5 = 2−2+5 = 5

P2(3) = 323 = 3
P3(−4) = P3(2) = 2
P5(0) = 1
P6(4) = 0

112sage: Z6 = Integers(6)
113sage: Z6x = Z6[’x’]
114sage: p1 = Z6x([5,-4,2])
115sage: p1(Z6(2)) == Z6(5)
116True

Exercise 25. Compare both expansions of P7 from Z[x] in example 18 and from from Z6[x] in
example 19 , and consider the definition of Z6 as given in example 11. Can you see how the
definition of P7 over Z projects to the definition over Z6 if you consider the residue classes of
Z6?

3.4.1 Polynomial arithmetic
Polynomials behave like integers in many ways. In particular, they can be added, subtracted and
multiplied. In addition, they have their own notion of Euclidean Division. Informally speaking,
we can add two polynomials by simply adding the coefficients of the same index, and we can
multiply them by applying the distributive property, that is, by multiplying every term of the
left factor with every term of the right factor and adding the results together.

To be more precise, let ∑
m1
n=0 anxn and ∑

m2
n=0 bnxn be two polynomials from R[x]. Then the

sum and the product of these polynomials is defined as follows:

m1

∑
n=0

anxn +
m2

∑
n=0

bnxn =
max({m1,m2})

∑
n=0

(an +bn)xn (3.29)

( m1

∑
n=0

anxn
)
·
( m2

∑
n=0

bnxn
)
=

m1+m2

∑
n=0

n

∑
i=0

aibn−ixn (3.30)
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A rule for polynomial subtraction can be deduced from these two rules by first multiplying the
subtrahend with (the polynomial) −1 and then add the result to the minuend.

Regarding the definition of the degree of a polynomial, we see that the degree of the sum is
always the maximum of the degrees of both summands, and the degree of the product is always
the degree of the sum of the factors, since we defined −∞+m =−∞ for every integer m ∈ Z.

Example 22. To give an example of how polynomial arithmetic works, consider the following
two integer polynomials P,Q ∈ Z[x] with P(x) = 5x2− 4x+ 2 and Q(x) = x3− 2x2 + 5. The
sum of these two polynomials is computed by adding the coefficients of each term with equal
exponent in x. This gives the following:

(P+Q)(x) = (0+1)x3 +(5−2)x2 +(−4+0)x+(2+5)

= x3 +3x2−4x+7

The product of these two polynomials is computed by multiplying each term in the first factor
with each term in the second factor. We get the following:

(P ·Q)(x) = (5x2−4x+2) · (x3−2x2 +5)

= (5x5−10x4 +25x2)+(−4x4 +8x3−20x)+(2x3−4x2 +10)

= 5x5−14x4 +10x3 +21x2−20x+10

117sage: Zx = ZZ[’x’]
118sage: P = Zx([2,-4,5])
119sage: Q = Zx([5,0,-2,1])
120sage: P+Q == Zx(x^3 +3*x^2 -4*x +7)
121True
122sage: P*Q == Zx(5*x^5 -14*x^4 +10*x^3+21*x^2-20*x +10)
123True

Example 23. Let us consider the polynomials of the previous example 22, but interpreted in
modular 6 arithmetic. So we consider P,Q ∈ Z6[x] again with P(x) = 5x2−4x+2 and Q(x) =
x3−2x2 +5. This time we get the following:

(P+Q)(x) = (0+1)x3 +(5−2)x2 +(−4+0)x+(2+5)

= (0+1)x3 +(5+4)x2 +(2+0)x+(2+5)

= x3 +3x2 +2x+1

(P ·Q)(x) = (5x2−4x+2) · (x3−2x2 +5)

= (5x2 +2x+2) · (x3 +4x2 +5)

= (5x5 +2x4 +1x2)+(2x4 +2x3 +4x)+(2x3 +2x2 +4)

= 5x5 +4x4 +4x3 +3x2 +4x+4

124sage: Z6x = Integers(6)[’x’]
125sage: P = Z6x([2,-4,5])
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126sage: Q = Z6x([5,0,-2,1])
127sage: P+Q == Z6x(x^3 +3*x^2 +2*x +1)
128True
129sage: P*Q == Z6x(5*x^5 +4*x^4 +4*x^3+3*x^2+4*x +4)
130True

Exercise 26. Compare the sum P+Q and the product P ·Q from the previous two examples
22 and 23, and consider the definition of Z6 as given in example 11. How can we derive the
computations in Z6[x] from the computations in Z[x]?

3.4.2 Euclidean Division with polynomials
The arithmetic of polynomials shares a lot of properties with the arithmetic of integers. As
a consequence, the concept of Euclidean Division and the algorithm of long division is also
defined for polynomials. Recalling the Euclidean Division of integers 3.2.2, we know that,
given two integers a and b ̸= 0, there is always another integer m and a natural number r with
r < |b| such that a = m ·b+ r holds.

We can generalize this to polynomials whenever the leading coefficient of the dividend
polynomial has a notion of multiplicative inverse. In fact, given two polynomials A and B ̸= 0
from R[x] such that Lc(B)−1 exists in R, there exist two polynomials Q (the quotient) and P (the
remainder), such that the following equation holds and deg(P)< deg(B):

A = Q ·B+P (3.31)

Similarly to integer Euclidean Division, both Q and P are uniquely defined by these rela-
tions.

Notation and Symbols 2. Suppose that the polynomials A,B,Q and P satisfy equation 3.31. We
often use the following notation to describe the quotient and the remainder polynomials of the
Euclidean Division:14

A div B := Q, A mod B := P (3.32)

We also say that a polynomial A is divisible by another polynomial B if A mod B = 0 holds. In
this case, we also write B|A and call B a factor of A.

Analogously to integers, methods to compute Euclidean Division for polynomials are called
polynomial division algorithms. Probably the best known algorithm is the so-called polyno-
mial long division (algorithm 3 below).

This algorithm works only when there is a notion of division by the leading coefficient of B.
It can be generalized, but we will only need this somewhat simpler method in what follows.

Example 24 (Polynomial Long Division). To give an example of how the previous algorithm
works, let us divide the integer polynomial A(x) = x5+2x3−9∈Z[x] by the integer polynomial
B(x) = x2 +4x−1 ∈ Z[x]. Since B is not the zero polynomial, and the leading coefficient of B
is 1, which is invertible as an integer, we can apply algorithm 3. Our goal is to find solutions
to equation XXX, that is, we need to find the quotient polynomial Q ∈ Z[x] and the remainder
polynomial P ∈ Z[x] such that x5 + 2x3− 9 = Q(x) · (x2 + 4x− 1) +P(x). Using a the long

14Polynomial Euclidean Division is explained in more detail in Mignotte [1992]. A detailed description of the
associated algorithm can be found in chapter 3, section 1 of Cohen [2010].
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Algorithm 3 Polynomial Euclidean Algorithm
Require: A,B ∈ R[x] with B ̸= 0, such that Lc(B)−1 exists in R

procedure POLY-LONG-DIVISION(A,B)
Q← 0
P← A
d← deg(B)
c← Lc(B)
while deg(P)≥ d do

S := Lc(P) · c−1 · xdeg(P)−d

Q← Q+S
P← P−S ·B

end while
return (Q,P)

end procedure
Ensure: A = Q ·B+P

division notation that is mostly used in anglophone countries, we compute as follows:

X3 −4X2 +19X−80
X2 +4X−1

)
X5 +2X3 −9
−X5−4X4 +X3

−4X4 +3X3

4X4 +16X3 −4X2

19X3 −4X2

−19X3−76X2 +19X
−80X2 +19X −9

80X2 +320X−80
339X−89

(3.33)

We therefore get Q(x) = x3− 4x2 + 19x− 80 and P(x) = 339x− 89, and indeed, the equation
A = Q ·B+P is true with these values, since x5 +2x3−9 = (x3−4x2 +19x−80) · (x2 +4x−
1)+(339x−89). We can double check this invoking Sage:

131sage: Zx = ZZ[’x’]
132sage: A = Zx([-9,0,0,2,0,1])
133sage: B = Zx([-1,4,1])
134sage: Q = Zx([-80,19,-4,1])
135sage: P = Zx([-89,339])
136sage: A == Q*B + P
137True

Example 25. In the previous example, polynomial division gave a non-trivial (non-vanishing,
i.e non-zero) remainder. Divisions that don’t give a remainder are of special interest. In these
cases, divisors are called factors of the dividend.

For example, consider the integer polynomial P7 from example 18 again. As we have shown,
it can be written both as x3− 4x2− 11x+ 30 and as (x− 2)(x+ 3)(x− 5). From this, we can
see that the polynomials F1(x) = (x−2), F2(x) = (x+3) and F3(x) = (x−5) are all factors of
x3−4x2−11x+30, since division of P7 by any of these factors will result in a zero remainder.
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Exercise 27. Consider the polynomial expressions A(x) := −3x4 + 4x3 + 2x2 + 4 and B(x) =
x2−4x+2. Compute the Euclidean Division of A by B in the following types:

1. A,B ∈ Z[x]

2. A,B ∈ Z6[x]

3. A,B ∈ Z5[x]

Now consider the result in Z[x] and in Z6[x]. How can we compute the result in Z6[x] from the
result in Z[x]?
Exercise 28. Show that the polynomial B(x) = 2x4−3x+4∈Z5[x] is a factor of the polynomial
A(x) = x7 +4x6 +4x5 + x3 +2x2 +2x+3 ∈ Z5[x], that is, show that B|A. What is B div A?

3.4.3 Prime Factors
Recall that the fundamental theorem of arithmetic 3.6 tells us that every natural number is
the product of prime numbers. In this chapter, we will see that something similar holds for
univariate polynomials R[x], too.15 16

The polynomial analog to a prime number is a so-called irreducible polynomial, which is
defined as a polynomial that cannot be factored into the product of two non-constant polynomi-
als using Euclidean Division. Irreducible polynomials are to polynomials what prime numbers
are to integers: they are the basic building blocks from which all other polynomials can be
constructed.

To be more precise, let P ∈ R[x] be any polynomial. Then there always exist irreducible
polynomials F1,F2, . . . ,Fk ∈ R[x], such that the following holds:

P = F1 ·F2 · . . . ·Fk . (3.34)

This representation is unique (except for permutations in the factors) and is called the prime
factorization of P. Moreover, each factor Fi is called a prime factor of P.
Example 26. Consider the polynomial expression P = x2−3. When we interpret P as an integer
polynomial P ∈ Z[x], we find that this polynomial is irreducible, since any factorization other
then 1 · (x2−3), must look like (x−a)(x+a) for some integer a, but there is no integers a with
a2 = 3.

138sage: Zx = ZZ[’x’]
139sage: p = Zx(x^2-3)
140sage: p.factor()
141x^2 - 3

On the other hand, interpreting P as a polynomial P ∈ Z6[x] in modulo 6 arithmetic, we see that
P has two factors F1 = (x− 3) and F2 = (x+ 3), since (x− 3)(x+ 3) = x2− 3x+ 3x− 3 · 3 =
x2−3.

Points where a polynomial evaluates to zero are called roots of the polynomial. To be more
precise, let P ∈ R[x] be a polynomial. Then a root is a point x0 ∈ R with P(x0) = 0 and the set
of all roots of P is defined as follows:

R0(P) := {x0 ∈ R | P(x0) = 0} (3.35)
15Strictly speaking, this is not true for polynomials over arbitrary types R. However, in this book, we assume R

to be a so-called unique factorization domain for which the content of this section holds.
16A more detailed description can be found in chapter 3, section 4 of Mignotte [1992].
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The roots of a polynomial are of special interest with respect to its prime factorization, since it
can be shown that, for any given root x0 of P, the polynomial F(x) = (x− x0) is a prime factor
of P.

Finding the roots of a polynomial is sometimes called solving the polynomial. It is a
difficult problem that has been the subject of much research throughout history.

It can be shown that if m is the degree of a polynomial P, then P cannot have more than m
roots. However, in general, polynomials can have less than m roots.

Example 27. Consider the integer polynomial P7(x) = x3− 4x2− 11x+ 30 from example 18
again. We know that its set of roots is given by R0(P7) = {−3,2,5}.

On the other hand, we know from example 26 that the integer polynomial x2− 3 is irre-
ducible. It follows that it has no roots, since every root defines a prime factor.

Example 28. To give another example, consider the integer polynomial P = x7 + 3x6 + 3x5 +
x4− x3−3x2−3x−1. We can use Sage to compute the roots and prime factors of P:

142sage: Zx = ZZ[’x’]
143sage: p = Zx(x^7 + 3*x^6 + 3*x^5 + x^4 - x^3 - 3*x^2 - 3*x - 1

)
144sage: p.roots()
145[(1, 1), (-1, 4)]
146sage: p.factor()
147(x - 1) * (x + 1)^4 * (x^2 + 1)

We see that P has the root 1, and that the associated prime factor (x−1) occurs once in P. We
can also see that P has the root −1, where the associated prime factor (x+1) occurs 4 times in
P. This gives the following prime factorization:

P = (x−1)(x+1)4(x2 +1)

Exercise 29. Show that if a polynomial P ∈ R[x] of degree deg(P) = m has less than m roots, it
must have a prime factor F of degree deg(F)> 1.

Exercise 30. Consider the polynomial P = x7 + 3x6 + 3x5 + x4− x3− 3x2− 3x− 1 ∈ Z6[x].
Compute the set of all roots of R0(P) and then compute the prime factorization of P.

3.4.4 Lagrange Interpolation
One particularly useful property of polynomials is that a polynomial of degree m is completely
determined on m+1 evaluation points, which implies that we can uniquely derive a polynomial
of degree m from a set S:

S = {(x0,y0),(x1,y1), . . . ,(xm,ym) | xi ̸= x j for all indices i and j} (3.36)

Polynomials therefore have the property that m+1 pairs of points (xi,yi) for xi ̸= x j are enough
to determine the set of pairs (x,P(x)) for all x∈R. This “few too many” property of polynomials
is widely used, including in SNARKs. Therefore, we need to understand the method to actually
compute a polynomial from a set of points.

If the coefficients of the polynomial we want to find have a notion of multiplicative inverse,
it is always possible to find such a polynomial using a method called Lagrange Interpolation,
which works as follows. Given a set like 3.36, a polynomial P of degree m with P(xi) = yi for
all pairs (xi,yi) from S is given by algorithm 4 below.
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Algorithm 4 Lagrange Interpolation
Require: R must have multiplicative inverses
Require: S = {(x0,y0),(x1,y1), . . . ,(xm,ym) | xi,yi ∈ R,xi ̸= x j for all indices i and j}

procedure LAGRANGE-INTERPOLATION(S)
for j ∈ (0 . . .m) do

l j(x)←Πm
i=0;i̸= j

x−xi
x j−xi

= (x−x0)
(x j−x0)

· · · (x−x j−1)
(x j−x j−1)

(x−x j+1)
(x j−x j+1)

· · · (x−xm)
(x j−xm)

end for
P← ∑

m
j=0 y j · l j

return P
end procedure

Ensure: P ∈ R[x] with deg(P) = m
Ensure: P(x j) = y j for all pairs (x j,y j) ∈ S

Example 29. Let us consider the set S = {(0,4),(−2,1),(2,3)}. Our task is to compute a
polynomial of degree 2 in Q[x] with coefficients from the set of rational numbers Q. Since Q
has multiplicative inverses, we can use method of Lagrange Interpolation from Algorithm 4 to
compute the polynomial:

l0(x) =
x− x1

x0− x1
· x− x2

x0− x2
=

x+2
0+2

· x−2
0−2

=−(x+2)(x−2)
4

=−1
4
(x2−4)

l1(x) =
x− x0

x1− x0
· x− x2

x1− x2
=

x−0
−2−0

· x−2
−2−2

=
x(x−2)

8

=
1
8
(x2−2x)

l2(x) =
x− x0

x2− x0
· x− x1

x2− x1
=

x−0
2−0

· x+2
2+2

=
x(x+2)

8

=
1
8
(x2 +2x)

P(x) = 4 · (−1
4
(x2−4))+1 · 1

8
(x2−2x)+3 · 1

8
(x2 +2x)

=−x2 +4+
1
8

x2− 1
4

x+
3
8

x2 +
3
4

x

=−1
2

x2 +
1
2

x+4

And, indeed, evaluation of P on the x-values of S gives the correct points, since P(0) = 4,
P(−2) = 1 and P(2) = 3. Sage confirms this result:

148sage: Qx = QQ[’x’]
149sage: S=[(0,4),(-2,1),(2,3)]
150sage: Qx.lagrange_polynomial(S)
151-1/2*x^2 + 1/2*x + 4

Example 30. To give another example more relevant to the topics of this book, let us consider
the same set as in the previous example, S = {(0,4),(−2,1),(2,3)} . This time, the task is to
compute a polynomial P ∈ Z5[x] from this data. Since we know from example 16 that multi-
plicative inverses exist in Z5, algorithm 4 is applicable and we can compute a unique polynomial
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of degree 2 in Z5[x] from S. We can use the lookup tables from (3.25) for computations in Z5
and get the following:

l0(x) =
x− x1

x0− x1
· x− x2

x0− x2
=

x+2
0+2

· x−2
0−2

=
(x+2)(x−2)

−4
=

(x+2)(x+3)
1

= x2 +1

l1(x) =
x− x0

x1− x0
· x− x2

x1− x2
=

x−0
−2−0

· x−2
−2−2

=
x
3
· x+3

1
= 2(x2 +3x)

= 2x2 + x

l2(x) =
x− x0

x2− x0
· x− x1

x2− x1
=

x−0
2−0

· x+2
2+2

=
x(x+2)

3
= 2(x2 +2x)

= 2x2 +4x

P(x) = 4 · (x2 +1)+1 · (2x2 + x)+3 · (2x2 +4x)

= 4x2 +4+2x2 + x+ x2 +2x

= 2x2 +3x+4

And, indeed, evaluation of P on the x-values of S gives the correct points, since P(0) = 4,
P(−2) = 1 and P(2) = 3. We can double check our findings using Sage:

152sage: F5 = GF(5)
153sage: F5x = F5[’x’]
154sage: S=[(0,4),(-2,1),(2,3)]
155sage: F5x.lagrange_polynomial(S)
1562*x^2 + 3*x + 4

Exercise 31. Consider modular 5 arithmetic from example 16, and the set S= {(0,0),(1,1),(2,2),(3,2)}.
Find a polynomial P ∈ Z5[x] such that P(xi) = yi for all (xi,yi) ∈ S.

Exercise 32. Consider the set S from the previous example. Why is it not possible to apply
algorithm 4 to construct a polynomial P ∈ Z6[x] such that P(xi) = yi for all (xi,yi) ∈ S?
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Chapter 4

Algebra

In the previous chapter, we gave an introduction to the basic computational tools needed for a
pen-and-paper approach to SNARKs. In this chapter, we provide a more abstract clarification
of relevant mathematical terminology such as groups, rings and fields.

Scientific literature on cryptography frequently contains such terms, and it is necessary to
get at least some understanding of these terms to be able to follow the literature.

4.1 Commutative Groups
Commutative groups are abstractions that capture the essence of mathematical phenomena, like
addition and subtraction, or multiplication and division.

To understand commutative groups, let us think back to when we learned about the addition
and subtraction of integers in school. We have learned that, whenever we add two integers, the
result is guaranteed to be an integer as well. We have also learned that adding zero to any integer
means that “nothing happens” since the result of the addition is the same integer we started with.
Furthermore, we have learned that the order in which we add two (or more) integers does not
matter, that brackets have no influence on the result of addition, and that, for every integer, there
is always another integer (the negative) such that we get zero when we add them together.

These conditions are the defining properties of a commutative group, and mathematicians
have realized that the exact same set of rules can be found in very different mathematical struc-
tures. It therefore makes sense to give an abstract, formal definition of what a group should
be, detached from any concrete examples such as integers. This lets us handle entities of very
different mathematical origins in a flexible way, while retaining essential structural aspects of
many objects in abstract algebra and beyond.

Distilling these rules to the smallest independent list of properties and making them abstract,
we arrive at the following definition of a commutative group:

revise the counter for definitions, current one too long

Definition 4.1.0.1. A commutative group (G, ·) consists of a set G and a map · : G×G→G.
The map is called the group law, and it combines two elements of the set G into a third one
such that the following properties hold:

• Commutativity: For all g1,g2 ∈G, the equation g1 ·g2 = g2 ·g1 holds.

• Associativity: For every g1,g2,g3 ∈G the equation g1 · (g2 ·g3) = (g1 ·g2) ·g3 holds.

• Existence of a neutral element: For every g ∈G, there is an e ∈G such that e ·g = g.
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• Existence of an inverse: For every g ∈G, there is an e ∈G such that g ·g−1 = e.

If (G, ·) is a group, and G′ ⊂ G is a subset of G such that the restriction of the group law
· : G′×G′→G′ is a group law on G′, then (G′, ·) is called a subgroup of (G, ·).

Rephrasing the abstract definition in layman’s terms, a group is something where we can do
computations in a way that resembles the behavior of the addition of integers. Specifically, this
means we can combine some element with another element into a new element in a way that is
reversible and where the order of combining elements doesn’t matter.

Notation and Symbols 3. Since we are exclusively concerned with commutative groups in this
book, we often just call them groups, keeping the notation of commutativity implicit.1

If there is no risk of ambiguity (about what the group law of a group is), we frequently drop
the symbol · and simply write G as notation for the group, keeping the group law implicit. In
this case we also say that G is of group type, indicating that G is not simply a set but a set
together with a group law.

Notation and Symbols 4 (Additive notation). For commutative groups (G, ·), we sometimes
use the so-called additive notation (G,+), that is, we write + instead of · for the group law, 0
for the neutral element and −g := g−1 for the inverse of an element g ∈G.

As we will see in the following chapters, groups are heavily used in cryptography and in
SNARKs.2 But let us look at some more familiar examples fist.

Example 31 (Integer Addition and Subtraction). The set (Z,+) of integers with integer addition
is the archetypical example of a commutative group, where the group law is traditionally written
in additive notation (notation 4).

To compare integer addition against the abstract axioms of a commutative group, we first
note that integer addition is commutative and associative, since a + b = b + a as well as
(a+ b) + c = a+ (b+ c) for all integers a,b,c ∈ Z. The neutral element e is the number
0, since a+ 0 = a for all integers a ∈ Z. Furthermore, the inverse of a number is its negative
counterpart, since a+(−a) = 0 for all a∈Z. This implies that integers with addition are indeed
a commutative group in the abstract sense.

To give an example of a subgroup of the group of integers, consider the set of even numbers,
including 0.

Zeven := {. . . ,−4,−2,0,2,4, . . .}

We can see that this set is a subgroup of (Z,+), since the sum of two even numbers is always
an even number again, since the neutral element 0 is a member of Zeven and since the negative
of an even number is itself an even number.

Example 32 (The trivial group). The most basic example of a commutative group is the group
with just one element {•} and the group law • · •= •. We call it the trivial group.

The trivial group is a subgroup of any group. To see that, let (G, ·) be a group with the
neutral element e ∈G. Then e · e = e as well as e−1 = e both hold. Consequently, the set {e} is
a subgroup of G. In particular, {0} is a subgroup of (Z,+), since 0+0 = 0.

1Commutative groups are also called Abelian groups. A set G with a map · that satisfies all previously men-
tioned rules except for the commutativity law is called a non-commutative group.

2A more in-depth introduction to commutative groups can be found for example in chapter 1, section 1 of Lidl
and Niederreiter [1986] or in chapter 1 of Fuchs [2015]. An introduction more tailored to the needs in cryptography
can be found for example in chapter 3, section 8.1.3 of Katz and Lindell [2007].
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Example 33. Consider addition in modulo 6 arithmetics (Z6,+), as defined in in example 11.
As we see, the remainder 0 is the neutral element in modulo 6 addition, and the inverse of a
remainder r is given by 6− r, because r+(6− r) = 6. 6 is congruent to 0 since 6 mod 6 = 0.
Moreover, r1 + r2 = r2 + r1 as well as (r1 + r2)+ r3 = r1 +(r2 + r3) are inherited from integer
addition. We therefore see that (Z6,+) is a group.

The previous example of a commutative group is a very important one for this book. Ab-
stracting from this example and considering residue classes (Zn,+) for arbitrary moduli n, it
can be shown that (Zn,+) is a commutative group with the neutral element 0 and the additive
inverse n− r for any element r ∈ Zn. We call such a group the remainder class group of
modulus n.

Exercise 33. Consider example 16 again, and let Z∗5 be the set of all remainder classes from Z5
without the class 0. Then Z∗5 = {1,2,3,4}. Show that (Z∗5, ·) is a commutative group.

Exercise 34. Generalizing the previous exercise, consider the general modulus n, and let Z∗n
be the set of all remainder classes from Zn without the class 0. Then Z∗n = {1,2, . . . ,n− 1}.
Provide a counter-example to show that (Z∗n, ·) is not a group in general.

Find a condition such that (Z∗n, ·) is a commutative group, compute the neutral element, give
a closed form for the inverse of any element and prove the commutative group axioms.

4.1.1 Finite groups
As we have seen in the previous examples, groups can either contain infinitely many elements
(such as integers) or finitely many elements (as for example the remainder class groups (Zn,+)).
To capture this distinction, a group is called a finite group if the underlying set of elements is
finite. In that case, the number of elements of that group is called its order.3

Notation and Symbols 5. Let G be a finite group. We write ord(G) or |G| for the order of G.

Example 34. Consider the remainder class groups (Z6,+) from example 11, the group (Z5,+)
from example 16, and the group (Z∗5, ·) from exercise 33. We can easily see that the order of
(Z6,+) is 6, the order of (Z5,+) is 5 and the order of (Z∗5, ·) is 4.

Exercise 35. Let n ∈ N with n ≥ 2 be some modulus. What is the order of the remainder class
group (Zn,+)?

4.1.2 Generators
Listing the set of elements of a group can be complicated, and it is not always obvious how
to actually compute elements of a given group. From a practical point of view, it is therefore
desirable to have groups with a generator set. This is a small subset of elements from which
all other elements can be generated by applying the group law repeatedly to only the elements
of the generator set and/or their inverses.

Of course, every group G has a trivial set of generators, when we just consider every element
of the group to be in the generator set. The more interesting question is to find smallest possible
generator set for a given group. Of particular interest in this regard are groups that have a
generator set that contains a single element only. In this case, there exists a (not necessarily
unique) element g ∈G such that every other element from G can be computed by the repeated
combination of g and its inverse g−1 only.

3An introduction to finite groups is given in chapter 1 of Fuchs [2015]. An introduction from the perspective
of cryptography can be found in chapter 3, section 8.3.1 of Katz and Lindell [2007].
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Definition 4.1.2.1 (Cyclic groups). Groups with single, not necessarily unique, generators are
called cyclic groups and any element g ∈G that is able to generate G is called a generator.
Example 35. The most basic example of a cyclic group is the group of integers with integer
addition (Z,+). In this case, the number 1 is a generator of Z, since every integer can be
obtained by repeatedly adding either 1 or its inverse −1 to itself. For example, −4 is generated
by 1, since −4 =−1+(−1)+(−1)+(−1). Another generator of Z is the number −1.
Example 36. Consider the group (Z∗5, ·) from exercise 33. Since 21 = 2, 22 = 4, 23 = 3 and
24 = 1, the element 2 is a generator of (Z∗5, ·). Moreover, since 31 = 3, 32 = 4, 33 = 2 and
34 = 1, the element 3 is another generator of (Z∗5, ·). Cyclic groups can therefore have more
than one generator. However since 41 = 4, 42 = 1, 43 = 4 and in general 4k = 4 for k odd and
4k = 1 for k even the element 4 is not a generator of (Z∗5, ·). It follows that in general not every
element of a finite cyclic group is a generator.
Example 37. Consider a modulus n and the remainder class groups (Zn,+) from exercise 35.
These groups are cyclic, with generator 1, since every other element of that group can be con-
structed by repeatedly adding the remainder class 1 to itself. Since Zn is also finite, we know
that (Zn,+) is a finite cyclic group of order n.
Exercise 36. Consider the group (Z6,+) of modular 6 addition from example 11. Show that
5 ∈ Z6 is a generator, and then show that 2 ∈ Z6 is not a generator.
Exercise 37. Let p ∈ P be prime number and (Z∗p, ·) the finite group from exercise 34. Show
that (Z∗p, ·) is cyclic.

4.1.3 The exponential map
Observe that, when G is a cyclic group of order n and g∈G is a generator of G, then there exists
a so-called exponential map, which maps the additive group law of the remainder class group
(Zn,+) onto the group law of G in a one-to-one correspondence. The exponential map can be
formalized as in (4.1) below (where gx means “multiply g by itself x times” and g0 = eG).

g(·) : Zn→G x 7→ gx (4.1)

To see how the exponential map works, first observe that, since g0 := eG by definition, the
neutral element of Zn is mapped to the neutral element of G. Furthermore, since gx+y = gx ·gy,
the map respects the group law.
Notation and Symbols 6 (Scalar multiplication). If a group (G,+) is written in additive nota-
tion (notation 4), then the exponential map is often called scalar multiplication, and written as
follows:

(·) ·g : Zn→G ; x 7→ x ·g (4.2)

In this notation, the symbol x · g is defined as “add the generator g to itself x times” and the
symbol 0 ·g is defined to be the neutral element in G.

Cryptographic applications often utilize finite cyclic groups of a very large order n, which
means that computing the exponential map by repeated multiplication of the generator with
itself is infeasible for very large remainder classes.4 Algorithm 5, called square and multiply,
solves this problem by computing the exponential map in approximately k steps, where k is the
bit length of the exponent (3.13):

4However, methods for fast exponentiations have been known for a long time. A detailed introduction can be
found, for example, in chapter 1, section 7 of Mignotte [1992].
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Algorithm 5 Cyclic Group Exponentiation
Require: g group generator of order n
Require: x ∈ Zn

procedure EXPONENTIATION(g,x)
Let (b0, . . . ,bk) be a binary representation of x ▷ see example XXX
h← g
y← eG
for 0≤ j < k do

if b j = 1 then
y← y ·h ▷ multiply

end if
h← h ·h ▷ square

end for
return y

end procedure
Ensure: y = gx

Because the exponential map respects the group law, it doesn’t matter if we do our com-
putation in Zn before we write the result into the exponent of g or afterwards: the result will
be the same in both cases. The latter method is usually referred to as doing computations “in
the exponent”. In cryptography in general, and in SNARK development in particular, we often
perform computations “in the exponent” of a generator.

Example 38. Consider the multiplicative group (Z∗5, ·) from exercise 33. We know from 37 that
Z∗5 is a cyclic group of order 4, and that the element 3 ∈ Z∗5 is a generator. This means that we
also know that the following map respects the group law of addition in Z4 and the group law of
multiplication in Z∗5:

3(·) : Z4→ Z∗5 ; x 7→ 3x

To do an example computation “in the exponent” of 3 , let’s perform the calculation 1+3+2
in the exponent of the generator 3:

31+3+2 = 32 (4.3)
= 4 (4.4)

In (4.3) above, we first performed the computation 1+3+2 in the remainder class group (Z4,+)
and then applied the exponential map 3(·) to the result in (4.4).

However, since the exponential map (4.1) respects the group law, we also could map each
summand into (Z∗5, ·) first and then apply the group law of (Z∗5, ·). The result is guaranteed to
be the same:

31 ·33 ·32 = 3 ·2 ·4
= 1 ·4
= 4

Since the exponential map (4.1) is a one-to-one correspondence that respects the group law,
it can be shown that this map has an inverse with respect to the base g, called the base g discrete
logarithm map:

logg(·) : G→ Zn x 7→ logg(x) (4.5)
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Discrete logarithms are highly important in cryptography, because there are finite cyclic groups
where the exponential map and its inverse, the discrete logarithm map, are believed to be one-
way functions, which informally means that computing the exponential map is fast, while com-
puting the logarithm map is slow (We will look into a more precise definition in 4.1.6).

Example 39. Consider the exponential map 3(·) from example 38. Its inverse is the discrete
logarithm to the base 3, given by the map below:

log3(·) : Z∗5→ Z4 x 7→ log3(x)

In contrast to the exponential map 3(·), we have no way to actually compute this map, other
than by trying all elements of the group until we find the correct one. For example, in order to
compute log3(4), we have to find some x ∈ Z4 such that 3x = 4, and all we can do is repeatedly
insert elements x into the exponent of 3 until the result is 4. To do this, let’s write down all the
images of 3(·):

30 = 1, 31 = 3, 32 = 4, 33 = 2

Since the discrete logarithm log3(·) is defined as the inverse to this function, we can use those
images to compute the discrete logarithm:

log3(1) = 0, log3(2) = 3, log3(3) = 1, log3(4) = 2

Note that this computation was only possible because we were able to write down all images
of the exponential map. However, in real world applications the groups in consideration are too
large to write down the images of the exponential map.

Exercise 38 (Efficient Scalar Multiplication). Let (G,+) be a finite cyclic group of order n.
Consider algorithm 5 and define its analog for groups in additive notation.

4.1.4 Factor Groups
As we know from the fundamental theorem of arithmetic (3.6), every natural number n is a
product of factors, the most basic of which are prime numbers. This parallels subgroups of
finite cyclic groups in an interesting way.

Definition 4.1.4.1 (The fundamental theorem of finite cyclic groups). If G is a finite cyclic
group of order n, then every subgroup G′ of G is finite and cyclic, and the order G′ is a factor
of n. Moreover for each factor k of n, G has exactly one subgroup of order k. This is known as
the fundamental theorem of finite cyclic groups.

Notation and Symbols 7. If G is a finite cyclic group of order n and k is a factor of n, then we
write G[k] for the unique finite cyclic group which is the order k subgroup of G, and call it a
factor group of G.

One particularly interesting situation occurs if the order of a given finite cyclic group is a
prime number. As we know from the fundamental theorem of arithmetics (3.6), prime num-
bers have only two factors: the number 1 and the prime number itself. It then follows from
the fundamental theorem of finite cyclic groups (definition 4.1.4.1) that those groups have no
subgroups other than the trivial group (example 32) and the group itself.

Cryptographic protocols often assume the existence of finite cyclic groups of prime order.
However some real-world implementations of those protocols are not defined on prime order
groups, but on groups where the order consist of a (usually large) prime number that has small
cofactors (see notation 1). In this case, a method called cofactor clearing has to be applied
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to ensure that the computations are not done in the group itself but in its (large) prime order
subgroup.

To understand cofactor clearing in detail, let G be a finite cyclic group of order n, and let k
be a factor of n with associated factor group G[k]. We can project any element g ∈ G[k] onto
the neutral element e of G by multiplying g k-times with itself:

gk = e (4.6)

Consequently, if c := n div k is the cofactor of k in n, then any element from the full group
g ∈ G can be projected into the factor group G[k] by multiplying g c-times with itself. This
defines the following map, which is often called cofactor clearing in cryptographic literature:

(·)c : G→G[k] : g 7→ gc (4.7)

Example 40. Consider the finite cyclic group (Z∗5, ·) from example 36. Since the order of Z∗5
is 4, and 4 has the factors 1, 2 and 4, it follows from the fundamental theorem of finite cyclic
groups (definition 4.1.4.1) that Z∗5 has 3 unique subgroups. In fact, the unique subgroup Z∗5[1]
of order 1 is given by the trivial group {1} that contains only the multiplicative neutral element
1. The unique subgroup Z∗5[4] of order 4 is Z∗5 itself, since, by definition, every group is trivially
a subgroup of itself. The unique subgroup Z∗5[2] of order 2 is more interesting, and is given by
the set Z∗5[2] = {1,4}.

Since Z∗5 is not a prime order group, and, since the only prime factor of 4 is 2, the “large”
prime order subgroup of Z∗5 is Z∗5[2]. Moreover, since the cofactor of 2 in 4 is also 2, we get the
cofactor clearing map (·)2 : Z∗5→ Z∗5[2]. As expected, when we apply this map to all elements
of Z∗5, we see that it maps onto the elements of Z∗5[2] only:

12 = 1 22 = 4 32 = 4 42 = 1 (4.8)

We can therefore use this map to “clear the cofactor” of any element from Z∗5, which means
that the element is projected onto the “large” prime order subgroup Z∗5[2].
Exercise 39. Consider the previous example 40, and show that Z∗5[2] is a commutative group.

Exercise 40. Consider the finite cyclic group (Z6,+) of modular 6 addition from example 36.
Describe all subgroups of (Z6,+). Identify the large prime order subgroup of Z6, define its
cofactor clearing map and apply that map to all elements of Z6.

Exercise 41. Let (Z∗p, ·) be the cyclic group from exercise 37. Show that, for p ≥ 5, not every
element x ∈ F∗p is a generator of F∗p.

4.1.5 Pairings
Of particular importance for the development of SNARKs are so-called pairing maps on com-
mutative groups, defined below.

Definition 4.1.5.1 (Pairing map). Let G1, G2 and G3 be three commutative groups. Then a
pairing map is a function

e(·, ·) : G1×G2→G3 (4.9)

This function takes pairs (g1,g2) of elements from G1 and G2, and maps them to elements
from G3 such that the bilinearity property holds, which means that for all g1,g′1 ∈ G1 and
g2,g′2 ∈G2 the following two identities are satisfied:

e(g1 ·g′1,g2) = e(g1,g2) · e(g′1,g2) and e(g1,g2 ·g′2) = e(g1,g2) · e(g1,g′2) (4.10)
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Informally speaking, bilinearity means that it doesn’t matter if we first execute the group
law on one side and then apply the bilinear map, or if we first apply the bilinear map and then
apply the group law in G3.

A pairing map is called non-degenerate if, whenever the result of the pairing is the neutral
element in G3, one of the input values is the neutral element of G1 or G2. To be more precise,
e(g1,g2) = eG3 implies g1 = eG1 or g2 = eG2 .

Example 41. One of the most basic examples of a non-degenerate pairing involves the groups
G1, G2 and G3 all being groups of integers with addition (Z,+). In this case, the following
map defines a non-degenerate pairing:

e(·, ·) : Z×Z→ Z (a,b) 7→ a ·b (4.11)

Note that bilinearity follows from the distributive law of integers, meaning that, for a,b,c ∈
Z, the equation e(a+ b,c) = (a+ b) · c = a · c+ b · c = e(a,c)+ e(b,c) holds (and the same
reasoning is true for the second argument ).

To see that e(·, ·) is non-degenerate, assume that e(a,b) = 0. Then a ·b = 0 implies that a or
b must be zero.

Exercise 42 (Arithmetic laws for pairing maps). Let G1, G2 and G3 be finite cyclic groups of
the same order n, and let e(·, ·) : G1×G2→G3 be a pairing map. Show that, for given g1 ∈G1,
g2 ∈G2 and all a,b ∈ Zn, the following identity holds:

e(ga
1,g

b
2) = e(g1,g2)

a·b (4.12)

Exercise 43. Consider the remainder class groups (Zn,+) from example 34 for some modulus
n. Show that the following map is a pairing map.

e(·, ·) : Zn×Zn→ Zn (a,b) 7→ a ·b (4.13)

Why is the pairing not non-degenerate in general, and what condition must be imposed on
n such that the pairing will be non-degenerate?

4.1.6 Cryptographic Groups
In this section, we look at classes of groups that are believed to satisfy certain computational
hardness assumptions, meaning that it is not feasible to compute them in polynomial time.5

Example 42. To give an example for a well-known computational hardness assumption, con-
sider the problem of factorization, i.e. computing the prime factors of a composite integer (see
example 1). If the prime factors are very large, this is infeasible to do, and is expected to remain
infeasible. We assume the problem is computationally hard or infeasible.

Note that, in example 42, we say that the problem is infeasible to solve if the prime factors
are large enough. Naturally, this is made more precise in the cryptographic standard model,
where we have a security parameter, and we say that “there exists a security parameter such that
it is not feasible to compute a solution to the problem”. In the following examples, the security
parameter roughly correlates with the order of the group in consideration. In this book, we
do not include the security parameter in our definitions, since we only aim to provide an intu-
itive understanding of the cryptographic assumptions, not teach the ability to perform rigorous
analysis.

5A more detailed introduction to computational hardness assumptions and their applications in cryptography
can be found in chapter 3, section 8 in Katz and Lindell [2007].
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Furthermore, understand that these are assumptions. Academics have been looking for
efficient prime factorization algorithms for a long time, and they have been getting better and
better while computers have become faster and faster – but there always was a higher security
parameter for which the problem still was infeasible.

In what follows, we describe a few problems arising in the context of groups in cryptography
that are assumed to be infeasible. We will refer to them throughout the book.

4.1.6.1 The Discrete Logarithm Problem

The so-called Discrete Logarithm Problem (DLP), also called the Discrete Logarithm As-
sumption, is one of the most fundamental assumptions in cryptography.

Definition 4.1.6.1. Let G be a finite cyclic group of order r and let g be a generator of G.
We know from (4.1) that there is an exponential map g(·) : Zr → G ; x 7→ gx that maps the
residue classes from modulo r arithmetic onto the group in a 1 : 1 correspondence. The Discrete
Logarithm Problem is the task of finding an inverse to this map, that is, to find a solution x∈Zr
to the following equation for some given h,g ∈G:

h = gx (4.14)

There are groups in which the DLP is assumed to be infeasible to solve, and there are groups
in which it isn’t. We call the former group DL-secure groups.

Rephrasing the previous definition, it is believed that, in DL-secure groups, there is a number
n such that it is infeasible to compute some number x that solves the equation h = gx for a given
h and g, assuming that the order of the group n is large enough. The number n here corresponds
to the security parameter discussed above.

Example 43 (Public key cryptography). One the most basic examples of an application for DL-
secure groups is in public key cryptography, where the parties publicly agree on some pair
(G,g) such that G is a finite cyclic group of appropriate order n, believed to be a DL-secure
group, and g is a generator of G.

In this setting, a secret key is some number sk ∈ Zr and the associated public key pk is the
group element pk = gsk. Since discrete logarithms are assumed to be hard, it is infeasible for an
attacker to compute the secret key from the public key, as this would involve finding solutions
x to the following equation (which is believed to be infeasible):

pk = gx (4.15)

As example 43 shows, identifying DL-secure groups is an important practical problem. Un-
fortunately, it is easy to see that it does not make sense to assume the hardness of the Discrete
Logarithm Problem in all finite cyclic groups: counterexamples are common and easy to con-
struct.

4.1.6.2 The decisional Diffie–Hellman assumption

Definition 4.1.6.2. Let G be a finite cyclic group of order n and let g be a generator of G.
The decisional Diffie–Hellman (DDH) problem is to distinguish (ga,gb,gab) from the triple
(ga,gb,gc) for uniformly random values a,b,c ∈ Zr.

If we assume the DDH problem is infeasible to solve in G, we call G a DDH-secure group.
DDH-security is a stronger assumption than DL-security (4.1.6.1), in the sense that if the

DDH problem is infeasible, so is the DLP, but not necessarily the other way around.
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To see why this is the case, assume that the discrete logarithm assumption does not hold.
In that case, given a generator g and a group element h, it is easy to compute some element
x ∈ Zp with h = gx. Then the decisional Diffie–Hellman assumption cannot hold, since given
some triple (ga,gb,z), one could efficiently decide whether z = gab is true by first computing
the discrete logarithm b of gb, then computing gab = (ga)b and deciding whether or not z = gab.

On the other hand, the following example shows that there are groups where the discrete
logarithm assumption holds but the Decisional Diffie–Hellman Assumption does not.

Example 44 (Efficiently computable bilinear pairings). Let G be a DL-secure, finite, cyclic
group of order r with generator g, and GT another group such that there is an efficiently com-
putable pairing map e(·, ·) : G×G→GT that is bilinear and non degenerate (4.9).

In a setting like this, it is easy to show that solving DDH cannot be infeasible, since, given
some triple (ga,gb,z), it is possible to efficiently check whether z = gab by making use of the
following pairing:

e(ga,gb) ?
= e(g,z) (4.16)

Since the bilinearity properties of e(·, ·) imply e(ga,gb) = e(g,g)ab = e(g,gab), and e(g,y) =
e(g,y′) implies y = y′ due to the non-degenerate property, the equality means z = gab.

It follows that the DDH assumption is indeed stronger than the discrete log assumption, and
groups with efficient pairings cannot be DDH-secure groups.

4.1.6.3 The Computational Diffie–Hellman Assumption

Definition 4.1.6.3. Let G be a finite cyclic group of order n and let g be a generator of G. The
computational Diffie–Hellman assumption stipulates that, given randomly and independently
chosen elements a,b ∈ Zr, it is not possible to compute gab if only g, ga and gb (but not a and
b) are known. If this is the case for G, we call G a CDH-secure group.

In general, we don’t know if CDH-security is a stronger assumption than DL-security, or if
both assumptions are equivalent. We know that DL-security is necessary for CDH-security, but
the other direction is currently not well understood. In particular, there are no known DL-secure
groups that are not also CDH-secure.

To see why the discrete logarithm assumption is necessary, assume that it does not hold.
Then, given a generator g and a group element h, it is easy to compute some element x ∈ Zp
with h = gx. In that case, the computational Diffie–Hellman assumption cannot hold, since,
given g, ga and gb, it is possible to efficiently compute b, meaning that gab = (ga)b can be
computed from this data.

The computational Diffie–Hellman assumption is a weaker assumption than the Decisional
Diffie–Hellman Assumption. This means that there are groups where CDH holds and DDH
does not hold, while there cannot be groups in which DDH holds but CDH does not hold. To
see that, assume that it is efficiently possible to compute gab from g, ga and gb. Then, given
(ga,gb,z) it is easy to decide whether z = gab holds or not.

Several variations and special cases of CDH exist. For example, the square Computational
Diffie–Hellman Assumption assumes that, given g and gx, it is computationally hard to com-
pute gx2

. The inverse Computational Diffie–Hellman Assumption assumes that, given g and
gx, it is computationally hard to compute gx−1

.
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4.1.7 Hashing to Groups
4.1.7.1 Hash functions

Generally speaking, a hash function is any function that can be used to map data of arbitrary
size to fixed-size values. Since binary strings of arbitrary length are a way to represent data in
general, we can understand a hash function as the following map where {0,1}∗ represents the
set of all binary strings of arbitrary but finite length and {0,1}k represents the set of all binary
strings that have a length of exactly k bits:

H : {0,1}∗→{0,1}k (4.17)

The images of H, that is, the values returned by the hash function H, are called hash values,
digests, or simply hashes.

Notation and Symbols 8. In what follows, we call an element b ∈ {0,1} a bit. If s ∈ {0,1}∗ is
a binary string, we write |s|= k for its length, that is, for the number of bits in s. We write <>
for the empty binary string, and s =< b1,b2, . . . ,bk > for a binary string of length k.6

If two binary strings s=< b1,b2, . . . ,bk > and s′=< b′1,b
′
2, . . . ,b

′
l > are given, then we write

s||s′ for the concatenation that is the string s||s′ =< b1,b2, . . . ,bk,b′1,b
′
2, . . . ,b

′
l >.

If H is a hash function that maps binary strings of arbitrary length onto binary strings of
length k, and s ∈ {0,1}∗ is a binary string, we write H(s) j for the bit at position j in the image
H(s).

Example 45 (k-truncation hash). One of the most basic hash functions Hk : {0,1}∗→{0,1}k is
given by simply truncating every binary string s of size |s|> k to a string of size k and by filling
any string s′ of size |s′|< k with zeros. To make this hash function deterministic, we define that
both truncation and filling should happen “on the left”.

For example, if the parameter k is given by k = 3, s1 =< 0,0,0,0,1,0,1,0,1,1,1,0 > and
s2 = 1, then

A desirable property of a hash function is uniformity, which means that it should map input
values as evenly as possible over its output range. In mathematical terms, every string of length
k from {0,1}k should be generated with roughly the same probability.

Of particular interest are so-called cryptographic hash functions, which are hash functions
that are also one-way functions, which essentially means that, given a string y from {0,1}k it
is infeasible to find a string x ∈ {0,1}∗ such that H(x) = y holds. This property is usually called
preimage-resistance.

Moreover, if a string x1 ∈ {0,1}∗ is given, then it should be infeasible to find another string
x2 ∈ {0,1}∗ with x1 ̸= x2 and H(x1) = H(x2)

In addition, it should be infeasible to find two strings x1,x2 ∈ {0,1}∗ such that H(x1) =
H(x2), which is called collision resistance. It is important to note, though, that collisions
always exist, since a function H : {0,1}∗→{0,1}k inevitably maps infinitely many values onto
the same hash. In fact, for any hash function with digests of length k, finding a preimage to a
given digest can always be done using a brute force search in 2k evaluation steps. It should just
be practically impossible to compute those values, and statistically very unlikely to generate
two of them by chance.

6The difference between the notations b ∈ {0,1} and s ∈ {0,1}∗ is the following: b ∈ {0,1} means that b is
equal to either 0 or 1, whereas s is a string composed of an arbitrary number of 0s and 1s (and s can also be an
empty string).
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A third property of a cryptographic hash function is that small changes in the input string,
like changing a single bit, should generate hash values that look completely different from each
other. This is called diffusion or the avalanche effect.

Because cryptographic hash functions map tiny changes in input values onto large changes
in the output, implementation errors that change the outcome are usually easy to spot by com-
paring them to expected output values. The definitions of cryptographic hash functions are
therefore usually accompanied by some test vectors of common inputs and expected digests.
Since the empty string <> is the only string of length 0, a common test vector is the expected
digest of the empty string.

Example 46 (k-truncation hash). Consider the k-truncation hash from example 45. Since the
empty string has length 0, it follows that the digest of the empty string is the string of length k
that only contains 0s:

Hk(<>) =< 0,0, . . . ,0,0 > (4.18)

It is pretty obvious from the definition of Hk that this simple hash function is not a cryptographic
hash function. In particular, every digest is its own preimage, since Hk(y) = y for every string
of size exactly k. Finding preimages is therefore easy, so the property of preimage resistance
does not hold.

In addition, it is easy to construct collisions, as all strings s of size |s| > k that share the
same k-bits “on the right” are mapped to the same hash value. This means that this function is
not collision resistant, either.

Finally, this hash function does not have a lot of diffusion, as changing bits that are not part
of the k right-most bits won’t change the digest at all.

Computing cryptographically secure hash functions in pen-and-paper style is possible but
tedious. Fortunately, Sage can import the hashlib library, which is intended to provide a
reliable and stable base for writing Python programs that require cryptographic functions. The
following examples explain how to use hashlib in Sage.

Example 47. An example of a hash function that is generally believed to be a cryptographically
secure hash function is the so-called SHA256 hash, which, in our notation, is a function that
maps binary strings of arbitrary length onto binary strings of length 256:

SHA256 : {0,1}∗→{0,1}256 (4.19)

To evaluate a proper implementation of the SHA256 hash function, the digest of the empty
string is supposed to be the following:

SHA256(<>) = e3b0c44298 f c1c149a f b f 4c8996 f b92427ae41e4649b934ca495991b7852b855 (4.20)

For better human readability, it is common practice to represent the digest of a string not in
its binary form, but in a hexadecimal representation. We can use Sage to compute SHA256 and
freely transit between binary, hexadecimal and decimal representations. To do so, we import
hashlib’s implementation of SHA256:

157sage: import hashlib
158sage: test = ’e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934

ca495991b7852b855’
159sage: empty_string = ""
160sage: binary_string = empty_string.encode()
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161sage: hasher = hashlib.sha256(binary_string)
162sage: result = hasher.hexdigest()
163sage: type(result) # Sage represents digests as strings
164<class ’str’>
165sage: d = ZZ(’0x’+ result) # conversion to an integer
166sage: d.str(16) == test # hash is equal to test vector
167True
168sage: d.str(16) # hexadecimal representation
169e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b8

55
170sage: d.str(2) # binary representation
17111100011101100001100010001000010100110001111110000011100000101

00100110101111101111110100110010001001100101101111101110010
01001000010011110101110010000011110010001100100100110111001
00110100110010100100100101011001100100011011011110000101001
01011100001010101

172sage: d.str(10) # decimal representation
17310298733624955409702953521232258132278979990064819803499337939

7001115665086549

4.1.7.2 Hashing to cyclic groups

As we have seen in the previous section, general hash functions map binary strings of arbitrary
length onto binary strings of some fixed length. However, it is desirable in various cryptographic
primitives to not simply hash to binary strings of fixed length, but to hash into algebraic struc-
tures like groups, while keeping (some of) the properties of the hash function, like preimage
resistance or collision resistance.

Hash functions like this can be defined for various algebraic structures, but, in a sense, the
most fundamental ones are hash functions that map into groups, because they can be easily
extended to map into other structures like rings or fields.

To give a more precise definition, let G be a group and {0,1}∗ the set of all finite, binary
strings, then a hash-to-group function is a deterministic map

H : {0,1}∗→G (4.21)

As the following example shows, hashing to finite cyclic groups can be trivially achieved
for the price of some undesirable properties of the hash function:

Example 48 (Naive cyclic group hash). Let G be a finite cyclic group of order n. If the task is to
implement a hash-to-group function, one immediate approach can be based on the observation
that binary strings of size k can be interpreted as integers z ∈ Z in the range 0 ≤ z < 2k using
equation 3.13.

To be more precise, let H : {0,1}∗ → {0,1}k be a hash function for some parameter k,
g a generator of G, and s ∈ {0,1}∗ a binary string. Using equation 3.13 and notation 8, the
following expression is a non-negative integer:

zH(s) = H(s)0 ·20 +H(s)1 ·21 + . . .+H(s)k ·2k (4.22)

A hash-to-group function for the group G can then be defined as a composition of the expo-
nential map g(·) of g with the interpretation of H(s) as an integer:
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Hg : {0,1}∗→G : s 7→ gzH(s) (4.23)

Constructing a hash-to-group function like this is easy for cyclic groups, and it might be
good enough in certain applications. It is, however, almost never adequate in cryptographic
applications, as a discrete log relation might be constructible between some hash values Hg(s)
and Hg(t), regardless of whether or not G is DL-secure (see section4.1.6.1).

To be more precise, a discrete log relation between the group elements Hg(s) and Hg(t) is
any element x ∈ Zn such that Hg(s) = Hg(t)x. To see how such an x can be constructed, assume
that zH(s) has a multiplicative inverse in Zn. In this case, the element x = zH(t) · z−1

H(s) from Zn is
a discrete log relation between Hg(s) and Hg(t):

gzH(t) = gzH(t) ⇔

gzH(t) = gzH(t)·zH(s)·z−1
H(s) ⇔

gzH(t) = gzH(s)·x ⇔
Hg(t) = (Hg(s))x

Therefore, applications where discrete log relations between hash values are undesirable
need different approaches. Many of these approaches start with a way to hash into the set Zr of
modular r arithmetics.

4.1.7.3 Pedersen Hashes

The so-called Pedersen Hash Function [Pedersen, 1992] provides a way to map fixed size
tuples of elements from modular arithmetics onto elements of finite cyclic groups in such a
way that discrete log relations (see example 48) between different images are avoidable. Com-
positions of a Pedersen Hash with a general hash function (4.17) then provide hash-to-group
functions that map strings of arbitrary length onto group elements.

To be more precise, let j be an integer, G a finite cyclic group of order n, and {g1, . . . ,g j} ⊂
G a uniform and randomly generated set of generators of G. Then Pedersen’s hash function
is defined as follows:

H{g1,...,g j} : (Zr)
j→G : (x1, . . . ,x j) 7→Π

j
i=1gxi

i (4.24)

It can be shown that Pedersen’s hash function is collision-resistant under the assumption that
G is DL-secure (see section4.1.6.1). It is important to note though, that the following family of
functions does not qualify as a pseudorandom function family.

{H{g1,...,g j} | g1, . . . ,g j ∈G} (4.25)

From an implementation perspective, it is important to derive the set of generators {g1, . . . ,gk}
in such a way that they are as uniform and random as possible. In particular, any known discrete
log relation between two generators, that is, any known x∈Zn with gh = (gi)

x, must be avoided.

Example 49. To compute an actual Pedersen’s hash, consider the cyclic group Z∗5 from example
36. We know from example 40 that the elements 2 and 3 are generators of Z∗5, and it follows
that the following map is a Pedersen’s hash function:

H{2,3} : Z4×Z4→ Z∗5 ; (x,y) 7→ 2x ·3y (4.26)
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To see how this map can be calculated, we choose the input value (1,3) from Z4×Z4. Then,
using the multiplication table from (3.25), we calculate H{2,3}(1,3) = 21 ·33 = 2 ·2 = 4.

To see how the composition of a hash function with H{2,3} defines a hash-to-group function,
consider the SHA256 hash function from example 47. Given some binary string s ∈ {0,1}∗, we
can insert the two least significant bits SHA256(s)0 and SHA256(s)1 from the image SHA256(s)
into H{2,3} to get an element in F∗5. This defines the following hash-to-group function

SHA256_H{2,3} : {0,1}∗→ Z∗5 ; s 7→ 2SHA256(s)0 ·3SHA256(s)1

To see how this hash function can be calculated, consider the empty string <>. Since we know
from the Sage computation in example 47, that SHA256(<>)0 = 1 and that SHA256(<>)1 = 0,
we get SHA_256H{2,3}(<>) = 21 ·30 = 2.

Of course, computing SHA256_H{2,3} in a pen-and-paper style is difficult. However, we
can easily implement this function in Sage in the following way:

174sage: import hashlib
175sage: def SHA256_H(x):
176....: Z5 = Integers(5) # define the group type
177....: hasher = hashlib.sha256(x) # compute SHA256
178....: digest = hasher.hexdigest()
179....: z = ZZ(digest, 16) # cast into integer
180....: z_bin = z.digits(base=2, padto=256) # cast to 256

bits
181....: return Z5(2)^z_bin[0] * Z5(3)^z_bin[1]
182sage: SHA256_H(b"") # evaluate on empty string
1832
184sage: SHA256_H(b"SHA") # possible images are {1,2,3}
1853
186sage: SHA256_H(b"Math")
1871

Exercise 44. Consider the multiplicative group Z∗13 of modular 13 arithmetic from example 34.
Choose a set of 3 generators of Z∗13, define its associated Pedersen Hash Function, and compute
the Pedersen Hash of (3,7,11) ∈ Z12.

Exercise 45. Consider the Pedersen Hash from exercise 44. Compose it with the SHA256 hash
function from example 47 to define a hash-to-group function. Implement that function in Sage.

4.1.7.4 Pseudorandom Function Families in DDH-secure groups

As noted in 4.1.7.3, the family of Pederson’s hash functions, parameterized by a set of gener-
ators {g1, . . . ,g j} does not qualify as a family of pseudorandom functions, and should there-
fore not be instantiated as such. To see an example of a proper family of pseudorandom
functions in groups where the decisional Diffie–Hellman assumption (see section4.1.6.2) is
assumed to hold true, let G be a DDH-secure cyclic group of order n with generator g, and
let {a0,a1, . . . ,ak} ⊂ Z∗n be a uniform randomly generated set of numbers invertible in mod-
ular n arithmetics. Then a family of pseudorandom functions, parameterized by the seed
{a0,a1, . . . ,ak} is given as follows:

F{a0,a1,...,ak} : {0,1}k+1→G : (b0, . . . ,bk) 7→ gb0·Πk
i=1abi

i (4.27)
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Exercise 46. Consider the multiplicative group Z∗13 of modular 13 arithmetic from example 34
and the parameter k = 3. Choose a generator of Z∗13, a seed and instantiate a member of the
family given in (4.27) for that seed. Evaluate that member on the binary string < 1,0,1 >.

4.2 Commutative Rings
In the previous section, we have seen that integers are a commutative group with respect to
integer addition. However, as we know, there are two arithmetic operations defined on integers:
addition and multiplication. However, in contrast to addition, multiplication does not define a
group structure, given that integers generally don’t have multiplicative inverses. Configurations
like these constitute so-called commutative rings with unit, and are defined as follows:

Definition 4.2.0.1 (Commutative ring with unit). A commutative ring with unit (R,+, ·,1) is
a set R with two maps, + : R×R→ R and · : R×R→ R, called addition and multiplication,
and an element 1 ∈ R, called the unit, such that the following conditions hold:

• (R,+) is a commutative group where the neutral element is denoted with 0.

• Commutativity of multiplication: r1 · r2 = r2 · r1 for all r1,r2 ∈ R.

• Multiplicative neutral unit : 1 ·g = g for all g ∈ R.

• Associativity: For every g1,g2,g3 ∈ R, the equation g1 · (g2 ·g3) = (g1 ·g2) ·g3 holds.

• Distributivity: For all g1,g2,g3 ∈ R, the distributive law g1 · (g2 +g3) = g1 · g2 + g1 · g3
holds.

If (R,+, ·,1) is a commutative ring with unit, and R′ ⊂ R is a subset of R such that the restriction
of addition and multiplication to R′ define a commutative ring with addition + : R′×R′→ R′,
multiplication · : R′×R′→R′ and unit 1 on R′, then (R′,+, ·,1) is called a subring of (R,+, ·,1).
Notation and Symbols 9. Since we are exclusively concerned with commutative rings in this
book, we often just call them rings, keeping the notation of commutativity implicit. A set R with
two maps, + and ·, which satisfies all previously mentioned rules except for the commutativity
law of multiplication, is called a non-commutative ring.

If there is no risk of ambiguity (about what the addition and multiplication maps of a ring
are), we frequently drop the symbols + and · and simply write R as notation for the ring, keeping
those maps implicit. In this case we also say that R is of ring type, indicating that R is not simply
a set but a set together with an addition and a multiplication map.7

Example 50 (The ring of integers). The set Z of integers with the usual addition and multipli-
cation is the archetypical example of a commutative ring with unit 1.

188sage: ZZ
189Integer Ring

Example 51 (Underlying commutative group of a ring). Every commutative ring with unit
(R,+, ·,1) gives rise to a group, if we disregard multiplication.

7Commutative rings are a large field of research in mathematics, and countless books on the topic exist. For
our purposes, an introduction is given in chapter 1, section 2 of Lidl and Niederreiter [1986].
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The following example is somewhat unusual, but we encourage you to think through it
because it helps to detach the mind from familiar styles of computation, and concentrate on the
abstract algebraic explanation.

Example 52. Let S := {•,⋆,⊙,⊗} be a set that contains four elements, and let addition and
multiplication on S be defined as follows:

∪ • ⋆ ⊙ ⊗
• • ⋆ ⊙ ⊗
⋆ ⋆ ⊙ ⊗ •
⊙ ⊙ ⊗ • ⋆
⊗ ⊗ • ⋆ ⊙

◦ • ⋆ ⊙ ⊗
• • • • •
⋆ • ⋆ ⊙ ⊗
⊙ • ⊙ • ⊙
⊗ • ⊗ ⊙ ⋆

(4.28)

Then (S,∪,◦,⋆) is a ring with unit ⋆ and zero •. It therefore makes sense to ask for solutions to
equations like the following one:

⊗◦ (x∪⊙) = ⋆ (4.29)

The task here is to find x∈ S such that (4.29) holds. To see how such a “moonmath equation”
can be solved, we have to keep in mind that rings behave mostly like normal numbers when it
comes to bracketing and computation rules. The only differences are the symbols, and the actual
way to add and multiply them. With this in mind, we solve the equation for x in the “usual way”:
8

⊗◦ (x∪⊙) = ⋆ # apply the distributive law
⊗◦ x∪⊗◦⊙= ⋆ #⊗◦⊙=⊙
⊗◦ x∪⊙= ⋆ # concatenate the ∪ inverse of ⊙ to both sides

⊗◦ x∪⊙∪−⊙= ⋆∪−⊙ #⊙∪−⊙= •
⊗◦ x∪•= ⋆∪−⊙ # • is the ∪ neutral element
⊗◦ x = ⋆∪−⊙ # for ∪ we have −⊙=⊙
⊗◦ x = ⋆∪⊙ #⋆∪⊙=⊗
⊗◦ x =⊗ # concatenate the ◦ inverse of ⊗ to both sides

(⊗)−1 ◦⊗◦ x = (⊗)−1 ◦⊗ # multiply with the multiplicative inverse
⋆◦ x = ⋆

x = ⋆

Even though this equation looked really alien at first glance, we could solve it basically exactly
the way we solve “normal” equations containing numbers.

Note, however, that whenever a multiplicative inverse is needed to solve an equation in the
usual way in a ring, things can be very different than most of us are used to. For example,
the following equation cannot be solved for x in the usual way, since there is no multiplicative
inverse for ⊙ in our ring.

⊙◦ x =⊗ (4.30)

We can confirm this by looking at the multiplication table in (4.28) to see that no such x
exits.

8Note that there are more efficient ways to solve this equation. The point of our computation is to show how
the axioms of a ring can be used to solve the equation.
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As another example, the following equation does not have a single solution but two: x ∈
{⋆,⊗}.

⊙◦ x =⊙ (4.31)

Having no solution or two solutions is certainly not something we are used to from types
like the rational numbers Q.

Example 53 (Ring of Polynomials). Considering the definition of polynomials from section 3.4
again, we notice that what we have informally called the type R of the coefficients must in fact
be a commutative ring with a unit, since we need addition, multiplication, commutativity and
the existence of a unit for R[x] to have the properties we expect.

In fact, if we consider R to be a ring and we define addition and multiplication of polyno-
mials as in (3.29), the set R[x] is a commutative ring with a unit, where the polynomial 1 is the
multiplicative unit. We call this ring the ring of polynomials with coefficients in R.

190sage: ZZ[’x’]
191Univariate Polynomial Ring in x over Integer Ring

Example 54 (Ring of modular n arithmetic). Let n be a modulus and (Zn,+, ·) the set of all re-
mainder classes of integers modulo n, with the projection of integer addition and multiplication
as defined in section3.3.4. Then (Zn,+, ·) is a commutative ring with unit 1.

192sage: Integers(6)
193Ring of integers modulo 6

Example 55 (Binary Representations in Modular Arithmetic). (Non unique)

Example 56 (Polynomial evaluation in the exponent of group generators). As we show in section
6.2.3, a key insight in many zero-knowledge protocols is the ability to encode computations as
polynomials and then to hide the information of that computation by evaluating the polynomial
“in the exponent” of certain cryptographic groups (section 8.2).

To understand the underlying principle of this idea, consider the exponential map (4.1)
again. If G is a finite cyclic group of order n with generator g ∈ G, then the ring structure
of (Zn,+, ·) corresponds to the group structure of G in the following way:

gx+y = gx ·gy gx·y = (gx)y for all x,y ∈ Zn (4.32)

This correspondence allows polynomials with coefficients in Zn to be evaluated “in the ex-
ponent” of a group generator. To see what this means, let p ∈ Zn[x] be a polynomial with
p(x) = am · xm + am−1xm−1 + . . .+ a1x+ a0, and let s ∈ Zn be an evaluation point. Then the
previously defined exponential laws 4.32 imply the following identity:

gp(s) = gam·sm+am−1sm−1+...+a1s+a0 (4.33)

=
(

gsm
)am
·
(

gsm−1
)am−1

· . . . · (gs)a1 ·ga0

Utilizing these identities, it is possible to evaluate any polynomial p of degree deg(p)≤ m at a
“secret” evaluation point s in the exponent of g without any knowledge about s, assuming that
G is a DL-group. To see this, assume that the set {g,gs,gs2

, . . . ,gsm} is given, but s is unknown.
Then gp(s) can be computed using (4.33), but it is not feasible to compute s.
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Example 57. To give an example of the evaluation of a polynomial in the exponent of a finite
cyclic group, consider the exponential map from example 38:

3(·) : Z4→ Z∗5 ; x 7→ 3x (4.34)

Choosing the polynomial p(x) = 2x2 +3x+1 from Z4[x], we first evaluate the polynomial
at the point s = 2, and then write the result into the exponent 3 as follows:

3p(2) = 32·22+3·2+1

= 32·0+2+1

= 33

= 2

This was possible because we had access to the evaluation point 2. On the other hand, if we
only had access to the set {3,4,1} and we knew that this set represents the set {3,3s,3s2} for
some secret value s, we could evaluate p at the point s in the exponent of 3 as follows:

3p(s) = 12 ·43 ·31

= 1 ·4 ·3
= 2

Both computations agree, since the secret point s was equal to 2 in this example. However the
second evaluation was possible without any knowledge about s.

4.2.1 Hashing into Modular Arithmetic
As we have seen in section 4.1.7, various constructions for hashing to groups are known and
used in applications. As commutative rings are commutative groups when we disregard the
multiplication, hash-to-group constructions can be applied for hashing into commutative rings.
We review some frequently used applications below.

One of the most widely used applications of hash-into-ring constructions are hash functions
that map into the ring Zn of modular n arithmetics for some modulus n. Different approaches of
constructing such a function are known, but probably the most widely used ones are based on
the insight that the images of general hash functions can be interpreted as binary representations
of integers, as explained in example 48.

It follows from this interpretation that one simple method of hashing into Zn is constructed
by observing that if n is a modulus with a bit length (3.13) of k = |n|, then every binary string
< b0,b1, . . . ,bk−2 > of length k−1 defines an integer z in the rage 0≤ z≤ 2k−1−1 < n:

z = b0 ·20 +b1 ·21 + . . .+bk−2 ·2k−2 (4.35)

Now, since z < n, we know that z is guaranteed to be in the set {0,1, . . . ,n−1}, and hence it can
be interpreted as an element of Zn. Consequently, if H : {0,1}∗→{0,1}k−1 is a hash function,
then a hash-to-ring function can be constructed as follows:

H|n|2−1 : {0,1}∗→ Zr : s 7→ H(s)0 ·20 +H(s)1 ·21 + . . .+H(s)k−2 ·2k−2 (4.36)

A drawback of this hash function is that the distribution of the hash values in Zn is not
necessarily uniform. In fact, if n is larger than 2k−1, then by design H|n|2−1 will never hash onto
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values z≥ 2k−1. Using this hashing method therefore generates approximately uniform hashes
only if n is very close to 2k−1. In the worst case, when n = 2k− 1, it misses almost half of all
elements from Zn.

An advantage of this approach is that properties like preimage resistance or collision resis-
tance (see section 4.1.7.1) of the original hash function H(·) are preserved.

Example 58. To analyze a particular implementation of a H|n|2−1 hash function, we use a 5-bit
truncation of the SHA256 hash from example 47 and define a hash into Z16 as follows:

H|16|2−5 : {0,1}∗→ Z16 : s 7→ SHA256(s)0 ·20 +SHAH256(s)1 ·21 + . . .+SHA256(s)4 ·24

Since k = |16|2 = 5 and 16−2k−1 = 0, this hash maps uniformly onto Z16. We can use Sage to
implement it:

194sage: import hashlib
195sage: def Hash5(x):
196....: Z16 = Integers(16)
197....: hasher = hashlib.sha256(x) # compute SHA56
198....: digest = hasher.hexdigest()
199....: d = ZZ(digest, base=16) # cast to integer
200....: d = d.str(2)[-4:] # keep 5 least significant bits
201....: d = ZZ(d, base=2) # cast to integer
202....: return Z16(d) # cast to Z16
203sage: Hash5(b’’)
2045

We can then use Sage to apply this function to a large set of input values in order to plot a
visualization of the distribution over the set {0, . . . ,15}. Executing over 500 input values gives
the following plot:
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To get an intuition of uniformity, we can count the number of times the hash function H|16|2−1
maps onto each number in the set {0,1, . . . ,15} in a loop of 100000 hashes, and compare that
to the ideal uniform distribution, which would map exactly 6250 samples to each element. This
gives the following result:
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The lack of uniformity becomes apparent if we want to construct a similar hash function for Zn
for any other 5 bit integer n in the range 17 ≤ n ≤ 31. In this case, the definition of the hash
function is exactly the same as for Z16, and hence, the images will not exceed the value 15.
So, for example, even in the case of hashing to Z31, the hash function never maps to any value
larger than 15, leaving almost half of all numbers out of the image range.
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A second widely used method of hashing into Zn is constructed by observing the following:
If n is a modulus with a bit-length of |n|2 = k1, and H : {0,1}∗→ {0,1}k2 is a hash function
that produces digests of size k2, and k2 ≥ k1, then a hash-to-ring function can be constructed by
interpreting the image of H as a binary representation of an integer, and then taking the modulus
by n to map into Zn:.

H ′modn
: {0,1}∗→ Zn : s 7→

(
H(s)0 ·20 +H(s)1 ·21 + . . .+H(s)k2 ·2

k2
)

mod n (4.37)

A drawback of this hash function is that computing the modulus requires some computa-
tional effort. In addition, the distribution of the hash values in Zn might not be uniform, de-
pending on the number 2k2+1 mod n. An advantage of this function is that potential properties
of the original hash function H(·) (like preimage resistance or collision resistance) are pre-
served, and the distribution can be made almost uniform, with only negligible bias depending
on what modulus n and images size k2 are chosen.
Example 59. To give an implementation of the Hmodn hash function, we use k2-bit truncation of
the SHA256 hash from example 47, and define a hash into Z23 as follows:

Hmod23,k2 : {0,1}∗→ Z23 :

s 7→
(

SHA256(s)0 ·20 +SHAH256(s)1 ·21 + . . .+SHA256(s)k2 ·2
k2
)

mod 23

57



CHAPTER 4. ALGEBRA 4.2. COMMUTATIVE RINGS

We want to use various instantiations of k2 to visualize the impact of truncation length on the
distribution of the hashes in Z23. We can use Sage to implement it as follows:

205sage: import hashlib
206sage: Z23 = Integers(23)
207sage: def Hash_mod23(x, k2):
208....: hasher = hashlib.sha256(x.encode(’utf-8’)) # Compute

SHA256
209....: digest = hasher.hexdigest()
210....: d = ZZ(digest, base=16) # cast to integer
211....: d = d.str(2)[-k2:] # keep k2+1 LSB
212....: d = ZZ(d, base=2) # cast to integer
213....: return Z23(d) # cast to Z23

We can then use Sage to apply this function to a large set of input values in order to plot
visualizations of the distribution over the set {0, . . . ,22} for various values of k2, by counting
the number of times it maps onto each number in a loop of 100000 hashes. We get the following
plot:
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4.2.1.1 The “try-and-increment” method

A third method that can sometimes be found in implementations is the so-called “try-and-
increment” method. To understand this method, we define an integer z ∈ Z from any hash
value H(s) as we did in the previous methods:

z = H(s)0 ·20 +H(s)1 ·21 + . . .+H(s)k−1 ·2k (4.38)

Hashing into Zn is then achievable by first computing z, and then trying to see if z ∈ Zn. If it
is, then the hash is done; if not, the string s is modified in a deterministic way and the process is
repeated until a suitable element z∈Zn is found. A suitable, deterministic modification could be
to concatenate the original string by some bit counter. A “try-and-increment” algorithm would
then work like in algorithm 6.

Depending on the parameters, this method can be very efficient. In fact, if k is sufficiently
large and n is close to 2k+1, the probability for z< n is very high, and the repeat loop will almost
always be executed a single time only. A drawback is, however, that the probability of having
to execute the loop multiple times is not zero.
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Algorithm 6 Hash-to-Zn

Require: n ∈ Z with |n|2 = k and s ∈ {0,1}∗
procedure TRY-AND-INCREMENT(n,k,s)

c← 0
repeat

s′← s||c_bits()
z← H(s′)0 ·20 +H(s′)1 ·21 + . . .+H(s′)k ·2k

c← c+1
until z < n
return x

end procedure
Ensure: z ∈ Zn

4.3 Fields
We started this chapter with the definition of a group (section 4.1), which we then expanded into
the definition of a commutative ring with a unit (section4.2). These types of rings generalize
the behavior of integers. In this section, we look at those special cases of commutative rings
where every element other than the neutral element of addition has a multiplicative inverse.
Those structures behave very much like the set of rational numbers Q. Rational numbers are,
in a sense, an extension of the ring of integers, that is, they are constructed by including newly
defined multiplicative inverses (fractions) to the integers. Fields are defined as follows:

Definition 4.3.0.1 (Field). A field (F,+, ·) is a set F with two maps + : F× F→ F and · :
F×F→ F called addition and multiplication, such that the following conditions hold:

• (F,+) is a commutative group, where the neutral element is denoted by 0.

• (F\{0} , ·) is a commutative group, where the neutral element is denoted by 1.

• (Distributivity) The equation g1 · (g2 +g3) = g1 ·g2 +g1 ·g3 holds for all g1,g2,g3 ∈ F.

If (F,+, ·) is a field and F′ ⊂ F is a subset of F such that the restriction of addition and multi-
plication to F′ define a field with addition + : F′×F′→ F′ and multiplication · : F′×F′→ F′
on F′, then (F′,+, ·) is called a subfield of (F,+, ·) and (F,+, ·) is called an extension field of
(F′,+, ·).
Notation and Symbols 10. If there is no risk of ambiguity (about what the addition and mul-
tiplication maps of a field are), we frequently omit the symbols + and ·, and simply write F
as notation for a field, keeping maps implicit. In this case, we also say that F is of field type,
indicating that F is not simply a set but a set with an addition and a multiplication map that
satisfies the definition of a field (4.3.0.1).9

We call (F,+) the additive group of the field. We use the notation F∗ := F \ {0} for the
set of all elements excluding the neutral element of addition, called (F∗, ·) the multiplicative
group of the field.

The characteristic of a field F, represented as char(F), is the smallest natural number n≥ 1
for which the n-fold sum of the multiplicative neutral element 1 equals zero, i.e. for which

9Since fields are of great importance in cryptography and number theory, many books exists on that topic. For
a general introduction, see, for example, chapter 6, section 1 in Mignotte [1992], or chapter 1, section 2 in Lidl and
Niederreiter [1986].
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∑
n
i=1 1 = 0. If such an n > 0 exists, the field is said to have a finite characteristic. If, on the

other hand, every finite sum of 1 is such that it is not equal to zero, then the field is defined to
have characteristic 0.

Example 60 (Field of rational numbers). Probably the best known example of a field is the set
of rational numbers Q together with the usual definition of addition, subtraction, multiplication
and division. Since there is no natural number n ∈ N such that ∑

n
j=0 1 = 0 in the set of rational

numbers, the characteristic of the field Q is given by char(Q) = 0.

214sage: QQ
215Rational Field

Example 61 (Field with two elements). It can be shown that, in any field, the neutral element of
addition 0 must be different from the neutral element of multiplication 1, that is, 0 ̸= 1 always
holds in a field. This means that the smallest field must contain at least two elements. As the
following addition and multiplication tables show, there is indeed a field with two elements,
which is usually called F2:

Let F2 := {0,1} be a set that contains two elements, and let addition and multiplication on
F2 be defined as follows:

+ 0 1
0 0 1
1 1 0

· 0 1
0 0 0
1 0 1

(4.39)

Since 1+ 1 = 0 in the field F2, we know that the characteristic of F2 given by char(F2) = 2.
The multiplicative subgroup F∗2 of F2 is given by the trivial group {1}.

216sage: F2 = GF(2)
217sage: F2(1) # Get an element from GF(2)
2181
219sage: F2(1) + F2(1) # Addition
2200
221sage: F2(1) / F2(1) # Division
2221

Exercise 47. Consider the ring of modular 5 arithmetics (Z5,+, ·) from example 16. Show that
(Z5,+, ·) is a field. What is the characteristic of Z5? Prove that the equation a · x = b has only
a single solution x ∈ Z5 for any given a,b ∈ Z∗5.

Exercise 48. Consider the ring of modular 6 arithmetics (Z6,+, ·) from example 11. Show that
(Z6,+, ·) is not a field.

4.3.1 Prime fields
As we have seen in many of the examples in previous sections, modular arithmetic behaves
similarly to the ordinary arithmetics of integers in many ways. This is due to the fact that
remainder class sets Zn are commutative rings with units (see example 54).

However, we have also seen in example 37 that, whenever the modulus is a prime number,
every remainder class other than the zero class has a modular multiplicative inverse. This is an
important observation, since it immediately implies that, in case the modulus is a prime number,
the remainder class set Zn is not just a ring but actually a field. Moreover, since ∑

n
j=0 1 = 0 in

Zn, we know that those fields have the finite characteristic n.
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Notation and Symbols 11 (Prime Fields). Let p ∈ P be a prime number and (Zp,+, ·) the ring
of modular p arithmetics (see example 54). To distinguish prime fields from arbitrary modular
arithmetic rings, we write (Fp,+, ·) for the ring of modular p arithmetics and call it the prime
field of characteristic p.

Prime fields are the foundation of many of the contemporary algebra-based cryptographic
systems, as they have a number of desirable properties. One of these is that any prime field
of characteristic p contains exactly p elements, which can be represented on a computer with
not more than log2(p) many bits. On the other hand, fields like rational numbers require a
potentially unbounded amount of bits for any full-precision representation.10

Since prime fields are special cases of modular arithmetic rings, addition and multiplication
can be computed by first doing normal integer addition and multiplication, and then considering
the remainder in Euclidean division by p as the result. For any prime field element x ∈ Fp, its
additive inverse (the negative) is given by −x = p− x mod p. For x ̸= 0, the multiplicative
inverse always exists, and is given by x−1 = xp−2. Division is then defined by multiplication
with the multiplicative inverse, as explained in section 3.3.5. Alternatively, the multiplicative
inverse can be computed using the Extended Euclidean Algorithm as explained in (3.24).

Example 62. The smallest field is the field F2 of characteristic 2, as we have seen in example
61. It is the prime field of the prime number 2.

Example 63. The field F5 from example 16 is a prime field, as defined by its addition and
multiplication table (3.25).

Example 64. To summarize the basic aspects of computation in prime fields, let us consider the
prime field F5 (example 16) and simplify the following expression:(

2
3
−2
)
·2 (4.40)

The first thing to note is that, since F5 is a field, all rules are identical to the rules we learned in
school when we where dealing with rational, real or complex numbers. This means we can use
methods like bracketing (distributivity) or addition as usual. For ease of computation, we can
consult the addition and multiplication tables in (3.25).(

2
3
−2
)
·2 =

2
3
·2−2 ·2 # distributive law

=
2 ·2

3
−2 ·2 4 mod 5 = 4

=
4
3
−4 # multiplicative inverse of 3 is 35−2 mod 5 = 2

= 4 ·2−4 # additive inverse of 4 is 5−4 = 1
= 4 ·2+1 8 mod 5 = 3
= 3+1 4 mod 5 = 4
= 4

In this example, we computed the multiplicative inverse of 3 using the identity x−1 = xp−2

in a prime field. This is impractical for large prime numbers. Recall that another way of
computing the multiplicative inverse is the Extended Euclidean Algorithm (see 3.12). To refresh

10For a detailed introduction to the theory of prime fields, see, for example, chapter 2 in Lidl and Niederreiter
[1986], or chapter 6 in Mignotte [1992].
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our memory, the algorithm solves the equation x−1 · 3+ t · 5 = 1, for x−1 (even though t is
irrelevant in this case). We get the following:

k rk x−1
k tk

0 3 1 ·
1 5 0 ·
2 3 1 ·
3 2 -1 ·
4 1 2 ·

(4.41)

So the multiplicative inverse of 3 in Z5 is 2, and, indeed, if we compute the product of 3 with
its multiplicative inverse 2, we get the neutral element 1 in F5.

Exercise 49 (Prime field F3). Construct the addition and multiplication table of the prime field
F3.

Exercise 50 (Prime field F13). Construct the addition and multiplication table of the prime field
F13.

Exercise 51. Consider the prime field F13 from exercise 50. Find the set of all pairs (x,y) ∈
F13×F13 that satisfy the following equation:

x2 + y2 = 1+7 · x2 · y2 (4.42)

4.3.2 Square Roots
As we know from integer arithmetics, some integers, like 4 or 9, are squares of other integers:
for example, 4 = 22 and 9 = 32. However, we also know that not all integers are squares of
other integers: for example, there is no integers x ∈ Z such that x2 = 2. If an integer a is square
of another integer b, then it make sense to define the square root of a to be b.

In the context of prime fields, an element that is a square of another element is also called a
quadratic residue, and an element that is not a square of another element is called a quadratic
non-residue. This distinction is of particular importance in our studies on elliptic curves (chap-
ter 5), as only square numbers can actually be points on an elliptic curve.

To make the intuition of quadratic residues and their roots precise, we give the following
definition:

Definition 4.3.2.1. let p∈P be a prime number and Fp its associated prime field. Then a number
x ∈ Fp is called a square root of another number y ∈ Fp, if x is a solution to the following
equation:

x2 = y (4.43)

In this case, y is called a quadratic residue. On the other hand, if y is given and the quadratic
equation has no solution x , we call y a quadratic non-residue.11

For any y ∈ Fp, we denote the set of all square roots of y in the prime field Fp as follows:

√
y := {x ∈ Fp | x2 = y} (4.44)

Informally speaking, quadratic residues are numbers that have a square root, while quadratic
non-residues are numbers that don’t have square roots. The situation therefore parallels the

11A more detailed introduction to quadratic residues and their square roots in addition with an introduction to
algorithms that compute square roots can be found, for example, in chapter 1, section 1.5 of Cohen [2010].
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familiar case of integers, where some integers like 4 or 9 have a square root, and others like 2
or 3 don’t (within the ring of integers).

If y is a quadratic non-residue, then
√

y = /0 (an empty set), and if y = 0, then
√

y = {0}.
Moreover if y ̸= 0 is a quadratic residue, then it has precisely two roots

√
y = {x, p− x} for

some x ∈ Fp. We adopt the convention to call the smaller one (when interpreted as an integer)
the positive square root and the larger one the negative square root.

If p ∈ P≥3 is an odd prime number with associated prime field Fp, then there are precisely
(p+1)/2 many quadratic residues and (p−1)/2 quadratic non-residues.

Example 65 (Quadratic residues and roots in F5). Let us consider the prime field F5 from ex-
ample 16 again. All square numbers can be found on the main diagonal of the multiplication
table in (3.25). As you can see, in F5, only the numbers 0, 1 and 4 have square roots:

√
0 = {0},√

1 = {1,4},
√

2 = /0,
√

3 = /0 and
√

4 = {2,3}. The numbers 0, 1 and 4 are therefore quadratic
residues, while the numbers 2 and 3 are quadratic non-residues.

In order to describe whether an element of a prime field is a square number or not, the so-
called Legendre symbol can sometimes be found in the literature (e.g. chapter 1, section 1.5.
of Cohen [2010]), defined as follows:

Let p ∈ P be a prime number and y ∈ Fp an element from the associated prime field. Then
the Legendre symbol of y is defined as follows:

(
y
p

)
:=


1 if y has square roots
−1 if y has no square roots
0 if y = 0

(4.45)

Example 66. Looking at the quadratic residues and non-residues in F5 from example 16 again,
we can deduce the following Legendre symbols based on example 65.(0

5

)
= 0,

(1
5

)
= 1,

(2
5

)
=−1,

(3
5

)
=−1,

(4
5

)
= 1 .

The Legendre symbol provides a criterion to decide whether or not an element from a prime
field has a quadratic root or not. This, however, is not just of theoretical use: the so-called Euler
criterion provides a compact way to actually compute the Legendre symbol. To see that, let
p ∈ P≥3 be an odd prime number and y ∈ Fp. Then the Legendre symbol can be computed as
follows: (

y
p

)
= y

p−1
2 (4.46)

Example 67. Looking at the quadratic residues and non-residues in F5 from example 65 again,
we can compute the following Legendre symbols using the Euler criterion:(

0
5

)
= 0

5−1
2 = 02 = 0(

1
5

)
= 1

5−1
2 = 12 = 1(

2
5

)
= 2

5−1
2 = 22 = 4 =−1(

3
5

)
= 3

5−1
2 = 32 = 4 =−1(

4
5

)
= 4

5−1
2 = 42 = 1
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Exercise 52. Consider the prime field F13 from exercise 50. Compute the Legendre symbol( x
13

)
and the set of roots

√
x for all elements x ∈ F13.

4.3.2.1 Hashing into prime fields

An important problem in cryptography is the ability to hash to (various subsets) of elliptic
curves. As we will see in chapter 5, those curves are often defined over prime fields, and hashing
to a curve might start with hashing to the prime field. It is therefore important to understand
how to hash into prime fields.

In section 4.2.1, we looked at a few methods of hashing into the modular arithmetic rings
Zn for arbitrary n > 1. As prime fields are just special instances of those rings, all methods for
hashing into Zn functions can be used for hashing into prime fields, too.

4.3.3 Prime Field Extensions
Prime fields, as defined in the previous section, are basic building blocks of cryptography. How-
ever, as we will see in chapter 8, so-called pairing-based SNARK systems are crucially depen-
dent on certain group pairings (4.9) defined on elliptic curves over prime field extensions. In
this section, we therefore introduce those extensions.12

Given some prime number p ∈ P, a natural number m ∈ N, and an irreducible polyno-
mial P ∈ Fp[x] of degree m with coefficients from the prime field Fp, a prime field extension
(Fpm ,+, ·) is defined as follows.

The set Fpm of the prime field extension is given by the set of all polynomials with a degree
less than m:

Fpm := {am−1xm−1 +ak−2xk−2 + . . .+a1x+a0 | ai ∈ Fp} (4.47)

The addition law of the prime field extension Fpm is given by the usual addition of polynomials
as defined in (3.29):

+ : Fpm×Fpm → Fpm ,(∑m
j=0 a jx j,∑m

j=0 b jx j) 7→ ∑
m
j=0(a j +b j)x j (4.48)

The multiplication law of the prime field extension Fpm is given by first multiplying the two
polynomials as defined in (3.30), then dividing the result by the irreducible polynomial p and
keeping the remainder:

· : Fpm×Fpm → Fpm , (∑m
j=0 a jx j,∑m

j=0 b jx j) 7→
(
∑

2m
n=0 ∑

n
i=0 aibn−ixn) mod P (4.49)

The neutral element of the additive group (Fpm,+) is given by the zero polynomial 0. The
additive inverse is given by the polynomial with all negative coefficients. The neutral element
of the multiplicative group (F∗pm, ·) is given by the unit polynomial 1. The multiplicative inverse
can be computed by the Extended Euclidean Algorithm (see 3.12).

We can see from the definition of Fpm that the field is of characteristic p, since the mul-
tiplicative neutral element 1 is equivalent to the multiplicative element 1 from the underlying
prime field, and hence ∑

p
j=0 1 = 0. Moreover, Fpm is finite and contains pm many elements,

since elements are polynomials of degree < m, and every coefficient a j can have p many differ-
ent values. In addition, we see that the prime field Fp is a subfield of Fpm that occurs when we
restrict the elements of Fpm to polynomials of degree zero.

12A more detailed introduction can be found for example in chapter 2 of Lidl and Niederreiter [1986].
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One key point is that the construction of Fpm depends on the choice of an irreducible polyno-
mial, and, in fact, different choices will give different multiplication tables, since the remainders
from dividing a polynomial product by those polynomials will be different.

It can, however, be shown that the fields for different choices of P are isomorphic, which
means that there is a one-to-one correspondence between all of them. As a result, from an ab-
stract point of view, they are the same thing. From an implementations point of view, however,
some choices are preferable to others because they allow for faster computations.

Remark 3. Similarly to the way prime fields Fp are generated by starting with the ring of integers
and then dividing by a prime number p and keeping the remainder, prime field extensions Fpm

are generated by starting with the ring Fp[x] of polynomials and then dividing them by an
irreducible polynomial of degree m and keeping the remainder.

In fact, it can be shown that Fpm is the set of all remainders when dividing any polynomial
Q ∈ Fp[x] by an irreducible polynomial P of degree m. This is analogous to how Fp is the set of
all remainders when dividing integers by p.

Any field Fpm constructed in the above manner is a field extension of Fp. To be more
general, a field Fpm2 is a field extension of a field Fpm1 if and only if m1 divides m2. From this,
we can deduce that, for any given fixed prime number, there are nested sequences of subfields
whenever the power m j divides the power m j+1:

Fp ⊂ Fpm1 ⊂ ·· · ⊂ Fpmk (4.50)

To get a more intuitive picture of this, we construct an extension field of the prime field F3
in the following example, and we can see how F3 sits inside that extension field.

Example 68 (The Extension field F32). In exercise 49, we have constructed the prime field F3.
In this example, we apply the definition of a field extension (4.47) to construct the extension
field F32 . We start by choosing an irreducible polynomial of degree 2 with coefficients in F3.
We try P(t) = t2 + 1. Possibly the fastest way to show that P is indeed irreducible is to just
insert all elements from F3 to see if the result is ever zero. We compute as follows:

P(0) = 02 +1 = 1

P(1) = 12 +1 = 2

P(2) = 22 +1 = 1+1 = 2

This implies that P is irreducible, since all factors must be of the form (t−a) for a being a root
of P. The set F32 contains all polynomials of degrees lower than two with coefficients in F3,
which are precisely as listed below:

F32 = {0,1,2, t, t +1, t +2,2t,2t +1,2t +2} (4.51)

As expected, our extension field contains 9 elements. Addition is defined as addition of
polynomials; for example (t + 2)+ (2t + 2) = (1+ 2)t +(2+ 2) = 1. Doing this computation
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for all elements gives the following addition table

+ 0 1 2 t t+1 t+2 2t 2t+1 2t+2
0 0 1 2 t t+1 t+2 2t 2t+1 2t+2
1 1 2 0 t+1 t+2 t 2t+1 2t+2 2t
2 2 0 1 r+2 t t+1 2t+2 2t 2t+1
t t t+1 t+2 2t 2t+1 2t+2 0 1 2

t+1 t+1 t+2 t 2t+1 2t+2 2t 1 2 0
t+2 t+2 t t+1 2t+2 2t 2t+1 2 0 1
2t 2t 2t+1 2t+2 0 1 2 t t+1 t+2

2t+1 2t+1 2t+2 2t 1 2 0 t+1 t+2 t
2t+2 2t+2 2t 2t+1 2 0 1 t+2 t t+1

(4.52)

As we can see, the group (F3,+) is a subgroup of the group (F32,+), obtained by only
considering the first three rows and columns of this table.

We can use the addition table (4.52) to deduce the additive inverse (the negative) of any
element from F32 . For example, in F32 we have −(2t +1) = t +2, since (2t +1)+(t +2) = 0.

Multiplication needs a bit more computation, as we first have to multiply the polynomials,
and whenever the result has a degree ≥ 2, we have to apply a polynomial division algorithm
(algorithm 3) to divide the product by the polynomial P and keep the remainder. To see how
this works, let us compute the product of t +2 and 2t +2 in F32:

(t +2) · (2t +2) = (2t2 +2t + t +1) mod (t2 +1)

= (2t2 +1) mod (t2 +1) # 2t2 +1 : t2 +1 = 2+
2

t2 +1
= 2

This means that the product of t +2 and 2t +2 in F32 is 2. Performing this computation for all
elements gives the following multiplication table:

· 0 1 2 t t+1 t+2 2t 2t+1 2t+2
0 0 0 0 0 0 0 0 0 0
1 0 1 2 t t+1 t+2 2t 2t+1 2t+2
2 0 2 1 2t 2t+2 2t+1 t t+2 t+1
t 0 t 2t 2 t+2 2t+2 1 t+1 2t+1

t+1 0 t+1 2t+2 t+2 2t 1 2t+1 2 t
t+2 0 t+2 2t+1 2t+2 1 t t+1 2t 2
2t 0 2t t 1 2t+1 t+1 2 2t+2 t+2

2t+1 0 2t+1 t+2 t+1 2 2t 2t+2 t 1
2t+2 0 2t+2 t+1 2t+1 t 2 t+2 1 2t

(4.53)

As was the case in previous examples, we can use the table (4.53) to deduce the multiplicative
inverse of any non-zero element from F32 . For example, in F32 we have (2t + 1)−1 = 2t + 2,
since (2t +1) · (2t +2) = 1.

Looking at the multiplication table (4.53), we can also see that the only quadratic residues
in F32 are from the set {0,1,2, t,2t}, with

√
0 = {0},

√
1 = {1,2},

√
2 = {t,2t},

√
t = {t +

2,2t +1} and
√

2t = {t +1,2t +2}.
Since F32 is a field, we can solve equations as we would for other fields (such as rational

numbers). To see that, let us find all x ∈ F32 that solve the quadratic equation (t +1)(x2 +(2t +
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2)) = 2. We compute as follows:

(t +1)(x2 +(2t +2)) = 2 # 2 distributive law

(t +1)x2 +(t +1)(2t +2) = 2

(t +1)x2 +(t) = 2 # 2 add the additive inverse of t

(t +1)x2 +(t)+(2t) = (2)+(2t)

(t +1)x2 = 2t +2 # multiply with the multiplicative inverse of t +1

(t +2)(t +1)x2 = (t +2)(2t +2) # multiply with the multiplicative inverse of t +1

x2 = 2 # 2 is quadratic residue. Take the roots.
x ∈ {t,2t}

Computations in extension fields are arguably on the edge of what can reasonably be done with
pen and paper. Fortunately, Sage provides us with a simple way to do these computations.

223sage: Z3 = GF(3) # prime field
224sage: Z3t.<t> = Z3[] # polynomials over Z3
225sage: P = Z3t(t^2+1)
226sage: P.is_irreducible()
227True
228sage: F3_2.<t> = GF(3^2, name=’t’, modulus=P) # Extension

field F_3^2
229sage: F3_2
230Finite Field in t of size 3^2
231sage: F3_2(t+2)*F3_2(2*t+2) == F3_2(2)
232True
233sage: F3_2(2*t+2)^(-1) # multiplicative inverse
2342*t + 1
235sage: # verify our solution to (t+1)(x^2 + (2t+2)) = 2
236sage: F3_2(t+1)*(F3_2(t)**2 + F3_2(2*t+2)) == F3_2(2)
237True
238sage: F3_2(t+1)*(F3_2(2*t)**2 + F3_2(2*t+2)) == F3_2(2)
239True

Exercise 53. Consider the extension field F32 from the previous example and find all pairs of
elements (x,y) ∈ F32 , for which the following equation holds:

y2 = x3 +4 (4.54)

Exercise 54. Show that the polynomial Q = x2 + x+2 from F3[x] is irreducible. Construct the
multiplication table of F32 with respect to Q and compare it to the multiplication table of F32

from example 68.
Exercise 55. Show that the polynomial P = t3 + t +1 from F5[t] is irreducible. Then consider
the extension field F53 defined relative to P. Compute the multiplicative inverse of (2t2 +4) ∈
F53 using the Extended Euclidean Algorithm. Then find all x ∈ F53 that solve the following
equation:

(2t2 +4)(x− (t2 +4t +2)) = (2t +3) (4.55)

Exercise 56. Consider the prime field F5. Show that the polynomial P = x2 + 2 from F5[x] is
irreducible. Implement the finite field F52 in Sage.

67



CHAPTER 4. ALGEBRA 4.4. PROJECTIVE PLANES

4.4 Projective Planes
Projective planes are particular geometric constructs defined over a given field. In a sense,
projective planes extend the concept of the ordinary Euclidean plane by including “points at
infinity.”13

To understand the idea of constructing of projective planes, note that, in an ordinary Eu-
clidean plane, two lines either intersect in a single point or are parallel. In the latter case, both
lines are either the same, that is, they intersect in all points, or do not intersect at all. A projec-
tive plane can then be thought of as an ordinary plane, but equipped with an additional “point at
infinity” such that two different lines always intersect in a single point. Parallel lines intersect
“at infinity”.

Such an inclusion of infinity points makes projective planes particularly useful in the de-
scription of elliptic curves, as the description of such a curve in an ordinary plane needs an
additional symbol for “the point at infinity” to give the set of points on the curve the structure
of a group 5.1. Translating the curve into projective geometry includes this “point at infinity”
more naturally into the set of all points on a projective plane.

To be more precise, let F be a field, F3 := F×F×F the set of all tuples of three elements
over F and x ∈ F3 with x = (X ,Y,Z). Then there is exactly one line Lx in F3 that intersects both
(0,0,0) and x, given by the set Lx = {(k ·X ,k ·Y,k ·Z) | k ∈ F}. A point in the projective plane
over F can then be defined as such a line if we exclude the intersection of that line with (0,0,0).
This leads to the following definition of a point in projective geometry:

[X : Y : Z] := {(k ·X ,k ·Y,k ·Z) | k ∈ F∗} (4.56)

Points in projective geometry are therefore lines in F3 where the intersection with (0,0,0) is
excluded. Given a field F, the projective plane of that field is then defined as the set of all
points excluding the point [0 : 0 : 0]:

FP2 := {[X : Y : Z] | (X ,Y,Z) ∈ F3 with (X ,Y,Z) ̸= (0,0,0)} (4.57)

It can be shown that a projective plane over a finite field Fpm contains p2m + pm +1 number of
elements.

To understand why the projective point [X : Y : Z] is also a line, consider the situation where
the underlying field F is the set of rational numbers Q. In this case, Q3 can be seen as the three-
dimensional space, and [X : Y : Z] is an ordinary line in this 3-dimensional space that intersects
zero and the point with coordinates X , Y and Z such that the intersection with zero is excluded.

The key observation here is that points in the projective plane FP2 are lines in the 3-
dimensional space F3. However, it should be kept in mind that, for finite fields, the terms
space and line share very little visual similarity with their counterparts over the set of rational
numbers.

It follows from this that points [X : Y : Z] ∈ FP2 are not simply described by fixed coor-
dinates (X ,Y,Z), but by sets of coordinates, where two different coordinates (X1,Y1,Z1) and
(X2,Y2,Z2) describe the same point if and only if there is some non-zero field element k ∈ F∗
such that (X1,Y1,Z1) = (k ·X2,k ·Y2,k ·Z2). Points [X : Y : Z] are called projective coordinates.

Notation and Symbols 12 (Projective coordinates). Projective coordinates of the form [X : Y : 1]
are descriptions of so-called affine points. Projective coordinates of the form [X : Y : 0] are
descriptions of so-called points at infinity. In particular, the projective coordinate [1 : 0 : 0]
describes the so-called line at infinity.

13A detailed explanation of the ideas that lead to the definition of projective planes can be found, for example,
in chapter 2 of Ellis and Ellis [1992] or in appendix A of Silverman and Tate [1994].
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Example 69. Consider the field F3 from exercise 49 . As this field only contains three elements,
it does not take too much effort to construct its associated projective plane F3P2, which we
know only contains 13 elements.

To find F3P2, we have to compute the set of all lines in F3×F3×F3 that intersect (0,0,0),
excluding their intersection with (0,0,0). Since those lines are parameterized by tuples (x1,x2,x3),
we compute as follows:

[0 : 0 : 1] = {(k · x1,k · x2,k · x3) | k ∈ F∗3}= {(0,0,1),(0,0,2)}
[0 : 0 : 2] = {(k · x1,k · x2,k · x3) | k ∈ F∗3}= {(0,0,2),(0,0,1)}= [0 : 0 : 1]
[0 : 1 : 0] = {(k · x1,k · x2,k · x3) | k ∈ F∗3}= {(0,1,0),(0,2,0)}
[0 : 1 : 1] = {(k · x1,k · x2,k · x3) | k ∈ F∗3}= {(0,1,1),(0,2,2)}
[0 : 1 : 2] = {(k · x1,k · x2,k · x3) | k ∈ F∗3}= {(0,1,2),(0,2,1)}
[0 : 2 : 0] = {(k · x1,k · x2,k · x3) | k ∈ F∗3}= {(0,2,0),(0,1,0)}= [0 : 1 : 0]
[0 : 2 : 1] = {(k · x1,k · x2,k · x3) | k ∈ F∗3}= {(0,2,1),(0,1,2)}= [0 : 1 : 2]
[0 : 2 : 2] = {(k · x1,k · x2,k · x3) | k ∈ F∗3}= {(0,2,2),(0,1,1)}= [0 : 1 : 1]
[1 : 0 : 0] = {(k · x1,k · x2,k · x3) | k ∈ F∗3}= {(1,0,0),(2,0,0)}
[1 : 0 : 1] = {(k · x1,k · x2,k · x3) | k ∈ F∗3}= {(1,0,1),(2,0,2)}
[1 : 0 : 2] = {(k · x1,k · x2,k · x3) | k ∈ F∗3}= {(1,0,2),(2,0,1)}
[1 : 1 : 0] = {(k · x1,k · x2,k · x3) | k ∈ F∗3}= {(1,1,0),(2,2,0)}
[1 : 1 : 1] = {(k · x1,k · x2,k · x3) | k ∈ F∗3}= {(1,1,1),(2,2,2)}
[1 : 1 : 2] = {(k · x1,k · x2,k · x3) | k ∈ F∗3}= {(1,1,2),(2,2,1)}
[1 : 2 : 0] = {(k · x1,k · x2,k · x3) | k ∈ F∗3}= {(1,2,0),(2,1,0)}
[1 : 2 : 1] = {(k · x1,k · x2,k · x3) | k ∈ F∗3}= {(1,2,1),(2,1,2)}
[1 : 2 : 2] = {(k · x1,k · x2,k · x3) | k ∈ F∗3}= {(1,2,2),(2,1,1)}
[2 : 0 : 0] = {(k · x1,k · x2,k · x3) | k ∈ F∗3}= {(2,0,0),(1,0,0)}= [1 : 0 : 0]
[2 : 0 : 1] = {(k · x1,k · x2,k · x3) | k ∈ F∗3}= {(2,0,1),(1,0,2)}= [1 : 0 : 2]
[2 : 0 : 2] = {(k · x1,k · x2,k · x3) | k ∈ F∗3}= {(2,0,2),(1,0,1)}= [1 : 0 : 1]
[2 : 1 : 0] = {(k · x1,k · x2,k · x3) | k ∈ F∗3}= {(2,1,0),(1,2,0)}= [1 : 2 : 0]
[2 : 1 : 1] = {(k · x1,k · x2,k · x3) | k ∈ F∗3}= {(2,1,1),(1,2,2)}= [1 : 2 : 2]
[2 : 1 : 2] = {(k · x1,k · x2,k · x3) | k ∈ F∗3}= {(2,1,2),(1,2,1)}= [1 : 2 : 1]
[2 : 2 : 0] = {(k · x1,k · x2,k · x3) | k ∈ F∗3}= {(2,2,0),(1,1,0)}= [1 : 1 : 0]
[2 : 2 : 1] = {(k · x1,k · x2,k · x3) | k ∈ F∗3}= {(2,2,1),(1,1,2)}= [1 : 1 : 2]
[2 : 2 : 2] = {(k · x1,k · x2,k · x3) | k ∈ F∗3}= {(2,2,2),(1,1,1)}= [1 : 1 : 1]

These lines define the 13 points in the projective plane F3P:

F3P= {[0 : 0 : 1], [0 : 1 : 0], [0 : 1 : 1], [0 : 1 : 2], [1 : 0 : 0], [1 : 0 : 1],
[1 : 0 : 2], [1 : 1 : 0], [1 : 1 : 1], [1 : 1 : 2], [1 : 2 : 0], [1 : 2 : 1], [1 : 2 : 2]}

This projective plane contains 9 affine points, three points at infinity and one line at infinity.
To understand the ambiguity in projective coordinates a bit better, let us consider the point

[1 : 2 : 2]. As this point in the projective plane is a line in F3
3\{(0,0,0)}, it has the projective

coordinates (1,2,2) as well as (2,1,1), since the former coordinate gives the latter when multi-
plied in F3 by the factor 2. In addition, note that, for the same reasons, the points [1 : 2 : 2] and
[2 : 1 : 1] are the same, since their underlying sets are equal.
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Exercise 57. Construct the so-called Fano plane, that is, the projective plane over the finite
field F2.
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Chapter 5

Elliptic Curves

Generally speaking, elliptic curves are geometric objects in projective planes (see section 4.4)
over a given field, made up of points that satisfy certain equations. One of their key features
from the point of view of cryptography is that, if the underlying field is of positive characteristic,
elliptic curves are finite, cyclic groups (section 4.1.1). Further, it is believed that, in this case,
the Discrete Logarithm Problem (section 4.1.6.1) on many elliptic curve groups is hard, given
that the underlying characteristic is large enough.1

A special class of elliptic curves are so-called pairing-friendly curves, which have a notation
of a group pairing (section 4.9) attached to them, which has cryptographically advantageous
properties.

In this chapter, we introduce elliptic curves as they are used in pairing-based approaches to
the construction of SNARKs. The elliptic curves we consider are all defined over prime fields or
prime field extensions, meaning that we rely heavily on the concepts and notations from chapter
4.

5.1 Short Weierstrass Curves
In this section, we introduce Short Weierstrass curves, which are the most general types of
curves over finite fields of characteristics greater than 3 (see chapter 4.3), and start with their
so-called affine representation.2

We then introduce the elliptic curve group law, and describe elliptic curve scalar multipli-
cation, which is an instantiation of the exponential map of general cyclic groups 4.2. After
that, we look at the projective representation of elliptic curves, which has the advantage that no
special symbol is necessary to represent the point at infinity.3

We finish this section with an explicit equivalence that transforms the affine representations
into projective representations and vice versa.

1An in-depth introduction to elliptic curves is given, for example, in Silverman and Tate [1994]. An introduction
from a cryptographic point of view is given in Hoffstein et al. [2008].

2Introducing elliptic curves in their affine representation is probably not the most common and conceptually
cleanest way, but we believe that such an introduction makes elliptic curves more understandable to beginners,
since an elliptic curve in the affine representation is just a set of pairs of numbers, so it is more accessible to
readers unfamiliar with projective coordinates. However, the affine representation has the disadvantage that a
special “point at infinity” that is not a point on the curve, is necessary to describe the curve’s group structure.

3As this representation is conceptually more straightforward, this is how elliptic curves are usually introduced
in math classes. We believe a the major drawback from a beginner’s point of view is that in the projective repre-
sentation, points are elements from projective planes, which are classes of numbers.
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5.1.1 Affine Short Weierstrass form
Probably the least abstract and most straight-forward way to introduce elliptic curves for non-
mathematicians and beginners is the so-called affine representation of a Short Weierstrass
curve. To see what this is, let F be a finite field of characteristic q with q > 3, and let a,b ∈ F
be two field elements such that the so-called discriminant 4a3 + 27b2 is not equal to zero.
Then a Short Weierstrass elliptic curve Ea,b(F) over F in its affine representation is the set
of all pairs of field elements (x,y) ∈ F×F that satisfy the Short Weierstrass cubic equation
y2 = x3 +a · x+b, together with a distinguished symbol O, called the point at infinity:

Ea,b(F) = {(x,y) ∈ F×F | y2 = x3 +a · x+b}
⋃
{O} (5.1)

The term “curve” is used here because, if an elliptic curve is defined over a characteristic zero
field, like the field Q of rational numbers, the set of all points (x,y) ∈ Q×Q that satisfy y2 =
x3 +a · x+b looks like a curve. We should note, however, that visualizing elliptic curves over
finite fields as “curves” has its limitations, and we will therefore not dwell on the geometric
picture too much, but focus on the computational properties instead. To understand the visual
difference, consider the following two elliptic curves:

1.5 1.0 0.5 0.5 1.0 1.5 2.0 2.5
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Both elliptic curves are defined by the same Short Weierstrass equation y2 = x3− 2x+ 1,
but the first curve is defined over the rational numbers Q, that is, the pair (x,y) contains rational
numbers, while the second one is defined over the prime field F9973, which means that both
coordinates x and y are from the prime field F9973. Every blue dot represents a pair (x,y) that
is a solution to y2 = x3−2x+1. As we can see, the second curve hardly looks like a geometric
structure one would naturally call a curve. This shows that our geometric intuitions from Q are
obfuscated curves over finite fields.

The equation 4a3 + 27b2 ̸= 0 ensures that the curve is non-singular, which loosely means
that the curve has no cusps or self-intersections in the geometric sense, if seen as an actual curve.
As we will see in 5.1.2, cusps and self-intersections would make the group law potentially
ambiguous.

Throughout this book, we have encouraged you to do as many computations in a pen-and-
paper fashion as possible, as this is helps getting a deeper understanding of the details. However,
when dealing with elliptic curves, computations can quickly become cumbersome and tedious,
and we might get lost in the details. Fortunately, Sage is very helpful in dealing with elliptic
curves. The following snippet shows a way to define elliptic curves and how to work with them
in Sage:

240sage: F5 = GF(5) # define the base field
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241sage: a = F5(2) # parameter a
242sage: b = F5(4) # parameter b
243sage: # check discriminant
244sage: F5(6)*(F5(4)*a^3+F5(27)*b^2) != F5(0)
245True
246sage: # Short Weierstrass curve over field F5
247sage: E = EllipticCurve(F5,[a,b]) # y^2 == x^3 + ax +b
248sage: # point on a curve
249sage: P = E(0,2) # 2^2 == 0^3 + 2*0 + 4
250sage: P.xy() # affine coordinates
251(0, 2)
252sage: INF = E(0) # point at infinity
253sage: try: # point at infinity has no affine coordinates
254....: INF.xy()
255....: except ZeroDivisionError:
256....: pass
257sage: P = E.plot() # create a plotted version

The following three examples give a more practical understanding of what an elliptic curve is
and how we can compute it. We advise you to read these examples carefully, and ideally also
do the computations yourself. We will repeatedly build on these examples in this chapter, and
use example 71 throughout the entire book.

Example 70. Consider the prime field F5 from example 16. To define an elliptic curve over F5,
we have to choose two numbers a and b from that field. Assuming we choose a = 1 and b = 1,
then 4a3 + 27b2 ≡ 1 ( mod 5 ). This means that the corresponding elliptic curve E1,1(F5) is
given by the set of all pairs (x,y) from F5 that satisfy the equation y2 = x3 + x+1, along with
the special symbol O, which represents the “point at infinity”.

To get a better understanding of this curve, observe that, if we arbitrarily choose to test
the pair (x,y) = (1,1), we see that 12 ̸= 13 + 1 + 1, and hence (1,1) is not a point on the
curve E1,1(F5). On the other hand, if we choose to test the pair (x,y) = (2,1), we see that
12 = 23 + 2+ 1, and hence the pair (2,1) is a point on the curve E1,1(F5) (Remember that all
computations are done in modulo 5 arithmetics.)

Since the set F5 × F5 of all pairs (x,y) from F5 only contains 5 · 5 = 25 pairs, we can
compute the curve by just inserting every possible pair (x,y) into the Short Weierstrass equation
y2 = x3 + x+1. If the equation holds, the pair is a curve point. If not, that means that the point
is not on the curve. Combining the result of this computation with the point at infinity gives the
curve as follows:

E1,1(F5) = {O,(0,1),(2,1),(3,1),(4,2),(4,3),(0,4),(2,4),(3,4)}

This means that the elliptic curve is a set of 9 elements, 8 of which are pairs of elements from
F5, and one is special symbolO (the point at infinity). Visualizing E1,1(F5) gives the following
plot:
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In the development of SNARKs, it is sometimes necessary to do elliptic curve cryptogra-
phy “in a circuit", which basically means that the elliptic curve needs to be implemented in a
certain SNARK-friendly way. We will look at what this means in chapter 7. To be able to do
this efficiently, it is desirable to have curves with special properties. The following example is
a pen-and-paper version of such a curve, called Tiny-jubjub. We design this curve especially to
resemble a well-known cryptographically secure curve, called Baby-jubjub, the latter of which
is extensively used in real-world SNARKs (See Baby-JubJub for the specification).4 The in-
terested reader is advised to study this example carefully, as we will use it and build on it in
various places throughout the book.

Example 71 (The Tiny-jubjub curve). Consider the prime field F13 from exercise 50. If we
choose a = 8 and b = 8, then 4a3 +27b2 ≡ 6 ( mod 13 ), and the corresponding elliptic curve
is given by all pairs (x,y) from F13 such that y2 = x3 + 8x+ 8 holds. We call this curve the
Tiny-jubjub curve (in its affine Short Weierstrass representation), or T JJ_13 for short.

Since the set F13×F13 of all pairs (x,y) from F13 only contains 13 ·13 = 169 pairs, we can
compute the curve by just inserting every possible pair (x,y) into the Short Weierstrass equation
y2 = x3 +8x+8. We get the following result:

TJJ_13 = {O,(1,2),(1,11),(4,0),(5,2),(5,11),(6,5),(6,8),(7,2),(7,11),
(8,5),(8,8),(9,4),(9,9),(10,3),(10,10),(11,6),(11,7),(12,5),(12,8)} (5.2)

As we can see, the curve consists of 20 points; 19 pairs of elements from F13 and the point at
infinity. To get a visual impression of the T JJ_13 curve, we might plot all of its points (except
the point at infinity):

4In the literature, the Baby-jubjub curve is commonly introduced as a so-called Twisted Edwards curve,
which we will cover in 5.3. However, as we will see in 5.3, every Twisted Edwards curve is equivalent to a Short
Weierstrass curve and hence we start with an introduction of Tiny-Jubjub in its Short Weierstrass incarnation.
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As we will see in what follows, this curve is rather special, as it is possible to represent it in
two alternative forms called the Montgomery and the Twisted Edwards form (See sections
5.2 and 5.3, respectively).

Now that we have seen two pen-and-paper friendly elliptic curves, let us look at a curve that
is used in actual cryptography. Cryptographically secure elliptic curves are not qualitatively
different from the curves we looked at so far, but the prime number modulus of their prime field
is much larger. Typical examples use prime numbers that have binary representations in the
magnitude of more than double the size of the desired security level. If, for example, a security
of 128 bits is desired, a prime modulus of binary size ≥ 256 is chosen. The following example
provides such a curve.

Example 72 (Bitcoin’s secp256k1 curve). To give an example of a real-world, cryptographically
secure curve, let us look at curve secp256k1, which is famous for being used in the public key
cryptography of Bitcoin. The prime field Fp of secp256k1 is defined by the following prime
number:

p =115792089237316195423570985008687907853269984665640564039457584007908834671663

The binary representation of this number needs 256 bits, which implies that the prime field
Fp contains approximately 2256 many elements, which is considered quite large. To get a better
impression of how large the base field is: the number 2256 is approximately in the same order
of magnitude as the estimated number of atoms in the observable universe.

The curve secp256k1 is defined by the parameters a,b ∈ Fp with a = 0 and b = 7. Since
4 ·03+27 ·72 mod p = 1323, those parameters indeed define an elliptic curve given as follows:

secp256k1 = {(x,y) ∈ Fp×Fp | y2 = x3 +7 }

Clearly, the secp256k1 curve is too large to be useful in pen-and-paper computations, since
it can be shown that the number of its elements is a prime number r that also has a binary
representation of 256 bits:

r =115792089237316195423570985008687907852837564279074904382605163141518161494337

Cryptographically secure elliptic curves are therefore not useful in pen-and-paper computations,
but fortunately, Sage handles large curves efficiently:

258sage: p = 1157920892373161954235709850086879078532699846656405
64039457584007908834671663
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259sage: # Hexadecimal representation
260sage: p.str(16)
261fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc

2f
262sage: p.is_prime()
263True
264sage: p.nbits()
265256
266sage: Fp = GF(p)
267sage: secp256k1 = EllipticCurve(Fp,[0,7])
268sage: r = secp256k1.order() # number of elements
269sage: r.str(16)
270fffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd03641

41
271sage: r.is_prime()
272True
273sage: r.nbits()
274256

Example 73 (Ethereums’s alt_bn128 curve). To give an example of a real-world, cryptograph-
ically secure curve, that we will use in our circom implementations, let us look at curve
alt_bn128 as defined in EIP-197. This curve is used in zk-SNARK verification on the Ethereum
blockchain. The prime field Fp of alt_bn128 is defined by the following prime number:

p =21888242871839275222246405745257275088696311157297823662689037894645226208583

The binary representation of this number needs 254 bits, which implies that the prime field Fp
contains approximately 2254 many elements.

alt_bn128 is a Short Weierstrass curve, defined by the parameters a,b ∈ Fp with a = 0 and
b = 3. Since 4 ·03+27 ·32 mod p = 243, those parameters indeed define an elliptic curve given
as follows:

alt_bn128 = {(x,y) ∈ Fp×Fp | y2 = x3 +3 }

The number of points on the elliptic curve alt_bn128 is a prime number r that also has a binary
representation of 254 bits:

r =21888242871839275222246405745257275088548364400416034343698204186575808495617

We write Fbn128 := Fr for the associated prime field. In order to use this curve in our circom
examples, we implement this Short Weierstrass elliptic curve in Sage:

275sage: p = 2188824287183927522224640574525727508869631115729782
3662689037894645226208583

276sage: p.is_prime()
277True
278sage: p.nbits()
279254
280sage: Fbn128base = GF(p)
281sage: bn128 = EllipticCurve(Fbn128base,[0,3])
282sage: r = bn128.order() # number of elements
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283sage: r.is_prime()
284True
285sage: r.nbits()
286254

Exercise 58. Consider the curve E1(F) from example 70 and compute the set of all curve points
(x,y) ∈ E1(F).
Exercise 59. Consider the curve T JJ_13 from example 71 and compute the set of all curve
points (x,y) ∈ T JJ_13.
Exercise 60. Look up the definition of curve BLS12-381, implement it in Sage, and compute
the number of all curve points.

5.1.1.1 Isomorphic affine Short Weierstrass curves

As explained previously in this chapter, elliptic curves are defined by pairs of parameters (a,b)∈
F×F for some field F. An important question in classifying elliptic curves is to decide which
pairs of parameters (a,b) and (a′,b′) instantiate equivalent curves in the sense that there is a 1:1
correspondence between the set of curve points.

To be more precise, let F be a field, and let (a,b) and (a′,b′) be two pairs of parameters such
that there is an invertible field element c ∈ F∗ such that a′ = a · c4 and b′ = b · c6 hold. Then
the elliptic curves Ea,b(F) and Ea′,b′(F) are isomorphic, and there is a map that maps the curve
points of Ea,b(F) onto the curve points of Ea′,b′(F):

I : Ea,b(F)→ Ea′,b′(F) :

{
(x,y)
O

7→

{
(c2 · x,c3 · y)
O

(5.3)

This map is a 1:1 correspondence, and its inverse map is given by mapping the point at infinity
onto the point at infinity, and mapping each curve point (x,y) onto the curve point (c−2x,c−4y).
Example 74. Consider the Short Weierstrass elliptic curve E1,1(F5) from example 70 and the
following elliptic curve:

E1,4(F5) := {(x,y) ∈ F5×F5 | y2 = x3 + x+4} (5.4)

If we insert all pairs of elements (x,y) ∈ F5×F5 into the Short Weierstrass equation y2 =
x3 + x+4 of E1,4(F5), we get the following set of points:

E1,4(F5) = {O,(0,2),(0,3),(1,1),(1,4),(2,2),(2,3),(3,2),(3,3)} (5.5)

As we can see, both curves are of the same order. Since 2 is an invertible element from
F5 with 1 = 24 · 1 and 4 = 26 · 1, E1,4(F) and E1,1(F) are isomorphic: the map I : E1,1(F5)→
E1,4(F5) : (x,y) 7→ (4x,3y) from 5.3 defines a 1:1 correspondence. For example, the point
(4,3) ∈ E1,1(F) is mapped onto the point I(4,3) = (4 ·4,3 ·3) = (1,4) ∈ E1,4(F).
Exercise 61. Let F be a finite field, let (a,b) and (a′,b′) be two pairs of parameters, and let
c ∈ F∗ be an invertible field element such that a′ = a · c4 and b′ = b · c6 hold. Show that the
function I from (5.3) maps curve points onto curve points.
Exercise 62. Consider the Tiny-jubjub curve from example 71 and the elliptic curve E5,12(F13)
defined as follows:

E7,5(F13) = {(x,y) ∈ F13×F13 | y2 = x3 +7x+5} (5.6)

Show that T JJ_13 and E7,5(F13) are isomorphic. Then compute the set of all points from
E7,5(F13), construct I and map all points of T JJ_13 onto E7,5(F13).
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5.1.1.2 Affine compressed representation

As we have seen in example 72, cryptographically secure elliptic curves are defined over large
prime fields, where elements of those fields typically need more than 255 bits of storage on a
computer. Since elliptic curve points consist of pairs of those field elements, they need double
that amount of storage.

However, we can reduce the amount of space needed to represent a curve point by using a
technique called point compression. To understand this, note that, for each given x ∈ F, there
are only 2 possible ys ∈ F such that the pair (x,y) is a point on an affine Short Weierstrass
curve, since x and y have to satisfy the equation y2 = x3 +a · x+b. From this, it follows that y
can be computed from x, since it is an element from the set of square roots

√
x3 +a · x+b (see

4.44), which contains exactly two elements for x3 + a · x+ b ̸= 0 and exactly one element for
x3 +a · x+b = 0.

This implies that we can represent a curve point in compressed form by simply storing the
x coordinate together with a single bit called the sign bit, the latter of which deterministically
decides which of the two roots to choose. One convention could be to always choose the root
closer to 0 when the sign bit is 0, and the root closer to the order of F when the sign bit is 1. In
case the y coordinate is zero, both sign bits give the same result.

Example 75 (Tiny-jubjub). To understand the concept of compressed curve points a bit better,
consider the T JJ_13 curve from example 71 again. Since this curve is defined over the prime
field F13, and numbers between 0 and 13 need approximately 4 bits to be represented, each
T JJ_13 point on this curve needs 8 bits of storage in uncompressed form. The following set
represents the uncompressed form of the points on this curve:

TJJ_13 = {O,(1,2),(1,11),(4,0),(5,2),(5,11),(6,5),(6,8),(7,2),(7,11),
(8,5),(8,8),(9,4),(9,9),(10,3),(10,10),(11,6),(11,7),(12,5),(12,8)} (5.7)

Using the technique of point compression, we can reduce the bits needed to represent the points
on this curve to 5 per point. To achieve this, we can replace the y coordinate in each (x,y) pair
by a sign bit indicating whether or not y is closer to 0 or to 13. As a result, y values in the range
[0, . . . ,6] will have the sign bit 0, while y-values in the range [7, . . . ,12] will have the sign bit 1.
Applying this to the points in T JJ_13 gives the compressed representation as follows:

TJJ_13 = {O,(1,0),(1,1),(4,0),(5,0),(5,1),(6,0),(6,1),(7,0),(7,1),
(8,0),(8,1),(9,0),(9,1),(10,0),(10,1),(11,0),(11,1),(12,0),(12,1)} (5.8)

Note that the numbers 7, . . . ,12 are the negatives (additive inverses) of the numbers 1, . . . ,6 in
modular 13 arithmetics, and that −0 = 0.

To recover the uncompressed counterpart of, say, the compressed point (5,1), we insert the
x coordinate 5 into the Short Weierstrass equation and get y2 = 53 +8 ·5+8 = 4. As expected,
4 is a quadratic residue in F13 with roots

√
4 = {2,11}. Since the sign bit of the point is 1,

we have to choose the root closer to the modulus 13, which is 11. The uncompressed point is
therefore (5,11).

5.1.2 Affine Group Law
One of the key properties of an elliptic curve is that it is possible to define a group law on the
set of its points such that the point at infinity serves as the neutral element, and inverses are
reflections on the x-axis. The origin of this law can be understood in a geometric picture and
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is known as the chord-and-tangent rule. In the affine representation of a Short Weierstrass
curve, the rule can be described in the following way, using the symbol ⊕ for the group law:

Definition 5.1.2.1 (Chord-and-tangent rule: geometric definition).
• (Point at infinity) We define the point at infinityO as the neutral element of addition, that

is, we define P⊕O = P for all points P ∈ E(F).

• (Chord Rule) Let P and Q be two distinct points on an elliptic curve, neither of them the
point at infinity: P,Q ∈ E(F)\{O} and P ̸= Q
The sum of P and Q is defined as follows:
Consider the line l which intersects the curve in P and Q. If l intersects the elliptic curve at
a third point R′, define the sum of P and Q as the reflection of R′ at the x-axis: R = P⊕Q.
If the line l does not intersect the curve at a third point, define the sum to be the point at
infinity O. Calling such a line a chord, it can be shown that no chord will intersect the
curve in more than three points. This implies that addition is not ambiguous.

• (Tangent Rule) Let P be a point on an elliptic curve, which is not the point at infinity:
P ∈ E(F)\{O}
The sum of P with itself (the doubling of P) is defined as follows:
Consider the line which is tangential to the elliptic curve at P, in the sense that it “just
touches” the curve at that point. If this line intersects the elliptic curve at a second point
R′, the sum P⊕P is the reflection of R′ at the x-axis. If it does not intersect the curve at a
third point, define the sum to be the point at infinity O. Calling such a line a tangent, it
can be shown that no such tangent will intersect the curve in more than two points. This
implies that doubling is not ambiguous.

It can be shown that the points of an elliptic curve form a commutative group with respect
to the previously stated chord-and-tangent rule such that O acts the neutral element, and the
inverse of any element P ∈ E(F) is the reflection of P on the x-axis.

The chord-and-tangent rule defines the group law of an elliptic curve geometrically, and we
just stated it informally as an intuition above. In order to apply those rules on a computer, we
have to translate it into algebraic equations. To do so, first observe that, for any two given curve
points (x1,y1),(x2,y2) ∈ E(F), the identity x1 = x2 implies y2 = ±y1 as explained in section
5.1.1.2. This shows that the following rules are a complete description of the elliptic curve
group (E(F),⊕):
Definition 5.1.2.2 (Chord-and-tangent rule: algebraic definition).

• (The neutral element) The point at infinity O is the neutral element.

• (The inverse element) The inverse ofO isO. For any other curve point (x,y)∈E(F)\{O},
the inverse is given by (x,−y).

• (The group law) For any two curve points P,Q ∈ E(F), the group law is defined by one of
the following cases:

1. (Neutral element) If Q =O, then the group law is defined as P⊕Q = P.

2. (Inverse elements) If P = (x,y) and Q = (x,−y), the group law is defined as P⊕Q =
O.

3. (Tangent Rule) If P = (x,y) with y ̸= 0, the group law P⊕P = (x′,y′) is defined as
follows:

x′ =
(

3x2+a
2y

)2
−2x , y′ =

(
3x2+a

2y

)
(x− x′)− y
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4. (Chord Rule) If P = (x1,y1) and Q = (x2,y2) such that x1 ̸= x2, the group law R =
P⊕Q with R = (x3,y3) is defined as follows:

x3 =
(

y2−y1
x2−x1

)2
− x1− x2 , y3 =

(
y2−y1
x2−x1

)
(x1− x3)− y1

Notation and Symbols 13. Let F be a field and E(F) an elliptic curve over F. We write ⊕ for
the group law on E(F), (E(F),⊕) for the commutative group of elliptic curve points, and use
the additive notation (notation 4) on this group. If P is a point on a Short Weierstrass curve with
P = (x,0) then P is called self-inverse.

As we can see, it is very efficient to compute inverses on elliptic curves. However, com-
puting the addition of elliptic curve points in the affine representation needs to consider many
cases, and involves extensive finite field divisions. As we will see in 5.1.3.1, the addition law is
simplified in projective coordinates.

Let us look at some practical examples of how the group law on an elliptic curve is com-
puted.

Example 76. Consider the elliptic curve E1,1(F5) from example 70 again. As we have seen, the
curve consists of the following 9 elements:

E1,1(F5) = {O,(0,1),(2,1),(3,1),(4,2),(4,3),(0,4),(2,4),(3,4)} (5.9)

We know that this set defines a group, so we can perform addition on any two elements from
E1,1(F5) to get a third element of this group.

To give an example, consider the elements (0,1) and (4,2). Neither of these elements is
the neutral element O, and since the x coordinate of (0,1) is different from the x coordinate of
(4,2), we know that we have to use the chord rule from definition 5.1.2.2 to compute the sum
(0,1)⊕ (4,2):

x3 =

(
y2− y1

x2− x1

)2

− x1− x2 # insert points

=

(
2−1
4−0

)2

−0−4 # simplify in F5

=

(
1
4

)2

+1 = 42 +1 = 1+1 = 2

y3 =

(
y2− y1

x2− x1

)
(x1− x3)− y1 # insert points

=

(
2−1
4−1

)
(0−2)−1 # simplify in F5

=

(
1
4

)
·3+4 = 4 ·3+4 = 2+4 = 1

So, in the elliptic curve E1,1(F5), we get (0,1)⊕ (4,2) = (2,1), and, indeed, the pair (2,1) is an
element of E1,1(F5) as expected. On the other hand, (0,1)⊕ (0,4) =O, since both points have
equal x coordinates and inverse y coordinates, rendering them inverses of each other. Adding
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the point (4,2) to itself, we have to use the tangent rule from definition 5.1.2.2:

x′ =
(

3x2 +a
2y

)2

−2x # insert points

=

(
3 ·42 +1

2 ·2

)2

−2 ·4 # simplify in F5

=

(
3 ·1+1

4

)2

+3 ·4 =

(
4
4

)2

+2 = 1+2 = 3

y′ =
(

3x2 +a
2y

)2 (
x− x′

)
− y # insert points

=

(
3 ·42 +1

2 ·2

)2

(4−3)−2 # simplify in F5

= 1 ·1+3 = 4

So, in the elliptic curve E1,1(F5), we get the doubling of (4,2), that is, (4,2)⊕ (4,2) = (3,4),
and, indeed, the pair (3,4) is an element of E1,1(F5) as expected. The group E1,1(F5) has no
self-inverse points other than the neutral elementO, since no point has 0 as its y coordinate. We
can use Sage to double-check the computations.

287sage: F5 = GF(5)
288sage: E1 = EllipticCurve(F5,[1,1])
289sage: INF = E1(0) # point at infinity
290sage: P1 = E1(0,1)
291sage: P2 = E1(4,2)
292sage: P3 = E1(0,4)
293sage: R1 = E1(2,1)
294sage: R2 = E1(3,4)
295sage: R1 == P1+P2
296True
297sage: INF == P1+P3
298True
299sage: R2 == P2+P2
300True
301sage: R2 == 2*P2
302True
303sage: P3 == P3 + INF
304True

Example 77 (Tiny-jubjub). Consider the T JJ_13 curve from example 71 again, and recall that
its group of points is given as follows:

TJJ_13 = {O,(1,2),(1,11),(4,0),(5,2),(5,11),(6,5),(6,8),(7,2),(7,11),
(8,5),(8,8),(9,4),(9,9),(10,3),(10,10),(11,6),(11,7),(12,5),(12,8)} (5.10)

In contrast to the group from the previous example, this group contains a self-inverse point,
which is different from the neutral element, defined by (4,0). To see what this means, observe
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that we cannot add (4,0) to itself using the tangent rule from definition 5.1.2.2, as the y co-
ordinate is zero. Instead, we have to use the rule for additive inverses, since 0 = −0. We get
(4,0)⊕ (4,0) =O in T JJ_13, which shows that the point (4,0) is the inverse of itself, because
adding it to itself results in the neutral element. We check our calculation with Sage:

305sage: F13 = GF(13)
306sage: TJJ = EllipticCurve(F13,[8,8])
307sage: P = TJJ(4,0)
308sage: INF = TJJ(0) # Point at infinity
309sage: INF == P+P
310True
311sage: INF == 2*P
312True

Example 78. Consider the secp256k1 curve from example 72 again. The following code uses
Sage to generate two random affine curve points and then add these points together:

313sage: P = secp256k1.random_point()
314sage: Q = secp256k1.random_point()
315sage: R = P + Q
316sage: P.xy()
317(5850607243132205342271466100046157153787734258370901680366971

8583975291690161, 72349052726069032840492627120685041527971
54522624351645141639690756831143799)

318sage: Q.xy()
319(1248613677068759166442352451666875662633554585350415143708828

9325825563995624, 47476713296737248623250955708400836894897
824534004822564429119068016190574020)

320sage: R.xy()
321(1003766070257181876316073419066857816676901518675863320077595

85736783809646429, 4744434990554871572650735368381538918132
0113301390611568881195487429572094209)

Exercise 63. Consider the commutative group (TJJ_13,⊕) of the Tiny-jubjub curve from exam-
ple 71.

1. Compute the inverse of (10,10), O, (4,0) and (1,2).

2. Solve the equation x⊕ (9,4) = (5,2) for some x ∈ TJJ_13.

5.1.2.1 Scalar multiplication

As we have seen in the previous section, elliptic curves E(F) have the structure of a commuta-
tive group associated to them. It can be shown that this group is finite and cyclic whenever the
underlying field F is finite. As we know from (4.2), this implies that there is a notation of scalar
multiplication associated to any elliptic curve over finite fields.

To understand this scalar multiplication, recall from definition 4.1.2.1 that every finite cyclic
group of order n has a generator g and an associated exponential map g(·) : Zn→ G, where gx

is the x-fold product of g with itself.
Elliptic curve scalar multiplication is the exponential map written in additive notation. To

be more precise, let F be a finite field, E(F) an elliptic curve of order n, and P a generator of
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E(F). Then the elliptic curve scalar multiplication with base P is defined as follows (where
[0]P =O and [m]P = P+P+ . . .+P is the m-fold sum of P with itself ):

[·]P : Zn→ E(F) ; m 7→ [m]P

Therefore, elliptic curve scalar multiplication is an instantiation of the general exponential map
using additive instead of multiplicative notation.

5.1.2.2 Logarithmic Ordering

As explained in (4.5), the inverse of the exponential map exists, and it is usually called the el-
liptic curve discrete logarithm map. However, we don’t know of any efficient way to actually
compute this map, which is one reason why some elliptic curves are believed to be DL-secure
(see definition 4.1.6.1).

One useful property of the exponential map in regard to the examples in this book is that
it can be used to greatly simplify pen-and-paper computations. As we have seen in example
76, computing the elliptic curve addition law takes quite a bit of effort when done without a
computer. However, when g is a generator of a small pen-and-paper elliptic curve group of
order n, we can use the exponential map to write the elements of the group in the following
way, which we call its logarithmic order with respect to the generator g:

G= {[1]g→ [2]g→ [3]g→ ··· → [n−1]g→O} (5.11)

For small pen-and-paper groups, the logarithmic order greatly simplifies complicated elliptic
curve addition into the much simpler case of modular n arithmetic. In order to add two curve
points P and Q, we only have to look up their discrete log relations with the generator P = [l]g
and Q = [m]g, and compute the group law as P⊕Q = [l +m]g, where l +m is addition in
modular n arithmetics.

The reader should keep in mind though, that many elliptic curves are believed to be DL-
secure (definition 4.1.6.1), which implies that, for those curves, the logarithmic order can not
be computed efficiently.

In the following example, we look at some implications of the fact that elliptic curves are
finite cyclic groups and apply the logarithmic order.
Example 79. Consider the elliptic curve group E1,1(F5) from example 70. Since it is a finite
cyclic group of order 9, and the prime factorization of 9 is 3 · 3, we can use the fundamental
theorem of finite cyclic groups (definition 4.1.4.1) to reason about all its subgroups. In fact,
since the only factors of 9 are 1, 3 and 9, we know that E1,1(F5) has the following subgroups:

• E1,1(F5)[9] is a subgroup of order 9. By definition, any group is a subgroup of itself.

• E1,1(F5)[3] = {(2,1),(2,4),O} is a subgroup of order 3. This is the subgroup associated
to the prime factor 3.

• E1,1(F5)[1] = {O} is a subgroup of order 1. This is the trivial subgroup.

Moreover, since E1,1(F5) and all its subgroups are cyclic, we know from definition 4.1.2.1 that
they must have generators. For example, the curve point (2,1) is a generator of the order 3
subgroup E1,1(F5)[3], since every element of E1,1(F5)[3] can be generated by repeatedly adding
(2,1) to itself:

[1](2,1) = (2,1)
[2](2,1) = (2,4)
[3](2,1) =O
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Since (2,1) is a generator, we know from (4.1) that it gives rise to an exponential map from the
finite field F3 onto G2 defined by scalar multiplication:

[·](2,1) : F3→ E1,1(F5)[3] : x 7→ [x](2,1) (5.12)

To give an example of a generator that generates the entire group E1,1(F5), consider the point
(0,1). Applying the tangent rule repeatedly, we compute as follows:

[0](0,1) = O
[2](0,1) = (4,2)
[4](0,1) = (3,4)
[6](0,1) = (2,4)
[8](0,1) = (0,4)

[1](0,1) = (0,1)
[3](0,1) = (2,1)
[5](0,1) = (3,1)
[7](0,1) = (4,3)
[9](0,1) = O

(5.13)

Again, since (0,1) is a generator, we know from (4.1) that it gives rise to an exponential map.
However, since the group order is not a prime number, the exponential map does not map from
a field, but from the ring Z9 of modular 9 arithmetics:

[·](0,1) : Z9→ E1,1(F5) : x 7→ [x](0,1) (5.14)

Using the generator (0,1) and its associated exponential map, we can write E(F1) in logarithmic
order with respect to (0,1) as explained in definition 5.1.2.2. We get the following:

E1,1(F5) = {(0,1)→ (4,2)→ (2,1)→ (3,4)→ (3,1)→ (2,4)→ (4,3)→ (0,4)→O} (5.15)

This indicates that the first element is a generator, and the n-th element is the scalar product of
n and the generator. To see how logarithmic orders like this simplify the computations in small
elliptic curve groups, consider example 76 again. In that example, we use the chord-and-tangent
rule to compute (0,1)⊕ (4,2). Now, in the logarithmic order of E1(F), we can compute that
sum much easier, since we can directly see that (0,1) = [1](0,1) and (4,2) = [2](0,1). We can
then deduce (0,1)⊕ (4,2) = (2,1) as follows:

(0,1)⊕ (4,2) = [1](0,1)⊕ [2](0,1) = [3](0,1) = (2,1) (5.16)

To give another example, we can immediately see that (3,4)⊕(4,3) = (4,2), without doing any
expensive elliptic curve addition, since we know that (3,4)= [4](0,1) and (4,3)= [7](0,1) from
the logarithmic ordering of E1,1(F5). Since 4+7 = 2 in Z9, the result must be [2](0,1) = (4,2).

Finally, we can use E1,1(F5) as an example to understand the concept of cofactor clearing
from definition 4.7. Since the order of E1,1(F5) is 9, we only have a single factor, which
happens to be the cofactor as well. Cofactor clearing then implies that we can map any element
from E1,1(F5) onto its prime factor group E1,1(F5)[3] by scalar multiplication with 3. For
example, taking the element (3,4), which is not in E1,1(F5)[3], and multiplying it with 3, we
get [3](3,4) = (2,1), which is an element of E1,1(F5)[3] as expected.

Example 80. Consider the Tiny-jubjub curve T JJ_13 from example 71 again. In this example, we
look at the subgroups of the Tiny-jubjub curve, define generators, and compute the logarithmic
order for pen-and-paper computations. Then we take another look at the principle of cofactor
clearing.

Since the order of T JJ_13 is 20, and the prime factorization of 20 is 22 ·5, we know that the
T JJ_13 contains a “large” prime-order subgroup of size 5 and a small prime oder subgroup of
size 2.
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To compute those groups, we can apply the technique of cofactor clearing (4.7) in a try-and-
repeat loop. We start the loop by arbitrarily choosing an element P ∈ TJJ_13, then multiplying
that element with the cofactor of the group that we want to compute. If the result is O, we try a
different element and repeat the process until the result is different from the point at infinity O.

To compute a generator for the small prime-order subgroup (TJJ_13)[2], first observe that
the cofactor is 10, since 20 = 2 ·10. We then arbitrarily choose the curve point (5,11)∈ TJJ_13
and compute [10](5,11) = O. Since the result is the point at infinity, we have to try another
curve point, say (9,4). We get [10](9,4) = (4,0) and we can deduce that (4,0) is a generator of
(TJJ_13)[2]. Logarithmic order then gives the following order:

(TJJ_13)[2] = {(4,0)→O} (5.17)

This is expected, since we know from example 77 that (4,0) is self-inverse, with (4,0)⊕(4,0)=
O. We double-check the computations using Sage:

322sage: F13 = GF(13)
323sage: TJJ = EllipticCurve(F13,[8,8])
324sage: P = TJJ(5,11)
325sage: INF = TJJ(0)
326sage: 10*P == INF
327True
328sage: Q = TJJ(9,4)
329sage: R = TJJ(4,0)
330sage: 10*Q == R
331True

We can apply the same reasoning to the “large” prime-order subgroup (TJJ_13)[5], which
contains 5 elements. To compute a generator for this group, first observe that the associ-
ated cofactor is 4, since 20 = 5 · 4. We choose the curve point (9,4) ∈ TJJ_13 again, and
compute [4](9,4) = (7,11). Since the result is not the point at infinity, we know that (7,11)
is a generator of (TJJ_13)[5]. Using the generator (7,11), we compute the exponential map
[·](7,11) : F5→ TJJ_13[5] and get the following:

[0](7,11) =O
[1](7,11) = (7,11)
[2](7,11) = (8,5)
[3](7,11) = (8,8)
[4](7,11) = (7,2)

We can use this computation to write the large-order prime group (TJJ_13)[5] of the Tiny-
jubjub curve in logarithmic order, which we will use quite frequently in what follows. We get
the following:

(TJJ_13)[5] = {(7,11)→ (8,5)→ (8,8)→ (7,2)→O} (5.18)

From this, we can immediately see, for example, that (8,8)⊕ (7,2) = (8,5), since 3+4 = 2 in
F5.

Based on the previous two examples, you might get the impression that elliptic curve com-
putation can be largely replaced by modular arithmetics. This however, is not true in general,
but only an artifact of small groups, where it is possible to write the entire group in a logarithmic
order.
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Exercise 64. Consider example 79 and compute the set {[1](0,1), [2](0,1), . . . , [8](0,1, [9](0,1)}
using the tangent rule only.

Exercise 65. Consider example 80 and compute the scalar multiplications [10](5,11) as well as
[10](9,4) and [4](9,4) with pen and paper using the algorithm from exercise 38.

5.1.3 Projective Short Weierstrass form
As we have seen in the previous section, describing elliptic curves as pairs of points that satisfy
a certain equation is relatively straight-forward. However, in order to define a group structure
on the set of points, we had to add a special point at infinity to act as the neutral element.

Recalling the definition of projective planes 4.4, we know that points at infinity are handled
as ordinary points in projective geometry. Therefore, it makes sense to look at the definition of
a Short Weierstrass curve in projective geometry.

To see what a Short Weierstrass curve in projective coordinates is, let F be a finite field of
order q and characteristic > 3, let a,b∈ F be two field elements such that 4a3+27b2 mod q ̸= 0
and let FP2 be the projective plane over F as introduced in section 4.4. Then a projective Short
Weierstrass elliptic curve over F is the set of all points [X : Y : Z] ∈ FP2 from the projective
plane that satisfy the cubic equation Y 2 ·Z = X3 +a ·X ·Z2 +b ·Z3:

E(FP2) = {[X : Y : Z] ∈ FP2 | Y 2 ·Z = X3 +a ·X ·Z2 +b ·Z3} (5.19)

To understand how the point at infinity is unified in this definition, recall from section 4.4
that, in projective geometry, points at infinity are given by projective coordinates [X : Y : 0].
Inserting representatives (x1,y1,0) ∈ [X : Y : 0] from those coordinates into the defining cubic
equation 5.19 results in the following identity:

y2
1 ·0 = x3

1 +a · x1 ·02 +b ·03 ⇔
0 = x3

1

This implies X = 0, and shows that the only projective point at infinity that is also a point
on a projective Short Weierstrass curve is the class [0,1,0] = {(0,y,0) | y ∈ F}. The point
[0 : 1 : 0] is the projective representation of the point at infinity O in the affine representation.
The projective representation of a Short Weierstrass curve, therefore, has the advantage that it
does not need a special symbol to represent the point at infinity from the affine definition.

Example 81. To get an intuition of how an elliptic curve in projective geometry looks, consider
curve E1,1(F5) from example 70. We know that, in its affine representation, the set of points on
the affine Short Weierstrass curve is given as follows:

E1,1(F5) = {O,(0,1),(2,1),(3,1),(4,2),(4,3),(0,4),(2,4),(3,4)} (5.20)

This is defined as the set of all pairs (x,y) ∈ F5×F5 such that the affine Short Weierstrass
equation y2 = x3 +ax+b with a = 1 and b = 1 is satisfied.

To find the set of elements of E1,1(F5) in the projective representation of a Short Weierstrass
curve with the same parameters a = 1 and b = 1, we have to compute the set of projective points
[X : Y : Z] from the projective plane F5P2 that satisfies the following homogenous cubic equation
for any representative (x1,y1,z1) ∈ [X : Y : Z]:

y2
1z1 = x3

1 +1 · x1z2
1 +1 · z3

1 (5.21)
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We know from section 4.4 that the projective plane F5P2 contains 52 +5+1 = 31 elements, so
we can insert all elements into equation (5.21) and see if both sides match.

For example, consider the projective point [0 : 4 : 1]. We know from (4.56) that this point in
the projective plane represents the following line in F3

5\{(0,0,0)}:

[0 : 4 : 1] = {(0,4,1),(0,3,2),(0,2,3),(0,1,4)} (5.22)

To check whether or not [0 : 4 : 1] satisfies (5.21), we can insert any representative, in other
words, any element from (5.22). Each element satisfies the equation if and only if all other
elements satisfy the equation. As an arbitrary choice, we insert (0,3,2) and get the following
result:

32 ·2 = 03 +1 ·0 ·22 +1 ·23⇔ 3 = 3

This tells us that the affine point [0 : 4 : 1] is indeed a solution to the equation (5.21), but we
could just as well have inserted any other representative of the element. For example, inserting
(0,1,4) also satisfies (5.21):

12 ·4 = 03 +1 ·0 ·42 +1 ·43⇔ 4 = 4

To find the projective representation of E1,1(F5), we first observe that the projective line at
infinity [1 : 0 : 0] is not a curve point on any projective Short Weierstrass curve, since it cannot
satisfy the defining equation in (5.19) for any parameter a and b. Therefore, we can exclude it
from our consideration.

Moreover, a point at infinity [X : Y : 0] can only satisfy the equation in (5.19) for any a and
b, if X = 0, which implies that the only point at infinity relevant for Short Weierstrass elliptic
curves is [0 : 1 : 0], since [0 : k : 0] = [0 : 1 : 0] for all k ∈ F∗. Therefore, we can exclude all
points at infinity except the point [0 : 1 : 0].

All points that remain are the affine points [X : Y : 1]. Inserting all of them into (5.21), we
get the set of all projective curve points as follows:

E1(F5P2) = {[0 : 1 : 0], [0 : 1 : 1], [2 : 1 : 1], [3 : 1 : 1],
[4 : 2 : 1], [4 : 3 : 1], [0 : 4 : 1], [2 : 4 : 1], [3 : 4 : 1]} (5.23)

If we compare this with the affine representation, we see that there is a 1:1 correspondence
between the points in the affine representation in (5.20) and the affine points in projective ge-
ometry, and that the projective point [0 : 1 : 0] represents the additional point O in the affine
representation.

Exercise 66. Consider example 81 and compute the set (5.23) by inserting all points from the
projective plane F5P2 into the defining projective Short Weierstrass equation.

Exercise 67. Compute the projective representation of the Tiny-jubjub curve (example 71) and
the logarithmic order of its large prime-order subgroup with respect to the generator [7 : 11 : 1]
in projective coordinates.

5.1.3.1 Projective Group law

As we saw in section 5.1.2, one of the key properties of an elliptic curve is that it comes with
a definition of a group law on the set of its points, described geometrically by the chord-and-
tangent rule (definition 5.1.2.1). This rule was fairly intuitive, with the exception of the distin-
guished point at infinity, which appeared whenever the chord or the tangent did not have a third
intersection point with the curve.
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One of the key features of projective coordinates is that, in projective space, it is guaranteed
that any chord will always intersect the curve in three points, and any tangent will intersect it in
two points. So, the geometric picture simplifies, as we don’t need to consider external symbols
and associated cases. The price to pay for this mathematical simplification is that projective
coordinates might be less intuitive for beginners.

It can be shown that the points of an elliptic curve in projective space form a commutative
group with respect to the tangent-and-chord rule such that the projective point [0 : 1 : 0] is the
neutral element, and the additive inverse of a point [X : Y : Z] is given by [X : −Y : Z]. The
addition law is usually described by algorithm 7, minimizing the number of necessary additions
and multiplications in the base field.

Exercise 68. Consider example 81 again. Compute the following expression for projective
points on E1(F5P2) using algorithm 7:

• [0 : 1 : 0]⊕ [4 : 3 : 1]

• [0 : 3 : 0]⊕ [3 : 1 : 2]

• −[0 : 4 : 1]⊕ [3 : 4 : 1]

• [4 : 3 : 1]⊕ [4 : 2 : 1]

and then solve the equation [X : Y : Z]⊕ [0 : 1 : 1] = [2 : 4 : 1] for some point [X : Y : Z] from the
projective Short Weierstrass curve E1(F5P2).

Exercise 69. Compare the affine addition law for Short Weierstrass curves with the projective
addition rule. Which branch in the projective rule corresponds to which case in the affine law?

5.1.3.2 Coordinate Transformations

As we can see by comparing the examples 81 and 81, there is a close relation between the
affine and the projective representation of a Short Weierstrass curve. This is not a coincidence.
In fact, from a mathematical point of view, projective and affine Short Weierstrass curves de-
scribe the same thing, as there is a one-to-one correspondence (an isomorphism) between both
representations for any parameters a and b.

To specify the correspondence, let E(F) and E(FP2) be an affine and a projective Short
Weierstrass curve defined for the same parameters a and b. Then, the function in (5.24) maps
points from the affine representation to points from the projective representation of a Short
Weierstrass curve. In other words, if the pair of field elements (x,y) satisfies the affine Short
Weierstrass equation y2 = x3 +ax+b, then all homogeneous coordinates (x1,y1,z1) ∈ [x : y : 1]
satisfy the projective Short Weierstrass equation y2

1 · z1 = x3
1 +ay1 · z2

1 +b · z3
1.

I : E(F)→ E(FP2) :
(x,y) 7→ [x : y : 1]
O 7→ [0 : 1 : 0] (5.24)

This map is a 1 : 1 correspondence, which means that it maps exactly one point from the affine
representation onto one point from the projective representation. It is therefore possible to
invert this map in order to map points from the projective representation to points from the
affine representation of a Short Weierstrass curve. The inverse is given by the following map:

I−1 : E(FP2)→ E(F) : [X : Y : Z] 7→

{
(X

Z ,
Y
Z ) if Z ̸= 0

O if Z = 0
(5.25)

88



CHAPTER 5. ELLIPTIC CURVES 5.1. SHORT WEIERSTRASS CURVES

Algorithm 7 Projective Short Weierstrass Addition Law
Require: [X1 : Y1 : Z1], [X2 : Y2 : Z2] ∈ E(FP2)

procedure ADD-RULE([X1 : Y1 : Z1], [X2 : Y2 : Z2])
if [X1 : Y1 : Z1] == [0 : 1 : 0] then

[X3 : Y3 : Z3]← [X2 : Y2 : Z2]
else if [X2 : Y2 : Z2] == [0 : 1 : 0] then

[X3 : Y3 : Z3]← [X1 : Y1 : Z1]
else

U1← Y2 ·Z1
U2← Y1 ·Z2
V1← X2 ·Z1
V2← X1 ·Z2
if V1 ==V2 then

if U1 ̸=U2 then [X3 : Y3 : Z3]← [0 : 1 : 0]
else

if Y1 == 0 then [X3 : Y3 : Z3]← [0 : 1 : 0]
else

W ← a ·Z2
1 +3 ·X2

1
S← Y1 ·Z1
B← X1 ·Y1 ·S
H←W 2−8 ·B
X ′← 2 ·H ·S
Y ′←W · (4 ·B−H)−8 ·Y 2

1 ·S2

Z′← 8 ·S3

[X3 : Y3 : Z3]← [X ′ : Y ′ : Z′]
end if

end if
else

U =U1−U2
V =V1−V2
W = Z1 ·Z2
A =U2 ·W −V 3−2 ·V 2 ·V2
X ′ =V ·A
Y ′ =U · (V 2 ·V2−A)−V 3 ·U2
Z′ =V 3 ·W
[X3 : Y3 : Z3]← [X ′ : Y ′ : Z′]

end if
end if
return [X3 : Y3 : Z3]

end procedure
Ensure: [X3 : Y3 : Z3] == [X1 : Y1 : Z1]⊕ [X2 : Y2 : Z2]
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Note that the only projective point [X : Y : Z] with Z = 0 that satisfies the equation in 5.19
is given by the class [0 : 1 : 0]. A key feature of I and its inverse is that both maps respect
the group structure, which means that the neutral element is mapped to the neutral element
I(O) = [0 : 1 : 0], and that I((x1,y1)⊕ (x2,y2)) is equal to I(x1,y1)⊕ I(x2,y2). The same holds
true for the inverse map I−1.

Maps with these properties are called group isomorphisms, and, from a mathematical point
of view, the existence of function I implies that the affine and the projective definition of Short
Weierstrass elliptic curves are equivalent, and represent the same mathematical thing in just
two different views. Implementations can therefore choose freely between these two represen-
tations.

5.2 Montgomery Curves
Affine and the projective Short Weierstrass forms are the most general ways to describe elliptic
curves over fields of characteristics larger than 3. However, in certain situations, it might be
advantageous to consider more specialized representations of elliptic curves, in order to get
faster algorithms for the group law or the scalar multiplication, for example.

As we will see in this section, so-called Montgomery curves are a subset of all elliptic
curves that can be written in the Montgomery form. Those curves allow for constant time
algorithms for (specializations of) the elliptic curve scalar multiplication.

To see what a Montgomery curve in its affine representation is, let F be a prime field of order
p> 3, and let A,B∈F be two field elements such that B ̸= 0 and A2 ̸= 4 mod p. A Montgomery
elliptic curve M(F) over F in its affine representation is the set of all pairs of field elements
(x,y)∈ F×F that satisfy the Montgomery cubic equation B ·y2 = x3+A ·x2+x, together with
a distinguished symbol O, called the point at infinity.

M(F) = {(x,y) ∈ F×F | B · y2 = x3 +A · x2 + x}
⋃
{O} (5.26)

Despite the fact that Montgomery curves look different from Short Weierstrass curves, they
are just a special way to describe certain Short Weierstrass curves. In fact, every curve in affine
Montgomery form can be transformed into an elliptic curve in Short Weierstrass form. To see
that, assume that a curve is given in Montgomery form By2 = x3+Ax2+x. The associated Short
Weierstrass form is then defined as follows:

y2 = x3 +
3−A2

3 ·B2 · x+
2 ·A3− (9 mod p) ·A

(27 mod p) ·B3 (5.27)

On the other hand, not every elliptic curve E(F) over a prime field F of characteristic p > 3
given in Short Weierstrass form y2 = x3 +ax+b can be converted into Montgomery form. For
a Short Weierstrass curve to be a Montgomery curve, the following conditions need to hold:

Definition 5.2.0.1.

• The number of points on E(F) is divisible by 4.

• The polynomial z3 +az+b ∈ F[z] has at least one root z0 ∈ F.

• 3z2
0 +a is a quadratic residue in F∗.
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When these conditions are satisfied, then for s = (
√

3z2
0 +a)−1, a Montgomery curve is

defined by the following equation:

sy2 = x3 +(3z0s)x2 + x (5.28)

In the following example, we will look at the Tiny-jubjub curve again, and show that it is
actually a Montgomery curve.

Example 82. Consider the prime field F13 and the Tiny-jubjub curve T JJ_13 from example 71.
To see that it is a Montgomery curve, we have to check the requirements from definition 5.2.0.1:

Since the order of T JJ_13 is 20, which is divisible by 4, the first requirement is met.
As for the second criterion, since a = 8 and b = 8, we have to check that the polynomial

P(z) = z3 +8z+8 has a root in F13. To see this, we simply evaluate P at all numbers z ∈ F13,
and find that P(4) = 0, so a root is given by z0 = 4.

In the last step, we have to check that 3 · z2
0 +a has a root in F∗13. We compute as follows:

3z2
0 +a = 3 ·42 +8

= 3 ·3+8
= 9+8
= 4

To see that 4 is a quadratic residue in F13, we use Euler’s criterion (4.46) to compute the
Legendre symbol of 4. We get the following:(

4
13

)
= 4

13−1
2 = 46 = 1

This means that 4 does have a root in F13. In fact, computing a root of 4 in F13 is easy, since
the integer root 2 of 4 is also one of its roots in F13. The other root is given by 13−4 = 9.

Since all requirements are met, we have shown that T JJ_13 is indeed a Montgomery curve,
and we can use (5.28) to compute its associated Montgomery form as follows:

s =
(√

3 · z2
0 +8

)−1

= 2−1 # Fermat’s little theorem

= 213−2 # 2048 mod 13 = 7
= 7

The defining equation for the Montgomery form of the Tiny-jubjub curve is given by as
follows:

sy2 = x3 +(3z0s)x2 + x ⇒
7 · y2 = x3 +(3 ·4 ·7)x2 + x ⇔
7 · y2 = x3 +6x2 + x

So, we get the defining parameters as B = 7 and A = 6, and we can write the Tiny-jubjub curve
in its affine Montgomery representation as follows:

TJJ_13 = {(x,y) ∈ F13×F13 | 7 · y2 = x3 +6x2 + x}
⋃
{O} (5.29)
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Now that we have the abstract definition of the Tiny-jubjub curve in Montgomery form, we
can compute the set of points by inserting all pairs (x,y) ∈ F13× F13, similarly to how we
computed the curve points in its Short Weierstrass representation (5.2). We get the following:

M_TJJ_13 = {O,(0,0),(1,4),(1,9),(2,4),(2,9),(3,5),(3,8),(4,4),(4,9),
(5,1),(5,12),(7,1),(7,12),(8,1),(8,12),(9,2),(9,11),(10,3),(10,10)} (5.30)

We can check the results with Sage:

332sage: F13 = GF(13)
333sage: L_MTJJ = []
334....: for x in F13:
335....: for y in F13:
336....: if F13(7)*y^2 == x^3 + F13(6)*x^2 +x:
337....: L_MTJJ.append((x,y))
338sage: MTJJ = Set(L_MTJJ)
339sage: # does not compute the point at infinity

Exercise 70. Consider example 82 and compute the set in (5.30) by inserting every pair of field
elements (x,y) ∈ F13×F13 into the defining Montgomery equation.

Exercise 71. Consider the elliptic curve E1(F) from example 70 and show that E1(F) is not a
Montgomery curve.

Exercise 72. Consider the elliptic curve secp256k1 from example 72 and show that secp256k1
is not a Montgomery curve.

5.2.1 Affine Montgomery coordinate transformation
Comparing the Montgomery representation in (5.29) with the Short Weierstrass representation
of the same curve in (5.2), we see that there is a 1:1 correspondence between the curve points
in these two examples. This is no accident. In fact, if MA,B is a Montgomery curve, and Ea,b

a Short Weierstrass curve with a = 3−A2

3B2 and b = 2A2−9A
27B3 , then the following function maps all

points in Montgomery representation onto the points in Short Weierstrass representation:

I : MA,B→ Ea,b : (x,y) 7→
(

3x+A
3B

,
y
B

)
(5.31)

The point at infinity of the Montgomery form is mapped to the point at infinity of the Short
Weierstrass form. This map is a 1:1 correspondence (an isomorphism), and its inverse map is
given by the following equation (where z0 is a root of the polynomial z3 + az+ b ∈ F[z] and

s = (
√

3z2
0 +a)−1).

I−1 : Ea,b→MA,B : (x,y) 7→ (s · (x− z0),s · y) (5.32)

The point at infinity of the Short Weierstrass form is mapped to the point at infinity of the
Montgomery form. Using this map, it is therefore possible for implementations of Montgomery
curves to freely transit between the Short Weierstrass and the Montgomery form.

Example 83. Consider the Tiny-jubjub curve again. In 5.2 we defined its Short Weierstrass
representation and in example 5.29, we derived its Montgomery representation.
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To see how the coordinate transformation I works in this example, let’s map points from the
Montgomery representation onto points from the Short Weierstrass representation. Inserting, for
example, the point (0,0) from the Montgomery representation (5.29) into I gives the following:

I(0,0) =
(

3 ·0+A
3B

,
0
B

)
=

(
3 ·0+6

3 ·7
,
0
7

)
=

(
6
8
,0
)

= (4,0)

As we can see, the Montgomery point (0,0) maps to the self-inverse point (4,0) of the Short
Weierstrass representation. On the other hand, we can use our computations of s = 7 and z0 = 4
from example 82 to compute the inverse map I−1, which maps points on the Short Weierstrass
representation to points on the Montgomery form. Inserting, for example, (4,0) we get the
following:

I−1(4,0) = (s · (4− z0),s ·0)
= (7 · (4−4),0)
= (0,0)

As expected, the inverse map maps the Short Weierstrass point back to where it originated
in the Montgomery form. We can use Sage to check that our computation of I is correct:

340sage: # Compute I of Montgomery form:
341sage: L_I_MTJJ = []
342sage: for (x,y) in L_MTJJ: # LMTJJ as defined previously
343....: v = (F13(3)*x + F13(6))/(F13(3)*F13(7))
344....: w = y/F13(7)
345....: L_I_MTJJ.append((v,w))
346sage: I_MTJJ = Set(L_I_MTJJ)
347sage: # Computation \concept{short Weierstrass} form
348sage: C_WTJJ = EllipticCurve(F13,[8,8])
349sage: L_WTJJ = [P.xy() for P in C_WTJJ.points() if P.order() >

1]
350sage: WTJJ = Set(L_WTJJ)
351sage: # check I(Montgomery) == Weierstrass
352sage: WTJJ == I_MTJJ
353True
354sage: # check the inverse map I^(-1)
355sage: L_IINV_WTJJ = []
356sage: for (v,w) in L_WTJJ:
357....: x = F13(7)*(v-F13(4))
358....: y = F13(7)*w
359....: L_IINV_WTJJ.append((x,y))
360sage: IINV_WTJJ = Set(L_IINV_WTJJ)
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361sage: MTJJ == IINV_WTJJ
362True

5.2.2 Montgomery group law
We have seen that Montgomery curves are special cases of Short Weierstrass curves. As such,
they have a group structure defined on the set of their points, which can also be derived from the
chord-and-tangent rule. In accordance with Short Weierstrass curves, it can be shown that the
identity x1 = x2 implies y2 =±y1, meaning that the following rules are a complete description
of the elliptic curve group law:

Definition 5.2.2.1 (Montgomery group law).

• (The neutral element) The point at infinity O is the neutral element.

• (The inverse element) The inverse ofO isO. For any other curve point (x,y)∈M(Fq)\{O},
the inverse is given by (x,−y).

• (The group law) For any two curve points P,Q ∈M(Fq), the group law is defined by one
of the following cases:

1. (Neutral element) If Q =O, then the sum is defined as P⊕Q = P.

2. (Inverse elements) If P = (x,y) and Q = (x,−y), the group law is defined as P⊕Q =
O.

3. (Tangent rule) If P = (x,y) with y ̸= 0, the group law P⊕P = (x′,y′) is defined as
follows:

x′ = (
3x2

1+2Ax1+1
2By1

)2 ·B− (x1 + x2)−A , y′ = 3x2
1+2Ax1+1

2By1
(x1− x′)− y1

4. (Chord rule) If P = (x1,y1) and Q = (x2,y2) such that x1 ̸= x2, the group law R =
P⊕Q with R = (x3,y3) is defined as follows:

x′ = (y2−y1
x2−x1

)2B− (x1 + x2)−A , y′ = y2−y1
x2−x1

(x1− x′)− y1

Exercise 73. Consider the commutative group (M_TJJ_13,⊕) of the Tiny-jubjub curve in its
Montgomery form from example (5.30).

1. Compute the inverse of (1,9), O, (7,12) and (4,9).

2. Solve the equation x⊕ (3,8) = (10,3) for some x ∈M_TJJ_13.

Choose some element x ∈ M_TJJ_13 and test if x is a generator of M_TJJ_13. If x is not a
generator, repeat until you find some generator x. Write M_TJJ_13 in logarithmic order with
respect to x.

Exercise 74. Consider the curve alt_bn128 from example 73. Show that this curve is not a
Montgomery curve.
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5.3 Twisted Edwards Curves
As we have seen in definition 5.1.2.2 and definition 5.2.2.1, both Short Weierstrass and Mont-
gomery curves have somewhat complicated group laws, as many cases have to be distinguished.
This can add complexity to a programming implementation, because each case translates to
another branches in a computer program. However, in the context of SNARK development,
computational models for bounded computations are used in which program branches are un-
desirably costly (more on this in section 6.2.1 and 6.2.2) . To make elliptic curves “SNARK-
friendly”, it is therefore advantageous to look for curves with a group law that requires no
branches and utilizes as few field operations as possible.

So-called SNARK-friendly Twisted Edwards curves are particularly useful here, as these
curves have a compact and easily implementable group law that works for all points including
the point at infinity. Implementing this law needs no branching.

To see what a Twisted Edwards curve in its affine form looks like, let F be a finite field
of characteristic > 3, and let a,d ∈ F\{0} be two non-zero field elements such that a ̸= d. A
Twisted Edwards elliptic curve in its affine representation is the set of all pairs (x,y) from
F×F that satisfy the Twisted Edwards equation a · x2 + y2 = 1+d · x2y2:

E(F) = {(x,y) ∈ F×F | a · x2 + y2 = 1+d · x2y2} (5.33)

A Twisted Edwards curve is called a SNARK-friendly Twisted Edwards curve if the param-
eter a is a quadratic residue and the parameter d is a quadratic non-residue.

As we can see from the definition, affine Twisted Edwards curves look somewhat different
from Short Weierstrass curves, as their affine representation does not need a special symbol to
represent the point at infinity. In fact, the pair (0,1) is always a point on any Twisted Edwards
curve, and it takes the role of the point at infinity.

Despite their different appearances, Twisted Edwards curves are equivalent to Montgomery
curves in the sense that, for every Twisted Edwards curve, there is a Montgomery curve, and a
way to map the points of one curve onto the other (and vice versa) in a 1:1 correspondence.

To see that, assume that a curve in Twisted Edwards form is given. The associated Mont-
gomery curve is then defined by the Montgomery equation:

4
a−d

y2 = x3 +
2(a+d)

a−d
· x2 + x (5.34)

On the other hand, a Montgomery curve By2 = x3 +Ax2 + x such that B ̸= 0 and A2 ̸= 4
gives rise to a Twisted Edwards curve defined by the following equation:

(
A+2

B
)x2 + y2 = 1+(

A−2
B

)x2y2 (5.35)

Example 84. Consider the Tiny-jubjub curve from example 71 again. We know from example
82 that it is a Montgomery curve, and, since Montgomery curves are equivalent to Twisted
Edwards curves, we want to write this curve in Twisted Edwards form. We use equation (5.35),
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and compute the parameters a and d as follows:

a =
A+2

B
# insert A=6 and B=7

=
8
7
= 3 # 7−1 = 2

d =
A−2

B

=
4
7
= 8

Thus, we get the defining parameters a = 3 and d = 8.
Since our goal is to use this curve later in implementations of pen-and-paper SNARKs, let

us show that Tiny-jubjub is also a SNARK-friendly Twisted Edwards curve. To see that, we have
to show that a is a quadratic residue and d is a quadratic non-residue. We therefore compute the
Legendre symbols of a and d using Euler’s criterion. We get the following:(

3
13

)
= 3

13−1
2

= 36 = 1

(
8

13

)
= 8

13−1
2

= 86 = 12 =−1

This proves that Tiny-jubjub is SNARK-friendly. We can write the Tiny-jubjub curve in its
affine Twisted Edwards representation as follows:

TJJ_13 = {(x,y) ∈ F13×F13 | 3 · x2 + y2 = 1+8 · x2 · y2} (5.36)

Now that we have the abstract definition of our Tiny-jubjub curve in Twisted Edwards form,
we can compute the set of points by inserting all pairs (x,y) ∈ F13× F13, similarly to how
we computed the curve points in its Short Weierstrass or Edwards representation. We get the
following:

TE_TJJ_13 = {(0,1),(0,12),(1,2),(1,11),(2,6),(2,7),(3,0),(5,5),(5,8),(6,4),
(6,9),(7,4),(7,9),(8,5),(8,8),(10,0),(11,6),(11,7),(12,2),(12,11)}

(5.37)

We double-check our results with Sage:

363sage: F13 = GF(13)
364sage: L_ETJJ = []
365....: for x in F13:
366....: for y in F13:
367....: if F13(3)*x^2 + y^2 == 1+ F13(8)*x^2*y^2:
368....: L_ETJJ.append((x,y))
369sage: ETJJ = Set(L_ETJJ)
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5.3.1 Twisted Edwards group law
As we have seen, Twisted Edwards curves are equivalent to Montgomery curves, and, as such,
they also have a group law. However, in contrast to Montgomery and Short Weierstrass curves,
the group law of SNARK-friendly Twisted Edwards curves can be described by a single com-
putation that works in all cases, even if we add the neutral element, the inverse, or if we have to
double a point.

To see what the Twisted Edwards group law looks like, let (x1,y1), (x2,y2) be two points on
an Edwards curve E(F). The sum of those points is then given by the following equation:

(x1,y1)⊕ (x2,y2) =

(
x1y2 + y1x2

1+dx1x2y1y2
,

y1y2−ax1x2

1−dx1x2y1y2

)
(5.38)

In order to see what the neutral element of the group law is, first observe that the point (0,1)
is a solution to the Twisted Edwards equation a ·x2 +y2 = 1+d ·x2 ·y2 for any parameters a an
d, and hence (0,1) is a point on any Twisted Edwards curve. It can be shown that (0,1) serves
as the neutral element, and that the inverse of a point (x1,y1) is given by the point (−x1,y1).

Example 85. Let’s look at the Tiny-jubjub curve in Edwards form from (5.36) again. As we have
seen, this curve is given by as follows:

TE_TJJ_13 = {(0,1),(0,12),(1,2),(1,11),(2,6),(2,7),(3,0),(5,5),(5,8),(6,4),
(6,9),(7,4),(7,9),(8,5),(8,8),(10,0),(11,6),(11,7),(12,2),(12,11)} (5.39)

To get an understanding of the Twisted Edwards addition law, let’s first add the neutral element
(0,1) to itself. We apply the group law from (5.38) and get the following:

(0,1)⊕ (0,1) =
(

0 ·1+1 ·0
1+8 ·0 ·0 ·1 ·1

,
1 ·1−3 ·0 ·0

1−8 ·0 ·0 ·1 ·1

)
= (0,1)

So, as expected, the neutral element added to itself results in the neutral element.
Now let’s add the neutral element to some other curve point. We get the following:

(0,1)⊕ (8,5) =
(

0 ·5+1 ·8
1+8 ·0 ·8 ·1 ·5

,
1 ·5−3 ·0 ·8

1−8 ·0 ·8 ·1 ·5

)
= (8,5)

Again, as expected, adding the neutral element to any element will result in that element.
Given any curve point (x,y), we know that its inverse is given by (−x,y). To see how adding

a point to its inverse works, we compute as follows:

(5,5)⊕ (8,5) =
(

5 ·5+5 ·8
1+8 ·5 ·8 ·5 ·5

,
5 ·5−3 ·5 ·8

1−8 ·5 ·8 ·5 ·5

)
=

(
12+1
1+5

,
12−3
1−5

)
=

(
0
6
,
12+10
1+8

)
=

(
0,

9
9

)
= (0,1)
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Adding a curve point to its inverse gives the neutral element, as expected.
As we have seen from these examples, the Twisted Edwards addition law handles edge cases

particularly well and in a unified way.

Exercise 75. Consider the commutative group (T E_T JJ_13,⊕) from example 85.

1. Compute the inverse of (1,11), (0,1), (3,0) and (5,8).

2. Solve the equation x⊕ (5,8) = (1,11) for some x ∈ TE_TJJ_13.

Choose some element x ∈ TE_TJJ_13, and test if x is a generator of TE_TJJ_13. If x is not a
generator, repeat until you find some generator x. Write TE_TJJ_13 in logarithmic order with
respect to x.

5.4 Elliptic Curve Pairings
As introduced in (4.9), some groups come with the notion of a pairing map. In this section,
we discuss pairings on elliptic curves, which form the basis of several zk-SNARKs and other
zero-knowledge proof schemes, essentially because they allow computations “in the exponent”
(see example 38) to be split into different parts computable by different parties.5

We start out by defining some important subgroups of the so-called full torsion group of
an elliptic curve. We then introduce the Weil pairing of an elliptic curve, and describe Miller’s
algorithm, which makes these pairings efficiently computable.

5.4.1 Embedding Degrees
As we will see in what follows, every elliptic curve gives rise to a pairing map. However, we
will also see in example 88 that not every such pairing can be efficiently computed. In order to
distinguish curves with efficiently computable pairings from the rest, we need to start with an
introduction to the so-called embedding degree of a curve.

To see what the embedding degree of an elliptic curve is, let F be a finite field of order
|F| = q, E(F) an elliptic curve over F, and let r be a prime factor of the order n of E(F). The
embedding degree of E(F) with respect to r is the smallest integer k such that the following
equation holds:

r |qk−1 (5.40)

Fermat’s little theorem (3.17) implies that there always exists an embedding degree k(r) for
every elliptic curve and that any factor r of the curve’s order n, since k = r− 1 is always a
solution to the congruency qk ≡ 1 ( mod r ). This implies that the remainder of the integer
division of qr−1−1 by r is 0.

Notation and Symbols 14. Let F be a finite field of order q, and be E(F) an elliptic curve over
F such that r is a prime factor of the order of E(F). We write k(r) for the embedding degree of
E(F) with respect to r.

Example 86. To get a better intuition of the embedding degree, let’s consider the elliptic curve
E1,1(F5) from example 70. We know that the order of E1,1(F5) is 9, and, since the only prime
factor of 9 is 3, we compute the embedding degree of E1,1(F5) with respect to 3.

5A more detailed introduction to elliptic curve pairings can be found, for example, in chapter 6, section 6.8 and
6.9 in Hoffstein et al. [2008].
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To find the embedding degree, we have to find the smallest integer k such that 3 divides
qk−1 = 5k−1. We try and increment until we find a proper k.

k = 1 : 51−1 = 4 not divisible by 3

k = 2 : 52−1 = 24 divisible by 3

This shows that the embedding degree of the elliptic curve E1,1(F5) relative to the the prime
factor 3 of the order of E1,1(F5) is 2 .

Example 87. Let us consider the Tiny-jubjub curve T JJ_13 from example 71. We know that the
order of T JJ_13 is 20, and that the order therefore has two prime factors, a large prime factor 5
and a small prime factor 2.

We start by computing the embedding degree of T JJ_13 with respect to the large prime
factor 5. To find this embedding degree, we have to find the smallest integer k such that 5
divides qk−1 = 13k−1. We try and increment until we find a proper k.

k = 1: 131−1 = 12 not divisible by 5

k = 2: 132−1 = 168 not divisible by 5

k = 3: 133−1 = 2196 not divisible by 5

k = 4: 134−1 = 28560 divisible by 5

Now we know that the embedding degree of T JJ_13 relative to the the prime factor 5 is k(5) = 4.
In real-world applications, like in the case of pairing-friendly elliptic curves such as BLS_12-

381, usually only the embedding degree of the large prime factor is relevant. In the case of our
Tiny-jubjub curve, this is represented by 5. It should be noted, however, that every prime factor
of a curve’s order has its own embedding degree despite the fact that this is mostly irrelevant in
applications.

To find the embedding degree of the small prime factor 2, we have to find the smallest
integer k such that 2 divides qk−1 = 13k−1. We try and increment until we find a proper k.

k = 1: 131−1 = 12 divisible by 2

Now we know that the embedding degree of T JJ_13 relative to the the prime factor 2 is 1.
As we have seen, different prime factors can have different embedding degrees in general.

We check our computations with Sage:

370sage: p = ZZ(13)
371sage: # large prime factor
372sage: r = ZZ(5)
373sage: k = ZZ(1)
374sage: while k < r: # Fermat’s little theorem
375....: if (p^k-1)%r == 0:
376....: break
377....: k=k+1
378sage: k
3794
380sage: # small prime factor
381sage: r = ZZ(2)
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382sage: k = ZZ(1)
383sage: while k < r: # Fermat’s little theorem
384....: if (p^k-1)%r == 0:
385....: break
386....: k=k+1
387sage: k
3881

Example 88. To give an example of a cryptographically secure real-world elliptic curve that
does not have a small embedding degree, let’s look at curve secp256k1 again. We know from
example 72 that the order of this curve is a prime number, which means that we only have a
single embedding degree.

To test potential embedding degrees k, say, in the range 1≤ k < 1000, we can use Sage and
compute as follows:

389sage: p = ZZ(1157920892373161954235709850086879078532699846656
40564039457584007908834671663)

390sage: r = ZZ(1157920892373161954235709850086879078528375642790
74904382605163141518161494337)

391sage: k = ZZ(1)
392sage: while k < 1000:
393....: if (p^k-1)%r == 0:
394....: break
395....: k=k+1
396sage: k
3971000

We see that secp256k1 has no embedding degree k < 1000, which means that secp256k1 is a
curve that has no small embedding degree. This property will be of importance later on.

Example 89. To give an example of a cryptographically secure real-world elliptic curve that
does have a small embedding degree, let’s look at curve alt_bn128 again. We know from exam-
ple 73 that the order of this curve is a prime number, which means that we only have a single
embedding degree.

To compute the embedding degrees k, we can use Sage and loop through small embedding
degrees until we find as match. We compute as follows:

398sage: p = ZZ(2188824287183927522224640574525727508869631115729
7823662689037894645226208583)

399sage: r = ZZ(2188824287183927522224640574525727508854836440041
6034343698204186575808495617)

400sage: k = ZZ(1)
401sage: # degree is supposed to be small
402sage: while k < 50:
403....: if (p^k-1)%r == 0:
404....: break
405....: k=k+1
406sage: k
40712

100



CHAPTER 5. ELLIPTIC CURVES 5.4. ELLIPTIC CURVE PAIRINGS

5.4.1.1 Elliptic Curves over extension fields

Suppose that p is a prime number, and Fp its associated prime field. We know from equation
(4.47) that the fields Fpm are extensions of Fp in the sense that Fp is a subfield of Fpm . This
implies that we can extend the affine plane that an elliptic curve is defined on by changing
the base field to any extension field. To be more precise, let E(F) = {(x,y) ∈ F×F | y2 =
x3 +a · x+b} be an affine Short Weierstrass curve, with parameters a and b taken from F. If F′
is an extension field of F, then we extend the domain of the curve by defining E(F′) as follows:

E(F′) = {(x,y) ∈ F′×F′ | y2 = x3 +a · x+b} (5.41)

While we did not change the defining parameters, we consider curve points from the affine
plane over the extension field now. Since F⊂ F′, it can be shown that the original elliptic curve
E(F) is a sub-curve of the extension curve E(F′).
Example 90. Consider the prime field F5 from example 64 together with the elliptic curve
E1,1(F5) and its definition from example 70 and the construction the extension field F52 relative
to the polynomial t2 + 2 ∈ F5[t] from exercise 56. In this example we extend the definition of
E1,1(F5) to an elliptic curve over F52 and compute its set of points:

E1(F52) = {(x,y) ∈ F52×F52 | y2 = x3 + x+1}

Since F52 contains 25 points, in order to compute the set E1(F52), we have to try 25 ·25 = 625
pairs, which is probably a bit tedious. Instead, we use Sage to compute the curve for us. To do,
we choose the representation of F52 from 56. We get:

408sage: F5= GF(5)
409sage: F5t.<t> = F5[]
410sage: P_MOD_2 = F5t(t^2+2)
411sage: P_MOD_2.is_irreducible()
412True
413sage: F5_2.<t> = GF(5^2, name=’t’, modulus=P_MOD_2)
414sage: E1F5_2 = EllipticCurve(F5_2,[1,1])
415sage: E1F5_2.order()
41627

The curve E1(F52) consist of 27 points, in contrast to curve E1(F5), which consists of 9 points.
Writing those points down gives the following:

E1(F52) = {O,(0,4),(0,1),(3,4),(3,1),(4,3),(4,2),(2,4),(2,1),
(4t +3,3t +4),(4t +3,2t +1),(3t +2, t),(3t +2,4t),
(2t +2, t),(2t +2,4t),(2t +1,4t +4),(2t +1, t +1),
(2t +3,3),(2t +3,2),(t +3,2t +4),(t +3,3t +1),

(3t +1, t +4),(3t +1,4t +1),(3t +3,3),(3t +3,2),(1,4t),(1, t)}

As we can see, the set of points from the elliptic curve E1,1(F5) is a subset of the sets of points
from the elliptic curve E(F52). This was expected since the prime field F5 is a subfield of the
finite field F52 .

Exercise 76. Consider the Short Weierstrass elliptic curve E(F52) from example 90, compute the
expression (4t +3,2t +1)⊕ (3t +3,2) using pen and paper and double-check the computation
using sage. Then solve the equation x⊕ (3t + 3,3) = (3,4) for some x ∈ E(F52). After that
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compute the scalar multiplication [5](2t + 1,4t + 4) using the double-and-add algorithm from
exercise 38.

Exercise 77. Consider the Tiny-jubjub curve from example 71. Show that the polynomial t4 +
2∈ F13[t] is irreducible. Then write a sage program to implement the finite field extension F134 ,
implement the curve extension T JJ_13(F134) and compute the number of curve points.

Exercise 78. Consider the alt_bn128 curve and its associated base field Fp from example 73.
As we know from example 89 this curve has an embedding degree of 12. Use Sage to find
an irreducible polynomial P ∈ Fp[t] and write a sage program to implement the finite field
extension Fp12 and to implement the curve extension alt_bn128(Fp12) and compute the number
of curve points.

5.4.2 Full torsion groups
As we will see in what follows, cryptographically interesting pairings are defined on so-called
torsion subgroups of elliptic curves. To define torsion groups of an elliptic curve, let F be a
finite field, E(F) an elliptic curve of order n and r a factor of n. Then the r-torsion group of
the elliptic curve E(F) is defined as the set

E(F)[r] := {P ∈ E(F) | [r]P =O} (5.42)

The fundamental theorem of finite cyclic groups 4.1.4.1 states that every factor r of a cyclic
group’s order uniquely defines a subgroup of the size of that factor and those subgroup are
important examples of r-torsion groups. We have seen examples of those subgroups in 79 and
80.

When we consider elliptic curve extensions as defined in 5.41, we could ask what happens
to the r-torsion groups in the extension. One might intuitively think that their extension just
parallels the extension of the curve. For example, when E(Fp) is a curve over prime field Fp,
with some r-torsion group E(Fp)[r] and when we extend the curve to E(Fpm), then there might
be a bigger r-torsion group E(Fpm)[r] such that E(Fp)[r] is a subgroup of E(Fpm)[r]. This might
make intuitive sense, as E(Fp) is a subset of E(Fpm).

However, the actual situation is a bit more surprising than that. To see that, let Fp be a
prime field and let E(Fp) be an elliptic curve of order n, such that r is a factor of n, with
embedding degree k(r) and r-torsion group E(Fp)[r]. Then the r-torsion group E(Fpm)[r] of a
curve extension is equal to E(Fp)[r], only as long as the power m is less than the embedding
degree k(r) of E(Fp).

For the prime power pk(r), the r-torsion group E(Fpk(r))[r] might then be larger than E(Fp)[r]
and it contains E(Fp)[r] as a subgroup. We call it the full r-torsion group of that elliptic curve
and write is as follows

E[r] := E(Fpk(r))[r] (5.43)

The r-torsion groups E(Fpm)[r] of any curve extensions for m > k(r) are all equal to E[r]. In
this sense E[r] is already the largest r-torsion group, which justifies the name. The full r-torsion
group contains r2 many elements and consists of r + 1 subgroups, one of which is E(Fp)[r].
The following diagram summarizes the situation:

E(Fp) ⊂ ·· · ⊂ E(Fpk(r)−1) ⊂ E(Fpk(r)) ⊂ E(Fpk(r)+1) ⊂ . . .

E(Fp)[r] = · · · = E(Fpk(r)−1)[r] ⊂ E(Fpk(r))[r] = E(Fpk(r)+1)[r] = . . .
(5.44)

So, when we consider nested elliptic curve extensions as in 5.44, ordered by the prime power
m, then the r-torsion group stays constant for every level m that is smaller than the embedding
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degree k(r), while it suddenly blossoms into a larger group on level k(r) with r+1 subgroups,
and then all r-torsion groups on higher levels m≥ k(r) stay the same. In other words, once the
extension field is big enough to find one more curve point P with [r]P =O that is not an element
of the curve over the base field, then we actually find all of the points in the full torsion group.

Example 91. Consider curve E1,1(F5) again. We know from 79 that it contains a 3-torsion group
and that the embedding degree of 3 is k(3) = 2. From this we can deduce that we can find the
full 3-torsion group E1[3] in the curve extension E1(F52), the latter of which we computed in
example 90.

Since that curve is small, in order to find the full 3-torsion, we can loop through all el-
ements of E1(F52) and check the defining equation [3]P = O. Invoking Sage and using our
implementation of E1(F52) in sage from 90, we compute as follows:

417sage: INF = E1F5_2(0) # Point at infinity
418sage: L_E1_3 = []
419sage: for p in E1F5_2:
420....: if 3*p == INF:
421....: L_E1_3.append(p)
422sage: E1_3 = Set(L_E1_3) # Full 3-torsion set

E1[3] = {O,(2,1),(2,4),(1, t),(1,4t),(2t+1, t+1),(2t+1,4t+4),(3t+1, t+4),(3t+1,4t+1)}

As we can see the group E1[3] contains 9= 33 many elements and the 3-torsion group E1,1(F5)[3]
of the curve over the prime field is a subset of the full torsion group.

Example 92. Consider the Tiny-jubjub curve from example 71. We know from example 87 that
it contains a 5-torsion group and that the embedding degree of 5 is 4. This implies that we can
find the full 5-torsion group TJJ_13[5] in the curve extension TJJ_13(F134).

To compute the full torsion, first observe that, since F134 contains 28561 elements, comput-
ing TJJ_13(F134) means checking 285612 = 815730721 elements. From each of these curve
points P, we then have to check the equation [5]P = O. Doing this for 815730721 is a bit too
slow even on a computer.

Fortunately, Sage has a function that computes all points P, such that [m]P = Q for given
integer m and curve point Q. Using the curve extension from exercise 77, the following Sage
code provides a way to compute the full torsion group:

423sage: # define the extension field
424sage: F13= GF(13) # prime field
425sage: F13t.<t> = F13[] # polynomials over t
426sage: P_MOD_4 = F13t(t^4+2) # degree 4 irreducible polynomial
427sage: P_MOD_4.is_irreducible()
428True
429sage: F13_4.<t> = GF(13^4, name=’t’, modulus=P_MOD_4)
430sage: TJJF13_4 = EllipticCurve(F13_4,[8,8]) # TJJ extension
431sage: # compute the full 5-torsion
432sage: INF = TJJF13_4(0) # point at infinity
433sage: L_TJJF13_4_5 = INF.division_points(5) # [5]P == INF
434sage: TJJF13_4_5 = Set(L_TJJF13_4_5)
435sage: TJJF13_4_5.cardinality() # number of elements
43625

As expected, we get a group that contains 52 = 25 elements. To see that the embedding degree 4
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is actually the smallest prime power to find the full 5-torsion group, let’s compute the 5-torsion
group over of the Tiny-jubjub curve of the extension field F133 . We get the following:

437sage: # define the extension field
438sage: P_MOD_3 = F13t(t^3+2) # degree 3 irreducible polynomial
439sage: P_MOD_3.is_irreducible()
440True
441sage: F13_3.<t> = GF(13^3, name=’t’, modulus=P_MOD_3)
442sage: TJJF13_3 = EllipticCurve(F13_3,[8,8]) # TJJ extension
443sage: # compute the 5-torsion
444sage: INF = TJJF13_3(0)
445sage: L_TJJF13_3_5 = INF.division_points(5) # [5]P == INF
446sage: TJJF13_3_5 = Set(L_TJJF13_3_5) # $5$-torsion
447sage: TJJF13_3_5.cardinality() # number of elements
4485

As we can see, the 5-torsion group of Tiny-jubjub over F133 is equal to the 5-torsion group
of Tiny-jubjub over F13 itself.

Example 93. Let’s look at the curve secp256k1. We know from example 72 that the curve is of
some prime order r. Because of this, the only torsion group to consider is the curve itself, so
the curve group is the r-torsion.

In order to find the full r-torsion of secp256k1, we need to compute the embedding degree
k. And as we have seen in 88 it is at least not small. However, we know from Fermat’s little
theorem 3.17 that a finite embedding degree must exist. It can be shown that it is given by the
following 256-bit number:

k =192986815395526992372618308347813175472927379845817397100860523586360249056

This means that the embedding degree is very large, which implies that the field extension Fpk

is very large too. To understand how big Fpk is, recall that an element of Fpm can be represented
as a string < x0, . . . ,xm > of m elements, each containing a number from the prime field Fp.
Now, in the case of secp256k1, such a representation has k-many entries, each of them 256 bits
in size. So, without any optimizations, representing such an element would need k · 256 bits,
which is too much to be representable in the observable universe. It follows that it is not only
infeasible to compute the full r-torsion group of secp256k1, but moreover to even write down
single elements of that group in general.

Exercise 79. Consider the full 5-torsion group T JJ_13[5] from example 92. Write down the set
of all elements from this group and identify the subset of all elements from T JJ_13(F13)[5] as
well as T JJ_13(F132)[5]. Then compute the 5-torsion group T JJ_13(F138)[5] .

Exercise 80. Consider the curve secp256k1 from example 72 and its full r-torsion group as
introduced in example 93. Write down a single element from the curves full torsion group that
is not the point at infinity.

Exercise 81. Consider the curve alt_bn128 from example 73 and its curve extension from exer-
cise 78. Write a Sage program that computes a generator from the curves full torsion group.

5.4.3 Pairing groups
As we have stated above, any full r-torsion group contains r+1 cyclic subgroups, two of which
are of particular interest in pairing-based elliptic curve cryptography. To characterize these
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groups, we need to consider the so-called Frobenius endomorphism of an elliptic curve E(F)
over some finite field F of characteristic p:

π : E(F)→ E(F) :
(x,y) 7→ (xp,yp)
O 7→ O (5.45)

It can be shown that π maps curve points to curve points. The first thing to note is that, in case
F is a prime field, the Frobenius endomorphism acts as the identity map, since (xp,yp) = (x,y)
on prime fields due to Fermat’s little theorem 3.17. This means that the Frobenius map is more
interesting on elliptic curves over prime field extensions.

With the Frobenius map at hand, we can characterize two important subgroups of the full r-
torsion group E[r] of an elliptic curve. The first subgroup is the group of elements from the full
r-torsion group, on which the Frobenius map acts trivially. Since in pairing-based cryptography,
this group is usually written as G1, assuming that the prime factor r in the definition is implicitly
given, we define G1 as follows:

G1[r] := {(x,y) ∈ E[r] | π(x,y) = (x,y) } (5.46)

It can be shown that G1 is precisely the r-torsion group E(Fp)[r] of the unextended elliptic
curve defined over the prime field. There is another subgroup of the full r-torsion group that
can be characterized by the Frobenius map and in the context of pairing-based cryptography,
this subgroup is often called G2. This group is defined as follows:

G2[r] := {(x,y) ∈ E[r] | π(x,y) = [p](x,y) } (5.47)

Notation and Symbols 15. If E(F) is an elliptic curve and r is the largest prime factor of the
curves order, we call G1[r] and G2[r] pairing groups. If the prime factor r is clear from the
context, we sometimes simply write G1 and G2 to mean G1[r] and G2[r], respectively.

It should be noted that other definitions of G2 exists in the literature, too. However, in
the context of pairing-based cryptography, this is a common choice as it is particularly useful
because we can define efficient hash functions that map into G2, which is not possible for all
subgroups of the full r-torsion.

Example 94. Consider the curve E1,1(F5) from example 70 again. As we have seen, this curve
has the embedding degree k = 2, and a full 3-torsion group is given as follows:

E1[3] = {O,(2,1),(2,4),(1, t),(1,4t),(2t +1, t +1),
(2t +1,4t +4),(3t +1, t +4),(3t +1,4t +1)} (5.48)

According to the general theory, E1[3] contains 4 subgroups, and we can characterize the
subgroups G1 and G2 using the Frobenius endomorphism. Unfortunately, at the time of writing,
Sage does not have a predefined Frobenius endomorphism for elliptic curves, so we have to use
the Frobenius endomorphism of the underlying field as a temporary workaround. Using our
implementation of E1[3] in sage from example 91, we compute G1 as follows:

449sage: L_G1 = []
450sage: for P in E1_3:
451....: PiP = E1F5_2([a.frobenius() for a in P]) # pi(P)
452....: if P == PiP:
453....: L_G1.append(P)
454sage: G1 = Set(L_G1)
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As expected, the group G1 = {O,(2,4),(2,1)} is identical to the 3-torsion group of the (unex-
tended) curve over the prime field E1,1(F5).

In order to compute the group G2 for the curve E1,1(F5), we can use almost the same algo-
rithm as we used for the computation of G1. Since p = 5 we get the following:

455sage: L_G2 = []
456sage: for P in E1_3:
457....: PiP = E1F5_2([a.frobenius() for a in P]) # pi(P)
458....: pP = 5*P # [5]P
459....: if pP == PiP:
460....: L_G2.append(P)
461sage: G2 = Set(L_G2)

Thus, we have computed the pairing group G2 of the full 3-torsion group of curve E1,1(F5)
as the set G2 = {O,(1, t),(1,4t)}.
Example 95. Consider the Tiny-jubjub curve T JJ_13 from example 71. In example 92 we com-
puted its full 5 torsion, which is a group that has 6 subgroups. We compute G1 using Sage as
follows:

462sage: L_TJJ_G1 = []
463sage: for P in TJJF13_4_5:
464....: PiP = TJJF13_4([a.frobenius() for a in P]) # pi(P)
465....: if P == PiP:
466....: L_TJJ_G1.append(P)
467sage: TJJ_G1 = Set(L_TJJ_G1)

We get G1 = {O,(7,2),(8,8),(8,5),(7,11)} and as expected, G1 is identical to the 5-torsion
group of the (unextended) curve over the prime field T JJ13 as computed in example 5.18.

In order to compute the group G2 for the tiny jubjub curve, we can use almost the same
algorithm as we used for the computation of G1. Since p = 13 we get the following:

468sage: L_TJJ_G2 = []
469sage: for P in TJJF13_4_5:
470....: PiP = TJJF13_4([a.frobenius() for a in P]) # pi(P)
471....: pP = 13*P # [13]P
472....: if pP == PiP: # pi(P) ==[13]P
473....: L_TJJ_G2.append(P)
474sage: TJJ_G2 = Set(L_TJJ_G2)

G2 = {O,(9t2 +7, t3 +11t),(9t2 +7,12t3 +2t),(4t2 +7,5t3 +10t),(4t2 +7,8t3 +3t)}
Example 96. Consider Bitcoin’s curve secp256k1 again. Since the group G1 is identical to the
torsion group of the unextended curve, and since secp256k1 has prime order, we know that, in
this case, G1 is identical to secp256k1 itself. However it is infeasible to compute elements from
G2, since according to example 93 we can not store average curve points from the extension
curve secp256k1(Fpk) on any computer, let alone compute their images under the Frobenius
map.

Exercise 82. Consider the small prime factor 2 of the Tiny-jubjub curve. Compute the full 2-
torsion group of T JJ_13 and then compute the groups G1[2] and G2[2].

Exercise 83. Consider the curve alt_bn128 from example 73 and its curve extension from ex-
ercise 78. Write a Sage program that computes a generator for each of the torsion group G1[p]
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and G2[p].

5.4.4 The Weil pairing
Recall the definition of a non-degenerate group pairing from 4.9. In this part, we consider a
pairing function defined on the subgroups G1[r] and G2[r] of the full r-torsion E[r] of a Short
Weierstrass elliptic curve. To be more precise, let E(Fp) be an elliptic curve of embedding
degree k such that r is a prime factor of its order. Then the Weil pairing is defined as the
following bilinear, non-degenerate map:

e(·, ·) : G1[r]×G2[r]→ F∗pk ; (P,Q) 7→ (−1)r ·
fr,P(Q)

fr,Q(P)
(5.49)

The extension field elements fr,P(Q), fr,Q(P) ∈ Fpk in the definition of the Weil pairing are
computed by Miller’s algorithm below.

Algorithm 8 Miller’s algorithm for Short Weierstrass curves y2 = x3 +ax+b
Require: r > 3, P ∈ E[r], Q ∈ E[r] and

b0, . . . ,bt ∈ {0,1} with r = b0 ·20 +b1 ·21 + . . .+bt ·2t and bt = 1
procedure MILLER’S ALGORITHM(P,Q)

if P =O or Q =O or P = Q then
return fr,P(Q)← (−1)r

end if
(xT ,yT )← (xP,yP)
f1← 1
f2← 1
for j← t−1, . . . ,0 do

m← 3·x2
T+a

2·yT

f1← f 2
1 · (yQ− yT −m · (xQ− xT ))

f2← f 2
2 · (xQ +2xT −m2)

x2T ← m2−2xT
y2T ←−yT −m · (x2T − xT )
(xT ,yT )← (x2T ,y2T )
if b j = 1 then

m← yT−yP
xT−xP

f1← f1 · (yQ− yT −m · (xQ− xT ))
f2← f2 · (xQ +(xP + xT )−m2)
xT+P← m2− xT − xP
yT+P←−yT −m · (xT+P− xT )
(xT ,yT )← (xT+P,yT+P)

end if
end for
f1← f1 · (xQ− xT )

return fr,P(Q)← f1
f2

end procedure

Understanding the details of how and why this algorithm works requires the concept of
divisors, which is outside of the scope this book. The interested reader might look at chapter
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6, section 6.8.3 in Hoffstein et al. [2008], or at Craig Costello’s great tutorial on elliptic curve
pairings.add this to references As we can see, the algorithm is more efficient on prime numbers
r, that have a low Hamming weight 3.13.

We call an elliptic curve E(Fp) pairing-friendly if there is a prime factor of the groups
order such that the Weil pairing is efficiently computable with respect to that prime factor. In
real-world applications of pairing-friendly elliptic curves, the embedding degree is usually a
small number like 2, 4, 6 or 12, and the number r is the largest prime factor of the curve’s order.

Example 97. Consider curve E1,1(F5) from example 70. Since the only prime factor of the
group’s order is 3, we cannot compute the Weil pairing on this group using our definition of
Miller’s algorithm. In fact, since G1 is of order 3, executing the algorithm will lead to a “division
by zero”.

Example 98. Consider the Tiny-jubjub curve TJJ_13(F13) from example 71 and its associated
pairing groups from example 95:

G1[5] = {O,(7,2),(8,8),(8,5),(7,11)}
G2[5] = {O,(9t2 +7, t3 +11t),(9t2 +7,12t3 +2t),(4t2 +7,5t3 +10t),(4t2 +7,8t33+3t)}

Since we know from example 87 that the embedding degree of 5 id 4, we can instantiate the
general definition of the Weil pairing for this example as follows:

e(·, ·) : G1[5]×G2[5]→ F134

The first if-statement in Miller’s algorithm, implies that e(O,Q) = 1 as well as e(P,O) = 1
for all arguments P ∈ G1[5] and Q ∈ G2[5]. In order to compute a non-trivial Weil pairing, we
choose the argument P = (7,2) ∈G1 and Q = (9t2 +7,12t3 +2t) ∈G2. Invoking sage we get
the following computation of the Weil pairing:

475sage: F13 = GF(13)
476sage: F13t.<t> = F13[]
477sage: P_MOD_4 = F13t(t^4+2)
478sage: F13_4.<t> = GF(13^4, name=’t’, modulus=P_MOD_4)
479sage: TJJF13_4 = EllipticCurve(F13_4,[8,8])
480sage: P=TJJF13_4([7,2])
481sage: Q=TJJF13_4([9*t^2+7,12*t^3+2*t])
482sage: P.weil_pairing(Q,5)
4837*t^3 + 7*t^2 + 6*t + 3

Example 99. Consider Bitcoin’s curve secp256k1 again. As we have seen in example 96, it is
infeasible to compute elements from the pairing group G2 and as we know from example 93
it is moreover infeasible to do calculations in the extension field Fpk . It follows that the Weil
pairing is not efficiently computable and that secp256k1 is not pairing friendly.

Exercise 84. Consider the curve alt_bn128 from example 73 and the generators g1 and g2
of G1[p] and G2[p] from exercise 83. Write a Sage program that computes the Weil pairing
e(g1,g2).

5.5 Hashing to Curves
Elliptic curve cryptography frequently requires the ability to hash data onto elliptic curves. If
the order of the curve is not a prime number, hashing to prime order subgroups is of importance,
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too and in the context of pairing-friendly curves, it is sometimes necessary to hash specifically
onto the pairing group G1 or G2 as introduced in 5.4.3.

As we have seen in section 4.1.7, some general methods are known for hashing into fi-
nite cyclic groups and since elliptic curves over finite fields are finite and cyclic groups, those
methods can be utilized in this case, too. However, in what follows we want to describe some
methods specific to elliptic curves that are frequently used in real-world applications.

5.5.1 Try-and-increment hash functions
One of the most straight-forward ways of hashing onto an elliptic curve point in a secure way is
to use a cryptographic hash function together with one of the hashing into modular arithmetics
methods as described in section 4.2.1.

Both constructions can be combined in such a way that the image provides an element of
the base field of the elliptic curve together with a single auxiliary bit. The base field element
can then be interpreted as the x-coordinate of a potential curve point, and the auxiliary bit can
be used to determine one of the two possible y coordinates of that curve point as explained in
5.1.1.2.

Such an approach would be deterministic and easy to implement, and it would conserve the
cryptographic properties of the original hash function. However, not all x coordinates generated
in such a way will result in quadratic residues when inserted into the defining equation. It
follows that not all field elements give rise to actual curve points.

In fact, on a prime field, only half of the field elements are quadratic residues. Hence,
assuming an even distribution of the hash values in the field, this method would fail to generate
a curve point in about half of the attempts.

One way to account for this problem is the following so-called try-and-increment method.
Instead of simply hashing a binary string s to the field, this method use a try-and-increment hash
to the base field as described in 4.2.1.1 in combination with a single auxiliary bit derived from
the underlying cryptographic hash function.

If any try of hashing to the field does not result in a field element or a valid curve point, the
counter is incremented, and the hashing is repeated. This is done until a valid curve point is
found (see the algorithm below).

The try-and-increment method is relatively easy to implement, and it maintains the crypto-
graphic properties of the original hash function. It should be noted that if the curve is not of
prime order, the image of the try-and-increment hash will be a general curve point that might
not be an element from the large prime-order subgroup. To map onto the large prime order
subgroup it is therefore necessary to apply the technique of cofactor clearing as explained in
4.7.

Example 100. Consider the Tiny-jubjub curve from example 71. We want to construct a try-and-
increment hash function that maps a binary string s of arbitrary length onto the large prime-order
subgroup of size 5 from example 5.18.

Since the curve T JJ_13 is defined over the field F13, and the binary representation of 13
is Bits(13) =< 1,1,0,1 >, one way to implement a try-and-increment function is to apply
SHA256 from Sage’s hashlib library on the concatenation s||c for some binary counter string c,
and use the first 4 bits of the image to try to hash into F13. In case we are able to hash to a value
x such that x3 +8 · x+8 is a quadratic residue in F13, we use the fifth bit to decide which of the
two possible roots of x3+8 ·x+8 we will choose as the y coordinate. The result is a curve point
different from the point at infinity. To project it onto the large prime order subgroup T JJ_13[5],
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Algorithm 9 Hash-to-E(Fp)

Require: p ∈ Z with |p|= k and s ∈ {0,1}∗
Require: Curve equation y2 = x3 +ax+b over Fp

procedure TRY-AND-INCREMENT(r,k,s)
c← 0 ▷ Try-and-Increment counter
repeat

s′← s||Bits(c)
x← H(s′)0 ·20 +H(s′)1 ·21 + . . .+H(s′)k ·2k ▷ potential x
y2← z3 +a · z+b ▷ potential y2

c← c+1
until x < p and (y2)

p−1
2 mod r = 1 ▷ Check x in field and y2 has root

if H(s′)k+1 == 0 then ▷ auxiliary bit decides root
y← y′ ∈

√
y2 with 0≤ y′ ≤ (p−1)/2

else
y← y′ ∈

√
y2 with (p−1)/2 < y′ < p

end if
return (x,y)

end procedure
Ensure: (x,y) ∈ E(Fr)

we multiply it with the cofactor 4. If the result is not the point at infinity, it is the result of the
hash.

To make this concrete, let s =< 1,1,1,0,0,1,0,0,0,0 > be our binary string that we want to
hash onto T JJ13[5]. We use a binary counter string starting at zero, that is, we choose c=< 0>.
Invoking Sage, we define the try-hash function as follows:

484sage: import hashlib
485sage: def try_hash(s,c):
486....: s_1 = s+c # string concatenation
487....: hasher = hashlib.sha256(s_1.encode(’utf-8’)) #

compute SHA256
488....: digest = hasher.hexdigest()
489....: z = ZZ(digest, 16) # cast into integer
490....: z_bin = z.digits(base=2, padto=256) # cast to 256

bits
491....: x = z_bin[0]*2^0 + z_bin[1]*2^1 + z_bin[2]*2^2+z_bin

[3]*2^3
492....: return (x,z_bin[4])
493sage: try_hash(’1110010000’,’0’)
494(15, 1)

As we can see, our first attempt to hash into F13 was not successful, as 15 is not an element
in F13, so we increment the binary counter by 1 and try again:

495sage: try_hash(’1110010000’,’1’)
496(3, 1)

With this try, we found a hash into F13. However, this point is not guaranteed to define a
curve point. To see that, we insert x = 3 into the right side of the Short Weierstrass equation of
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the Tiny-jubjub curve, and compute 33 +8 ·3+8 = 7. However, 7 is not a quadratic residue in
F13, since 7

13−1
2 = 76 = 12 = −1. This means that the field element 7 is a not suitable as the

x-coordinate of any curve point. We therefore have to increment the counter another time:

497sage: try_hash(’1110010000’,’10’)
498(12, 1)

Since 123 +8 ·12+8 = 12, and we have
√

12 = {5,8}, we finally found the valid x-coordinate
x = 12 for a curve point hash. Now, since the auxiliary bit of this hash is 1, we choose the larger
root y = 8 as the y coordinate and get the following hash which is a valid curve point on the
Tiny-jubjub curve:

HT JJ_13(< 1,1,1,0,0,0,0,0 >) = (12,8)

In order to project this onto the “large” prime-order subgroup, we have to do cofactor clear-
ing, that is, we have to multiply the point with the cofactor 4. Using sage we get

499sage: P = TJJ_13(12,8)
500sage: (4*P).xy()
501(8, 8)

This implies that hashing the binary string < 1,1,1,0,0,0,0,0 > onto the large prime order
subgroup T JJ_13[5] gives the hash value (8,8) as a result.

HT JJ_13[5](< 1,1,1,0,0,0,0,0 >) = (8,8)

Exercise 85. Use our definition of the try_hash algorithm to implement a hash function HT JJ_13[5] :
{0,1}∗→ T JJ_13(F13)[5] that maps binary strings of arbitrary length onto the 5-torsion group
of T JJ13(F13).

Exercise 86. Implement a cryptographic hash function Hsecp256k1 : {0,1}∗ → secp256k1 that
maps binary strings of arbitrary length onto the elliptic curve secp256k1.

5.6 Constructing elliptic curves
Cryptographically secure elliptic curves like secp256k1 72 have been known for quite some
time. Given the latest advancements in cryptography, however, it is often necessary to design
and instantiate elliptic curves from scratch that satisfy certain very specific properties.

For example, in the context of SNARK development, it became necessary to design ellip-
tic curves that can be efficiently implemented inside of a so-called algebraic circuit in order
to enable primitives like elliptic curve signature schemes in a zero-knowledge proof. Such a
curve is given by the Baby-jubjub curve as defined in Bellés-Muñoz et al. [2021], and we have
paralleled its definition by introducing the Tiny-jubjub curve from example 71. As we have
seen, those curves are instances of so-called Twisted Edwards curves, and as such have easy to
implement addition laws that work without branching. However, we introduced the Tiny-jubjub
curve out of thin air, as we just gave the curve parameters without explaining how we came up
with them.

Another requirement in the context of many so-called pairing-based zero-knowledge proof-
ing systems is the existence of a suitable, pairing-friendly curve with a specified security level
and a low embedding degree as defined in 5.40. Famous examples are the BLS_12 and the
NMT curves.
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The major goal of this section is to explain the most important method of designing elliptic
curves with predefined properties from scratch, called the Complex Multiplication Method
(cf. chapter 6 of Silverman and Tate [1994]). We will apply this method in section 5.6.4 to
synthesize a particular BLS6 curve, which is one of the most insecure curves, that is particular
well suited to serve as the main curve to build our pen-and-paper SNARKs on. As we will see,
this curve has a “large” prime factor subgroup of order 13, which implies that we can use our
Tiny-jubjub curve to implement certain elliptic curve cryptographic primitives in circuits over
that BLS6 curve.

Before we introduce the Complex Multiplication Method, we have to explain a few proper-
ties of elliptic curves that are of key importance in understanding that method.

5.6.1 The Trace of Frobenius
To understand the Complex Multiplication Method of elliptic curves, we have to define the
so-called trace of an elliptic curve first.

We know that elliptic curves are cyclic groups of finite order. Therefore, an interesting
question is whether it is possible to estimate the number of elements that this curve contains.
Since an affine Short Weierstrass curve consists of pairs (x,y) of elements from a finite field
Fq plus the point at infinity, and the field Fq contains q elements, the number of curve points
cannot be arbitrarily large, since it can contain at most q2 +1 many elements.

There is however, a more precise estimation, usually called the Hasse bound. To understand
it, let E(Fq) be an affine Short Weierstrass curve over a finite field Fq of order q, and let |E(Fq)|
be the order of the curve. Then there is an integer t ∈ Z, called the trace of Frobenius of the
curve, such that |t| ≤ 2

√
q and the following equation holds:

|E(F)|= q+1− t (5.50)

A positive trace, therefore, implies that the curve contains no more points than the under-
lying field, whereas a non-negative trace means that the curve contains more points. However,
the estimation |t| ≤ 2

√
q implies that the difference is not very large in either direction, and the

number of elements in an elliptic curve is always approximately in the same order of magnitude
as the size of the curve’s base field.

Example 101. Consider the elliptic curve E1,1(F5) from example 70. We know that it contains
9 curve points. Since the order of F5 is 5, we compute the trace of E1,1(F5) to be t =−3, since
the Hasse bound is given by the following equation:

9 = 5+1− (−3)

Indeed, we have |t| ≤ 2
√

q, since
√

5 > 2 and |−3|= 3≤ 4 = 2 ·2 < 2 ·
√

5.

Example 102. To compute the trace of the Tiny-jubjub curve, recall from example 71 that the
order of T JJ_13 is 20. Since the order of F13 is 13, we can therefore use the Hasse bound and
compute the trace as t =−6:

20 = 13+1− (−6) (5.51)

Again, we have |t| ≤ 2
√

q, since
√

13 > 3 and |−6|= 6 = 2 ·3 < 2 ·
√

13.

Example 103. To compute the trace of secp256k1, recall from example 72 that this curve is
defined over a prime field with p elements, and that the order of that group is given by r:

p =115792089237316195423570985008687907853269984665640564039457584007908834671663

r =115792089237316195423570985008687907852837564279074904382605163141518161494337
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Using the Hasse bound r = p+1− t, we therefore compute t = p+1− r, which gives the
trace of curve secp256k1 as follows:

t =432420386565659656852420866390673177327

As we can see, secp256k1 contains less elements than its underlying field. However, the
difference is tiny, since the order of secp256k1 is in the same order of magnitude as the order
of the underlying field. Compared to p and r, the integer t is tiny.

502sage: p = 1157920892373161954235709850086879078532699846656405
64039457584007908834671663

503sage: r = 1157920892373161954235709850086879078528375642790749
04382605163141518161494337

504sage: t = p + 1 -r
505sage: t.nbits()
506129
507sage: abs(RR(t)) <= 2*sqrt(RR(p))
508True

Exercise 87. Consider the curve alt_bn128 from example 73. Write a Sage program that com-
putes the trace of Frobenius for alt_bn128. Does the curve contain more or less elements than
its base field Fp?

5.6.2 The j-invariant
As we have seen in 5.1.1.1 , two elliptic curves E1(F) defined by y2 = x3 + ax+ b and E2(F)
defined by y2 +a′x+b′ are strictly isomorphic if and only if there is a quadratic residue d ∈ F
such that a′ = ad2 and b′ = bd3.

There is, however, a more general way to classify elliptic curves over finite fields Fq, based
on the so-called j-invariant of an elliptic curve with j(E(Fq)) ∈ Fq, as defined below:

j(E(Fq)) = 1728 · 4 ·a3

4 ·a3 +27 ·b2 mod q (5.52)

A detailed description of the j-invariant is beyond the scope of this book. For our present
purposes, it is sufficient to note that the j-invariant is an important tool to classify elliptic curves
and it is needed in the Complex Multiplication Method to decide on an actual curve instantiation
that implements abstractly chosen properties.

Example 104. Consider the elliptic curve E1,1(F5) from example 70. We compute its j-invariant
as follows:

j(E1,1(F5)) = 1728 · 4 ·13

4 ·13 +27 ·12 mod 5

= 3
4

4+2
= 3 ·4
= 2
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Example 105. Consider the elliptic curve T JJ_13 from example 71. We compute its j-invariant
as follows:

j(T JJ_13) = 1728 · 4 ·83

4 ·83 +27 ·82 mod 13

= 12 · 4 ·5
4 ·5+1 ·12

= 12 · 7
7+12

= 12 ·7 ·6−1

= 2 ·7
= 1

Example 106. Consider secp256k1 from example 72. We compute its j-invariant using Sage:

509sage: p = 1157920892373161954235709850086879078532699846656405
64039457584007908834671663

510sage: F = GF(p)
511sage: j = F(1728)*((F(4)*F(0)^3)/(F(4)*F(0)^3+F(27)*F(7)^2))
512sage: j == F(0)
513True

Exercise 88. Consider the curve alt_bn128 from example 73. Write a Sage program that com-
putes the j-invariant for alt_bn128.

5.6.3 The Complex Multiplication Method
As we have seen in the previous sections, elliptic curves have various defining properties, like
their order, their prime factors, the embedding degree, or the order of the base field. The Com-
plex Multiplication Method (CM) provides a practical way of constructing elliptic curves with
pre-defined restrictions on the order of the curve and the base field.6

The Complex Multiplication Method starts by choosing a base field Fq of the curve E(Fq)
we want to construct such that q = pm for some prime number p, and m ∈N. We assume p > 3
to simplify things in what follows.

Next, the trace of Frobenius t ∈ Z of the curve is chosen such that q and t are coprime, that
is, gcd(q, t) = 1 holds true and |t| ≤ 2

√
q. The choice of t also defines the curve’s order r, since

r = p+1− t by the Hasse bound (5.50), so choosing t will determine the large order subgroup
as well as all small cofactors. The resulting r must be such that the curve meets the application’s
security requirements.

Note that the choice of p and t also determines the embedding degree k of any prime-order
subgroup of the curve, since k is defined as the smallest number such that the prime order n
divides the number pk−1.

In order for the Complex Multiplication Method to work, neither q nor t can be arbitrary,
but must be chosen in such a way that two additional integers D ∈ Z and v ∈ Z exist and the
following conditions hold:

6A detailed explanation of the complex multiplication method and its derivation can be found, for example, in
Grechnikov [2012].
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D < 0
(D = 0 or D = 1) mod 4

4q = t2 + |D|v2
(5.53)

If such numbers exist, we call D the CM-discriminant, and we know that we can construct
a curve E(Fq) over a finite field Fq such that the order of the curve is |E(Fq)|= q+1− t. In this
case, it is the goal of the Complex Multiplication Method to actually construct such a curve,
that is finding the parameters a and b from Fq in the defining Weierstrass equation such that the
curve has the desired order r.

Equation 5.53 has an infinite number of solutions and much research has been done to com-
pute solution sets which result in elliptic curves with desired properties. A common approach
is to fix the CM-discriminant and to define q, t and v as functions of a parameter x, such that the
values q(x), t(x) and v(x) give a solution to 5.53 for every parameter x. In fact many of those
families are known under names like BLS Barreto et al. [2002] or NMT Miyaji et al. [2001]
curves, indicating that the base field order q as well as the trace of Frobenius t of each member
in such a family of curves are computed in similar ways. This is an approach taken for example
in Freeman et al. [2006] to compute pairing friendly elliptic curves.

Example 107 (BLS6 curves). To give a better understanding of how parameterized solution sets
of equation 5.53 give rise to families of elliptic curves, we will look at a parametrization that
was found by the authors Barreto, Lynn and Scott in 2002 Barreto et al. [2002]. Their approach
gives rise to pairing friendly elliptic curves of various embedding degrees and in particular to
curves of embedding degree 6 with CM-discriminant D = −3. Members of those families are
usually called BLS6 curves for short.

To be more precise, let the polynomials t,q ∈ Q[x] be defined as t(x) = x+ 1 and q(x) =
1
3(x− 1)2(x2− x+ 1)+ x. Then the following set defines a solution set to equation 5.53 for
D =−3 and v =

√
(4q− t2)/3:

PARAM(BLS6) = {t(x),q(x) | x ∈ N0 and q(x) ∈ N0} (5.54)

Assuming that proper parameters q, t, D and v are found, we have to compute the so-called
Hilbert class polynomial HD ∈ Z[x] of the CM-discriminant D, which is a polynomial with
integer coefficients. To do so, we first have to compute the following set:

S(D) = {(A,B,C) | A,B,C ∈ Z, D = B2−4AC, gcd(A,B,C) = 1,

|B| ≤ A≤
√
|D|
3
, A≤C, if B < 0 then |B|< A <C}

(5.55)

One way to compute this set is to first compute the integer Amax = Floor(
√
|D|
3 ), then loop

through all the integers 0≤ A≤ Amax, as well as through all the integers−A≤ B≤ A and check
if there is an integer C that satisfies the equation D = B2−4AC and the rest of the requirements
from 5.55.

To compute the Hilbert class polynomial, the so-called j-function is needed, which is a
complex function defined on the upper half H of the complex plane C, usually written as fol-
lows:

j : H→ C (5.56)
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What this means is that the j-functions takes complex numbers (x+ y · i) with a positive
imaginary part y > 0 as inputs and returns a complex number j(x+ i · y) as a result.

The j-function is closely related to the j-invariant 5.6.2 of an elliptic curve. However for
the purposes of this book, it is not important to understand the j-function in detail. We can
use Sage to compute it in a similar way that we would use Sage to compute any other well-
known function, like the square root. It should be noted, however, that the computation of the
j-function in Sage is sometimes prone to precision errors. For example, the j-function has
a root in −1+i

√
3

2 , which Sage only approximates. Therefore, when using Sage to compute the
j-function, we need to take precision loss into account and possibly round to the nearest integer.

514sage: z = ComplexField(100)(0,1)
515sage: z # (0+1i)
5161.0000000000000000000000000000*I
517sage: elliptic_j(z)
5181728.0000000000000000000000000
519sage: # j-function only defined for positive imaginary

arguments
520sage: z = ComplexField(100)(1,-1)
521sage: try:
522....: elliptic_j(z)
523....: except PariError:
524....: pass
525sage: # root at (-1+i sqrt(3))/2
526sage: z = ComplexField(100)(-1,sqrt(3))/2
527sage: elliptic_j(z)
528-2.6445453750358706361219364880e-88
529sage: elliptic_j(z).imag().round()
5300
531sage: elliptic_j(z).real().round()
5320

With a way to compute the j-function and the precomputed set S(D) at hand, we can now
compute the Hilbert class polynomial as follows:

HD(x) = Π(A,B,C)∈S(D)

(
x− j

(
−B+

√
D

2A

))
(5.57)

In other words, we loop over all elements (A,B,C) from the set S(D) and compute the j-
function at the point −B+

√
D

2A , where D is the CM-discriminant that we decided in a previous
step. The result defines a factor of the Hilbert class polynomial and all factors are multiplied
together.

It can be shown that the Hilbert class polynomial is an integer polynomial, but actual com-
putations need high-precision arithmetic to avoid approximation errors that usually occur in
computer approximations of the j-function (as shown above). So, in case the calculated Hilbert
class polynomial does not have integer coefficients, we need to round the result to the nearest
integer. Given that the precision we used was sufficiently high, the result will be correct.

In the next step, we use the Hilbert class polynomial HD ∈ Z[x], and project it to a polyno-
mial HD,q ∈ Fq[x] with coefficients in the base field Fq as chosen in the first step. We do this by
simply reducing the coefficients modulo p, that is, if HD(x)= amxm+am−1xm−1+ . . .+a1x+a0,
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we compute the q-modulus of each coefficient ã j = a j mod p, which yields the projected
Hilbert class polynomial as follows:

HD,p(x) = ãmxm + ãm−1xm−1 + . . .+ ã1x+ ã0

We then search for roots of HD,p, since every root j0 of HD,p defines a family of elliptic curves
over Fq, which all have a j-invariant 5.56 equal to j0. We can pick any root, since all of them
define an elliptic curve. However, some of the curves with the correct j-invariant might have an
order different from the one we initially decided on. Therefore, we need a way to decide on a
curve with the correct order.

To compute a curve with the correct order, we have to distinguish a few different cases
based on our choice of the root j0 ∈ Fq and of the CM-discriminant D ∈ Z. If j0 ̸= 0 or
j0 ̸= 1728 mod q, we compute c1 =

j0
(1728 mod q)− j0

∈ Fq, then we chose some arbitrary quadratic
non-residue c2 ∈ Fq, and some arbitrary cubic non-residue c3 ∈ Fq.

The following list is guaranteed to define a curve with the correct order r = q+1− t for the
fields order q and the trace of Frobenius t we initially decided on:

• Case j0 ̸= 0 and j0 ̸= 1728 mod q. A curve with the correct order is defined by one of the
following equations:

y2 = x3 +3c1x+2c1 or y2 = x3 +3c1c2
2x+2c1c3

2 (5.58)

• Case j0 = 0 and D ̸=−3. A curve with the correct order is defined by one of the following
equations:

y2 = x3 +1 or y2 = x3 + c3
2 (5.59)

• Case j0 = 0 and D=−3. A curve with the correct order is defined by one of the following
equations:

y2 = x3 +1 or y2 = x3 + c3
2 or

y2 = x3 + c2
3 or y2 = c2

3c3
2 or

y2 = x3 + c−2
3 or y2 = x3 + c−2

3 c3
2

• Case j0 = 1728 mod q and D ̸= −4. A curve with the correct order is defined by one of
the following equations:

y2 = x3 + x or y2 = x3 + c2
2x (5.60)

• Case j0 = 1728 mod q and D = −4. A curve with the correct order is defined by one of
the following equations:

y2 = x3 + x or y2 = x3 + c2x or

y2 = x3 + c2
2x or y2 = x3 + c3

2x

To decide the proper defining Short Weierstrass equation, we therefore have to compute
the order of any of the potential curves above, and then choose the one that fits our initial
requirements.

To summarize, using the Complex Multiplication Method, it is possible to synthesize elliptic
curves with predefined order over predefined base fields from scratch. However, the curves that

117



CHAPTER 5. ELLIPTIC CURVES 5.6. CONSTRUCTING ELLIPTIC CURVES

are constructed this way are just some representatives of a larger class of curves, all of which
have the same order. Therefore, in real-world applications, it is sometimes more advantageous
to choose a different representative from that class. To do so recall from 5.1.1.1 that any curve
defined by the Short Weierstrass equation y2 = x3 +ax+b is isomorphic to a curve of the form
y2 = x3 +ad4x+bd6 for some invertible field element d ∈ F∗q.

In order to find a suitable representative (e.g. with small parameters a and b), the curve
designer might choose an invertible field element d such that the transformed curve has small
parameters.

Example 108. Consider curve E1,1(F5) from example 70. We want to use the Complex Multi-
plication Method to derive that curve from scratch. Since E1,1(F5) is a curve of order r = 9 over
the prime field of order q = 5, we know from example 101 that its trace of Frobenius is t =−3,
which also shows that q and t are coprime.

We then have to find parameters D,v ∈ Z such that the criteria in 5.53 hold. We get the
following:

4q = t2 + |D|v2 ⇒
20 = (−3)2 + |D|v2 ⇔
11 = |D|v2

Now, since 11 is a prime number, the only solution is |D|= 11 and v = 1 here. With D =−11
and the Euclidean division of−11 by 4 being−11 =−3 ·4+1, we have−11 mod 4 = 1, which
shows that D =−11 is a proper choice.

In the next step, we have to compute the Hilbert class polynomial H−11. To do so, we first

have to find the set S(D). To compute that set, observe that, since
√
|D|
3 ≈ 1.915 < 2, we know

from A≤
√
|D|
3 and A ∈ Z as well as 0≤ |B| ≤ A that A must be either 0 or 1.

For A = 0, we know B = 0 from the constraint |B| ≤ A. However, in this case, there could be
no C satisfying−11= B2−4AC. So we try A= 1 and deduce B∈ {−1,0,1} from the constraint
|B| ≤ A. The case B = −1 can be excluded, since then B < 0 has to imply |B| < A. The case
B = 0 can also be excluded, as there cannot be an integer C with −11 = −4C, since 11 is a
prime number.

This leaves the case B = 1, and we compute C = 3 from the equation−11 = 12−4C, which
gives the solution (A,B,C) = (1,1,3). Hence:

S(D) = {(1,1,3)}

With the set S(D) at hand, we can compute the Hilbert class polynomial of D = −11. To
do so, we have to insert the term −1+

√
−11

2·1 into the j-function. To do so, first observe that√
−11 = i

√
11, where i is the imaginary unit, defined by i2 = −1. Using this, we use Sage to

compute the j-invariant and get the following:

H−11(x) = x− j

(
−1+ i

√
11

2

)
= x+32768

As we can see, in this particular case, the Hilbert class polynomial is a linear function with
a single integer coefficient. In the next step, we have to project it onto a polynomial from F5[x]
by reducing the coefficients 1 and 32768 modulo 5. We get 32768 mod 5 = 3, so the projected
Hilbert class polynomial is

H−11,5(x) = x+3
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As we can see, the only root of this polynomial is j = 2, since H−11,5(2) = 2+ 3 = 0. We
therefore have a situation with j ̸= 0 and j ̸= 3 = 1728 mod 5, which tells us that we have to
consider the first case in 5.6.3 and compute the parameter c1, where in our case division is done
in in modular 5 arithmetic:

c1 =
2

1728 mod 5−2
=

2
3−2

= 2 (5.61)

In order to decide the correct equation from the first case in 5.6.3, we have to check if the curve
E(F5) defined by the Short Weierstrass equation y2 = x3 + 3 · c1x+ 2 · c1 = x3 + x+ 4 has the
correct order. We use Sage, and find that the order is indeed 9, so it is a curve with the required
parameters. Thus, we have successfully constructed the curve with the desired properties.

Comparing our constructed curve y2 = x3+x+4 to the definition of E1,1(F5) from example
70, we see that the defining equations are different. However, since both curves are of the
same order, we know from 5.1.1.1 that they are isomorphic. In fact we can use 5.1.1.1 and
the quadratic residue 4 ∈ F5, to transform the curve defined by y2 = x3 + x+ 4 into the curve
y2 = x3 +42 +4 ·43 which gives the defining equation of E1,1(F5):

y2 = x3 + x+1

Thus, using the Complex Multiplication Method, we were able to derive a curve with specific
properties from scratch.

Example 109. Consider the Tiny-jubjub curve T JJ_13 from example 71. We want to use the
Complex Multiplication Method to derive that curve from scratch. We know from example 71
that T JJ_13 is a curve of order r = 20 over the prime field of order q = 13 and we know from
example 102 that its trace of Frobenius is t =−6. This shows that q and t are coprime.

In order to apply the Complex Multiplication Method we have to find parameters D,v ∈ Z
such that 5.53 holds. We get the following:

4q = t2 + |D|v2 ⇒
4 ·13 = (−6)2 + |D|v2 ⇒

52 = 36+ |D|v2 ⇔
16 = |D|v2

This equation has four solutions for (D,v), namely (−4,±2) and (−16,±1). Looking at
the first two solution, we show in exercise 89 that D = −4 implies j = 1728, and from 5.6.3
we know that in this case the constructed curve is defined by a Short Weierstrass equation 5.1
that has a vanishing parameter b = 0. We can therefore conclude that D = −4 will not help us
reconstructing T JJ_13, since D = −4 will produce curves of order 20, but all of those curves
have b = 0.

We therefore consider the third and fourth solution for D =−16. In the next step, we have
to compute the Hilbert class polynomial H−16. To do so, we first have to find the set S(D). To

compute that set, observe that since
√
|−16|

3 ≈ 2.31 < 3, we know from A≤
√
|−16|

3 and A ∈ Z
with 0≤ |B| ≤ A, that A must be in the range 0..2. So we loop through all possible values of A
and through all possible values of B under the constraints |B| ≤ A, and if B < 0 then |B| < A.
Then we compute potential C’s from the equation −16 = B2−4AC. We get the following two
solutions for S(D):

S(D) = {(1,0,4),(2,0,2)}
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With the set S(D) at hand, we can compute the Hilbert class polynomial of D = −16. We can
use Sage to compute the j-invariant and get the following:

H−16(x) =

(
x− j

(
i
√

16
2

))(
x− j

(
i
√

16
4

))
= (x−287496)(x−1728)

As we can see, in this particular case, the Hilbert class polynomial is a quadratic func-
tion with two integer coefficients. In the next step, we have to project it onto a polynomial
over F13 by computing the modular 13 remainder of the coefficients 287496 and 1728. We
get 287496 mod 13 = 1 and 1728 mod 13 = 12, which means that the projected Hilbert class
polynomial is as follows:

H−11,5(x) = (x−1)(x−12) = (x+12)(x+1)

This is considered a polynomial from F13[x]. Thus, we have two roots, namely j = 1 and
j = 12. We already know that j = 12 is the wrong root to construct the Tiny-jubjub curve, since
1728 mod 13= 12, and that case is not compatible with a curve with b ̸= 0. So we choose j = 1.

Another way to decide the proper root is to compute the j-invariant of the Tiny-jubjub curve.
We get the following:

j(TJJ_13) = 12
4 ·83

4 ·83 +1 ·82

= 12
4 ·5

4 ·5+12

= 12
7

7+12

= 12
7

7−1
= 1

This is equal to the root j = 1 of the Hilbert class polynomial H−16,13 as expected. We
therefore have a situation with j ̸= 0 and j ̸= 1728, which tells us that we have to consider
the first case in 5.6.3 and compute the parameter c1, where in our case division is done in in
modular 13 arithmetic:

c1 =
1

12−1
=

1
11

= 6

In order to decide the correct equation from the first case in 5.6.3, we have to check if the curve
E(F13) defined by the Short Weierstrass equation y2 = x3 +3 ·6x+2 ·6 = x3 +5x+12 has the
correct order. We use Sage and find that the order is 8 not 20 as expected, which implies that
the trace of this curve is 6, not −6. So we have to consider the second equation from the first
case in 5.6.3, and choose some quadratic non-residue c2 ∈ F13. We choose c2 = 5 and compute
the Short Weierstrass equation y2 = x3 +5c2

2x+12c3
2 as follows:

y2 = x3 +8x+5

We use Sage and find that the order is 20, which is indeed the correct one. Comparing our
constructed curve y2 = x3+8x+5 to the definition of T JJ_13 from example 71, we see that the
defining equations are different. However, since both curves are of the same order, we know
from 5.1.1.1 that they are isomorphic.
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In fact we can use 5.1.1.1 and the quadratic residue 12 ∈ F13, to transform the curve defined
by y2 = x3 +8x+5 into the curve y2 = x3 +122 ·8+5 ·123 which gives the following:

y2 = x3 +8x+8

This is the Tiny-jubjub curve that we used extensively throughout this book. So using the
Complex Multiplication Method, we were able to derive a curve with specific properties from
scratch.

Example 110. To consider a real-world example, we want to use the Complex Multiplication
Method in combination with Sage to compute secp256k1 from scratch. So based on example
72, we decide to compute an elliptic curve over a prime field Fp of order r for the following
security parameters:

p =115792089237316195423570985008687907853269984665640564039457584007908834671663

r =115792089237316195423570985008687907852837564279074904382605163141518161494337

According to example 103, this gives the following trace of Frobenius for any curve isomorphic
to secp256k1:

t =432420386565659656852420866390673177327

We also decide that we want a curve of the form y2 = x3 +b, that is, we want the parameter
a to be zero. Table 5.6.3 then implies that the j-invariant of our curve must be zero.

In a first step, we have to find a CM-discriminant D and some integer v such that the equation
4p = t2 + |D|v2 is satisfied. Since we aim for a vanishing j-invariant, the first thing to try is
D = −3. In this case, we can compute v2 = (4p− t2)/|D|, and if v2 happens to be an integer
that has a square root v, we are done. Invoking Sage we compute as follows:

533sage: D = -3
534sage: p = 1157920892373161954235709850086879078532699846656405

64039457584007908834671663
535sage: r = 1157920892373161954235709850086879078528375642790749

04382605163141518161494337
536sage: t = p+1-r
537sage: v_sqr = (4*p - t^2)/abs(D)
538sage: v_sqr.is_integer()
539True
540sage: v = sqrt(v_sqr)
541sage: v.is_integer()
542True
543sage: 4*p == t^2 + abs(D)*v^2
544True
545sage: v
546303414439467246543595250775667605759171

The pair (D,v) = (−3,303414439467246543595250775667605759171) does indeed solve the
equation, which tells us that there is a curve of order r over a prime field of order p, defined by
a Short Weierstrass equation y2 = x3 +b for some b ∈ Fp. Now we need to compute b.

For D =−3, we show in exercise 89 that the associated Hilbert class polynomial is given by
H−3(x) = x, which gives the projected Hilbert class polynomial as H−3,p = x and the j-invariant
of our curve is guaranteed to be j = 0. Now, looking at 5.6.3, we see that there are 6 possible
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cases to construct a curve with the correct order r. In order to construct the curves in question,
we have to choose some arbitrary quadratic and cubic non-residue. So we loop through Fp to
find them, invoking Sage:

547sage: F = GF(p)
548sage: for c2 in F:
549....: try: # quadratic residue
550....: _ = c2.nth_root(2)
551....: except ValueError: # quadratic non-residue
552....: break
553sage: c2
5543
555sage: for c3 in F:
556....: try:
557....: _ = c3.nth_root(3)
558....: except ValueError:
559....: break
560sage: c3
5612

We found the quadratic non-residue c2 = 3 and the cubic non-residue c3 = 2. Using those
numbers, we check the six cases against the the expected order r of the curve we want to
synthesize:

562sage: C1 = EllipticCurve(F,[0,1])
563sage: C1.order() == r
564False
565sage: C2 = EllipticCurve(F,[0,c2^3])
566sage: C2.order() == r
567False
568sage: C3 = EllipticCurve(F,[0,c3^2])
569sage: C3.order() == r
570False
571sage: C4 = EllipticCurve(F,[0,c3^2*c2^3])
572sage: C4.order() == r
573False
574sage: C5 = EllipticCurve(F,[0,c3^(-2)])
575sage: C5.order() == r
576False
577sage: C6 = EllipticCurve(F,[0,c3^(-2)*c2^3])
578sage: C6.order() == r
579True

As expected, we found an elliptic curve of the correct order r over a prime field of size p. In
principle. we are done, as we have found a curve with the same basic properties as secp256k1.
However, the curve is defined by the following equation, which uses a very large parameter b1,
and so it might perform too slowly in certain algorithms and is not very convenient for humans
to handle.

y2=x3+86844066927987146567678238756515930889952488499230423029593188005931626003754
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It might therefore be advantageous to find an isomorphic curve with the smallest possible pa-
rameter b2. In order to find such a b2, we can use 5.1.1.1 and choose an invertible, quadratic
residue d such that b2 = b1 · d3 is as small as possible. To do so, we rewrite the last equation
into the following form:

d = 3

√
b2

b1

Then we use Sage to loop through values b2 ∈ Fp until it finds some number such that the
quotient b2

b1
has a cube root d and this cube root itself is a quadratic residue.

580sage: b1=F(868440669279871465676782387565159308899524884992304
23029593188005931626003754)

581sage: for b2 in F:
582....: if b2 == 0: continue
583....: try:
584....: d = (b2/b1).nth_root(3)
585....: _ = d.nth_root(2) # test
586....: except ValueError: continue
587....: break # found it
588sage: b2
5897

Indeed, the smallest possible value is b2 = 7 and the defining Short Weierstrass equation of a
curve over Fp with prime order r is y2 = x3 +7, which we might call secp256k1. As we have
just seen, the Complex Multiplication Method is powerful enough to derive cryptographically
secure curves like secp256k1 from scratch.

Exercise 89. Show that the Hilbert class polynomials for the CM-discriminants D = −3 and
D =−4 are given by H−3,q(x) = x and H−4,q = x− (1728 mod q).

Exercise 90. Use the complex multiplication method to construct an elliptic curve of order 7
over the prime field F13.

Exercise 91. Use the complex multiplication method to compute all isomorphism classes of all
elliptic curves of order 7 over the prime field F13.

Exercise 92. Consider the prime modulus p of curve alt_bn128 from example 73 and its trace
t from exercise 92. Use the complex multiplication method to synthesize an elliptic curve over
Fp that is isomorphic to alt_bn128 and compute an explicit isomorphism between these two
curves.

5.6.4 The BLS6_6 pen-and-paper curve
In this paragraph, we summarize our understanding of elliptic curves to compute the main pen-
and-paper example for the rest of the book. To do so, we want to use the Complex Multiplication
Method to derive a pairing-friendly elliptic curve that has similar properties to curves that are
used in actual cryptographic protocols. However, we design the curve specifically to be use-
ful in pen-and-paper examples, which mostly means that the curve should contain only a few
points so that we are able to derive exhaustive addition and pairing tables. Specifically, we use
construction 6.6 in Freeman et al. [2010].

A well-understood family of pairing-friendly curves is given by the set of BLS curves. As
explained in example 107, in Barreto et al. [2002] the authors Barreto, Lynn and Scott found a
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parameterized solution set to equation 5.53, which gives rise to pairing friendly elliptic curves
of various embedding degrees with CM-discriminant D =−3.

Most real world BLS curves have an embedding degree of 12, however this degree is to large
for a convenient pen-and-paper curve. Fortunately BLS curves of embedding degrees k that
satisfies k ≡ 0 ( mod 6 ), are computed in a similar fashion and since the smallest embedding
degree k that satisfies this congruency is k = 6, we aim for a BLS curve of embedding degree 6
as our main pen-and-paper example. We call such a curve a BLS6 curve, since it is a convention
to note the embedding degree right after a descriptor that gives a hint of how the curve was
constructed.

5.6.4.1 The Construction

To apply the Complex Multiplication Method 5.6.3 , recall that it starts with a choice of a base
field Fpm , as well as a trace of Frobenius t and a CM-discriminant D of the curve. In the case
of BLS curves, the parameter m is chosen to be 1, which means that the curves are defined over
prime fields. In addition the CM-discriminant is chosen to be D = −3, which implies that the
curve is defined by the equation y2 = x3 +b for some b ∈ Fp.

As shown in example 107, for BLS6 curves, the relevant parameters p and t are themselves
parameterized by the following functions:

t(x) = x+1

p(x) =
1
3
(x−1)2(x2− x+1)+ x

(5.62)

Here x ∈ N0 is a parameter that the designer has to choose in such a way that the evaluation of
p and t at the point x gives integers that have the proper size to meet the security requirements
of the curve to be synthesized. It is guaranteed that there is an integer v ∈ Z, such that equation
5.53 hold for the CM-discriminant D = −3, which implies that the Complex Multiplication
Method can be used to compute a field element b ∈ Fp such that the elliptic curve y2 = x3 +b
has order r = p+1− t, CM-discriminant D =−3 and embedding degree k = 6.

In order to design the smallest BLS6 curve, we therefore have to find a parameter x such
that t(x) and p(x) are the smallest natural numbers that satisfy p(x)> 3.7

We therefore initiate the design process of our BLS6 curve by inserting small values for x
into the defining polynomials t and q. We get the following results:

x = 1 (t(x), p(x)) (2,1)
x = 2 (t(x), p(x)) (3,3)
x = 3 (t(x), p(x)) (4, 37

3 )
x = 4 (t(x), p(x)) (5,43)

Since p(1) = 1 is not a prime number, the first x that gives a proper curve is x = 2. However,
such a curve would be defined over a base field of characteristic 3, and we would rather like
to avoid that, since we only defined elliptic curves over fields of characteristics larger then 3 in
this book. We therefore find x = 4, which defines a curve over the prime field of characteristic
43 that has a trace of Frobenius t = 5.

Since the prime field F43 has 43 elements and 43’s binary representation is 432 = 101011,
which consists of 6 digits, the name of our pen-and-paper curve should be BLS6_6, since its is

7The smallest BLS curve will also be the most insecure BLS curve. However, since our goal with this curve is
ease of pen-and-paper computation rather than security, it fits the purposes of this book.
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common to name a BLS curve by its embedding degree and the bit-length of the modulus in the
base field. We call BLS6_6 the moon-math-curve.

Based on 5.50, we know that the Hasse bound implies that BLS6_6 will contain exactly 39
elements. Since the prime factorization of 39 is 39= 3 ·13, we have a “large” prime factor group
of size 13, and a small cofactor of 3. Fortunately, a subgroup of order 13 is well suited for our
purposes, as 13 elements can be easily handled in the associated addition, scalar multiplication
and pairing tables in a pen-and-paper style.

We can check that the embedding degree is indeed 6 as expected, since k = 6 is the smallest
number k such that r = 13 divides 43k−1.

590sage: k= 0
591sage: for k in range(1,42): # Fermat’s little theorem
592....: if (43^k-1)%13 == 0:
593....: break
594sage: k
5956

To see that equation 5.53 indeed has a solution for the parameters D =−3, p = 43 and t = 5
as expected, we compute as follows:

4p = t2 + |D|v2 ⇒
4 ·43 = 52 +3 · v2 ⇔

172 = 25+3v2 ⇔
49 = v2 ⇐

v =±7

This implies that we can use the Complex Multiplication Method as described in 5.6.3 in order
to compute the defining equation y2 = x3 +ax+b of BLS6_6.

Since D = −3 we know from exercise 89 that the associated Hilbert class polynomial is
given by H−3,43(x)= x, which implies that the j-invariant of BLS6_6 is given by j(BLS6_6)= 0.
We therefore have to look at the third case in table 5.6.3 to deduce a = 0 and derive parameter
b. To apply 5.6.3 and decide the proper equation for j0 = 0 and D = −3, we have to choose
some arbitrary quadratic non-residue c2 and cubic non-residue c3 in F43. We choose c2 = 5 and
c3 = 36. We check these with Sage:

596sage: F43 = GF(43)
597sage: c2 = F43(5)
598....: try: # quadratic residue
599....: c2.nth_root(2)
600....: except ValueError: # quadratic non-residue
601....: print("OK")
602sage: c3 =F43(36)
603....: try:
604....: c3.nth_root(3)
605....: except ValueError:
606....: print("OK")

Using those numbers we check the six possible cases from 5.6.3 against the expected order
39 of the curve we want to synthesize:
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607sage: BLS61 = EllipticCurve(F43,[0,1])
608sage: BLS61.order() == 39
609False
610sage: BLS62 = EllipticCurve(F43,[0,c2^3])
611sage: BLS62.order() == 39
612False
613sage: BLS63 = EllipticCurve(F43,[0,c3^2])
614sage: BLS63.order() == 39
615True
616sage: BLS64 = EllipticCurve(F43,[0,c3^2*c2^3])
617sage: BLS64.order() == 39
618False
619sage: BLS65 = EllipticCurve(F43,[0,c3^(-2)])
620sage: BLS65.order() == 39
621False
622sage: BLS66 = EllipticCurve(F43,[0,c3^(-2)*c2^3])
623sage: BLS66.order() == 39
624False
625sage: BLS6 = BLS63 # our BLS6 curve in the book

As expected, we found an elliptic curve of the correct order 39 over a prime field of size 43.
Since c2

3 = 362 = 6 in F43 the curve BLS6_6 is defined by the following equation:

BLS6_6 := {(x,y) | y2 = x3 +6 for all x,y ∈ F43} (5.63)

Since there are other choices for c3 there are other choices for b, such as b = 10 or b = 23
too. However due to 5.1.1.1 all these curves are isomorphic, and hence represent the same curve
in different ways. We decided on b = 6 for no particular reason.

Since BLS6_6 contains 39 points only, it is possible to use Sage in order to give a visual
impression of the curve:
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40

As we can see, our curve has some desirable properties: it does not contain self-inverse
points, that is, points with y = 0. It follows that the addition law can be optimized, since the
branch for those cases can be eliminated.
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5.6.4.2 The large prime order subgroup

Summarizing the previous procedure, we have used the method of Barreto, Lynn and Scott
to construct a pairing-friendly elliptic curve of embedding degree 6. However, in order to do
elliptic curve cryptography on this curve, note that, since the order of BLS6_6 is 39, its group
is not of prime order. We therefore have to find a suitable subgroup as our main target. Since
39 = 13 ·3, we know that the curve must contain a “large” prime-order group of size 13 called
BLS6_6(F43)[13] according to definition 5.42 and a small cofactor group of order 3. We use the
following notation for the large prime order group

G1[13] := BLS6_6(F43)[13] (5.64)

One way to compute this group is to find a generator. We can achieve this by choosing an
arbitrary element of BLS6_6 that is not the point at infinity, and then multiply that point with
the cofactor 3 of 13. If the result is not the point at infinity, it will be a generator of G1[13]. If
it is the point at infinity we have to choose a different element.

In order construct such an element from BLS6_6 in a pen-and-paper style, we can choose
some x ∈ F43 and see if there is some y ∈ F43 that satisfies the defining Short Weierstrass
equation y2 = x3 +6. We choose x = 9, and check that y = 2 satisfies the curve equation for x:

y2 = x3 +6 ⇒
22 = 93 +6 ⇔
4 = 4

This implies that P = (9,2) is a point on BLS6_6. To see if we can project this point onto a
generator of the large prime order group G1[13], we have to multiply P by the cofactor 3, that is,
we have to compute [3](9,2). We get [3](9,2) = (13,15) (See exercise 93). Since this is not the
point at infinity, we know that (13,15) is a generator of G1[13], which we will use throughout
this book:

g1 = (13,15) (5.65)

Since g1 is a generator, recall from 4.1 that there is an exponential map from the field F13 to
G1[13] with respect to this generator, which generates the group in logarithmic order:

[·](13,15) : F13→G1[13] ; x 7→ [x](13,15)

We can use this function to construct the subgroup G1[13] by repeatedly adding the generator
to itself. Using Sage, we get the following:

626sage: P1 = BLS6(9,2)
627sage: g1 = 3*P1 # generator
628sage: g1.xy()
629(13, 15)
630sage: G1_13 = [ x*g1 for x in range(0,13) ]

Repeatedly adding a generator to itself generates small groups in logarithmic order with respect
to the generator as explained in 5.1.2.2. This gives the following representation:

G1[13] = {(13,15)→ (33,34)→ (38,15)→ (35,28)→ (26,34)→ (27,34)→
(27,9)→ (26,9)→ (35,15)→ (38,28)→ (33,9)→ (13,28)→O} (5.66)
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Having a logarithmic order of this group is helpful in pen-and-paper computations. To see that
consider the following example:

(27,34)⊕ (33,9) = [6](13,15)⊕ [11](13,15)
= [6+11](13,15)
= [4](13,15)
= (35,28)

As this computation shows 5.66 is really all we need to do computations in G1[13] efficiently.
G1[13] is therefore suitable as a pen-and-paper cryptographic group. However, out of conve-
nience, the following picture lists the entire addition table of the group BLS6_6, as it might be
useful in some pen-and-paper computations, that are not restricted to the subgroup G1:

⊕ O (13,15) (33,34) (38,15) (35,28) (26,34) (27,34) (27,9) (26,9) (35,15) (38,28) (33,9) (13,28)

O O (13,15) (33,34) (38,15) (35,28) (26,34) (27,34) (27,9) (26,9) (35,15) (38,28) (33,9) (13,28)

(13,15) (13,15) (33,34) (38,15) (35,28) (26,34) (27,34) (27,9) (26,9) (35,15) (38,28) (33,9) (13,28) O

(33,34) (33,34) (38,15) (35,28) (26,34) (27,34) (27,9) (26,9) (35,15) (38,28) (33,9) (13,28) O (13,15)

(38,15) (38,15) (35,28) (26,34) (27,34) (27,9) (26,9) (35,15) (38,28) (33,9) (13,28) O (13,15) (33,34)

(35,28) (35,28) (26,34) (27,34) (27,9) (26,9) (35,15) (38,28) (33,9) (13,28) O (13,15) (33,34) (38,15)

(26,34) (26,34) (27,34) (27,9) (26,9) (35,15) (38,28) (33,9) (13,28) O (13,15) (33,34) (38,15) (35,28)

(27,34) (27,34) (27,9) (26,9) (35,15) (38,28) (33,9) (13,28) O (13,15) (33,34) (38,15) (35,28) (26,34)

(27,9) (27,9) (26,9) (35,15) (38,28) (33,9) (13,28) O (13,15) (33,34) (38,15) (35,28) (26,34) (27,34)

(26,9) (26,9) (35,15) (38,28) (33,9) (13,28) O (13,15) (33,34) (38,15) (35,28) (26,34) (27,34) (27,9)

(35,15) (35,15) (38,28) (33,9) (13,28) O (13,15) (33,34) (38,15) (35,28) (26,34) (27,34) (27,9) (26,9)

(38,28) (38,28) (33,9) (13,28) O (13,15) (33,34) (38,15) (35,28) (26,34) (27,34) (27,9) (26,9) (35,15)

(33,9) (33,9) (13,28) O (13,15) (33,34) (38,15) (35,28) (26,34) (27,34) (27,9) (26,9) (35,15) (38,28)

(13,28) (13,28) O (13,15) (33,34) (38,15) (35,28) (26,34) (27,34) (27,9) (26,9) (35,15) (38,28) (33,9)

Exercise 93. Consider the point P = (9,2). Show that P is a point on the BLS6_6 curve and
compute the scalar product [3]P.

Exercise 94. Compute the following expressions: −(26,34), (26,9)⊕ (13,28), (35,15)⊕O
and (27,9)⊖ (33,9).

5.6.4.3 Pairing groups

We know that BLS6_6 is a pairing-friendly curve by design, since it has a small embedding
degree k = 6. It is therefore possible to compute Weil pairings efficiently. However, in order to
do so, we have to decide the pairing groups G1 and G2 as defined in section 5.4.3.

Since BLS6_6 has two non-trivial subgroups, it would be possible to use any of them as the
n-torsion group. However, in cryptography, the only secure choice is to use the large prime-
order subgroup, which in our case is G1[13] as presented in 5.66. We therefore decide to con-
sider the 13-torsion for the Weil pairing and therefore use G1[13] as its left argument.

In order to construct the domain for the right argument, we need to construct G2[13], which,
according to the general theory 5.4.3, should be defined by those elements P of the full 13-
torsion group BLS6_6[13] that are mapped to 43 ·P under the Frobenius endomorphism 5.45.

To compute G2[13], we therefore have to find the full 13-torsion group first. To do so,
we use the technique from 5.4.2, which tells us that the full 13-torsion can be found in the
curve extension BLS6_6(F436) 5.4.1.1 of BLS6_6 over the extension field F436 4.3.3, since the
embedding degree of BLS6_6 is 6. We therefore have to consider the following elliptic curve:
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BLS6_6(F436) := {(x,y) | y2 = x3 +6 for all x,y ∈ F436} (5.67)

In order to compute this curve, we have to construct F436 , a field that contains more then 6
billion elements. We use the general construction of prime field extensions from 4.3.3 and start
by choosing a non-reducible polynomial of degree 6 from the ring of polynomials F43[t]. We
choose p(t) = t6 +6. In order to visually distinguish polynomials with coefficients in F43 from
elements in F436 , we use the symbol v exclusively to represent the indeterminate in F436 . Using
Sage, we get the following:

631sage: F43 = GF(43)
632sage: F43t.<t> = F43[]
633sage: p = F43t(t^6+6)
634sage: p.is_irreducible()
635True
636sage: F43_6.<v> = GF(43^6, name=’v’, modulus=p)
637sage: F43_6.order()
6386321363049

Recall from 4.47 that elements x ∈ F436 can be seen as polynomials a0 +a1v+a2v2 + . . .+
a5v5 with the usual addition of polynomials and multiplication modulo v6 +6.

In order to compute G2[13], we first have to extend BLS6_6 to F436 , that is, we keep the
defining equation, but expand the domain from F43 to F436 . After that, we have to find at least
one element P from that curve that is not the point at infinity, is in the full 13-torsion and satisfies
the identity π(P) = [43]P, where π is the Frobenius endomorphism 5.45. We can then use this
element as our generator of G2[13] and construct all other elements by repeatedly adding the
generator to itself.

Since BLS6(F436) contains approximately as many elements as F436 by the Hasse bound
5.50, it’s not a good strategy to simply loop through all elements. Fortunately, Sage has a way
to loop through elements from the torsion group directly:

639sage: ExtBLS6 = EllipticCurve(F43_6,[0 ,6]) # curve extension
640sage: INF = ExtBLS6(0) # point at infinity
641sage: for P in INF.division_points(13): # full 13-torsion
642....: # pI(P) == [q]P
643....: if P.order() == 13: # exclude point at infinity
644....: piP = ExtBLS6([a.frobenius() for a in P])
645....: qP = 43*P
646....: if piP == qP:
647....: break
648sage: P.xy()
649(7*v^2, 16*v^3)

We found an element P from the full 13-torsion with the property π(P) = [43]P, which
implies that it is an element of G2[13]. As G2[13] is cyclic and of prime order, this element
must be a generator:

g2 = (7v2,16v3) (5.68)

We can use this generator to compute G2[13] in logarithmic order with respect to g2. Using
Sage we get the following:

650sage: g2 = ExtBLS6(7*v^2,16*v^3)
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651sage: G2_13 = [ x*g2 for x in range(0,13) ]

Repeatedly adding a generator to itself generates small groups in logarithmic order with respect
to the generator as explained in 5.1.2.2. We therefore get the following presentation:

G2 = {(7v2,16v3)→ (10v2,28v3)→ (42v2,16v3)→ (37v2,27v3)→
(16v2,28v3)→ (17v2,28v3)→ (17v2,15v3)→ (16v2,15v3)→

(37v2,16v3)→ (42v2,27v3)→ (10v2,15v3)→ (7v2,27v3)→O} (5.69)

Again, having a logarithmic description of G2[13] is helpful in pen-and-paper computations,
as it reduces complicated computation in the extended curve to modular 13 arithmetic, as in the
following example:

(17v2,28v3)⊕ (10v2,15v2) = [6](7v2,16v3)⊕ [11](7v2,16v3)

= [6+11](7v2,16v3)

= [4](7v2,16v3)

= (37v2,27v3)

As this computation shows 5.69 is really all we need to do computations in G2[13] efficiently.
The groups G1[13] and G2[13] are therefore suitable as pen-and-paper cryptographic pairing
groups.

5.6.4.4 The Weil pairing

In 5.6.4.3 we computed two different groups, G1[13] and G2[13], which are subgroups of the
full 13-torsion group of the extended moon-math-curve BLS6_6(F436). As explained in 5.4.4,
this implies that there is a Weil pairing

e(·, ·) : G1[13]×G2[13]→ F436 (5.70)

Since we know a logarithmic order 5.66 for G1[13] and a logarithmic order 5.69 for G2[13],
this Weil pairing is efficiently computable in pen-and-paper calculations, using the following
identity as derived in exercise 42:

e([m]g1, [n]g2) = e(g1,g2)
m·n mod 13 (5.71)

In many pairing based zero knowledge proving systems like 8.2, it is only necessary to show
equality of various pairings and in pen-and-paper computations the exact value of e(g1,g2) is
therefore not important. To see how this simplifies the calculation, assume that we want to proof
the identity e((27,34),(16v2,28v3)) = e((26,9),(17v2,15v3)). In this case we can compute

e((27,34),(16v2,28v3)) = e([6](13,15), [5](7v2,16v3))

= e((13,15),(7v2,16v3))6·5

= e((13,15),(7v2,16v3))4

= e((13,15),(7v2,16v3))8·7

= e([8](13,15), [7](7v2,16v3))

= e((26,9),(17v2,15v3))
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If the actual value of e(g1,g2) is needed, the Weil pairing can either be computed using equation
5.49 and execute Miller’s algorithm 8 (Exercise 95), or Sage can be invoked:

652sage: g1 = ExtBLS6([13,15])
653sage: g2 = ExtBLS6([7*v^2, 16*v^3])
654sage: g1.weil_pairing(g2,13)
6555*v^5 + 16*v^4 + 16*v^3 + 15*v^2 + 3*v + 41

Exercise 95. Consider the extended BLS6_6 curve as defined in 5.67 and the two curve points
g1 = (13,15) and g2 = (7v2,16v3). Compute the Weil pairing e(g1,g2) using definition 5.49
and Miller’s algorithm 8.
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Chapter 6

Statements

As we have seen in the informal introduction, a SNARK is a succinct non-interactive argument
of knowledge, where the knowledge-proof attests to the correctness of statements like “The
prover knows the prime factorization of a given number” or “The prover knows the preimage to
a given SHA2 digest value” and similar things. However, human-readable statements like these
are imprecise and not very useful from a formal perspective.

In this chapter, we therefore look more closely at ways to formalize statements in math-
ematically rigorous ways, useful for SNARK development. We start by introducing formal
languages as a way to define statements properly (section 6.1). For a detailed introduction
of formal languages, see Moll et al. [2012], for example. We then look at algebraic circuits
and Rank-1 Constraint Systems [R1CS] as two particularly useful ways to define statements in
certain formal languages (section 6.2). Rank-1 Constraint Systems and algebraic circuits are
introduced for example in appendix E of Ben-Sasson et al. [2013].

Proper statement design should be of high priority in the development of SNARKs, since
unintended true statements can lead to potentially severe and almost undetectable security vul-
nerabilities in the applications of SNARKs.

6.1 Formal Languages
Formal languages provide the theoretical background in which statements can be formulated
in a logically rigorous way, and where proving the correctness of any given statement can be
realized by computing words in that language.

One might argue that the understanding of formal languages is not very important in SNARK
development and associated statement design, but terms from that field of research are standard
jargon in many papers on zero-knowledge proofs. We therefore believe that at least some in-
troduction to formal languages and how they fit into the picture of SNARK development is
beneficial, mostly to give developers a better intuition about where all this is located in the big-
ger picture of the logic landscape. In addition, formal languages give a better understanding of
what a formal proof for a statement actually is.

Roughly speaking, a formal language (or just language for short) is a set of words. Words,
in turn, are strings of letters taken from some alphabet, and formed according to some defining
rules of the language.

To be more precise, let Σ be any set and Σ∗ the set of all strings of finite length < x1, . . . ,xn >
of elements x j from Σ including the empty string <>∈ Σ∗. Then, a language L, in its most
general definition, is a subset of the set of all finite strings Σ∗. In this context, the set Σ is called
the alphabet of the language L, elements from Σ are called letters, and elements from L are
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called words. If there are rules that specify which strings from Σ∗ belong to the language and
which don’t, those rules are called the grammar of the language. If L1 and L2 are two formal
languages over the same alphabet, we call L1 and L2 equivalent if they consist of the same set
of words.1

Example 111 (Alternating Binary strings). To consider a very basic formal language with an
almost trivial grammar, consider the set of two letters, 0 and 1, as our alphabet Σ:

Σ = {0,1}

In addition, we use a grammar stating that a proper word must consist of alternating binary
letters of arbitrary length, including the empty string. The associated language Lalt is the set
of all finite binary strings where a 1 must follow a 0 and vice versa. So, for example, <
1,0,1,0,1,0,1,0,1 >∈ Lalt is a word in this language, as is < 0 >∈ Lalt or the empty word
<>∈ Lalt . However, the binary string < 1,0,1,0,1,0,1,1,1 >∈ {0,1}∗ is not a proper word,
as it violates the grammar of Lalt , since the last 3 letters are all 1. Furthermore, the string
< 0,A,0,A,0,A,0 > is not a proper word, as not all its letters are from the alphabet Σ.

6.1.1 Decision Functions
Our previous definition of formal languages is very general, and does not cover many sub-
classes of languages known in the literature. However, in the context of SNARK development,
languages are commonly defined as decision problems where a so-called deciding relation
R ⊂ Σ∗ decides whether a given string x ∈ Σ∗ is a word in the language or not. If x ∈ R then
x is a word in the associated language LR, and if x /∈ R then it is not. The relation R therefore
summarizes the grammar of language LR.

Unfortunately, in some literature on proof systems, x ∈ R is often written as R(x), which is
misleading since, in general, R is not a function, but a relation in Σ∗. For the sake of clarity, we
therefore adopt a different point of view and work with what we might call a decision function
instead:

R : Σ
∗→{true, f alse} (6.1)

Decision functions decide if a string x∈ Σ∗ is an element of a language or not. In case a decision
function is given, the associated language itself can be written as the set of all strings that are
decided by R:

LR := {x ∈ Σ
∗ | R(x) = true} (6.2)

In the context of formal languages and decision problems, a statement S is the claim that
language L contains a word x, that is, a statement claims that there exists some x ∈ L. A
constructive proof for statement S is given by some string P ∈ Σ∗ and such a proof is verified
by checking if R(P) = true. In this case, P is called an instance of the statement S.

Example 112 (Alternating Binary strings). To consider a very basic formal language with a de-
cision function, consider the language Lalt from example 111. Attempting to write the grammar
of this language in a more formal way, we can define the following decision function:

R : {0,1}∗→{true, f alse} ; < x0,x1, . . . ,xn >7→

{
true x j−1 ̸= x j for all 1≤ j ≤ n
f alse else

1A more detailed explanation of this definition can be found for example in section 1.2 of Moll et al. [2012].
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We can use this function to decide if a given binary string is a word in Lalt or not. Some
examples are given below:

R(< 1,0,1 >) = true
R(< 0 >) = true
R(<>) = true
R(< 1,1 >) = f alse

Given language Lalt , it makes sense to claim the following statement: “There exists an alternat-
ing string.” One way to prove this statement constructively is by providing an actual instance,
that is, providing an example of an alternating string like x =< 1,0,1 >. Constructing the string
< 1,0,1 > therefore proves the statement “There exists an alternating string.", because one can
verify that R(< 1,0,1 >) = true.

Example 113 (Programming Language). Programming languages are a very important class of
formal languages. For these languages, the alphabet is usually (a subset) of the ASCII table,
and the grammar is defined by the rules of the programming language’s compiler. Words, then,
are properly written computer programs that the compiler accepts. The compiler can therefore
be interpreted as the decision function.

To give an unusual example strange enough to highlight the point, consider the programming
language Malbolge. This language was specifically designed to be almost impossible to use,
and writing programs in this language is a difficult task. An interesting claim is therefore
the statement: “There exists a computer program in Malbolge". As it turned out, proving this
statement constructively, that is, providing an example instance of such a program, is not an easy
task: it took two years after the introduction of Malbolge to write a program that its compiler
accepts. So, for two years, no one was able to prove the statement constructively.

To look at the high-level description of Malbolge more formally, we write LMalbolge for the
language that uses the ASCII table as its alphabet, and its words are strings of ASCII letters
that the Malbolge compiler accepts. Proving the statement “There exists a computer program in
Malbolge” is equivalent to the task of finding some word x∈ LMalbolge. The string in (6.3) below
is an example of such a proof, as it is excepted by the Malbolge compiler, which compiles it
to an executable binary that displays “Hello, World.” . In this example, the Malbolge compiler
therefore serves as the verification process.

(=<′:9876Z4321UT.−Q+∗)M′&%$H”! }|Bzy?=|{z]KwZY 44Eq0/{mlk∗∗

hKs_dG5[m_BA{?−Y ;;V b′rR5431M}/.zHGwEDCBA@98\6543W10/.R,+O< (6.3)

Example 114 (The Empty Language). To see that not every language has even a single word,
consider the alphabet Σ=Z6, where Z6 is the ring of modular 6 arithmetic as derived in example
11. Distinguishing the set Z∗6 of all elements in modular 6 arithmetic that have multiplicative
inverses from the set (Z6)

∗ of all finite strings over the alphabet Z6, we define the following
decision function:

R /0 : (Z6)
∗→{true, f alse} ; < x1, . . . ,xn >7→

{
true n = 1 and x · x = 2
f alse else

(6.4)

We write L /0 for the associated language. As we can see from the multiplication table of Z6
in example 11, the ring Z6 does not contain any element x such that x · x = 2, which implies
R /0(< x1, . . . ,xn >) = f alse for all strings < x1, . . . ,xn >∈ Σ∗. The language therefore does
not contain any words. Proving the statement “There exists a word in L /0” constructively by
providing an instance is therefore impossible: the verification will never check any string.
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Example 115 (3-Factorization). We will use the following simple example repeatedly through-
out this book. The task is to develop a SNARK that proves knowledge of three factors of an
element from the finite field F13. There is nothing particularly useful about this example from an
application point of view, however, it is the most simple example that gives rise to a non-trivial
SNARK in some of the most common zero-knowledge proof systems.

Formalizing the high-level description, we use Σ := F13 as the underlying alphabet of this
problem and define the language L3. f ac to consists of those strings of field elements from F13
that contain exactly 4 letters x1,x2,x3,x4 which satisfy the equation x1 · x2 · x3 = x4.

So, for example, the string < 2,12,4,5 > is a word in L3. f ac, while neither < 2,12,11 >,
nor < 2,12,4,7 > nor < 2,12,7,UPS > are words in L3. f ac as they don’t satisfy the grammar
or are not defined over the alphabet F13.

Distinguishing the set F∗13 of all elements in the multiplicative group of F13 from the set
(F13)

∗ of all finite strings over the alphabet F13, we can describe the language L3. f ac more
formally by introducing a decision function:

R3. f ac : (F13)
∗→{true, f alse} ; < x1, . . . ,xn >7→

{
true n = 4 and x1 · x2 · x3 = x4

f alse else
(6.5)

Having defined the language L3. f ac, it then makes sense to claim the statement “There is a word
in L3. f ac". The way L3. f ac is designed, this statement is equivalent to the statement “There are
four elements x1,x2,x3,x4 from the finite field F13 such that the equation x1 ·x2 ·x3 = w4 holds.”

Proving the correctness of this statement constructively means to actually find some concrete
field elements that satisfy the decision function R3. f ac, like x1 = 2, x2 = 12, x3 = 4 and x4 = 5.
The string < 2,12,4,5 > is therefore a constructive proof for the statement that L3. f ac contains
words, and the computation R3. f ac(< 2,12,4,5 >) = true is a verification of that proof. In
contrast, the string < 2,12,4,7 > is not a proof of the statement, since the check R3. f ac(<
2,12,4,7 >) = f alse does not verify the proof.

Example 116 (Tiny-jubjub Membership). In one of our main examples, we derive a SNARK
that proves a pair (x,y) of field elements from F13 to be a point on the tiny-jubjub curve in its
twisted Edwards form as derived in example 5.36.

In the first step, we define a language such that points on the Tiny-jubjub curve are in 1:1
correspondence with words in that language.

Since the Tiny-jubjub curve is an elliptic curve over the field F13, we choose the alphabet
Σ = F13. In this case, the set (F13)

∗ consists of all finite strings of field elements from F13.
To define the grammar, recall from (5.36) that a point on the Tiny-jubjub curve is a pair (x,y)
of field elements such that 3 · x2 + y2 = 1+ 8 · x2 · y2. We can use this equation to derive the
following decision function:

Rtiny. j j : (F13)
∗→{true, f alse} ; < x1, . . . ,xn >7→

{
true n = 2 and 3 · x2

1 + x2
2 = 1+8 · x2

1 · x2
2

f alse else

The associated language Ltiny. j j is then given as the set of all strings from (F13)
∗ that are mapped

onto true by Rtiny. j j:

Ltiny. j j = {< x1, . . . ,xn >∈ (F13)
∗ | Rtiny. j j(<x1,...,xn>)=true}

We can claim the statement “There is a word in Ltiny. j j”. Because Ltiny. j j is defined by Rtiny. j j,
this statement is equivalent to the statement “The Tiny-jubjub curve in its twisted Edwards form
has a curve point.”
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A constructive proof for this statement is a string < x,y > of field elements from F13 that
satisfies the twisted Edwards equation. Example (5.36), therefore, implies that the string <
11,6 > is a constructive proof, and the computation Rtiny. j j(< 11,6 >) = true verifies the proof.
In contrast, the string < 1,1 > is not a proof of the statement, since the computation Rtiny. j j(<
1,1 >) = f alse does not verify the proof.

Exercise 96. Define a decision function such that the associated language LExercise1 consists of
all solutions to the equation 5x+ 4 = 28+ 2x over F13. Provide a constructive proof for the
claim: “There exists a word in LExercise1 , and verify the proof.

Exercise 97. Consider modular 6 arithmetic (Z6) from example 11, the alphabet Σ =Z6 and the
following decision function:

Rexample_11 : Σ
∗→{true, f alse} ; < x1, . . . ,xn >7→

{
true n = 1 and 3 · x1 +3 = 0
f alse else

Compute all words in the associated language Lexample_11, provide a constructive proof for the
statement “There exist a word in Lexample_11” and verify the proof.

6.1.2 Instance and Witness
As we have seen in the previous paragraph, statements provide membership claims in formal
languages, and instances serve as constructive proofs for those claims. However, in the context
of zero-knowledge proof systems, our notion of constructive proofs is refined in such a way
that it is possible to hide parts of the proof instance and still be able to prove the statement. In
this context, it is therefore necessary to split a proof into an unhidden, public part called the
instance and a hidden, private part called a witness.

To account for this separation of a proof instance into an instance and a witness part, our
previous definition of formal languages needs a refinement. Instead of a single alphabet, the
refined definition considers two alphabets ΣI and ΣW , and a decision function defined as follows:

R : Σ
∗
I ×Σ

∗
W →{true, f alse} ; (i ;w) 7→ R(i ;w) (6.6)

Words are therefore strings (i ;w) ∈ Σ∗I ×Σ∗W with R(i ;w) = true. The refined definition differ-
entiates between inputs i∈ ΣI and inputs w∈ ΣW . The input i is called an instance and the input
w is called a witness of R.

If a decision function is given, the associated language is defined as the set of all strings
from the underlying alphabets that are verified by the decision function:

LR := {(i ;w) ∈ Σ
∗
I ×Σ

∗
W | R(i ;w) = true} (6.7)

In this refined context, a statement S is a claim that, given an instance i ∈ Σ∗I , there is a witness
w ∈ Σ∗W such that language L contains a word (i ;w). A constructive proof for statement S is
given by some string P = (i ;w) ∈ Σ∗I ×Σ∗W , and a proof is verified by R(P) = true.

At this point, it is important to note that, while constructive proofs in languages that dis-
tinguish between instance and witness (as in definition 6.7) don’t look very different from con-
structive proofs in languages we have seen in section 6.1.1, given some instance, there are proof
systems able to prove the statement (at least with high probability) without revealing anything
about the witness, as we will see in chapter 8. In this sense, the witness is often called the
private input, and the instance is called the public input.
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It is worth understanding the difference between statements as defined in section 6.1.1 and
the refined notion of statements from this section. While statements in the sense of the previous
section can be seen as membership claims, statements in the refined definition can be seen as
knowledge-claims, where a prover claims knowledge of a witness for a given instance.
Example 117 (SHA256 – Knowlege of Preimage). One of the most common examples in the
context of zero-knowledge proof systems is the knowledge-of-a-preimage proof for some
cryptographic hash function like SHA256, where a publicly known SHA256 digest value is
given, and the task is to prove knowledge of a preimage for that digest under the SHA256
function, without revealing that preimage.

To understand this problem in detail, we have to introduce a language able to describe
the knowledge-of-preimage problem in such a way that the claim “Given digest i, there is a
preimage w such that SHA256(w) = i” becomes a statement in that language. Since SHA256 is
a function that maps binary strings of arbitrary length onto binary strings of length 256:

SHA256 : {0,1}∗→{0,1}256

Since we want to prove knowledge of preimages, we have to consider binary strings of size 256
as instances and binary strings of arbitrary length as witnesses.

An appropriate alphabet ΣI for the set of all instances, and an appropriate alphabet ΣW for
the set of all witnesses is therefore given by the set {0,1}. A proper decision function is given
as follows:

RSHA256 : {0,1}∗×{0,1}∗→{true, f alse} ;

(i;w) 7→

{
true |i|= 256, i = SHA256(w)
f alse else

We write LSHA256 for the associated language, and note that it consists of words that are strings
(i ;w) such that the instance i is the SHA256 image of the witness w.

Given some instance i ∈ {0,1}256, a statement in LSHA256 is the claim “Given digest i, there
is a preimage w such that SHA256(w) = i", which is exactly what the knowledge-of-preimage
problem is about. A constructive proof for this statement is therefore given by a preimage w to
the digest i and proof verification is achieved by verifying that SHA256(w) = i.
Example 118 (3-factorization). To give another intuition about the implication of refined lan-
guages, consider L3. f ac from example 115 again. As we have seen, a constructive proof in L3. f ac
is given by 4 field elements x1, x2, x3 and x4 from F13 such that the product of the first three
elements is equal to the 4th element in modular 13 arithmetic.

Splitting words from L3. f ac into instance and witness parts, we can reformulate the problem
and introduce different levels of knowledge-claims. For example, we could reformulate the
membership statement of L3. f ac into a statement where all factors x1, x2, x3 are witnesses, and
only the product x4 is the instance. A statement for this reformulation is then expressed by the
claim: “Given an instance field element x4, there are three witness factors of x4". Assuming
some instance x4, a constructive proof for the associated knowledge claim is provided by any
string (x1,x2,x3) such that x1 · x2 · x3 = x4.

We can formalize this new language, which we might call L3. f ac_zk, by defining the follow-
ing decision function:

R3. f ac_zk : (F13)
∗× (F13)

∗→{true, f alse} ;

(< i1, . . . , in >;< w1, . . . ,wm >) 7→

{
true n = 1, m = 3, i1 = w1 ·w2 ·w3

f alse else
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The associated language L3. f ac_zk is defined by all strings from (F13)
∗× (F13)

∗ that are mapped
onto true under the decision function R3. f ac_zk.

Considering the distinction we made between the instance and the witness part in L3. f ac_zk,
one might ask why we chose the factors x1, x2 and x3 to be the witness and the product x4 to
be the instance rather than another combination? This was an arbitrary choice in the example.
Every other combination of instance and witness would be equally valid. For example, it would
be possible to declare all variables as witness or to declare all variables as instance. Actual
choices are determined by the application only.

Example 119 (The Tiny-jubjub Curve). Consider the language Ltiny. j j from example 116. As we
have seen, a constructive proof in Ltiny. j j is given by a pair (x1,x2) of field elements from F13
such that the pair is a point of the Tiny-jubjub curve in its Edwards representation.

We look at a reasonable splitting of words from Ltiny. j j into instance and witness parts. The
two obvious choices are to either choose both coordinates x1 as x2 as instance inputs, or to
choose both coordinates x1 as x2 as witness inputs.

In case both coordinates are instances, we define the grammar of the associated language by
introducing the following decision function:

Rtiny. j j.1 : (F13)
∗× (F13)

∗→{true, f alse} ;

(< I1, . . . , In >;<W1, . . . ,Wm >) 7→

{
true n = 2, m = 0 and 3 · I2

1 + I2
2 = 1+8 · I2

1 · I2
2

f alse else

The language Ltiny. j j.1 is defined as the set of all strings from (F13)
∗× (F13)

∗ that are mapped
onto true by Rtiny. j j.1.

In case both coordinates are witness inputs, we define the grammar of the associated refined
language by introducing the following decision function:

Rtiny. j j_zk : (F13)
∗× (F13)

∗→{true, f alse} ;

(< I1, . . . , In >;<W1, . . . ,Wm >) 7→

{
true n = 0, m = m and 3 ·W 2

1 +W 2
2 = 1+8 ·W 2

1 ·W 2
2

f alse else

The language Ltiny. j j_zk is defined as the set of all strings from (F13)
∗× (F13)

∗ that are mapped
onto true by Rtiny. j j_zk.

Exercise 98. Consider the modular 6 arithmetic Z6 from example 11 as the alphabets ΣI and
ΣW , and the following decision function:

Rlinear : Σ
∗×Σ

∗→{true, f alse} ;

(i;w) 7→

{
true |i|= 3 and |w|= 1 and i1 ·w1 + i2 = i3
f alse else

Which of the following instances (i1, i2, i3) has a proof of knowledge in Llinear?

(3,3,0), (2,1,0), (4,4,2)

Exercise 99 (Edwards Addition on Tiny-jubjub). Consider the Tiny-jubjub curve together with
its twisted Edwards addition law from example 71. Define an instance alphabet ΣI , a witness
alphabet ΣW , and a decision function Radd with associated language Ladd such that a string
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(i ;w) ∈ Σ∗I ×Σ∗W is a word in Ladd if and only if i is a pair of curve points on the Tiny-jubjub
curve in Edwards form, and w is the sum of those curve points.

Choose some instance i ∈ Σ∗I , provide a constructive proof for the statement “There is a
witness w ∈ Σ∗W such that (i ;w) is a word in Ladd”, and verify that proof. Then find some
instance i ∈ Σ∗I such that i has no knowledge proof in Ladd .

6.1.3 Modularity
From a developer’s perspective, it is often useful to construct complex statements and their rep-
resenting languages from simple ones. In the context of zero-knowledge proof systems, those
simple building blocks are often called gadgets, and gadget libraries usually contain represen-
tations of atomic types like booleans, integers, various hash functions, elliptic curve cryptogra-
phy and much more (see chapter 7). In order to synthesize statements, developers then combine
predefined gadgets into complex logic. We call the ability to combine statements into more
complex statements modularity.

To understand the concept of modularity on the level of formal languages defined by deci-
sion functions, we need to look at the intersection of two languages, which exists whenever
both languages are defined over the same alphabet. In this case, the intersection is a language
that consists of strings which are words in both languages.

To be more precise, let L1 and L2 be two languages defined over the same instance and
witness alphabets ΣI and ΣW . The intersection L1∩L2 of L1 and L2 is defined as follows:

L1∩L2 := {x | x ∈ L1 and x ∈ L2} (6.8)

If both languages are defined by decision functions R1 and R2, the following function is a
decision function for the intersection language L1∩L2:

RL1∩L2 : Σ
∗
I ×Σ

∗
W →{true, f alse} ; (i,w) 7→ R1(i,w) and R2(i,w) (6.9)

Thus, the intersection of two decision-function-based languages is also decision-function-
based language. This is important from an implementation point of view: it allows us to con-
struct complex decision functions, their languages and associated statements from simple build-
ing blocks. Given a publicly known instance I ∈ Σ∗I , a statement in an intersection language
claims knowledge of a witness that satisfies all relations simultaneously.

6.2 Statement Representations
As we have seen in the previous section, formal languages and their definitions by decision
functions are a powerful tool to describe statements in a formally rigorous manner.

However, from the perspective of existing zero-knowledge proof systems, not all ways to
actually represent decision functions are equally useful. Depending on the proof system, some
are more suitable than others. In this section, we will describe two of the most common ways
to represent decision functions and their statements.

6.2.1 Rank-1 Quadratic Constraint Systems
Although decision functions are expressible in various ways, many contemporary proving sys-
tems require the decision function to be expressed in terms of a system of quadratic equations
over a finite field. This is true in particular for pairing-based proving systems like the ones
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we describe in chapter 8, because in these cases it is possible to separate instance and witness
and then check solutions to those equations “in the exponent” of pairing-friendly cryptographic
groups.

In this section, we will have a closer look at a particular type of quadratic equations called
Rank-1 (quadratic) Constraint Systems (R1CS), which are a common standard in zero-
knowledge proof systems (cf. appendix E of Ben-Sasson et al. [2013]). We will start with
a general introduction to those constrain systems and then look at their relation to formal lan-
guages. Then we will look into a common way to compute solutions to those systems.

6.2.1.1 R1CS representation

To understand what Rank-1 (quadratic) Constraint Systems )(R1CS) are in detail, let F be
a field, n, m and k ∈ N three numbers and ai

j, bi
j and ci

j ∈ F constants from F for every index
0≤ j ≤ n+m and 1≤ i≤ k. Then a Rank-1 Constraint System is defined as the following set
of k many equations:

Definition 6.2.1.1 (Rank-1 (quadratic) Constraint System).

(a1
0+∑

n
j=1 a1

j ·I j+∑
m
j=1 a1

n+ j·W j)·(b1
0+∑

n
j=1 b1

j ·I j+∑
m
j=1 b1

n+ j·W j) = c1
0+∑

n
j=1 c1

j ·I j+∑
m
j=1 c1

n+ j·W j

...

(ak
0+∑

n
j=1 ak

j·I j+∑
m
j=1 ak

n+ j·W j)·(bk
0+∑

n
j=1 bk

j·I j+∑
m
j=1 bk

n+ j·W j) = ck
0+∑

n
j=1 ck

j·I j+∑
m
j=1 ck

n+ j·W j

In a Rank-1 Constraint System, the parameter k is called the number of constraints, and
each equation is called a constraint. If a pair of strings of field elements (< I1, . . . , In >;<
W1, . . . ,Wm >) satisfies theses equations, < I1, . . . , In > is called an instance and <W1, . . . ,Wm >
is called a witness of the system.2

It can be shown that every bounded computation is expressible as a Rank-1 Constraint Sys-
tem. R1CS is therefore a universal model for bounded computations. We will derive some
insights into common approaches of how to compile bounded computation into Rank-1 Con-
straint Systems in chapter 7.

Generally speaking, the idea of a Rank-1 Constraint System is to keep track of all the values
that any variable can hold during a computation, and to bind the relationships among all those
variables that are implied by the computation itself. Once relations between all steps of a com-
puter program are constrained, program execution is then enforced to be computed in exactly
in the expected way without any opportunity for deviations. In this sense, solutions to Rank-1
Constraint Systems are proofs of proper program execution.

Example 120 (R1CS for 3-Factorization). To provide a better intuition of Rank-1 Constraint
Systems, consider the language L3. f ac_zk from example 118 again. As we have seen, L3. f ac_zk
consists of words (< I1 >;< W1,W2,W3 >) over the alphabet F13 such that I1 = W1 ·W2 ·W3.
We show how to rewrite the problem as a Rank-1 Constraint System.

2The presentation of Rank-1 Constraint Systems can be simplified using the notation of vectors and matrices,
which abstracts over the indices. In fact, if x = (1, I,W ) ∈ F1+n+m is a (n+m+ 1)-dimensional vector, A, B, C
are (n+m+ 1)× k-dimensional matrices and ⊙ is the Schur/Hadamard product, then a R1CS can be written as
follows:

Ax⊙Bx =Cx

However, since we did not introduce vector spaces and matrix calculus in the book, we use XXX as the defining
equation for Rank-1 Constraint Systems. We only highlighted the matrix notation because it is sometimes used in
the literature.
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Since R1CS are systems of quadratic equations, expressions like W1 ·W2 ·W3, which contain
products of more than two factors (which are therefore not quadratic) have to be rewritten in a
process often called flattening. To flatten the defining equation I1 = W1 ·W2 ·W3 of L3. f ac_zk,
we introduce a new variable W4, which captures two of the three multiplications in W1 ·W2 ·W3.
We get the following two constraints

W1 ·W2 =W4 constraint 1
W4 ·W3 = I1 constraint 2

Given some instance I1, any solution (W1,W2,W3,W4) to this system of equations provides a
solution to the original equation I1 = W1 ·W2 ·W3 and vice versa. Both equations are therefore
equivalent in the sense that solutions are in a 1:1 correspondence.

Looking at both equations from this constraint system, we see how each constraint enforces
a step in the computation. Constraint 1 forces any computation to multiply the witnesses W1 and
W2; otherwise, it would not be possible to compute the witness W4 first, which is needed to solve
constraint 2. Witness W4 therefore expresses the constraining of an intermediate computational
state.

At this point, one might ask why equation 1 constrains the system to compute W1 ·W2 first.
In order to compute W1 ·W2 ·W3, calculating W2 ·W3, or W1 ·W3 in the beginning and then
multiplying the result with the remaining factor gives the exact same result. The reason is purely
a matter of choice. For example, the following R1CS would define the exact same language:

W2 ·W3 =W4 constraint 1
W4 ·W1 = I1 constraint 2

It follows that R1CS are generally not unique descriptions of any given situation: many differ-
ent R1CS are able to describe the same problem.

To see that the two quadratic equations qualify as a Rank-1 Constraint System, choose the
parameter n = 1, m = 4 and k = 2 as well as the following values:

a1
0 = 0 a1

1 = 0 a1
2 = 1 a1

3 = 0 a1
4 = 0 a1

5 = 0
a2

0 = 0 a2
1 = 0 a2

2 = 0 a2
3 = 0 a2

4 = 0 a2
5 = 1

b1
0 = 0 b1

1 = 0 b1
2 = 0 b1

3 = 1 b1
4 = 0 b1

5 = 0
b2

0 = 0 b2
1 = 0 b2

2 = 0 b2
3 = 0 b2

4 = 1 b2
5 = 0

c1
0 = 0 c1

1 = 0 c1
2 = 0 c1

3 = 0 c1
4 = 0 c1

5 = 1
c2

0 = 0 c2
1 = 1 c2

2 = 0 c2
3 = 0 c2

4 = 0 c2
5 = 0

With this choice, the Rank-1 Constraint System of our 3-factorization problem can be written
in its most general form as follows:

(a1
0+a1

1I1+a1
2W1+a1

3W2+a1
4W3+a1

5W4)·(b1
0+b1

1I1+b1
2W1+b1

3W2+b1
4W3+b1

5W4) =(c1
0+c1

1I1+c1
2W1+c1

3W2+c1
4W3+c1

5W4)

(a2
0+a2

1I1+a2
2W2+a2

3W2+a2
4W3+a2

5W4)·(b2
0+b2

1I1+b2
2W2+b2

3W2+b2
4W3+b2

5W4) =(c2
0+c2

1I1+c2
2W2+c2

3W2+c2
4W3+c2

5W4)

Example 121 (R1CS for the points of the Tiny-jubjub curve ). Consider the languages Ltiny. j j.1
from example 119, which consists of words < I1, I2 > over the alphabet F13 such that 3 ·I2

1 +I2
2 =

1+8 · I2
1 · I2

2 .
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We derive a Rank-1 Constraint System such that its solutions are in a 1:1 correspondence
with words in Ltiny. j j.1. To achieve this, we first rewrite the defining equation:

3 · I2
1 + I2

2 = 1+8 · I2
1 · I2

2 ⇔
0 = 1+8 · I2

1 · I2
2 −3 · I2

1 − I2
2 ⇔

0 = 1+8 · I2
1 · I2

2 +10 · I2
1 +12 · I2

2

Since R1CSs are systems of quadratic equations, we have to reformulate this expression into a
system of quadratic equations. To do so, we have to introduce new variables that constrain in-
termediate steps in the computation, and we have to decide if those variables should be instance
or witness variables. We decide to declare all new variables as witness variables, and get the
following constraints:

I1 · I1 =W1 constraint 1
I2 · I2 =W2 constraint 2

(8 ·W1) ·W2 =W3 constraint 3
(12 ·W2 +W3 +10 ·W1 +1) ·1 = 0 constraint 4

To see that these four quadratic equations qualify as a Rank-1 Constraint System according to
definition 6.2.1.1, choose the parameter n = 2, m = 3, k = 4, and the following values:

a1
0 = 0 a1

1 = 1 a1
2 = 0 a1

3 = 0 a1
4 = 0 a1

5 = 0
a2

0 = 0 a2
1 = 0 a2

2 = 1 a2
3 = 0 a2

4 = 0 a2
5 = 0

a3
0 = 0 a3

1 = 0 a3
2 = 0 a3

3 = 8 a3
4 = 0 a3

5 = 0
a4

0 = 1 a4
1 = 0 a4

2 = 0 a4
3 = 10 a4

4 = 12 a4
5 = 1

b1
0 = 0 b1

1 = 1 b1
2 = 0 b1

3 = 0 b1
4 = 0 b1

5 = 0
b2

0 = 0 b2
1 = 0 b2

2 = 1 b2
3 = 0 b2

4 = 0 b2
5 = 0

b3
0 = 0 b3

1 = 0 b3
2 = 0 b3

3 = 0 b3
4 = 1 b3

5 = 0
b4

0 = 1 b4
1 = 0 b4

2 = 0 b4
3 = 0 b4

4 = 0 b4
5 = 0

c1
0 = 0 c1

1 = 0 c1
2 = 0 c1

3 = 1 c1
4 = 0 c1

5 = 0
c2

0 = 0 c2
1 = 0 c2

2 = 0 c2
3 = 0 c2

4 = 1 c2
5 = 0

c3
0 = 0 c3

1 = 0 c3
2 = 0 c3

3 = 0 c3
4 = 0 c3

5 = 1
c4

0 = 0 c4
1 = 0 c4

2 = 0 c4
3 = 0 c4

4 = 0 c4
5 = 0

With this choice, the Rank-1 Constraint System of our Tiny-jubjub curve point problem can be
written in its most general form as follows:

(a1
0+a1

1I1+a1
2I2+a1

3W1+a1
4W2+a1

5W3)·(b1
0+b1

1I1+b1
2I2+b1

3W1+b1
4W2+b1

5W3) =(c1
0+c1

1I1+c1
2I2+c1

3W1+c1
4W2+c1

5W3)

(a2
0+a2

1I1+a2
2I2+a2

3W1+a2
4W2+a2

5W3)·(b2
0+b2

1I1+b2
2I2+b2

3W1+b2
4W2+b2

5W3) =(c2
0+c2

1I1+c2
2I2+c2

3W1+c2
4W2+c2

5W3)

(a3
0+a3

1I1+a3
2I2+a3

3W1+a3
4W2+a3

5W3)·(b3
0+b3

1I1+b3
2I2+b3

3W1+b3
4W2+b3

5W3) =(c3
0+c3

1I1+c3
2I2+c3

3W1+c3
4W2+c3

5W3)

(a4
0+a4

1I1+a4
2I2+a4

3W1+a4
4W2+a4

5W3)·(b4
0+b4

1I1+b4
2I2+b4

3W1+b4
4W2+b4

5W3) =(c4
0+c4

1I1+c4
2I2+c4

3W1+c4
4W2+c4

5W3)

Solutions to this constraint system are in 1:1 correspondence with words in Ltiny. j j.1: if
(< I1, I2 >;<W1,W2,W3 >) is a solution, then < I1, I2 > is a word in Ltiny. j j.1, since the defining
R1CS implies that I1 and I2 satisfy the twisted Edwards equation of the Tiny-jubjub curve. On
the other hand, if < I1, I2 > is a word in Ltiny. j j.1, then (< I1, I2 >;< I2

1 , I
2
2 ,8 · I2

1 · I2
2 >) is a

solution to our R1CS.
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Exercise 100. Consider the language Ladd from exercise 99. Define an R1CS such that words
in Ladd are in 1:1 correspondence with solutions to this R1CS.

6.2.1.2 R1CS Satisfiability

To understand how Rank-1 Constraint Systems define formal languages, observe that every
R1CS over a field F defines a decision function over the alphabet ΣI × ΣW = F× F in the
following way:

RR1CS : (F)∗× (F)∗→{true, f alse} ; (I;W ) 7→

{
true (I;W ) satisfies R1CS
f alse else

(6.10)

Every R1CS therefore defines a formal language. The grammar of this language is encoded
in the constraints, words are solutions to the equations, and a statement is a knowledge claim
“Given instance I, there is a witness W such that (I;W ) is a solution to the Rank-1 Constraint
System". A constructive proof to this claim is therefore equivalent to assigning a field element
to every witness variable, which is verified whenever the set of all instance and witness variables
solves the R1CS.

Remark 4 (R1CS satisfiability). It should be noted that, in our definition, every R1CS defines its
own language. However, in more theoretical approaches, another language usually called R1CS
satisfiability is often considered, which is useful when it comes to more abstract problems like
expressiveness or the computational complexity of the class of all R1CS. From our perspective,
the R1CS satisfiability language is obtained by the union of all R1CS languages that are in our
definition. To be more precise, let the alphabet Σ = F be a field. Then the language LR1CS_SAT (F)
is defined as follows:

LR1CS_SAT (F) = {(i;w) ∈ Σ
∗×Σ

∗ | there is a R1CS R such that R(i;w) = true}

Example 122 (3-Factorization). Consider the language L3. f ac_zk from example 118 and the
R1CS defined in example 120. As we have seen in 120, solutions to the R1CS are in 1:1 cor-
respondence with solutions to the decision function of L3. f ac_zk. Both languages are therefore
equivalent in the sense that there is a 1:1 correspondence between words in both languages.

To give an intuition of what constructive R1CS-based proofs in L3. f ac_zk look like, consider
the instance I1 = 11. To prove the statement “There exists a witness W such that (I1;W ) is a
word in L3. f ac_zk” constructively, a proof has to provide a solution to the R1CS from example
120, that is, an assignments to all witness variables W1, W2, W3 and W4. Since the alphabet is
F13, an example assignment is given by W =< 2,3,4,6 > since (I1;W ) satisfies the R1CS:

W1 ·W2 =W4 # 2 ·3 = 6
W4 ·W3 = I1 # 6 ·4 = 11

A proper constructive proof is therefore given by π =< 2,3,4,6 >. Of course, π is not the only
possible proof for this statement. Since factorization is not unique in a field in general, another
constructive proof is given by π ′ =< 3,5,12,2 >.

W1 ·W2 =W4 # 3 ·5 = 2
W4 ·W3 = I1 # 12 ·2 = 11
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Example 123 (The Tiny-jubjub curve). Consider the language Ltiny. j j.1 from example 119, and its
associated R1CS from example 121. To see how constructive proofs in Ltiny. j j.1 using the R1CS
from example 121 look like, consider the instance < I1, I2 >=< 11,6 >. To prove the statement
“There exists a witness W such that (< I1, I2 >;W ) is a word in Ltiny. j j.1” constructively, a proof
has to provide a solution to the R1CS 121 which is an assignment to all witness variables W1,
W2 and W3. Since the alphabet is F13, an example assignment is given by W =< 4,10,8 > since
(< I1, I2 >;W ) satisfies the R1CS:

I1 · I1 =W1 11 ·11 = 4
I2 · I2 =W2 6 ·6 = 10

(8 ·W1) ·W2 =W3 (8 ·4) ·10 = 8
(12 ·W2 +W3 +10 ·W1 +1) ·1 = 0 12 ·10+8+10 ·4+1 = 0

A proper constructive proof is therefore given by π =< 4,10,8>, which shows that the instance
< 11,6 > is a point on the Tiny-jubjub curve.

6.2.1.3 Modularity

As we discussed in 6.1.3, it is often useful to construct complex statements and their represent-
ing languages from simple ones. Rank-1 Constraint Systems are particularly useful for this,
as the intersection of two R1CS over the same alphabet results in a new R1CS over that same
alphabet.

To be more precise, let S1 and S2 be two R1CS over F. A new R1CS S3 is obtained by the
intersection of S1 and S2, that is, S3 = S1∩S2 . In this context, intersection means that both the
equations of S1 and the equations of S2 have to be satisfied in order to provide a solution for the
system S3.

As a consequence, developers are able to construct complex R1CS from simple ones. This
modularity provides the theoretical foundation for many R1CS compilers, as we will see in
chapter 7.

6.2.2 Algebraic Circuits
As we have seen in the previous paragraphs, Rank-1 Constraint Systems are quadratic equations
such that solutions are knowledge proofs for the existence of words in associated languages.
From the perspective of a prover, it is therefore important to solve those equations efficiently.

However, in contrast to systems of linear equations, no general methods are known that solve
systems of quadratic equations efficiently. Rank-1 Constraint Systems are therefore impractical
from a provers perspective and auxiliary information is needed that helps to compute solutions
efficiently.

Methods which compute R1CS solutions are sometimes called witness generator func-
tions. To provide a common example, we introduce another class of decision functions called
algebraic circuits. As we will see, every algebraic circuit defines an associated R1CS and also
provides an efficient way to compute solutions for that R1CS. This method is introduced, for
example, in Ben-Sasson et al. [2013].

It can be shown that every space- and time-bounded computation is expressible as an alge-
braic circuit. Transforming high-level computer programs into those circuits is a process often
called flattening. We will look at those transformations in chapter 7.

In this section we will introduce our model for algebraic circuits and look at the concept
of circuit execution and valid assignments. After that, we will show how to derive Rank-1
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Constraint Systems from circuits and how circuits are useful to compute solutions to associated
R1CS efficiently.

6.2.2.1 Algebraic circuit representation

To see what algebraic circuits are, let F be a field. An algebraic circuit is then a directed acyclic
(multi)graph that computes a polynomial function over F. Nodes with only outgoing edges
(source nodes) represent the variables and constants of the function and nodes with only incom-
ing edges (sink nodes) represent the outcome of the function. All other nodes have exactly two
incoming edges and represent the field operations addition as well as multiplication. Graph
edges are directed and represent the flow of the computation along the nodes.

To be more precise, in this book, we call a directed acyclic multi-graph C(F) an algebraic
circuit over F if the following conditions hold:

• The set of edges has a total order.

• Every source node has a label that represents either a variable or a constant from the field
F.

• Every sink node has exactly one incoming edge and a label that represents either a variable
or a constant from the field F.

• Every node that is neither a source nor a sink has exactly two incoming edges and a label
from the set {+,∗} that represents either addition or multiplication in F.

• All outgoing edges from a node have the same label.

• Outgoing edges from a node with a label that represents a variable have a label.

• Outgoing edges from a node with a label that represents multiplication have a label, if
there is at least one labeled edge in both input path.

• All incoming edges to sink nodes have a label.

• If an edge has two labels Si and S j it gets a new label Si = S j.

• No other edge has a label.

• Incoming edges to labeled sink nodes, where the label is a constant c ∈ F are labeled
with the same constant. Every other edge label is taken from the set {W, I} and indexed
compatible with the order of the edge set.

It should be noted that the details in the definitions of algebraic circuits vary between dif-
ferent sources. We use this definition as it is conceptually straightforward and well-suited for
pen-and-paper computations.

To get a better intuition of our definition, let C(F) be an algebraic circuit. Source nodes are
the inputs to the circuit and either represent variables or constants. In a similar way, sink nodes
represent termination points of the circuit and are either output variables or constants. Constant
sink nodes enforce computational outputs to take on certain values.

Nodes that are neither source nodes nor sink nodes are called arithmetic gates. Arithmetic
gates that are decorated with the “+"-label are called addition-gates and arithmetic gates that
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are decorated with the “·"-label are called multiplication-gates. Every arithmetic gate has
exactly two inputs, represented by the two incoming edges.

Since the set of edges is ordered, we can write it as a string < E1,E2, . . . ,En > for some
n ∈ N and we use those indices to index the edge labels, too. Edge labels are therefore either
constants or symbols like I j, Wj, where j is an index compatible with the edge order. Labels I j
represent instance variables, labels Wj witness variables. Labels on the outgoing edges of input
variables constrain the associated variable to that edge.

Notation and Symbols 16. In synthesizing algebraic circuits, assigning instance I j or witness
Wj labels to appropriate edges is often the final step. It is therefore convenient to not distinguish
these two types of edges in previous steps. To account for that, we often simply write S j for an
edge label, indicating that the instance/witness property of the label is unspecified and it might
represent both an instance or a witness label.

Example 124 (Generalized factorization SNARK). To give a simple example of an algebraic
circuit, consider our 3-factorization problem from example 118 again. To express the problem
in the algebraic circuit model, consider the following function

f3. f ac : F13×F13×F13→ F13;(x1,x2,x3) 7→ x1 · x2 · x3

Using this function, we can describe the zero-knowledge 3-factorization problem from 118,
in the following way: Given instance I1 ∈ F13, a valid witness is a preimage of f3. f ac at
the point I1, i.e., a valid witness consists of three values W1, W2 and W3 from F13 such that
f3. f ac(W1,W2,W3) = I1.

To see how this function can be transformed into an algebraic circuit over F13, it is a com-
mon first step to introduce brackets into the function’s definition and then write the operations
as binary operators, in order to highlight how exactly every field operation acts on its two inputs.
Due to the associativity laws in a field, we have several choices. We choose

f3. f ac(x1,x2,x3) = x1 · x2 · x3 # bracket choice
= (x1 · x2) · x3 # operator notation
= MUL(MUL(x1,x2),x3)

Using this expression, we can write an associated algebraic circuit by first constraining the
variables to edge labels W1 = x1, W2 = x2 and W3 = x3 as well as I1 = f3. f ac(x1,x2,x3), taking
the distinction between witness and instance inputs into account. We then rewrite the operator
representation of f3. f ac into circuit nodes and get the following:

x_2

*

W_2 

*

W_4

f_(3.fac_zk)

 I_1

x_1
 W_1

x_3

 W_3
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In this case, the directed acyclic multi-graph is a binary tree with three leaves (the source
nodes) labeled by x1, x2 and x3, one root (the single sink node) labeled by f3. f ac(x1,x2,x3) and
two internal nodes, which are labeled as multiplication gates.

The order we use to label the edges is chosen to make the edge labeling consistent with
the choice of W4 as defined in definition 6.2.2.1. This order can be obtained by a depth-first
right-to-left-first traversal algorithm.

Example 125. To give a more realistic example of an algebraic circuit, look at the defining
equation of the Tiny-jubjub curve 71 again. A pair of field elements (x,y) ∈ F2

13 is a curve point,
precisely if the following equation holds:

3 · x2 + y2 = 1+8 · x2 · y2

To understand how one might transform this identity into an algebraic circuit, we first rewrite
this equation by shifting all terms to the right. We get the following:

3 · x2 + y2 = 1+8 · x2 · y2 ⇔
0 = 1+8 · x2 · y2−3 · x2− y2 ⇔
0 = 1+8 · x2 · y2 +10 · x2 +12 · y2

Then we use this expression to define a function such that all points of the Tiny-jubjub curve are
characterized as the function preimages at 0.

ftiny− j j : F13×F13→ F13 ; (x,y) 7→ 1+8 · x2 · y2 +10 · x2 +12 · y2

Every pair of field elements (x,y) ∈ F2
13 with ftiny− j j(x,y) = 0 is a point on the Tiny-jubjub

curve, and there are no other curve points. The preimage f−1
tiny− j j(0) is therefore a complete

description of the Tiny-jubjub curve.
We can transform this function into an algebraic circuit over F13. We first introduce brackets

into potentially ambiguous expressions and then rewrite the function in terms of binary opera-
tors. We get the following:

ftiny− j j(x,y) = 1+8 · x2 · y2 +10 · x2 +12y2 ⇔
= ((8 · ((x · x) · (y · y)))+(1+10 · (x · x)))+(12 · (y · y)) ⇔
=ADD(ADD(MUL(8,MUL(MUL(x,x),MUL(y,y))),ADD(1,MUL(10,MUL(x,x)))),MUL(12,MUL(y,y)))

Since we haven’t decided which part of the computation should be instance and which part
should be witness, we use the unspecified symbol S to represent edge labels. Constraining all
variables to edge labels S1 = x, S2 = y and S6 = ftiny− j j, we get the following circuit, rep-
resenting the function ftiny− j j, by inductively replacing binary operators with their associated
arithmetic gates:
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This circuit is not a graph, but a multigraph, since there is more than one edge between some of
the nodes.

In the process of designing of circuits from functions, it should be noted that circuit rep-
resentations are not unique in general. In case of the function ftiny− j j, the circuit shape is
dependent on our choice of bracketing above.An alternative design is for example, given by the
following circuit, which occurs when the bracketed expression 8 · ((x · x) · (y · y)) is replaced by
the expression (x · x) · (8 · (y · y)).
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*

S_1

*

S_3

*

S_3

+

+
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y

*
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*

S_4

*

S_4

+

108

f_tiny-jj

 S_6

12

1

Of course, both circuits represent the same function, due to the associativity and commutativity
laws that hold true in any field.

With a circuit that represents the function ftiny− j j, we can now proceed to derive a circuit
that constrains arbitrary pairs (x,y) of field elements to be points on the Tiny-jubjub curve. To do
so, we have to constrain the output to be zero, that is, we have to constrain S6 = 0. To indicate
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this in the circuit, we replace the output variable by the constant 0 and constrain the related edge
label accordingly. We get the following:
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The previous circuit enforces input values assigned to the labels S1 and S2 to be points on the
Tiny-jubjub curve. However, it does not specify which labels are considered instance and which
are considered witness. The following circuit defines the inputs to be instances, while all other
labels represent witnesses:

x

*

I_1

*

W_1

*

W_1

+

+

W_3 

y

*
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*

W_2

*
W_2

+

108

0

 0
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1

It can be shown that every space- and time-bounded computation can be transformed into
an algebraic circuit. We call any process that transforms a bounded computation into a circuit
flattening.
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6.2.2.2 Circuit Execution

Algebraic circuits are directed, acyclic multi-graphs, where nodes represent variables, con-
stants, or addition and multiplication gates. In particular, every algebraic circuit with n input
nodes decorated with variable symbols and m output nodes decorated with variables can be seen
as a function that transforms an input string (x1, . . . ,xn) from Fn into an output string ( f1, . . . , fm)
from Fm. The transformation is done by sending values associated to nodes along their outgoing
edges to other nodes. If those nodes are gates, then the values are transformed according to the
gate label and the process is repeated along all edges until a sink node is reached. We call this
computation circuit execution.

When executing a circuit, it is possible to not only compute the output values of the circuit
but to derive field elements for all edges, and, in particular, for all edge labels in the circuit. The
result is a string < S1,S2, . . . ,Sn > of field elements associated to all labeled edges, which we
call a valid assignment to the circuit. In contrast, any assignment < S′1,S

′
2, . . . ,S

′
n > of field

elements to edge labels that can not arise from circuit execution is called an invalid assignment.
Valid assignments can be interpreted as proofs for proper circuit execution because they

keep a record of the computational result as well as intermediate computational steps.

Example 126 (3-factorization). Consider the 3-factorization problem from example 118 and its
representation as an algebraic circuit from example 124. We know that the string of edge labels
is given by S :=< I1;W1,W2,W3,W4 >.

To understand how this circuit is executed, consider the variables x1 = 2, x2 = 3 as well as
x3 = 4. Following all edges in the graph, we get the assignments W1 = 2, W2 = 3 and W3 = 4.
Then the assignments of W1 and W2 enter a multiplication gate and the output of the gate is
2 · 3 = 6, which we assign to W4, i.e. W4 = 6. The values W4 and W3 then enter the second
multiplication gate and the output of the gate is 6 ·4 = 11, which we assign to I1, i.e. I1 = 11.

A valid assignment to the 3-factorization circuit C3. f ac(F13) is therefore given by the fol-
lowing string of field elements from F13:

Svalid :=< 11;2,3,4,6 > (6.11)

We can visualise this assignment by assigning every computed value to its associated label
in the circuit as follows:

x_2

*W_2=3 

*

W_4=6

f_(3.fac_zk)

 I_1=11

x_1W_1=2 

x_3

 W_3=4

To see what an invalid assignment looks like, consider the assignment Serr :=< 8;2,3,4,7 >.
In this assignment, the input values are the same as in the previous case. The associated circuit
is:
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x_2

*W_2=3 

*

W_4=7

f_(3.fac_zk)

 I_1=8

x_1W_1=2 

x_3

 W_3=4

This assignment is invalid, as the assignments of I1 and W4 cannot be obtained by executing the
circuit.
Example 127. To compute a more realistic algebraic circuit execution, consider the defining
circuit Ctiny− j j(F13) from example 125 again. We already know from the way this circuit is
constructed that any valid assignment with S1 = x, S2 = y and S6 = 0 will ensure that the pair
(x,y) is a point on the Tiny-jubjub curve in its Edwards representation (equation 5.36.

From example 5.36, we know that the pair (11,6) is a proper point on the Tiny-jubjub curve
and we use this point as input to a circuit execution. We get the following:

x

*

S_1=11

*

S_3=4 

*

S_3=4

+[10*4=1] *

S_5=1 

y

*

S_2=6

S_4=10 

*

S_4=10

+

 [10*12=3]

10

+[1+1=2] 

 [8*1=8]

0

 S_6=0

12

1

 [2+8=10]

8

Executing the circuit, we indeed compute S6 = 0 as expected, which proves that (11,6) is a point
on the Tiny-jubjub curve in its Edwards representation. A valid assignment of Ctiny− j j(F13) is
therefore given by the following string:

Stiny− j j =< S1,S2,S3,S4,S5,S6 >=< 11,6,4,10,1,0 >

6.2.2.3 Circuit Satisfiability

To understand how algebraic circuits give rise to formal languages, observe that every algebraic
circuit C(F) over a fields F defines a decision function over the alphabet ΣI×ΣW = F×F in the
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following way:

RC(F) :F∗×F∗→{true, f alse} ; (I;W ) 7→

{
true (I;W )is valid assignment to C(F)
f alse else

(6.12)

Every algebraic circuit therefore defines a formal language. The grammar of this language is
encoded in the shape of the circuit, words are assignments to edge labels that are derived from
circuit execution, and statements are knowledge claims “Given instance I, there is a witness
W such that (I;W ) is a valid assignment to the circuit". A constructive proof to this claim
is therefore an assignment of a field element to every witness variable, which is verified by
executing the circuit to see if the assignment of the execution meets the assignment of the
proof.

In the context of zero-knowledge proof systems, executing circuits is also often called wit-
ness generation, since in applications the instance part is usually public, while its the task of a
prover to compute the witness part.

Remark 5 (Circuit satisfiability). Similar to 4, it should be noted that, in our definition, every
circuit defines its own language. However, in more theoretical approaches another language
usually called circuit satisfiability is often considered, which is useful when it comes to more
abstract problems like expressiveness, or computational complexity of the class of all algebraic
circuits over a given field. From our perspective, the circuit satisfiability language is obtained
by union of all circuit languages that are in our definition. To be more precise, let the alphabet
Σ = F be a field. Then

LCIRCUIT _SAT (F)= {(i;w)∈Σ
∗×Σ

∗ | there is a circuit C(F) such that (i;w) is valid assignment}

Example 128 (3-Factorization). Consider the circuit C3. f ac from example 124 again. We call
the associated language L3. f ac_circ.

To understand how a constructive proof of a statement in L3. f ac_circ looks like, consider the
instance I1 = 11. To provide a proof for the statement “There exist a witness W such that (I1;W )
is a word in L3. f ac_circ” a proof therefore has to consists of proper values for the variables W1,
W2, W3 and W4. Any prover therefore has to find input values for W1, W2 and W3 and then
execute the circuit to compute W4 under the assumption I1 = 11.

Example 126implies that < 2,3,4,6 > is a proper constructive proof and in order to verify
the proof a verifier needs to execute the circuit with instance I1 = 11 and inputs W1 = 2, W2 = 3
and W3 = 4 to decide whether the proof is a valid assignment or not.

Exercise 101. Consider the circuit Ctiny− j j(F13) from example 125, with its associated language
Ltiny− j j. Construct a proof π for the instance < 11,6 > and verify the proof.

6.2.2.4 Associated Constraint Systems

As we have seen in 6.2.1, Rank-1 Constraint Systems define a way to represent statements
in terms of a system of quadratic equations over finite fields, suitable for pairing-based zero-
knowledge proof systems. However, those equations provide no practical way for a prover to
actually compute a solution. On the other hand, algebraic circuits can be executed in order to
derive valid assignments efficiently.

In this paragraph, we show how to transform any algebraic circuit into a Rank-1 Constraint
System such that valid circuit assignments are in 1:1 correspondence with solutions to the asso-
ciated R1CS.
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To see this, let C(F) be an algebraic circuit over a finite field F, with a string of edge labels
< S1,S2, . . . ,Sn >. Then we start with an empty R1CS and one of the following steps is executed
for every edge label S j from that set:

• If the edge label S j is an outgoing edge of a multiplication gate, the R1CS gets a new
quadratic constraint

(left input) · (right input) = S j (6.13)

In this expression (left input) is the output from the symbolic execution of the subgraph
that consists of the left input edge of this gate and all edges and nodes that have this edge
in their path, starting with constant inputs or labeled outgoing edges of other nodes.

In the same way (right input) is the output from the symbolic execution of the subgraph
that consists of the right input edge of this gate and all edges and nodes that have this
edge in their path, starting with constant inputs or labeled outgoing edges of other nodes.

• If the edge label S j is an outgoing edge of an addition gate, the R1CS gets a new quadratic
constraint

(left input+ right input) ·1 = S j (6.14)

In this expression (left input) is the output from the symbolic execution of the subgraph
that consists of the left input edge of this gate and all edges and nodes that have this edge
in their path, starting with constant inputs or labeled outgoing edges of other nodes.

In the same way (right input) is the output from the symbolic execution of the subgraph
that consists of the right input edge of this gate and all edges and nodes that have this
edge in their path, starting with constant inputs or labeled outgoing edges of other nodes.

• No other edge label adds a constraint to the system.

If an algebraic circuit C(F) is constructed according to the rules from 6.2.2.1, the result
of this method is a Rank-1 Constraint System, and, in this sense, every algebraic circuit C(F)
generates a R1CS R, which we call the associated R1CS of the circuit. It can be shown that
a string of field elements < S1,S2, . . . ,Sn > is a valid assignment to a circuit if and only if the
same string is a solution to the associated R1CS. Circuit executions therefore compute solutions
to Rank-1 Constraint Systems efficiently.

To understand the contribution of algebraic gates to the number of constraints, note that,
according to construction 6.2.2.1, multiplication gates have labels on their outgoing edges if
and only if there is at least one labeled edge in both input paths, or if the outgoing edge is an
input to a sink node. This implies that multiplication with a constant is essentially free in the
sense that it doesn’t add a new constraint to the system, as long as that multiplication gate is not
am input to an output node.

Moreover, addition gates have labels on their outgoing edges if and only if they are inputs
to sink nodes. This implies that addition is essentially free in the sense that it doesn’t add a new
constraint to the system, as long as that addition gate is not an input to an output node.

Example 129 (3-factorization). Consider our 3-factorization problem from example 118 and the
associated circuit C3. f ac(F13) from example 124. Our task is to transform this circuit into an
equivalent Rank-1 Constraint System.
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We start with an empty R1CS, and, in order to generate all constraints, we have to iterate over
the set of edge labels < I1;W1,W2,W3,W4 >.

Starting with the edge label I1, we see that it is an outgoing edge of a multiplication gate,
and, since both input edges are labeled, we have to add the following constraint to the system:

(left input) · (right input) = I1 ⇔
W4 ·W3 = I1

Next, we consider the edge label W1 and, since, it’s not an outgoing edge of a multiplication or
addition gate, we don’t add a constraint to the system. The same holds true for the labels W2
and W3.

For edge label W4 , we see that it is an outgoing edge of a multiplication gate, and, since
both input edges are labeled, we have to add the following constraint to the system:

(left input) · (right input) =W4 ⇔
W2 ·W1 =W4

Since there are no more labeled edges, all constraints are generated, and we have to combine
them to get the associated R1CS of C3. f ac(F13):

W4 ·W3 = I1

W2 ·W1 =W4

This system is equivalent to the R1CS we derived in example 120. The languages L3. f ac_zk and
L3. f ac_circ are therefore equivalent and both the circuit as well as the R1CS are just two different
ways of expressing the same language.

Example 130. To consider a more general transformation, we consider the Tiny-jubjub circuit
from example 127 again. A proper circuit is given by the following graph, where we highlighted
all nodes that contribute a constraint to the R1CS:
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To compute the number of constraints, observe that we have 3 multiplication gates that have
labels on their outgoing edges and 1 addition gate that has a label on its outgoing edge. We
therefore have to compute 4 quadratic constraints.

In order to derive the associated R1CS, we have start with an empty R1CS and then iterate
over the set < S1,S2,S3,S4,S5,S6 = 0 > of all edge labels, in order to generate the constraints.

Considering edge label S1, we see that the associated edges are not outgoing edges of any
algebraic gate, and we therefore have to add no new constraint to the system. The same holds
true for edge label S2. Looking at edge label S3, we see that the associated edges are outgoing
edges of a multiplication gate and that the associated subgraph is given by:
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Both the left and the right input to this multiplication gate are labeled by S1. We therefore have
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to add the following constraint to the system:

S1 ·S1 = S3

Looking at edge label S4, we see that the associated edges are outgoing edges of a multiplication
gate and that the associated subgraph is given by:
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Both the left and the right input to this multiplication gate are labeled by S2 and we therefore
have to add the following constraint to the system:

S2 ·S2 = S4

Edge label S5 is more interesting. To see how it implies a constraint, we have to construct
the associated subgraph first, which consists of all edges, nodes, and paths, starting either at a
constant input or a labeled edge. We get
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1
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The right input to the associated multiplication gate is given by the labeled edge S3. However,
the left input is not a labeled edge, but has a labeled edge in one of its path. To compute the left
factor of that constraint, we have to compute the output of the subgraph associated to the left
edge, which is S4 ·8. This gives the constraint

(S4 ·8) ·S3 = S5

The last edge label is the constant S6 = 0. To see how it implies a constraint, we have to
construct the associated subgraph, which consists of all edges, nodes, and paths, starting either
at a constant input or a labeled edge. We get
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Both the left and the right input are unlabeled, but have a labeled edges in their path. Since the
gate is an addition gate, the right factor in the quadratic constraint is always 1 and the left factor
is computed by symbolically executing all inputs to all gates in the sub-circuit. We get

(12 ·S4 +S5 +10 ·S3 +1) ·1 = 0

Since there are no more labeled outgoing edges, we are done deriving the constraints. Com-
bining all constraints together, we get the following R1CS:

S1 ·S1 = S3

S2 ·S2 = S4

(S4 ·8) ·S3 = S5

(12 ·S4 +S5 +10 ·S3 +1) ·1 = 0

which is equivalent to the R1CS we derived in example 121 both the circuit as well as the R1CS
are just two different ways to express the same language.

6.2.3 Quadratic Arithmetic Programs
We have introduced algebraic circuits and their associated Rank-1 Constraint Systems as two
particular models able to represent bounded computation. Both models define formal languages,
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and associated membership as well as knowledge claims can be proofed in a constructive way
by executing the circuit in order to compute solutions to its associated R1CS.

One reason why those systems are useful in the context of succinct zero-knowledge proof
systems is because any R1CS can be transformed into another computational model called
a Quadratic Arithmetic Program [QAP], which serves as the basis for some of the most
efficient succinct non-interactive zero-knowledge proof generators that currently exist.

As we will see, proving statements for languages that have decision functions defined by
Quadratic Arithmetic Programs can be achieved by providing certain polynomials, and those
proofs can be verified by checking a particular divisibility property of those polynomials.

6.2.3.1 QAP representation

To understand what Quadratic Arithmetic Programs are in detail, let F be a field and R a Rank-1
Constraint System over F such that the number of non-zero elements in F is strictly larger than
the number k of constraints in R. Moreover, let ai

j, bi
j and ci

j ∈ F for every index 0≤ j ≤ n+m
and 1≤ i≤ k, be the defining constants of the R1CS and m1, . . ., mk be arbitrary, invertible and
distinct elements from F.

Then a Quadratic Arithmetic Program associated to the R1CS R is the following set of
polynomials over F:

QAP(R) =
{

T ∈ F[x],
{

A j,B j,C j ∈ F[x]
}n+m

h=0

}
(6.15)

Here T (x) := Πk
l=1(x−ml) is a polynomial of degree k, called the target polynomial of the

QAP and A j, B j as well as C j are the unique degree k−1 polynomials defined by the following
equation:

A j(mi) = ai
j, B j(mi) = bi

j, C j(mi) =Ci
j for all j = 1, . . . ,n+m+1, i = 1, . . . ,k (6.16)

Given some Rank-1 Constraint System, an associated Quadratic Arithmetic Program is there-
fore a set of polynomials, computed from the constants in the R1CS. To see that the polynomi-
als A j, B j and C j are uniquely defined by the equations 6.16, recall that a polynomial of degree
k− 1 is completely determined by k evaluation points and it can be computed for example by
Lagrange interpolation 4.

Computing a QAP from any given R1CS can be achieved in the following three steps. If
the R1CS consists of k constraints, first choose k different, invertible element from the field F.
Every choice defines a different QAP for the same R1CS. Then compute the target polynomial T
according to its definition 6.15. After that use Lagrange’s method 4 to compute the polynomials
A j for every 1≤ j ≤ k from the set

SA j = {(m1,a1
j), . . . ,(mk,ak

j)} (6.17)

After that is done, execute the analog computation for the polynomials B j and C j for every
1≤ j ≤ k.

Example 131 (3-factorization). To provide a better intuition of Quadratic Arithmetic Programs
and how they are computed from their associated Rank-1 Constraint Systems, consider the
language L3. f ac_zk from example 118 and its associated R1CS from example 120:

W1 ·W2 =W4 constraint 1
W4 ·W3 = I1 constraint 2
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In this example, we want to transform this R1CS into an associated QAP. According to example
120 the defining constants ai

j, bi
j and ci

j of the R1CS are given as follows:

a1
0 = 0 a1

1 = 0 a1
2 = 1 a1

3 = 0 a1
4 = 0 a1

5 = 0
a2

0 = 0 a2
1 = 0 a2

2 = 0 a2
3 = 0 a2

4 = 0 a2
5 = 1

b1
0 = 0 b1

1 = 0 b1
2 = 0 b1

3 = 1 b1
4 = 0 b1

5 = 0
b2

0 = 0 b2
1 = 0 b2

2 = 0 b2
3 = 0 b2

4 = 1 b2
5 = 0

c1
0 = 0 c1

1 = 0 c1
2 = 0 c1

3 = 0 c1
4 = 0 c1

5 = 1
c2

0 = 0 c2
1 = 1 c2

2 = 0 c2
3 = 0 c2

4 = 0 c2
5 = 0

Since the R1CS is defined over the field F13 and since it has two constraints, we need to choose
two arbitrary but invertible and distinct elements m1 and m2 from F13. We choose m1 = 5, and
m2 = 7 and with this choice we get the target polynomial

T (x) = (x−m1)(x−m2) # Definition of T
= (x−5)(x−7) # Insert our choice
= (x+8)(x+6) # Negatives in F13

= x2 + x+9 # expand

Then we have to compute the polynomials A j, B j and C j by their defining equation from the
R1CS coefficients. Since the R1CS has two constraining equations, those polynomials are of
degree 1 and they are defined by their evaluation at the point m1 = 5 and the point m2 = 7.

At point m1, each polynomial A j is defined to be a1
j and at point m2, each polynomial A j is

defined to be a2
j . The same holds true for the polynomials B j as well as C j. Writing all these

equations down, we get:

A0(5) = 0, A1(5) = 0, A2(5) = 1, A3(5) = 0, A4(5) = 0, A5(5) = 0
A0(7) = 0, A1(7) = 0, A2(7) = 0, A3(7) = 0, A4(7) = 0, A5(7) = 1

B0(5) = 0, B1(5) = 0, B2(5) = 0, B3(5) = 1, B4(5) = 0, B5(5) = 0
B0(7) = 0, B1(7) = 0, B2(7) = 0, B3(7) = 0, B4(7) = 1, B5(7) = 0

C0(5) = 0, C1(5) = 0, C2(5) = 0, C3(5) = 0, C4(5) = 0, C5(5) = 1
C0(7) = 0, C1(7) = 1, C2(7) = 0, C3(7) = 0, C4(7) = 0, C5(7) = 0

Lagrange’s interpolation implies that a polynomial of degree k, that is zero on k+1 points has
to be the zero polynomial. Since our polynomials are of degree 1 and determined on 2 points,
we therefore know that the only non-zero polynomials in our QAP are A2, A5, B3, B4, C1 and
C5, and that we can use Lagrange’s interpolation to compute them.

To compute A2 we note that the set SA2 in our version of Lagrange’s interpolation is given
by SA2 = {(m1,a1

2),(m2,a2
2)}= {(5,1),(7,0)}. Using this set we get:

A2(x) = a1
2 · (

x−m2

m1−m2
)+a2

2 · (
x−m1

m2−m2
) = 1 · (x−7

5−7
)+0 · (x−5

7−5
)

=
x−7
−2

=
x−7

11
# 11−1 = 6

= 6(x−7) = 6x+10 # −7 = 6 and 6 ·6 = 10
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To compute A5, we note that the set SA5 in our version of Lagrange’s method is given by SA5 =
{(m1,a1

5),(m2,a2
5)}= {(5,0),(7,1)}. Using this set we get:

A5(x) = a1
5 · (

x−m2

m1−m2
)+a2

5 · (
x−m1

m2−m1
) = 0 · (x−7

5−7
)+1 · (x−5

7−5
)

=
x−5

2
# 2−1 = 7

= 7(x−5) = 7x+4 # −5 = 8 and 7 ·8 = 4

Using Lagrange’s interpolation, we can deduce that A2 = B3 = C5 as well as A5 = B4 = C1,
since they are polynomials of degree 1 that evaluate to same values on 2 points. Using this, we
get the following set of polynomials

A0(x) = 0 B0(x) = 0 C0(x) = 0
A1(x) = 0 B1(x) = 0 C1(x) = 7x+4
A2(x) = 6x+10 B2(x) = 0 C2(x) = 0
A3(x) = 0 B3(x) = 6x+10 C3(x) = 0
A4(x) = 0 B4(x) = 7x+4 C4(x) = 0
A5(x) = 7x+4 B5(x) = 0 C5(x) = 6x+10

We can use Sage to verify our computation. In Sage, every polynomial ring has a function
lagrange_polynomial that takes the defining points as inputs and the associated Lagrange
polynomial as output.

656sage: F13 = GF(13)
657sage: F13t.<t> = F13[]
658sage: T = F13t((t-5)*(t-7))
659sage: A2 = F13t.lagrange_polynomial([(5,1),(7,0)])
660sage: A5 = F13t.lagrange_polynomial([(5,0),(7,1)])
661sage: T == F13t(t^2 + t + 9)
662True
663sage: A2 == F13t(6*t + 10)
664True
665sage: A5 == F13t(7*t + 4)
666True

Combining this computation with the target polynomial we derived earlier, a Quadratic
Arithmetic Program associated to the Rank-1 Constraint System R3. f ac_zk is given as follows:

QAP(R3. f ac_zk) = {x2 + x+9,
{0,0,6x+10,0,0,7x+4},{0,0,0,6x+10,7x+4,0},{0,7x+4,0,0,0,6x+10}}

Exercise 102. Consider the Rank-1 Constraint System for points on the Tiny-jubjub curve from
example 121. Compute an associated QAP for this R1CS and double check your computation
using sage.

6.2.3.2 QAP Satisfiability

One of the major points of Quadratic Arithmetic Programs in proving systems is that solutions
of their associated Rank-1 Constraint Systems are in 1:1 correspondence with certain polyno-
mials P divisible by the target polynomial T of the QAP. Verifying solutions to the R1CS and
hence, checking proper circuit execution is then achievable by polynomial division of P by T .
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To be more specific, let R be some Rank-1 Constraint System with associated variables
(< I1, . . . , In >;<W1, . . . ,Wm >) and let QAP(R) be a Quadratic Arithmetic Program of R. Then
the string (< I1, . . . , In >;<W1, . . . ,Wm >) is a solution to the R1CS if and only if the following
polynomial is divisible by the target polynomial T :

P(I;W ) =(A0+∑
n
j I j·A j+∑

m
j W j·An+ j)·(B0+∑

n
j I j·B j+∑

m
j W j·Bn+ j)−(C0+∑

n
j I j·C j+∑

m
j W j·Cn+ j) (6.18)

To understand how Quadratic Arithmetic Programs define formal languages, observe that
every QAP over a field F defines a decision function over the alphabet ΣI×ΣW = F×F in the
following way:

RQAP : (F)∗× (F)∗→{true, f alse} ; (I;W ) 7→

{
true P(I;W ) is divisible by T
f alse else

(6.19)

This means that every QAP defines a formal language LQAP, and, if the QAP is associated
to an R1CS, the language generated by the QAP and the language generated by the R1CS
are equivalent. In the context of languages generated by Quadratic Arithmetic Programs, a
statement is then a membership claim “There is a word (I;W ) in LQAP”. A proof to this claim
is therefore given by a polynomial P(I;W ), which is verified by dividing P(I;W ) by T .

Note the structural similarities and differences in the definition of an R1CS and its associ-
ated language in 6.2.1.1, of circuits and their associated languages in 6.2.2 and of QAPs and
their associated languages as explained in this part. For circuits and their associated Rank-1
Constraint Systems, a constructive proof consists of a valid assignment of field elements to the
edges of the circuit, or the variables in the R1CS. However, in the case of QAPs, a valid proof
consists of a polynomial P(I;W ).

To compute a constructive proof for a statement in LQAP given some instance I, a prover
first needs to compute a constructive proof W of the associated R1CS, e.g. by executing the
circuit of the R1CS. With (I;W ) at hand, the prover can then compute the polynomial P(I;W )

and publish the polynomial as proof.
Verifying a constructive proof in the case of a circuit is achieved by executing the circuit

and then by comparing the result against the given proof. Verifying the same proof in the R1CS
picture means checking if the elements of the proof satisfy the R1CS equations. In contrast,
verifying a proof in the QAP picture is done by polynomial division of the proof P by the target
polynomial T . The proof is verified if and only if P is divisible by T .

Example 132. Consider the Quadratic Arithmetic Program QAP(R3. f ac_zk) from example 131
and its associated R1CS from equation 120. To give an intuition of how proofs in the language
LQAP(R3. f ac_zk) look like, lets consider the instance I1 = 11. As we know from example 126,
(W1,W2,W3,W5) = (2,3,4,6) is a proper witness, since (< I1 >;<W1,W2,W3,W5 >) = (< 11 >
;< 2,3,4,6 >) is a valid circuit assignment and hence, a solution to R3. f ac_zk and a constructive
proof for language LR3. f ac_zk .

In order to transform this constructive proof into a knowledge proof in language LQAP(R3. f ac_zk),
a prover has to use the elements of the constructive proof, to compute the polynomial P(I;W ).

In the case of (< I1 >;<W1,W2,W3,W5 >) = (< 11 >;< 2,3,4,6 >), the associated proof
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is computed as follows:

P(I;W ) =(A0+∑
n
j I j·A j+∑

m
j W j·An+ j)·(B0+∑

n
j I j·B j+∑

m
j W j·Bn+ j)−(C0+∑

n
j I j·C j+∑

m
j W j·Cn+ j)

=(2(6x+10)+6(7x+4)) · (3(6x+10)+4(7x+4))− (11(7x+4)+6(6x+10))
=((12x+7)+(3x+11)) · ((5x+4)+(2x+3))− ((12x+5)+(10x+8))
=(2x+5) · (7x+7)− (9x)

=(x2 +2 ·7x+5 ·7x+5 ·7)− (9x)

=(x2 + x+9x+9)− (9x)

=x2 + x+9

Given instance I1 = 11 a prover therefore provides the polynomial x2+x+9 as proof. To verify
this proof, any verifier can then look up the target polynomial T from the QAP and divide P(I;W )

by T . In this particular example, P(I;W ) is equal to the target polynomial T , and hence, it is
divisible by T with P/T = 1. The verifer therefore verifies the proof.

667sage: F13 = GF(13)
668sage: F13t.<t> = F13[]
669sage: T = F13t(t^2 + t + 9)
670sage: P = F13t((2*(6*t+10)+6*(7*t+4))*(3*(6*t+10)+4*(7*t +4))

-(11*(7*t+4)+6*(6*t+10)))
671sage: P == T
672True
673sage: P % T # remainder
6740

To give an example of a false proof, consider the string (< I1 >;<W1,W2,W3,W4 >) = (<
11 >,< 2,3,4,8 >). Executing the circuit, we can see that this is not a valid assignment and not
a solution to the R1CS, and hence, not a constructive knowledge proof in L3. f ac_zk. However, a
prover might use these values to construct a false proof P(I;W ):

P′(I;W ) =(A0+∑
n
j I j·A j+∑

m
j W j·An+ j)·(B0+∑

n
j I j·B j+∑

m
j W j·Bn+ j)−(C0+∑

n
j I j·C j+∑

m
j W j·Cn+ j)

=(2(6x+10)+8(7x+4)) · (3(6x+10)+4(7x+4))− (8(6x+10)+11(7x+4))

=8x2 +6

Given instance I1 = 11, a prover therefore provides the polynomial 8x2 +6 as proof. To verify
this proof, any verifier can look up the target polynomial T from the QAP and divide P(I;W ) by
T . However, polynomial division has the following remainder:

(8x2 +6)/(x2 + x+9) = 8+
5x+12

x2 + x+9

This implies that P(I;W ) is not divisible by T , and hence, the verifier does not verify the proof.
Any verifier can therefore show that the proof is false.

675sage: F13 = GF(13)
676sage: F13t.<t> = F13[]
677sage: T = F13t(t^2 + t + 9)
678sage: P = F13t((2*(6*t+10)+8*(7*t+4))*(3*(6*t+10)+4*(7*t+4))-(

8*(6*t+10)+11*(7*t+4)))
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679sage: P == F13t(8*t^2 + 6)
680True
681sage: P % T # remainder
6825*t + 12

163



Chapter 7

Circuit Compilers

As previously demonstrated in Chapter 6, statements in formal languages can be formalized as
membership or knowledge claims, with algebraic circuits and Rank-1 Constraint Systems being
two crucial means of defining these languages.

However, both algebraic circuits and Rank-1 Constraint Systems present substantial devi-
ations from conventional programming paradigms and present difficulties for developers. The
task of writing real-world applications as circuits and verifying them through Rank-1 Constraint
Systems is as challenging as writing code in low-level languages such as assembly. To facili-
tate complex statement design, it is necessary to have a compiler framework that can translate
high-level languages into arithmetic circuits and associated Rank-1 Constraint Systems.

These programming languages allow for more intuitive and efficient creation and testing of
arithmetic circuits, freeing developers from the intricacies of R1CS representations. As a result,
they can concentrate on the logic of the circuits they intend to build while the compiler handles
the rest.

An additional benefit of R1CS compiling programming languages is that they can generate
not only R1CS representations but also other programs that can efficiently compute the values
of the circuit’s assignment. This facilitates integration of the circuits into various platforms and
environments, without the need to consider underlying implementation details.

As demonstrated in Chapter 6 through sections 6.2.1 and 6.2.2, both arithmetic circuits
and Rank-1 Constraint Systems exhibit a modular property 6.2.1.3, allowing for synthesis of
complex circuits from simpler ones. Many circuit/R1CS compilers adopt a basic approach of
providing a library of atomic and simple circuits, with a means of combining these building
blocks into more complex systems.

This chapter provides an overview of basic concepts in the field of circuit compilers, pre-
senting a toy language which can be manually "compiled" into graphical representations of
algebraic circuits and their associated Rank-1 Constraint Systems. The chapter then examines
real-world compilers and the higher-level languages they support.

The chapter begins with a general introduction to the toy programming language and to the
real world languages, followed by a discussion of atomic types such as booleans and unsigned
integers. Control flow primitives, including the if-then-else conditional and the bounded loop,
are then defined. The chapter concludes with a review of basic functionality primitives, such as
elliptic curve cryptography, commonly referred to as "gadgets" in literature.
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7.1 A Pen-and-Paper Language
To explain basic concepts of circuit compilers and their associated high-level languages, we
derive an informal toy language and associated “brain-compiler” which we name PAPER (Pen-
And-Paper Execution Rules). PAPER allows programmers to define statements in Rust-like
pseudo-code. The language is inspired by zokrates and circom.

7.1.1 The Grammar
In PAPER, any statement is defined as an ordered list of functions, where any function has to be
declared in the list before it is called in another function of that list. The last entry in a statement
has to be a special function, called main. Functions take a list of typed parameters as inputs
and compute a tuple of typed variables as output, where type_functions are special functions
that define how to transform one type into another type, ultimately transforming any type into
elements of the base field where the circuit is defined over.

Any statement is parameterized over the field that the circuit will be defined on, and has ad-
ditional optional parameters of unsigned type, needed to define the size of arrays or the counter
of bounded loops. The following definition makes the grammar of a statement precise using a
command line language like description:

statement <Name> {F:<Field> [ , <N_1: unsigned>,... ] } {
[fn <Name>([[pub]<Arg>:<Type>,...]) -> (<Type>,...){
[let [pub] <Var>:<Type> ;... ]
[let const <Const>:<Type>=<Value> ;... ]
Var<==(fn([<Arg>|<Const>|<Var>,...])|(<Arg>|<Const>|<Var>)) ;
return (<Var>,...) ;

} ;...]
fn main([[pub]<Arg>:<Type>,...]) -> (<Type>,...){
[let [pub] <Var>:<Type> ;... ]
[let const <Const>:<Type>=<Value> ;... ]
Var<==(fn([<Arg>|<Const>|<Var>,...])|(<Arg>|<Const>|<Var>)) ;
return (<Var>,...) ;

} ;
}

Function arguments and variables are witness variables by default, but can be declared as in-
stance by the pub specifier. Declaring arguments and variables as instances always overwrites
any previous or conflicting witness declarations. Every argument, constant or variable has a
type, and every type is defined as a function that transforms that type into another type. In order
for a PAPER program to compile successfully, all type transformations must be composed in
such a way that the final type is the base field where the circuit is defined over:

type_function <TYPE>( t1 : <TYPE_1>) -> TYPE_2{
let t2: TYPE_2 <== fn(TYPE_1)
return t2

}

Many real-world circuit languages are based on a similar, but of course more sophisticated
approach than PAPER. The purpose of PAPER is to show basic principles of circuit compilers
and their associated high-level languages.

Example 133. To get a better understanding of the grammar of PAPER, the following constitutes
proper high-level code that follows the grammar of the PAPER language, assuming that all types
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in that code have been defined elsewhere.

statement MOCK_CODE {F: F_43, N_1 = 1024, N_2 = 8} {
fn foo(in_1 : F, pub in_2 : TYPE_2) -> F {
let const c_1 : F = 0 ;
let const c_2 : TYPE_2 = SOME_VALUE ;
let pub out_1 : F ;
out_1<== c_1 ;
return out_1 ;

} ;

fn bar(pub in_1 : F) -> F {
let out_1 : F ;
out_1<==foo(in_1);
return out_1 ;

} ;

fn main(in_1 : TYPE_1)->(F, TYPE_2){
let const c_1 : TYPE_1 = SOME_VALUE ;
let const c_2 : F = 2;
let const c_3 : TYPE_2 = SOME_VALUE ;
let pub out_1 : F ;
let out_2 : TYPE_2 ;
c_1 <== in_1 ;
out_1 <== foo(c_2) ;
out_2 <== TYPE_2 ;
return (out_1,out_2) ;

} ;
}

7.1.2 The Execution Phases
In contrast to normal executable programs, programs for circuit compilers have two modes of
execution. The first mode, usually called the setup phase, is executed in order to generate the
circuit and its associated Rank-1 Constraint System, the latter of which is then usually used as
input to some zero-knowledge proof system as explained in 8.

The second mode of execution is usually called the prover phase. In this phase, some
assignment to all instance variables of the circuit is usually given as input and the task of a
prover is to compute a valid assignment to all witness variables of the circuit. Depending on the
use case, this valid assignment is then either directly used as constructive proof for proper circuit
execution or is transferred as input to the proof generation algorithm of some zero-knowledge
proof system, where the full-sized, non hiding constructive proof is processed into a succinct
proof with various levels of zero knowledge.

Modern circuit languages and their associated compilers abstract over those two phases and
provide a unified interphase to the developer, who then writes a single program that can be
used in both phases.

To give the reader a clear, conceptual distinction between the two phases, PAPER keeps
them separated. PAPER-code can be “brain-compiled” during the setup-phase in a pen-and-
paper approach into a graphical circuit representation. Once a circuit is derived, it can be exe-
cuted in a prover phase to generate a valid assignment. The valid assignment is then interpreted
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as a constructive proof for a knowledge claim in the associated language.

7.1.2.0.1 The Setup Phase In PAPER, the task of the setup phase is to compile code in the
PAPER language into a visual representation of an algebraic circuit. Deriving the circuit from
the code in a pen-and-paper style is what we call brain-compiling.

Given some statement description that adheres to the correct grammar, we start the graphical
circuit compilation process with an empty circuit, compile the main function first and then
inductively compile all other functions as they are called during the process.

For every function that we currently compile, we draw a box-node for every input argument,
every variable and every constant of that function. If the node represents a variable, we label it
with that variable’s name, and if it represents a constant, we label it with that constant’s value.
We group arguments into a subgraph labeled “inputs” and return values into a subgraph labeled
“outputs". We then group everything into a subgraph and label that subgraph with the function’s
name.

After this is done, we have to do a consistency and type check for every occurrence of the
assignment operator <==. We have to ensure that the expression on the right side of the operator
is well defined and that the types of both side match.

Then we compile the right side of every occurrence of the assignment operator <==. If
the right side is a constant or variable defined in this function, we draw a dotted line from the
box-node that represents the left side of <== to the box node that represents the right side of
the same operator. If the right side represents an argument of that function we draw a line from
the box-node that represents the left side of <== to the box node that represents the right side
of the same operator.

If the right side of the <== operator is a function, we look into our database, find its associ-
ated circuit and draw it. If no circuit is associated to that function yet, we repeat the compilation
process for that function, drawing edges from the function’s argument to its input nodes and
from the functions output nodes to the nodes on the right side of <==.

During that process, edge labels are drawn according to the defining rules of algebraic cir-
cuits from 6.2.2.1. If the associated variable represents a witness variable, we use the W label
to indicate a witness, and if it represents a instance variable, we use the I label to indicate an
instance. Variables are witnesses by default and the pub specifier indicates that the variable is
an instance.

Once this is done, we compile all occurring types of all variables in a function, by compiling
the type_function of each type. We do this inductively until we reach the type of the base field.
Circuits have no notion of types, only of field elements; hence, every type needs to be compiled
to the field type in a sequence of compilation steps.

The compilation stops once we have inductively replaced all functions by their circuits. The
result is a circuit that contains many unnecessary box nodes. In a final optimization step, all
box nodes that are directly linked to each other are collapsed into a single node, and all box
nodes that represent the same constants are collapsed into a single node.

Of course, PAPER’s brain-compiler is not properly defined in any formal manner. Its pur-
pose is to highlight important steps that real-world compilers undergo in their setup phases.

Example 134 (A trivial Circuit). To give an intuition of how to write and compile circuits in the
PAPER language, consider the following statement description:

statement trivial_circuit {F:F_13} {
fn main{F}(in1 : F, pub in2 : F) -> (F,F){
let const outc1 : F = 0 ;
let const inc1 : F = 7 ;
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let out1 : F ;
let out2 : F ;
out1 <== inc1;
out2 <== in1;
outc1 <== in2;
return (out1, out2) ;

}
}

To brain-compile this statement into an algebraic circuit with PAPER, we start with an empty
circuit and evaluate function main, which is the only function in this statement.

We draw box-nodes for every argument, every constant and every variable of the function
and label them with their names or values, respectively. Then we do a consistency and type
check for every <== operator in the function. Since the circuit only wires inputs to outputs and
all elements have the same type, the check is valid.

Then we evaluate the right side of the assignment operators. Since, in our case, the right
side of each operator is not a function, we draw edges from the box-nodes on the right side
to the associated box node on the left side. To label those edges, we use the general rules of
algebraic circuits as defined in 6.2.2.1. According to those rules, every incoming edge of a sink
node has a label and every outgoing edge of a source node has a label, if the node is labeled with
a variable. Since nodes that represent constants are implicitly assumed to be private, and since
the public specifier determines if an edge is labeled with W or I, we get the following circuit:

outputs

inputs

in_1

out_2

W_1

in_2 = 0

0

0

out_1

7

7.1.2.0.2 The Prover Phase In PAPER, a so-called prover phase can be executed once the
setup phase has generated a graphic circuit representation from its associated high-level code.
This is done by executing the circuit while assigning proper values to all input nodes of the
circuit. However, in contrast to most real-world compilers, PAPER does not tell the prover how
to find proper input values to a given circuit. Real-world programing languages usually provide
this data by computations that are done outside of the circuit.

Example 135. Consider the circuit from example 127. Valid assignments to this circuit are
constructive proofs that the pair of inputs < I1, I2 > is a point on the tiny-jubjub curve. However,
the circuit does not provide a way to actually compute proper values for I1 and I2. Any real-
world system therefore needs an auxiliary computation that provides those values.

7.2 Real World Circuit Languages
Programming languages that compile to rank-1 constraint systems are becoming increasingly
popular in the fields of cryptography and blockchain. These languages provide a higher-level
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abstraction for designing and implementing arithmetic circuits, which are fundamental building
blocks in zero-knowledge proof systems. By using these programming languages, developers
can focus on the logic of the circuits they want to build, while the compiler takes care of the
low-level details of R1CS representations. Additionally, these languages can output not only
the R1CS representation, but also other programs, that can efficiently compute all values of a
valid circuit assignment.

7.2.1 Circom
Circom is a domain-specific programming language for designing arithmetic circuits. It is used
to build circuits that can be compiled to rank-1 constraint systems and outputted as WebAssem-
bly and C++ programs for efficient evaluation.

In this section, we will gives examples of how to write basic circuits in Circom. We will use
those examples then later to compute associated proof in snarkjs.

To understand circom, we first have to provide definitions for the terms signals,templates,
and components to facilitate a better understanding of the examples discussed.

A signal refers to an element in the underlying finite field F of a circuit. The arithmetic
circuits created using Circom operate on signals, which are immutable and can be defined as
inputs or outputs. Input signals are private, unless specified as public, and all output signals
are publicly accessible. The remaining signals are private and cannot be made public. Public
signals are part of the instance and private signals are part of the witness in any valid assigment
of a circuit.

A template is an algorithm that creates generic circuits in Circom. The template is a new
circuit object that can be utilized to construct other circuits.

Components define an arithmetic circuit by receiving input signals and producing output
signals and intermediate signals, as well as a set of constraints. Components, like signals, are
also immutable.

Example 136. As a demonstration of the generation of circuits in the Circom language, we
revisit the trivial circuit from example 134 as previously defined in PAPER. The following code
provides one representation of this circuit in the Circom language:

template trivial_circuit() {

signal private input in1 ;
signal private input in2 ;

var outc1 = 0 ;
var inc1 = 7 ;

signal output out1 ;
signal output out2 ;

out2 <== in1 ;
outc1 === in2 ;

}

component main = trivial_circuit() ;

It should be noted that the underlying field is not made explicit in Circom, thus the constants
0 and 7 have no immediate significance. To compile the Circom language into an R1CS repre-
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sentation, the code must be saved as a text file. We refer to it as trivial_circuit.circom.
This file can then be compiled using the following command:

circom trivial_circuit.circom --r1cs --wasm --sym

The Circom compiler generates three distinct files. The first file, trivial_circuit.r1cs,
contains the R1CS constraint system of the circuit in a custom binary format. The second file,
trivial_circuit.wasm, is a wasm code that computes a witness from a given instance,
thereby yielding a solution to the R1CS. Finally, the third file, trivial_circuit.sym, is
a symbols text file necessary for debugging or annotated printing of the constraint system.

Example 137 (The 3-factorization problem in Circom). In this example we implement the 3-
factorization problem 115 in Circom’s language and compile into an R1CS and statement gen-
erator. In order to show, how Circom handles modularity 6.1.3, we write the code as follows:

template Multiplier() {
signal input a ;
signal input b ;
signal output c ;
c <== a*b ;

}

template three_fac () {
signal input x1 ;
signal input x2 ;
signal input x3 ;
signal output x4 ;
component mult1 = Multiplier() ;
component mult2 = Multiplier() ;
mult1.a <== x1 ;
mult1.b <== x2 ;
mult2.a <== mult1.c ;
mult2.b <== x3 ;
x4 <== mult2.c ;

}

component main = three_fac() ;

To compile this Circom implementation into an R1CS representation and statement generator,
the code must be saved as a text file. We refer to it as three_fac.circom. This file can
then be compiled using the following command:

circom three_fac.circom --r1cs --wasm --sym

Once the file is compiled, the info command can be used to print circuit stats, including the
number of constraints:

snarkjs r1cs info circuit.r1cs

[INFO] snarkJS: Curve: bn-128
[INFO] snarkJS: # of Wires: 6
[INFO] snarkJS: # of Constraints: 2
[INFO] snarkJS: # of Private Inputs: 0
[INFO] snarkJS: # of Public Inputs: 3
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[INFO] snarkJS: # of Labels: 11
[INFO] snarkJS: # of Outputs: 1

7.3 Common Programing concepts
In this section, we cover concepts that appear in almost every programming language, and see
how they can be implemented in circuit compilers.

7.3.1 Primitive Types
Primitive data types like booleans, (unsigned) integers, or strings are the most basic building
blocks one can expect to find in every general high-level programing language. In order to write
statements as computer programs that compile into circuits, it is therefore necessary to imple-
ment primitive types as constraint systems, and define their associated operations as circuits.

In this section, we look at some common ways to achieve this. After a recapitulation of
the atomic type for the base field where the circuit is defined on, we start with an implemen-
tation of the boolean type and its associated boolean algebra as circuits. After that, we define
unsigned integers based on the boolean type, and leave the implementation of signed integers
as an exercise to the reader.

7.3.1.1 The base-field type

Since both algebraic circuits and their associated Rank-1 Constraint Systems are defined over a
finite field, elements from that field are the atomic informational units in those models. In this
sense, field elements x ∈ F are for algebraic circuits what bits are for computers.

In PAPER, we write F for this type and specify the actual instance of the field type in curly
brackets after the name of a given statement. Two functions are associated to this type, which
are induced by the addition and multiplication law in the field F. We write

MUL : F×F→ F ; (x,y) 7→ MUL(x,y) (7.1)

ADD : F×F→ F ; (x,y) 7→ ADD(x,y) (7.2)

Circuit compilers have to compile these functions into arithmetic gates, as explained in 6.2.2.4.
Every other function has to be expressed in terms of these two atomic functions.

To represent addition and multiplication in the PAPER language, we define the following
two functions:

fn MUL(x : F, y : F) -> F{}

fn ADD(x : F, y : F) -> F{}

The compiler then compiles every occurrence of the MUL or the ADD function into the following
graphical circuit representations:
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x
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(x+y)

W_3

yW_2

Example 138 (Basic gates). To give an intuition of how a real-world compiler might trans-
form addition and multiplication in algebraic expressions into a circuit, consider the following
PAPER statement:

statement basic_ops {F:F_13} {
fn main(in_1 : F, pub in_2 : F) -> (F, F){
let out_1 : F ;
let out_2 : F ;
out_1 <== MUL(in_1,in_2) ;
out_2 <== ADD(in_1,in_2) ;
return (out_1, out_2) ;

}
}

To compile this into an algebraic circuit, we start with an empty circuit and evaluate the function
main, which is the only function in this statement. We draw an inputs subgraph containing
box-nodes for every argument of the function, and an outputs subgraph containing box-nodes
for every factor in the return value. Since all of these nodes represent variables of the field
type, we don’t have to add any type constraints to the circuit.

We check the validity of every expression on the right side of every <== operator including
a type check. In our case, every variable is of the field type and hence the types match the
types of the MUL as well as the ADD function and the type of the left sides of <== operators.

We evaluate the expressions on the right side of every <== operator inductively, replacing
every occurrence of a function with a subgraph that represents its associated circuit.

According to PAPER, every occurrence of the instance specifier pub overwrites the asso-
ciate witness default value. Using the appropriate edge labels we get:
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Any real-world compiler might process its associated high-level language in a similar way,
replacing functions, or gadgets by predefined associated circuits. This process is often followed
by various optimization steps that try to reduce the number of constraints as much as possible.

In PAPER, we optimize this circuit by collapsing all box nodes that are directly connected
to other box nodes, adhering to the rule that a variable’s pub specifier overwrites any witness
specifier. Reindexing edge labels, we get the following circuit as our pen and paper compiler
output:

in_1

*

W_1

+

W_1

out_1

W_3 

out_2

 W_4

in_2I_2 

I_2 

Example 139 (3-factorization). Consider our 3-factorization problem from example 115 and
the associated circuit C3. f ac_zk(F13) we provided in example 125. To understand the process of
replacing high-level functions by their associated circuits inductively, we want define a PAPER
statement that we brain-compile into an algebraic circuit equivalent to C3. f ac_zk(F13):

statement 3_fac_zk {F:F_13} {
fn main(x_1 : F, x_2 : F, x_3 : F) -> F{
let pub 3_fac_zk : F ;
f_3.fac_zk <== MUL( MUL( x_1 , x_2 ) , x_3 ) ;
return 3_fac_zk ;

}
}

Using PAPER, we start with an empty circuit and then add 3 input nodes to the input subgraph as
well as 1 output node to the output subgraph. All these nodes are decorated with the associated
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variable names. Since all of these nodes represent variables of the field type, we don’t have
to add any type constraints to the circuit.

We check the validity of every expression on the right side of the single <== operator
including a type check.

We evaluate the expressions on the right side of every <== operator inductively. We have
two nested multiplication functions and we replace them by the associated multiplication cir-
cuits, starting with the most outer function. We get:

fn MUL

outputs

inputs

fn MUL

x

*

W_1

(x*y)

W_3

y

W_2

x

W_4

*
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y

W_2

f_3.fac_zk

I_1

x_1

W_1

x_2

W_2

x_3

W_3

In a final optimization step, we collaps all box nodes directly connected to other box nodes, ad-
hering to the rule that a variables public specifier overwrites any private specifier. Rein-
dexing edge labels we get the following circuit:

x_1

*W_1

*

W_4

x_2

W_2
x_3

W_3

f_3.fac_zk

I_1
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7.3.1.1.1 The Subtraction Constraint System By definition, algebraic circuits only con-
tain addition and multiplication gates, and it follows that there is no single gate for field sub-
traction, despite the fact that subtraction is a native operation in every field.

High-level languages and their associated circuit compilers, therefore, need another way to
deal with subtraction. To see how this can be achieved, recall that subtraction is defined by addi-
tion with the additive inverse, and that the inverse can be computed efficiently by multiplication
with −1. A circuit for field subtraction is therefore given by

x

+S_1 

SUB(x,y)

S_3 

y

*

S_2 -1

Using the general method from 6.2.2.4, the circuits associated Rank-1 Constraint System is
given by:

(S1 +(−1) ·S2) ·1 = S3 (7.3)

Any valid assignment < S1,S2,S3 > to this circuit therefore enforces the value S3 to be the
difference S1−S2.

Real-world compilers usually provide a gadget or a function to abstract over this circuit such
that programmers can use subtraction as if it were native to circuits. In PAPER, we define the
following subtraction function that compiles to the previous circuit:

fn SUB(x : F, y : F) -> F{
let rslt : F ;
constant c : F = -1 ;
rslt <== ADD(x , MUL( y , c) );
return rslt ;

}

In the setup phase of a statement, we compile every occurrence of the SUB function into an
instance of its associated subtraction circuit, and edge labels are generated according to the
rules from 6.2.2.1.

7.3.1.1.2 The Inversion Constraint System By definition, algebraic circuits only contain
addition and multiplication gates, and it follows that there is no single gate for field inversion,
despite the fact that inversion is a native operation in every field.

If the underlying field is a prime field, one approach would be to use Fermat’s little theorem
3.17 to compute the multiplicative inverse inside the circuit. To see how this works, let Fp be
the prime field. The multiplicative inverse x−1 of a field element x ∈ F with x ̸= 0 is then given
by x−1 = xp−2, and computing xp−2 in the circuit therefore computes the multiplicative inverse.

Unfortunately, real-world primes p are large and computing xp−2 by repeated multiplication
of x with itself is infeasible. A “square and multiply” approach 5 is faster, as it computes the
power in roughly log2(p) steps, but still adds a lot of constraints to the circuit.
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Computing inverses in the circuit makes no use of the fact that inversion is a native operation
in any field. A more constraints friendly approach is therefore to compute the multiplicative
inverse outside of the circuit and then only enforce correctness of the computation in the circuit.

To understand how this can be achieved, observe that a field element y ∈ F is the multiplica-
tive inverse of a field element x ∈ F if and only if x · y = 1 in F. We can use this, and define
a circuit that has two inputs, x and y, and enforces x · y = 1. It is then guaranteed that y is the
multiplicative inverse of x. The price we pay is that we can not compute y by circuit execution,
but auxiliary data is needed to tell any prover which value of y is needed for a valid circuit
assignment. The following circuit defines the constraint

x

*S_1 

1

S_3 =1 

x^(-1)S_2 

Using the general method from 6.2.2.4, the circuit is transformed into the following Rank-1
Constraint System:

S1 ·S2 = 1 (7.4)

Any valid assignment < S1,S2 > to this circuit enforces that S2 is the multiplicative inverse of
S1, and, since there is no field element S2 such that 0 · S2 = 1, it also handles the fact that the
multiplicative inverse of 0 is not defined in any field.

Real-world compilers usually provide a gadget or a function to abstract over this circuit, and
those functions compute the inverse x−1 as part of their witness generation process. Programers
then don’t have to care about providing the inverse as auxiliary data to the circuit. In PAPER,
we define the following inversion function that compiles to the previous circuit:

fn INV(x : F, y : F) -> F {
let x_inv : F ;
constant c : F = 1 ;
c <== MUL( x , y ) ) ;
x_inv <== y ;
return x_inv ;

}

As we see, this functions takes two inputs, the field value and its inverse. It therefore does not
handle the computation of the inverse by itself. This is to keep PAPER as simple as possible.

In the setup phase, we compile every occurrence of the INV function into an instance of the
inversion circuit 7.3.1.1.2, and edge labels are generated according to the rules from 6.2.2.1.

7.3.1.1.3 The Division Constraint System By definition, algebraic circuits only contain
addition and multiplication gates, and it follows that there is no single gate for field division,
despite the fact that division is a native operation in every field.

Implementing division as a circuit, we use the fact that division is multiplication with the
multiplicative inverse. We therefore define division as a circuit using the inversion circuit and
constraint system from the previous paragraph. Expensive inversion is computed outside of the
circuit and then provided as circuit input. We get
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Using the method from 6.2.2.4, we transform this circuit into the following Rank-1 Constraint
System:

S2 ·S3 = 1
S1 ·S3 = S4

Any valid assignment < S1,S2,S3,S4 > to this circuit enforces S4 to be the field division of S1
by S2. It handles the fact that division by 0 is not defined, since there is no valid assignment in
case S2 = 0.

In PAPER, we define the following division function that compiles to the previous circuit:

fn DIV(x : F, y : F, y_inv : F) -> F {
let DIV : F ;
DIV <== MUL( x , INV( y, y_inv ) ) );
return DIV

}

In the setup phase, we compile every occurrence of the binary DIV operator into an instance of
the inversion circuit.

Exercise 103. Let F be the field F5 of modular 5 arithmetics from example 16. Brain-compile
the following PAPER statement into an algebraic circuit:

statement STUPID_CIRC {F: F_5} {
fn foo(in_1 : F, in_2 : F)->(out_1 : F, out_2 : F,){
constant c_1 : F = 3 ;
out_1<== ADD( MUL( c_1 , in_1 ) , in_1 ) ;
out_2<== INV( c_1 , in_2 ) ;

} ;

fn main(in_1 : F, in_2 ; F)->(out_1 : F, out_2 : TYPE_2){
constant (c_1,c_2) : (F,F) = (3,2) ;
(out_1,out_2) <== foo(in_1, in_2) ;

} ;
}

Exercise 104. Consider the tiny-jubjub curve from example 71 and its associated circuit 124.
Write a statement in PAPER that brain-compiles the statement into a circuit equivalent to the
one derived in 124, assuming that curve point is the instance and every other assignment is a
witness.

Exercise 105. Let F= F13 be the modular 13 prime field and x ∈ F some field element. Define a
statement in PAPER such that given instance x a field element y∈ F is a witness for the statement
if and only if y is the square root of x.

Brain-compile the statement into a circuit and derive its associated Rank-1 Constraint Sys-
tem. Consider the instance x = 9 and compute a constructive proof for the statement.
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7.3.1.2 The boolean Type

Booleans are a classical primitive type, implemented by virtually every higher programing lan-
guage. It is therefore important to implement booleans in circuits. One of the most common
ways to do this is by interpreting the additive and multiplicative neutral element {0,1} ⊂ F as
the two boolean values such that 0 represents f alse and 1 represents true. Boolean operators
like and, or, or xor are then expressible as algebraic circuits over F.

Representing booleans this way is convenient, because the elements 0 and 1 are defined in
any field. The representation is therefore independent of the actual field in consideration.

To fix boolean algebra notation, we write 0 to represent f alse and 1 to represent true, and
we write ∧ to represent the boolean AND as well as ∨ to represent the boolean OR operator.
The boolean NOT operator is written as ¬.

7.3.1.2.1 The boolean Constraint System To represent booleans by the additive and mul-
tiplicative neutral elements of a field, a constraint is required to actually enforce variables of
boolean type to be either 1 or 0. In fact, many of the following circuits that represent boolean
functions are only correct under the assumption that their input variables are constrained to be
either 0 or 1. Not constraining boolean variables is a common problem in circuit design.

In order to constrain an arbitrary field element x ∈ F to be 1 or 0, the key observation is that
the equation x · (1− x) = 0 has only the two solutions 0 and 1 in any field. Implementing this
equation as a circuit therefore generates the correct constraint:

x

*

S_1

*

S_1 

+

0

0 

1

-1

Using the method from 6.2.2.4, we transform this circuit into the following Rank-1 Constraint
System:

S1 · (1−S1) = 0

Any valid assignment < S1 > to label of this circuit therefore enforces S1 to be either the field
element 0 or 1.

Some real-world circuit compilers (like ZOKRATES or BELLMAN) are typed, while others
(like circom) are not. However, all of them have their way of dealing with the binary con-
straint. In PAPER, we define the boolean type by its type_function that compiles to the previous
circuit:

type_function BOOL(b : BOOL) -> F {
let x : F ;
let const c1 : F = 0 ;
let const c2 : F = 1 ;
tet const c3 : F = -1 ;
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c1 <== MUL( b , ADD( c2 , MUL( b , c3) ) ) );
x <== b ;
return x ;

}

In the setup phase of a statement, we compile every occurrence of a variable of boolean type
into an instance of its associated boolean circuit.

7.3.1.2.2 The AND operator constraint system Given two field elements b1 and b2 from
F that are constrained to represent boolean variables, we want to find a circuit that computes
the logical and operator AND(b1,b2) as well as its associated R1CS that enforces b1, b2,
AND(b1,b2) to satisfy the constraint system if and only if b1 ∧ b2 = AND(b1,b2) holds true.

The key insight here is that, given three boolean constraint variables b1, b2 and b3, the
equation b1 · b2 = b3 is satisfied in F if and only if the equation b1 ∧ b2 = b3 is satisfied in
boolean algebra. The logical operator ∧ is therefore implementable in F by field multiplication
of its arguments and the following circuit computes the ∧ operator in F, assuming all inputs are
restricted to be 0 or 1:

b_1

*S_1 

AND(b_1,b_2)

S_3 

b_2S_2

The associated Rank-1 Constraint System can be deduced from the general process 6.2.2.4 and
consists of the following constraint:

S1 ·S2 = S3 (7.5)

Common circuit languages typically provide a gadget or a function to abstract over this circuit
such that programers can use the ∧ operator without caring about the associated circuit. In
PAPER, we define the following function that compiles to the ∧-operator’s circuit:

fn AND(b_1 : BOOL, b_2 : BOOL) -> BOOL{
let AND : BOOL ;
AND <== MUL( b_1 , b_2) ;
return AND ;

}

In the setup phase of a statement, we compile every occurrence of the AND function into an
instance of its associated ∧-operator’s circuit.

7.3.1.2.3 The OR operator constraint system Given two field elements b1 and b2 from F
that are constrained to represent boolean variables, we want to find a circuit that computes the
logical or operator OR(b1,b2) as well as its associated R1CS that enforces b1, b2, OR(b1,b2) to
satisfy the constraint system if and only if b1 ∨ b2 = OR(b1,b2) holds true.

Assuming that three variables b1, b2 and b3 are boolean constraint, the equation b1+b2−b1 ·
b2 = b3 is satisfied in F if and only if the equation b1 ∨ b2 = b3 is satisfied in boolean algebra.
The logical operator ∨ is therefore implementable in F by the following circuit, assuming all
inputs are restricted to be 0 or 1:
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The associated Rank-1 Constraint System can be deduced from the general process 6.2.2.4 and
consists of the following constraints:

S1 ·S2 = S3
(S1 +S2−S3) ·1 = S4

(7.6)

Common circuit languages typically provide a gadget or a function to abstract over this
circuit such that programers can use the ∨ operator without caring about the associated circuit.
In PAPER, we define the following function that compiles to the ∨-operator’s circuit:

fn OR(b_1 : BOOL, b_2 : BOOL) -> BOOL {
let OR : BOOL ;
let const c1 : F = -1 ;
OR <== ADD(ADD(b_1,b_2),MUL(c1,MUL(b_1,b_2))) ;
return OR ;

}

In the setup phase of a statement, we compile every occurrence of the OR function into an
instance of its associated ∨-operator’s circuit.

Exercise 106. Let F be a finite field and let b1 as well as b2 two boolean constrained variables
from F. Show that the equation OR(b1,b2) = 1− (1−b1) · (1−b2) holds true.

Use this equation to derive an algebraic circuit with ingoing variables b1 and b2 and outgoing
variable OR(b1,b2) such that b1 and b2 are boolean constrained and the circuit has a valid
assignment, if and only if OR(b1,b2) = b1∨b2.

Use the technique from 6.2.2.4 to transform this circuit into a Rank-1 Constraint System
and find its full solution set. Define a PAPER function that brain-compiles into the circuit.

7.3.1.2.4 The NOT operator constraint system Given a field element b from F that is
constrained to represent a boolean variable, we want to find a circuit that computes the logical
NOT operator NOT (b) as well as its associated R1CS that enforces b, NOT (b) to satisfy the
constraint system if and only if ¬b = NOT (b) holds true.

Assuming that two variables b1 and b2 are boolean constrained, the equation (1−b1) = b2
is satisfied in F if and only if the equation ¬b1 = b2 is satisfied in boolean algebra. The logical
operator ¬ is therefore implementable in F by the following circuit, assuming all inputs are
restricted to be 0 or 1:
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The associated Rank-1 Constraint System can be deduced from the general process 6.2.2.4 and
consists of the following constraints

(1−S1) ·1 = S2

Common circuit languages typically provide a gadget or a function to abstract over this circuit
such that programers can use the ¬ operator without caring about the associated circuit. In
PAPER, we define the following function that compiles to the ¬-operator’s circuit:

fn NOT(b : BOOL -> BOOL{
let NOT : BOOL ;
let const c1 = 1 ;
let const c2 = -1 ;
NOT <== ADD( c1 , MUL( c2 , b) ) ;
return NOT ;

}

In the setup phase of a statement, we compile every occurrence of the NOT function into an
instance of its associated ¬-operator’s circuit.

Exercise 107. Let F be a finite field. Derive algebraic circuits and associated Rank-1 Constraint
Systems for the following operators: NOR, XOR, NAND, EQU.

7.3.1.2.5 Modularity As we have seen in chapter 6, both algebraic circuits and R1CS have
a modularity property, and as we have seen in this section, all basic boolean functions are
expressible in circuits. Combining those two properties shows that it is possible to express
arbitrary boolean functions as algebraic circuits.

The expressiveness of algebraic circuits and therefore Rank-1 Constraint Systems is as gen-
eral as the expressiveness of boolean circuits. An important implication is that the languages
LR1CS−SAT and LCircuit−SAT as defined in 4 and 6.2.2.3, are as general as the famous language
L3−SAT , which is known to be NP-complete.

Example 140. To give an example of how a compiler might construct complex boolean ex-
pressions in algebraic circuits from simple ones and how we derive their associated Rank-1
Constraint Systems, let’s look at the following PAPER statement:

statement BOOLEAN_STAT {F: F_p} {
fn main(b_1:BOOL,b_2:BOOL,b_3:BOOL,b_4:BOOL )-> BOOL {
let pub b_5 : BOOL ;
b_5 <== AND( OR( b_1 , b_2) , AND( b_3 , NOT( b_4) ) ) ;
return b_5 ;

} ;
}
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The code describes a circuit that takes four witness input variables b1, b2, b3 and b4 of boolean
type and computes an instance variable output b5 such that the following boolean expression
holds true:

(b1∨b2)∧ (b3∧¬b4) = b5

During a setup-phase, a circuit compiler transforms this high-level language statement into a
circuit and associated Rank-1 Constraint Systems and hence defines a language LBOOLEAN_STAT .

To see how this might be achieved, we use PAPER as an example to execute the setup-phase
and compile BOOLEAN_STAT into a circuit. Taking the definition of the boolean constraint
7.3.1.2.1 as well as the definitions of the appropriate boolean operators into account, we get the
following circuit:
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Simple optimization then collapses all box-nodes that are directly linked and all box nodes that
represent the same constants. After relabeling the edges, the following circuit represents the
circuit associated to the BOOLEAN_STAT statement:
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Given some instance variable I1 from F13, a valid assignment to this circuit consists of witness
variables W1, W2, W3, W4 from F13 such that the equation I1 = (W1∨W2)∧ (W3 ∧¬W4) holds
true. In addition, a valid assignment also has to contain witness variables W5, W6, W7, W8, W9
and W10, which can be derived from circuit execution. The variables W5, . . ., W8 ensure that the
first four witnesses are constrained to be either 0 or 1 but not any other field element, and the
others enforce the boolean operations in the expression.

To compute the associated R1CS, we can use the general method from 6.2.2.4 and look at
every labeled outgoing edge not coming from a source node in the optimized circuit. We declare
the edge going to the single output node as instance, and every other edge as witness. In this
case we get:

W5 : W1 · (1−W1) = 0 boolean constraints
W6 : W2 · (1−W2) = 0
W7 : W3 · (1−W3) = 0
W8 : W4 · (1−w4) = 0
W9 : W1 ·W2 =W9 first OR-operator constraint

W10 : W3 · (1−W4) =W10 AND(.,NOT(.))-operator constraints
I1 : (W1 +W2−W9) ·W10 = I1 AND-operator constraints

The reason why this R1CS only contains a single constraint for the multiplication gate in the
OR-circuit, while the general definition 7.3.1.2.3 requires two constraints, is that the second
constraint in 7.6 only appears because the final addition gate is connected to an output node. In
this case, however, the final addition gate from the OR-circuit is enforced in the left factor of
the I1 constraint. Something similar holds true for the negation circuit.

During a prover-phase, some public instance I5 must be given. To compute a constructive
proof for the statement of the associated languages with respect to instance I5, a prover has to
find four boolean values W1, W2, W3 and W4 such that

(W1∨W2)∧ (W3∧¬W4) = I5
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holds true. In our case neither the circuit nor the PAPER statement specifies how to find those
values, and it is a problem that any prover has to solve outside of the circuit. This might or
might not be true for other problems, too. In any case, once the prover found those values, they
can execute the circuit to find a valid assignment.

To give a concrete example, let I1 = 1 and assume W1 = 1, W2 = 0, W3 = 1 and W4 = 0.
Since (1∨0)∧ (1∧¬0) = 1, those values satisfy the problem and we can use them to execute
the circuit. We get

W5 =W1 · (1−W1) = 0
W6 =W2 · (1−W2) = 0
W7 =W3 · (1−W3) = 0
W8 =W4 · (1−W4) = 0
W9 =W1 ·W2 = 0

W10 =W3 · (1−W4) = 1
I1 = (W1 +W2−W9) ·W10 = 1

A constructive proof of knowledge of a witness, for instance, I1 = 1, is therefore given by the
string π =<W5,W6,W7,W8,W9,W10 >=< 0,0,0,0,0,1 >.

7.3.1.3 Arrays

The array type represents a fixed-size collection of elements of equal type, each selectable by
one or more indices that can be computed at run time during program execution.

Arrays are a classical type, implemented by many higher programing languages that compile
to circuits or Rank-1 Constraint Systems. However, most high-level circuit languages support
static arrays, i.e., arrays whose length is known at compile time only.

The most common way to compile arrays to circuits is to transform any array of a given type
t and size N into N circuit variables of type t. Arrays are therefore syntactic sugar, with the
purpose to make code easier for humans to read, and write. In PAPER, we define the following
array type_function:
type_function <Name>: <Type>[N : unsigned] -> (Type,...) {

return (<Name>[0],...)
}

In the setup phase of a statement, we compile every occurrence of an array of size N that contains
elements of type Type into N variables of type Type.
Example 141. To give an intuition of how a real-world compiler might transform arrays into
circuit variables, consider the following PAPER statement:
statement ARRAY_TYPE {F: F_5} {

fn main(x: F[2])-> F {
let constant c: F[2] = [2,4] ;
let out : F <== MUL(ADD(x[1],c[0]),ADD(x[0],c[1])) ;
return out ;

} ;
}

During a setup phase, a circuit compiler might then replace any occurrence of the array type by
a tuple of variables of the underlying type, and then use those variables in the circuit synthesis
process instead. To see how this can be achieved, we use PAPER as an example. Abstracting
over the sub-circuit of the computation, we get the following circuit:
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fn MUL

inputs

c[]x[]

outputs

out

MUL(ADD,ADD)

Wout

c[0]

Wc0

c[1]

Wc1

x[0]

Wx0

x[1]

Wx1

7.3.1.4 The Unsigned Integer Type

Unsigned integers of size N, where N is usually a power of two, represent non-negative integers
in the range 0 . . .2N−1. They have a notion of addition, subtraction and multiplication, defined
by modular 2N arithmetics. If some N is given, we write uN for the associated type.

7.3.1.4.1 The uN Constraint System Many high-level circuit languages define the various
uN types as arrays of size N, where each element is of boolean type. This parallels their repre-
sentation on common computer hardware and allows for efficient and straightforward definition
of common operators, like the various shift operators, or the logical operators.

Assuming that some unsigned integer N is known at compile time in PAPER, we define
the following uN type_function, which casts a an unsigned integer into an array of boolean
variables:

type_function uN -> BOOL[N] {
let base2 : BOOL[N] ;
base2[0] <== uN[0] ;
base2[1] <== uN[1] ;
...
base2[N] <== uN[N] ;
return base2 ;

}

To enfore an N-tuple of field elements < b0, . . . ,bN−1 > to represent an element of type uN we
therefore need N boolean constraints

S0 · (1−S0) = 0
S1 · (1−S1) = 0

· · ·
SN−1 · (1−SN−1) = 0

Remark 6. Representing the uN type as boolean arrays is conceptually clean and works over
generic base fields. However, representing unsigned integers in this way requires a lot of space
as every bit is represented as a field element and if the base field is large, those field elements
require considerable space in hardware.
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It should be noted that, in some cases, there is another, more space- and Constraint System
efficient approach for representing unsigned integers that can be used whenever the underlying
base field is sufficiently large. To understand this, recall that addition and multiplication in a
prime field Fp is equal to addition and multiplication of integers, as long as the sum or the
product does exceed neither the modulus p of the base field nor the modulus 2N of the unsigned
integer type. Under those limitations it is possible to represent the uN type inside the base-field
type whenever N is small enough. This however is not safe and care has to be taken to never
overflow any of those moduli, or underflow 0.

Example 142. To give an intuition of how a real-world compiler might transform unsigned
integers into circuit variables, consider the following PAPER statement, which implement the
classical ring-shift operator on the u4 type as a circuit:

statement RING_SHIFT{F: F_p, N=4} {
fn main(x: uN)-> uN {
let y : uN ;
y <== [x[1],x[2],x[3],x[0]] ;
return y ;

} ;
}

During the setup-phase, a circuit compiler might then replace any occurrence of the uN type
by N variables of boolean type. Using the definition of booleans, each of these variables is
then transformed into the field type and a boolean constraint system. To see how this can be
achieved, we use PAPER as an example and get the following circuit:

u4

BOOL[4]

x4 : BOOL

x4 : BOOL

x3 : BOOL

x3 : BOOL

x2 : BOOL

x2 : BOOL

x1 : BOOL
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+
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+
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S_1
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S_1

+
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During the prover phase, the function main is called with an actual input of u4 type, say
x=14. The Prover then has to transform the decimal value 14 into its 4-bit binary representation
Bits(14)2 =< 0,1,1,1 > outside of the circuit. Then the array of field values x[4] = [0,1,1,1]
is used as an input to the circuit. Since all 4 field elements are either 0 or 1, the four boolean
constraints are satisfied and the output is a ring shift of the input array of the four field elements
given by [1,1,1,0], which represents the u4 element 7.

7.3.1.4.2 The Unigned Integer Operators Since elements of uN type are represented as
boolean arrays, shift operators are implemented in circuits simply by rewiring the boolean input
variables to the output variables accordingly.
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Logical operators, like AND, OR, or NOT are defined on the uN type by invoking the appro-
priate boolean operators bitwise to every bit in the boolean array that represents the uN element.

Addition and multiplication can be represented similarly to how machines represent those
operations. Addition can be implemented by first defining the full adder circuit and then com-
bining N of these circuits into a circuit that adds two elements from the uN type.

Exercise 108. Let F= F13 and N=4 be fixed and let x be of uN type. Define circuits and
associated R1CS for the left and right bit-shift operators x << 2 as well as x >> 2. Execute the
associated circuit for x : u4 = 11 and generate a constructive proof for R1CS satisfyability.

Exercise 109. Let F= F13 and N=2 be fixed. Define a circuit and associated R1CS for the
addition operator ADD : uN×uN→ uN. Execute the associated circuit to compute ADD(2,7) for
2,7 ∈ uN.

Exercise 110. Execute the setup phase for the following PAPER code (That is brain compile the
code into a circuit and derive the associated R1CS).

statement MASK_MERGE {F:F_5, N=4} {
fn main(pub a : uN, pub b : uN) -> uN {
let constant mask : uN = 10 ;
let r : uN ;
r <== XOR(a,AND(XOR(a,b),mask)) ;
return r ;

}
}

Let Lmask_merge be the language defined by the circuit. Provide a constructive knowledge proof
in Lmask_merge for the instance I = (Ia, Ib) = (14,7).

7.3.2 Control Flow
Most programming languages of the imperative of functional style have some notion of basic
control structures to direct the order in which instructions are evaluated. Contemporary circuit
compilers usually provide a single thread of execution and provide basic flow constructs that
implement control flow in circuits. In this part we look at some basic control flow constructions
and their implementation in circuits.

7.3.2.1 The Conditional Assignment

Writing high-level code that compiles to circuits, it is often necessary to have a way for con-
ditional assignment of values or computational output to variables. One way to realize this in
many programming languages is in terms of the conditional ternary assignment operator ? : that
branches the control flow of a program according to some condition and then assigns the output
of the computed branch to some variable:

variable = condition ? value_if_true : value_if_false

In this description, condition is a boolean expression and value_if_true as well as
value_if_false are expressions that evaluate to the same type as variable.

In programming languages like Rust, another way to write the conditional assignment oper-
ator that is more familiar to many programmers is given by

variable = if condition then {
value_if_true
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} else {
value_if_false

}

In most programing languages, it is a key property of the ternary assignment operator that
the expression value_if_true is only evaluated if condition evaluates to true and the
expression value_if_false is only evaluated if condition evaluates to false. In fact,
computer programs would turn out to be very inefficient if the ternary operator would evaluate
both expressions regardless of the value of condition.

A simple way to implement conditional assignment operator as a circuit can be achieved
if the requirement that only one branch of the conditional operator is executed is dropped. To
see that, let b, c and d be field elements such that b is boolean constrained. In this case, the
following equation enforces a field element x to be the result of the conditional assignment
operator:

x = b · c+(1−b) ·d (7.7)

Expressing this equation in terms of the addition and multiplication operators from 7.3.1.1, we
can flatten 7.7 into the following algebraic circuit:

b

*

S_1 

*

S_1 

+

S_3 

+

c

S_2

d

* S_4S_5

b ? c : d

-1

1

S_6 

Note that, in order to compute a valid assignment to this circuit, both S2 as well as S4 are
necessary. If the inputs to the nodes c and d are circuits themself, both circuits need valid
assignments and therefore have to be executed. As a consequence, this implementation of
the conditional assignment operator has to execute all branches of all circuits, which is very
different from the execution of common computer programs and contributes to the increased
computational effort any prover has to invest, in contrast to the execution in other programing
models.

We can use the general technique from 6.2.2.4 to derive the associated Rank-1 Constraint
System of the conditional assignment operator. We get the following:

S1 ·S2 = S3

(1−S1) ·S4 = S5

(S3 +S5) ·1 = S6

Example 143. To give an intuition of how a real-world circuit compiler might transform any
high-level description of the conditional assignment operator into a circuit, consider the follow-
ing PAPER code:
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statement CONDITIONAL_OP {F:F_p} {
fn main(x : F, y : F, b : BOOL) -> F {
let z : F
z <== if b then {

ADD(x,y)
} else {

MUL(x,y)
} ;
return z ;

}
}

Brain-compiling this code into a circuit, we first draw box nodes for all input and output vari-
ables, and then transform the boolean type into the field type together with its associated con-
straint. Then we evaluate the assignments to the output variables. Since the conditional assign-
ment operator is the top level function, we draw its circuit and then draw the circuits for both
conditional expressions. We get the following:

output

x1 : BOOL

x1 : BOOL

ADD MUL

input

b ? c : d

b

*

S_1 

*

S_1 

+
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7.3.2.2 Loops

In many programming languages, various loop control structures are defined that allow devel-
opers to execute expressions with a specified number of repetitions. In particular, it is often
possible to implement unbounded loops like the loop structure give below:

while true do { }

In addition it is often possible to implement loop structures, where the number of execution steps
in the loop depends on execution inputs or intermediate computational steps and is therefore
unknown at compile time:

x = 0.5
while x != 0 do {
x = 4*x*(1-x)

}

In contrast to this, algebraic circuits and Rank-1 Constraint Systems are not general enough
to express arbitrary computation, but bounded computation only. As a consequence, it is not
possible to implement unbounded loops, or loops with bounds that are unknown at compile
time in those models. This can be easily seen since circuits are acyclic by definition, and
implementing an unbounded loop as an acyclic graph requires a circuits of unbounded size.
However, circuits are general enough to express bounded loops, where the upper bound on its
execution is known at compile time. Those loop can be implemented in circuits by enrolling
the loop.

As a consequence, any programing language that compiles to algebraic circuits can only
provide loop structures where the bound is a constant known at compile time. This implies that
loops cannot depend on execution inputs, but on compile time parameters only.

Example 144. To give an intuition of how a real-world circuit compiler might transform any
high-level description of a bounded for loop into a circuit, consider the following PAPER
code:

statement FOR_LOOP {F:F_p, N: unsigned = 4} {
fn main(fac : F[N]) -> F {
let prod[N] : F ;
prod[0] <== fac[0] ;
for unsigned i in 1..N do [{

prod[i] <== MUL(fac[i], prod[i-1]) ;
}
return prod[N] ;

}
}

Note that, in a program like this, the loop counter i has no expression in the derived circuit. It
is a high level parameter that tells the compiler how to unroll the loop.

Brain-compiling this code into a circuit, we first draw box nodes for all input and output
variables, noting that the loop counter is not represented in the circuit. Since all variables are of
field type, we don’t have to compile any type constraints. Then we evaluate the assignments
to the output variables by unrolling the loop into 3 individual assignment operators. We get:
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MUL
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prod[3]

x * MUL(x,y)

y

prod[1]

x * MUL(x,y)

y

prod[2]

x * MUL(x,y)

y

fac[0] prod[0]

fac[1]

fac[2]

fac[3]

7.3.3 Binary Field Representations
In applications, it is often necessary to enforce a binary representation of elements from the
field type. To derive an appropriate circuit over a prime field Fp, let m = |p|2 be the smallest
number of bits necessary to represent the prime modulus p. Then a bitstring < b0, . . . ,bm−1 >∈
{0,1}m is a binary representation of a field element x ∈ Fp, if and only if

x = b0 ·20 +b1 ·21 + . . .+bm ·2m−1 (7.8)

In this expression, addition and exponentiation is considered to be executed in Fp, which is well
defined since all terms 2 j for 0 ≤ j < m are elements of Fp. Note, however, that in contrast to
the binary representation of unsigned integers n∈N, this representation is not unique in general,
since the modular p equivalence class might contain more than one binary representative.

Considering that the underlying prime field is fixed and the most significant bit of the prime
modulus is m, the following circuit flattens equation 7.8, assuming all inputs b1, . . ., bm are of
boolean type.
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+

2^(m-1)

x

* S_m

+

-1

0

W_1=0 

Applying the general transformation rule 6.2.2.4 to compute the associated Rank-1 Constraint
Systems, we see that we actually only need a single constraint to enforce some binary represen-
tation of any field element. We get

(S0 ·20 +S1 ·21 + . . .+Sm−1 ·2m−1−Sm) ·1 = 0

Given an array BOOL[N] of N boolean constrained field elements and another field element x,
the circuit enforces BOOL[N] to be one of the binary representations of x. If BOOL[N] is not
a binary representation of x, no valid assignment and hence no solution to the associated R1CS
can exists.
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Example 145. Consider the prime field F13. To compute binary representations of elements
from that field, we start with the binary representation of the prime modulus 13, which is
Bits(13) =< 1,0,1,1 > since 13 = 1 · 20 + 0 · 21 + 1 · 22 + 1 · 23. So m = 4 and we need up
to 4 bits to represent any element x ∈ F13.

To see that binary representations are not unique in general, consider the element 2 ∈ F13.
It has the following two 4-bit, binary representations Bits(2) =< 0,1,0,0 > and Bits(2) =<
1,1,1,1 >, since in F13 we have

2 =

{
0 ·20 +1 ·21 +0 ·22 +0 ·23

1 ·20 +1 ·21 +1 ·22 +1 ·23

This is because the unsigned integers 2 and 15 are both in the modular 13 remainder class of 2
and hence are both representatives of 2 in F13.

To see how circuit the associated circuit works, we want to enforce the binary represen-
tation of 7 ∈ F13. Since m = 4 we have to enforce a 4-bit representation for 7, which is
< 1,1,1,0 >, since 7 = 1 · 20 + 1 · 21 + 1 · 22 + 0 · 23. A valid circuit assignment is therefore
given by < S0,S1,S2,S3,S4 >=< 1,1,1,0,7> and, indeed, the assignment satisfies the required
5 constraints including the 4 boolean constraints for S0, . . ., S3:

1 · (1−1) = 0 // boolean constraints
1 · (1−1) = 0
1 · (1−1) = 0
0 · (1−0) = 0

(1+2+4+0−7) ·1 = 0 // binary rep. constraint

7.3.4 Cryptographic Primitives
In applications, it is often required to do cryptography in a circuit. To do this, basic crypto-
graphic primitives like hash functions or elliptic curve cryptography needs to be implemented
as circuits. In this section, we give a few basic examples of how to implement such primitives.

7.3.4.1 Twisted Edwards curves

Implementing elliptic curve cryptography in circuits means to implement the defining curve
equations as well as the algebraic operations, like the group law or the scalar multiplication as
circuits. To do this efficiently, the curve must be defined over the same base field as the field
that is used in the circuit.

For efficiency reasons, it is advantageous to choose an elliptic curve such that that all re-
quired constraints and operations can be implement with as few gates as possible. Twisted
Edwards curves are particularly useful for that matter, since their group law is particularly sim-
ple and the same calculation can be used for all curve points including the point at infinity. This
simplifies the circuit a lot.

7.3.4.1.1 Twisted Edwards curve constraints As we have seen in 5.3, a twisted Edwards
curve over a finite field F is defined as the set of all pairs of points (x,y) ∈ F×F such that x
and y satisfy the equation a · x2 + y2 = 1+d · x2y2 and as we have seen in example 125, we can
transform this equation into the following circuit:
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The circuit enforces the two inputs of field type to satisfy the twisted Edwards curve equation
and, as we know from example 130, the associated Rank-1 Constraint System is given by:

S1 ·S1 = S3

S2 ·S2 = S4

(S4 ·d) ·S3 = S5

(−1 ·S4 +S5−a ·S3 +1) ·1 = 0

Exercise 111. Write the circuit and associated Rank-1 Constraint System for a Weierstrass curve
of a given field F.

7.3.4.1.2 Twisted Edwards curve addition As we have seen in 5.3.1, a major advantage
of twisted Edwards curves is the existence of an addition law that contains no branching and is
valid for all curve points. Moreover, the neutral element is not given by any auxiliary symbol
but the curve point (0,1). In fact, given two points (x1,y1) and (x2,y2) on a twisted Edwards
curve, their sum is defined as

(x3,y3) =

(
x1y2 + y1x2

1+d · x1x2y1y2
,

y1y2−a · x1x2

1−d · x1x2y1y2

)
We can use the division circuit from 7.3.1.1.3 to flatten this equation into an algebraic circuit.
Inputs to the circuit are then not only the two curve points (x1,y1) and (x2,y2), but also the
multiplicative inverses of the two denominators inv1 = (1+ d · x1x2y1y2)

−1 as well as inv2 =
(1−d · x1x2y1y2)

−1, which any prover needs to compute outside of the circuit. We get
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Using the general technique from 6.2.2.4 to derive the associated Rank-1 Constraint System,
we get the following result:

S1 ·S4 = S7

S1 ·S2 = S8

S2 ·S3 = S9

S3 ·S4 = S10

S8 ·S10 = S11

S5 · (1+d ·S11) = 1
S6 · (1−d ·S11) = 1

S5 · (S9 +S7) = S14

S6 · (S10−a ·S8) = S15

Exercise 112. Let F be a field. Define a circuit that enforces field inversion for a point of a
twisted Edwards curve over F.

Exercise 113. Write the circuit and associated Rank-1 Constraint System for a Weierstrass ad-
dition law of a given field F.
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Chapter 8

Zero Knowledge Protocols

A so-called zero-knowledge protocol is a set of mathematical rules by which one party, usually
called the prover, can convince another party, usually called the verifier, that given some
instance, the prover knows some witness for that instance, without revealing any information
about the witness.

As we have seen in chapter 6, given some language L and instance I, the knowledge claim
“there is a witness W such that (I;W ) is a word in L” is constructively provable by providing
the witness W to the verifier. The verifier can then use the grammar of the language to verify the
proof. In contrast, it’s the challenge of any zero-knowledge protocol to enable a prover to prove
knowledge of a witness to any verifier, without revealing any information about the witness
beyond its existence.

In this chapter, we look at various systems that exist to solve this task. We start with an
introduction to the basic concepts and terminology in zero-knowledge proving systems and
then introduce the so-called Groth_16 protocol as one of the most efficient systems. We will
update this chapter with other zero-knowledge proof systems in future versions of this book.

8.1 Proof Systems
From an abstract point of view, a proof system is a set of rules which models the generation
and exchange of messages between two parties, usually called the prover and the verifier. The
purpose of a proof system is to ascertain whether a given string belongs to a formal language or
not.

Proof systems are often classified by certain trust assumptions and the computational ca-
pabilities of the prover and the verifier. In its most general form, the prover usually possesses
unlimited computational resources but cannot be trusted, while the verifier has bounded com-
putational power but is assumed to be honest.

Proving membership or knowledge claims of a statement for some string as explained in
chapter 6 is executed by the generation of certain messages that are sent between prover and
verifier, until the verifier is convinced that the string is a word in the language in consideration.

To be more specific, let Σ be an alphabet, and let L be a formal language defined over Σ.
Then a proof system for language L is a pair of probabilistic interactive algorithms (P,V ),
where P is called the prover and V is called the verifier.

Both algorithms are able to send messages to one another, each algorithm has its own state,
some shared initial state and access to the messages. The verifier is bounded to a number of
steps which is polynomial in the size of the shared initial state, after which it stops and outputs
either accept or reject indicating that it accepts or rejects a given string to be a word in
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L or not. In contrast, in the most general form of a proof system, there are no bounds on the
computational power of the prover.

When the execution of the verifier algorithm stops the following conditions are required to
hold:

• (Completeness) If the string x ∈ Σ∗ is a word in language L and both prover and verifier
follow the protocol, the verifier outputs accept.

• (Soundness) If the string x ∈ Σ∗ is not a word in language L and the verifier follows the
protocol, the verifier outputs reject, except with some small probability.

In addition, a proof system is called zero-knowledge if the verifier learns nothing about x other
than x ∈ L.

The previous definition of proof systems is very general, and many subclasses of proof sys-
tems are known in the field. For example, some proof systems restrict the computational power
of the prover, while some proof systems assume that the verifier has access to randomness. In
addition, proof systems are classified by the number of messages that can be exchanged. If the
system only requires to send a single message from the prover to the verifier, the proof system is
called non-interactive, because no interaction other then sending the actual proof is required.
In contrast, any other proof system is called interactive.

A proof system is usually called succinct if the size of the proof is shorter than the witness
necessary to generate the proof. Moreover, a proof system is called computationally sound if
soundness only holds under the assumption that the computational capabilities of the prover are
polynomial bound. To distinguish general proofs from computationally sound proofs, the latter
are often called arguments.

Since the term zk-SNARKs is an abbreviation for "Zero-knowledge, succinct, non-interactive
argument of knowledge", proof system able to generate zk-SNARKS therefore have the zero-
knowledge property, are able to generate proofs that require less space then the original witness
and require no interaction between prover and verifier, other then transmitting the zk-SNARK
itself. However those systems are only sound under the assumption that the prover’s computa-
tional capabilities are polynomial bound.

Example 146 (Constructive Proofs for Algebraic Circuits). We have seen in 6.2.2.3 how alge-
braic circuit give rise to formal languages and constructive proofs for knowledge claims.

To reformulate this notion of constructive proofs for algebraic circuits into a proof system,
let F be a finite field, and let C(F) be an algebraic circuit over F with associated language LC(F).
A non-interactive proof system for LC(F) is given by the following two algorithms:

Prover Algorithm: The prover P is defined by circuit execution. Given some instance I the
prover executes circuit C(F) to compute a witness W such that the pair (I;W ) is a valid assign-
ment to C(F) whenever the circuit is satisfiable for I. The prover then sends the constructive
proof (I;W ) to the verifier.

Verifier Algorithm: On receiving a message (I;W ), the verifier algorithm V inserts (I;W )
into the associated R1CS of the circuit. If (I;W ) is a solution to the R1CS, the verifier returns
accepts, if not, it returns reject.

To see that this proof system is complete and sound, let C(F) be a circuit of the field F, and
let I be an instance. The circuit may or may not have a witness W such that (I;W ) is a valid
assignment to C(F).

If no W exists, I is not part of any word in LC(F), and there is no way for P to generate a
valid assignment. It follows that the verifier will not accept any claimed proof sent by P, since
the associated R1CS has no solutions for instance I. This implies that the system is sound.
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If, on the other hand, W exists and P is honest, P can use its unlimited computational power
to compute W and send (I;W ) to V , which V will accept, since it is a solution to the associated
R1CS. This implies that the system is complete.

The system is non-interactive because the prover only sends a single message to the verifier,
which contains the proof itself. However the proof system is not succinct, since the proof is
the witness. The proof system is also not zero knowledge, since the verifier has access to the
witness and hence learns everything about the witness.

8.2 The “Groth16” Protocol
In chapter 6, we presented algebraic circuits, their associated Rank-1 Constraint Systems and
their induced Quadratic Arithmetic Programs. These models define formal languages, and asso-
ciated memberships and knowledge claims provide constructive proofs by executing the circuit
to compute a solution to the associated R1CS. As previously noted in Section 6.2.3 the proof
can then be transformed into a polynomial that is only divisible by another polynomial if and
only if the proof is valid.

In Groth [2016], Jens Groth developed a method for transforming constructive proofs into
zero-knowledge succinct non-interactive arguments of knowledge. Given groups G1, G2, and
G3, and an efficiently computable pairing map e(·, ·) : G1×G2 → G3 (see 4.9), the resulting
zk-SNARK in Groth’s protocol is of constant size, consisting of two elements from G1 and one
element from G2, regardless of the instance and witness size. Verification is non-interactive,
requiring the computation of a number of exponentiations proportional to the instance size,
along with three group pairings, in order to verify a single proof.

The generated zk-SNARK is zero-knowledge, has completeness and soundness in the generic
bilinear group model, under the assumption of the existence of a trusted third party that executes
a preprocessing phase to produce a Common Reference String and a simulation trapdoor. It is
imperative that this party is trusted to delete the simulation trapdoor, as any individual in pos-
session of it would have the ability to simulate proofs. As demonstrated in Bowe et al. [2017],
it is possible to transform the single-party trusted setup into a multi-party computation that is
secure as long as at least one contributor deletes their contribution to the simulation trapdoor.

To be more precise, let R be a Rank-1 Constraint System defined over some finite field Fr.
Then Groth_16 parameters for R are given by the following set:

Groth_16−Param(R) = (r,G1,G2,e(·, ·),g1,g2) (8.1)

Here, G1 and G2 are finite cyclic groups of order r, g1 is a generator of G1, g2 is a generator
of G2 and e : G1×G2→ GT is an efficiently computable, non-degenerate, bilinear pairing for
some target group GT . In real-world applications, the parameter set is usually agreed on in
advance.

Given some Groth_16 parameters, a Groth_16 protocol is then a quadruple of probabilistic
polynomial algorithms (SETUP,PROVE,VFY,SIM) such that the following conditions hold:

• (Setup-Phase): (CRS,ST)← SETUP(R): Algorithm SETUP takes the R1CS R as input
and computes a Common Reference String CRS and a simulation trapdoor ST.

• (Prover-Phase): π← PROVE(R,CRS, I,W ): Given a constructive proof (I;W ) for R, algo-
rithm PROVE takes the R1CS R, the Common Reference String CRS and the constructive
proof (I,W ) as input and computes an zk-SNARK π .
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• Verify: {accept,reject} ← VFY(R,CRS, I,π): Algorithm VFY takes the R1CS R, the
Common Reference String CRS, the instance I and the zk-SNARK π as input and returns
reject or accept.

• π← SIM(R,τ,CRS, I): Algorithm SIM takes the R1CS R, the Common Reference String
CRS, the simulation trapdoor ST and the instance I as input and returns a zk-SNARK π .

We will explain these algorithms together with detailed examples in the remainder of this sec-
tion.

Assuming a trusted third party or the presence of a corresponding multi-party computation
for the setup, the protocol is capable of deriving a zk-SNARK from a constructive proof for
R, provided that the group order r is suitably large, with the requirement being particularly
applicable to being larger than the number of constraints in the associated R1CS.

Example 147 (The 3-Factorization Problem). Consider the 3-factorization problem from 115
and its associated algebraic circuit 124 as well the Rank-1 Constraint System from 120. In
this example, we want to agree on a parameter set (r,G1,G2,e(·, ·),g1,g2) in order to use the
Groth_16 protocol for our 3-factorization problem.

To find proper parameters, first observe that the circuit 124, as well as its associated R1CS
R3. f ac_zk 120 and the derived QAP 131, are defined over the field F13. We therefore have to
choose pairing groups G1 and G2 of order 13.

We know from 5.6.4 that the moon-math curve BLS6_6 has two subgroups G1[13] and
G2[13], which are both of order 13. The associated Weil pairing e(·, ·) 5.70 is efficiently com-
putable, bilinear as well as non-degenerate. We therefore choose those groups and the Weil
pairing together with the generators g1 = (13,15) and g2 = (7v2,16v3) of G1[13] and G2[13],
as a parameter set:

Groth_16−Param(R3. f ac_zk) = (13,G1[13],G2[13],e(·, ·),(13,15),(7v2,16v3))

It should be noted that our choice is not unique. Every pair of finite cyclic groups of order 13
that has an efficiently computable, non-degenerate, bilinear pairing qualifies as a Groth_16 pa-
rameter set. The situation is similar to real-world applications, where SNARKs with equivalent
behavior are defined over different curves, used in different applications.

Example 148 (The 3-Factorization Problem in Circom and Snarkjs). Snark.js is a JavaScript li-
brary that facilitates the development of systems incorporating zero-knowledge proofs (ZKPs),
including the Groth-16 protocol. To showcase a practical example of the 3-factorization prob-
lem, we utilize our Circom implementation (see 137), which compiles into a form that is com-
patible with snark.js.

As of the time of writing, Snark.js supports the elliptic curves alt_bn128, BLS12-381, and
Goldilocks. For the purposes of this example, we shall utilize alt_bn128, and it’s associated
scalar field Fbn128 as introduced in 73. The Groth-16 parameters for this curve, as officially de-
fined for the Ethereum blockchain, can be found in EIP-197. Snark.js utilizes those parameters.

Exercise 114. Implement the Baby-JubJub twisted Edwards curve equation in Circom and com-
pile it into an R1CS and associated witness generator.

8.2.1 The Setup Phase
Generating zk-SNARKs from constructive proofs in the Groth16 protocol requires a prepro-
cessing phase to be performed. This phase must be executed once for every Rank-1 Constraint
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System and its associated Quadratic Arithmetic Program. The outcome of this phase is a Com-
mon Reference String, which is necessary for both the prover and the verifier to generate and
verify the zk-SNARK. Additionally, a simulation trapdoor is generated during this phase, which
can be utilized to simulate proofs.

To be more precise, let L be a language defined by some Rank-1 Constraint System R such
that a constructive proof of knowledge for an instance < I1, . . . , In > in L consists of a witness
<W1, . . . ,Wm >. Let QAP(R) =

{
T ∈ F[x],

{
A j,B j,C j ∈ F[x]

}n+m
j=0

}
be a Quadratic Arithmetic

Program associated to R, and let {G1,G2,e(·, ·),g1,g2,Fr} be a set of Groth_16 parameters.
The setup phase then samples 5 random, invertible elements α , β ,γ , δ and τ from the scalar

field Fr of the protocol and outputs the simulation trapdoor ST:

ST = (α,β ,γ,δ ,τ) (8.2)

In addition, the setup phase uses those 5 random elements together with the two generators
g1 and g2 and the Quadratic Arithmetic Program to generate a Common Reference String
CRSQAP = (CRSG1,CRSG2) of language L:

Definition 8.2.1.1 (Common Reference String).

CRSG1 =


gα

1 ,g
β

1 ,g
δ
1 ,
(

gτ j

1 , . . .
)deg(T )−1

j=0
,

(
g

β ·A j(τ)+α·B j(τ)+Cj(τ)
γ

1 , . . .

)n

j=0(
g

β ·A j+n(τ)+α·B j+n(τ)+Cj+n(τ)
δ

1 , . . .

)m

j=1

,

(
g

τ j ·T (τ)
δ

1 , . . .

)deg(T )−2

j=0


CRSG2 =

{
gβ

2 ,g
γ

2,g
δ
2 ,
(

gτ j

2 , . . .
)deg(T )−1

j=0

}
Common Reference Strings depend on the simulation trapdoor, and are therefore not unique

to the problem. Any language can have more than one Common Reference String. The size of
a Common Reference String is linear in the size of the instance and the size of the witness.

If a simulation trapdoor ST = (α,β ,γ,δ ,τ) is given, we call the element τ a secret evalua-
tion point of the protocol, because if Fr is the scalar field of the finite cyclic groups G1 and G2,
then a key feature of any Common Reference String is that it provides data to compute the eval-
uation of any polynomial P ∈ Fr[x] of degree deg(P)< deg(T ) at the point τ in the exponent of
the generator g1 or g2, without knowing τ .

To be more precise, let τ be the secret evaluation point and let P(x) = a0 ·x0+a1 ·x1+ . . .ak ·
xk be a polynomial of degree k < deg(T ) with coefficients in Fr. Then we can compute gP(τ)

1
without knowing what the actual value of τ is:

gP(τ)
1 = ga0·τ0+a1·τ1+...ak·τk

1

= ga0·τ0

1 ·ga1·τ1

1 · . . . ·gak·τk

1

=
(

gτ0

1

)a0
·
(

gτ1

1

)a1
· . . . ·

(
gτk

1

)ak
(8.3)

In this expression, all group points gτ j

1 are part of the Common Reference String, hence, they
can be used to compute the result. The same holds true for the evaluation of gP(τ)

2 , since the G2

part of the Common Reference String contains the points gτ j

2 .
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In practical applications, the elements gτ0

1/2, gτ1

1/2, . . ., gτk

1/2 are commonly referred to as the
powers of tau, a term frequently used in trusted setup computations. Additionally, the simula-
tion trapdoor is often referred to as the toxic waste of the setup phase. As will be demonstrated
in section 8.2.4, the simulation trapdoor can be utilized to generate fraud proofs, which are ver-
ifiable zk-SNARKs that can be constructed without knowledge of any witness. The Common
Reference String is also known as the prover and verifier key pair.

To ensure the security of the protocol, the setup must be carried out in a way that ensures the
safe disposal of the simulation trapdoor. The simplest method for accomplishing this is through
the use of a so-called trusted third party, where trust is placed in the party to properly generate
the Common Reference String and securely dispose of the toxic waste afterwards.

However, finding a trusted third party can be challenging, thus alternative methods have
been developed in practical applications. These utilize multi-party computation in the setup
phase, which can be publicly verified for proper execution, and the simulation trapdoor is not
recoverable if at least one participant destroys their contribution. Each participant holds only a
fraction of the trapdoor, making it recoverable only if all participants collaborate and share their
parts.

Example 149 (The 3-factorization Problem). To see how the setup phase of a Groth_16 zk-
SNARK can be computed, consider the 3-factorization problem from 115 and the Groth_16
parameters from example 147. As we have seen in 131, an associated Quadratic Arithmetic
Program is given by the following set:

QAP(R3. f ac_zk) = {x2 + x+9,
{0,0,6x+10,0,0,7x+4},{0,0,0,6x+10,7x+4,0},{0,7x+4,0,0,0,6x+10}}

To transform this QAP into a Common Reference String, we choose the field elements α = 6,
β = 5, γ = 4, δ = 3, τ = 2 from F13. In real-world applications, it is important to sample those
values randomly from the scalar field, but in our approach, we choose those non-random values
to make them more memorizable, which helps in pen-and-paper computations. Our simulation
trapdoor is then given as follows:

ST = (6,5,4,3,2)

We keep this secret in order to simulate proofs later on, but we are careful to hide ST from
anyone who hasn’t read this book. Then we instantiate the Common Reference String 8.3from
those values. Since our groups are subgroups of the BLS6_6 elliptic curve, we use scalar
product notation instead of exponentiation.

To compute the G1 part of the Common Reference String, we use the logarithmic order
of the group G1 5.66, the generator g1 = (13,15), as well as the values from the simulation
trapdoor. Since deg(T ) = 2, we get the following:

[α]g1 = [6](13,15) = (27,34)
[β ]g1 = [5](13,15) = (26,34)
[δ ]g1 = [3](13,15) = (38,15)

To compute the rest of the G1 part of the Common Reference String, we expand the indexed tu-
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ples and insert the secret random elements from the simulation backdoor. We get the following:(
[τ j]g1, . . .

)1

j=0
=
(
[20](13,15), [21](13,15)

)
=
(
(13,15),(33,34)

)
(
[
βA j(τ)+αB j(τ)+C j(τ)

γ
]g1, . . .

)1

j=0
=
(
[
5A0(2)+6B0(2)+C0(2)

4
](13,15),

[
5A1(2)+6B1(2)+C1(2)

4
](13,15)

)
(
[
βA j+n(τ)+αB j+n(τ)+C j+n(τ)

δ
]g1, . . .

)4

j=1
=
(
[
5A2(2)+6B2(2)+C2(2)

3
](13,15),

[
5A3(2)+6B3(2)+C3(2)

3
](13,15),

[
5A4(2)+6B4(2)+C4(2)

3
](13,15),

[
5A5(2)+6B5(2)+C5(2)

3
](13,15)

)
(
[
τ j ·T (τ)

δ
)]g1

)0

j=0
=
(
[
20 ·T (2)

3
](13,15)

)
To compute the curve points on the right side of these expressions, we need the polynomials
from the associated Quadratic Arithmetic Program and evaluate them on the secret point τ = 2.
Since 4−1 = 10 and 3−1 = 9 in F13, we get the following:

[
5A0(2)+6B0(2)+C0(2)

4
](13,15) =[(5 ·0+6 ·0+0) ·10](13,15) = [0](13,14)

O

[
5A1(2)+6B1(2)+C1(2)

4
](13,15) =[(5 ·0+6 ·0+(7 ·2+4)) ·10](13,15) = [11](13,15) =

(33,9)

[
5A2(2)+6B2(2)+C2(2)

3
](13,15) =[(5 · (6 ·2+10)+6 ·0+0) ·9](13,15) = [2](13,15) =

(33,34)

[
5A3(2)+6B3(2)+C3(2)

3
](13,15) =[(5 ·0+6 · (6 ·2+10)+0) ·9](13,15) = [5](13,15) =

(26,34)

[
5A4(2)+6B4(2)+C4(2)

3
](13,15) =[(5 ·0+6 · (7 ·2+4)+0) ·9](13,15) = [10](13,15) =

(38,28)

[
5A5(2)+6B5(2)+C5(2)

3
](13,15) =[(5 · (7 ·2+4)+6 ·0+6 ·2+10) ·9](13,15) = [7](13,15) =

(27,9)

[
20 ·T (2)

3
](13,15) =[1 · (22 +2+9) ·9](13,15) = [5](13,15) =

(26,34)

Putting all those values together, we see that the G1 part of the Common Reference String is
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given by the following set of 12 points from the BLS6_6 13-torsion group G1:

CRSG1 =

 (27,34),(26,34),(38,15),
(
(13,15),(33,34)

)
,
(
O,(33,9)

)(
(33,34),(26,34),(38,28),(27,9)

)
,
(
(26,34)

)  (8.4)

To compute the G2 part of the Common Reference String, we use the logarithmic order of
the group G2 5.69, the generator g2 = (7v2,16v3), as well as the values from the simulation
trapdoor. Since deg(T ) = 2, we get the following:

[β ]g2 = [5](7v2,16v3) = (16v2,28v3)

[γ]g2 = [4](7v2,16v3) = (37v2,27v3)

[δ ]g2 = [3](7v2,16v3) = (42v2,16v3)

To compute the rest of the G2 part of the Common Reference String, we expand the indexed
tuple and insert the secret random elements from the simulation trapdoor. We get the following:(

[τ j]g2, . . .
)1

j=0
=
(
[20](7v2,16v3), [21](7v2,16v3)

)
=
(
(7v2,16v3),(10v2,28v3)

)
Putting all these values together, we see that the G2 part of the Common Reference String is
given by the following set of 5 points from the BLS6_6 13-torsion group G2:

CRSG2 =
{
(16v2,28v3),(37v2,27v3),(42v2,16v3),

(
7v2,16v3),(10v2,28v3)

)}
Given the simulation trapdoor ST and the Quadratic Arithmetic Program 131, the associated
Common Reference String of the 3-factorization problem is as follows:

CRSG1 =

 (27,34),(26,34),(38,15),
(
(13,15),(33,34)

)
,
(
O,(33,9)

)(
(33,34),(26,34),(38,28),(35,28)

)
,
(
(26,34)

) 
CRSG2 =

{
(16v2,28v3),(37v2,27v3),(42v2,16v3),

(
7v2,16v3),(10v2,28v3)

)}
We then publish this data to everyone who wants to participate in the generation of a zk-SNARK
or its verification in the 3-factorization problem.

To understand how this Common Reference String can be used to evaluate polynomials at
the secret evaluation point in the exponent of a generator, let’s assume that we have deleted
the simulation trapdoor. In that case, assuming that the discrete logarithm problem is hard in
our groups, we have no way to know the secret evaluation point anymore, hence, we cannot
evaluate polynomials at that point. However, we can evaluate polynomials of smaller degree
than the degree of the target polynomial in the exponent of both generators at that point.

To see that, consider e.g. the polynomials A2(x) = 6x+10 and A5(x) = 7x+4 from the QAP
of this problem. To evaluate these polynomials in the exponent of g1 and g2 at the secret point
τ without knowing the value of τ (which is 2 in our case), we can use the Common Reference
String and equation 8.2.1. Using the scalar product notation instead of exponentiation, we get
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the following:

[A2(τ)]g1 = [6 · τ1 +10 · τ0]g1

= [6](33,34)+ [10](13,15) # [τ0]g1 = (13,15), [τ1]g1 = (33,34)
= [6 ·2](13,15)+ [10](13,15) = [9](13,15) # logarithmic order on G1

= (35,15)

[A5(τ)]g1 = [7 · τ1 +4 · τ0]g1

= [7](33,34)+ [4](13,15)
= [7 ·2](13,15)+ [4](13,15) = [5](13,15)
= (26,34)

Indeed, we are able to evaluate the polynomials in the exponent at a secret evaluation point,
because that point is encrypted in the curve point (33,34) and its secrecy is protected by the
discrete logarithm assumption. Of course, in our computation, we recovered the secret point
τ = 2, but that was only possible because we know the logarithmic order of our groups with
respect to the generators. Such an order is infeasible in cryptographically secure curves. We
can do the same computation on G2 and get the following:

[A2(τ)]g2 = [6 · τ1 +10 · τ0]g2

= [6](10v2,28v3)+ [10](7v2,16v3)

= [6 ·2](7v2,16v3)+ [10](7v2,16v3) = [9](7v2,16v3)

= (37v2,16v3)

[A5(τ)]g2 = [7 · τ1 +4 · τ0]g1

= [7](10v2,28v3)+ [4](7v2,16v3)

= [7 ·2](7v2,16v3)+ [4](7v2,16v3) = [5](7v2,16v3)

= (16v2,28v3)

Apart from the target polynomial T , all other polynomials of the Quadratic Arithmetic Pro-
gram can be evaluated in the exponent this way.

Example 150 (The 3-Factorization Problem in Circom and Snark.js). The implementation of the
Groth_16 zk-SNARK setup phase in real world applications can be observed through the ex-
amination of our Circom implementation of the 3-factorization problem 137 and the associated
parameter set from Snark.js, as outlined in example 148.

In accordance with the methodology described in Bowe et al. [2017], the generation of the
Common Reference String in Snark.js is comprised of two parts. The first part depends on an
upper bound on the number of constraints in the circuit, while the second part is dependent on
the circuit itself. This division increases the flexibility of the trusted setup procedure, as proto-
cols with Universal Common Reference Strings, such as PLONK, only require the execution of
the first phase, while the Groth_16 protocol mandates the execution of both phases.

The first phase, commonly referred to as the powers of tau, involves the calculation of
consecutive powers, gτ , gτ2

, gτ3
, . . ., gτk

, of a random field element τ within the exponents
of agreed-upon generators of G1 and G2. The random element τ can either be provided by a
trusted third party or generated through a multi-party computation.

Assuming that an upper bound on the number of constraints in Circom’s 3-fac circuit is
given by 24, the first part is initialized as follows:
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:$ snarkjs powersoftau new bn128 4 pot4_0000.ptau -v

The new command is used to start a new phase and the first parameter after new refers to
the type of curve and hence specifies the Groth-16 parameter set as defined in 148. The next
parameter a, in this case 4, defines an upper bound 2a on the number of constraints that the
setup can accept.

After this initialization, it is possible for multiple parties to contribute randomness to the
common reference string:

:$ snarkjs powersoftau contribute pot4_0000.ptau pot4_0001.ptau
-name="1st_cont" -v

This step can be repeated and the contribution of randomness by each party to the common
reference string is facilitated by the creation of a new contribution file, and the user is prompted
to input additional entropy. It has been demonstrated that, provided at least one contributor
forgets their randomness, recovery of the simulation trapdoor defined in reference 8.2 is impos-
sible. Verification of the validity of any contribution file is performed as follows:

:$ snarkjs powersoftau verify pot4_0001.ptau

The completion of the first phase requires the incorporation of some public and unpredictable
randomness into the powers of tau generation, which needs to be unpredictable until the contri-
bution from the final participant is made. This is typically achieved through the use of the hash
of the latest block in a publicly accessible blockchain, or a similar mechanism.

:$ snarkjs powersoftau beacon pot4_0001.ptau pot4_beacon.ptau
0102030405060708090a0b0c00 10 -n="Final Beacon"

Upon the incorporation of the contribution of randomness from the participating parties and
the random beacon, the following two commands serve to complete and validate the first phase:

:$ snarkjs powersoftau prepare phase2 pot4_beacon.ptau
pot4_final.ptau -v
:$ snarkjs powersoftau verify pot4_final.ptau

It is apparent that this phase only depends on the upper bound of the number of constraints
and is independent of any specific circuit. Therefore, this power of tau ceremony can be utilized
to generate a common reference string for any circuit with a number of constraints less than 24.

As indicated in reference 137, the three_fac circuit in Circom consists of two constraints.
Hence, the randomness generated from this power of tau ceremony can be employed to initiate
the second phase of the Common Reference String generation process:

:$ snarkjs groth16 setup three_fac.r1cs pot4_final.ptau
three_fac0000.zkey

The second phase commences with the computation of a Groth_16 Common Reference String,
as specified in reference 8.3. This phase depends on the R1CS of the problem, and the resulting
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computation is saved to three_fac0000.zkey.
In contrast to the first phase, where the randomness was used to generate the ’τ’ parameter

of the CRS, multiple parties can now contribute randomness to the other parameters, namely α ,
β , γ , and δ , of the Groth_16 CRS.

:$ snarkjs zkey contribute three_fac0000.zkey
three_fac0001.zkey -name="1st Contributor Name" -v

This creates a file with a new contribution to the second phase and prompts the user to provide
additional randomness to enhance entropy. This step can be repeated many times for different
users. The correctness of any contribution file can be verified as follows:

:$ snarkjs zkey verify three_fac.r1cs pot4_final.ptau
three_fac0001.zkey

The second phase requires the integration of unpredictable, public randomness, which is not
known prior to the contribution of the final participant. This can be achieved through the uti-
lization of a method such as the hash of the latest block in a public blockchain.:

:$ snarkjs zkey beacon three_fac0001.zkey three_fac_final.zkey
010203040506070809 10 -n="Final Beacon phase2"

Once the randomness input from all parties and the random beacon have been incorporated,
the verification of the second phase can be performed using the following two commands. This
process will also export the verification key, which is a vital component of the Common Refer-
ence String and will be stored in a JSON file for the verifier to use:

:$ snarkjs zkey verify three_fac.r1cs pot4_final.ptau
three_fac_final.zkey
:$ snarkjs zkey export verificationkey three_fac_final.zkey
verification_key.json

The Circom trusted setup therefore enables the creation of the Common Reference String
three_fac_final.zkey, which holds both the prover and the verifier key. The verifier
key can also be exported as a JSON file verification_key.json for the purpose of pub-
lishing it on a public blockchain for implementation as a smart contract.

Exercise 115. Consider exercise 114 and execute a 3-party trusted setup phase for the baby-
jubjub circuit.

8.2.2 The Prover Phase
Given some Rank-1 Constraint System R and instance I =< I1, . . . , In >, the objective of the
prover phase is to convince any verifier that a prover knows a witness W to instance I such that
(I;W ) is a word in the language LR of the system, without revealing anything about W .

To achieve this in the Groth_16 protocol, we assume that any prover has access to the Rank-
1 Constraint System of the problem, in addition to some algorithm that tells the prover how
to compute constructive proofs for the R1CS. In addition, the prover has access to a Common
Reference String and its associated Quadratic Arithmetic Program.
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To create a zk-SNARK for the given instance, the prover begins by computing a valid con-
structive proof, as outlined in reference 6.2.1.2. This involves producing a suitable witness
W =<W1, . . . ,Wm > such that (< I1, . . . , In >;<W1, . . . ,Wm >) is a valid solution to the Rank-1
Constraint System R.

After generating the witness, the prover employs the Quadratic Arithmetic Program to com-
pute the polynomial P(I;W ), as outlined in reference 6.18. The prover then divides this polyno-
mial by the target polynomial T of the Quadratic Arithmetic Program. As P(I;W ) is derived from
a valid solution to the R1CS, as stated in reference 6.18, it follows that P(I;W ) is divisible by T .
This implies that the division of P(I;W ) by T results in another polynomial H := P(I;W )/T , with
a degree lower than that of T .

The prover then evaluates the polynomial (H · T )/δ in the exponent of the generator g1
at the secret point τ , as explained in 8.2.1. To see how this can be achieved, let H(x) be the
quotient polynomial P/T :

H(x) = H0 · x0 +H1 · x1 + . . .+Hk · xk (8.5)

To evaluate (H ·T )/δ at τ in the exponent of g1, the prover uses the Common Reference
String and computes as follows:

g
H(τ)·T (τ)

δ

1 =
(

g
τ0·T (τ)

δ

1

)H0
·
(

g
τ1·T (τ)

δ

1

)H1
· · ·
(

g
τk ·T (τ)

δ

1

)Hk

After this has been done, the prover samples two random field elements r, t ∈ Fr, and uses
the Common Reference String, the instance variables I1, . . ., In and the witness variables W1,
. . ., Wm to compute the following curve points:

gW
1 =

(
g
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δ
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· · ·
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(
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(
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(
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(
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(
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During this calculation, the group elements gA j(τ)
1 , gB j(τ)

1 , and gB j(τ)
2 can be obtained from

the Common Reference String and the Quadratic Arithmetic Program associated with the prob-
lem, as demonstrated in 8.2.1. These points only need to be computed once, and can be made
public and reused for multiple proof generations as they are consistent across all instances and
witnesses. The remaining group elements are part of the Common Reference String.

After all these computations have been done, a valid zero-knowledge succinct non-interactive
argument of knowledge π in the Groth_16 protocol is given by the following three curve points:

π = (gA
1 ,g

C
1 ,g

B
2 ) (8.6)

It can be observed that a Groth_16 zk-SNARK comprises of three curve points, with two
being from the G1 group and one from the G2 group. This arrangement is purposeful, as G1 is
typically a torsion group of an elliptic curve over a prime field in typical applications, while G2
is a subgroup of the full torsion group over an extension field, as explained in section 5.4. Since
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elements from G1 require less storage space and computations in G1 are faster than in G2, this
design is optimal.

The witness in a zk-SNARK is encoded in the exponent of a generator of a secure elliptic
curve, making it invisible to anyone except the prover. Additionally, the presence of random
field elements r and t randomizes each proof, ensuring that no two proofs correspond to the
same witness.

Example 151 (The 3-factorization Problem). To see how a prover might compute a zk-SNARK,
consider the 3-factorization problem from example 115, our protocol parameters from example
147 as well as the Common Reference String from (8.4).

Our task is to compute a zk-SNARK for the instance I1 =< 11 > and its constructive proof
< W1,W2,W3,W4 >=< 2,3,4,6 > as computed in example 122. As we know from example
131, the associated polynomial P(I;W ) of the Quadratic Arithmetic Program from example 131
is given as follows:

P(I;W ) = x2 + x+9

Since P(I;W ) is identical to the target polynomial T (x) = x2 + x+ 9 in this example, we know
from example 131 that the quotient polynomial H = P/T is the constant degree 0 polynomial:

H(x) = H0 · x0 = 1 · x0

We therefore use [ τ0·T (τ)
δ

]g1 = (26,34) from our Common Reference String (8.4) of the 3-
factorization problem and compute as follows:

[
H(τ) ·T (τ)

δ
]g1 = [H0](26,34) = [1](26,34)

= (26,34)

In the next step, we have to compute all group elements required for a proper Groth16 zk-
SNARK (8.6). We start with gW

1 . Using scalar products instead of the exponential notation, and
⊕ for the group law on the BLS6_6 curve, we have to compute the point [W ]g1:

[W ]g1 = [W1]g
β ·A2(τ)+α·B2(τ)+C2(τ)

δ

1 ⊕ [W2]g
β ·A3(τ)+α·B3(τ)+C3(τ)

δ

1 ⊕ [W3]g
β ·A4(τ)+α·B4(τ)+C4(τ)

δ

1

⊕ [W4]g
β ·A5(τ)+α·B5(τ)+C5(τ)

δ

1

To compute this point, we have to remember that a prover should not be in possession of
the simulation trapdoor, hence, they should not know what α , β , δ and τ are. In order to
compute this group element, the prover therefore needs the Common Reference String. Using
the logarithmic order from 5.66 and the witness, we get the following:

[W ]g1 = [2](33,34)⊕ [3](26,34)⊕ [4](38,28)⊕ [6](27,9)
= [2 ·2](13,15)⊕ [3 ·5](13,15)⊕ [4 ·10](13,15)⊕ [6 ·7](13,15)
= [2 ·2+3 ·5+4 ·10+6 ·7](13,15) = [10](13,15)
= (38,28)

In a next step, we compute gA
1 . We sample the random point r = 11 from F13, using scalar

products instead of the exponential notation, and ⊕ for the group law on the BLS6_6 curve.
We then have to compute the following expression:
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[A]g1 = [α]g1⊕ [A0(τ)]g1⊕ [I1][A1(τ)]g1⊕ [W1][A2(τ)]g1⊕ [W2][A3(τ)]g1

⊕ [W3][A4(τ)]g1⊕ [W4][A5(τ)]g1⊕ [r][δ ]g1

Since we don’t know what α , δ and τ are, we look up [α]g1 and [δ ]g1 from the Common
Reference String. According to example 8.4, we have [A2(τ)]g1 =(35,15), [A5(τ)]g1 =(26,34)
and [A j(τ)]g1 =O for all other indices 0≤ j ≤ 5. SinceO is the neutral element on G1, we get
the following:

[A]g1 = (27,34)⊕O⊕ [11]O⊕ [2](35,15)⊕ [3]O⊕ [4]O⊕ [6](26,34)⊕ [11](38,15)
= (27,34)⊕ [2](35,15)⊕ [6](26,34)⊕ [11](38,15)
= [6](13,15)⊕ [2 ·9](13,15)⊕ [6 ·5](13,15)⊕ [11 ·3](13,15)
= [6+2 ·9+6 ·5+11 ·3](13,15) = [9](13,15)
= (35,15)

In order to compute the two curve points [B]g1 and [B]g2, we sample another random element
t = 4 from F13. Using the scalar product instead of the exponential notation, and⊕ for the group
law on the BLS6_6 curve, we have to compute the following expressions:

[B]g1 = [β ]g1⊕ [B0(τ)]g1⊕ [I1][B1(τ)]g1⊕ [W1][B2(τ)]g1⊕ [W2][B3(τ)]g1

⊕ [W3][B4(τ)]g1⊕ [W4][B5(τ)]g1⊕ [t][δ ]g1

[B]g2 = [β ]g2⊕ [B0(τ)]g2⊕ [I1][B1(τ)]g2⊕ [W1][B2(τ)]g2⊕ [W2][B3(τ)]g2

⊕ [W3][B4(τ)]g2⊕ [W4][B5(τ)]g2⊕ [t][δ ]g2

Since we don’t know what β , δ and τ are, we look up the associated group elements from the
Common Reference String. Recall from 8.4 that we can evaluate [B j(τ)]g1 without knowing the
secret evaluation point τ . Since B3 =A2 and B4 =A5, we have [B3(τ)]g1 =(35,15), [B4(τ)]g1 =
(26,34) according to the computation in 8.4, and [B j(τ)]g1 =O for all other indices 0≤ j ≤ 5.
Since O is the neutral element on G1, we get the following:

[B]g1 = (26,34)⊕O⊕ [11]O⊕ [2]O⊕ [3](35,15)⊕ [4](26,34)⊕ [6]O⊕ [4](38,15)
= (26,34)⊕ [3](35,15)⊕ [4](26,34)⊕ [4](38,15)
= [5](13,15)⊕ [3 ·9](13,15)⊕ [4 ·5](13,15)⊕ [4 ·3](13,15)
= [5+3 ·9+4 ·5+4 ·3](13,15) = [12](13,15)
= (13,28)

[B]g2 = (16v2,28v3)⊕O⊕ [11]O⊕ [2]O⊕ [3](37v2,16v3)⊕ [4](16v2,28v3)⊕ [6]O⊕ [4](42v2,16v3)

= (16v2,28v3)⊕ [3](37v2,16v3)⊕ [4](16v2,28v3)⊕ [4](42v2,16v3)

= [5](7v2,16v3)⊕ [3 ·9](7v2,16v3)⊕ [4 ·5](7v2,16v3)⊕ [4 ·3](7v2,16v3)

= [5+3 ·9+4 ·5+4 ·3](7v2,16v3) = [12](7v2 +16v3)

= (7v2,27v3)

208



CHAPTER 8. ZERO KNOWLEDGE PROTOCOLS 8.2. THE “GROTH16” PROTOCOL

In a last step, we combine the previous computations to compute the point [C]g1 in the group
G1 as follows:

[C]g1 = [W ]g1⊕ [
H(s) ·T (τ)

δ
]g1⊕ [t][A]g1⊕ [r][B]g1⊕ [−r · t][δ ]g1

= (38,28)⊕ (26,34)⊕ [4](35,15)⊕ [11](13,28)⊕ [−11 ·4](38,15)
= [10](13,15)⊕ [5](13,15)⊕ [4 ·9](13,15)⊕ [11 ·12](13,15)⊕ [−11 ·4 ·3](13,15)
= [10+5+4 ·9+11 ·12−11 ·4 ·3](13,15) = [12](13,15)
= (13,28)

Given the instance I1 =< 11 >, we can now combine these computations and see that the
following 3 curve points are a zk-SNARK for the witness <W1,W2,W3,W4 >=< 2,3,4,6 >:

π = ((35,15),(13,28),(7v2,27v3)) (8.7)

We can now publish this zk-SNARK, or send it to a designated verifier. Note that, if we
had sampled different values for r and t, we would have computed a different zk-SNARK for
the same witness. The zk-SNARK, therefore, hides the witness perfectly, which means that it
is impossible to reconstruct the witness from the zk-SNARK.
Example 152 (The 3-Factorization Problem in Circom and Snark.js). The performance of the
Groth_16 zk-SNARK prover phase in practical applications can be evaluated by studying our
Circom implementation of the 3-factorization problem 137, the corresponding parameter set as
outlined in example 148, and the Common Reference String as described in example 150.

Given an instance I, it is established in 6.2.1.2 that a constructive proof for the statement
"Given instance I, there exists a witness W such that (I;W ) belongs to the languageLR" requires
knowledge of a witness W such that (I;W ) is a solution to the R1CS generated from 137.

Circom defines an instance as the collection of all public signals, and the witness as the
set of all assignments to the circuit that are not public signals. Besides instance and witness,
Circom introduces the idea of input signals and a witness generator. This generator calculates
the values for both instance and witness based on the provided inputs.

To further elaborate, we start by selecting arbitrary input values to our problem. Since the
circuit is defined over the scalar field Fbn128 of the curve alt_bn128, and there are three input
signals x1, x2, and x3 present in the circuit, we can use Sage to randomly generate three elements
from Fbn128. Utilizing the definition of alt_bn128 as outlined in example 73, we obtain:

683sage: r = bn128.order()
684sage: Fbn128 = GF(r) # bn128 scalar field field
685sage: x1 = Fbn128.random_element()
686sage: x2 = Fbn128.random_element()
687sage: x3 = Fbn128.random_element()

To facilitate the use of these input values with Circom’s witness generator program, they must
be written into a JSON format file.

{
"x1": 266454826700390499788624045644422204835838308568801104096964341

478260924069,
"x2": 170225436912117447625661665889374082810112907680591464054697626

58080007243141,
"x3":2169708499392809782734482748125393322939898426476751716891099115

492318742078
}
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The file containing the input values can be saved as input.json, and the node.js environ-
ment can be utilized to run Circom’s Javascript/WASM program, generate_witness.js,
to generate the witness based on the instance and the R1Cs:

:$ node <PATH_TO>/generate_witness.js three_fac.wasm input.json
witness.wtns

It is important to recognize that in Circom, the witness encompasses both the instance and the
witness as defined in our context. In other words, Circom’s witness contains both the private
and public assignments to the circuit and the solution to the R1Cs. It serves as a constructive
proof to the problem.

With the obtained witness, we can now use Snark.js to convert the constructive proof into a
zk-SNARK, utilizing the Common Reference String from example 148:

:$ snarkjs groth16 prove three_fac_final.zkey witness.wtns
proof.json public.json

The execution of this command will result in the creation of two files: proof.json, con-
taining the actual proof represented by three curve points, and public.json, which holds
the values of the instance.

It’s important to understand that in Circom, the instance and input values are distinct entities.
The instance contains all public values, including those that are not input values but generated
during witness generation. On the other hand, some input values may be designated as private
and therefore not included in the instance.

Exercise 116. Consider exercise 114 and the CRS from exercise 115. Use Sage to generate
a valid curve point on the Baby-JubJub curve in twisted Edwards form, that is not the neutral
element and use this point as input to the circuit. Generate a witness for this input and use
Snark.js to compute an instance as well as a zk-SNARK for this witness.

8.2.3 The Verification Phase
The objective of the verification phase in a Groth_16 zk-SNARK, given a Rank-1 Constraint
System R, an instance I =< I1, . . . , In >, and a zk-SNARK π (as defined in 8.6), is to confirm
that π constitutes a valid proof. If the simulation trapdoor is no longer present and the proof
passes the verification checks, the verifier can be convinced that there exists a witness W =<
W1, . . . ,Wm > such that (I;W ) belongs to the language of R.

To achieve this in the Groth_16 protocol, we assume that any verifier is able to compute the
pairing map e(·, ·) efficiently, and has access to the Common Reference String used to produce
the zk-SNARK π . In order to verify the zk-SNARK with respect to the instance < I1, . . . , In >,
the verifier computes the following curve point:

gI
1 =

(
g

β ·A0(τ)+α·B0(τ)+C0(τ)
γ

1

)
·
(

g
β ·A1(τ)+α·B1(τ)+C1(τ)

γ

1

)I1
· · ·
(

g
β ·An(τ)+α·Bn(τ)+Cn(τ)

γ

1

)In

With this group element, the verifier is able to verify the zk-SNARK π = (gA
1 ,g

C
1 ,g

B
2 ) by check-

ing the following equation using the pairing map:

e(gA
1 ,g

B
2 ) = e(gα

1 ,g
β

2 ) · e(g
I
1,g

γ

2) · e(g
C
1 ,g

δ
2 ) (8.8)
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If the equation holds true, the verifier outputs accept and the equation does not hold, the
verifier outputs reject.

Remark 7. As stated in section 5.4, computing pairings in secure pairing groups is a compu-
tationally expensive. In the Groth_16 protocol, three pairings are necessary for verifying the
zk-SNARK, with the pairing e(gα

1 ,g
β

2 ) being independent of the proof and thus can be computed
once and included as part of the verifier key.

According to Groth [2016], the minimum number of pairings required for any protocol with
similar properties is two. The Groth_16 protocol therefore represents a near-optimal solution in
this regard. The same paper describes an adaptation that only uses two pairings, but it requires
more computational overhead. The use of three pairings strikes a balance between efficiency
and performance, making the Groth_16 protocol the most efficient of its kind to date.

Example 153 (The 3-factorization Problem). To see how a verifier might verify a zk-SNARK
for some given instance I, consider the 3-factorization problem from example 115, our protocol
parameters from example 147, the Common Reference String from (8.4) as well as the zk-
SNARK π = ((35,15),(27,9),(7v2,27v3)) from example (8.7), which claims to be an argument
of knowledge for a witness for the instance I1 =< 11 >.

In order to verify the zk-SNARK for that instance, we first compute the curve point gI
1. Us-

ing scalar products instead of the exponential notation, and⊕ for the group law on the BLS6_6
curve, we have to compute the point [I]g1 as follows:

[I]g1 =[
β ·A0(τ)+α ·B0(τ)+C0(τ)

γ
]g1⊕ [I1][

β ·A1(τ)+α ·B1(τ)+C1(τ)

γ
]g1

To compute this point, we have to remember that a verifier should not be in possession of the
simulation trapdoor, which means that they should not know what α , β , γ and τ are. In order to
compute this group element, the verifier therefore needs the Common Reference String. Using
the logarithmic order from (5.66) and instance I1, we get the following:

[I]g1 = [
β ·A0(τ)+α ·B0(τ)+C0(τ)

γ
]g1⊕ [I1][

β ·A1(τ)+α ·B1(τ)+C1(τ)

γ
]g1

=O⊕ [11](33,9)
= [11 ·11](13,15) = [4](13,15)
= (35,28)

In the next step, we have to compute all the pairings involved in equation (8.8). Using the
logarithmic order on G1 (5.66) and G2 (5.69) as well as the bilinearity of the pairing map we
get the following:
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e([A]g1, [B]g2) = e((35,15),(7v2,27v3)) = e([9](13,15), [12](7v2,16v3))

= e((13,15),(7v2,16v3))9·12

= e((13,15),(7v2,16v3))108

e([α]g1, [β ]g2) = e((27,34),(16v2,28v3)) = e([6](13,15), [5](7v2,16v3))

= e((13,15),(7v2,16v3))6·5

= e((13,15),(7v2,16v3))30

e([I]g1, [γ]g2) = e((35,28),(37v2,27v3)) = e([4](13,15), [4](7v2,16v3))

= e((13,15),(7v2,16v3))4·4

= e((13,15),(7v2,16v3))16

e([C]g1, [δ ]g2) = e((13,28),(42v2,16v3)) = e([12](13,15), [3](7v2,16v3))

= e((13,15),(7v2,16v3))12·3

= e((13,15),(7v2,16v3))36

In order to check equation (8.8), observe that the target group GT of the Weil pairing is
a finite cyclic group of order 13. Exponentiation is therefore done in modular 13 arithmetic.
Accordingly, since 108 mod 13 = 4, we evaluate the left side of equation (8.8) as follows:

e([A]g1, [B]g2) = e((13,15),(7v2,16v3))108 = e((13,15),(7v2,16v3))4

Similarly, we evaluate the right side of equation (8.8) using modular 13 arithmetic and the
exponential law ax ·ay = ax+y:

e([α]g1, [β ]g2) · e([I]g1, [γ]g2) · e([C]g1, [δ ]g2) =

e((13,15),(7v2,16v3))30 · e((13,15),(7v2,16v3))16 · e((13,15),(7v2,16v3))36 =

e((13,15),(7v2,16v3))4 · e((13,15),(7v2,16v3))3 · e((13,15),(7v2,16v3))10 =

e((13,15),(7v2,16v3))4+3+10 =

e((13,15),(7v2,16v3))4

As we can see, both the left and the right side of equation (8.8) are identical, which implies
that the verification process accepts the zk-SNARK and the verifier outputs accept.

Example 154 (The 3-Factorization Problem in Circom and Snark.js). The performance of the
Groth 16 zk-SNARK verifier phase in practical applications can be evaluated by examining our
Circom implementation of the 3-factorization problem 137, the corresponding parameter set
148, the Common Reference String 150, and the generated proof 152.

As we learned from Example 150, a verifier key can be extracted from the Common Refer-
ence String. This is beneficial because the verifier key is much smaller in size compared to the
full CRS, making it more efficient to store, for example, on a blockchain.

To verify the proof proof.json against the instance public.json, the verifier utilizes
the verification key verification_key.json and employs Snark.js’s verification algo-
rithm:

:$ snarkjs groth16 verify verification_key.json public.json
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proof.json

The algorithm either verifies or rejects the Groth_16 zk-SNARK in relation to the given key
and instance.

The verifier logic in Groth_16 is simple and consists of a few exponentiations and three
pairings, making it suitable for implementation as a smart contract on a blockchain. Circom
offers an automation tool for the Solidity language, but a more detailed explanation of this is
outside the scope of this book.

Exercise 117. Consider exercise 114, the CRS from exercise 115 as well as the instance and
zk-SNARK from exercise 116 and verify the zk-SNARK against the instance.

8.2.4 Proof Simulation
During the setup phase, a Common Reference String is created along with a simulation trapdoor
(as defined in equation (8.2)), which must be discarded at the end of the setup phase. In this
section, we will highlight the potential issues with having knowledge of the simulation trapdoor
and how it can be used to generate zk-SNARKs without any knowledge of a valid witness.

To clarify, let I be an instance of a R1CS language LR. A zk-SNARK for LR is considered
to be "forged" or "simulated" if it passes verification, but its generation does not require the
presence of a witness W such that (I;W ) is a word in LR.

To understand how simulated zk-SNARKs can be produced, consider a scenario where an
attacker has access to the proper Groth_16 parameters, a Quadratic Arithmetic Program of the
problem, a Common Reference String, and its corresponding simulation trapdoor ST:

ST = (α,β ,γ,δ ,τ) (8.9)

Given some instance I, the forger’s task is to generate a zk-SNARK for this instance that
passes the verification process, without having access to any other zk-SNARKs for this instance
and without knowledge of a valid witness W .

To achieve this in the Groth_16 protocol, the forger can use the simulation trapdoor in
combination with the QAP and two arbitrary field elements A and B from the scalar field Fr of
the pairing groups to compute gC

1 for the instance < I1, . . . , In > as follows:

g
A·B
δ

1 ·g
−α·β

δ

1 ·g−
βA0(τ)+αB0(τ)+C0(τ)

δ

1 ·
(

g
− βA1(τ)+αB1(τ)+C1(τ)

δ

1

)I1
· · ·
(

g
− βAn(τ)+αBn(τ)+Cn(τ)

δ

1

)In
(8.10)

The forger then publishes the zk-SNARK π f orged = (gA
1 ,g

C
1 ,g

B
2 ), which will pass the verifi-

cation process and is computable without the existence of a witness <W1, . . . ,Wm >.
To see that the simulation trapdoor is necessary and sufficient to compute the simulated

proof π f orged , first observe that both generators g1 and g2 are known to the forger, as they are
part of the Common Reference String, encoded as gτ0

1 and gτ0

2 . The forger is therefore able to
compute gA·B

1 . Moreover, since the forger knows α , β , δ and τ from the trapdoor, they are able
to compute all factors in the computation of gC

1 .
If, on the other hand, the simulation trapdoor is unknown, it is not possible to compute gC

1 ,
since, for example, the computational Diffie-Hellman assumption makes the derivation of gα·β

1

from gα
1 and gβ

1 infeasible.

Example 155 (The 3-factorization Problem). To see how a forger might simulate a zk-SNARK
for some given instance I, consider the 3-factorization problem from example 115, our protocol
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parameters from (147), the Common Reference String from example 8.4 and the simulation
trapdoor ST = (6,5,4,3,2) of that CRS.

In order to forge a zk-SNARK for instance I1 =< 11 >, we don’t need a constructive proof
for the associated Rank-1 Constraint System, which implies that we don’t have to execute the
circuit C3. f ac(F13) from example 124. Instead, we have to choose 2 arbitrary elements A and
B from F13, and compute gA

1 , gB
2 and gC

1 as defined in 8.10. We choose A = 9 and B = 3, and,
since δ−1 = 3, we compute as follows:

[A]g1 =[9](13,15) = (35,15)

[B]g2 =[3](7v2,16v3) = (42v2,16v3)

[C]g1 =[
A ·B

δ
]g1⊕ [−α ·β

δ
]g1⊕ [−βA0(τ)+αB0(τ)+C0(τ)

δ
]g1⊕

[I1][−
βA1(τ)+αB1(τ)+C1(τ)

δ
]g1

=[(9 ·3) ·9](13,15)⊕ [−(6 ·5) ·9](13,15)⊕ [0](13,15)⊕ [11][−(7 ·2+4) ·9](13,15)
=[9](13,15)⊕ [3](13,15)⊕ [12](13,15) = [11](13,15)
=(33,9)

This is all we need to generate our forged proof for the 3-factorization problem. We publish
the simulated zk-SNARK:

π f ake = ((35,15),(33,9),(42v2,16v3))

Despite the fact that this zk-SNARK was generated without knowledge of a proper witness,
it is indistinguishable from a zk-SNARK that proves knowledge of a proper witness.

To see that, we show that our forged SNARK passes the verification process. In order to
verify π f ake, we proceed as in section 8.2.3 and compute the curve point gI

1 for the instance
I1 =< 11 >. Since the instance is the same as in example (8.7), we can parallel the computation
from that example:

[I]g1 = [
β ·A0(τ)+α ·B0(τ)+C0(τ)

γ
]g1⊕ [I1][

β ·A1(τ)+α ·B1(τ)+C1(τ)

γ
]g1

= (35,28)

In a next step we have to compute all the pairings involved in equation (8.8). Using the log-
arithmic order on G1 (5.66) and G2 (5.69) as well as the bilinearity of the pairing map we
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get

e([A]g1, [B]g2) = e((35,15),(42v2,16v3)) = e([9](13,15), [3](7v2,16v3))

= e((13,15),(7v2,16v3))9·3

= e((13,15),(7v2,16v3))27

e([α]g1, [β ]g2) = e((27,34),(16v2,28v3)) = e([6](13,15), [5](7v2,16v3))

= e((13,15),(7v2,16v3))6·5

= e((13,15),(7v2,16v3))30

e([I]g1, [γ]g2) = e((35,28),(37v2,27v3)) = e([4](13,15), [4](7v2,16v3))

= e((13,15),(7v2,16v3))4·4

= e((13,15),(7v2,16v3))16

e([C]g1, [δ ]g2) = e((33,9),(42v2,16v3)) = e([11](13,15), [3](7v2,16v3))

= e((13,15),(7v2,16v3))11·3

= e((13,15),(7v2,16v3))33

In order to check equation (8.8), observe that the target group GT of the Weil pairing is
a finite cyclic group of order 13. Exponentiation is therefore done in modular 13 arithmetics.
Using this, we evaluate the left side of the verifier equation as follows:

e([A]g1, [B]g2) = e((13,15),(7v2,16v3))27 = e((13,15),(7v2,16v3))1

since 27 mod 13 = 1. Similarly, we evaluate the right side of the verification equation using
modular 13 arithmetics and the exponential law ax ·ay = ax+y. We get

e([α]g1, [β ]g2) · e([I]g1, [γ]g2) · e([C]g1, [δ ]g2) =

e((13,15),(7v2,16v3))30 · e((13,15),(7v2,16v3))16 · e((13,15),(7v2,16v3))33 =

e((13,15),(7v2,16v3))4 · e((13,15),(7v2,16v3))3 · e((13,15),(7v2,16v3))7 =

e((13,15),(7v2,16v3))4+3+7 =

e((13,15),(7v2,16v3))1

As we can see, both the left and the right side of the verifier equation are identical, which
implies that the verification process accepts the simulated proof. π f ake therefore convinces the
verifier that a witness to the 3-factorization problem exists. However, no such witness was really
necessary to generate the proof.

Example 156 (The 3-Factorization Problem in Circom and Snark.js). As of the time of writ-
ing, Snark.js does not have an algorithm to generate simulated proofs using a given simulation
trapdoor.
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Public License (“Public License”). To the extent this Public License may be interpreted as a contract,
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means is NonCommercial provided there is no payment of monetary compensation in connection
with the exchange.
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i. Share means to provide material to the public by any means or process that requires permission
under the Licensed Rights, such as reproduction, public display, public performance, distribution,
dissemination, communication, or importation, and to make material available to the public in-
cluding in ways that members of the public may access the material from a place and at a time
individually chosen by them.

j. Sui Generis Database Rights means rights other than copyright resulting from Directive 96/9/EC
of the European Parliament and of the Council of 11 March 1996 on the legal protection of
databases, as amended and/or succeeded, as well as other essentially equivalent rights anywhere
in the world.

k. You means the individual or entity exercising the Licensed Rights under this Public License. Your
has a corresponding meaning.

Section 2 – Scope.
a. License grant.

1. Subject to the terms and conditions of this Public License, the Licensor hereby grants You
a worldwide, royalty-free, non-sublicensable, non-exclusive, irrevocable license to exercise
the Licensed Rights in the Licensed Material to:

A. reproduce and Share the Licensed Material, in whole or in part, for NonCommercial
purposes only; and

B. produce and reproduce, but not Share, Adapted Material for NonCommercial purposes
only.

2. Exceptions and Limitations. For the avoidance of doubt, where Exceptions and Limitations
apply to Your use, this Public License does not apply, and You do not need to comply with
its terms and conditions.

3. Term. The term of this Public License is specified in Section 6(a).

4. Media and formats; technical modifications allowed. The Licensor authorizes You to exer-
cise the Licensed Rights in all media and formats whether now known or hereafter created,
and to make technical modifications necessary to do so. The Licensor waives and/or agrees
not to assert any right or authority to forbid You from making technical modifications neces-
sary to exercise the Licensed Rights, including technical modifications necessary to circum-
vent Effective Technological Measures. For purposes of this Public License, simply making
modifications authorized by this Section 2(a)(4) never produces Adapted Material.

5. Downstream recipients.

A. Offer from the Licensor – Licensed Material. Every recipient of the Licensed Material
automatically receives an offer from the Licensor to exercise the Licensed Rights under
the terms and conditions of this Public License.

B. No downstream restrictions. You may not offer or impose any additional or different
terms or conditions on, or apply any Effective Technological Measures to, the Licensed
Material if doing so restricts exercise of the Licensed Rights by any recipient of the
Licensed Material.

6. No endorsement. Nothing in this Public License constitutes or may be construed as permis-
sion to assert or imply that You are, or that Your use of the Licensed Material is, connected
with, or sponsored, endorsed, or granted official status by, the Licensor or others designated
to receive attribution as provided in Section 3(a)(1)(A)(i).

b. Other rights.
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1. Moral rights, such as the right of integrity, are not licensed under this Public License, nor
are publicity, privacy, and/or other similar personality rights; however, to the extent possible,
the Licensor waives and/or agrees not to assert any such rights held by the Licensor to the
limited extent necessary to allow You to exercise the Licensed Rights, but not otherwise.

2. Patent and trademark rights are not licensed under this Public License.

3. To the extent possible, the Licensor waives any right to collect royalties from You for the
exercise of the Licensed Rights, whether directly or through a collecting society under any
voluntary or waivable statutory or compulsory licensing scheme. In all other cases the Li-
censor expressly reserves any right to collect such royalties, including when the Licensed
Material is used other than for NonCommercial purposes.

Section 3 – License Conditions.
Your exercise of the Licensed Rights is expressly made subject to the following conditions.

a. Attribution.

1. If You Share the Licensed Material, You must:

A. retain the following if it is supplied by the Licensor with the Licensed Material:
i. identification of the creator(s) of the Licensed Material and any others designated

to receive attribution, in any reasonable manner requested by the Licensor (includ-
ing by pseudonym if designated);

ii. a copyright notice;
iii. a notice that refers to this Public License;
iv. a notice that refers to the disclaimer of warranties;
v. a URI or hyperlink to the Licensed Material to the extent reasonably practicable;

B. indicate if You modified the Licensed Material and retain an indication of any previous
modifications; and

C. indicate the Licensed Material is licensed under this Public License, and include the
text of, or the URI or hyperlink to, this Public License.

For the avoidance of doubt, You do not have permission under this Public License to Share
Adapted Material.

2. You may satisfy the conditions in Section 3(a)(1) in any reasonable manner based on the
medium, means, and context in which You Share the Licensed Material. For example, it
may be reasonable to satisfy the conditions by providing a URI or hyperlink to a resource
that includes the required information.

3. If requested by the Licensor, You must remove any of the information required by Section
3(a)(1)(A) to the extent reasonably practicable.

Section 4 – Sui Generis Database Rights.
Where the Licensed Rights include Sui Generis Database Rights that apply to Your use of the Licensed
Material:

a. for the avoidance of doubt, Section 2(a)(1) grants You the right to extract, reuse, reproduce, and
Share all or a substantial portion of the contents of the database for NonCommercial purposes
only and provided You do not Share Adapted Material;

b. if You include all or a substantial portion of the database contents in a database in which You have
Sui Generis Database Rights, then the database in which You have Sui Generis Database Rights
(but not its individual contents) is Adapted Material; and
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c. You must comply with the conditions in Section 3(a) if You Share all or a substantial portion of
the contents of the database.

For the avoidance of doubt, this Section 4 supplements and does not replace Your obligations under this
Public License where the Licensed Rights include other Copyright and Similar Rights.

Section 5 – Disclaimer of Warranties and Limitation of Liability.
a. Unless otherwise separately undertaken by the Licensor, to the extent possible, the Licensor

offers the Licensed Material as-is and as-available, and makes no representations or war-
ranties of any kind concerning the Licensed Material, whether express, implied, statutory,
or other. This includes, without limitation, warranties of title, merchantability, fitness for
a particular purpose, non-infringement, absence of latent or other defects, accuracy, or the
presence or absence of errors, whether or not known or discoverable. Where disclaimers of
warranties are not allowed in full or in part, this disclaimer may not apply to You.

b. To the extent possible, in no event will the Licensor be liable to You on any legal theory
(including, without limitation, negligence) or otherwise for any direct, special, indirect, in-
cidental, consequential, punitive, exemplary, or other losses, costs, expenses, or damages
arising out of this Public License or use of the Licensed Material, even if the Licensor has
been advised of the possibility of such losses, costs, expenses, or damages. Where a limitation
of liability is not allowed in full or in part, this limitation may not apply to You.

c. The disclaimer of warranties and limitation of liability provided above shall be interpreted in a
manner that, to the extent possible, most closely approximates an absolute disclaimer and waiver
of all liability.

Section 6 – Term and Termination.
a. This Public License applies for the term of the Copyright and Similar Rights licensed here. How-

ever, if You fail to comply with this Public License, then Your rights under this Public License
terminate automatically.

b. Where Your right to use the Licensed Material has terminated under Section 6(a), it reinstates:

1. automatically as of the date the violation is cured, provided it is cured within 30 days of
Your discovery of the violation; or

2. upon express reinstatement by the Licensor.

For the avoidance of doubt, this Section 6(b) does not affect any right the Licensor may have to
seek remedies for Your violations of this Public License.

c. For the avoidance of doubt, the Licensor may also offer the Licensed Material under separate
terms or conditions or stop distributing the Licensed Material at any time; however, doing so will
not terminate this Public License.

d. Sections 1, 5, 6, 7, and 8 survive termination of this Public License.

Section 7 – Other Terms and Conditions.
a. The Licensor shall not be bound by any additional or different terms or conditions communicated

by You unless expressly agreed.

b. Any arrangements, understandings, or agreements regarding the Licensed Material not stated
herein are separate from and independent of the terms and conditions of this Public License.
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Section 8 – Interpretation.
a. For the avoidance of doubt, this Public License does not, and shall not be interpreted to, reduce,

limit, restrict, or impose conditions on any use of the Licensed Material that could lawfully be
made without permission under this Public License.

b. To the extent possible, if any provision of this Public License is deemed unenforceable, it shall be
automatically reformed to the minimum extent necessary to make it enforceable. If the provision
cannot be reformed, it shall be severed from this Public License without affecting the enforceabil-
ity of the remaining terms and conditions.

c. No term or condition of this Public License will be waived and no failure to comply consented to
unless expressly agreed to by the Licensor.

d. Nothing in this Public License constitutes or may be interpreted as a limitation upon, or waiver of,
any privileges and immunities that apply to the Licensor or You, including from the legal processes
of any jurisdiction or authority.

Creative Commons is not a party to its public licenses. Notwithstanding, Creative Commons may
elect to apply one of its public licenses to material it publishes and in those instances will be considered
the “Licensor.” The text of the Creative Commons public licenses is dedicated to the public domain
under the CC0 Public Domain Dedication . Except for the limited purpose of indicating that material is
shared under a Creative Commons public license or as otherwise permitted by the Creative Commons
policies published at creativecommons.org/policies, Creative Commons does not authorize the use of
the trademark “Creative Commons” or any other trademark or logo of Creative Commons without its
prior written consent including, without limitation, in connection with any unauthorized modifications
to any of its public licenses or any other arrangements, understandings, or agreements concerning use of
licensed material. For the avoidance of doubt, this paragraph does not form part of the public licenses.

Creative Commons may be contacted at creativecommons.org.
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Sideletter for Contributions to the MoonMath Manual To
zk-SNARKs (the “Sideletter”)

between Least Authority TFA GmbH, Thaerstraße 28a, 10249 Berlin (hereinafter referred to as
“Least Authority”) and any natural person or legal entity submitting Contributions to the MoonMath
Manual (hereinafter referred to as “You” or “Your”).

Preamble

(A) Least Authority is the initial creator of the so-called MoonMath Manual To zk-SNARKs (the
“Manual”) which serves as a resource for anyone interested in understanding and unlocking the
potential of the so-called “zk-SNARK” technology (“zk-SNARK”). The acronym zk-SNARK
stands for “Zero-Knowledge Succinct Non-Interactive Argument of Knowledge” and refers to a
cryptographic technique where one can prove possession of certain information without revealing
the information itself. Most explanations struggle to clarify how and why they work. Resources
are scattered across blog posts and Github libraries. This results in a high barrier to entry, thereby
slowing the widespread adoption of zk-SNARKs and associated privacy-enhancing technologies.

(B) Least Authority wants to change that with the Manual by continuing the Manual as a community-
based project to collect useful and practical information on the zk-SNARK. Third-party authors
like You shall be able to contribute parts, ideas and practical information to the Manual.

(C) The Manual itself is licensed under the Creative Commons Public License, version Attribution-
NonCommercial-NoDerivatives 4.0 International (“CC BY-NC-ND-4.0”), which allows usage
and distribution as well as modification of the Manual. However, if You modify the Manual or
create “Adapted Material” of the Manual in the sense of Section 1.a. of the CC BY-NC-ND-4.0,
those are not allowed to be distributed by You because Section 3.a.1. subsection 2 of the CC
BY-NC-ND-4.0 prohibits the distribution of Adapted Material.

(D) If You wish to participate in the Manual, You can submit Adapted Material on the Manual as
well as material created independently from the Manual (“Independent Creations”) to Least
Authority. If You are interested in adding a major Contribution to the Manual, please contact
Least Authority directly under mmm@leastauthority.com and we can discuss if Your contribution
can be handled individually with different terms.

(E) Subject of this Sideletter shall be the licensing of Your Contribution to Least Authority.

Now it is agreed as follows:

§1
License on Your Submitted Contribution

(1) You can contribute any written work, graphic, calculation method, compilation of information,
database, or any other work of authorship, including any modifications or additions to the Man-
ual that is created by You by submitting it to Least Authority for the purpose of the inclusion
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in the Manual, regardless of whether it is an Independent Creation or Adapted Material (each
of them a “Contribution”). “Submission” in this sense includes any form of electronic, verbal,
or written communication sent to Least Authority under mmm@leastauthority.com or uploaded
to https://github.com/LeastAuthority/moonmath-manual. For clarity: Least Authority is not obli-
gated to include Your Contribution in the Manual.

(2) You hereby grant Least Authority a perpetual, worldwide, non-exclusive, sublicensable, irrevoca-
ble and royalty-free right to use, modify, edit, make publicly available and distribute Your Con-
tribution in tangible and intangible form or any other way now known or in the future developed
in their original or modified way (within the limits of the prohibition of defacement), as well as
to combine it in the original or modified way with or into the Manual (“License”). The License
does at least include all rights required to license the Contribution under the CC BY-NC-ND-4.0
and in particular allows Least Authority to use, modify, edit, make publicly available and dis-
tribute in tangible and intangible form or any other way now known or in the future developed the
Contribution as part of the Manual. Least Authority hereby accepts the grant of the License.

(3) If Least Authority decides that Your Contribution or parts thereof shall be included in the Manual,
Least Authority will ensure the following:

a) the Contribution as part of the Manual is licensed under the CC BY-NC-ND-4.0,

b) You will be identified as a Contributor (including by pseudonym if designated) in the Man-
ual.

The rule § 1 (3) b) only applies if Your name or pseudonym is supplied with the Contribution.

(4) In case Least Authority decides that only parts or revisions of Your Contribution will be included
in the Manual, Least Authority will inform You within a reasonable period of time and obtain
Your consent to license the parts / revisions of Your Contribution corresponding to §1 (2). No
consent is needed if only editorial changes are made by Least Authority. In case You decide to
submit Your Contribution with no information to contact You, this clause § 1 (4) shall not apply
since Least Authority has no possibility to obtain Your consent.

(5) In case Least Authority decides that Your Contribution will not be part of the Manual, Least
Authority shall use reasonable means to inform you on its decision within a reasonable period of
time after Your Submission. The License You granted to Least Authority ends with the decision
by Least Authority not to include the Contributions into the Manual.

§2
Disclaimer

(1) Unless otherwise separately undertaken by You, to the extent possible, You offer the Contribu-
tion as-is and as-available, and make no representations or warranties of any kind concerning
the Contribution, whether express, implied, statutory, or other. This includes, without limitation,
warranties of title, merchantability, fitness for a particular purpose, non-infringement, absence of
latent or other defects, accuracy, or the presence or absence of errors, whether or not known or
discoverable. Where disclaimers of warranties are not allowed in full or in part, this disclaimer
may not apply to You.

(2) To the extent possible, in no event will You be liable to us on any legal theory (including, without
limitation, negligence) or otherwise for any direct, special, indirect, incidental, consequential,
punitive, exemplary, or other losses, costs, expenses, or damages arising out of this Side Letter
or use of the Contribution, even if You have been advised of the possibility of such losses, costs,
expenses, or damages. Where a limitation of liability is not allowed in full or in part, this limitation
may not apply to You.
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(3) The disclaimer of warranties and limitation of liability provided above shall be interpreted in a
manner that, to the extent possible, most closely approximates an absolute disclaimer and waiver
of all liability.

§3
Miscellaneous

(1) This Sideletter is valid without signature. It is concluded between You and Least Authority at the
time of the submission of the Contribution by You to Least Authority.

(2) This Sideletter and its interpretation and any non-contractual obligations in connection with it are
subject to German substantive law. The UN Convention on Contracts for the International Sale of
Goods (CISG) shall not apply.

(3) English language terms used in this Sideletter describe German legal concepts only and shall
not be interpreted by reference to any meaning attributed to them in any jurisdiction other than
Germany. Where a German term has been inserted in brackets and/or italics it alone (and not the
English term to which it relates) shall be authoritative for the purpose of the interpretation of the
relevant term whenever it is used in this Agreement.

(4) Should one or more provisions of this Sideletter be or become invalid or unenforceable in whole
or in part, this shall not affect the validity and enforceability of the remaining provisions of this
Sideletter. In place of any Standard Terms of Business (Allgemeine Geschäftsbedingungen) which
are invalid or not incorporated in the Sideletter the statutory provisions shall apply (§ 306 (2) of
the German Civil Code (BGB)). In all other cases, the parties shall agree a valid provision to
replace the invalid or unenforceable provision which reflects as closely as possible the original
economic purpose, provided a supplementary interpretation of the Sideletter (ergänzende Ver-
tragsauslegung) does not have precedence or is not possible.

(5) Amendments and additions to this Sideletter shall be valid only if made in writing. This also
applies to any amendment to this written form clause.

(6) Any disputes arising out of or in connection with this Sideletter, including disputes on its conclu-
sion, binding effects, amendment and termination, shall be dealt with exclusively by the competent
court in Berlin, Germany, if legally possible.
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